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ABSTRACT 

In this paper, we investigate asymptotic properties of  the tail probabilities of  
the maxima of partial sums of  independent random variables. For some large 
classes of  heavy-tailed distributions, we show that the tail probabilities of 
the maxima of the partial sums asymptotically equal to the sum of the tail 
probabilities of  the individual random variables. Then we partially extend the 
result to the case of random sums. Applications to some commonly used risk 
processes are proposed. All heavy-tailed distributions involved in this paper 
are supposed on the whole real line. 
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1. INTRODUCTION 

Since the classical work of L6vy's formula 

P(oS<UtPlB(t)> x)= 2P(B(1)> x), 

where B(t) is the Brownian motion satisfying B(O) = O, the question as how to 
establish relations of the type 

P (  sup W(t) > x)-cP(W(1)> x), (1.1) 
\0_<t_<l 

for certain stochastic process W(t) has been in the focus of  many researchers, 
where c > 0 is a constant. In a special case where W(t), with W(O) = O, is a 
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continuous time process with independent and stationary increments, rela- 
tions like (1.1) have been studied by many authors. Berman (1986) proved 
(1.1) for c = 1 under the assumptions that W(t) has symmetric increments and 
that the tail of its Lrvy's spectral measure is of  regular variation. Some related 
papers are Willekens (1987), Braverman & Samorodnitsky (1995). Most 
recently, Braverman (2000) further considered the tail asymptotics for the 
suprema of Lrvy process W(t) with light-tailed spectral Lrvy measure. After 
introducing the notation of the right light-tailed distributions, he obtained 
(1.1) for the compound Poisson process 

N(0 
IV(t)= ~-~,X k -b t ,  t > O, (1.2) 

k=l 

where, b > 0 is a constant, and {X~, k > 1 } is a sequence of i.i.d, and light- 
tailed random variables, independent of the homogeneous Poisson process 
N(t). See also Braverman (1999). All the works above assume that the process 
is infinitely divisible. 

Now one question naturally arises: does (1.1) holds if W(t) is not an infi- 
nitely divisible process? The works cited above give no clue to this question. In 
this paper we shall establish a result (in Theorem 2.3 below) that is more general 
than giving a positive answer. From Theorem 2.3 with z replaced by a counting 
process, we can easily obtain asymptotics like (1.1) for some commonly used 
processes in insurance risk models; see also Example 3.2 below. The methodol- 
ogy we used in this paper is different from those in the references above. 

2. MAIN RESULTS 

Throughout this paper, {Xk, k>  1} denotes a sequence of independent ran- 
dom variables (r.v.'s), each Xk has a distribution function (d.f.), Fk(x) = 1 -ikk (x) 
= P(Xk <- x), k >- 1. We denote by Sn the nth partial sum of the sequence {Xk, 
k > 1 }. In the sequel, each F, or Fk, is always assumed to satisfy that if(x) > 0 
for all x. All limit relationships, unless otherwise stated, are for x --~ ~. For two 
positive infinitesimals A(x) and B(x), we write A(x) <<- B(x) if limsup A(x) / 
B(x) < 1, and define the reverse relation A(x) >- B(x) in the natural way. We 
write A(x) × B(x) if 

0 < lim inf A(x) / B(x) < lim sup A(x) I B(x) < ~. 

We further write A ( x ) -  B(x), as usual, if both the limits above equal to 1. 
Like many recent researchers in the fields of applied probability and risk 

theory, we restrict our interest to the case of heavy-tailed risks. A r.v. X (or its 
d.f. F) is said to be heavy-tailed on right-hand if Ee rx = ~ for any r > 0. The 
most important heavy-tailed subclass is the subexponential class (denoted as S). 
By definition, a d.f. F supported on [0, ,,o) belongs to S iff 

lim F'n(x)/ i(x)= n (2.1) 
X ~ O O  
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for all n _> 2 (or equivalently for some n > 2), where F *n denotes the n-fold con- 
volution of  F. That  is, for a sequence of  i.i.d.r.v.'s {Ark, k >  1} with a common 
d.f. F ~ 5, it holds that, for each n > 2, 

