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DESIGN OF OPTIMAL BONUS-MALUS SYSTEMS WITH A FREQUENCY
AND A SEVERITY COMPONENT ON AN INDIVIDUAL BASIS IN

AUTOMOBILE INSURANCE

BY

NICHOLAS E. FRANGOS* AND SPYRIDON D. VRONTOS*

ABSTRACT

The majority of optimal Bonus-Malus Systems (BMS) presented up to now
in the actuarial literature assign to each policyholder a premium based on the
number of his accidents. In this way a policyholder who had an accident with
a small size of loss is penalized unfairly in the same way with a policyholder
who had an accident with a big size of loss. Motivated by this, we develop
in this paper, the design of optimal BMS with both a frequency and a severity
component. The optimal BMS designed are based both on the number of acci-
dents of each policyholder and on the size of loss (severity) for each accident
incurred. Optimality is obtained by minimizing the insurer’s risk. Furthermore
we incorporate in the above design of optimal BMS the important a priori
information we have for each policyholder. Thus we propose a generalised BMS
that takes into consideration simultaneously the individual’s characteristics,
the number of his accidents and the exact level of severity for each accident.

KEYWORDS

Optimal BMS, claim frequency, claim severity, quadratic loss function, a pri-
ori classification criteria, a posteriori classification criteria.

1. INTRODUCTION

BMS penalize the policyholders responsible for one or more claims by a
premium surcharge (malus) and reward the policyholders who had a claim
free year by awarding discount of the premium (bonus). In this way BMS

* Department of Statistics, Athens University of Economics and Business, Patission 76, 10434, Athens,
Greece. E-mail for correspondence nef@aueb.gr and svrontos@aueb.gr
This work has been partially supported by 96SYN 3-19 on “Design of Optimal Bonus-Malus Sys-
tems in Automobile Insurance” and the General Secreteriat of Research and Technology of Greece.
The authors would like to thank the referees for their valuable comments.
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encourage policyholders to drive carefully and estimate the unknown risk of
each policyholder to have an accident.

A BMS is called optimal if it is: 1. financially balanced for the insurer,
that is the total amount of bonuses is equal to the total amount of maluses.
2. Fair for the policyholder, that is each policyholder pays a premium propor-
tional to the risk that he imposes to the pool. Optimal BMS can be divided in
two categories: those based only on the a posteriori classification criteria and
those based both on the a priori and the a posteriori classification criteria. As
a posteriori classification criteria are considered the number of accidents of
the policyholder and the severity of each accident. As a priori classification
criteria are considered the variables whose their values are known before the
policyholder starts to drive, such as characteristics of the driver and the auto-
mobile. The majority of BMS designed is based on the number of accidents
disregarding their severity. Thus first let us consider the design of optimal
BMS based only on the a posteriori claim frequency component.

1.1. BMS based on the a posteriori claim frequency component

Lemaire (1995) developed the design of an optimal BMS based on the num-
ber of claims of each policyholder, following a game-theoretic framework
introduced by Bichsel (1964) and Bühlmann (1964). Each policyholder has to
pay a premium proportional to his own unknown claim frequency. The use
of the estimate of the claim frequency instead of the true unknown claim
frequency will incur a loss to the insurer. The optimal estimate of the policy-
holder’s claim frequency is the one that minimizes the loss incurred. Lemaire
(1995) considered, among other BMS, the optimal BMS obtained using the
quadratic error loss function, the expected value premium calculation princi-
ple and the Negative Binomial as the claim frequency distribution. Tremblay
(1992) considered the design of an optimal BMS using the quadratic error
loss function, the zero-utility premium calculation principle and the Poisson-
Inverse Gaussian as the claim frequency distribution. Coene and Doray (1996)
developed a method of obtaining a financially balanced BMS by minimizing
a quadratic function of the difference between the premium for an optimal
BMS with an infinite number of classes, weighted by the stationary probability
of being in a certain class and by imposing various constraints on the sys-
tem. Walhin and Paris (1997) obtained an optimal BMS using as the claim
frequency distribution the Hofmann’s distribution, which encompasses the
Negative Binomial and the Poisson-Inverse Gaussian, and also using as a
claim frequency distribution a finite Poisson mixture. As we see, all the BMS
mentioned above take under consideration only the number of claims of each
policyholder disregarding their severity.

1.2. BMS based on the a priori and the a posteriori claim frequency component

The models mentioned above are function of time and of past number of acci-
dents and do not take into consideration the characteristics of each individual.

2 NICHOLAS E. FRANGOS AND SPYRIDON D. VRONTOS



In this way as mentioned in Dionne and Vanasse (1989), the premiums do
not vary simultaneously with other variables that affect the claim frequency
distribution. The most interesting example is the age variable. Suppose that
age has a negative effect on the expected number of claims, it would imply
that insurance premiums should decrease with age. Premium tables derived
from BMS based only on the a posteriori criteria, even though are a function
of time, do not allow for a variation of age, even though age is a statistically
significant variable.

Dionne and Vanasse (1989, 1992) presented a BMS that integrates a priori
and a posteriori information on an individual basis. This BMS is derived as
a function of the years that the policyholder is in the portfolio, of the num-
ber of accidents and of the individual characteristics which are significant for
the number of accidents. Picech (1994) and Sigalotti (1994) derived a BMS
that incorporates the a posteriori and the a priori classification criteria, with
the engine power as the single a priori rating variable. Sigalotti developed a
recursive procedure to compute the sequence of increasing equilibrium pre-
miums needed to balance out premiums income and expenditures compen-
sating for the premium decrease created by the BMS transition rules. Picech
developed a heuristic method to build a BMS that approximates the optimal
merit-rating system. Taylor (1997) developed the setting of a Bonus-Malus
scale where some rating factors are used to recognize the differentiation of
underlying claim frequency by experience, but only to the extent that this dif-
ferentiation is not recognized within base premiums. Pinquet (1998) developed
the design of optimal BMS from different types of claims, such as claims at
fault and claims not at fault.

1.3. Allowance for the severity in BMS

In the models briefly described above the size of loss that each accident
incurred is not considered in the design of the BMS. Policyholders with the
same number of accidents pay the same malus, irrespectively of the size of
loss of their accidents. In this sense the BMS designed in the above way are
unfair for the policyholders who had an accident with a small size of loss.
Actually as Lemaire (1995) is pointing out all BMS in force throughout the
world, with the exception of Korea, are penalizing the number of accidents
without taking the severity of such claims into account. In the BMS enforced
in Korea the policyholders who had a bodily injury claim pay higher maluses,
depending on how severe the accident was, than the policyholders who had
a property damage claim. The BMS designed to take severity into considera-
tion include those from Picard (1976) and Pinquet (1997). Picard generalized
the Negative Binomial model in order to take into account the subdivision of
claims into two categories, small and large losses. In order to separate large
from small losses, two options could be used: 1. The losses under a limiting
amount are regarded as small and the remainder as large. 2. Subdivision of
accidents in those that caused property damage and those that cause bodily
injury, penalizing more severely the policyholders who had a bodily injury
accident. Pinquet (1997) designed an optimal BMS which makes allowance
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for the severity of the claims in the following way: starting from a rating
model based on the analysis of number of claims and of costs of claims, two
heterogeneity components are added. They represent unobserved factors that
are relevant for the explanation of the severity variables. The costs of claims
are supposed to follow gamma or lognormal distribution. The rating factors,
as well as the heterogeneity components are included in the scale parameter
of the distribution. Considering that the heterogeneity also follows a gamma
or lognnormal distribution, a credibility expression is obtained which pro-
vides a predictor for the average cost of claim for the following period.

Our first contribution in this paper is the development of an optimal BMS
that takes into account the number of claims of each policyholder and the
exact size of loss that these claims incurred. We assumed that the number of
claims is distributed according the Negative Binomial distribution and the
losses of the claims are distributed according the Pareto distribution, and we
have expanded the frame that Lemaire (1995) used to design an optimal BMS
based on the number of claims. Applying Bayes’ theorem we find the poste-
rior distribution of the mean claim frequency and the posterior distribution
of the mean claim size given the information we have about the claim frequency
history and the claim size history for each policyholder for the time period he
is in the portfolio. For more on this subject we refer to Vrontos (1998).

Our second contribution is the development of a generalized BMS that
integrates the a priori and the a posteriori information on a individual basis.
In this generalized BMS the premium will be a function of the years that the
policyholder is in the portfolio, of his number of accidents, of the size of loss
that each of these accidents incurred, and of the significant a priori rating
variables for the number of accidents and for the size of loss that each of
these claims incurred. We will do this by expanding the frame developed by
Dionne and Vanasse (1989, 1992).

Pinquet (1997) is starting from a rating model and then he is adding the het-
erogeneity components. We design first an optimal BMS based only on the a
posteriori classification criteria and then we generalize it in order to take under
consideration both the a priori and the a posteriori classification criteria.

2. DESIGN OF OPTIMAL BMS WITH A FREQUENCY AND A SEVERITY

COMPONENT BASED ON THE A POSTERIORI CRITERIA

It is assumed that the number of claims of each policyholder is independent
from the severity of each claim in order to deal with the frequency and the
severity component separately.

2.1. Frequency component

For the frequency component we will use the same structure used by Lemaire
(1995). The portfolio is considered to be heterogeneous and all policyholders
have constant but unequal underlying risks to have an accident. Consider that
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the number of claims k, given the parameter l, is distributed according to
Poisson(l),

( ) ! ,P k k
el lk

l

l

=
-

k = 0,1,2,3, ... and l > 0 and l is denoting the different underlying risk of
each policyholder to have an accident. Let us assume for the structure func-
tion that l ~ gamma(a, t) and l has a probability density function of the
form:

( )
( )

( )
, , ,> > >

exp
u l

a
l t tl

l a t
G

0 0 0
a a1

=
-

-

with mean E (l) = a/t and variance Var (l) = a/t2. Then it can be proved that
the unconditional distribution of the number of claims k will be Negative
Binomial (a,t), with probability density function

k a 1+ -( ) ,P k t
t

t1 1
1a k

=
+ +ka b bk l l

mean equal to E(k) = a/t and variance equal to Var (k) = (a/t) (1 + 1/t). The
variance of the Negative Binomial exceeds its mean, a desirable property which
is common for all mixtures of Poisson distribution and allows us to deal with
data that present overdispersion.

Let us denote as K ki
i

t

1

=
=

! the total number of claims that a policyholder

had in t years, where ki is the number of claims that the policyholder had in
the year i, i = 1,...,t. We apply the Bayes’ theorem and we obtain the posterior
structure function of l for a policyholder or a group of policyholders with
claim history k1,....kt, denoted as u (l |k1, …kt). It is that

( ,... ) ( )
( )

,u k k K
t e

l a
t l

G

( )

t

K K ta a t l

1

1

=
+

+
+ + - - +

which is the probability density function of a gamma (a + K,t + t). Using the
quadratic error loss function the optimal choice of lt+1 for a policyholder with
claim history k1, ....kt will be the mean of the posterior structure function,
that is

( ,..., ) , .k k t
K

t
K wherel t

a l
a l
a l t

a
t t1 1 = +

+
=

+
+

=+ b l (1)

From the above it is clear that the occurrence of K accidents in t years just
necessitates an update of the parameters of gamma, from a and t to a + K
and t + t respectively and the gamma is said to have the important property
of the stability of the structure function as the gamma is a conjugate family
for the Poisson likelihood.
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2.2. Severity component

Let us consider now the severity component. Let x be the size of the claim of
each insured. We consider as y the mean claim size for each insured and we
assume that the conditional distribution of the size of each claim given the
mean claim size, x y, for each policyholder is the one parameter exponential
distribution with parameter y, and has a probability density function given by

( )f x y y e1 y
x

$=
-

for x > 0 and y > 0. The mean of the exponential is ( )E x y y= and the vari-
ance is ( )var x y y2

= . The mean claim size y is not the same for all the policy-
holders but it takes different values so it is natural our prior belief for y to be
expressed in the form of a distribution. Consider that the prior distribution of
the mean claim size y is Inverse Gamma with parameters s and m and proba-
bility density function, see for example Hogg and Klugman (1984) given by

( )
( ) ( )

.g y
s

e
Gm

y s
m

1

1 y
m

$

$
= +

-

The expected value of the mean claim size y will be:

( ) .E y s
m

1
=

-

The unconditional distribution of the claim size x will be equal to:

( ) ( ) ( )P X x f x y g y dy
0

$= = =
3#

( )s m x ms s 1
$ $= +

- -

which is the probability density of the Pareto distribution with parameters s
and m. Thus, one way to generate the Pareto distribution is the following:
if it is for the size of each claim given the mean claim size x y that x y ~
Exponential (y) and for the mean claim size y of each policyholder that y ~
Inverse Gamma (s,m) then it is for the unconditional distribution of the claim
size x in the portfolio that x ~ Pareto (s,m). In this way, the relatively tame
exponential distribution gets transformed in the heavy-tailed Pareto distribu-
tion and instead of using the exponential distribution which is often inappro-
priate for the modelling of claim severity we are using the Pareto distribution
which is often a good candidate for modelling the claim severity. Taking the
mean claim size y distributed according the Inverse Gamma, we incorporate
in the model the heterogeneity that characterizes the severity of the claims of
different policyholders. We should note here that such a generation of the
Pareto distribution does not appear for the first time in the actuarial literature.
Such a use can be found for example in Herzog (1996). To the best of our
knowledge it is the first time it is used in the design of an optimal BMS.

6 NICHOLAS E. FRANGOS AND SPYRIDON D. VRONTOS



In order to design an optimal BMS that will take into account the size of
loss of each claim, we have to find the posterior distribution of the mean
claim size y given the information we have about the claim size history for
each policyholder for the time period he is in the portfolio. Consider that the
policyholder is in the portfolio for t years and that the number of claims he

had in the year i is denoted with ki, by K ki
i

t

1

=
=

! is denoted the total number of

claims he has, and by xk is denoted the claim amount for the k claim. Then
the information we have for his claim size history will be in the form of a vec-
tor x1, x2, ..., xk and the total claim amount for the specific policyholder over

the t years that he is in the portfolio will be equal to xk
k

K

1=

! . Applying Bayes’

theorem we find the posterior distribution of the mean claim size y given the
claims size history of the policyholder x1, ..., xk and it is that:
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which is the probability density function of the Inverse Gamma(s + K, m +

xk
k

K

1=

! ). This means that the occurrence of K claims in t years with aggregate

claim amount equal to xk
k

K

1=

! just necessitates for the distribution of the mean

claim size an update of the parameters of the Inverse Gamma from s and m

to s + K and m + xk
k

K

1=

! respectively and the Inverse Gamma distribution is said

to have the important property of being conjugate with the exponential like-
lihood. The mean of the posterior distribution of the mean claim size will be:

( )E x y s K

m x

1

k
k

K

1=
+ -

+
=

!
(2)

and the predictive distribution of the size of the claim of each insured x will
be also a member of the Pareto family.

2.3. Calculation of the Premium according the Net Premium Principle

As shown, the expected number of claims lt+1(k1, ..., kt) for a policyholder or a
group of policyholders who in t years of observation have produced K claims

with total claim amount equal to xk
k

K

1=

! is given by (1) and the expected claim sever-

ity yt+1(x1, ..., xK) is given by (2).
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Thus, the net premium that must be paid from that specific group of pol-
icyholders will be equal to the product of lt+1(k1, ..., kt) and yt+1(x1, ..., xK), i.e.
it will be equal to

Premium t
K

s K

m x

t
a

1

k
k

K

1$= +
+

+ -

+
=

!
(3)

In order to find the premium that must be paid we have to know:

1. the parameters of the Negative Binomial distribution a and t, (see Lemaire
(1995) for the estimation of the parameters of the Negative Binomial)

2. the parameters of the Pareto distribution s and m (see Hogg and Klugman
(1984) for the estimation of the parameters of the Pareto distribution)

3. the number of years t that the policyholder is under observation,
4. his number of claims K and

5. his total claim amount xk
k

K

1=

! .

All of these can be obtained easily and taking under consideration that the
negative binomial is often used as a claim frequency distribution and the Pareto
as a claim severity distribution this enlarges the applicability of the model.

2.4. Properties of the Optimal BMS with a Frequency and a Severity Com-
ponent

1. The system is fair as each insured pays a premium proportional to his claim
frequency and his claim severity, taking into account, through the Bayes’
theorem, all the information available for the time that he is in our portfolio
both for the number of his claims and the loss that these claims incur. We
use the exact loss xk that is incurred from each claim in order to have a dif-
ferentiation in the premium for policyholders with the same number of claims,
not just a scaling with the average claim severity of the portfolio.

2. The system is financially balanced. Every single year the average of all pre-
miums collected from all policyholders remains constant and equal to

P s
m

t
a

1
=

-
(4)

In order to prove this it is enough to show, considering that the claim fre-
quency and the claim severity are independent components, that:

,...,E E E k kl t
aL tL 1= =6 66@ @@

and that

,..., .E E E y x x s
mU

1kU 1= =
-

6 66@ @@
A proof of the first can be found in Lemaire (1995), and of the second in
Vrontos (1998).
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3. In the beginning all the policyholders are paying the same premium which
is equal to (4).

4. The more accidents caused and the more the size of loss that each claim
incurred the higher the premium.

5. The premium always decreases when no accidents are caused.
6. The drivers who had a claim with small loss will have one more reason to

report the claim as they will know that the size of the claim will be taken
into consideration and they will not have to pay the same premium with
somebody which had an accident with a big loss. In this way the phenom-
enon of bonus hunger will have a decrease and the estimate of the actual
claim frequency will be more accurate.

7. The severity component is introduced in the design of a BMS which from
a practical point of view is more crucial than the number of claims for the
insurer since it is the component that determines the expenses of the insurer
from the accidents and thus the premium that must be paid.

8. The estimator of the mean of severity may not be robust and therefore it is
prone to be affected by variation. For practical use a more robust estima-
tor could be used. (i.e. cutting of the data, M-estimator).

3. DESIGN OF OPTIMAL BMS WITH A FREQUENCY AND A SEVERITY COMPONENT

BASED BOTH ON THE A PRIORI AND THE A POSTERIORI CRITERIA

Dionne and Vanasse (1989, 1992) presented a BMS that integrates risk classi-
fication and experience rating based on the number of claims of each policy-
holder. This BMS is derived as a function of the years that the policyholder
is in the portfolio, of the number of accidents and of the significant – for
the number of accidents – individual characteristics. We extend this model
by introducing the severity component. We propose a generalized BMS that
integrates a priori and a posteriori information on an individual basis based
both on the frequency and the severity component. This generalized BMS
will be derived as a function of the years that the policyholder is in the
portfolio, of the number of accidents, of the exact size of loss that each one
of these accidents incurred, and of the significant individual characteristics
for the number of accidents and for the severity of the accidents. Some of the
a priori rating variables that could be used are the age, the sex and the place
of residence of the policyholder, the age, the type and the cubic capacity of
the car, etc. As already said one of the reasons for the development of a gen-
eralized model which integrates a priori and a posteriori information is that
premiums should vary simultaneously with the variables that affect the distri-
bution of the number of claims and the size of loss distribution.

The premiums of the generalized BMS will be derived using the following
multiplicative tariff formula:

Premium = GBMF * GBMS (5)

where GBMF denotes the generalized BMS obtained when only the frequency
component is used and GBMS denotes the generalized BMS obtained when
only the severity component is used.
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3.1. Frequency Component

The generalized BMS obtained with the frequency component GBMF will be
developed according to Dionne and Vanasse (1989, 1992). Consider an indi-
vidual i with an experience of t periods. Assume that the number of claims of
the individual i for period j, denoted as Ki

j, follows the Poisson distribution
with parameter li

j, and Ki
j are independent. The expected number of claims of

the individual i for period j is then denoted by li
j and consider that it is a func-

tion of the vector of h individual’s characteristics, denoted as ( ,..., )c c c, ,i
j

i
j

i h
j

1= ,
which represent different a priori rating variables. Specifically assume that

( )exp cl bi
j

i
j j

= , where b j is the vector of the coefficients. The non-negativity
of li

j is implied from the exponential function. The probability specification
becomes

!
( ( ))

.
exp

P K k k
e c b( )exp

i
j

c
i
j j kbi

j j

= =
-` j

In this model we assume that the h individual characteristics provide enough
information for determining the expected number of claims. The vector of the
parameters b j can be obtained by maximum likelihood methods, see Haus-
mann, Hall and Griliches (1984) for an application. However, if one assumes
that the a priori rating variables do not contain all the significant information
for the expected number of claims then a random variable ei has to be intro-
duced into the regression component. As Gourieroux, Montfort and Trognon
(1984a), (1984b) suggested, we can write

( )

( ) ,

exp

exp

c

c u

l b e

b

i
j

i
j j

i

i
j j

i

= + =

=

where ( )expu ei i= , yielding a random li
j. If we assume that ui follows a gamma

distribution with ( )E u 11 = and ( ) /Var u a1i = , the probability specification becomes

( ) ! ( )
( ) ( ) ( )

,
exp exp

P K k k
k c c

a
a

a
b
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1
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j i
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+

+
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which is a negative binomial distribution with parameters a and ( )exp c bi
j j .

It can be shown that the above parameterization does not affect the results if
there is a constant term in the regression. We choose ( )E u 1i = in order to have

( )E e 0i = . Then

( ) ( ) ( ) ( )
( )

.exp exp
exp

E K c Var K c
c

andb b a
b

1i
j

i
j j

i
j

i
j j i

j j

= = +

R

T

S
SS

V

X

W
WW

The interesting reader can see for more on the Negative Binomial regression
Lawless (1987). The insurer needs to calculate the best estimator of the expected
number of accidents at period t + 1 using the information from past experience
for the claim frequency over t periods and of known individual characteristics
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over the t+1 periods. Let us denote this estimator as ( ,..., ; ,..., )K K c ci
t

i i
t

i i
t1 1 1 1m + +t .

Using the Bayes theorem one finds that the posterior structure function for a
policyholder with ,...,K Ki i

t1 claim history and ,...,c ci i
t1 1+ characteristics is gamma

with updated parameters ( , )K ta
( )expi

j

j

t

c b
a

1 i
j j+ +

=

! . Using the classical quadratic

loss function one can find that the optimal estimator given the observation of
,...,K Ki i

t1 and ,...,C Ci i
t1 1+ , is equal to:

( ,..., ; ,..., )

( , ) ,..., ; ,...,
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( )

,exp
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K K c c

K u f K K c c d

t c
t c

K
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where Ki
j

j

t

1=

! denotes the total number of claims of policyholder i in t periods.

When t = 0, ( )exp C bi i
j1 1/mt which implies that only a priori rating is used

in the first period. Moreover when the regression component is limited to a
constant b0, one obtains the well-known univariate without regression com-
ponent model, see Lemaire (1995), Ferreira (1974).

Now we will deal with the generalized bonus-malus factor obtained when
the severity component is used. It will be developed in the following way.

3.2. Severity Component

Consider an individual i with an experience of t periods. Assume that the
number of claims of the individual i for period j is denoted as Ki

j, the total
number of claims of the individual i is denoted as K and by X ,i k

j is denoted
the loss incurred from his claim k for the period j. Then, the information
we have for his claim size history will be in the form of a vector Xi,1, Xi,2, ...,
Xi,K, and the total claim amount for the specific policyholder over the t periods

that he is in the portfolio will be equal to X ,i k
k

K

1=

! . We assume that X ,i k
j follows

an exponential distribution with parameter yi
j. The parameter yi

j denotes the
mean or the expected claim severity of a policyholder i in period j. As we have
already said, all policyholders do not have the same expected claim severity,
their cost for the insurer is different and thus it is fair each policyholder to
pay a premium proportional to his mean claim severity. Consider that the
expected claim severity is a function of the vector of the h individual’s char-
acteristics, denoted as ( ,..., )d d d, ,i

j
i
j

i h
j

1= , which represent different a priori rating
variables. Specifically assume that ( )expy d gi

j
i
j j

= , where g is the vector of the
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coefficients. The non-negativity of yi
j is implied from the exponential function.

The probability specification becomes

( )
.

exp
P X x

d
e

g
1

, ( )expi k
j

i
j j d

x
gi

j j$= =
-` j

In this model we assume that the h individual characteristics provide enough
information for determining the expected claim severity. However if one assumes
that the a priori rating variables do not contain all the significant information
for the expected claim severity then a random variable zi has to be introduced
into the regression component. Thus we can write

( )
( ) ,

exp
exp

y d z
d w

g
g

i
j

i
j j

i

i
j j

i

= + =

=

where wi = exp (zi), yielding a random yi
j. If we assume that wi follows an

inverse gamma(s, s –1) distribution with

( ) ( ) , ,>E w Var w s sand1
2

1
2i i= =

-

then yi
j follows inverse gamma( ,( ) ( ))exps s c g1 i

j j
- and the probability specifica-

tion for X ,i k
j becomes

( ) ( ) ( ) ( ( ) ( ))exp expP X x s s d x s dg g1 1,i k
j

i
j j s

i
j j s 1

$ $= = - + -
- -8 B

which is a Pareto distribution with parameters s and ( ) ( )exps c g1 i
j j

- . It can
be shown that the above parameterization does not affect the results if there
is a constant term in the regression. We choose E(wi) = 1 in order to have
E(zi) = 0. We also have

( ) ( ) ( )
( ) ( )

.exp
exp

E X d Var X s
s d

s sandg
g

1

1

2
2

1
1
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i
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j j 2
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-
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-
-

-b l8 B

The insurer needs to calculate the best estimator of the expected claim severity
at period t + 1 using the information from past experience for the claim sever-
ity over t periods and of known individual characteristics over the t + 1 periods.
Let us denote this estimator as ( ,..., ; ,..., )X X d dy , ,i

t
i i K i i

t1
1

1 1+ + . Using the Bayes
theorem the posterior distribution of the mean claim severity for a policy-
holder with claim sizes ,...,X X, ,i i K1 in t periods and characteristics ,...,d di i

t1 1+ is
inverse gamma with the following updated parameters:

( ,( ) ( ) ).expIG s K s d Xg1 ,i
j j

i k
k

K

1

+ - +
=

!

Using the classical quadratic loss function one can find that the optimal esti-
mator of the mean claim severity for the period t + 1 given the observation of
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,...,X X, ,i i K1 and ,...,d di i
t1 1+ , is the mean of the posterior inverse gamma and thus

it is equal to

( ,..., ; ,..., )

, ,..., ; ,...,

( ) ( )exp

X X d d

y X w f y X X d d dy

s K
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When t = 0, which implies that only a priori rating is used in the first period
it is ( )exp dy g

i i
j1 1

= .

3.3. Calculation of the premiums of the Generalized BMS

Now we are able to compute the premiums of the generalized optimal BMS
based both on the frequency and the severity component. As we said the pre-
miums of the generalized optimal BMS will be given from the product of the
generalized BMS based on the frequency component and of the generalized
BMS based on the severity component. Thus it will be

Premium = GBMF * GBMS =

( )
( )

( ) ( )
.exp
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(6)

3.4. Properties of the Generalized BMS

1. It is fair since it takes into account the number of claims, the significant
a priori rating variables for the number of claims, the claim severity and the
significant a priori rating variables for the claim severity for each policyholder.

2. It is financially balanced for the insurer. Each year the average premium will
be equal to

( ) ( )exp expP c db gi
t t

i
t t1 1 1 1

=
+ + + + (7)

In order to prove the above equation and assuming that claim frequency and
the claim severity component are independent it is sufficient to show that

,...; ; ,..., ( )expE K K c c c bi
t

i i
t

i i
t

i
t t1 1 1 1 1 1

=m + + + +t ` j8 B
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and that

,...; ; ,..., ( ).expE K K d d cy gi
t

i i
t

i i
t

i
t t1 1 1 1 1 1

=
+ + + +` j8 B

3. All the properties we mentioned for generalized BMS without the a priori
rating variables hold for this BMS as well. In the beginning all the policy-
holders with the same characteristics are paying the same premium which
is equal to (7).

4. The more accidents are caused and the more the size of loss that each claim
incurred the higher is the premium.

5. The premium always decreases when no accidents are caused.
6. This generalized BMS could lead to a decrease of the phenomenon of bonus

hunger.
7. The severity component, which is more crucial than the number of claims

for the insurer, is introduced in the design of the generalized BMS.
8. The premiums vary simultaneously with the variables that affect the distri-

bution of the number of claims and the size of loss distribution.

3.5. Estimation

The premiums will be calculated according (6). We have to know the number
of the years t that the policyholder is in the portfolio, his total number of
accidents in t years and his aggregate claim amount in t years.

For the frequency component of the generalized BMS we have to estimate
the parameters of the negative binomial regression model, that is the disper-
sion parameter a and the vector b. This can be done using the maximum like-
lihood method. For more on the negative binomial regression the interested
reader can see Lawless (1987), Gourieroux, Montfort and Trognon (1984a)
and Gourieroux, Montfort and Trognon (1984b).

For the severity component of the generalized BMS we have to estimate
s and g j. We will achieve this using the quasi-likelihood and according to Ren-
shaw (1994). Renshaw is using the generalized linear models as a modelling
tool for the study of the claim process in the presence of covariates. He is
giving special attention to the variety of probability distributions that are
available and to the parameter estimation and model fitting techniques that
can be used for the claim frequency and the claim severity process based on
the concepts of quasi-likelihood and extended quasi-likelihood.

Following Renshaw (1994) consider the following scheme. The mean claim
severity is denoted by yi, categorized over a set of units u. The data take the
form (u, ku, xu) where xu denotes the claim average in cell u based on nu claims.
Independence of nu and xu is assumed. The units u / (i1, i2, ...) are a cross-
classified grid of cells defined for preselected levels of appropriate covariates,
often rating factors. Denoting the underlying expected claim severity in cell u
by mu and assuming the independence of individual claim amounts, the cell
means are modelled as the responses of a GLM with E(xu) = mu and Var(Xu) =
fV(mu)/nu. Covariates defined on {u} enter through a linear predictor, linked
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to the mean mu. For those unfamiliar with the generalized linear models we
refer to the classical text of McCullagh and Nelder (1989). In McCullagh and
Nelder (1983, 1989) a re-analysis of the celebrated car insurance data of Bax-
ter, Coutts and Ross (1979), based on independent gamma distributed claim
amounts can be found.

Let us focus now on the Pareto distribution with parameters s and (s – 1)
exp(c gi

j j) and density

( ) ( ) ( ) ( )exp expP X x s s d x s dg g1 1,i k
j

i
j j s

i
j j s 1

$ $= = - + -
- -` `j j8 B

We have that
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Introducing the reparameterisation:

( ) ,exp d s
sandm g f
2i

j j
= =

-

a 1:1 mapping ( ,( ) ( )) ( , )exps s c g m f1 i
j j

"- with domain R R> >2 0# and image set
R R> >2 1# implies that we can construct a GLM based on independent Pareto
distributed claim amounts for which the mean responses, Xu, satisfy mean mu

= E(Xu), variance function ( )V m mu u
2

= , scale parameter f > 1 and weights nu so
that ( ) ( )/Var X V nf mu u u= . Apart from the mild extra constraint on the scale
parameter, these details are identical to those of the GLM based on indepen-
dent gamma responses and the two different modelling assumptions lead
to essentially identical GLMs. They differ only in the parameter estimation
method. In the case of gamma response we use maximum likelihood method
and in the case of Pareto response we use maximum quasi-likelihood.

4. APPLICATION

4.1. Description of the Data

The models discussed are applied in a data set that one Greek insurance com-
pany provided us. The data set consists of 46420 policyholders. The mean of
the claim frequency is 0.0808 and the variance is 0.10767. The a priori rating
variables were age and sex of the driver, BM class and the horsepower of the
car. The drivers were divided in three categories according their age. Those aged
between 28-45, those between 46-55 and those aged between 18-27 or higher
than 55. The drivers were also divided in three categories according the horse-
power of their car. Those who had a car with a horsepower between 0-33,
between 34-66 and between 67-99. The drivers were also divided in three cat-
egories according their BM class. The current Greek BMS has 16 classes,
from 5 to 20. The malus zone includes classes from 12 to 20, the bonus zone
includes classes 5 to 8 and the neutral zone includes classes from 9 to 11.
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We fitted the Negative Binomial distribution on the number of claims and
the Pareto distribution on the claim sizes. We will find the premiums deter-
mined from the optimal BMS based on the a posteriori frequency component,
the premiums determined from the optimal BMS based on the a posteriori
frequency and severity component and the premiums determined from the
optimal BMS with a frequency and a severity component based both on the
a priori and the a posteriori criteria.

4.2. Optimal BMS based on the a posteriori frequency component

We apply the Negative Binomial distribution. The maximum likelihood esti-
mators of the parameters are â = 0.228 and t̂ = 2.825. We will find first the
optimal BMS based only on the frequency component following Lemaire
(1995). The BMS will be defined from (1) and is presented in Table 1. This
optimal BMS can be considered generous with good drivers and strict with
bad drivers. For example, the bonuses given for the first claim free year are 26%
of the basic premium. Drivers who have one accident over the first year will
have to pay a malus of 298% of the basic premium.

TABLE 1.

OPTIMAL BMS BASED ON THE A POSTERIORI FREQUENCY COMPONENT

Year Number of claims

t 0 1 2 3 4 5

0 100
1 74 398 722 1046 1370 1693
2 59 315 572 829 1086 1342
3 48 261 474 687 899 1112
4 41 223 404 586 768 949
5 36 194 353 511 669 828
6 32 172 313 453 594 734
7 29 155 281 407 533 659

4.3. Optimal BMS based on the a posteriori frequency and severity component

Let us see the implementation of an optimal BMS based both on the fre-
quency and the severity component. We fit the Pareto distribution to the
claim sizes and we find the maximum likelihood estimates of s and m. It is
s = 2.382 and m = 493927.087. In order to find the premium that must be
paid we have to know the age of the policy, the number of claims he has done
in these years and the aggregate claim amount. The steps that must be fol-
lowed in order to find this optimal BMS are:
1. We find the age of the policy t.
2. We find the total number of claims k that the policyholder has done in t years.

16 NICHOLAS E. FRANGOS AND SPYRIDON D. VRONTOS



3. We find the aggregate claim amount for the policyholder, xk
k

K

1=

!
4. We compute the premiums using (3).
5. We go to the table with the specific total claim amount and we find the

premium that corresponds to k claims in t years of observation.

The Bonus-Malus System determined in the above way is presented in the
following tables. Here we will illustrate only the cases that the aggregate
claim amount of a policyholder is equal to 250000 drs, and 1000000 drs. It is
obvious that we can use the above formula with any value that the aggregate
claim amount can have. We use these values of the aggregate claim amount
for brevity. In the following tables we will use the actual values, the premiums
are not divided with the premium when t = 0, as it will be interesting to see
the variation of the premiums paid for various number of claims and claim
sizes in comparison not with the premium paid when t = 0 but with the spe-
cific claim sizes. This is the basic advantage of this BMS in comparison with
the one that takes under consideration only the frequency component, the
differentiation according the severity of the claim. Of course the percentage
change in the premium after on or more claims could be also interesting.

Let’s see an example in order to understand better how such BMS work.
In Table 3 we can see the premiums that must be paid for various number of
claims when the age of the policy is up to 7 years. For example a policyholder
with one accident of claim size 250000 drs in the first year of observation will
pay 100259 drs (see Table 2). If the second year of observation he has an acci-
dent with claim size 750000 drs, then, a surcharge will be enforced and he will
have to pay 203964 drs, which is the premium for two accidents of aggregate
claim amount 1000000 drs in two years of observation (see Table 3). If in the
third year he does not have an accident, he will have a reduction in the premium
because he had a claim free year and he will pay 168947 drs, which is the premium
for two accidents of aggregate claim amount 1000000 drs in three years of
observation (see Table 3).

TABLE 2.

OPTIMAL BMS BASED ON THE A POSTERIORI FREQUENCY AND SEVERITY COMPONENT –
TOTAL CLAIM SIZE OF 250000.

Year Number of claims

t 0 1 2 3 4 5

0 28841
1 21300 100259 128122 143269 152788 159323
2 16886 79479 101567 113575 121121 126302
3 13987 65834 84130 94076 100327 104618
4 11937 56188 71803 80292 85626 89289
5 10412 49007 62627 70031 74683 77878
6 9232 43454 55530 62095 66220 69053
7 8292 39031 49878 55775 59480 62025
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TABLE 3.

OPTIMAL BMS BASED ON THE A POSTERIORI FREQUENCY AND SEVERITY COMPONENT –
TOTAL CLAIM SIZE OF 1000000.

Year Number of claims

t 0 1 2 3 4 5

0 28841
1 21300 201336 257290 287708 306823 319947
2 16886 159607 203964 228077 243230 253634
3 13987 132206 168947 188921 201472 210091
4 11937 112834 144192 161239 171952 179307
5 10412 98414 125765 140633 149976 156392
6 9232 87262 111513 124697 132982 138670
7 8292 78380 100163 112005 119446 124556

It is obvious that this optimal BMS allows the discrimination of the premium
with respect to the severity of the claims. Table 4 shows the premiums that
must be paid when the policyholder is observed for the first year of his presence
in the portfolio, his number of accidents range from 1 to 5 and the aggregate
claim amount of his accidents ranges from 250000 to 4000000 dr. A policy-
holder who had one claim with claim size 250000 will have to pay a premium
of 100259 drs, a policyholder who had one claim with claim size 500000 will
have to pay a premium of 133951 drs and a policyholder who had one claim
with claim size 1000000 will have to pay a premium of 201336 drs.

TABLE 4.

COMPARISON OF PREMIUMS FOR VARIOUS NUMBER OF CLAIMS AND CLAIM SIZES

IN THE FIRST YEAR OF OBSERVATION.

Number of claims

Claim Size 1 2 3 4 5

250000 100259 181903 263547 345191 426835
500000 133951 243032 352113 461194 570275
1000000 201336 365291 529246 693201 857155
2000000 336106 609808 883511 1157213 1430915
3000000 470876 854326 1237775 1621225 2004675
4000000 605646 1098843 1592040 2085237 2578434

For more on such a system the interesting reader can see Vrontos (1998).
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4.4. Generalized optimal BMS with a frequency and a severity component
based both on the a priori and the a posteriori classification criteria

Let us calculate now the premiums of the generalized optimal BMS based both
on the frequency and the severity component when both the a priori and the
a posteriori rating variables are used. As we said the premiums of the gener-
alized optimal BMS will be given from the product of the generalized BMS
based on the frequency component, GBMF, and of the generalized BMS based
on the severity component, GBMS.

Implementing the negative binomial regression model we estimate the dis-
persion parameter a and the vector b of the significant a priori rating vari-
ables for the number of claims. We found that many a priori rating variables
are significant for the number of claims. These are the BM class, the age and
the sex of the driver and the interaction between age and sex. In the multi-
variate model â = 47.96 is larger, than in the univariate negative binomial
model where we had â = 0.228. This result indicates that part of the variance
is explained by the a priori rating variables in the multivariate model. The
estimates of the vector b can be found in the appendix. The parameters of
GBMS, that is the parameter of the Pareto s, and the vector parameter g of
the significant for the claim severity a priori rating variables di

j, are found
using the quasi-likelihood method. The significant a priori characteristics for
the claim severity are the age and the sex of the driver, the BM class, the horse-
power of the car, the interaction between age and sex and the interaction
between age and class. The premiums are calculated using (6). Below we can
see the premiums for different categories of policyholders.

Let us examine two groups of policyholders which have the following com-
mon characteristics. They belong in the malus zone, their car’s horsepower is
between 67 and 99, and their age is between 28 and 45. If the policyholder is
a man he will have to pay the following premiums after one or more accidents
of total claim amount 500000 in the first year.

TABLE 5.

MEN, AGE 28-45, MALUS-ZONE, HORSEPOWER 67-99.

Year Number of claims

t 0 1 2 3 4 5

0 100413
1 39609 279852 357626 399906 426474 444718
2 24670 174304 222745 249079 265627 276990
3 17914 126568 161743 180865 192881 201132
4 14063 99358 126970 141981 151414 157891
5 11574 81777 104503 116858 124622 129953
6 9834 69482 88792 99289 105886 110415
7 8549 60401 77187 86313 92047 95985
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If the policyholder is a woman with the above characteristics she will have to
pay the following premiums after one or more accidents of total claim amount
500000 in the first year.

TABLE 6.

WOMEN, AGE 28-45, MALUS-ZONE, HORSEPOWER 67-99.

Year Number of claims

t 0 1 2 3 4 5

0 75096
1 28632 248946 318131 355742 379376 395605
2 17688 153791 196531 219766 234367 244392
3 12797 111263 142184 158994 169557 176810
4 10024 87160 111383 124551 132826 138508
5 8240 71641 91551 102374 109176 113846
6 6994 60813 77713 86901 92674 96639
7 6076 52828 67510 75491 80506 83950

We notice that men have to pay higher premiums than women. We saw an
example of premiums obtained with generalized optimal BMS with a frequency
and a severity component based both on the a priori and the a posteriori
classification criteria. Other combinations of a priori characteristics could be
used and also higher total claim amounts.

It is interesting to compare this BMS with the one obtained when the only
the a posteriori frequency and severity component are used. Using this BMS
we saw from Table 4 that a policyholder with one accident with claim size of
500000 drs in one year has to pay 133951 drs. Using the generalized optimal
BMS with a frequency and a severity component based both on the a priori
and the a posteriori classification criteria, a man, age 28-45, who belongs to
the malus zone, with a car with horsepower between 67-99 for one accident of
claim size 500000 drs in one year will has to pay 279852 drs, while a woman,
age 28-45, who belongs to the malus zone, with a car with horsepower between
67-99 for one accident of claim size 500000 drs in one year will has to pay
248946 drs. This system is more fair since it considers all the important a priori
and a posteriori information for each policyholder both for the frequency
and the severity component in order to estimate his risk to have an accident
and thus it permits the differentiation of the premiums for various number of
claims and for various claim amounts based on the expected claim frequency
and expected claim severity of each policyholder as these are estimated both
from the a priori and the a posteriori classification criteria.
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5. CONCLUSIONS

We developed in this paper the design of an optimal BMS based both on the
a posteriori frequency and the a posteriori severity component. We did this by
fitting the Negative Binomial distribution in the claim frequency and the
Pareto distribution on the claim severity, extending the – classical in the BMS
literature – model of Lemaire (1995) which used the Negative Binomial dis-
tribution. The optimal BMS obtained has all the attractive properties of the
optimal BMS designed by Lemaire, furthermore it allows the differentiation
of the premiums according to the claim severity and in this way it is more fair
for the policyholders and it is obtained in a very natural context according to
our opinion.

Moreover, we developed the design of a generalized optimal BMS with a
frequency and a severity component based both on the a priori and the a pos-
teriori classification criteria extending the model developed by Dionne and
Vanasse (1989, 1992) which was based only on the frequency component. The
BMS obtained has all the attractive properties of the one obtained by Dionne
and Vanasse (1989, 1992) and furthermore it allows the differentiation of the
premiums utilizing the severity component in a very natural context. This gen-
eralized BMS takes into consideration simultaneously the important individual’s
characteristics for the claim frequency, the important individual’s characteris-
tics for the claim severity, the claim frequency and the claim severity of each
accident for each policyholder.

An interesting topic for further research could be the extension of the two
above BMS for different claim frequency and claim severity distributions.
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ABSTRACT

This paper examines an insurance or risk premium calculation method
called the mean-value-distortion pricing principle in the general framework of
anticipated utility theory. Then the relationship between comonotonicity and
independence is explored. Two types of risk aversion and optimal reinsurance
contracts are also discussed in the context of the pricing principle.
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1. INTRODUCTION

The calculation of insurance or risk premiums has been an essential and
active topic in actuarial literature, which has attracted the attention of actu-
aries such as Bühlmann (1970), Goovaerts et al. (1984) and Hürlimann (1997,
1998). Recently, modern theory of risk and economic choice under uncer-
tainty has played an important role in studying insurance premium calculations
(Wang et al., 1997, Wang and Young, 1998, Young, 1998). Hürlimann (1998)
makes a brief, yet comprehensive summary about the development of insurance
premium calculations. He emphasizes desirable and reasonable properties that
insurance premiums should satisfy. In fact, most modern pricing principles,
other than the distortion pricing principle, are presented in an expected utility
framework, while Wang et al. (1997) applies Yaari’ dual theory. However, both
expected utility theory and Yaari’ dual theory are special cases of anticipated
utility theory (Puppe, 1991).

In this paper, the mean-value-distortion pricing principle is presented under
anticipated utility theory as an approach to insurance premium calculations.
This kind of premium calculation can be found in Denuit et al. (1999), which
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refers to Chateauneuf et al. (1997). An outline of the paper is as follows.
In section 2, main properties of the mean-value-distortion pricing principle
are investigated. It is shown that these properties are consistent with those
of the mean value principle. Section 3 shows the relationship between inde-
pendence and comonotonicity. Here risk aversion and optimal reinsurance are
also discussed.

2. PROPERTIES OF THE MEAN-VALUE-DISTORTION PRICING PRINCIPLE

2.1. The Mean-Value-Distortion Pricing Principle

Quiggin (1982) first discussed anticipated utility theory. Subsequently, Segal
(1989) proposed an axiomatization of this theory, where the ordinal indepen-
dence axiom substituted the independence axiom of expected utility theory.
Analogous to Segal (1989), define “risk” as a non-negative random variable
X ∈ W with distribution function FX (x) and survival function SX(x), where x ≥ 0
and W = {X : X ≥ 0,0 ≤ EX ≤ ∞}. The insurance premium calculation is a non-
negative real function p: W → R. The premium of risk X is denoted by p(X).

Risks are restricted to bounded random variables and P = [0, M] is the domain
of risks. Further, let d be a binary preference relation.

Axiom 1 (Weak Order): The relation d is weak order.

Axiom 2 (Continuity): For every risk X, the sets {FY (x) : X d Y} and {FY(x) :
Y d X} are closed in the topology of weak convergence.

Axiom 3 (Monotonicity): For all risks X and Y, if FX(x) ≥ FY(x), x ≥ 0, then
X Y.

Axiom 4 (Ordinal Independence): For all risks X, X�, Y and Y�, if FX(x) =
FX�(x), FY (x) = FY� (x) on [0, c) (respectively on [c, M]) and FX (x) = FY (x),
FX�(x) = FY�(x) on [c, M] (respectively [0, c)), then X d Y ⇔ X� d Y�.

Preference relation d satisfies axioms 1, 2, 3 and 4 if and only if there exists
a continuous measure w on P ≈ [0,1] with w(A) > 0 for every non-empty open
set A ∈ P ≈ [0,1] such that

X d Y ⇔ w(eX) ≤ w(eY)

where epigraph eX is the closure of set {(x, p) ∈ P ≈ [0,1]: p ≥ FX(x)}. The gen-
eralized utility function is defined by

v (x, p) = w([0, x] ≈ [1-p, 1]) for all (x, p) ∈ P ≈[0,1].

If the corresponding relative utility index ( , )
( , )
x p
x pd

v
v

is independent of x for all d ∈
[0,1], then the preference relation d can be expressed by a real-valued functional:

( ) ( ) ( ( ))V X v t dg S tX

P

= -#

(
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where v(x) and g(x) are non-decreasing functions. Accordingly, the mean-value-
distortion pricing principle p satisfies the following equation:

.( ( )) ( ) ( ( ))v X v t dg S tp X

P

= -# (1)

If ( ( , )) ( )lim min X d Xp p
d

=
"3

, then the extension of equation (1) to W is given by

( ( )) ( ) ( ( )).v X v t dg S tp X
0

= -
3# (2)

Integrating equation (2) by parts and assuming ( ) ( ( ))limv t g S t 0
t

X =
"3

gives

( ( )) ( ( )) ( ).v X g S t dv tp X
0

=
3# (2’)

Obviously, if g(x) = x, equation (2) results in the mean value principle and if
v(x) = x, equation (2’) results in the distortion pricing principle. Since

( ( )) ( ) ( ( )) ( ( ( ))).v X v t dg S t v Xp p p( )Xp
0

= - =
3#

Hence equation (2) displays the certainty equivalent principle in which p(X )
is the sure payment leading to indifference. In the next part, the properties of
mean-value-distortion pricing principle are developed.

2.2. Properties

Suppose that v(x) is an increasing convex function, i.e., v�(x) > 0, v� (x) ≥ 0,
and g(x) is an increasing concave and distortion function on [0,1] such that
g(0) = 0, g(1) = 1 and g(x) ≥ x.

Theorem 2.1 (Non-Negative Loading): p(X) ≥ EX for all X ∈ W.
Proof: Since g(x) ≥ x and v(x) is convex,

( ( )) ( )g S t dv t $( ( )) ( ) ( ) ( ( )) ( ).v X S t dv t E v X v EXp X X
00

$= =
33 ## (3)

Thus, p(X) ≥ EX. ¡

Theorem 2.2 (Non-Excessive Loading): p(X) ≤ sup(X) for all X ∈ W.
This result is obvious.

Theorem 2.3 (Scale Invariant): p(kX) = kp(X) for all k > 0 if and only if v(x) =
a + bxq, where a ∈ R, b > 0 and q > 0.

Theorem 2.4 (Translation Invariant): p(X+c) = p(X)+c for all c ∈ R if and only
if v(x) = x or v(x) = erx where r > 0.

Before proving the prior two theorems, several lemmas from Goovaerts et al.
(1984) are generalized.
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Lemma 2.1: Suppose v (x) and v(x) are continuous and increasing functions.
For bounded risks, the sufficient and necessary condition such that v(x) and
v(x) have the same solutions with respect to equation (1) is v(x) = � + bv(x),
for all x ∈ P where �, b ∈ R.

Proof: Assume p̂(X) is a solution of equation (1) corresponding to v(x). If for
all x ∈ P, v(x) = � + bv(x), and �, b ∈ R, then

v(p̂(X)) = � + bv(p(X)) and v(p̂(X)) = � + bv(p̂(X)).

So v(x) and v(x) have the same solutions. Conversely, let X be a two-point ran-
dom variable, i.e., X = M with probability q, X = 0 with probability 1-q, where
0 < q < 1. According to equation (2),

v(p(X)) = g(q)v(M) + (1–g(q))v(0) and v(p(X)) = g(q)v(M) + (1–g(q))v(0)

Since 1–g(q) ≠ 0, comparing the two equations above gives

( ( )) ( )
( ( )) ( )

( ) ( )
( ) ( )

.v X v M
X M

v M v
M

p
pv v v v

0
0

-
-

=
-
-

This implies v(x) = � + bv(x) for x∈ [0, M], where  ( ) ( ) ( )
( ) ( )

( )� M v M v
M

v Mv
v v

0
0

= -
-
-

and

( ) ( )
( ) ( )

.v M v
M

b
v v

0
0

=
-
-

¡

Lemma 2.2: If ( ( , )) ( )lim min X d Xp p
d

=
"3

for all d ≥ 0, lemma 2.1 also holds for
risk X ∈ W.

Proof of theorem 2.3: The “if” part is easy to verify. It suffices to prove the
“only if” part. Since p(kX) = kp(X) for all k > 0,

( ( )) ( ( )) ( ) ( ( )).v k X v kX v kt dg S tp p X
0

= =-
3#

Let v(x) = v(kx), it follows that

( ( )) ( ( )) ( ) ( ( )) ( ) ( ( )).X v k X v kt dg S t t dg S tp pv vX X
00

= =- =-
33 ##

According to lemma 2.2, v(x) = �(k) + b(k)v(x) where �(k),b(k) ∈ R are depen-
dent on k. Let x = 0, v(0) = �(k) + b(k)v(0) and

v(kx) – v(0) = b(k)[v(x) – v(0)].

Differentiating the above equation with respect to variable k,

xv�(kx) = b�(k)v(x) and x2v� (kx) = b� (k)v(x).

Finally, if k = 1, then ( ) ( )
( )( )

v x
v

x
x

b
b

1

1� �
� �

= . This implies that v(x) can be represented

as v(x) = a + bxq, where a ∈ R, b > 0 and q > 0. ¡
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Proof of theorem 2.4: The “if” part is obvious by calculation. Conversely,
assume p(X+c) = p(X)+c for all c ∈ R. If v(x) = v (x+c), then

( ( )) ( ( ) ) ( ( )) ( ) ( ( )) ( ) ( ( )).X v X c v X c v t c dg S t t dg S tp p pv vX X
0 0

= + = + =- + =-
3 3# #

According to lemma 2.2, v(x) = �(c)+b(c)v(x) where �(c), b(c) ∈ R are depen-
dent on c. Let x = 0, v(0) = �(c)+b(c)v(0) and

v(x+c) – v(0) = b(c)[v(x) – v(0)].

Differentiating the above equation with respect to variable x,

v�(x+c) = b(c)v�(x) and v�(x+c) = b(c)v�(x).

Finally if x = 0, then ( ) ( )
( ))(

v c
v c

v
v

0
0

�
�

�
�

= and v�(0) = 0. It implies v(x) = x otherwise,
v(x) = erx where r > 0. ¡

Theorem 2.5 (Independent Additive): If risks X and Y are independent, p(X+Y)
= p(X)+p(Y) if and only if v(x) = x or v(x) = erx where r > 0 and g(x) = x.

Proof: The “if” part has been proved by Goovaerts et al. (1984). To prove the
“only if” part, first note that the independent additive property implies that
p(X) satisfies translation invariance. Hence v(x) = x or v(x) = erx where r > 0. If
v(x) = x, then ( ) ( ( ))X g S t dtp X

0
=

3# . Let risk X ~B(1, q), risk Y~B(1, p) where

0 ≤ p, q ≤ 1 and let risks X and Y be independent. Thus, p(X) = g(q), p(Y) = g(p),
p(X+Y) = g(p+q – pq)+g(pq) and

g(p+q–pq)+g(pq) = g(q)+g(p). (4)

Differentiating equation (4) by argument p and then q,

g�(p+q–pq)(1–p)(1–q)–g�(p+q–pq)+g�(pq)pq+g�(pq)= 0.

If q = 0, then g�(p)(1–p)–g�(p)+g�(0) = 0 and g�(0) = g�(1). (5)

If q = 1, then g�(p)p–g�(1)+g�(p) = 0. (6)

Comparing (5) and (6), g�(p) = 0 for all p ∈ [0,1] which implies g(x) = x. Similarly,
g(x) = x if v(x) = erx where r > 0. ¡

Theorem 2.6 (Comonotonic Additive): If risks X and Y are comonotonic,
p(X+Y) = p(X)+p(Y) if and only if v(x) = x.

Proof: The comonotonic additive property implies p(X) preserves the scale
and translation invariant properties. Therefore, it follows that v(x) = x by theo-
rem 2.3 and theorem 2.4. ¡
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Lemma 2.3 (Wang, 1998): For two comonotonic risks X and Y, Cov(X, Y) ≥ 0.

Let ( ) ( ( ))E X td g S t1g X
0

= -
3# 6 @ and ( , ) ( ) ( ) ( ).Cov X Y E XY E X E Yg g g g= -

Lemma 2.4: For two comonotonic risks X and Y, Covg(X,Y ) ≥ 0.
The proof of this lemma is omitted since it roughly resembles that of lemma 2.3.

Theorem 2.7 (Sub-Additive): For all risks X and Y, p(X+Y) ≤ p(X)+p(Y) if and
only if v(x) = x.

Proof: The “if” part has been proved by Hürlimann (1998). To prove the “only
if” part, first note that the sub-additive property implies p(X+c) ≤ p(X)+p(c)
for all X and c. In addition, p(c) = c by equation (2) and p(X) = p(X+c–c) ≤
p(X+c)–p(c). Hence p(X ) is translation invariant. By theorem 2.4, v(x) = x
or v(x) = erx where r > 0. If v(x) = erx, then ( ) ( )logX r E ep 1

g
rX

= 9 C where r > 0.
Assuming risks X and Y are comonotonic, so are erX and erY. According to
lemma 2.4 and theorem 2.6,

Eg(erX erY) > Eg(erX)Eg(erY).

That is, p(X+Y) > p(X)+p(Y) for comonotonic risks. ¡

Theorem 2.8 (Stop-Loss Order Preserving): If X sl Y, then p(X) ≤ p(Y).
The proof of this theorem refers to the third part of Hürlimann (1998). How-
ever, two points should be noted. One is that if ( )u S tX= and ( )t F u1X

1
= -

- ,
equation (2) can be rewritten by

( ( )) ( ) ( ( )) ( ( )) ( ) ( ( )) ( ),v X v t dg S t v F u dg u v F u d up g1X X X
0

1

0

1 1

0

1
=- =- - =

3 - -# # # (7)

where g(u) = 1-g(1-u). The second point is since v(x) is an increasing convex
function, then

E (v(X)) ≤ E (v(Y)). (8)

Equation (3.5) from Hürlimann (1998), equations (7) and (8) from above all
combine to show that the mean-value-distortion pricing principle regarding
p(X) preserves stop-loss order.

It is shown that essential properties of the mean-value-distortion pricing
principle are consistent with corresponding properties of the mean value
principle. These properties are more closely related to v(x) than g(x) because
under anticipated utility theory, the effect of loss severity and loss probability
is multiplicatively separable and

( ( )) ( ) ( ( )) ( ) ( ( )) .v X v t dg S t v t d g S tp 1X X
00

=- = -
33 ## 6 @ (9)

The right-hand side of equation (9) can be viewed as the expected value of v(X)
with respect to 1–g(SX(x)) instead of FX(x). Obviously Pg = {1–g(SX(x))} is a

(
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probability space denoted as the distort-probability space. Here p(X) may be
regarded as the mean value premium of risk X on Pg. In this light, the prop-
erties of the mean-value-distortion pricing principle should be different little
from those of the mean value principle. It is believed that the distort-proba-
bility space Pg is non-additive for independent risks, unless g(x) = x, but addi-
tive for comonotonic risks. Therefore, different additive properties among risks
should be defined in different probability spaces when describing practical
insurance operations.

3. SOME RELATED CONCLUSIONS AND COMMENTS

3.1. The Relationship Between Independence and Comonotonicity

In expected utility theory, independence is an important concept. In Yaari’
dual theory, comonotonicity is stressed because of theoretical work and prac-
tical meanings. According to theorems 2.5 and 2.6, the mean-value-distortion
pricing principle of p(X) satisfies the independent additive and comonotonic
additive properties if and only if v(x) = x and g(x) = x. The following theorem
(theorem 3.1) presents an alternative interpretation of the aforementioned result.
Here the description of comonotonicity in Denneberg (1994) is applied. For
further discussion regarding comonotonicity, one should refer to Schmeidler
(1986) and Yaari (1987).

Lemma 3.1 (Denneberg, 1994): Risks X and Y are said to be comonotonic
if there exist a risk Z and increasing real-valued functions f1(x), f2(x) such
that

X = f1(Z) and Y = f2(Z).

Theorem 3.1: Risks X and Y are both independent and comonotonic if and
only if one of them is a degenerate random variable.

Proof: Without loss of generality, let risk X be a degenerate random variable.
Obviously,

FX,Y(x,y) = FX(x)FY(y) = min{FX(x), FY(y)}.

Thus risks X and Y are independent and comonotonic. Conversely, assume
risks X and Y are not degenerate random variables. By lemma 3.1, there exists
a non-degenerate random variable Z and increasing real-valued functions f1(x)
and f2(x) such that X = f1(Z) and Y = f2(Z). Hence, ( ) ( ( ))F x F f xX Z 1

1
=

- and
( ) ( ( ))F y F f yY Z 2

1
=

- . Since risks X and Y are independent and comonotonic,

( ) ( ) ( ( )) ( ( )) ( ( )), ( ( ))

( ), ( ) .

min

min

F x F y F f x F f y F f x F f y

F f x f y

X Y Z Z Z Z

Z

1
1

2
1

1
1

2
1

1
1

2
1

= =

=

- - - -

- -` j
$

$
.

. (10)
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Let ( )t f x1 1

1
=

- and ( )t f y2 2

1
=

- , it follows that

( ) ( ) , .minF t F t F t tZ Z Z1 2 1 2= ^ h! + (11)

Finally assume t1 ≥ t2 and t2 → a, where a is a lower bound of risk Z, 0 ≤ a ≤ ∞.
It follows that

FZ(t1) = 1, t1 ≥ a and FZ(t1) = 0, t1 < a.

This implies risk Z is a degenerate random variable, which contradicts the
assumption. ¡

The above theorem illustrates that if non-degenerate risks are comonotonic,
they must not be independent and vise versa. The next theorem provides a
sufficient condition for determining whether risks are comonotonic or inde-
pendent. Further, if risks are comonotonic, their sum may be easily obtained.

Theorem 3.2: If risks X and Y are comonotonic, their sum may be simplified
as the addition of real-value functions, i.e.,

X+Y = f1(Z)+ f2(Z) = (f1+ f2)(Z).

Proof: Let risks X and j have identical distributions, i.e. FX(x) = Fj(x) for all x.
Thus,

FX,j(x, y) = min{FX(x), Fj(y)} = FX(min{x,y}).

If x ≤ y and FX,j(x, y) = FX(x), then j is constant and independent of risk X.
It follows that

( ( ) ) ( , ) ( ) ( ) .P X f z dF x y dF x F f zj 1,
( )( )

XY X X
x f x zx f x z

1
#+ = = = +

##

-

++
## 8 B (12)

Analogously, if x > y, equation (12) also exists. Thus, if j = X, then f f f2 1

1
%=

- . ¡

To examine a collective risk model, let

X(t) = X
( )

i
i

N t

1=

! and X(0) = 0,

where X Wi 1
!3! + are independent claim sizes. N(t) is the number of claims in

the interval [0,t] with N(0) = 0 and t > 0 independent of Xi 1
3! + . Risks X1, X2,

... may generate comonotonic risks ( ), ( ),...,F Fz zX X
1 1

1 2

- - which have the same mar-
ginal distribution functions as risks X1, X2, ..., where z~U(0,1). Risks Xi and

( )F zX
1

i

- belong to the same individual risk group and X
( )

i
i

N t

1=

! sl ( )F z
( )

X
i

N t
1

1
i

-

=

! , then

( ) ( ( ))X Fp p z
( ) ( )

i
i

N t

X
i

N t

1

1

1
i

#
=

-

=

! ! . Hence, the portfolio consisting of comonotonic risks

determines an upper bound of insurance premiums that may be viewed as a
market price. Insurance companies should not price risks above this market price.