P(Sn> x)~ P(l<_m?L ~klk > X). (2.2) 

More generally, a r.v. X w i t h  a d.f. supported on (_oo, oo) belongs to S if X ÷ = 
max{0,X} belongs to 5; see Willekens (1986). There are two other heavy- 
tailed subclasses, class L of  long-tailed d.f.'s and class D of  d.f.'s with domi- 
natedly varying tails, which are closely related to class 5 .. A d.f. F supported 
on (_oo, oo) belongs to class L iff 

lim F(x+y)lF(x)= 1 (2.3) 
X ~ O 0  

for any y > 0 (or equivalently for some y > 0); F belongs to class ~9 iff 

m 

l im sup F(xy) / F(x) < oo (2.4) 
X ~ o o  

for any 0 < y < 1 (or equivalently for some 0 < y < 1). It is well-known that 

D n L C S C L .  

For details of  heavy-tailed subclasses and their applications to insurance and 
finance, the readers are referred to Embrechts et al. (1997) and Goldie & Kliip- 
pelberg (1998). 

In this paper we address the asymptotic properties of  the tail probabilities 
of  the maxima of  the first n partial sums, max1 _<k_<nSk, where n is either a con- 
stant or random. Now we state the main results of  this paper as follows. 

Theorem 2.1. Suppose that the d. f  F~ ~ L for k > 1. Then we have that, for 
each n ~ N .  

P (max > xl, - P (s.> (2.5) 

I f  we restrict ourselves to the subexponential case, from Theorem 2.1 we can 
obtain 

m D m 

Theorem 2.2. Suppose that the d . f  Fk(x ) - ckF(x) for k> 1, where F is the tail 
o f  some subexponential d. f  F,, and ck, k > 1, are some non-negative constants 

n such that C(n) = ~k=l ck > O. Then we have that, for each n ~ N ,  

(2.6) 

m 

We remark that, the conclusion P(maxl <_k<_,Sk > X) -- C(n)F(x) in (2.6) partially 
coincides with Theorem 1 in Sgibnev (1996). In the latter the author  used 
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sophisticated analytical arguments of the Pollaczek-Spitzer identity to derive 
an asymptotic formula similar to (2.6) but only for the i.i.d, case. In this paper 
we shall provide an elementary proof of (2.6). We suggest the readers to com- 
pare our (2.6) with the definition of (2.2). 

We continue to state the main results of the paper. In the following theorem 
we partially extend the asymptotic formula (2.6) to the case of random sums. 

Theorem 2.3. Suppose that {Xk, k>  1} is a sequence of LLd. rv.'s with a common 
d . f  F E L  fq D and a f inite expectation. Le t  z be a non-negative and integer- 
valued r. v., independent o f  the sequence {Xk, k > 1 } and satisfying that P(z > x) = 
o (F(x)). Then, 

P( max S k > x )  ~ P(S~> x)- E'cF(x). 
\ l<k<n / 

(2.7) 

Note that the conditions in Theorem 2.3 imply the existence of Er. It is well- 
known that the intersection L fq D is a very large subexponential subclass. 
It contains many useful subclasses of heavy-tailed distributions. See Bingham 
et al. (1987) and Embrechts et al. (1997) for details. We also remark that, the 
second asymptotic relationship in (2.7) describes the tail asymptotic behavior 
of the compound sum 

oo 
* n  P(S  < x ) =  ~-],P(r=n)F (x). 

n = 0  

For more general discussion about the tail asymptotics of the compound 
distributions, please refer to Chover et al. (1973), Embrechts et al. (1979), 
Embrechts & Goldie (1982) and Cline (1987). 

3. APPLICATIONS TO RISK PROCESSES 

In this section we show some applications of our results to some commonly 
used risk processes. All of the following examples are complementary to recent 
research on the tail behavior of the maxima/suprema of processes in discrete/ 
continuous time. 