(
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3.2. Risk Aversion

Wang (1996), Wang and Young (1998) distinguish between two types of risk
aversion. One type is based on an individual’s attitude towards wealth under
expected utility theory while the other is based on varying probabilities under
dual theory. The authors believe that insurance entities reflect different levels
of risk aversion based on their sizes. In fact, there is one type of risk aversion
under both expected utility theory and dual theory. The difference is presented
in their actual expressions. Puppe (1991, p. 67) argues this point:

“Two concepts of risk aversion will be considered here. The first concept defines an
individual to be risk averse if the sure gain E(F) of the expectation of a distribution F
is always preferred to the distribution itself. An alternative definition of risk aversion,
suggested by Rothschild and Stiglitz (1970), requires a risk averse individual to pre-
fer a distribution F to any mean preserving spread of F.”

The two definitions of risk aversion are equivalent only under expected utility
theory. In regards to insurance pricing theory, an insurer’s pricing principle
reflects its attitude towards risks. Insurers who are risk averse expect their
pricing principles to preserve stop-loss order, which is consistent with the sec-
ond definition of risk aversion particularly under non-expected utility theory.
To avoid any confusion, the second definition is preferred. It is also known
that risk aversion is equivalent to the convexity of v(x) under expected utility
theory, to the concavity of g(x) under dual theory, and to both of them under
anticipated utility theory.

Dual theory parallels expected utility theory from the standpoint of uti-
lizing probabilities versus wealth. Even so, risk aversion based on expected
utility theory and risk aversion based on dual theory cannot be compared.
This result can be seen by the characterization theorem of comparative risk
aversion discussed by Puppe (1991, p. 71). Hence considering only the size of
an insurer is insufficient in determining which pricing principle an insurer
should utilize. The following theorems clarify the aforementioned risk aver-
sion comparisons.

Lemma 3.2: Let V and V* be rank-dependent utility functionals with corres-
ponding generalized utility functions v and v*, respectively. Assume v12 and
v*

12 exist everywhere and are differentiable with respect to both arguments.
Then, V is more risk averse than V* if and only if for all (x,p) ∈ P ≈ [0,1] the
following two relations hold.

( , )
( , )

( , )
( , )

( , )
( , )

( , )
( , )

.x p
x p

x p
x p

x p
x p

x p
x p

andv
v

v
v

v
v

v
v

*

*

*

*

12

121

12

121

12

122

12

122
# $

(Note the prior assumptions regarding v(x) and g(x) are implied in the follow-
ing theorems.)

Theorem 3.3: An insurer is more risk averse under expected utility theory than

under dual theory if and only if ( )
( )

v x
v x

0
�
�

# and ( )
( )
p
p

g
g

0
�
�

# for all x ∈ P and 0 ≤ p ≤ 1.
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Theorem 3.4: An insurer is more risk averse under expected utility theory and
dual theory than under anticipated utility theory.

Within the same theoretical system, it is true that the degree of risk aversion
is closely related to the size of an insurer, i.e., its wealth. This is the concept of
decreasing risk aversion. In general, decreasing risk aversion implies “an indi-
vidual with utility function u(x) is more risk averse than another one with utility
function u(w+x), w>0, under the standard of maximizing expected utility
functions”. The Arrow-Pratt measure of risk aversion, r(x), is a decreasing
function of x applicable to expected utility theory. However, this measure
does not make any sense in dual theory because here the Arrow-Pratt mea-
sure is zero. According to lemma 3.2, under anticipated utility theory “the
characterization of decreasing risk averse is exactly the same as in the expected
utility model.”

The above discussion of risk aversion stems from an insurer’s point of
view. However, from an insured’s perspective, results will be perfectly opposite.
Arguably, insurance is the outcome of high-speed development of an economy.
The result is the existence of a luxury commodity, insurance, which allows an
individual to exchange uncertain outcomes for a certain one after having cer-
tain wealth accumulation. In addition, the more wealth an individual has, the
more care they are likely to place in the insurance market.

3.3. Optimal Reinsurance

From an insurance company’s perspective, the optimization criterion of a
reinsurance contract is to minimize the insurance premium of retained risks.
A reinsurance contract I*(X) ∈ I is said to be an optimal reinsurance contract
with respect to the pricing principle p if p[X–I*(X)] < p[X–I(X)] for all I(X) ∈ I,
where I = {I (x) : I (0) = 0,0 ≤ I� ≤ 1} is a set of reinsurance contracts. The most
useful two subsets of I are Ip,P, Im, where Ip,P, = {I(x) : I(0) = 0,0 ≤ I� ≤ 1,p[I(X)]
= P}, Im = {I(x) : I(0) = 0,0 ≤ I� ≤ 1, E[I(X)] = m}, and P, m are fixed. Goovaerts
et al. (1990) gives an informative exposition regarding optimal reinsurance in
the case of Im. Wang (1998) and Young (1999) study this problem with respect
to the distortion pricing principle.

Lemma 3.2 (Goovaerts et al., 1990): For any optimization criterion preserving
stop-loss order, the optimal reinsurance contract over set Im is of the form
I*(X) = (X–d)+ and is called the stop-loss contract.

Theorem 3.5: According to the mean-value-distortion pricing principle, the
stop-loss contract is the optimal reinsurance contract for Im and Ig, m, where
Ig,m = {I : I(0) = 0,0 ≤ I� ≤ 1, Eg[I (X)] = m}.

Proof: Applying theorem 2.8 and lemma 3.2, it is easy to prove the result for
Im. Further, according to equation (9), v(p(X)) = Eg[v(X)] and since v� ≥ 0,

v(t)–v(z) ≥ v�(z)(t–z) for all t, z ∈ R.
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Therefore, v[x–I(x)]–v[x–I*(x)] ≥ v� [x–I*(x)] [I*(x)–I(x)]. If less I*(x)–I(x) > 0,
then x–I*(x) = d and

v[x–I(x)]–v[x–I*(x)] ≥ v�(d)[I*(x)–I(x)]. (13)

Otherwise, x–I*(x) ≤ d, v� [x–I*(x)] ≤ v�(d) and inequality (13) also exists. Sub-
stituting X for x in inequality (13) and integrating both sides with respect to
1–g(SX(x)) yields

v[p(X–I(X))]–v[p(X–I*(X))] ≥ v�(d)Eg[I*(X)–I(X)] = 0

This implies I*(X) = (X–d)+ is the optimal reinsurance contract. ¡

Corollary 3.1: If ( ) ( ) ( ( ))X X g S t dtp pg X
0

= =
3# , then Ip,P = Ig,P. In this case the stop-

loss contract is the optimal reinsurance contract for Im and Ip,P according to
the distortion pricing principle.

For the mean-value-distortion pricing principle, the problem of an extreme
value with respect to p[X – I (X)] is identical to v[p(X– I (X))]. In this case
a larger set ( ): ( ) , , ( ( ))I I x I I E I X Pv0 0 0 1�,g P g

v
# #= = =6 @# - is considered, where

v(x) make the integral exist. Obviously Im , Ip,P and Ig, m are all subsets of I ,g P
v .

Moreover, since v[p(x – I(x))] is Gâteaux differentiable with respect to I(x), the
method of resolving a constrained extreme value of a functional to find an
optimal reinsurance contract is applied.

Theorem 3.6: In the set I ,g P
v , an optimal reinsurance contract I*(x) is determined

by the equation v� [x–I(x)] = lv�[I(x)], where l satisfies the constraint Eg[v(I*(X))]
= P.

Proof: Let f (I ) = Eg[v (X– I(X))] and F(I ) = Eg[v (I(X))]. The aim is to mini-
mize f(I) under the constraint F(I) =P. Let f (I, l) = f(I)–lF (I). For all real t

and functional h(x), optimal reinsurance I*(x) satisfies 
( , ) ( , )

lim t
f I th f Il l

0
t 0

+ -
=

"
.

That is,

( ) ( ) ( ) ( )
.lim t

I th I I th If f l F F
0

t 0

+ - - + -
=

"

6 @
(14)

Substituting for f(I) and F(I) in equation (14), we have

Eg{[v�(X–I(X))–lv�(I(X))]h(X)} = 0    for all functional h(x).

Thus, v� [x–I(x)] = lv� [I(x)] for all x ≥ 0, where l satisfies Eg[v(I*(X))] = P. ¡

Corollary 3.2: The optimal reinsurance contract I*(x) for Ip,P is determined by
v� [x–I(x)] = lv� [I(x)], where l satisfies the constraint p[I*(X)] = P.

Corollary 3.3: If v(x) = x2, the optimal reinsurance contract for Ip,P is a quota
share contract.
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4. CONCLUSION

This paper discusses the insurance or risk premium calculation known as the
mean-value-distortion pricing principle in the general framework of anticipated
utility theory. Essential properties such as non-negative loading, non-exces-
sive loading, scale and translation invariant, stop-loss order preservation,
and sub-additivity are preserved in the analysis of the pricing principle. It is
also shown that for non-degenerate risks, independence and comonotonicity
do not exist simultaneously. Risk aversion is not comparable under expected
utility theory and Yaari’s dual theory. This fact suggests consideration of
insurance problems in a larger theoretical frame. Finally, optimal reinsurance
contracts are derived by different computational methods.
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HEAVY-TAILED DISTRIBUTIONS AND RATING

BY

J. BEIRLANT, G. MATTHYS AND G. DIERCKX

University Center of Statistics, Katholieke Universiteit Leuven

ABSTRACT

In this paper we consider the problem raised in the Astin Bulletin (1999) by
Prof. Benktander at the occasion of his 80th birthday concerning the choice
of an appropriate claim size distribution in connection with reinsurance rat-
ing problems. Appropriate models for large claim distributions play a central
role in this matter. We review the literature on extreme value methodology
and consider its use in reinsurance. Whereas the models in extreme-value
methods are non-parametric or semi-parametric of nature, practitioners often
need a fully parametric model for assessing a portfolio risk both in the tails
and in more central portions of the claim distribution. To this end we propose
a parametric model, termed the generalised Burr-gamma distribution, which
possesses such flexibility. Throughout we consider a Norwegian fire insurance
portfolio data set in order to illustrate the concepts. A small sample simulation
study is performed to validate the different methods for estimating excess-of-
loss reinsurance premiums.

1. INTRODUCTION

The topic raised by Professor Benktander on the occasion of his 80th birthday
concerning the choice of an appropriate claim size distribution in connection
with a (multi-layer) rating problem is indeed a very fundamental area of dis-
cussion, both in the academic as in the practical (re-)insurance world.

On the one hand, modelling extreme events through Pareto-type and other
heavy-tailed distributions attracts more and more attention. The number of
statisticians working in extreme value methodology and the number of publi-
cations in this area is systematically growing; see the reference list for some
recent books and papers with special emphasis on actuarial applications.
Several important methods in this area were influenced by methods devel-
oped in the actuarial literature, not in the least by the paper by Benktander
and Segerdahl On the analytical representation of claim distributions with spe-
cial reference to excess-of-loss distributions (the XVIth International Congress
of Actuaries, Brussels, 1960). Indeed, in that contribution the concept of the
mean excess (or mean residual life) function was illuminated, which turned
out to be quite a useful tool in extreme value statistics. Professor Benktander
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was also one of the first to introduce the concept of probability and quantile
plotting in actuarial statistical practice, which, in our opinion, is the right way
to view the data with the aim of tail modelling.

On the other hand, actuaries working in a reinsurance context are some-
times feeling uneasy with this material. One of the main problems is that the
statistical extreme value models concern only the ultimate tail section of the
distribution while a practitioner faced with reinsurance rating will need to
model also more central areas of the distribution in order to handle the differ-
ent layers in a flexible way. This, we believe, leads to another important merit
of the abovementioned paper by Professor Benktander: the Benktander I and
II distributions offer a nice compromise between statistical flexibility and effi-
ciency, and computational simplicity with regard to premium rates. These classes
contain all popular heavy-tailed models ranging from the Pareto distributions,
over lognormal-type models to Weibull-type tails. At the same time the elegant
expressions of their mean excess functions makes them especially attractive for
the actuarial practitioner.

In this text we present a personal view on the link between statistical
extreme value methods and the selection of appropriate statistical claim size
models on the one side, and actuarial concepts, in particular the mean excess
function, on the other. Proposals for statistical models that are able to capture
both central and tail characteristics of the distribution will be presented. Finally,
recent new directions in extreme value statistics, again motivated mainly by
actuarial applications, will also be discussed. In Section 2 the relation between
quantile plotting and the mean excess function is explained. In Section 3 we
add the connection with extreme value methods. We order the presentation of
the different approaches from non-parametric techniques over semi-parametric
ones to a final fully parametric model in Section 4. The implications to pre-
mium rating are clarified along the way.

Throughout the text we use the fire claim data from a Norwegian portfolio
in 1990 (taken from [1]) to illustrate the different methods and to give an idea
of the typical problems with claim data modelling.

2. QUANTILE PLOTTING AND THE MEAN EXCESS FUNCTION

Let x1, x2, ..., xn be claim data that come from a random sample X1, X2, ...,Xn
with distribution function F and survival function F(x) = P (X > x), denoting
the probability to obtain a claim larger than x. The ordered data will be
denoted by

x1,n ≤ x2,n ≤ ... ≤ xn,n,

which are the sample values of the order statistics X1,n ≤ ... ≤ Xn,n.
In case the expected value of X exists, i.e. E(X) < ∞, the mean excess function
is given by

( ) ( > ),m x E X x X x= -

the expected excess claim size.
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FIGURE 1: Plot of mk,n as a function of xn–k,n for the Norwegian fire insurance data.

This function plays a central role in the rating of an excess-of-loss reinsurance
in excess of a retention or priority level R, as the corresponding risk premium
P(R) for the layer from R to infinity is given by (a multiple of)

P (R) = F(R)m (R) = E ((X – R)+).

It is a well-known fact that the most efficient way to derive m from F is by using
the expression

( )
( )

( )
,m x

x

u du

F
F

x=

3#

while the inverse operation is given by

( ) ( )
( )

( ) , > ,expx m x
m B

m u
du x BforF

B

x

= - #
J

L

K
K

N

P

O
O

where B denotes the left limit of the support of F.

In practice, the mean excess function m is easily estimated at x = Xn – k, n for
some k = 1, ..., n – 1 by the (empirical) average excess of the k data points higher
than Xn–k,n :

.k X Xm 1
, , ,k n n j n n k n

j

k

1
1

= -- + -
=

!
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FIGURE 2: Exponential quantile plot for the Norwegian fire insurance data.

is closely linked to the mean excess function through the expression

( ) ( )
( )

.x m x
m x

m
1 �

=
+

So far for the recapitulation of the basic notions from (re)insurance mathemat-
ics. On the statistical side the potential of quantile plotting through quantile-
quantile or QQ plots (or, alternatively, of probability plotting) for the graphical
description and for the analysis of claim data has been stressed by several authors
considering extreme value methods, see for instance [1], [17]. What may look
innocuous or only somewhat suspect in a density comparison may become quite
glaring in a QQ plot. Starting from the point of view that a heavy-tailed distrib-
ution is a distribution for which the tail is heavier than any exponential tail, i.e.

( )
( )

lim
exp

x
xl

Fx

-

"3
= 0, for any l > 0,

the degree of deviation can be depicted through visual inspection of an expo-
nential quantile plot of points with coordinates

( ), .log n
j

X
1 ,n j n1-

+ - +d n
Here the empirical quantiles Xn–j+1,n appear as estimates of the unknown quan-
tiles ( )Q 1 n

j
1- + , defined as the claim levels that are surpassed in n

j
1+ 100% of

the cases. Hence, a straight line pattern in the exponential quantile plot will
direct the practitioner to a model of the type

( ) ( )logQ p a pl1
1

- = + -

for some a and l > 0, and hence to

( ) ( ( )), >expx x a x alF = - -

i.e. an exponential model, perhaps shifted over a distance a.
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FIGURE 3: Non-parametric estimator of the excess-of-loss net premium as a
function of the retention level R for the Norwegian fire insurance data.

By the definition of the exponential quantile plot itself, namely that the verti-
cal coordinates of the plotted positions are given by the data themselves, it
follows that in case of a distribution with a tail heavier than any exponential,
the plot will bend upwards away from a linear fit which is ‘in line’ with the
exponential model. Rephrasing the expression ‘bend upwards’ more rigorously,
we are led to stating that for such ‘sub-exponential’1 distributions the slope or
the derivative of the exponential quantile plot increases as we increase the
claim level.

One very naive way to estimate the slope of the exponential plot to the
right of a point, say the position ( ),log X ,n

k
n k n1

1- +
+

-` j, is to use the quotient of the
average vertical and horizontal excesses over this position:

,
log log

X X, ,

k j
n

k
n

j
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k n j n n k nj
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1 1
1
1

1

1
11

-
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+
+
+

=
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_ _i i
or, even simpler,

,k X X1
, ,n j n n k n

j

k

1
1

-- + -
=

!

since the denominator of the first expression is very closely approximated by
1 (as it is an approximation of the mean excess function of the unit exponen-
tial distribution, which is constantly equal to 1).

Hence we conclude that the empirical mean excess function m defined above
is a naive derivative function for the exponential quantile plot. It also follows
easily that the mean excess function of distributions with tails heavier than the
exponential model all have an increasing mean excess function. The strongest
increase is found for Pareto distributions for which the increase is linear.
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Further, this relationship shows that the exponential quantile plot is not
only useful in the statistical validation of a claim model, but also in the calcu-
lation of a risk premium for a layer from R = xn–k,n to ∞, which can be esti-
mated by m ,n

k
k n1

1
+
+ in a purely non-parametric way, i.e. without assuming any

parametric part in the statistical claim model.
Finally, to clarify the relationship between quantile plotting and the hazard

rate m, observe that the exponential quantile plot is the graph of the function
Q(1 – e–x), which has derivative e–x /F�(Q(1 – e–x)) or (1/m) (Q(1 – e–x)). Hence
the reciprocal of the hazard rate follows exactly from the derivative of the expo-
nential quantile plot at a plotting position.

3. QUANTILE PLOTTING, MEAN EXCESS AND EXTREME VALUE METHODS

In contrast to the previous fully non-parametric approach for premium calcu-
lation for an upper layer, extreme value methods typically use a semi-para-
metric approach, containing one or two parameters next to a functional part
which is not specified. This seems reasonable from the fact that these methods
are designed to make extrapolations outside the sample, for instance to esti-
mate an extremely large quantile Q (1 – p) with p < n

1. Using a fully parametric
model would then induce a second extrapolation from the sample towards the
statistical population, and hence bias risk would only become larger.

3.1. Pareto-type distributions

The most famous example of such a semi-parametric extreme value model is
the Pareto-type model, which is deduced from limit theory for the maximum
Xn,n of a sample:

F(x) = x–a� (x),

where � is a slowly-varying function (at infinity), i.e. which satisfies,

�
�

( )
( )
x
tx → 1, as x → ∞, for every t > 0.

Here the tail index a is the important, decisive parameter, while � is a nuisance
function. Working under this model amounts to assuming that the survival
function behaves in first order as a power law. Examples of popular claim size
models which belong to this class are, of course, the (strict) Pareto model itself
(and hence the Benktander distribution with the parameter B equal to 0),
next to the Burr, the generalised Pareto, the loggamma, the log-logistic and
the Fréchet distribution, among others.

The estimator of a which has received by far the most attention (and still
does attract a lot of research) was proposed by Hill (1975) [15] and was
shown by Mason (1982) [18] to be consistent under the complete Pareto-type
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FIGURE 4: Pareto quantile plot for the Norwegian fire insurance data.

model, and in that sense appears to be a perfect semi-parametric estimator at
first sight:

/ .log logk X Xa1
1

, , ,k n n j n
j

k

n k n1
1

= -- +
=

-!

The Hill statistic is nothing else than the mean excess estimate of the log-
transformed data at Xn–k,n, and hence can be deduced from a Pareto quantile
plot, which is the exponential quantile plot of the log-transformed data. Indeed,
under the Pareto-type model such a Pareto quantile plot can be shown to be
ultimately linear with slope approaching 1/a above some high threshold Xn–k,n,
i.e. for small enough k and large enough n.
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Remark that we have in fact as many estimates of a as we have data points;
for each value of k we obtain a new estimate of a. Plots of ak,n as a function
of k are often quite volatile. In [20] it is mentioned that it is helpful to plot the
Hill estimates as a function of logk (in fact, this is equivalent to using the
same horizontal scale as in the Pareto quantile plot). For the Norwegian fire
claim data, however, there is no apparent gain with this approach.

Several authors have tried to guide the practitioner in choosing k, leading
to an adaptive choice k such that an estimate of the mean squared error of
the Hill estimator is minimised at k. This was done by bootstrap methods (see,
for instance, [9]) or by regression diagnostics on a Pareto quantile plot in [2].
A somewhat different solution was proposed in [12]. In case of the Norwegian
fire insurance portfolio the method indicated in [3] yields the value k = 290,
which results in the estimate 1 / a = 0.62.

Other problems are for instance the non-invariance of the Hill estimator
with respect to shifts that could be applied to the data, and most importantly,
the bias that the Hill estimator exhibits in certain cases. This can be under-
stood from the fact that for certain Pareto-type distributions (as it is the case
for the loggamma distribution, for instance) the influence of the slowly-varying



FIGURE 6: Plot of 1/ak,n as a function of logk for the Norwegian fire insurance data.

FIGURE 7: Plot of an estimator (see [3]) of the asymptotic mean squared error of the Hill estimator
as a function of k for the Norwegian fire insurance data. A minimum is found at k = 290.

FIGURE 5: Plot of 1/ak,n as a function of k for the Norwegian fire insurance data.
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FIGURE 8: Plot of the POT estimates (ML) as a function of k for the Norwegian fire insurance data.

part � is still imminent near the top end of the Pareto quantile plot. As a
consequence, confidence intervals for a will not show the required coverage
probability in such cases. This puts a serious restriction on the reliability of
these methods.

Next to methods based on high order statistics, such as the Hill estimator,
an alternative is offered by the peaks-over-threshold approach (POT). This method
consists of fitting the generalised Pareto distribution (GPD) to the distribu-
tion of the excesses Y = X – u (if X > u) over a high threshold u, for instance
by maximum likelihood methods [23], the method of moments [16], or modern
Bayesian estimation methods [8]. By its nature this approach has a natural link
with excess-of-loss reinsurance replacing the retention level R by the statistical
threshold u ; for a discussion, see [19], [22]. This approach is based on a limit
result of Pickands (1975) [20] stating that as u → ∞, the survival function of
the excesses tends to the survival function of the GPD given by ( )��

x
1 + with

the scale parameter s = su depending on u. Again, every choice of u leads
to another estimator of a and of course su. Smith has advised to choose u =
Xn–k,n at the smallest value of Xn–k,n to the right of which the mean excess plot
remains approximately linear as a function of the ordered data. Pure adaptive
algorithmic choices have not yet been explored systematically, however. The
POT method possesses some advantages over the methods based on extreme
order statistics such as the ones derived from the Hill estimates: it is invariant
with respect to shifts and the plots of the estimates of a as a function of k are
often more stable, apparently because of the use of the second parameter s.
However, also here the asymptotic result of Pickands can set in really slowly,
leading to biased estimates of a for this method too. In case of the Norwegian
fire insurance data, the POT method does not lead to a more stable graph
when the estimates are plotted as a function of k; see Figure 8.

Let us now consider again the estimation of the risk premium for a layer
from R to ∞ with the semi-parametric approach. Using the concept of the

HEAVY-TAILED DISTRIBUTIONS AND RATING 45



FIGURE 9: Plot of x ,n k n n
k

a 1
1

1
1

k - - +
+b l as a function of R = xn–k,n for the Norwegian fire insurance data.

(log-scale on Y-axis).

Hill estimator, we arrive at the following approximation based on the famous
Karamata theorem (see for instance [7]) for a > 1:

�

�

( ) ( )

( )

( ).

R u u du

R R
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When the priority R is situated within the sample, i.e. when claims at the mag-
nitude of R have previously been observed and R is taken equal to xn–k,n for
some k, this leads to the estimate P̂ ( )x x, ,n k n n k n n

k
a 1

1
1
1

k
=- - - +

+` j. Figure 9 presents
these estimates for the fire insurance data.

If R is not fixed at one of the sample points, extreme value formulas for
estimation of F(R) in the expression for P(R) can be applied (see for instance
[1] or [12]): F̂(R) = n X

Rk a
1
1

,n nk+
+ -

-
` `j j with k denoting an appropriate adaptive choice

for the number of extreme order statistics used in the procedure, which can be
obtained with the methods mentioned above. This is shown in Figure 10 for
our example.

Alternatively, the POT approach suggests substituting the conditional
expected value of the GPD for the mean excess function at a high priority R
(for R > u ) : ( )m R s 1u

R u
a

a
a s1u

u
u u= --
-` j, while F(R) will be estimated with the for-

mula 1n
k R u

as
a

1
1

R-+
+ - -` j when k observations exceed the threshold u. Replacing au

and su by their estimates then leads to an estimate of the risk premium as in
Figure 11.

When estimating the premium at a retention level within the sample, i.e.
R = xn–k,n, one can fix the threshold u at R and then the POT approach leads
to an estimate n

k
Ra

a
1 1

1

R

R v- +
+t . This is of the same form as the first estimation
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FIGURE 11: Plot of POT-based premium estimates as a function of retentions R situated
beyond the threshold u = xn – 290,n for the Norwegian fire insurance data.

FIGURE 10: Plot of R n X
R

a
k a

1
1

1
1

,n nk k

k

- +
+ -

-
b bl l as a function of R for the Norwegian fire insurance data.
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FIGURE 12: Plot of the POT based premium estimates n
k

Ra
a

1 1
1

R

R v- +
+t as a function of R = xn–k,n for

the Norwegian fire insurance data. (log-scale on Y-axis).



method based on the Hill estimator, replacing xn–k,n by âRŝR. A plot of these
estimates for the Norwegian fire insurance data is shown in Figure 12.
A summary of all above estimation methods can be found in Table 1.

3.2. Bias reduction in estimating the Pareto index

The abovementioned problems with systematic biases appearing in the ‘classi-
cal’ extreme value methods have only recently led some authors [3], [14] to
look in more detail at important (parametrised) subclasses of the set of all
slowly-varying functions. The following class was first indicated by Hall (1984):

� ( ) ( ( )) ,x C Dx o1 1 1
b

= + +
-` j

(with C, D and b denoting positive constants) to which belong for instance
the Burr, the generalised Pareto and the Fréchet distribution. Another helpful
subclass is given by

� ( ) ( ) ( )logx C x o1 1
b

= +^ h
to which belongs for instance the loggamma distribution.

It is then shown that for k not too large the scaled logarithmic spacings Zj :=
j (logXn–j+1,n – logXn–j,n), j = 1, ..., k, can be modelled by the following gener-
alised regression models:

a power regression model

, , <Z b k
j

f j k k na
1

1
1,j n k j

r

# #= +
+

de n o
with bn,k and r(> 0) depending on C, D and b, and f1, f2, ... denoting independent
and identically distributed unit exponential random variables; respectively,

a logarithmic regression model

, , < ,log log
log

log
Z j j

j
j j k k na b e1 1

1j
j
n

j
n

j
1
1

1
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+
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+J
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K
K d N

P

O
On

where ej denote centered exchangeable error random variables. The latter model
is to be used when the parameter r in the power regression model is close to 0.

Again for every k another estimate of a is obtained, e.g. by joint maxi-
mum likelihood estimation of a, r and bn,k, or b, but typically the plots of the
estimates as a function of k are much more stable. Also, the covariate terms

b ,n k k
j r

1+a k , respectively logjb
log

log

j
n

j
n

1
1

1

+
+

+

, remove the bias of the original Hill-type

estimators to a high extent. Finally, the problem concerning the non-invariance
of the original estimators with respect to shifts has also been lifted up, i.e. one
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FIGURE 14: Plot of estimates of a
1 based on the logarithmic regression model as a function of k

for the Norwegian fire insurance data.

FIGURE 13: Plot of estimates of a
1 based on the power regression model as a function of k

for the Norwegian fire insurance data.

can add or subtract values up to the third quartile of the underlying distribu-
tion while the bias-corrected estimates remain stable. On the other hand the
standard deviation has inflated in comparison with the simpler estimators but
it stays of order / k1 .

Of course, a practitioner has to choose between the two estimates of a
obtained by each of these two generalised regression models. In the Norwe-
gian fire insurance example, the estimates obtained from the power regression
model seem to be more stable than those from the logarithmic model. Here
again the value around 0.6 appears as an estimate of 1/a. The estimates cor-
responding to k < 290 indicate the possibility of a mixture with even a heavier
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FIGURE 16: Plot of x ,n k n n
k

a 1
1

1
1

k - - +
+b l as a function of R = xn–k,n with â the ML estimator from the

logarithmic regression model for the Norwegian fire insurance data. (log-scale on Y-axis).

FIGURE 15: Plot of x ,n k n n
k

a 1
1

1
1

k - - +
+b l as a function of R = xn–k,n with â the ML estimator from the

power regression model for the Norwegian fire insurance data. (log-scale on Y-axis).

tail at the extreme right end of the distribution. In the whole, the logarithmic
model does not appear to fit well in this case, which gives rise to a larger vari-
ability in the estimates over the range of k-values.

The different ways to estimate a premium for an excess-of loss reinsurance
contract with retention R covered above, namely P̂(xn–k,n) = x ,n k n n

k
a 1

1
1
1

k- - +
+` j

for a retention R = xn–k,n, respectively R n X
R

a
k a

1
1

1
1

,n nk k

k
- +

+ -

-
` `j j when R > xn–k,n, can

now be recomputed replacing the Hill estimate â of a by the new estimates
based on the power or logarithmic regression model. The results for the Nor-
wegian fire claim data are given in Figures 15 through 18.
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FIGURE 18: The Norwegian fire insurance data: plot of R n X
R
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b bl l as a

function of R with âk obtained from the logarithmic regression model.

FIGURE 17: The Norwegian fire insurance data: plot of R n X
R

a
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1
1

1
1

,n nk k

k

- +
+ -

-
b bl l as a

function of R with âk obtained from the power regression model.

3.3. The Gumbel maximum domain of attraction

Next to the Pareto-type models, important claim distributions such as the
lognormal and the Weibull distributions (which are included in the framework
of the Benktander I and II classes of distributions) have to be available in a
practitioner’s toolbox. Formally, this class is defined as the set of distributions
for which maxima are attracted in distribution to the Gumbel distribution
with distribution function exp(–exp(–x)) for large sample sizes. In extreme
value methodology this group of distributions is modelled with an extension
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of the Pareto-type distributions through the extreme value index g = 1/a, defin-
ing the extreme value index g to be 0 for this large class of distributions with
exponentially fast decreasing tails. Remark that the lognormal distribution is
then really on the borderline between the Pareto-type distributions and the g
= 0 class, as the first order approximation (for x → ∞) of the survival func-
tion of the lognormal distribution is given by F(x) ~ C1exp(–C2(logx)2) for
some positive constants C1, C2.