Example 3.1. We now consider a discrete time insurance risk model. Upper 
bounds for the ultimate ruin probability under this model were discussed in 
Yang (1999). Suppose within the kth time period, the total claim size is Zk 
and the total premium income is Yk, and the claim is paid at the end of the 
time period while the premium is paid at the beginning. We assume {(Zk, Yk), 
k > 1 } constitutes a sequence of independent, but not necessarily identically 
distributed, random vectors. Let r > 0 be the compound interest rate and U0 = x 
be the initial surplus. Then the surplus at time n is 

n n 

U n = x ( l+ r ) "+  Y~, Yk ( l+r)  "-k+l- ~ ,Z~  (1 +r) "-~, 
k=l k=l 

n > l .  (3.1) 
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Here r can be dependent on the time k or even random such that {rk, k >_ 1 } 
is an independent sequence and independent of  the sequence {(Zk, Yk), k > 1 }. 
But for notational simplicity, we assume that r is a constant. We can model the 
seasonal effects by assigning different distributions to (Zk, Yk) for different k. 

Now we are interested in the asymptotic behavior of  the probability 

Let 

~u,(x):P(linfiU k <0 Uo=x ). 

n 

Ak=Z~-Yk(l+r), Xk=Ak(l+r) -k and S,=~-]X k. (3.2) 
k=l  

We can rewrite the process 57, as 

Un=(l+r)n(x- gn). 

Hence, 

~,.(x)=P( inf U~ 
U-<~<-, (1 + r) k --<OUo=x):P(maxSk>Xl.\l<_k<_n ] (3.3) 

If  we assume that each Ak, therefore Xk, is long-tailed, then from (3.3) and 
Theorem 2.1, we obtain 

N, (x) - IP (S, > x). (3.4) 

Now we further assume that the sequence {(Zk, Yk), k > 1 } is i.i.d, and that A1 
follows a Pareto law with tail 

P (Al > x) - x - °  L (x) 

for some et > 0 and a function L(x), which slowly varies at infinity. Under 
these conditions we have from (3.3) and Theorem 2.2 that 

~U.(x)~,P(Xk>x)= ~,  P (A,(1 +r)-k > x) 
k=l  k = 1 

~-~,(1 + r)k" p (A1 > x) 
k=l  

(1 + r) ("÷l)~- (1 + r)" x_, L (x), 
( l + r )  ~ -  1 

where the coefficient in the last step naturally takes value of n provided that r = 0. 

Example 3.2. In the classical insurance risk models the collective risk process 
W(t) is often in the form of (1.2). In a recent paper by Ng et al. (2001), we 
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proposed a customer-arrival based model for W(t). Such a W(t) may or may 
not be infinitely divisible. We assume that the customer arrival process N(t) is 
a counting process. When the kth (k> 1) customer arrives, he/she buys an 
insurance contract. The insurance company will therefore bear an underlying 
risk from this policy holder within a fixed term, say T. Suppose that the total 
potential claims due to the kth customer within the term T is Zk, and that 
{Zk, k>  1} forms a sequence of i.i.d, non-negative r.v.'s with a finite expec- 
tation p and independent of the customer-arrival process N(t). The price of 
each policy is (1 + c~)p, where the constant fi > 0 can be interpreted as the 
safety loading coefficient. The collective risk process of the company within the 
period [0, t] in the customer-arrival based model is 

U(0 
W(t)= ~ , ( Z k -  (l+6)/z), t > 0 .  (3.5) 

k=l 

We write Xk = Zk - (1 + 6)/z, k>  1, and denote by F t h e  distribution of Xl. In 
view of  Theorem 2.3, if we assume F E  L tq D and that 

[I z (N(1) > x) : o (if(x)), (3.6) 

then for the collective risk process in (3.5) we have 

P (suplW(t)> x ) ~ P(W(1)> x ) ~  I:N(1)F(x). (3.7) 

We note that (3.6) is a very weak condition. It can be satisfied by many com- 
monly used counting processes such as the ordinary renewal process and the 
compound Poisson process. More generally, (3.6) can be satisfied by the com- 
pound renewal process, as demonstrated by the following 

Lemma 3.3. Consider the compound renewal process 

O0 

0, t>__0, 
k=l 

where, a k denotes the kth partial sum o f  an i. i. d and non-negative sequence {Oh, 
k > 1}, which is independent o f  another i.i.d., non-negative and integer-valued 
sequence { Yk, k > 1}. Let F E D  be a d.f. with a finite expectation (F represents 
the distribution o f  X1 in Example 3.2). Then we have that (3.6) holds/fP(01 > 0) 
> 0 and P(Y1 > x) = o (F(x)). 

Proof Let M(t) be an ordinary renewal process driven by the occurrence-times 
{6~, k>O} with tr 0 = O, i.e., 

M ( t ) = m a x { k >  O" trk< t}, t>O. 
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From the assumption P(01 > 0) > 0 we know that P(a~ 0 < 1) --- P0 < 1 holds for 
some m0 > 1. It follows that, for any n > 1, 

n/m 0 
P (M(1) >_ n) = P (a~ _< 1) _< Po • 

Hence M(1) has exponential moments. We remark that a short proof of  the 
fact that M(1) has exponential moments can also be found in Smith (1958). 
Now we start to prove (3.6). By Lemma 3.2 in Tang et al. (2001) we can obtain 
that, for all u > 0, x > 0 and n > 1, 

P >x < nP(YI>x/u)+ (ednlx) u, (3.8) 

where d is the expectation of Y1. Note that d < oo can be implied by the 
assumption P(Y1 > x) = o (if(x)). We choose u > 0 in (3.8) sufficiently large 
such that x -u - o (F(x)); for details of the existence of  the mentioned u, please 
refer to Theorem 2.2.7 in Bingham et al. (1987), in which we can find a useful 
representation for the tail probability F(x) for F E D. Thus, 

P ( N ( 1 ) > x )  = P Y k > x  P (M(1 )=  n) 
n=l 

_%< ~ , ( n P  (Y, > x/u)+(ednlx)")P(M(1):n) 
n=l 

= EM(1)P (Y~ > x/u)+ (edlx)"EM"(1) 

= o ( i f ( x ) ) ,  

where in the last step we have used the fact that 

if(x/u) ~ if(x), for any u > 0 (3.9) 

which is implied by the assumption F E D. This ends the proof. 

4. PROOFS OF MAIN RESULTS 

4.1. Lemmas 

In this section, all the notations are the same as those given at the beginning 
of Section 2. Before we give the proofs of the main results, we present some 
important lemmas. 

The first lemma below is from Petrov (1975), the two inequalities of  which 
can be regarded as extensions of the classical L6vy's inequality and Kolmogo- 
rov's inequality respectively. For 0 < q < 1, we denote by 7q(X), the quantile 
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of  order q of  a r.v. X; that is, the value of  ),q(X) can be arbitrarily chosen from 
the set 

Fq(X) = {x" P ( X <  x) > q, P ( X >  x) > 1 - q}. 

Lemma 4.1. 1. For any 0 < q < 1 and real value o f  x it holds that 

< I  (Sn~X_lm<kaX{,q(Sk_Sn)}), P (  m a x S k  >>-x ) - -~P \l<k<_n (4.1) 

2. Le t  F-IX k [ < oo for  1 < k < n. Then, for  any 0 < q < 1 and real value o f  x it 
holds that 

P(maxSk>x)< l [ Znk=a~-}Xkl} (4.2) 
~l<__k<_n __ ~IP S n > x -  1 - q  " 

Next,  we put  forward another  lemma, which shows the closure property of  
class L under  convolut ion;  for some closely related discussions, we refer to 
Willekens (1986). 

Lemma 4.2. Let the d . f  Fk belong to class L, k > 1. Then we have, for  any n e 9(, 

V= * F2.." * F. e L .  