The difficulties encountered by the extreme value methods can be illustrated
by the POT approach, for which the Gumbel class approximation is obtained
formally by letting a → ∞ in the definition of the GPD, leading to an expo-
nential fit exp(–x/su). In general the goodness of fit of an exponential distri-
bution to the excess distribution over a high threshold u will only appear to
be accurate for extremely large thresholds u, which are only useful in practice
for very high sample sizes.

Extensions of the Hill estimator are also available. Here we mention the
moment estimator [10] of f given by
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with M ,
( )
k n
1 being the Hill statistic.

An extension to the case g ≥ 0 of the graphical support that was offered by
the Pareto quantile plot for the Pareto-type distributions appears to be a nat-
ural question. In [4] it was shown that in this general case, the mean residual life
function m satisfies m(Q(1 – p)) = p–g�(1/p) for some slowly-varying function
� (in case 0 ≤ g < 1). Hence the the quantile – mean excess plot, or QM plot,

, ,log logn
k k nm

1
1

2,k n # #-
+
+b l

will be ultimately linear with slope g. This then leads to an estimator of g as it
was done on the basis of the Pareto quantile plot in case of g > 0 which
entailed the Hill estimator and other bias reduced estimators. So, here the mes-
sage is to plot the log-transformed empirical mean excess values logmk,n
against the log-scale k in order to estimate the value of g and to capture the
Pareto versus non-Pareto behaviour of the tail of the distribution: ultimately
horizontal QM plots point in the direction of an exponentially decreasing
tail.

This technique can be adapted so as to work without the restriction g < 1 by
replacing logmk,n in the QM plot by ( )log log logX X X, , ,n k n k n j n n k nj

k1
11

-- - + -=
!a k.
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FIGURE 19: Adapted QM plot for the Norwegian fire insurance data.

FIGURE 20: Simulation study based on 100 simulated data sets of size 500 from a Burr distribution:
exact P(R) (solid line); median P̂(R) for methods (4) and (6) (dashed line);

median P̂(R) for method (2) (dotted line).

3.4. Comparing the different premium calculation techniques

The different semi-parametric ways to estimate excess-of-loss premiums that are
covered above are summarised in Table 1. They do yield quite different results
in our case study. In order to inspect this in more detail, a small sample simu-
lation study was performed using a Burr distribution with

( ) .F x
x

1
1

1
2

= -
+

f p
We focus on the methods developed for estimating P(R) when the retention
satisfies R > Xn–k,n with k chosen to minimise the mean squared error of the
Hill estimator, i.e. (2), (4) and (6). The results based on the POT method (4)
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and the regression model estimates (6) are almost identical and are in fact quite
satisfactory. The simplest method based on the Hill estimator typically over-
estimates the correct P function and entails a strong positive bias. In Figure 20
the median curves P̂ as a function of R are given, based on 100 simulated data
sets of size n = 500.

4. CAPTURING CENTRAL ÁND TAIL CHARACTERISTICS

Having explained the difficulties and merits with nowadays’ methods from
extreme value statistics, we clearly recognise the need for completely parametric
claim models that are capable to fit well both the tail and more central parts
of the claim domain. However, fitting any such model, if existing, cannot
be performed in a classical statistical way, e.g. by the use of x2 goodness-of-fit
techniques. The parameters linked with the tail behaviour need to be estimated
by methods from extreme value statistics as described above.

One such class of distributions was recently proposed in [5], termed the
generalised Burr-gamma distribution. The distribution function is given by

( ) ( )F x p e u duG
1 ( ) u pu x 1

0

z
=

- -#
where

( ) ( ( ))logu x u xz z1
1z = +

with ( ) / .u x x t 2b
1

=
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TABLE 1

OVERVIEW OF THE DIFFERENT NON- AND SEMI-PARAMETRIC ESTIMATION METHODS

FOR AN EXCESS-OF-LOSS REINSURANCE

Retention beyond threshold
Estimation method Retention within sample R > xn–k,n (= u)

â R = xn–k,n (= u) with k obtained by minimizing
AMSE (1/â)

Hill estimator P̂ ( )x 1,n k n n
k

a 1
1

1
1
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2 In fact, in [5] u(x) is modelled by ( ) ( )exp p pc c�
( )log x
s

m
+

+' 1, with c, resp. c’, denoting the digamma,

resp. the trigamma function. For simplicity we introduce the parameters b and t here.



It can be seen that the parameter bz equals the extreme value index for this
parametric model. Several sub-models have appeared in the discussion above
and show the flexibility of this model:

• If z = 0 then X is distributed as a generalised gamma distribution. Remark
that in this case uh is to be read as u and hence this model provides a gen-
eralization of the Weibull distribution

( ) ( ) .x p e u duGF 1 u p 1
/x b

t
1=
3 - -#

The Weibull distribution is obtained choosing p = 1.

• If z = 0 and p → ∞ this model approximates a lognormal distribution (see [5]).

• In case z > 0 we find that for p a positive integer

( ) ! .logx x
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xz t z
z tF 1

1 1
1
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1
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!e efo op
Hence important actuarial claim models such as the Burr model (which
includes the GPD) and the loggamma distribution are special cases of, or
can be mimicked by this model.

How can one proceed to estimate the different parameters p, z, b and t in this
model? First, as bz is the extreme value index for this model, it can be esti-
mated with the methods discussed in the preceding section. This part of the
estimation procedure is then based on a number k of extreme order statistics,
i.e. the number k of highest claims in the sample, which is to be chosen adap-
tively as discussed above. In fact, supposing for instance that g > 0, one finds
that for this model the extreme value regression model
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holds for k/n → 0 with a = 1/(bz) and b = p – 1. This allows for estimation of bz and
p, for instance by a least-squares method based on the k highest claim data.

In Figure 21 we show the result for p for the fire claim data, which indi-
cates the choice p = 1 and confirms the validity of a model without logarithmic
factors. Hence, in this case the generalised Burr-gamma model reduces to

( )x xz tF 1
/ /b z1 1

= +
-e o

which is in fact a Burr model. The method of moments yields the following
estimates for b and t

b = 0.195,

t̂ = 8.94·1014,

leading to an estimate ẑ = 3.197 for z.
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FIGURE 21: The Norwegian fire insurance data: plot of p – 1 as a function of k.

FIGURE 22: The Norwegian fire insurance data: QQ plot of empirical quantiles versus
fitted Burr quantiles.

The goodness of fit of this model is analyzed in Figure 22 using a QQ plot
that shows the empirical quantiles versus the corresponding theoretical quan-
tiles from the fitted Burr distribution. A point of inflection appears, which
confirms our previous supposition of a mixture of distributions in the tail. This
of course complicates the analysis.
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Finally, the premium P(R) for the fitted Burr model is easily computed
numerically for different values of R. The result, given in Figure 23, is situated
a bit lower than the results obtained in Figures 17 and 18. This can be under-
stood from the fact that – partly due to the complication of the tail mixture –
less weight is given to the tail section in this fully parametric analysis.



FIGURE 23: The Norwegian fire insurance data: plot of P as a function of R based on the
fitted Burr model.

5. CONCLUSION

In this paper we have tried to overview the different stages in a claim modelling
process and risk premium calculation, starting with a completely non-para-
metric, over a semi-parametric, towards a completely parametric approach.
A constant theme throughout this approach is the inspection of the tail behav-
iour, which is a prerequisite for accurate premium calculations, especially with
reinsurance layers which cover the highest risks. Of course this discussion is
certainly not the final answer but a description of the state-of-the-art in an active
field of research.
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ULTIMATE RUIN PROBABILITIES FOR GENERALIZED
GAMMA-CONVOLUTIONS CLAIM SIZES

BY

M. USÁBEL

Universidad Carlos III de Madrid

ABSTRACT

A method of inverting the Laplace transform based on the integration between
zeros technique and a simple acceleration algorithm is presented. This approach
was designed to approximate ultimate ruin probabilities for G-convolutions
claim sizes, but it can be also used with other distributions. The stable algo-
rithm obtained yields interval approximations (lower and upper bounds) to
any desired degree of accuracy even for very large values of u (1,000,000), ini-
tial reserves, without increasing the number of computations. This last fact
can be considered an interesting property compared with other recursive
methods previously used in actuarial literature or other methods of inverting
Laplace transforms.

KEYWORDS AND PHRASES

Ultimate ruin probability, upper and lower bounds, stable recursive algorithms,
numerical inversion of the Laplace transform.

1. INTRODUCTION

Let us consider the Classical risk process in continuous time Zt t 0$
! + with Uk

claim sizes and premium r per time unit,

Z u t Urt k
k

N

1

t

= + -
=

!

where u are the initial reserves and Nt the total number of claims up to time t
following a homogeneous Poisson process of parameter l > 0. Let F (x) denote
the distribution function of claim sizes Uk with mean p1 and p = l p1 (1 + q),
where q is the premium loading factor. We will also assume that q > 0 and
F (x) = 0.

Using a renewal argument and Theorem 13.5.1 of the text-book by
Bowers et al. (1997), the ultimate non-ruin probability can be expressed
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using the following integral equation (Volterra integral equation of the second
kind)

( ) ( ) ( ) ( )( ( ))u p u w F w dwF q
q

q F
1 1

1
1

u

1 0
=

+
+

+
- -# (1.1)

or in the case of ruin probability, see Gerber (1979, p. 115, equation (3.7)

( ) ( ) ( ) ( ) ( )( ( ))u p A u p u w F w dwC q q F
1

1
1

1
1

u

1 1 0
=

+
+

+
- -# (1.2)

where
( ) ( ( ))A w F z dz1

w
= -

3# (1.3)

Since the early 1980s, many methods have been developed in order to approx-
imate C(u). They were based on a discretization of some aspect of the risk
process and derived recursive expressions; see for example Goovaerts and De
Vylder (1984), Panjer (1986), Dickson (1989), Dickson and Waters (1991),
Ramsay (1992b), Dickson, Egidio dos Reis and Waters (1995). Panjer and
Wang (1993) describe the conditions under which these recursions are stable.

Although some of these recursive approaches may be able to determine
C(u) to any desired degree of accuracy, they may not be suitable for heavy-
tailed distributions, such as the Pareto or lognormal distribution for two rea-
sons, citing Ramsay and Usábel (1997):

1. To achieve a reasonable degree of accuracy, the interval of discretization
must be at most one unit of the mean of length. If we standardize the unit
of currency such that p1 = 1, then to obtain C(10) we must recursively esti-
mate every intermediate unit point C(u) for k = 0, 1, 2, …, 9, 10. This may
be acceptable if we need only small values of u; however, for large values
of u, say u = 500 units, this method can be slow. For the Pareto, C(500) is
not insignifcant.

2. The quadrature rules inherent in the recursive schemes are usually of low
order. This further reduces its accuracy and its rate of convergence. To
improve accuracy, the intervals of discretization are made even smaller. This
substantially increases the number of intermediate calculations required,
making the process of finding C(u) slower.

The above presented problem was partially solved using product integration
by Ramsay and Usábel (1997); where it was proved that the convergence of
the method was significantly faster than former methods of actuarial litera-
ture. Nevertheless, in this method, accuracy is also eventually menaced by
increasing values of the initial reserves and the convergence is of order O(h2)
and the true errors are not easily estimated.

Before the shift to recursive methods explained in the last paragraph, the
problem of ruin in the Collective Risk Theory had been extensively treated in
actuarial literature using integral transforms.

Since the paper by Sparre Andersen in 1955 many authors developed
approximations for the ruin probability using Laplace-Stieltjes transforms.
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Cramér (1955) used the Winer-Höpf method for the classical case and Thorin
(1970, 71, 77) introduced the generalization when epochs of claims form a
renewal process. Thorin and Wikstad (1971, 73, 77) used Piessens (1969) inver-
sion method of the Laplace transforms and Bohman (1971, 74, 75), focussed
on inversions of Fourier transforms and Seal (1971, 74) dealt with both Laplace
and Fourier numerical inversions. Seal (1977) obtained an interesting result
for the classical case and exponential claim size distribution using the Brom-
wich-Mellin inversion formula for Laplace transforms.

Numerical illustrations obtained using this methodology were based on
Laplace transforms inversion techniques due to Piessens (1969, 71). These
methods can be considered very accurate in the cases contemplated but the
theoretical error is not easy to control. In this context, we should mention the
very much cited approach, and commonly used in non-life insurance practice
in North America, presented by Heckman and Meyers (1983). Other works
on ruin probability approximations are Gerber, Goovaerts and Kaas (1987);
Ramsay (1992a); Cai and Garrido (1998) and Usábel (1999).

The study of the tail probabilities of the stationary waiting times is the coun-
terpart concept in the context of queueing systems. Many interesting works were
presented in this field dealing with long-tailed distributions such as Choudhury,
Gupta and Agarwal (1992); Abate, Choudhury and Whitt (1994); Abate, Choud-
hury and Whitt (1995); Glynn and Whitt (1995). Some of them were specially
focussed on the use of Laplace of Fourier transforms as Abate and Whitt
(1992, 95, 96) and Choudhury and Whitt (1997). Finally, some interesting
asymptotic approximations were produced by Embrechts and Veraverbeke
(1982); Willekens and Teugels (1992) and Abate, Choudhury and Whitt (1994).

The study of the Laplace transform of the ultimate ruin probability when
claim sizes follow a generalized G-convolution function is contained in section 2.
Some of the most frequently used heavy-tailed distributions in actuarial science
belongs to this family. Thorin (1977a) or Berg (1981) proved that Pareto distri-
butions are members of this family; so Thorin (1977 b) did with Log-normal
distributions. Other outstanding works related with G-convolution functions
are Thorin (1978) and Goovaerts, D’Hooge and De Pril (1977).

In the present work, a method of inverting Laplace transforms based on
the integration between zeros method (along with an acceleration algorithm:
a generalization of the Euler method) is introduced when approximating ulti-
mate ruin probabilities in the Classical case of risk theory. We will show that
it is specially recommended for large values of u and heavy-tailed distributions.

In sections 3, 4 and 5 we will lay the theoretical foundations to consider
the integration between zeros technique an interesting approach when solving
integral (3.2) and, subsequently, obtaining interval approximations (lower and
upper bounds) for the ultimate ruin probability function when claim sizes are
G-convolution functions. In section 6, the use of the mid-point integration
technique or three point trapezoidal rule will be proved to reduce drastically
the number of calculations involved. Section 7 is devoted to asymptotic results
for large values of the initial reserves u. Finally, numerical examples are presented
in section 8, confirming the promised efficiency explained in the theoretical
results.

RUIN PROBABILITIES FOR GENERALIZED GAMMA-CONVOLUTIONS CLAIM SIZES 61



2. THE LAPLACE TRANSFORM OF THE ULTIMATE RUIN PROBABILITY FOR

GENERALIZED G-CONVOLUTION CLAIM SIZE

Using the Laplace transform on expression (1.1)
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p s

s
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1 1
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j j (2.1)

where f (x) is the d.f. of the claim size distribution and,

*( ) ( ) *( )f s f x e dx sF ssx

0

= =
3

-
+

# (2.2)

It is obvious that the ruin probability

( ) ( )u uC F1= -

has the following Laplace transform

*( ) *( )s s sC F1
= - (2.3)

A distribution function defined on the non-negative real axis is a generalized
G-convolution if its Laplace transform can be written

*( ) ( ) ( )f s f x e dx e e Re s 0
( )lnsx as dU y

0

( )y
s

1

1

0 $= =
3

- -
+

3

+# # a k (2.4)

where a ≥ 0 and U(y) is nondecreasing and such that

( )

( ) ( ) <

( )
<

ln

U

y dU y

y
dU y

0 0

0

1

0

3

3

=

3

#

#

Some of the most frequently used heavy-tailed distributions in actuarial science
belongs to this family. Thorin (1977) or Berg (1981) proved that Pareto distri-
butions are members of this family with parameters a = 0 and
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0
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+
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and

( )
( )

( )q y
h

e g gxp
G 1

� gy h 1
=

+ - -

where the Pareto c.d.f. with parameters g and h was defined as

( )F x g
x x g1

h
$= -

-b l
Thorin (1977) also proved the same condition for Log-normal c.d.fs. with
parameters a and b

( )
( )

>
log

x N
x

xL b
a

0= d n
obtaining that, again in this case, a = 0 and
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( ) expy e x e u I u dul
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p b
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2

2

2 2

= - - +
3

3+ -

-
# c m
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I 1= -

The following theorem (proved in the appendix) will be most interesting for
future developments,

Theorem 1. For c > 0 and z ≥ 0, the real part of the Laplace transform of the
ruin probability for G-convolution function claim size, Re(C*(c + zI))

1. is asymptotically close to 0 with increasing values of z.

( *( ))lim c zIRe C 0
z

+ =
"3

2. is always bound and smooth.

3. THE INTEGRATION BETWEEN ZEROS APPROACH

In order to obtain the inverse Laplace transform we can use the Bromwich-
Mellin inversion formula,

( ) *( )u I e s dsC p C
2

1 su

c i

c i
=

3

3

-

+# (3.1.)

where c is a positive real constant that exceeds the real part of all singularities
of C*(s).
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FIGURE 1

Unfortunately, when f (x) is a generalized G-convolution function, C*(s)
has no isolated singular points because f*(s) is not defined for Re(s) < 0 and
we proved in Lemma 1 a) that C*(s) is always bounded for Re(s) ≥ 0. This last
fact means that we cannot benefit, for instance, from Residues Theorem in
order to approximate C(u) using its Laplace transform.

Within the actuarial literature, Seal (1977) proposed the following expres-
sion

( ) ( *( )) ( )cosu e c zI uz dzReC p C2
cu

0
= +

3# (3.2.)

and Heckman and Myers (1983) used an alternative formula based on the
results by Kendall and Stuart (1977)

( )
( *( / ))

( *( / ))
mod

sin argu z
z

s
zu z dzC p

C s
C s

2
1 1

0
= + -

3# b l (3.3)

where mod and arg are the modulus and argument functions respectively.
It is not an easy task solving (3.2) or (3.3) numerically because the integrand

is a rapidly oscillating function. As z → ∞ we will face plus areas and minus
areas of nearly equal size and the resulting cancellation of area is attended by a
loss of significance, specially when limz → ∞ Re(C*(c + zI)) = 0 (see figure 1).

Heckman and Meyers (1983) already used the integration between zeros
in order to approximate integral (3.3) to assess the total claims distributions.
Davies and Rabinowitz (1984) also cited the integration between zeros as
a valuable method in approximating these integrals. They all argued that it
is advantageous to use a rule that employs the values of the integrand at the
endpoints of the integration intervals. Since the integrand is zero at these
points, more accuracy is obtained without additional computation.

We should, nevertheless, point out that the formula (3.3) used by Heck-
man and Myers (1983) is not very suitable for fully exploiting the advantages
of the integration between zeros to numerically approximate the ultimate ruin
probability for G-convolutions claim size. The main reasons argued are
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1. The formula uses the parameter s that must be obtained from the second
order moment of the claim size distribution. The heaviest-tailed members
of the G-convolutions claims size family may have no such moment.

2. The basic interval length, h = 2ps / (maximum claim amount), cannot be
defined for claim size distributions with support in all the positive real axis
(see p. 40 of the original work for further details).

Let us now review again this methodology on solving (3.2). It is very easy to
prove that

=

( ) ( *( )) ( )

( *( )) ( )

( )

cos

cos

u e c zI uz dz

e c zI uz dz

a u

Re

Re

C p C

p C

2

2

uc

uc

i

i
i

0

1

0

( )

u

u u
i

u u
i

p

p p

p p

2

2

1

2

= +

+ +
3

3
+

+

=

=

-

#

#!

! (3.4)

where
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Approximating integral (3.2) using the series formula above, as many other
numerical techniques, generates two types of errors

1. Discretization error (ed(u)).
2. Truncation error (en(u)).

4. THE DISCRETIZATION ERROR (ed(u))

It is obvious that the family of integrals ( )a ui i 0

3

=
" , in most cases, shall be eval-

uated numerically and the errors must be considered. The discretization total
error then will be the sum of all of them. Obviously, the stability of the method
fully relies on the numerical technique used when approximating the mentioned
integrals and not on other more complicated considerations. Numerical analysis
libraries can certainly provide us with stable, fast and accurate approximations
algorithms in order to obtain these integrals.

It is very plain to see that the reduction of the dicretization total error will
be paid in terms of more evaluations of the function Re(C*(c + zI)) within the
intervals ,z ( )

u u
i

u u
ip p p p

2

1

2! + +
-a k and the subsequent increase on the computation

times.
We should be fully aware that large values of the initial reserves, u, will gen-

erate tighter intervals with a positive effect on the discretization error.
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5. THE TRUNCATION ERROR (en(u))

Using (3.4), it is clear that the sequence ( )a ui i 0

3

=
" , generates the approxima-

tions {Sn(u)}

( ) ( )S u a un i
i

n

0

=
=

!

It is obvious that the larger the n considered the more accuracy and the more
computations required.

Nevertheless, the order of convergence of the initial sequence ought not to
be necessarily large and, subsequently, this approach would not be very effi-
cient when seeking for a high precision approximation. As it is suggested by
Davies and Rabinowitz (1984), many extrapolations techniques were proved
to work effectively in accelerating the convergence of sequences of partial sums
of series resulting from the integration of oscillatory integrals. These authors
cited the Euler transformation, or the variation introduced by Longman (1956),
Richardson’s extrapolation, the e-transformation, iterations of Aitken’s D2

method, Levin’s V-transformation (Levin (1973) or the work by van de Vooren
and van Linde (1966). For a survey of extrapolation processes in numerical
analysis see Joyce (1971).

However, it is not proved that the mentioned standard extrapolation techniques
applied to the former sequences will yield upper and lower limits. Actually, most of
them cannot guarantee this fact. Moreover, these techniques, although useful
in some cases, are not proved to accelerate the convergence in many others.

We will now show how the convergence can be substantially accelerated
using a simple generalization of the Euler extrapolation technique obtaining
upper and lower bounds sequences and decreasing errors.

With the following theorem (proved in the appendix), we will now show why
integration between zeros, used on formula (3.2), is most interesting when
approximating ultimate ruin probabilities for generalized G-convolution claim
sizes.

Theorem 2. When the ultimate ruin probability can be expressed as the alter-
nating series

( ) ( ) ( )u a uC 1
i

i
i 0

= -
3

=

!

where ( )a ui i 0
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=
" , is a bound and smooth sequence for which limi → ∞ ai (u) = 0, the

following equality holds
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expressing the ruin probability as an alternating series of forward-differences of
arbitrary order j, ( )uDi

j

i 0

3

=
% / also bound and smooth and ( )lim uD 0i i

j
="3

Remark 1. The forward-differences are defined as
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Remark 2. The reader has probably realized that the terms Aj(u) presented in
the former Theorem are the successive approximations of the Euler accelera-
tion technique, see for instance p. 131 of Press et al. (1986); just the very first
term in the context of the approximations presented in this Theorem.

As a corollary of the former Theorem, we can consider the following fam-
ily of approximations truncating (5.1), with explicit error terms
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It is easy to prove that this family of approximations can be obtained using
the following alternative recursive formula
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with a very positive effect on the loss of significant digits due to the sub-
straction of small quantities compared with the former expression in which
the forward-differences are directly involved. The formula used by Abate and
Whitt (1995)

( , , ) ( )E m n u k
m S u2

m
m k

k

m

0

=
-

+
=

! a k
can be considered less stable due to the increasing magnitude of the factorials
involved in the calculations.

It is then obvious that the error can be expressed as an alternating series
with bound and smooth terms and ( )lim uD 0i i

j
="3
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The error magnitude will be decreasing with j because

( ) ( ) ( )u h f x O hD )
i
j j j

i j= + (5.3)

where f (x) is the original function which the original terms ai (u) come from
and xi = x0 + hi. We should remember that in the context of integration between
zeros, see the former section,

h u
pc

reducing significantly the magnitude of the forward-differences, and subsequently
the error terms as j increases, when u is large.

Remark 3. The value of the forward-differences, using the alternative formula
(5.2), is obtained with the expression
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In order to offer an estimation of the error, we can apply the same acceleration
technique in the error term series and obtain
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Remark 4. This last formula offers a substantial improvement in the error
estimation stated by Abate and Whitt (1995) in reference of Hosono (1984),
where the following expression was used to assess the error

( ) ( ) ( )
( ) ( )

,u S u S u
u

e
D

2

1
n
j

n
j

n
j

j

j n
n
j

1

1
1- - =

-
+

+ +
+

the simplest case in our approach, when m = 1.
Moreover, because of (5.3)
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and it is easy to deduce that the sign of the error terms, ( )uen
j will be alternating

for two consecutive values (n, n + 1) when

( ) ( )sign u sign uD Dn
j

n
j

1 2=+ +a ak k
producing a sequence of upper and lower bounds for the ultimate ruin probability.
One should bear in mind that this last condition is observed in most cases.
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6. THE MID-POINT INTEGRATION ALGORITHM

Let us now present a way to control the discretization total error avoiding a
massive number of evaluations of the function Re(C*(c + zi)) cos(uz) within
the intervals ,z ( )

u u
k

u u
p p p kp
2

1

2! + +
-a k for k = 1, 2, ...

The use of the mid-point integration rule with step size h = p / 2u and
parameter c = A / 2u on the family of integrals  ( )a uk k 0

3

=
" , yields the expression
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Remark 5. The reader can easily realize that in this context the mid-point inte-
gretion is exactly the same as the three-point trapezoidal rule,
and assign
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This approach is similar to the one stated in Abate and Whitt (1995), in refer-
ence of Dubner and Abate (1968), but obtained in the context of the Fourier-
series method of Laplace transform inversion. Using this integration method,
we only need the mid-point of each and every interval to approximate the
family ( )a ui i 0

3

=
" , with a dramatic reduction in the number of evaluations of the

Laplace transform.
Moreover, Abate and Whitt (1995) also proved that the discretization error

of the former expression can be controlled with the parameter A and the formula

( )e u
e

e e
1

d
A

A
A# -

-
-

-
- (for e–A small)

This last fact means, as stated by the mentioned authors, that in order to have
at most 10–g discretization error A = g log(10).

One should consider that the larger the value of A (and smaller truncation error)

the more accuracy is needed in the calculations of *Re C t
A i I

i

p
2
2

0

3+

=
`` jj% / because,

to obtain the final approximation, the common factor u
e /A 2

will be used in
(6.1). So the trade-off between significant digits used and discretization error
becomes clear.

Unfortunately, the mentioned trade-off is not a new fact at all in numeri-
cal approximations; for a very clear example of this fact on approximating
ruin probabilities see Usábel (1999). As a consequence, although much faster,
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when we use the mid-point integration, the algorithm can become unstable
when searching for a high degree of accuracy and the significant digits are
not upgraded.

Once more, dealing with large initial reserves, u, will be positive in the context
of this methodology because of the above cited factor u

e /A 2

, avoiding the need of
increasing the significant figures to perform the calculations.

7. ASYMPTOTIC FORMULAS

One of the main advantages of the method presented in this work is that it is
not negatively affected by the size of the initial reserves considered as hap-
pened to be with other methods previously used in actuarial literature (see the
introduction). For large values of u most of the methods became either unsta-
ble or of a very slow convergence.

We cannot conclude this work without a mention to the main asymptotic
approximations for ultimate ruin probability or the tail probabilities of the
stationary waiting times, as its counterpart in queueing theory.

Considering a heavy-tailed service time or claim size distribution leads to
the search of special formulae designed for these subexponential distributions.
In the context of risk theory, Embrechts and Veraverbeke (1982) produced the
formula

( )
( ( ))

u p

F y dy
uC q

1
u

1
" 3+

-
3#

Later Willekens and Teugels (1992) found a generalization of the above result
including more terms in the final formula in the context of M/ G/1 queues
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3# J
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KK

J

L
KK

N

P
OO

N

P
OO (7.1)

where
( )p x f x dxk

k

0
=

3#

Unfortunately, the three terms approximations cannot be used for the heaviest-
tailed members of the family of the G-convolution claim sizes because the
moments are not defined (see table 1 and 2) and the approximations in the
numerical illustrations considered later are not so good as expected for very
large initial reserves u.

Abate, Choudhury and Whitt (1994) also obtained an special formula for
Pareto mixture of exponentials service time distributions.
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8. NUMERICAL ILLUSTRATION

We will consider as an illustration, Pareto claim sizes with c.d.f.

( )F x xl
l

1
l 1

= -
+

+b l x ≥ 0    l > 0 (integer)

as one of the heaviest tailed members of the family of G-convolutions claim
size. The Laplace transforms of the example considered can be expressed in
terms of the exponential integral (see for example Gradshteyn and Ryzhik
(1994) formula 3.353.2).

We will find approximations for the rapidly oscillatory integral (3.2), the
Bromwich-Mellin inversion formula, using the simple recursive expression (5.2)
and the mid-point integration for the integrals (3.5)
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The value of the parameter A was set so that the approximations had a dis-
cretization error of at most 15 significant digits (A = 15 log(10)), see section 6

TABLE 1

PARETO CLAIM SIZE l = 1
ULTIMATE RUIN PROBABILITY INTERVALS A = 15 LOG(10)

q u ( ), ( ), ( )S u S u S u
9

20

10

20

11

20c m Asymptotic (one term)

0.1 1 (8.50144942, 8.50144943) 10–1

10 (6.271279490, 6.27179501) 10–1

100 (1.64859138, 1.64859141) 10–1

1,000 (1.13443368, 1.13443373) 10–2

10,000 (1.016661353, 1.016661386) 10–3 9.9990001 10–4

100,000 (1.00209834, 1.00209837) 10–4 9.9999000 10–5

1,000,000 (1.0002553, 1.0002559) 10–5 9.9999900 10–6

0.25 1 (6.909906847, 6.909906853) 10–1

10 (3.726769676, 3.726769680) 10–1

100 (5.22265530, 5.22265551) 10–2

1,000 (4.1948538, 4.1948539) 10–3

10,000 (4.0260816, 4.0260817) 10–4 3.999600 10–4

100,000 (4.00332776, 4.00332778) 10–5 3.999960 10–5

1,000,000 (4.00040606, 4.00040606) 10–6 3.999996 10–6
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TABLE 2

PARETO CLAIM SIZE l = 2
ULTIMATE RUIN PROBABILITY INTERVALS A = 15 LOG(10)

q u ( ), ( ), ( )S u S u S u
9

20

10

20

11

20c m Asymptotic (two terms)

0.1 1 (8.41831695, 8.41831696) 10–1

10 (5.22719526, 5.22719527) 10–1

100 (1.8279697, 1.8279700) 10–2

1,000 (4.3448088, 4.3448093) 10–5

10,000 (4.0308031, 4.0308034) 10–7 4.00019940 10–7

100,000 (4.0030442, 4.0030445) 10–9 4.00001999 10–9

1,000,000 *(4.00030, 4.00036) 10–11 4.00000200 10–11

0.25 1 (6.760398370, 6.760398375) 10–1

10 (2.522264643, 2.522264644) 10–1

100 (2.4590058, 2.4590063) 10–3

1,000 (1.6478781, 1.6478783) 10–5

10,000 (1.645162, 1.6045163) 10–7 1.5996000 10–7

100,000 (1.6004484, 1.6004485) 10–9 1.5999600 10–9

1,000,000 *(1.600035, 1.600060) 10–11 1.5999960 10–11

for details. Note that in Table 2 this value is upgraded to 201n(10) because the
probability is very small.