Proof. It suffices to show the assertion for the case n = 2. From the definition 
of  (2.3), this amounts  to showing that V=  Ft * F2 satisfies 

V(x + 1) - V(x). (4.3) 

For arbitrarily fixed 0 < M < x, we write 

V(x)= f ~-ff11(x-t)F2(dO= Ii + I 2, (4.4) 

m 

where 11 and 12 are the integrals o f  Fl(X - t) with respect to Fz(dt) over ( -  oo, 
x -  M] and ( x -  M, oo) respectively. By the same method we also divide the tail 
K ( x  + 1) into two parts as J1 + J2, where Ji is the integral o f  Fl(x  + 1 - t) with 
respect to F2(dt) over the same interval as that o f  li, i = 1, 2. First we start to 
compare I1 with J1. Clearly, we have 

x - M _ _  

. , ~ ( t )  I , _  L ~  Fl(x- t )F2(dt)  
l n I  - - - - - - - -  < 
t >- M FA (t + I ) -- -f;1- cx-M__ J-oo Fl(X +l-t)F:(dt) 

u 

Fl(t) 
_< sup - -  ,>MFI(t+I) 

Therefore, by the definition of  (2.3), we see that 

l i - - : - f  11 I1 lim = lim l imin f  = 1. (4.5) 
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Now we turn to compare 12 with J2- Again by the fact that F2 ~ L, we can see 
that, for any fixed M > 0, 

IZ= fx~_mffl(x-t)F2(dt)+ fx~X-t)F2(dt) 

- -  - -  0 - -  

= o ( ~ ( x ) ) +  F~(O)Fz(x)+f=F2(x-t)Fl(dt) 

-r2(x). 

By the same approach we can also derive that J2 - F2(x)- Hence, for arbitrarily 
fixed 0 < M < x, 

I2-J2.  (4.6) 

We conclude from (4.4), (4.5) and (4.6) that (4.3) holds. 
This ends the proof. [] 

Finally we state an inequality for the tail probabilities of  sums of i.i.d.r.v.'s 
with dominatedly varying tails. 

Lemma 4.3. Let G be a d.f supported on [0, ~) and belonging to D with a finite 
expectation ~. Then, for any 7 > I l there exists a constant C = cO') > 0 such that 

G*"(x) <__ CnCr(x) (4.7) 

for all n > 1 and all x > ~n. 

Proof. The proof of  a similar but more precise result can be found in Ng et 
al. (2001). Here we provide a few key steps of the proof. 

Let {X,, n_  1} be a sequence of i.i.d.r.v.'s with a common d.f. G above. 
We write 

~ n 

X,=X,I(x,~,x) and S ,=~-]X i for n > l ,  
i=1 

where 0 < l < 1 is a constant. Obviously, 

G*"(x) < P ( m a x X  > lx]+ P ( m a x X  i < lx, S ,>  x) 
- -  ~ l < i <  n t ! \ l < i < _  n 

< nG(lx)+ P ( ~ >  x).  
(4.8) 

The upper bound, say Cl(1)nG(x), for the first term in (4.8) can be obtained 
by the fact that G E D whenever the constant I is fixed. 
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Let a = max {-log(nG(x)). Clearly, a tends to oo uniformly for x > 7n as 
n --~ oo. For any h > 0, we have 

e-hXEehSn {fotX }n P ( ~ > x )  < = < e_hX+a 
nG(x) - nG(x) - (eht-1)G(dt)+l 

f / riga rtx (eht_l)G(dt)_hx+at < exp~n[J  ° "1-~a ) J (4.9) 

= e x p { n ( K l + K 2 ) - h x + a  }. 

We can obtain the required upper bound for K~ by using e u-  1 < ue u for any 
real number u. In addition, Proposition 2.2.1 in Bingham et al. (1987) stated 
that, for G E D, there exist positive x0, p and B such that 

 (ux) / <_ Bu -p (4.10) 

uniformly for all x >_ xo/l and all 0 < u < 1. This result, with u in (4.10) replaced 
by l/a, can be used to derive the required upper bound for K2. 