The lower and upper bounds for the ultimate ruin probability will be spotted
using the simple rule stated in the last paragraph of section 5. The approxi-
mations considered were ( ), ( ), ( )S u S u S u

9

20

10

20

11

20a k so that the maximum number 
of evaluations of the function Re(C*(c + zI)) is just 31)!

The asymptotic approximations are based on the formula by Willekens and
Teugels (1992), expression (7.1), considering the maximum number of terms
possible depending on the value of l.

Remark 6. The intervals with the asterisk (*) were produced using A = 20 ln(10)
because of their small magnitude. An increase in the relative amplitude of the
intervals in then observed.

It is very important to mention that the relative amplitude of the intervals
(the relative error) is not quite affected when considering very large figures for
the initial reserves, except in the cases mentioned in the remark above due to
the change in the parameter A. All calculations were programmed in Maple V,
release 4 using 22 significant digits.

9. CONCLUDING COMMENTS

The method presented in this work to approximate the ultimate ruin probabil-
ity for G-convolutions claims size is specially recommended for large values
of the initial reserves, u. As it is highlighted in sections 4, 5 and 6, considering



even huge values for the initial reserves will not endanger either the accuracy
or efficiency of this algorithm.

The general method of inverting Laplace transforms of tail probability
distributions presented by Abate and Whitt (1995) is revisited in the context
of the integration between zeros with three added improvements (see section 5
for details):

1. A better error estimation
2. The generation of upper and lower bounds.
3. A more stable recursive formula.

Consequently, the approach contemplated in this work is granted with the main
advantages of the resursive methods based on discretization (see section 1)
but not with their main drawback: the accuracy and efficiency is menaced con-
sidering large initial reserves. The reader should consider the accuracy obtained
with just 31 evaluations of the Laplace transform and initial reserves u =
1,000,000 and calculations performed with 22 significant figures.

On the other side, the classical works of actuarial literature, mainly devel-
oped by the Scandinavian School in the 70’s (see section 1), based their numer-
ical illustrations on the Piessens’ algorithms of inverting Laplace transforms
(Piessens (1969, 71). In the survey of numerical methods for inverting the
Laplace transform by Davis and Martin (1979), a clear conclusion can be
reached: the error of the approximations was not easy to control.

Methods considered very good in this study, for instance Piessens and Bran-
ders (1971), can lead to poor results when dealing with increasing values of
the initial reserves u. Seal (1975) already claimed that Laguerre series cannot
be recommended as a practical method of numerical inversion of Laplace
transform and the result can also affect to any other orthogonal polynomials.
Piessens (1971, section 7, comment 2) also cited the limitation of Gaus-
sian quadrature based methods for increasing accuracy demands. The method
presented is a good alternative to the Gaver-Stehfest algorithm of inverting
Laplace transforms, see Usábel (1999), because the demands of significant fig-
ures in the calculations are, by far, less restrictive. However, complex numbers
are involved in the calculations.

Finally, the asymptotic formulae presented in section 8 did not yield, in the
examples considered (see Table 1 and 2), so good approximations as expected
for values of the initial reseves of magnitude u = 1,000,000.

The algorithm was originally designed for G-convolution functions claim
sizes because this family includes some of the most famous heavy-tailed dis-
tributions used in actuarial works, i.e. Pareto and log-normal. Nevertheless,
the approach can be extended to any other claim size d.f. when

( *( ))lim f c zi cRe 0 0
z

$+ =
"3

that is usually observed in density functions with not very restrictive smooth-
ness conditions as it is proved in Abate and Whitt (1995).
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APPENDIX

Proof of Theorem 1

Let us start proving that the limit for the ruin probability function for general-
ized G-convolutions claim size gets asymptotically close to 0

( *( ))lim c zIRe C 0
z

+ =
"3

Abate and Whitt (1995) already showed that, under some restrictive smoothness
conditions, a complementary c.d.f. fulfills

( *( ))
( )

( )
'

c zI
z

c
o zRe C

C 0
2

2
+ =

-
+

-

and obviously the asymptotic limit of the expression above.

However, we wanted to prove the same statement straight from the definition
of G-convolutions claim size in order to offer a more complete proof for this
type of distributions regardless extra considerations on smoothness. The fol-
lowing lemma shows the asymptotic behaviour for the Laplace transform of
the d.f. of the G-convolution claim size distributions

Lemma 3. The Laplace transform of the density function of G-convolution
function can be expressed

*( ) ( , ) ( ( , )) ( , ) ( ( , ))cos sinf c zI R c z c z IR c z c zQ Q+ = + (9.1)

where
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- - + + +
3
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b l (9.2)

modulus and argument respectively, and

*( )lim f c zi c0 0
z

$+ =
"3

(9.3)

Proof. Let us expand the following natural logarithm

( ) (( ) ))
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z I2 2
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l
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and
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The last statement (9.3) follows from the limit

lim ln y
c

y
c

y
z

1 2
z

2 2

3+ + + =
"3

b b bd l l l n
and

( )lim ln y
c

y
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y
z dU y1 2

z

2 2

0
3+ + + =

"3

3# b b bd l l l n
where U(y) is nondecreasing (U’ (y) ≥ 0) using the definition of generalized G-
convolution functions. Finally, using (9.2) and (9.1)

( , ) *( )lim limR c z f c zI0 0
z z

&= + =
" "3 3

¬

Let us now finally prove that, for G-convolution function claim size, the Laplace
transform of the ruin probability function will be asymptotically close to zero
as z increases in any event.

If we expand expression (2.3) using the results previously obtained from the
former lemma (9.3)
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and just focusing on the real part
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proving statement 1 of Theorem 1.
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The real part of the Laplace transform of the ruin probability function

*( ) ( )
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can be bound using the absolute value convergence Theorem for integrals

( ) ( ) ( )cose zx x dx e x dxC Ccx cx

0 0
#-

3 3- -# #

The last integral will be always convergent for non-negative c because C(x) is
a decreasing function and

( )lim xC 0
x

=
"3

and it is clear that we cannot find any singularities of C*(s) when c is non-
negative, proving that it is bound and smooth.

Proof of Theorem 2

If the initial sequence ( )a ui i 0

3

=
" , is bound and smooth and limi→∞ ai = 0, the for-

ward-differences defined as
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will be also bound and smooth and decreasing with i, ( )lim uD 0i i
j

="3 .

Remark 7. the simplified notation ai and Di
j will be used henceforth.

The alternating initial series can be easily modified into
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and the same procedure can be applied to the new alternating series obtained

( )1
i

i

D

20

i
1

-
3

=
! . If we continue applying the same easy transform recursively to
the new alternating series in terms of the forward-differences the expression
(5.1) results.
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EXPERIENCE RATING SCHEMES FOR FLEETS OF VEHICLES*
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ABSTRACT

This paper proposes bonus-malus systems for fleets of vehicles, by using the
individual characteristics of both the vehicles and the carriers. Bonus-malus
coefficients are computed from the history of claims or from the history of
safety offences of the carriers and the drivers. The empirical results are
derived from a data set obtained from the Société de l’Assurance Automo-
bile du Québec, the public insurer for bodily injuries and the regulator of
road safety.
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1. INTRODUCTION

This paper stems from a study carried out for the Société de l’Assurance Auto-
mobile du Québec, later referred as the SAAQ (see also Dionne, Desjardins,
Pinquet (1999, 2000a)). Its objective is to provide Bonus-Malus Systems (later
referred to as BMS) for fleets of vehicles from the history of claims or from
that of safety offences.

Fleets of vehicles are owned by firms, which are commercial motor carriers
in the SAAQ portfolio. A portfolio of insurance contracts subscribed by firms
has a stratified structure, and the size of the stratum (the set of policies held by
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a given firm) is a key variable in risk analysis. The propensity to self-insurance
increases with the size of the stratum. Insurance contracts for fleets of vehi-
cles often use stop-loss risk sharing schemes (see Marie-Jeanne (1994) for
their properties as a function of the fleet size, and Teugels, Sundt (1991) for
experience rating schemes on the aggregate loss). These rating structures are
designed for large fleets, which is not the case on average for the portfolio ana-
lyzed in this article. Notice that, in general, fleet insurance business is offered
mostly for fleets with little or medium size.

In our data set, the characteristics of each fleet are recorded by the SAAQ
in real-time (see Section 2), and the tariff structures proposed in this article
use the individual characteristics of both the vehicles and the carriers. The
history of a vehicle should have a greater ability to predict the risk level of
this vehicle than that of the other vehicles in the fleet. The basic issue in the
statistical analysis of the portfolio is the assessment of these predictive abilities.
Information on the drivers is not available in the data set, so a new vehicle
can only be related to the fleet to which it belongs. Bonus-malus coefficients
for the next period will then depend on an expected turnover for the vehicles
of the fleet. Since the insurance premium is paid at the firm level, the bonus-
malus coefficients computed in the paper depend on the history of claims or
safety violations at the fleet level. However, an experience rating scheme using
full information on the claims history is designed in Section 3.5.

The experience rating schemes are based on models with hierarchical ran-
dom effects (see Jewell (1975)). Two types of BMS are analyzed. BMS designed
from the number of claims are presented in Section 3, and another one obtained
from the history of safety offences is given in Section 4. We explain the
number of claims for bodily injuries. Bonus-malus coefficients are obtained
from vehicle-specific and fleet-specific credibilities. They take into account an
expected turnover for the vehicles within the fleets.

Compensations for bodily injuries are performed in Quebec within a pure
no-fault framework (Devlin (1992); Boyer and Dionne (1987)), so it is diffi-
cult to use the history of claims in the rating structure, because standard BMS
always have a “crime and punishment” flavour. Since 1992, the history of safety
offences is used in the tariff structure of the SAAQ for pleasure vehicles (see
Dionne and Vanasse (1997a) and Dionne, Maurice and Pinquet (2000b) for a
related study).

The BMS designed in Section 3 is consistent with respect to the fleet-spe-
cific components, which is not the case when claims are replaced by safety
offences as in Section 4. However, the BMS based on safety offences outper-
forms the one based on accidents after a year of experience with our data.
The explanation of this somewhat surprising finding is the following. The fre-
quency of offences is fourteen times higher than that of claims with bodily
injuries. Even if the BMS based on safety offences is less efficient than the
one based on accidents in the long run, the former system is closer to its limit
in the short run, due to the higher frequency of safety offences.

A short conclusion summarizes the main results and proposes some exten-
sions to the models presented in this article.
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2. ECONOMIC ENVIRONMENT AND DATA SET

Let us precise first the context of the study. The Province of Quebec introduced
a new Automobile Insurance Act in March, 1978 to govern accident compen-
sations. The Government had two goals in mind in tabling this legislation – to
provide a rapid and reliable method for compensating all victims of bodily
injuries, and to ensure better control of the cost of car repairs and faster
compensation for property damage.

Fault has been entirely eliminated for bodily injuries. Compensation is
provided by a compulsory and universal public plan. This plan is administered
by a public corporation, the SAAQ. There is a maximum indemnity (which
was estimated to compensate the total loss of income of 85 per cent of the
population in 1978) for disability and death benefits. The indemnities for bodily
injuries are in lieu of all rights to sue for bodily injuries or death, and no action
is admitted before any court of justice.

The pricing procedure is very simple. The main sources of financing are
from drivers’ permits and automobile registration fees. Weight and type of
vehicle driven are taken into consideration for vehicles other than pleasure
vehicles. Past driving experience is taken into account since 1992 by using
demerit points of the drivers.

So the SAAQ is a state insurer which provides motor insurance for bodily
injuries in a monopolistic situation. As a state company, the SAAQ is also
involved in road safety regulation. Consequently, it has a direct access to the
information on individual safety offences. It was decided in 1992 to use such
information for the pricing of private cars insurance. Besides their ability of
screening risks, experience rating schemes provide incentives to careful driving.
Indeed, the frequency of claims decreased by at least five per cent since the
new regulation (see Dionne, Maurice and Pinquet (2000b) for more details).

The SAAQ also provides insurance for bodily injuries for fleets of vehicles.
This insurance is also compulsory. Information is brought in real time for
each vehicle, a situation which is not often encountered in this market.
In order to create road safety incentives, the introduction of an experience
rating scheme (as well as an a priori rating structure) is under consideration,
which motivated the present study. This type of insurance rating would be
easy to implement for the SAAQ since it has a direct access to all the neces-
sary data.

Since January 1991, the SAAQ has been mandated to verify that commercial
vehicles respect the laws and regulations governing, for example, the vehicle
load and size limits, etc. In addition, the SAAQ was also given the mandate
to verify the mechanical conformity of the vehicles.

In our working sample, the vehicles were observed during the years 1995
and 1996. The duration of observation of a vehicle is the validity duration of
its licence plate. The weight of the vehicles has to be greater than 3,000 kgs,
hence fleets of cars do not belong to this sample. The portfolio contains
50,746 fleets and 124,629 vehicles, and fleets are of small size on average. The
size of the fleet is measured in vehicle-years, which is the sum of the validity
durations. The other fleet-specific rating factors are the age of the firm and its
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activity sector. The vehicle-specific rating factors are the weight, the type of
use, the type of fuel, the number of cylinders and the number of axles.

The initial file is the file of all registered motor carriers as of July 23, 1997.
To be in that file a motor carrier must own or lease (long term) one or more
vehicles.

We matched the information concerning the vehicles and the firms with
the characteristics of safety violations committed at the carrier or at the vehicle
level. The characteristics concerning mechanical conformity of the vehicles
which had a recent mechanical check-up were linked to the data set already
obtained.

The unit of observation in the working sample is a vehicle with at least one
day with a valid license plate in 1996. In considering the safety offences com-
mitted in 1995 in the analyses, 24,581 trucks with no day with a valid license
plate in 1995 have been dropped from the data set.

3. BONUS-MALUS SYSTEMS FROM THE NUMBER OF CLAIMS

3.1. Bonus-malus coefficients as functions of the size of the fleet: Two limit
examples

On a stratified portfolio, fixed and random effects introduced to design an
optimal BMS must have a hierarchical structure (Jewell (1975)). The risk dis-
tribution of each vehicle includes then a vehicle-specific effect and a fleet-spe-
cific effect. Let us compute bonus-malus coefficients in two limit situations:

• Only the vehicle-specific effect is retained. The history of a vehicle cannot
be used to predict the risk levels of the other vehicles in the fleet. If all
the vehicles have the same a priori frequency risk, the credibility computed
at the fleet level is the one given to each vehicle. As the variance of the
ratio between the number of claims and the frequency premium decreases
towards 0 when the size of the fleet goes to infinity, the same result holds
for the variance of the bonus-malus coefficient.

• Only the fleet-specific effect is included in the number of claims distribu-
tion. Denote m as the number of vehicles in a given fleet, ni as the number
of claims reported by the vehicle i and l as the a priori frequency risk for
all the vehicles. We then have

( )( ,..., ) ( ),N P u i m N P m ul l1i i
i

m

1

&6+ +=
=

!
if the Ni are independent in the fixed effects model (the fixed effect common
to the vehicles in the fleet is denoted as u). If we write ( ) ; ( )E U V U s1

2
= =

in the random effects model, the credibility granted to the fleet in the pre-
diction is equal to

m
ma

ls
ls

1
2

2

=
+
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This credibility increases towards one when the size m goes to infinity, and
the bonus-malus coefficient converges towards the fleet-specific fixed effect u.
The variance of the bonus-malus coefficient increases with the size of the
fleet in the random effects model.

If the two random effects are included in a hierarchical model, the credi-
bility granted to the history of the fleet will increase with its size if the esti-
mated variance of the fleet-specific random effect is greater than zero.
On the other hand, the variance of the bonus-malus coefficients is not a
monotonic function of the size of the fleets. The increase of risk revelation
with the size of the fleet is balanced by risk compensation between the
vehicles.

3.2. Estimation of a model with random effects on a stratified portfolio

The hierarchical nature of the portfolio is taken into account by a double
indexation. The fleets are indexed by f = 1, …, F, and the vehicles are indexed
by i = 1, …, mf, where mf is the size of the fleet f. If Nfi is the number of claims
reported by the vehicle i in the fleet f, we write

( ); ,..., ; ,...,N P u f F i ml 1 1fi fi fi f+ = =

in the fixed effects model. The number of claims Nfi follows a Poisson dis-
tribution in the fixed effects model. The parameter lfi is a function of rating
factors observed at the fleet level or at the vehicle level. The fixed effect ufi
represents the residual heterogeneity in the number of claims distribution.
We distinguish firm-specific and vehicle specific effects in the regression and
heterogeneity components, and write

( ); .expd x z u r sl g dfi fi f fi fi f fi= + =

The parameter lfi is proportional to the duration of observation of the vehi-
cle dfi. The line-vectors xf and zfi are the regression components connected to
the fleet and to the vehicle. The related parameters are represented by the col-
umn-vectors g and d. The fixed effect ufi splits into a fleet-specific effect rf and
a vehicle-specific effect sfi. Vehicle-specific heterogeneity components could
reflect the behaviour of the drivers, if a given vehicle is used by few drivers.
This heterogeneity component can also reflect hidden features which are only
related to the vehicle. You might think of annual mileage, which depends on
the missions assigned to a given truck, but not on the drivers. The behaviour
of the firms will influence the fleet-specific heterogeneity components. Fleet
owners may obey (or not) to safety rules related to the mechanical check-up
of vehicles, bulk trucking regulation, driving and work hour rules, etc. The
financial structure of the carrier (which is not recorded by the SAAQ) probably
influences safety activities, and hence the risk level. Economic and empirical
results on the relationship between the financial structure of air carriers and
safety are given by Dionne et al. (1997b).
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The preceding distributions hold for real individuals, and the variables
( )N ,..., ; ,...,fi f F i m1 1 f= = are supposed to be independent in the fixed effects model.
This is the usual assumption in actuarial models (observed contagion on risk
variables is supposed to be only apparent). The random effects ( )R ,...,f f F1=

and ( )S ,..., ; ,...,fi f F i m1 1 f= = are i.i.d. in each family and mutually independent.
Distributions in the model with random effects are mixtures of Poisson dis-
tributions, and they refer to generic individuals, who represent a class of real
individuals with the same observable characteristics (see Pinquet (2000) for
instance). The independence between the ( )R ,...,f f F1= and ( )S ,..., ; ,...,fi f F i m1 1 f= =

can be assumed without loss of generality since the decomposition Ufi = Rf Sfi is
not unique. The random effect Sfi reflects a residual heterogeneity in the risk
distribution of the vehicle. If R and S are random variables with these distri-
butions, we suppose that

( ) ( ) ; ( ) ; ( ) .E R E S V R V V S V1 RR SS= = = =

Within a semiparametric approach, the distributions on the random effects
will only be specified by the variances. If U=RS, we have

( ) ( ) ( ) ; ( ) ( ) ( ) .E U E R E S V U V E R E S V V V V1 1UU RR SS RR SS
2 2

= = = = - = + +

With the total variance and covariance formula and the independence assumed
in the model with fixed effects, we obtain

( ) ( ) ;V N V U Vl l l lfi fi fi fi fi fi UU
2 2

= + = +

!( , ) ( , ) ( )Cov N N Cov U U V i il l l l �fi fi fi fi fi fi fi fi RR� � � �= = (2)

in the random effects model. As the size of the portfolio is large, we will use
a frequentist approach, and will describe the data by consistent estimators.

The a priori rating model is a Poisson model without fixed or random effects,
i.e. ( ) ,N P f ilfi fi 6+ . Let ( )expd x zl g dfi fi f fi= + be the frequency premium com-
puted in the a priori rating model, where g and d are the maximum likelihood
estimators. The likelihood equations in this model are

( ) ; ( )n x n zl l0 0
,,

fi fi
t

f fi fi
t

fi
f if i

- = - =!! . (3)

They reflect an orthogonality relationship between number-residuals and the
regression components. Since E (Nfi) = lfiE (U) = lfi in the model with ran-
dom effects, the m.l.e. in the Poisson model without fixed and random effects
are consistent estimators of the corresponding parameters in the model with
random effects (see Gouriéroux et al. (1984)). Hence, a frequency premium
computed for an individual in the a priori rating model converges towards
the frequency risk of the related generic individual in the model with random
effects.
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From the moments computed in (2), we obtain the following limits
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Thus consistent estimators of V(U) and V(R) are obtained from the estimators
derived in the a priori model. Since VUU = VRR + VSS + VRRVSS,

V
V V

SS
RR

UU RR=
-

V1 +

is a consistent estimator of VSS.

Let us interpret these results. The estimator VRR assesses observed conta-
gion between the claims histories connected to different vehicles within the same
fleet. If VRR is greater than zero, the positive observed contagion means that 
the history of a vehicle can reveal hidden features in the risk distributions of
every vehicle in the same fleet. The numerator of the ratio which defines the
estimator VRR is easily derived from
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The estimated variance of the vehicle-specific random effect is greater than
zero if the relative overdispersion derived at the vehicle level is greater than its
counterpart computed at the fleet level.
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These moment-based estimators are unconstrained (i.e. estimated variances
are not bound to be positive). Suppose for instance that <V 0RR on a sample.
Such an estimation would be related to a null estimator of VRR within a con-
strained approach (for instance m.l.e., which is costly to perform if the likeli-
hood does not admit a closed form). In this case, the fleet-specific random
effect must be abandoned whatever is the estimation strategy. Hence, the uncon-
strained nature of the estimators retained in the paper is not a drawback.

These estimators are consistent and asymptotically normal in the model with
random effects. Their asymptotic variance can be reduced if weights related
to overdispersion are introduced in the regression (see Liang, Zeger (1986)).

Let us precise this point. Denote the parameters of the a priori rating
model and of the mixing distribution as

SS
RR; .V

Vj
d
g q= =b bl l

If we stack the numbers of claims reported on a given fleet in a vector snf =
( )vec ni m fi1 f# # the m.l.e. of the Poisson model (3) can be expressed as the solu-

tion in j of the equation

( ) ( ) ( ) ,E SN V SN sn E SNj j j j 0f f f f
f

2
1

2
2

- =
-! c _m i7 A (6)

where the moments are computed in the Poisson model without fixed or ran-
dom effects. Let ( ),E SN j qf and ( ),V SN j qf be the expectation and variance
derived in the random effects model (we have ( ) ( ) ,,E SN E SNj q j j qf f 6= ).
The moment-based estimators of VRR and VSS given in this section from the
regression provide a function ( )j q j" . A “generalized estimating equation”
includes the estimated moments of the random effects in equation (6). The
corresponding estimator is the solution in j of equation (6), where ( )V SN jf

is replaced by ( ( )),V SN j q jf . This estimator j can be shown to have optimal
properties in terms of asymptotic variance. Then a new estimator ( )q j is obtained
for the parameters of the mixing distribution. The random effects model retained
in this section is usually referred to as an “exchangeable correlations” model.

3.3. Linear credibility predictors

In this section, we compute linear credibility predictors (Bühlmann (1967))
for each vehicle. They are derived from the history of claims observed at the
fleet level, whereas the credibility coefficient depends on the vehicle. Let i0 be
a vehicle which belongs to the fleet f0. The portfolio is observed during one
period, and a bonus-malus coefficient is computed for the next one. In order
to allow for a turnover in the portfolio, this vehicle may appear at the second
period. Predictors are obtained separately for each fleet, and the fleet index is
suppressed in order to simplify the notations. The fleet is supposed to contain
m vehicles during the first period.
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The bonus-malus coefficient for the vehicle i0 is supposed to depend only
on the number of claims reported on the whole fleet. It is written as ai 0

+

b ni ii
m

10 =
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The estimated expectation is derived in the random effects model. Notice that
no specific weight is given to the history of the vehicle. As ( )E U 1i 0

= , we have
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Consistent estimators for the individual moments are
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with the estimators obtained in the preceding section. In the computation of
the credibility coefficient, two situations may happen:

• Either the vehicle was not observed during the first period, which means
that it joined the fleet during the forecast period !( ,..., )i i i m10 6 = . From
the estimations obtained in (7), we have
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This fleet-specific credibility coefficient roughly increases with the estimated
variance of the fleet-specific random effect and with the frequency-premium
computed at the fleet level.

• Or the vehicle was observed during the first period (1 ≤ i0 ≤ m). Then

;
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The credibility coefficient is the sum of the fleet-specific coefficient and of a
vehicle-specific coefficient. It can be computed only if the estimated variance
of the vehicle-specific effect VSS is greater than zero (which amounts to >VUU

VRR from (5)), a condition fulfilled in our data. This coefficient is the bonus
granted to the firm if no claim is recorded on its vehicles.

Fleets are open in most cases, which means that an endorsement is not
brought to the insurance policy after each arrival or departure of a vehicle in
the fleet. In this context, bonus-malus coefficients computed at the vehicle
level may appear unrealistic. If r is the expected turnover for the vehicles of
the fleet, a credibility equal to (( ) )a r b1+ - can be retained at the fleet level,
where b is the average of the bi.

3.4. Empirical results

Table 1 presents the results of a Poisson model which explains the number of
claims reported in 1996 by regression components derived from rating factors.
The only continuous rating factor is the age of the firm. We observe that the
frequency of claims decreases – ceteris paribus – by 3.4% with a supplemen-
tary year of age. The other rating factors have a finite number of categories.

In Table 1, the vehicles are weighted by the risk exposure measured by the
number of days the vehicle is authorized to circulate. The estimated exponen-
tial of the coefficients (written in a multiplicative way) related to the different
levels of each rating factor are averaged to one (column ST. COFF., for standard-
ized coefficient). Two advantages are obtained.

• The coefficients do not depend on the category that must be omitted in the
regression for each rating factor in order to avoid colinearity. This is due to
the fact that the vector of frequency-premiums derived from a Poisson
model with regression components depends only on the linear space spanned
by the covariates. Hence, the multiplicative coefficients derived from the
Poisson model are defined up to a multiplicative constant for each rating
factor, whatever are the omitted levels.

• These coefficients can be compared to the relative frequency of each cate-
gory, which is the frequency of claims for one category divided by the global
frequency, column REL. FRE. in Table 1. Consider for instance the category
“bulk transport” of the rating factor “firm’s activity sector”. The relative
frequency is 1.617, whereas the standardized coefficient derived from the
Poisson model equals 1.146. From the likelihood equations of the Poisson
model (see (3)), the number of claims equals the sum of the frequency pre-
miums for each level. The ratio 1.617/1.146=1.411 means that the vehicles
belonging to this type of fleet have, with respect to other rating factors, a
frequency risk level which is 41% higher than the average.

Table 1 also provides levels of significance for the coefficients estimated in
the regression. The P-VALUE column is obtained from a studentized statistic
(i.e. the ratio between the estimated coefficient and its estimated standard
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TABLE 1

RATING SCORE FOR THE FREQUENCY OF CLAIMS WITH BODILY INJURIES

WEIGHT (%) REL.FRE. ST.COFF. P-VALUE

VARIABLE: FIRM’S ACTIVITY SECTOR

general merchandise transport 13.7 1.508 1.233 0.011
bulk transport 10.9 1.617 1.146 0.079
short term rental 2.5 0.959 0.840 0.501
independent trucker, other sector 72.9 0.813 0.940 ref. group

VARIABLE: VEHICLES-YEARS

0 or 1 vehicle-year 31.8 0.758 0.803 ref. group
2 vehicle-years 11.9 0.887 0.920 0.145
3 vehicle-years 7.2 1.032 1.055 0.010
4 to 9 vehicle-years 17.1 1.111 1.083 <0.001
10 to 20 vehicle-years 9.6 1.292 1.177 <0.001
more than 20 vehicle-years 22.4 1.183 1.164 <0.001

VARIABLE: TYPE OF FUEL

gasoline 20.4 0.430 0.597 <0.001
fuel oil 79.6 1.147 1.104 ref. group

VARIABLE: WEIGHT OF THE VEHICLE

from 3,000 to 3,870 kgs 20 0.624 0.718 0.014
from 3,871 to 6,220 kgs 20 0.674 0.888 0.025
from 6,221 to 7,620 kgs 20 1.174 1.108 0.982
from 7,621 to 8,850 kgs 20 1.428 1.174 0.479
more than 8,850 kgs 20 1.099 1.110 ref. group

VARIABLE: TYPE OF USE

commercial use 75.8 0.809 0.969 0.508
bulk transport 10.4 1.724 1.351 0.005
other types of transport 13.8 1.501 0.904 ref. group

VARIABLE: NUMBER OF AXLES

unknown 1.3 5.706 6.835 <0.001
2 axles, less than 4,000 kgs 21.2 0.573 1.174 ref. group
2 axles, more than 4,000 kgs 26.9 0.694 0.797 0.023
3 axles 18.0 0.917 0.781 0.022
4 axles 5.4 0.908 0.760 0.028
5 axles 8.8 0.876 0.635 0.001
6 axles and more 18.4 1.775 1.141 0.869

VARIABLE: NUMBER OF CYLINDERS

1 to 5 cylinders 1.4 0.840 0.982 0.410
6 to 7 cylinders 59.9 1.261 1.122 <0.001
8 cylinders and more 38.7 0.600 0.812 ref. group

Number of vehicles 124,629



deviation). For each rating factor, the reference group is related to the level
which was suppressed in order to avoid colinearity.

The frequency of claims increases with the size of the fleet. This result could
be explained by a greater exposure to risk (as measured by annual mileage)
for the vehicles belonging to large fleets. The same reason probably also explains
why gasoline-powered vehicles are much less risky than fuel-powered ones.

Annual mileage was estimated for the vehicles which had a recent mechan-
ical check-up (54,699 vehicles). The estimation of the rating model with this
supplementary variable leads to the following results, with a level of significance
equal to 10%.

• The fuel effect disappears.

• The size effect decreases, but remains significant.

• The firm activity sectors are not significant.

• The number of cylinders effect disappears.

Detailed results can be obtained in Dionne, Desjardins, Pinquet (1999).

On the sample, the estimators given in the preceding section are equal to

. ; . . .V V V
V V

0 153 1 121 0 840RR UU SS
RR

UU RR
&= = =

-
=

V1 +
(9)

The estimated variances of random effects are close to the malus applied to
the a priori frequency premium after one claim if this premium is close to
zero. This is the case for most of the fleets in the portfolio because of their
small size on average, and because of the low frequency of claims for bodily
injuries, which is equal to 1.6% per year on average. Hence, one claim
reported on such a fleet would entail a malus close to 15% for a new vehicle.

The estimated variance VSS of the vehicle-specific random effect is impor-
tant. The history of a vehicle will have much more ability to predict the risk
level of this vehicle than that of the other vehicles in the fleet.

The preceding estimators are not really modified by a “generalized esti-
mating equation” (see the end of Section 3.2). The frequency premiums are
very close, and estimated variances of the random effects are

. ; . .V V0 161 1 110RR UU= =

We use the estimators obtained in equation (9) at the end of the section.
Bonus-malus coefficients are computed at the fleet level in Table 2, for the

two limit values of the turnover. Credibilities of the histories and standard devi-
ations of the bonus-malus coefficients are given for each size level retained in
the regression components (see Table 1).

Since the bonus-malus coefficients are computed at the fleet level, all the
averages computed in Table 2 are weighted by the frequency premiums of the
fleets. Due to the important value of the variance of the vehicle-specific random
effect, the credibility strongly depends on the turnover for fleets with little or
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medium size. The same result holds for the dispersion of the bonus-malus
coefficients. As expected from the conclusion of Section 3.1., the standard
deviation of the bonus-malus coefficients is not a monotonic function of the
size of the fleet when the turnover is equal to zero.

3.5. An experience rating scheme using full information on the claims history

Since the drivers do not pay insurance premiums of firm-owned vehicles, the
computation of premiums at the vehicle level may appear irrelevant. However,
disaggregated information on the premium may be of interest for the firm. In
this context, you can think of using full information on the claims history.
Different weights can be given to the histories of the vehicles in the derivation
of the bonus-malus coefficient for a given vehicle.

Bonus-malus coefficients obtained at the vehicle level from the approach
retained in Section 3.3 have a very low within fleets dispersion. This is due to
the fact that the credibility granted to the history of the vehicle is applied to
a ratio computed at the fleet level. The within fleets dispersion of the bonus-
malus coefficients, as measured by the standard deviation, is at most equal to
three per cent of the total dispersion for the different size levels.

In this section, we compute linear credibility predictors which give specific
weights to the history of each vehicle in the prediction of the risk frequency
for a given vehicle. The intuition is that the predictor should overweight the
history of this vehicle, as compared to the one obtained in Section 3.3. As a
result, the within fleets dispersion of the bonus-malus coefficients should
increase.

As in Section 3.3, we consider a fleet with m vehicles during the first
period, and a vehicle i0 which belongs to the fleet during the forecast period.
We suppress the fleet index, and write the bonus-malus coefficient as a b ni

t
i0 0

+ .

with

( ); ( );( , ) ( ) .arg minn vec n b vec b a b E U a bN,
,� �i m

i i
i m

i i i i
a b

i
t

1 1

2
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TABLE 2

AVERAGE CREDIBILITIES FOR FLEETS AND VEHICLES

STANDARD DEVIATIONS OF BONUS-MALUS COEFFICIENTS AT THE FLEET LEVEL

Fleet size â â + b̂
sbonmala sbonmala b+

(turnover = 100%) (turnover = 0%)

0 or 1 vehicle-year 0.003 0.019 0.020 0.136
2 vehicle-years 0.006 0.026 0.030 0.126
3 vehicle-years 0.009 0.030 0.037 0.122
from 4 to 9 vehicle-years 0.019 0.041 0.053 0.116
from 10 to 20 vehicle-years 0.048 0.072 0.083 0.129
more than 20 vehicle-years 0.245 0.262 0.189 0.203

VV
VVV



The estimated expectation is derived in the model with random effects. Since
( )E U 1i 0

= the bonus-malus coefficient is equal to

, ( ( )) ( ).a b n b n E N b n l1 1i
t

i
t

i
t
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= + - = + -

The vector of frequency-premiums ( )vecl li m i1= # # is derived from m.l.e. in
the a priori rating model. It is a consistent estimator for the frequency risks in
the model with random effects. From the consistent estimators of individual
variances and covariances derived in Section 3.3, we infer
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The last term exists if i0 ≤ m (i.e. the vehicle was observed during the first period).
The vector ei 0

belongs to the canonical basis of �m, with the corresponding
index.
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we have
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l
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The bonus-malus coefficient for the vehicle i0 is obtained from the credibility
formula
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if we write

!( );b i i ba l a b l, , ,i i i i i i i i i00 0 0 0 0 0
= + = (11)

with ai 0
expressed as the ai, i ≠ i0. The bonus-malus coefficient is a sum of two

terms:

• The first one does not depend on the vehicles within the fleet, and is applied
to the new vehicles.

• The second one exists only if the vehicle was observed in the past (1 ≤ i0 ≤ m).
The credibility coefficient bi 0

is applied to the individual history. The cor-
responding coefficient was applied to the history at the fleet level in Sec-
tion 3.3, and this explains the more important within fleet dispersion of
bonus-malus coefficients which use all the information.

From equations (10) and (11), the credibility coefficients are respectively
equal to
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6i, i0 = 1, ..., m. As in Section 3.3, this credibility system makes sense only if
>V VUU RR which means that the estimated variance VSS of the vehicle-specific

effect is greater than 0 (see equation (5)).

Let us compare results obtained in this section and in Section 3.3 with
an example. We use the estimations given in equation (9). Consider a fleet
of five vehicles observed during a period, with frequency-premiums equal to
0.02 for each vehicle. Suppose that one claim was reported during the first
period. The bonus-malus coefficients for the next period are given in the fol-
lowing table.
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TABLE 3

BONUS-MALUS COEFFICIENTS WITH LIMITED AND FULL INFORMATION (EXAMPLE)

Fleet size History at the fleet level Full information

new vehicle 1.133 1.135
claimless vehicle 1.301 1.116
vehicle with one claim reported 1.301 2.063

Let us comment the coefficients given by the BMS with full information.
The four vehicles without claim reported are penalized because the malus
at the fleet level outweighs the bonus generated by the individual history. The
bonus-malus coefficient of the vehicle with one claim reported is much more
important than that of the four other ones because of the differences between
the individual credibilities.

The within fleets dispersion of bonus-malus coefficients will be more impor-
tant with this BMS. This is shown in the following table which provides
between fleets and total standard deviation of bonus-malus coefficients com-
puted on the portfolio with the present BMS.

TABLE 4

TOTAL AND BETWEEN FLEETS STANDARD DEVIATIONS OF BONUS-MALUS

COEFFICIENTS LINEAR CREDIBILITY WITH FULL INFORMATION

Fleet size turnover = 100% turnover = 0% turnover = 0%
sbetween sbetween stotal

0 or 1 vehicle-year 0.020 0.136 0.138
2 vehicle-years 0.030 0.123 0.151
3 vehicle-years 0.037 0.123 0.158
from 4 to 9 vehicle-years 0.053 0.116 0.169
from 10 to 20 vehicle-years 0.083 0.128 0.187
more than 20 vehicle-years 0.189 0.203 0.231

The between fleets dispersions of the bonus-malus coefficients are very close
to those obtained in Table 2 for the same value of the turnover. This means
that using only the history of the fleet in the prediction did not entail a loss
of efficiency for bonus-malus coefficients computed at the fleet level.

Optimal BMS using all the information on the claim history can also be
derived with an expected value principle (Lemaire (1985), Dionne et al. (1989),
Pinquet (1997)). The negative binomial model with random effects (Hausman,
Hall, Griliches (1984)) can be used for that purpose. Initially designed for lon-
gitudinal count data, it can be used in our context, due to the analogy between
panel data and stratified samples. For example, consider an individual as a
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stratum and a period as an individual within a stratum. This model is devel-
oped in Dionne, Desjardins, Pinquet (2000a).

4. BONUS-MALUS SYSTEMS FROM THE NUMBER

OF SAFETY OFFENCES

4.1. Safety offences used as regression components

Owing to the no-fault setting, the history of claims cannot be included in the
tariff structure of the SAAQ. However, safety offences can be used to per-
form experience rating. In our data base, safety offences of different types
were recorded at the carrier level and at the driver level. Those which were
recorded in 1995 are added here as regression components in the Poisson
model estimated in Table 1. Hence the number of claims reported in 1996 is
explained by rating factors and by the safety offences recorded the year before.
Each estimated coefficient related to a given type of safety offence leads to a
relative malus, if this coefficient is positive. The safety offences which did
entail a malus are presented in Table 5.

TABLE 5

RELATIVE MALI DERIVED FROM SAFETY OFFENCES

Type of safety offence related to relative P-valuerecorded in 1995 malus (%)

exceeding speed limits vehicles 42 <0.001

not wearing the seat belt vehicles 93 <0.001
not respecting hazardous goods rules carriers 105 0.008
excess load carriers 12 0.089
not stopping at an agent’s signal vehicles 38 0.091
not respecting driving hours rules carriers 72 0.013

number of vehicles 100,048

We retained the vehicles with a positive duration of authorization for the licence
plate during 1995 and 1996. Other safety offences which were not retained
by the model are the following: Exceeding size limits, not respecting bulk
trucking regulation, not respecting mechanical check-up rules, driving with a
sanction, not stopping at a red light. Many of them are significant when we
consider all types of road accidents (property damages and bodily injuries).
See Dionne et al. (1999) for more details, including regression results related
to the rating factors. An optimal BMS is designed in the next section from
a model with random effects on two types of events, namely the claims for
bodily injury and all the safety offences.
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4.2. The model with random effects

Let INFfi be the number of safety offences (whatever their type) recorded on
the vehicle i belonging to the fleet f. We write

( ),INF P ttfi fi fi+

where tfi = dfi exp(xf h + zfi j) is the component of E(INFfi) which is explained
by the duration of exposure to safety offences and by both fleet-specific and
vehicle-specific regression components, and where tfi is the fixed effect. The
hierarchical structure of the portfolio is taken into account by writing tfi = pf qfi
where pf and qfi are the fleet-specific and vehicle-specific fixed effects. All the
number variables are supposed independent in the fixed effects model. Let U,
R, T and P be random variables with the same joint distribution as any
random vector such as (Ufi ,Rf ,Tfi ,Pf) (we use the notations of Section 3.2).
The assumption E(U) = 1 made in Section 3.2 is relaxed now. A natural
multivariate distribution family with explicit moments for non-negative ran-
dom effects is the log-normal distribution family, and the expectation depends
then on the variance. Let ( )expd x zt h jfi fi f fi= + be the estimation of E(INFfi)
derived from likelihood maximization in the Poisson model without fixed or
random effects. If data are generated in the random effects model, we have

( ) ( ); ( ) ( ).E N E U E INF E Tl l t tfi fi fi fi fi fi" "= = (12)

The expectation is computed in the random effects model. From (12) and results
similar to those given in (2), we obtain the following limits
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The superscript “1” is used for the preceding estimators because they are
obtained at the first step of the Newton-Raphson algorithm of likelihood
maximization, where the initial value is the m.l.e. for the a priori rating model.
For instance, the estimator VRP

1 reflects the predictive power that safety offences
recorded on a given vehicle have on the risk level of every other vehicle in the
same fleet. Not surprisingly, the fleet-specific credibility obtained in the next
section will depend on this estimator.

4.3. Linear credibility predictors

An optimal BMS using both claims and safety offences would be more effi-
cient than those designed in the preceding sections (see Pinquet (1998) for a
comparison of short-term effects). We now consider the case where claims
cannot be used and the frequency of claims is predicted from the history of
safety violations only. Notice that an optimal BMS using both claims and safety
offences could easily be obtained from the preceding estimators. It would be
enough to adapt the linear credibility system given in the aforementioned
paper to a stratified portfolio.

Let us compute the bonus-malus coefficient for the frequency of claims
reported by the vehicle i0 belonging to the fleet f0. The fleet index is suppressed
in order to simplify the expressions. The bonus-malus coefficient is written a
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From computations similar to those performed in Section 3.3, we obtain the
following bonus-malus coefficient
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The last term must be suppressed if the vehicle i0 is not observed during the
first period. Following the computations of Section 3.3, we obtain then
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The fleet-specific credibility coefficient a increases with VRP
1 a term related to

the covariance between the two fleet-specific random effects. The coefficient bi0

is the vehicle-specific credibility. It makes sense only if >V VUT RP
1 1, a condition

fulfilled in our data.

4.4. Empirical results

The frequency of claims with bodily injury reported in 1996 is predicted from
the number of safety offences recorded in 1995, and we retained the vehicles
with a positive duration of authorization for the licence plate during 1995
and 1996. The detailed results of the regression explaining the number of
safety offences recorded in 1995 are presented in Table 6. Let us emphasize
two points:

• The annual frequency of recorded offences is equal to 22.2%. It is much
superior to that of the claims with bodily injury liability. This will explain
later the better short term performance of the prediction designed in this
section.

• The frequency of offences increases with the size of the fleet, but decreases
for fleets with more than 20 vehicle-years.
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TABLE 6

RATING SCORE FOR THE FREQUENCY OF SAFETY OFFENCES

WEIGHT (%) REL.FRE. ST.COFF. P-VALUE

VARIABLE: FIRM’S ACTIVITY SECTOR

general merchandise transport 13.3 1.269 1.048 0.013
bulk transport 10.7 2.045 0.997 0.314
short term rental 2.5 1.297 1.742 <0.001
independent trucker, other sector 73.5 0.789 0.967 ref. group

VARIABLE: VEHICLES-YEARS

0 or 1 vehicle-year 32.7 0.953 1.055 ref. group
2 vehicle-years 11.4 1.022 1.119 0.008
3 vehicle-years 7.1 1.147 1.174 <0.001
4 to 9 vehicle-years 17.4 1.262 1.210 <0.001
10 to 20 vehicle-years 9.7 1.256 1.056 0.725
more than 20 vehicle-years 21.7 0.686 0.606 <0.001

VARIABLE: TYPE OF FUEL

gasoline 22.2 0.392 0.582 <0.001
fuel oil 77.8 1.174 1.119 ref. group

VARIABLE: WEIGHT OF THE VEHICLE

from 3,000 to 3,870 kgs 20.0 0.653 0.991 0.371
from 3,871 to 6,220 kgs 20.0 0.654 0.939 <0.001
from 6,221 to 7,620 kgs 20.5 1.112 0.960 <0.001
from 7,621 to 8,850 kgs 19.2 1.517 1.061 0.473
more than 8,850 kgs 20.3 1.082 1.050 ref. group

VARIABLE: TYPE OF USE

commercial use 76.0 0.776 0.927 0.644
bulk transport 10.2 2.356 1.667 <0.001

VARIABLE: NUMBER OF AXLES

unknown 2.3 0.998 1.119 0.047
2 axles, less than 4,000 kgs 20.6 0.651 0.984 ref. group
2 axles, more than 4,000 kgs 27.6 0.600 0.751 <0.001
3 axles 18.3 0.802 0.696 <0.001
4 axles 5.7 0.893 0.856 0.017
5 axles 8.2 0.987 0.865 0.044
6 axles and more 17.3 2.305 1.836 <0.001

VARIABLE: NUMBER OF CYLINDERS

1 to 5 cylinders 1.4 0.714 0.834 0.699
6 to 7 cylinders 59.0 1.294 1.130 <0.001
8 cylinders and more 39.6 0.572 0.812 ref. group

Number of vehicles 100,048



As for the random effects, the numerical values of the estimators are

. ; . ; . ; . .V V V V0 519 0 465 0 141 1 263UT PP RP TT
1 1 1 1= = = =

These moment-based estimators can be connected to explicit distributions. If
log-normal distributions are retained for the random effects, we can write

( ); ( ) , ( ).exp exp expR a G U a G a G U RS S a Gi
i i i

i
1 1 1 1 1 2 2 2 2&= = + = =

The fleet index is suppressed, and the random variables ,( )G G ,...,
i

i m1 2 1= follow
independent standard normal distributions. In the same way, we can write

( ); ( )

( ),

exp exp

exp

P a G a G T a G a G a G a G T PQ

Q a G a G
,i

i i
i i

i
i i

3 1 4 3 3 1 4 3 5 2 6 4

5 2 6 4

&= + = + + + =

= +

with similar assumptions on the random variables ,( )G G ,...,
i

i m3 4 1= . It is easily
seen that

( , )
( ) ( )

( , )
( )expG N I

E aG E bG
Cov aG bG

ab0 1q t t

t t
t

&+ = -

�a, b ∈ �q. The moment-based estimators are then connected with the follo-
wing values

. ; . ; . ; . ; . ; . .a a a a a a0 381 0 828 0 346 0 512 0 346 0 5621 2 3 4 5 6= = = = = =

The predictor computed in this section cannot be consistent with respect to the
fleet specific component, since the event for which the frequency is predicted
is not retained in the history. When the size of the fleet m converges towards
infinity, we obtain from equation (14)

. .lim cred V i0 303
m

i
PP

RP
1

1

00
6= =

" 3+ V

The credibility coefficient credi 0
is defined in (14). As we have the following

limit

( )lim
INF

E P
P

tm ii
m

ii
m

1

1 =
" 3+

=

=

!
!

in the random effects model, the limit of the bonus-malus coefficient is

( ) .lim bonmal V V
E P

P
1

m
i

PP

RP

PP

RP
1

1

1

1

0
= - +
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Hence, the BMS is not consistent (the limit should be R/E(R) for a consistent
predictor). The limit is the estimated affine regression of R/E(R) with respect
to P/E(P).

Although this BMS is less efficient in the long run than the one based on
the number of claims, it is more efficient after one year, as shown in Table 7.

TABLE 7

AVERAGE CREDIBILITIES FOR FLEETS AND VEHICLES

STANDARD DEVIATIONS OF BONUS-MALUS COEFFICIENTS AT THE FLEET LEVEL

Fleet size â â+ b̂ sbonmala sbonmala+b

0 or 1 vehicle-year 0.027 0.094 0.064 0.216
2 vehicle-years 0.049 0.113 0.087 0.198
3 vehicle-years 0.070 0.132 0.107 0.196
from 4 to 9 vehicle-years 0.114 0.168 0.136 0.197
from 10 to 20 vehicle-years 0.175 0.209 0.186 0.222
more than 20 vehicle-years 0.242 0.252 0.220 0.235

Table 7 was obtained in the same way as Table 2. Standard deviations of bonus-
malus coefficients are more important in this table for fleets with little or
medium size. This BMS is less efficient in the long run than the one presented
in Section 3, but it is closer to its limit, due to the higher frequency of safety
offences.

5. CONCLUSION

The objective of this paper was to propose BMS for fleets of vehicles. The
models were applied to fleets of trucks, but they could be used for other
stratified portfolios if individual information on the insurance contracts was
available.

Two systems were presented: one based on past accidents and the other
based on past safety offenses. It was shown that the former system is more
efficient in the long run, while it is outperformed by the latter BMS after one
year, a result explained by the higher frequency of safety offences.

Many extensions of this article can be done. One is to use information on
many periods in order to build up a panel. The corresponding panel would
be very useful to analyze the stability of the BMS over time. It would also
permit to verify for how long period the system based on safety offences
dominates the one based on accidents. However such extensions will not be
straightforward since we would have to introduce dynamic random effects
along with the fleet effects in order to take into account the serial correla-
tions.
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ANALYTICAL EVALUATION OF ECONOMIC RISK CAPITAL
FOR PORTFOLIOS OF GAMMA RISKS

BY

WERNER HÜRLIMANN

ABSTRACT

Based on the notions of value-at-risk and expected shortfall, we consider two
functionals, abbreviated VaR and RaC, which represent the economic risk cap-
ital of a risky business over some time period required to cover losses with a
high probability. These functionals are consistent with the risk preferences of
profit-seeking (and risk averse) decision makers and preserve the stochastic
dominance order (and the stop-loss order). Quantitatively, RaC is equal to VaR
plus an additional stop-loss dependent term, which takes into account the
average amount at loss. Furthermore, RaC is additive for comonotonic risks,
which is an important extremal situation encountered in the modeling of
dependencies in multivariate risk portfolios. Numerical illustrations for port-
folios of gamma distributed risks follow. As a result of independent interest,
new analytical expressions for the exact probability density of sums of inde-
pendent gamma random variables are included, which are similar but differ-
ent to previous expressions by Provost (1989) and Sim (1992).

KEYWORDS

Value-at-risk, expected shortfall, risk-adjusted capital, comonotonicity, addi-
tivity, supermodular order, stop-loss order, gamma convolutions.

1. ECONOMIC RISK CAPITAL USING VAR AND RAC

Suppose a firm is confronted with a risky business over some time period, and
let the random variable X represent the potential loss or risk the firm incurs
at the end of the period. To be able to cover any loss with a high probability,
the firm borrows at the beginning of the time period on the capital market the
amount ERC0, called economic risk capital. At the end of the period, the firm
has to pay interest on this at the interest rate iR. To guarantee with certainty
the value of the borrowed capital at the end of the period, the firm invests ERC0
at the risk-free interest rate if < iR. The value of the economic risk capital at
the end of the period is thus ERC ERC i i1 f R0 $= + -_ i. The risky business will
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be successful at the end of the period provided the event >X ERC! + occurs
only with a small tolerance probability.

There exist several risk management principles applied to evaluate ERC.
Two simple methods that have been considered so far are the value-at-risk
and the expected shortfall approach (e.g. Arztner et al. (1997a/b), Arztner
(1999), Embrechts (1995), Hürlimann (1998a), Schröder (1996), Wirch (1999)).
According to the value-at-risk method one identifies the economic risk capi-
tal with the value-at-risk of the loss setting

(1.1) : ( )ERC VAR X Q aa X= =6 @ ,

where ( ) ( )infQ u x F x uX X $= " , is a quantile function of X, with ( )F xX =
( )Pr X x# the distribution of X. This quantile represents the maximum pos-

sible loss, which is not exceeded with the (high) probability a (called security
level). According to the expected shortfall method one identifies the economic
risk capital with the risk-adjusted capital of the loss setting

(1.2) : >ERC RaC X E X X VaR Xa a= =6 66@ @@.
This value represents the conditional expected loss given the loss exceeds its
value-at-risk. Clearly one has

(1.3) ( ) ( ) ( ) ( )RaC X Q m Q Q Qa a a e p a1
a X X X X X X= + = +6 6 6@ @ @,

where mX(x) = E[X – x |X >x] is the mean excess function, pX(x) = (1 – FX(x)).
mX(x) is the stop-loss transform, and e = 1 – a is interpreted as loss probability
(called loss tolerance level). In Arztner (1999) the expression (4.3) is called tail
conditional expectation and abbreviated TailVaR there (for tail value-at-risk).
Mathematically, VaR and RaC, which have been defined as functions of random
variables, may be viewed as functionals defined on the space of probability
distributions associated with these random variables. By abuse of language,
we will use the terminology functionals when appropriate.

It is important to observe that both ERC functionals satisfy two impor-
tant risk-preference criteria in the economics of insurance (see Denuit et al.
(1999) for a recent review). They are consistent with the risk preferences of
profit-seeking decision makers respectively profit-seeking risk averse decision
makers. To see this let us first recall two partial orders of riskiness.

Definitions 1.1. A risk X is less dangerous than a risk Y in the stochastic order,
written X Yst# , if ( ) ( )Q u Q uX Y# for all ,u 0 1! 6 @. A risk X is less dangerous
than a risk Y in the stop-loss order, written X Ysl# , if ( ) ( )x xp pX Y# for all x.

To compare economic risk capitals using criteria, which do not depend on the
choice of the loss tolerance level, let us introduce two further partial orders of
riskiness.

Definitions 1.2. A loss X is less dangerous than a loss Y in the VaR order,
written X YVaR# , if the value-at-risk quantities satisfy VaR X VaR Ya a#6 6@ @, for
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all ,a 0 1! 6 @. A loss X is less dangerous than a loss Y in the RaC order, written
X YRaC# , if the risk-adjusted capital quantities satisfy RaC X RaC Ya a#6 6@ @, for
all ,a 0 1! 6 @.
The value-at-risk and expected shortfall methods are consistent with ordering
of risks in the sense that profit-seeking (risk averse) decision makers require
higher VaR (RaC) by increasing risk, where risk is compared using the stochas-
tic order st# (stop-loss order sl# ). Reciprocally, increasing VaR (RaC) is always
coupled with higher risk. The following result expresses these ordering prop-
erties mathematically.

Theorem 1.1. If X and Y are two loss random variables, then X Y X YVaR st+# #

and X Y X YRaC sl+# # .

Proof. Since ( ) ( )X Y Q u Q ust X Y+# # for all ,a 0 1! 6 @, the first property is imme-
diate by (1.1). Consider the Hardy-Littlewood transform defined by

(1.4) ( )
( ) ,

( ),

<
HL u u Q t dt u

Q u

1
1

1

1 1

X
X

u

X

1

$
= -

=

#
Z

[

\

]]

]]

Its name stems from the Hardy-Littlewood (1930) maximal function and has
been extensively used in both theoretical and applied mathematics (e.g. Black-
well and Dubins (1963), Dubins and Gilat (1978), Meilijson and Nàdas (1979),
Kertz and Rösler (1990/92/93), Rüschendorf (1991), Hürlimann (1998b/c/d)).
One knows that there exists a random variable XH associated to X such that
(e.g. Hürlimann (1998b), Theorem 2.1)

(1.5) ( ) ( ) ( ) (HL u Q u Q u m Q uX X X X XH= = + 6 @,
hence ( )RAC X Q aa X H=6 @ by (1.3). The result follows from the fact that X Ysl#

if and only if X YH
st

H
# , where st# denotes the usual stochastic dominance order

(e.g Kertz and Rösler (1992), Lemma 1.8, or Hürlimann (1998c), Theorem 2.3).
For the convenience of the reader, an alternative perhaps more accessible
proof should also be pointed out. Consider the so-called distortion function

( ) ,ming x 1x
a a1= -$ .. It is easy to show that

(1.6) ( )RaC X g F x dx1a Xa

0

= -
3

#6 6@ @
identifies the RaC functional with a member of the class of distortion pricing
principles in Wang (1996). The result follows by Dhaene et al. (2000), Theo-
rem 3, which contains a proof of the stated equivalence. G

Finally, it is important to observe that, except for a world of elliptical linear
portfolio losses (Embrechts et al. (1998), Fundamental Theorem of Risk Man-
agement), the VaR functional has several shortcomings. It is not subadditive
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and not scalar multiplicative, and it cannot discriminate between risk-averse
and risk-taking portfolios (examples 1 to 3 in Wirch (1999)). Some more details
for the practitioner are in order. Recall that a risk measure R $6 @ acting on the
set of all risks is subadditive provided R[X + Y] ≤ R[X] + R[Y] for all X, Y, that
is merging two risks does not create extra risk. If a firm must meet a require-
ment of extra economic risk capital that did not satisfy this property, the firm
might separate in two subunits requiring less capital, a matter of concern
for the supervising authority. A risk measure is scalar multiplicative provided
R[cX] = cR[X] for all X, all constants c ≥ 0. In situations where no diversifica-
tion occurs capital requirement depends on the size of the risk. In contrast to
this, the RaC functional, which is subadditve and scalar multiplicative, is a
coherent risk measure in the sense of Arztner et al. (1997) and appears thus
more suitable in general applications. A recent work devoted to the evaluation
of economic risk capital in life-insurance using the VaR and RaC approaches
is Ballmann and Hürlimann (2000).

2. THE MAXIMUM RAC FOR THE AGGREGATE RISK OF PORTFOLIOS

An important but complex problem is the evaluation of RaC for the aggre-
gate risk of portfolios. Let X = (X1, ..., Xn) be a portfolio of multivariate risks,
where the marginal risks Xi have distributions Fi (x), i = 1, ..., n. In a first step,
one is interested in the maximum RaC for the aggregate risk S(X) = X1 + ...
+ Xn whenever X ∈ D(F1, ..., Fn), the set of all multivariate risks with given mar-
ginals Fi (x). It will be shown below that the maximum RaC is attained when
the margins Xi show the strongest possible dependence structure, an extremal
situation for which one says that X1, ..., Xn are mutually comonotonic.

A multivariate loss (X1, ..., Xn) is called comonotonic whenever an increase
of a single loss Xi (w1) < Xi (w2) for two events w1, w2 implies a nondecrease
of all other losses Xj (w1) ≤ Xj (w2), j ≠ i (Schmeidler (1986), Yaari (1987)). For
X ∈ D(F1, ..., Fn) this is exactly the case when ( ),..., ( )X F U F Un1

1 1
=

- -a k with U a 
uniform (0,1) random variable noting that ( )F Ui

1- has distribution Fi and Fi
1-

is increasing for all i. The distribution F of a comonotonic random vector
is determined by its marginal distributions Fi through the relationship

( ,..., ) ( )minF x x F xn
i n

i i1
1

=
# #

" ,. Mathematically, four equivalent defining conditions

of comonotonicity can be given.

Definition 2.1. (Bäuerle and Müller (1998)) The components of a random vec-
tor X = (X1, ..., Xn) ∈ D(F1, ..., Fn) are called mutually comonotonic if any of the
following equivalent conditions hold:

(C1) The multivariate distribution ( ,..., )F x xn1 of ( ,..., )X X n1 identifies with the
so-called Fréchet upper bound ( ,..., ) ( )minF x x F xn

i n
i i1

1
=

# #
" ,.

(C2) There exists a random variable Z and non-decreasing real functions u1, ...,
un such that (u1(Z), ..., un(Z)) has the distribution F.
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(C3) The random vector ( ),..., ( )F U F Un1
1 1- -a k, where U is uniformly distributed

on [0,1], has distribution F.

(C4) There is a random vector X, distributed as F, such that Xi (w1) < Xi (w2)
implies Xj (w1) ≤ Xj (w2) for all j ≠ i.

We need further the notion of supermodular order.

Definition 2.2. A random vector X precedes Y in the supermodular order, writ-
ten X ≤sm Y, if E[f(X)] ≤ E[f(Y)] for all supermodular functions f such that the
expectations exist, where f is called supermodular if

(2.1) ( ) ( ) ( ) ( )f x y f x y f x f y/ 0 $+ + for all , ,x y Rn! ,

with the notation ,( ,..., ) ( ..., ) ( ,..., )x x y y x y x yn n n n1 1 1 1/ / /= , / the minimum oper-
ator, and ,( ,..., ) ( ..., ) ( ,..., )x x y y x y x yn n n n1 1 1 10 0 0= , 0 the maximum operator.

Intuitively the notion of supermodular function can be grasped as follows.
Let x1, ..., xn be n individual losses in a portfolio, and let f (x1, ..., xn) be the
aggregate loss caused by these losses. Then supermodularity of the function f
means that the influence on the aggregate loss of an increase of a single loss
is greater, the higher the other losses are. In the literature supermodular func-
tions are also called superadditive, and have been originally studied in applied
mathematics and operations research (e.g. Marshall and Olkin (1979)). They
have been extensively applied in economics (e.g. Topkis (1998)). The related
supermodular order allows for a comparison of the strength of dependence
between random vectors. Its origin in the statistical literature can be traced
back to Block and Sampson (1988), Joe (1990), Meester and Shanthikumar
(1993), Szekli et al. (1994), Shaked and Shanthikumar (1997). Actuarial appli-
cations of this order are discussed in Müller (1997), Bäuerle and Müller (1998),
Goovaerts and Dhaene (1999).