Substituting the upper bounds for KI and K2 into (4.9) and choosing the 
constants h and l carefully, we can prove that the right-hand side of (4.9) is 
bounded by a sufficiently large positive constant, say (72(1, 7) > 0. Therefore 
the second term in (4.8) is bounded by C2(/~ 7)nG(x) uniformly for n > 1 and 
x > yn. From this (4.7) can be finally proven. [] 

4.2. Proofs of Theorems 

Proof of Theorem 2.1. 
In order to prove (2.5) we need to show that 

P ( m a x S k  >x)<~ l~(Sn>x ) and P(  maxSk>x)>>. P(S~>x ). 
\l<<.k<_n \l<k<_n 

(4.11) 

The last relation in (4.11) is obvious. By Lemma 4.2 we know the distribution 
of S~ belongs to class L. Then by (4.1), we have, for any 0 < q < 1, 

I P ( m a x S k > x  ) < 1 p ( S  > x -  max,f7 (Sk-S~)}~ ~ 1 p ( S  > x ) .  
\l<_k<_n ~ l<_k<_-~t q U -q 

So letting q ,z 1 in the above yields the first relation in (4.11). 

Proof of Theorem 2.2. 
Noting the fact SCL,  we see that P(maxl_<k_< n S k > X) - P ( S  n >__x) is the imme- 
diate consequence of Theorem 2.1. The result P(Sn > x) - C(n)F(x) is a partic- 
ular case (7 = 0) of  the Proposition in Sgibnev (1988). In addition, one easily 
obtains P(maxl_<k_<n Xk > x) - C(n)F(x) by induction. This ends the proof of 
Theorem 2.2. 
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Proof of Theorem 2.3. 
In order to prove (2.7), we consider it as a conjunction of two asymptotic 
relationships, 

P(im<_ka<_XSk > x ) ~  ~_z-ff(x) and P(S~> x)~ ~_z-F(X). (4.12) 

• + + + 
We write Xk= max{X k ,0},~ = [FXk, and let the d.f. G in Lemma 4.3 be the 

• • • -i- distribution of the r.v. X k. For a fixed 0 < q < 1, we choose a sufficiently large 
constant y such that 

> +  lXll 

Now we derive 

P(maxSl ,>x)= ~-]P( maxSk>x)P(z=n ) 
\ l ~ k _ < v  n = l  \ l<-k<n  

= (  ~ + >~_~)P(maxSk>X]P(z=n) 
l<n<My n y \l<_k < n / 

= L z + L 2 . 

(4.13) 

For 1 < n < x/y, we obtain, successively by (4.2) and (4.7), 

P(maxS~,>xl< l (~=~ +>x-nlEIXll] 
\l<k<n I -- -qP Xk 1-q ] 

<Cn( nlFlXll) 
_ - T P  x [ > x -  l----T- 

<Cn (X;-> (1 E l x l l ] ]  
_ y P  _ x  y-8- )11 

+ 
nP(X  1 >_ x) 

= nF(x), 

(4.14) 

where, in (4.14) we have used (3.9). So by the dominated convergence theorem 
and Theorem 2.2 we conclude 

L 1 ~ ~,, n-ff(x) P (z = n) ~ Ezff(x). (4.15) 
l<_n<My 

Additionally, by the condition that P (z > x)= o (T(x))~ we have 

L:  < P (z > x/~): o (if(x/7))= o (if(x)). (4.16) 
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Substituting (4.15) and (4.16) into (4.13), we obtain the first asymptotic rela- 
tionship in (4.12). Finally, we have 

~( maxS~ >x) ~ P(S~> x) 
\l<k<r 

l<n<M 7 

~ nff (x)P (r= n) 
l<n<My 

: E F(x). 

This, coupled with the first asymptotic relationship in (4.12), implies the sec- 
ond in (4.12). The proof of Theorem 2.3 is completed. 
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