To compare the riskiness of portfolios, one says that a portfolio X = (X1, ...,
Xn) is less risky than a portfolio Y = (Y1, ..., Yn) if the corresponding aggregate
risks S(X) = X1 + ... + Xn and S(Y) = Y1 + ... +Yn are stop-loss ordered, that is
S(X) ≤sl S(Y). A sufficient condition for this is the supermodular order.

Theorem 2.1. Let X = (X1, ..., Xn) and Y = (Y1, ..., Yn) be random vectors in D(F1,
..., Fn) such that X ≤sm Y, then one has S(X) ≤sl S(Y).

Proof. This is shown in Müller (1997), Theorem 3.1. G

The significance of the supermodular order for economic risk capital calcu-
lations is now immediate. Given two portfolios X, Y ∈ D (F1, ..., Fn) such that
X ≤smY, it is possible to compare the RaC of the aggregate risk S(X) with the
RaC of the aggregate risk S(Y).

Corollary 2.1. Let X = (X1, ..., Xn) and Y = (Y1, ..., Yn) be random vectors in D(F1,
..., Fn) such that X ≤smY, then one has RaCa[S(X)] ≤ RaCa[S(Y)] for all a ∈ [0,1].
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Proof. This is an immediate consequence of Theorem 2.1 and Theorem 1.1. G

Even more, one obtains that the portfolio ( ),..., ( ) ( ,..., )F U F U D F FX n
c

1

1

1

1
1!=

- -a k
with mutually comonotonic margins yields the maximum RaC.

Theorem 2.2. The maximum RaC for the aggregate risk of a portfolio with
fixed marginal risks is attained at the portfolio with mutually comonotonic
components, that is one has

(2.2) ( ) ( )max RaC S X RaC S X
( ,..., )X D F F

c
a a

n1

=
!

6 8@ B" , .

Proof. By the inequality of Lorentz (1953) (e.g. Theorem 5 in Tchen (1980)),
one knows that X ≤sm Xc for all X ∈ D (F1, ..., Fn). The result follows by Corol-
lary 2.1. Alternatively, it is possible to prove directly that X ≤sl Xc for all X ∈
D(F1, ..., Fn) as shown by Goovaerts et al. (2000) (see also Dhaene et al. (2000),
Corollary 6). Then Theorem 1.1 implies the result. G

This result means that comonotonicity, which displays the strongest possible
dependence structure, corresponds to the riskiest portfolio under all portfolios
with the same marginal risks and requires the maximum RaC under all these
portfolios. It is further remarkable that under a simple regularity condition the
maximum RaC is an additive functional.

Theorem 2.3. Let Xc = (X1, ..., Xn) be a portfolio of mutually comonotonic risks
with absolutely continuous marginal distributions Fi (x), i =1, ..., n. Then the
RaC functional satisfies the additive property

(2.3) ( )RaC S X RaC Xc
i

i

n

a a
1

=
=

!8 6B @.
Proof. Denote by Fs (x) the distribution of S (Xc). Consider the quantiles d =
QS(a), di = Qxi

(a), i = 1, ..., n, and the stop-loss transforms ps(x), pi(x): = pxi
(x),

i = 1, ..., n. By the comonotonic assumption, the quantiles and stop-loss trans-

forms behave additively, that is one has d di
i

n

1

=
=

! (e.g. Landsberger and Meilijson

(1994), Denneberg (1994), Kaas et al. (2000)) and ( ) ( )d dp ps i i
i

n

1

=
=

! (Dhaene et

al. (2000), Theorem 8, special case of absolutely continuous distributions, or
Kaas et al. (2000)). The assertion follows from (1.3) using the relationship

( ) ( ) ( )F x m x xp1 X X X$- =^ h between the mean excess function and the stop-loss
transform by means of the equalities

( ) ( ) ( ) .RaC S X d d d d RaC Xe p e p1 1c
s i i i

i

n

i
i

n

a a
1 1

$ $ G= + = + =
= =

! !8 6B @& 0 .

Remark 2.1.

As pointed out by a referee, the additive relation (2.3) is a special case of a
more general result due to Dellacherie (1970) and quoted in Schmeidler
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(1986). Let A be a s-algebra of subsets of a set S, and x the set of all bounded
real-valued A-measurable functions on S. For a monotone set function v on S
such that v (∅ ) = 0, v(S) = 1, and a non-negative real valued function X ∈ x,

consider the Choquet integral ( )>H X Xdv v X x dxv

s 0

= =
3

##6 @ . Dellacherie’s result

states that if X,Y ∈ x are comonotonic, then Hv[X + Y] = Hv[X] + Hv[Y]. In
the special case of a probability space (W, P, A), consider the distortion func-
tion ( ) ,ming x 1a

x
a 1= -$ . and the set function v g Pa%= . With (1.6) one obtains

( )>RaC X g P X x dx H Xa va

0

= =
3

#6 6 6@ @ @. The additivity (2.3) for comonotonic risks

follows from Dellacherie’s result. However, note that our Theorem 2.3 is not
restricted to bounded random variables, an essential assumption in Schmeid-
ler’s paper.

An interesting problem concerns the impact of various “positive” depen-
dence structures between risks X1, ..., Xn on the evaluation of RaC for the
aggregate risk S(X) = X1 + ... + Xn. Independent risks with an aggregate denoted
by Si = X1⊕ ... ⊕ Xn and comonotonic risks with an aggregate Sc = X1 + c... + cXn
are two extreme cases of primary importance. Let us motivate this assertion.
In virtue of Corollary 2.1 and Theorem 2.2 it seems reasonable to restrict
the attention to positive dependent portfolios X ∈ D (F1, ..., Fn) satisfying the
supermodular inequality Xi ≤sm X ≤sm Xc, which implies Si ≤sl S(X) ≤sl Sc and
Si ≤RaC S(X) ≤RaC Sc. As an example, the family of multivariate elliptically
contoured distributions is increasing in the supermodular order as the cor-
relation increases (Block and Sampson (1988)). Portfolios satisfying only the
stop-loss inequality Si ≤sl S(X) ≤sl Sc, which by Theorem 1.1 is sufficient to
imply Si ≤RaC S(X) ≤RaC Sc, might also be of interest (e.g Bäuerle and Müller
(1998), Section 4).

It is well-known that the stop-loss order relation Si ≤sl Sc implies a con-
siderable difference between the corresponding stop-loss premiums. However,
the quantitative impact of this relation on the evaluation of RaC has not yet
been examined. The additive property of Theorem 2.3 is of evident help for
the quantitative analysis of the property RaCa[Si] ≤ RaCa[Sc]. Since insurance
risks are often quite well approximated by gamma distributed risks or trans-
lations thereof (e.g. Seal (1977), Dufresne et al. (1991), Dickson and Waters
(1993)), we will restrict ourselves in the present paper to a quantitative evalua-
tion of this inequality for gamma risks. Since the exact distribution of sums of
independent gamma random variables is not very well-known among actuaries,
the next Section is of additional independent interest.

3. SUMS OF INDEPENDENT GAMMA RANDOM VARIABLES

Gamma distributions, which include the exponential, Erlang and chi-square
distributions, are among the most important distributions widely used in
applications. They are also of great importance in theoretical work. Thorin
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(1977) introduced the class of generalized gamma convolutions, defined as
the smallest class of distributions on the positive real line that contains the
gamma distributions and is closed with respect to convolution and weak
limits, to prove the infinite divisibility of many distributions. The class of
generalized gamma convolutions is surprisingly rich and has a remarkable
structure. It has been extensively studied in the last century by Bondesson
(1992).

Though not noticed in actuarial science (e.g. one misses them in Panjer
and Willmot (1992)), expressions for the exact probability density of sums of
independent gamma random variables are known from the statistical litera-
ture. For example, Johnson et al. (1994), pp. 384-85, refers to Mathai (1982),
Moschopoulos (1985) and Sim (1992). One can add Provost (1989), which
determines the exact density applying the inverse Mellin transform. The
result by Sim (1992) uses the following direct elementary approach. Let
Xi ~ G(ai , bi), i = 1, ..., n, be n independent gamma random variables with
densities

(3.1) ( ) ( ; ): ( )
( )

, , ,> >f x g x
x

x
e xb a a

b
a bG 0 0i i i

i

i
x

i i

a bi i

$= =
-

.

The special case of identical scale parameters being well-known, one assumes
that b1 > b2 > ... > bn. The density of the independent sum Sn = X1 ⊕ ... ⊕ Xn can
be obtained from the convolution formula

(3.2) ( ) ( ) ( )f s f t f s t dts s

s

n

0

n n 1
$= -

-#

applying mathematical induction. A calculation yields the result by Sim (1992)
(see also Johnson et al. (1994), formula (17.110)):
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where ...a a a( )k
k1= + + , ( ) ( )
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c c

c k
G

G
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+
, and

(3.4)

,

, ,..., .
C

i

C j
k i n

a

a

b b
b b

1 2

3( )

( )

k
i

j
i

j

k

i

j

i

j

n i n i

n i n i
j

1

0
1

2

1 2

2 3$ $ $
=

=

-
-

=
-

=
-

-

- + - +

- + - +! `
`

j
j

Z

[

\

]
]

]
]

a ck m
A rearrangement shows that (3.3) is an infinite linear combination of gamma
densities with the same scale parameter b1, a property already observed by
Provost (1989). Applying another elementary approach, we obtain below a
new similar representation of the exact probability density, which differs from
the results by Provost (1989) and Sim (1992).
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Theorem 3.1. Let Xi ~ G(ai , bi) be n independent gamma random variables
such that b1 > b2 > ... > bn. Then the density of the independent sum Sn = X1 ⊕
... ⊕ Xn is analytically described by the infinite series

(3.5) ( ) ( ; )

... , , , ,

,f s A C g s k

A n A

withb a

a a a b
b

2 1
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Proof. This is shown through induction. Clearly, the series representation holds
for n=1. By induction, assume the representation holds for the index n and
show it for the index n+1. For convenience set

(3.7) ( , ), ( , ).S X S R S
X

0 0 1n n n n
n

n
15 3! != =-

Applying the standard method of transformation of random variables based
on Jacobians (e.g. Fisz (1973), p. 77), the density of the sum Sn is determined
recursively by the formulas

(3.8) ( ) ( , ) ,

( , ) ( ) (( ) ).
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Using this and the induction assumption, one obtains
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Through rearrangement it follows that
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The analytical formula (3.5) is shown. G

Remark 3.1.

Though the coefficients of ( ; )g s kb a( )n
1 + in (3.3) and (3.5) are evaluated using

different expressions, they are identical. However, the formulas (3.6) are more
symmetric and simpler, and for this reason they should be preferred.

Using the incomplete gamma function defined by

(3.12) ( ; ) ( )G x t e dtb a aG
1 tx ab 1

0
$=

- -# ,

the distribution function of an independent gamma sum is through integra-
tion of (3.5) equal to

(3.13) ( ) ( ; )F s A C G s kb a( )
s n k

n

k

n

0
1n $ $= +

3

=

! .

The evaluation of RaC for portfolios of independent gamma risks requires an
analytical expression for the stop-loss transform of Sn.

Corollary 3.1. The stop-loss transform ( ) ( )d E S dps nn = - +6 @ of a sum Sn = X1 ⊕
... ⊕ Xn of n independent gamma random variables Xi ~ G(ai, bi), i = 1, ..., n,
such that b1 > b2 > ... > bn , is determined by the analytical formula

(3.14) ( ) ( ) ( ) ( ; )d E S d F d A k C G d kp b a b a1
1

( ) ( )
s n s n
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n n
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1

0
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Proof. This follows without difficulty noting that ( ) ( )d E S d F dps n sn n

$= - -6 @
( )sf s dss

d

0
n# , and ( ; ) ( ; )sg s ds G db a b

a b a 1
d

0
= +# . G
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Remark 3.2.

The special case b1 = ... = bn = b of identical scale parameters is well-known.
In this situation, the above formulas are replaced by the very simple ones

(3.15)

( ) ( ; ), ( ) ( ; ),

( ) ( ) ( ),

f s g s F s G s

d d F d d f s

b a b a

p b
a

b

( ) ( )

( )

s
n

s
n

s

n

s s

n n

n n n$ $

= =

= - +e o
where the last one is obtained through partial integration.

4. NUMERICAL EXAMPLES

First, let us calculate RaC for portfolios of independent gamma risks. Given
the loss tolerance level e, first determine using (3.13) the solution de of the
equation ( )F d e1s en = - . Inserting the obtained value in (3.14), one obtains the
formula

(4.1)

( )

( ) ( ; ) .
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@ G

In the special case b1 = ... = bn = b of Remark 3.2, the quantile de is solution
of G (bde; a(n)) = 1 – e and (4.1) simplifies to

(4.2) ( ; ) .RaC S E S
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g de a
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1
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n
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e
e

e1 $ $ $= +- 8 6B @ ( 2
Second, let us calculate RaC for portfolios of comonotonic gamma risks. The
evaluation uses the additive property of Theorem 2.2. For i = 1, ..., n, determine
the solution di,e of G(bid i,e ; ai) = 1 – e. Replacing a(n) by ai in (3.15) one gets

( ) ( ; ).d E X d
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,i i i i
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It follows that
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Example 4.1: independence versus comonotonic assumption

In the special case b1 = ... = bn = b of Remark 3.2, a comparison of (4.2) and
(4.3) yields the difference formula for RaC:

(4.4) ( ; ) ( ; ),RaC S RaC S
d

g d d g dbe b b a b a,
,

( )
n
c

n
i

i

i
i i i

n

i
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e
e

e e e1
1

e1$ $ $- = --
=

- !` j8 8B B
where ( ; )G db a e1( )n

e = - and ( ; )G db a e1,i i ie = - , ,...,i n1= . A numerical illustra-
tion for the exponential case b = 1, a1 = ... = an = 1, is summarized in Table 4.1
below. In this situation ( )lnRaC S n e1n

c
e1 $= -- 9 C " , depends linearly on the num-

ber of exponential risks. The difference increases non-linearly according to the
formula

(4.5) ( ) ( )!lnRaC S RaC S n n
d e

e e e1
1n

c
n
i

n d

e e
e

1 1

e

$ $ $- = - -
-- -

-8 8 6B B @* 4,
where ( ; )G d n e1e = - . As an interesting observation, one notes for increasing n
a decreasing percentage increase of RaC Sn

i
e1- 9 C over the e-range between 0.05

and 0.001.

TABLE 4.1
RAC FOR EXPONENTIAL RISK PORTFOLIOS UNDER INDEPENDENCE (I)

AND COMONOTONIC (C) ASSUMPTION

e = 0.05 e = 0.01 e = 0.001
n

(i) (c) (i) (c) (i) (c)

1 4 4 5.6 5.6 7.9 7.9
2 5.9 8 7.8 11.2 10.3 15.8
3 7.6 12 9.6 16.8 12.4 23.7
4 9.2 16 11.4 22.4 14.3 31.6
5 10.7 20 13 28 16.1 39.5
10 17.6 40 20.5 56.1 24.2 79.1
20 30.3 79.9 34 112.1 38.6 158.2
50 65.7 199.8 70.9 280.3 77.3 395.4
100 121.7 399.6 128.7 560.5 137.2 790.8

Example 4.2: sums of independent gamma risks versus gamma and normal
approximations

Suppose an insurer desires to calculate VaR and RaC for a portfolio of n
independent risks, which follow a classical risk model. Each risk Xi = Yi,1 + ...
+ Yi,Ni

has a compound Poisson distribution, where Ni is Poisson distributed
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and the Yi,j’s are the individual claims. Assume that one knows the expected
number of claims E Nli i= 6 @, as well as the first and second moments E Yn ,i i 1= 7 A,
m E Y, ,i i2 1

2
= 9 C of the severity distributions, i = 1, ..., n. Let k c li i i

2
1

$=
-

, with ci =

m v, i i2
1

$
- , be the coefficient of variation of Xi. As mentioned previously, it is

often possible to assume that Xi is gamma distributed with parameters

(4.6) , , ,...,
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b1 1 1
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i
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i
i2 2 2 $= = = = .

The risk Sn = X1 ⊕ ... ⊕ Xn of the portfolio is again compound Poisson distri-
buted with corresponding parameters
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Now, it is possible to approximate Sn either by a sum of n independent gamma
risks with the parameters ai, bi in (4.6) or by a gamma risk with parameters

,
c c va l b 1 1

2 2 $= = as defined in (4.7). To illustrate, we compare the VaR and

RaC values of these approximations with the values obtained from a normal
approximation for portfolios of 5 risks with parameters (typical for the aggre-
gate claims of collectives of life insurance policies):

(4.8)
( ,..., ) ( , , , , ), , , , , , ,

( ,..., ) ( , , , , ), ( ,..., ) ( . , . , . , . , ).

m m

v v c c

l l 1 1 1 1 1 1 2 5 10 20 50

2 2 1 3 2 1 25 1 75 2 5 1 5 2i

1 5

1 5 5

$= =

= =

The parameters for the overall gamma approximation are by (4.7) equal to l =
5m, v = 2, c = 1.74642. Table 4.2 shows that the VaR and RaC values of both
gamma approximations differ only slightly, but the normal approximation
underestimates systematically these values, especially for small li’s and more
considerably for RaC than for VaR.

TABLE 4.2

VAR AND RAC COMPARISONS BY FIXED e = 0.05

VaR RaC

m normal gamma sum of ind. normal gamma sum of ind.
approx. approx. gamma approx. approx. gamma

1 22.8 25.3 25.3 26.1 32.1 32.4
2 38.2 40.9 41.0 42.8 49.1 49.5
5 78.7 81.8 81.9 86.0 92.6 93.0
10 140.6 143.8 144.0 150.9 157.6 158.1
20 257.5 260.7 260.9 272.0 278.8 279.3
50 590.8 594.2 594.4 613.9 620.7 621.2
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THE MIXED BIVARIATE HOFMANN DISTRIBUTION 
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ABSTRACT

In this paper we study a class of Mixed Bivariate Poisson Distributions by extend-
ing the Hofmann Distribution from the univariate case to the bivariate case.

We show how to evaluate the bivariate aggregate claims distribution and
we fit some insurance portfolios given in the literature.

This study typically extends the use of the Bivariate Independent Poisson
Distribution, the Mixed Bivariate Negative Binomial and the Mixed Bivariate
Poisson Inverse Gaussian Distribution.

KEYWORDS

Mixed Bivariate Independent Poisson Distributions, Hofmann Distribution,
maximum likelihood, aggregate claims distribution, recursive algorithm, stable
algorithm.

1. INTRODUCTION

In this paper we study a family of bivariate counting distributions. These dis-
tributions are of interest in actuarial sciences when one wants to work with
frequencies of dependent variables such as material damage and bodily injury
claims in third party liability automobile insurance.

The general family of bivariate distributions we present in this paper has
the following particular cases: the Mixed Bivariate Negative Binomial Distri-
bution (MBNBD) and the Mixed Bivariate Poisson Inverse Gaussian Distribu-
tion (MBPIGD). These particular cases have already been discussed in Besson
and Partrat (1992) and in Partrat (1994).

By extending the univariate Hofmann Distribution described in Walhin and
Paris (2000b), we give a general setting for studying Mixed Bivariate Indepen-
dent Poisson Distributions.

Note that we use the term Mixed Bivariate Independent Poisson Distribu-
tion in order to stress on the fact that it is a Bivariate Distribution obtained
by mixing the Bivariate Independent Poisson Distribution.
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The bivariate version of the Hofmann Distribution obtained by mixing
the Bivariate Independent Poisson Distribution will be called the Mixed Bivari-
ate Hofmann Distribution. It remains important to stress on the “Mixed”
because Bivariate Hofmann Distributions can also be constructed via the
trivariate reduction method (see Walhin and Paris (2000c)).

The rest of the paper is organized as follows. Section 2 reviews the concept
of bivariate ordinary generating functions. Section 3 describes the Mixed
Bivariate Independent Poisson Distribution. Section 4 extends the univariate
Hofmann Distribution to the bivariate case. Section 5 addresses the problem of
estimating the parameters of the distribution. Section 6 gives a stable recur-
sion for the aggregate claims distribution which is based on a two-stage algo-
rithm. Section 7 gives the fits for the data sets given in Besson and Partrat (1992)
and in Partrat (1994). The two-stage algorithm is also applied. Section 8 gives
the conclusion.

2. BIVARIATE ORDINARY GENERATING FUNCTIONS

In the following sections we will use the concept of bivariate ordinary gener-
ating functions. This is a generalization of the ordinary generating functions
(see Panjer and Willmot (1992) for an application in actuarial sciences).
Let us assume a sequence , ,� �a n m,n m ! !" , of real numbers.
The ordinary generating function of this sequence is defined as

( , ) .T u v a u v,n m
n m

mn
a

00
,n m =

33

==

!!

Obviously u and v must be chosen in such a way that the sum exists.
Ordinary generating functions have the following nice properties:

– There is a one-to-one correspondence between , ,� �a n m,n m ! !" , and
( , )T u va ,n m .

– ! !
( , )

a n m u v

T u v1
,

,

n m n m

n m
a

u v0 0

,n m

2 2

2 2
=

= =

.

– ( , ) ( , ) ( , )� �c a b T u v T u v T u vb b, , ,n m n m n m c a b, , ,n m n m n m+= + = + .

– ( , ) ( , ) ( , )c a b T u v T u v T u v, , ,n m k l n k m l
l

m

k

n

c a b
00

, , ,n m n m n m+= =- -

==

!! .

– ( , ) ( , )T u v u u T u vna a, ,n m n m2
2

= .

The philosophy behind using ordinary generating functions is the following:

– look for a relation between some sequences an,m, bn,m, cn,m, ...
– go in the (u,v) map if the calculations become easier (think of the convolu-

tion that becomes a product).
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– go back in the initial map by inverting the expression in (u,v) thanks to the
properties.

In this paper, the sequences an,m will be probability functions and so, ordinary
generating functions are just probability generating functions. In this case we
have the convergence of the bivariate sums at least if <u 1 and <v 1.

3. THE MODEL

We are going to study the random vector (N,M) of counting variables. We
will obtain the distribution of (N,M) by mixing the conditional distribution
of (N,M) with a random variable L with distribution function U(l):

( , ) ( , ) ( ).� �N n M m N n M m dUL l l
0

= = = = = =
3# (1)

Furthermore we assume that

– Conditionally on L the random variables N and M are independent.
– The conditional distributions of N and M given that L = l are univariate

Poisson with parameter respectively l and bl.

The probability generating function of (N,M), cN,M(u, v) = �[uNvM], writes 

( , ) ( ).u v e dUc l,
( ) ( )

N M
u vl bl1 1

0
=

3 - + -#
Kemp (1981) introduced the notion of Homogeneous Bivariate Distribution:

Definition: A bivariate probability generating function c(u,v) is said to be of
the homogeneous type if

c(u,v) = H (s1u + s2v),
with

H (s1 + s2) = 1 ¡

If one chooses H such that

( ) ( ),H x e e dU l( ) xl b l1

0
=

3 - +#

we immediately get that (N,M) is a Bivariate Homogeneous Distribution with
s1 = 1 and s2 = b.
Kocherlakota and Kocherlakota (1992) have given the following characteriza-
tion theorem:

Theorem: The probability generating function cN,M(u,v) is of the homogeneous
type if and only if the conditional distribution of N given N + M = z is Bino-

mial distributed: ,Bi z s s
s

1 2

1

+c m. ¡
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In our case we have that

, ,N N M z Bi z b1
1++ =
+

c m
a result that also has been obtained by Partrat (1994) and Hesselager (1996).
From Hesselager (1996) it is possible to extend the result of Kocherlakota and
Kocherlakota (1992) by

,

,

( , ) ( ),u v u v

r s s
s

r s s
s

c c r r,N M N M

1
1 2

1

2
1 2

2

1 2

= +

= +

= ++

where ( ) �u N M i ucN M
i

i

0

= + =
3

+

=

! 6 @ is the probability generating function of N+M.

4. THE MIXED BIVARIATE HOFMANN DISTRIBUTION

Walhin and Paris (2000b) described the Hofmann Distribution. Let us recall
some concepts.

Let N(t) be the number of claims occurring in the time interval (0,t] with
N(0) = 0. Assume N(t) is an infinitely divisible Mixed Poisson process (see
Grandell (1997)) for which

( , ) ( ) !
( )

( ),�n t N t n e n
t

dUP
l

lt
n

l

0
= = =

3 -#6 @ (2)

and
( , ) ( ) ,�t N t eP 0 0

( )tq
= = =

-6 @
where q(t) is a Bernstein function:

( ) ,

( ) ,

tq

q

0

0 0

$

=

( )dt
d tq completely monotone.

The probability generating function of N(t), ( ) �u uc ( )
( )

N t
N t

= 9 C, writes

( ) ( , ).u t tuc P 0( )N t = -

With the particular choice

( )
( )

, > , > , ,dt
d t

ct
p

p cq a
1

0 0 0a $=
+

(3)

126 J.F. WALHIN AND J. PARIS



we have a Hofmann process (see Hofmann (1955) or Kestemont and Paris
(1985)).
By integration, one has

( ) ( ) ( )t c a
p

ctq
1

1 1
a1

=
-

+ -
-8 B if a ≠ 1,

( ) ( )lnt c
p

ctq 1= + by continuity for a = 1.

Particular cases of interest are: a = 0 (Poisson), a = 0.5 (Poisson Inverse Gaus-
sian), a = 1 (Negative Binomial), a = 2 (Polya-Aeppli), a → ∞, c → 0, ac → b
(Neymann Type A).

For fixed t, it is possible to express the random variable N(t) in the form
of a compound Poisson distribution:

( ) ,N t Z
( )

i
i

L t

1

=
=

!

where L(t) is Poisson distributed with mean q(t), independent of the Zi which
are independent and identically distributed. Moreover as

, > ,
�

�
r s

Z z
Z z

z z
1

1
= -

=
= +6 6 @@

the probability distribution of Z is a member of the (r, s, 1) class of counting
distributions. The (r, s, 1) class is just a reparametrization of the classical
(a, b, 1) class in order to avoid confusion with the a of the Hofmann Distrib-
ution.

Thanks to this property, it is possible to use the Panjer algorithm in order
to evaluate the aggregate distribution of S:

.S X
( )

i
i

N t

1

=
=

!

It is however necessary to apply the algorithm two times: we first introduce
the random variable

,U X i
i

Z

1

=
=

!

and then

.S U
( )

i
i

L t

1

=
=

!

The distribution of U can be evaluated by the extended Panjer algorithm (see
Sundt and Jewell (1981)) whereas the distribution of S can be evaluated by
the Panjer algorithm (see Panjer (1981)).

For fixed t, in the sequel we will write Pp,c,a (n,t) for P(n,t) in order to specify
the use of the Hofmann Distribution Ho (p,c,a).
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From now on let us fix t = 1 and let us use the Hofmann Distribution in our
bivariate case. Let us assume that L is the mixing variable leading to the Hof-
mann Distribution.
From (1) and (2) we immediately get

( , ) ! !
( )!

( )
( , ),� N n M m n m

n m
n m

b
b

P b
1

1n m

m

= = =
+

+
+ ++ (4)

where it is easy to see that

( , ) ( , ).n m n mP b P1 1, , ( ) ,( ) ,p c a p c ab b1 1+ + = ++ +

In fact our model introduces dependency such that:

( , , ),

( , , ),

( ( ), ( ), ).

N Ho p c a

M Ho p c a

N M Ho p c a

b b

b b1 1

+

+

++ + +

This clearly generalizes the reasoning of Partrat (1994) where only L Gamma
or Inverse Gaussian distributed are considered.

5. ESTIMATION OF THE PARAMETERS

Let us assume that we have observed a sample (ni, mi), 1 ≤ i ≤ q of (N,M).
The log-likelihood writes

( , , , ) ( , )

( ) ( ) ( , , , ),

ln

ln ln

�l p c a N n M m

C m n m l p c a

b

b b b1

i i
i

q

i i i n m
i

q

i

q
1

11

= = =

= + - + + +

=

+
==

%

!!

where ln+m (b, p, c, a) is the log-likelihood for the univariate Hofmann Distrib-
ution Ho ((1+b)p,(1+b)c,a) with the sample (ni + mi), 1 ≤ i ≤ q and C is a term
that does not depend on the unknown parameters.

As shown in Besson and Partrat (1992), ( , , , )l p c ab b 0n m2
2

=+ at the maximum
likelihood estimate. So we immediately get

b̂ = n
m,

where n (resp. m) is the experimental mean of N (resp. M).
By standard results on the univariate Hofmann Distribution (see Hürli-

mann (1990)), we know that the maximum likelihood estimate of the mean is
the observed frequency. Therefore maximizing ln+m (b, p, c, a) implies that

p (1+ b̂ ) = n + m.
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So the estimates p and b̂ are derived analytically. The other two estimates
c and a have to be found by standard numerical maximization techniques.
Note that one has to be careful because the likelihood may be very flat and
local extrema are not excluded.

6. A STABLE TWO-STAGE RECURSION FOR THE AGGREGATE

CLAIMS DISTRIBUTION

In the conclusion of his paper, Partrat (1994) addresses the problem of find-
ing recursions like Panjer’s recursion (see Panjer (1981)) in order to obtain the
distribution of the aggregate claims.

Let Xi be the random variable representing the i th claim amount of type
N and Yi the random variable representing the i th claim amount of type M.
We will assume, as usual, that the Xi and Yi are mutually independent random
variables. They are also arithmetic. The Xi are identically distributed. The Yi
are identically distributed. We also assume that the Xi and Yi are independent
of N and M. We are interested in the distribution of

( , ) , .S T X Yi i
i

M

i

N

11

=
==

!!e o
In the case of the Mixed Bivariate Negative Binomial Distribution the answer
to Partrat’s question was given by Hesselager (1996). In his paper, Hesselager
(1996) gives a stable algorithm for the evaluation of the joint probability func-
tion of (S,T) for the particular case of the Mixed Bivariate Negative Binomial
Distribution, i.e. when L is Gamma distributed.

In this section we will use the same methodology as in Hesselager (1996)
in order to derive stable algorithms for the distribution of (S,T). As we know
that U is infinitely divisible, it follows from Maceda (1948) that the distribu-
tion of (N,M) is also infinitely divisible.

Then we know from Sundt (1999a) that (N,M) can be interpreted as a bivari-
ate Compound Poisson distribution:

( , ) , ,N M Z Wi i
i

L

i

L

11

=
==

!!e o
where the Zi and Wi are not independent and L is Poisson distributed inde-
pendently of the (Zi, Wi).

To be able to use the bivariate Panjer algorithm, we introduce the auxiliary
vectors

( , ) , ,U V X Yi i
ii

WZ

11

=
==

!!e o
and then

( , ) , .S T U Vi i
i

L

i

L

11

=
==

!!e o

THE MIXED BIVARIATE HOFMANN DISTRIBUTION 129



We will use the following notation:

Probability functions

( , )� N n M m= = ( , ),p n m=

( )� K k= ( ), ( ),f k K N MK= = +

( )� X x= ( ),f xX=

( )� Y y= ( ),f yY=

( , )� S s T t= = ( , ),f s t,S T=

( , )� n mZ W= = ( , ).f n m,Z W=

Probability generating functions

( )ucX ( ) ,f x uX
x

x 0

=
3

=

!

( )vcY ( ) ,f y vY
y

y 0

=
3

=

!

( )ucK ( ) ,f k uK
k

r 0

=
3

=

!

( , )u vc ,N M ( , ) ,p n m u vn m

mn 00

=
33

==

!!

( , )u vc ,S T ( , ) ,f x y u v,S T
x y

yx 00

=
33

==

!!

( , )u vc ,Z W ( , ) .f n m u v,
n m

mn
Z W

00

=
33

==

!!

The bivariate Panjer’s algorithm described in Walhin and Paris (2000a) as well
as in Sundt (1999b) and Ambagaspitya (1999) will be used in order to find the
distribution of (S,T) knowing the distribution of (U,V).
In a first time we are interested in deriving the distribution of (U,V). There-
fore we first need to derive the distribution of (Z, W).
Remember that we have

( , ) ( ).u v u vc c r r,N M N M 1 2= ++

We find

( , ) ,

,

u v e

e

c ,
( ( )( ))

( )( ( , ))
N M

u v

u v

q b b r r

q b c

1 1

1 1 ,Z W

1 2=

=

- + - + +

- + -

where
( , ) ,

( , ) ( )
(( )( ( )))

.u v
u v

c

c q b
q b r r

0 0 0

1
1

1 1
,

,

Z W

Z W
1 2

=

= -
+

+ - +
(5)
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(Z, W) also has a bivariate homogeneous distribution. Indeed

( , ) ( ),

( ) ( )
(( )( ))

,

( ) .

u v G u v

G x
x

G

c r r

q b
q b

r r

1
1

1 1

1

,Z W 1 2

1 2

= +

= -
+

+ -

+ =

The Taylor expansion around (1+ b) of (5) gives after a few calculations
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As we have
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c
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c
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8 B

we immediately get
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with
,W Z W= +

and
,

.

r b

r b
b

1
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1
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=
+
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+

Indeed
( ) ( , )

( )
(( )( ))

u u u

u

c c

q b
q b

1
1

1 1

,W Z W=

= -
+

+ - (6)

A Taylor expansion around (1+ b) of (6) immediately shows that

( ) ! ( ) ( )( )
( )
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.� W w w
c w

c
c
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a G a b

b
b1
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With the particular form of the distribution of W, we immediately find, with
( ) ( )�f w W wW = = ,

( )
( )

( )
( )

( )
( )( )

, > ,f w
f w

c
c

c
c

w wb
b

b
b a

1 1 1
1

1 1
1 2 1

1
W

W

-
=

+ +
+

+
+ +
+ -

which is well in the form of the (r, s,1) class with
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Now let us study the distribution of

( , ) ( ... , ... ).U V X X Y YZ W1 1= + + + +

As W is a member of the (r,s,1) class we have:

( ) ( ) ( ) ( ).ru du
d u f r s uc c1 1W W W- = + +6 @ (7)

We are now able to extend Hesselager’s methodology to find the aggregate
claims distribution.

Theorem 1

We have

(8)

(9)

( , ) ( ),

( , ) ( , )

( , ), ( , ) ( , ),
( , ) ( ),

( , ) ( , )

( , ), ( , ) ( , ),

f f
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s f n m
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f f

f n m r n
s f n m
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r

r

1 0 1
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1 1 1 0

0 1 1

1

1 1 0 1
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,

,

, ,

,

W

W

Z W

Z W Z W

Z W

Z W

Z W Z W

Z W

1

1

2

2

2

1

$

$

=

= + -

+ - =
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= + -

+ - =

b

b

l

l
(10)

(11)

Proof

We already noticed that

( , ) ( ).u v u vc c r r, WZ W 1 2= + (12)
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By differentiating (12) with respect to u, and using (7), we get

( ) ( , ) ( ( ) ( ) ( , )).r u r v u u v f r s u vr r c r c1 1, ,WZ W Z W1 2 12
2

- - = + +

Inverting this expression we immediately get (8) and (9).
(10) and (11) are derived similarly. ¡

Theorem 2

We have

(13)

(14)

( , ) ( )
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(15)

(16)

(17)

Proof

As fU,V (0,0)=cZ,W(fX(0), fY(0)) we immediately find (13) by using equation (5).
From (9) we get

(18)( , ) ( ) ( , ) ( , )

( , ) ( ) ( , )
( ) ( , ) ( , ).

f n m r n
s f n m r f n m

nf n m r n f n m
r s f n m r nf n m

r r

r
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1 1

1 1

1 1
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, ,
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Z W Z W
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1
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+ + - + - (19)

THE MIXED BIVARIATE HOFMANN DISTRIBUTION 133



Multiplying both sides of (19) by ( ) ( ) ( )u u u vc c cX
n

du
d

X Y
m1- and summing on n =

1 → ∞, m = 1 → ∞ gives
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Inverting and rearranging this expression gives (16).
Multiplying both sides of (19) by ( ) ( ) ( )u u uc c c 0X

n
du
d

X Y
m1- , summing on n = 2

→ ∞, m = 0 → ∞ and adding ( , ) ( )f u uc1 0, du
d

XZ W on both sides gives
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Inverting and rearranging this expression gives (14).
(15) and (17) are derived similarly.

Knowing the distribution of (U,V) it remains to evaluate the distribution of
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This is easily done with the bivariate Panjer’s algorithm.
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7. NUMERICAL APPLICATIONS

In this section we fit two data sets given in Partrat (1994).
Data set 1 gives the yearly frequencies of hurricanes affecting two zones

(zone 1 and zone 3) of the United States.
Data set 2 gives the yearly frequencies of an automobile third party liability

portfolio, divided in material damage (type 1) and bodily injury (type 2) claims.

TABLE 1

DATA SET 1

zone3

zone1 0 1 2 3

0 obs 27 9 3 2
a = 0 27.67 13.04 3.08 0.49
a = 0.0057 27.59 13.05 3.09 0.49

1 obs 24 13 1 0
a = 0 20.45 9.66 2.29 0.36
a = 0.0057 20.47 9.69 2.29 0.36

2 obs 8 2 1 0
a = 0 7.57 3.59 0.85 0.14
a = 0.0057 7.59 3.59 0.85 0.13

3 obs 1 0 2 0
a = 0 1.88 0.89 0.21 0.03
a = 0.0057 1.88 0.89 0.21 0.03

For this data set, the maximum likelihood procedure for the Mixed Bivariate
Hofmann Distribution (a = 0.0057) gives almost the Bivariate Independent Pois-
son Distribution (a = 0).

The characteristics of the fit are given in the next table. In order to compute the
x2 statistic, some cells have been grouped in order that the theoretical frequencies
are all larger than 1 and about 80% of the theoretical frequencies are larger than 5.

In the present case we work with 8 classes: (0,0), (0,1), (1,0), (1,1), (2,0),
(0,2+) and (1,2+), (2,1+), (3+,0+).

TABLE 2

PARAMETER ESTIMATES, LOGLIKELIHOOD AND x2 TEST – DATA SET 1

BIPD MBHD

b 0.6377 0.6377
p 0.7419 0.7419
c 0.5137
a 0 0.0058

l –187.9615 –187.9607
x2 3.73 3.77
df 5 3
p-value 0.589 0.287
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A likelihood ratio test does not reject the null hypothesis that Bivariate Poisson
Distribution is adequate against the more general model Mixed Bivariate Hof-
mann Distribution. Within the latter model we cannot reject the fact that both ran-
dom variables are independent. In this case the principle of parsimony indicates
that the Bivariate Independent Poisson Distribution (BIPD) should be retained.
Now let us study our second data set:

TABLE 3

DATA SET 2

Bodily injury

Material damage 0 1 2

0 obs 171345 918 2
a = 0 171086.9 946.0 2.6
a = 1 171348.8 897.1 4.7
a = 0.5 171348.7 897.5 4.6
a = 0.2982 171345.8 898.6 4.5

1 obs 8273 73 0
a = 0 8726.4 48.2 0.1
a = 1 8275.5 86.3 0.7
a = 0.5 8279.5 84.9 0.8
a = 0.2982 8289.4 82.8 0.8

2 obs 389 5 0
a = 0 222.5 1.2 0.0
a = 1 398.2 6.2 0.1
a = 0.5 391.5 6.9 0.1
a = 0.2982 381.9 7.6 0.1

3 obs 31 1 0
a = 0 3.8 0.0 0.0
a = 1 19.1 0.4 0
a = 0.5 21.3 0.6 0
a = 0.2982 23.5 0.8 0

4 obs 1 0 0
a = 0 0.0 0.0 0.0
a = 1 0.9 0.0 0.0
a = 0.5 1.3 0.0 0.0
a = 0.2982 1.9 0.1 0.0

TABLE 4

PARAMETER ESTIMATES, LOGLIKELIHOOD AND x2 TEST – DATA SET 2

MBPD MBNBD MBPIGD MBHD

b 0.1084 0.1084 0.1084 0.1084
p 0.0510 0.0510 0.0510 0.0510
c 0.8934 1.8235 3.0695
a 0 1 0.5 0.3006

l –43251.57 –43143.09 –43141.79 –41141.27
x2 369.76 11.54 8.72 7.44
df 5 4 4 3
p-value 0 0.021 0.068 0.059
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The MBPD and MBNBD are rejected at the 5% level. The MBPIGB and
MBHD are not rejected at the 5% level. The grouped cells are: (0,0), (0,1),
(1,0) , (1,1), (2,0), (2,1), (3,0), the rest.

Let us work with the portfolio given in table 3 and the Mixed Bivariate
Hofmann fit of this portfolio.

Let us assume that the distributions X (material damage) and Y (bodily
injury) are given by:

TABLE 5

CLAIMS DISTRIBUTIONS

X fX(x) Y fY(y)

1 0.2 5 0.2
2 0.2 10 0.36
3 0.2 20 0.22
4 0.1 50 0.11
5 0.1 100 0.11
10 0.1
20 0.1

We find the aggregate claims distribution:

TABLE 6

AGGREGATE CLAIMS DISTRIBUTION

S = 0 S = 1 S = 2 S = 3 …

T = 0 0.9410275 0.0010876 0.0019589 0.0000042
T = 5 0.0100336 0.0000219 0.0000395 0.0000001
T = 10 0.0101349 0.0000223 0.0000403 0.0000001
T = 15 0.0102375 0.0000228 0.0000411 0.0000001
…

Obviously, as the span of the Y claims is 5, it is most convenient (and less
time consuming) to rescale the Y claims by division by 5 and then to revert the
scaling for the final bivariate aggregate claims distribution.

8. CONCLUSION

In this paper we have extended the use of traditional Mixed Bivariate Indepen-
dent  Poisson Distributions into a general family of bivariate counting distri-
butions. This family has interesting properties. On the one hand it authorizes
a maximum likelihood estimation in a univariate setting. On the other hand
it gives stable algorithms for the evaluation of the bivariate aggregate claims
distribution.

The fits of some insurance portfolios are improved thanks to the use of
the Mixed Bivariate Hofmann Distribution.
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REMARK

A first version of this paper has been presented at the Royal Statistical Society
Conference 1999, Warwick.

Three anonymous referees are greatly acknowledged for very detailed and
constructive comments on earlier versions of this paper.
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OPTIMAL LOSS FINANCING UNDER BONUS-MALUS CONTRACTS
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ABSTRACT

The paper analyses the question: Should an insurance customer carry an occurred
loss himself, or should he make a claim to the insurance company? This ques-
tion is important within bonus-malus contracts with individual experience
adjustments of the premium. The analysis model includes a bonus hunger
strategy where the customers prefer the most profitable financial alternative,
that is, the alternative which represents the lowest rate of interest. Hence the
loss of bonus after a claim is calculated as a rate of interest paid from the
customer to the insurer. Within this model the paper outlines the existence of
a true compensation function and a relative cost function for each customer.
A set of properties for bonus-malus contracts are presented and discussed.
A concrete example of a bonus-malus system and an insurance compensation
function illustrates the theoretical framework in a practical manner.

KEYWORDS

Insurance contracts, bonus-malus, bonus hunger, true compensation, true
deductible, relative cost function, optimal loss financing.

1. INTRODUCTION

Should an insurance customer carry an occurred loss himself, or should he
make a claim to the insurance company? This question is quite fundamental
under bonus-malus contracts, that is, under insurance contracts with bonus-
malus (individual experience rating or no-claim) adjustments, like e.g. motor
insurance contracts. It is the general tendency for insurance customers to carry
small losses themselves to avoid increases of future premium costs which
explains the relevance of the question. This tendency is called the bonus
hunger of the insurance customers. Bonus hunger has been widely discussed
and analyzed in actuarial literature, see e.g. Lemaire (1995), chapter 7, where
pp. 101-102 contains a partial review of this literature. The bonus hunger
question is more relevant to a customer the harder the loss of bonus rules are,
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the higher the premium is, and the smaller an occurred loss is, and vice versa.
The aim of this paper is to outline and describe how this bonus hunger effect
may be taken into account within the framework of optimal loss financing
under bonus-malus contracts seen from the customer’s point of view.

The question of optimal loss financing is important not only at the time
of the loss occurrence, but also when the customers purchase their insurance
contracts. If it is rarely worth to let the insurance company carry a loss, why
then purchase the contract? This question is in fact part of the general prob-
lem of purchasing optimal insurance coverage, which has been extensively
studied under varying conditions in insurance economics. Holtan (2001) analy-
ses this problem particularly for bonus-malus contracts. But to do so, we first
have to outline the necessary concepts of – and insight to – bonus-malus con-
tracts, which is part of the objective of this paper.

The paper is organized as follows: Sections 2 and 3 describe the general
insurance contract and the bonus hunger strategy of the customers. Section 4
outlines the general existence of a true compensation function for all insur-
ance contracts with bonus-malus adjustments. Section 5 outlines the existence
of relative cost functions for the customer and their general properties. Sec-
tions 6 and 7 illustrate some of the ideas in sections 4 and 5 by doing special
assumptions on the bonus-malus system and the insurance compensation
function. Section 8 gives some concluding remarks.

2. THE GENERAL INSURANCE CONTRACT

Consider an insurance buyer representing a risk of loss X, where X is a stochas-
tic variable with probability density function f (x) where x ≥ 0. The insurance
contract is characterized by a continuous premium process p (t) transferred
from the insured to the insurer at time t, and a compensation c (x) transferred
the opposite way if loss X = x obtains. The compensation c(x) is hereby called
the contractual compensation. Any admissible contractual compensation func-
tion satisfies 0 ≤ c (x) ≤ x for all x ≥ 0. This constraint reflects that there is no
compensation if there is no loss (c (0) = 0) and that the customer cannot make
a profit by gambling on his or her risk (c (x) $ x).

3. THE BONUS HUNGER STRATEGY

Let the premium process p(t) depend on a bonus-malus system. In principle a
bonus-malus system gives the insurance customer a future premium increase
if a loss occurrence is compensated by the insurer, and a premium reduction
if no loss is compensated. The premium increase is called the loss of bonus,
and depends usually only on the number of compensated claims, and not
on their amounts. Hence, a customer often saves money by self-financing an
occurred loss in order to avoid future premium increase, instead of financing
the loss by a compensation from the insurer, and thereby accepting a future
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premium increase. This phenomenon is called bonus hunger. After a loss
occurrence the customer’s decision problem is hereby to choose the most
profitable financial alternative. Trivial investment theory solves this problem
by using the rate of interest as the optimal financial criteria, that is, the cus-
tomer should prefer the financial alternative which represents the lowest rate
of interest.

In order to define a bonus hunger strategy (a financial decision rule) for
the insurance customer, we use the following notations and assumptions: The
premium paid at time t after a loss occurrence at time s is denoted by p1(s + t)
if the loss is reported to the insurer, and by p0(s + t) if the loss is not reported.
Assume p0(s + t) and p1(s + t) to be continuous non-stochastic premium pro-
cesses for all t > 0.

Definition 1: Given a loss occurrence at time s with a fixed loss amount X = x,
the constant discount rate d(x) determined by the net present value equation 

( ) ( ( ) ( ))c x e p s t p s t dttd
1 0

0

= + - +
3

-# (1)

is a relative measure of the loss of bonus following that loss. ¡

The discount rate d(x) ∈ G–∞,∞H is by definition the effective rate of interest for
the insurance compensation. To choose the optimal financial alternative after
a loss occurrence, the rate of interest for the insurance compensation has to
be compared to the effective rate of interest for the financial alternatives, that
is, self-financing by savings, by borrowing or by a combination of savings and
borrowing, according to the liquidity of each customer. Let l1 be the borrow-
ing rate and l2 be the saving rate (the return rate) at the loss occurrence time s,
and assume l1 and l2 to be positive time-constant parameters. The non-sto-
chastic rate of interest for self-financing, l, is then defined by (for simplicity
disregard taxes):
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if financed by savings,

if a share of b is financed by borrowing and a share of
(1 – b ) is financed by savings.

Hence the bonus hunger strategy for the insurance customer is identified by:

If d > l ⇒ Self-financing.

If d < l ⇒ Financing by compensation from the insurer.

If d = l ⇒ Indifference between the two choices of financing.
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4. THE TRUE COMPENSATION FUNCTION

A loss of bonus after a claim is obviously paid by the customer, not by the
insurer. In principle, this fact identifies the loss of bonus as a deductible paid
by the customer to the insurer over a period of time. Hence the true deductible
of the customer is a combination of the contractual deductible, x – c (x), and
the loss of bonus. Thus we may define the excess point of the true deductible
as that loss amount which makes the insurance customer indifferent between
the two choices of loss financing, that is, when d = l. The existence of a true
deductible obviously generates a corresponding existence of a true compensa-
tion, which differs from the earlier defined contractual compensation c(x). Exact
expressions of the true compensation and the true deductible are defined as
follows:

From (1) we define the fixed amount z when d = l:

( ( ) ( )) .z e p s t p s t dttl
1 0

0

= + - +
3

-# (2)

z is in this context a constant because of the non-stochastic assumptions of
l1, l1, p0(s + t) and p1(s + t).

From (1) and (2) we obtain the following modifications of the bonus hunger
strategy:

If d > l ⇒ c(x) < z ⇒ Self-financing.

If d < l ⇒ c(x) > z ⇒ Financing by compensation from the insurer.

If d = l ⇒ c(x) = z ⇒ Indifference between the two choices of financing.

Hence, if we assume the customers to follow this optimal bonus hunger strat-
egy, we have:

Definition 2: The true compensation of an occurred loss X = x is defined by:

if c(x) > z
*( )

( )
c x

c x z

0
=

-*
if c(x) ≤ z ¡

Definition 3: The true deductible of an occurred loss X = x is defined by:

if c(x) > z
*( ) *( )

( )
d x x c x

x c x z

x
= - =

- +*
if c(x) ≤ z ¡
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x – c(x) + z is the excess point of the true deductible, where x – c(x) is the
excess of the contractual deductible and z is the excess of the deductible gen-
erated by the loss of bonus. Explicitly we may define:

Definition 4: A bonus-malus contract has a contractual compensation func-
tion c (x) and a true compensation function c*(x). ¡

From (2) we observe that the lower l is, the higher z is, which by definition 2 gives
a lower true compensation c*(x). Hence we introduce the following proposition:

Proposition 1: A decreasing force of interest in the money market generates a
decreasing true compensation, and hence a less favorable insurance profitabil-
ity for the insurance customers, and vice versa. ¡

Within this framework there exists a lower and an upper limit of d*(x); both
greater than zero. The lower limit is defined when l → ∞, that is, when the
relative cost of self-financing goes to infinity, while the upper limit is defined
when l → 0, that is, when the relative cost of self-financing goes to zero. Let
zmin = liml→ ∞z and zmax = liml→ 0z. Hence by definition 3 the lower and upper
limit of d*(x) is defined by:

< , ( ) *( ) , ( )min minx x c x z d x x x c x z0 min max# #- + - +" ", , (3)

By definition 2 we hereby also define the lower and upper limit of c*(x):

, ( ) < *( )< , ( )max maxc x z c x c x z0 0 minmax- -" ", , (4)

Hence by (4) and definition 2 we state two important propositions:

Proposition 2: Independent of the contractual compensation function, the true
compensation function has always an individual deductible. ¡

Proposition 3: The compensation function of a bonus-malus contract without
a contractual deductible is equivalent to the compensation function of a stan-
dard insurance contract with an individual deductible. ¡

Proposition 3 is based on the fact that the true compensation function max
(c(x) – z, 0) reduces to max (x – z, 0) when the bonus-malus contract has no
contractual deductible. Since z in this context is the non-stochastic excess value
of the deductible generated by the loss of bonus, the compensation function
max (x – z, 0) has by definition the same structure as a standard insurance
contract with a deductible z.

Note firstly that even if z is paid over a period of time by increased pre-
miums within a bonus-malus contract, z can nevertheless be considered as a
fixed deductible at the time of the loss occurrence. And, not to forget, the cus-
tomers act as if z is a fixed deductible because they have to make a decision
at the time of the loss occurrence. Note secondly that z depends on x via the
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FIGURE 1: The general ReCoF – The relative cost function.

premium process p(t) and the bonus-malus rules. Hence there exists different
compensation functions max (x – z, 0) for different customers. This existence
does not, however, influence the validation of proposition 3 if we allow indi-
vidual deductibles in standard insurance contracts. In general we have:

Proposition 4: There exists different true compensation functions for different
customers. ¡

5. THE RELATIVE COST FUNCTION

Definition 1 in section 3 expresses the rate of interest for the insurance com-
pensation on the assumption that the loss amount is already known. If we do
not know the size of the loss amount, or more precisely, if the loss amount is
a stochastic variable, the rate of interest will also be a stochastic variable. The
sample space of this stochastic rate of interest generates something we may
call the relative cost function. Hence this function is identified by:

Definition 5: The sample space of the stochastic discount rate d(X) ∈ G–∞,∞H
determined by the net present value function

( ) ( ( ) ( ))c x e p s t p s t dttd
1 0

0

= + - +
3

-#

is called the relative cost function for all possible loss amounts. ¡

The relative cost function, or ReCoF for short, expresses the relationship between
all possible loss amounts x ≥ 0 and their correspondingly rate of interest d for
the insurance compensation. The practical utility of this relationship is obvi-
ous: At the beginning of the insurance period the ReCoF gives the insurance
customers information about their true compensation and their true deductible
if a loss occurs during the period. This information is essential within the
practical choice of insurance coverage. Figure 1 illustrates the general ReCoF
and some of the correspondingly vital information.
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In figure 1 we observe that the relative cost (the rate of interest d) for insur-
ance compensation is high for small claims and low for large claims, or more
precisely, the ReCoF has a decreasing form. The discount component of the
present value function in definition 4 makes this characteristic common to all
existing bonus-malus systems.

Three essential values are marked out at the horizontal x-axis in figure 1:
The left hand value, x – c (x) + zmin, is the lower limit of the excess point of the
true deductible, while the right hand value, x – c(x) + zmax, is the upper limit of
the excess point of the true deductible. The middle value, x – c (x) + z, that is,
when d(x) = l, is the real excess point of the true deductible for all possible
loss amounts X = x given a time-constant rate of interest for self-financing l.
As we e.g. observe, an uncritical reporting of losses with amounts close to
x – c (x) + zmin may generate astronomical sized rate of interests for insurance
compensation for the customers.

The left hand value and the right hand value at the x-axis generate three
essential outcomes of an occurred loss X = x:

Outcome 1: < ( ) < ( )<x x c x z c x z0min min+- +

Outcome 2: ( ) < < ( ) < ( )<x c x z x x c x z z c x zmin minmax max+- + - +

Outcome 3: > ( ) ( )>x x c x z c x zmax max+- +

Common to outcome 1 and 3 are their independence of the market para-
meter l. In other words, the optimal financial choice of outcome 1 is always
self-financing, and the choice is hereby independent of l. In the same way,
the optimal financial choice of outcome 3 is always a financing by insurance
compensation. Hence this choice is also independent of l. Note that if a loss
within outcome 1 is less that the excess point of the contractual deductible,
then the customer cannot demand any insurance compensation, and hence
there exists no financial choice at all.

Outcome 2 is more complex: The financial choice is, unlike outcome 1 and 3,
directly dependent of the market parameter l. Within our model, where l is
assumed to be a time-constant parameter, there exists two different outcomes
for outcome 2:

Outcome 2a: ( ) < < ( ) < ( )<x c x z x x c x z z c x zmin min+- + - +

Outcome 2b: ( ) < < ( ) < ( )<x c x z x x c x z z c x zmax max+- + - +

Hence, by the bonus hunger strategy in section 3, outcome 2a generates an opti-
mal self-financing, while outcome 2b generates an optimal financing by insur-
ance compensation. It should be noted that the optimal financial choices
within outcome 2 are modified if l is assumed to be a stochastic variable; see
section 8 for further discussion/comments on this.

From definition 4 we observe that the ReCoF also depends on the individual
premium processes p0(s + t) and p1(s + t). These processes are again dependent
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on the individual premium tariff criteria of each customer. Hence we admit
the existence of different ReCoF for different customers, and hence also the
existence of different true deductibles and different true compensations for
different customers. We observe e.g. that the higher premium costs a customer
pays, the higher is his or her rate of interest for insurance compensation, and
hence the higher is his or her true deductible. Given identical losses X = x,
a customer with high premium costs has to pay a higher rate of interest for
insurance compensation than a customer with lower premium costs. Hence, a
high risk individual is not only punished once by a high premium, but twice
by also a high rate of interest of insurance compensation (which is equivalent
to a high true deductible).

According to proposition 4 we conclude this section by the following
proposition:

Proposition 5: There exists different relative cost functions for different cus-
tomers, and all functions are decreasing. ¡

6. THEORETICAL EXAMPLE

To give further illustrations on the optimal decision problem of the customers,
we do the following assumptions of the bonus-malus system and the contrac-
tual compensation function:

Bonus-malus system: Let the insurance contract depend on a bonus-malus
system which is characterized by a continuous bonus scale where the customer
receives a constant premium reduction of percentage (1-k) if no loss is com-
pensated, and a constant premium increase of amount m if a loss is compen-
sated; 0 < k < 1 and m > 0. This system is a modified version of a credibility
system with geometric weights described by Sundt (1988), and is chosen because
of simple calculating properties. Another modification of this system has been
practiced within motor insurance for 10 years (1987-97) by the Norwegian
insurance company Storebrand Ltd. (the earlier name of the norwegian part
of if P&C Insurance); see a detailed description in Neuhaus (1988).

Let us interpret p as the premium paid by the customer at time s, i.e. at the
time of the loss occurrence. Hence we have p0(s + t) = pkt and p1(s + t) =
(p + m)kt. From (1) we then find:

( ) ( )lnc x e mk dt k
m

d
t td

0

= =
-

3
-# (5)

if c(x) > 0
( ) ( ) ln
x c x

m k

not defined

d+ =
+

Z

[

\

]]

]]
(6)

if c(x) = 0



And from (2) we find:

( ) .lnz e mk dt k
m

l
t tl

0

= =
-

3
-# (7)

The bonus hunger effect within the credibility system with geometric weights
has been studied by Sundt (1989). His bonus hunger strategy is close to our
strategy, but unlike us, he does not give attention to the optimal financial
choice of the customers, i.e. he does not use relative cost as the sufficient bonus
hunger criteria.

Contractual compensation: Let the contractual compensation function follow
the ordinary excess of loss function identified by:

if x > d
( )c x

x d

0
=

-*
if x ≤ d

where d is a fixed amount called the contractual excess point. Hence the spec-
ified bonus-malus system and the contractual compensation function give us
specified expressions of d(x), c*(x) and d*(x) as follows:

if x > 0
( )

ln
x x d

m k

not defined
d = -

+
Z

[

\

]]

]]
(8)

otherwise

if > lnx d k
m

l+
-*( , , , ) lnc x k m

x d k
m

l l

0

=
- -

-
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[

\

]]

]]
(9)

otherwise

if > lnx d k
m

l+
-*( , , , ) lnd x k m

d k
m

x
l l=

+
-

Z

[

\

]]

]]
(10)

otherwise

where d + m / (l –lnk) is called the true excess point.

It should be noted that the expressions (8)-(10) contain an underlying assump-
tion of a fixed dependency between the contractual excess point d and the
premiums p0(s + t) and p1(s + t). In other words; in (8)-(10) d can not be inter-
preted as a varying parameter. See section 7 for a wider discussion on this.
From (3) and (10) we find the lower and upper limit of d*(x):

zmin = liml→∞ ( )lnk
m

l -
= 0 zmax = liml→0 ( )lnk

m
l -

= lnk
m

-
.
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Hence we have:

< ( , ) *( ) ( , / ).min min lnm d d x x d m k0 # # - (11)

And from (4) and (9) we also find the lower and upper limit of c*(x):

( , / )< *( )< ( , )lnmax maxx d m k c x x d0 0- + - (12)

The assumed bonus-malus system in this example is, as mentioned, chosen
because of it’s simple analytical calculating properties. Most other bonus systems
in force today are quite different, and also much more difficult to calculate
correspondingly. Hence, the only practical way to (numerical) calculate the
expressions (8)-(12) for most systems is to use data simulation methods.

7. NUMERICAL STUDIES

There are several ways to study the expressions (8)-(10) numerically. Here we
briefly present two of them:

Study 1:

Let k = 0.87 (like the old system in Storebrand) and let d = 0. Hence table 1
shows some values of d(x, m) when $500 ≤ x ≤ $5000 and $100 ≤ m ≤ $500.
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As earlier indicated, we observe from the table that the smaller loss amounts x
and the higher premium increase m after a loss compensation, the higher rate
of interest d is for the insurance compensation, and vice versa. A combination
of a small amount x and a high premium increase m gives very high rate of
interest for the insurance compensation, and of course a considerable financial
loss for the customer. The shadowed cells indicate when the rate of interest is
positive, while the other cells represent negative values. In study 1 the lower
limit of the excess point of the true deductible, x – c (x) + zmin, is zero (by
straightforward calculation), while the upper limit of the excess point of the
true deductible, x – c (x) + zmax, is m / (–lnk) = m / 0.139.

TABLE 1

x = 500 x = 1000 x = 2000 x = 3000 x = 4000 x = 5000

m = 100 6,1% –3,9% –8,9% –10,6% –11,4% –11,9%

m = 200 26,1% 6,1% –3,9% –7,3% –8,9% –9,9%

m = 300 46,1% 16,1% 1,1% –3,9% –6,4% –7,9%

m = 400 66,1% 26,1% 6,1% –0,6% –3,9% –5,9%

m = 500 86,1% 36,1% 11,1% 2,7% –1,4% –3,9%



FIGURE 2

Study 2:

Like study 1 let k = 0.87 and d = 0. Let m take three different values: m =
$100, m = $300 and m = $500. Hence figure 2 shows a two dimensional fig-
ure of the true excess point d + m / (l – lnk) as a function of the market inter-
est l (where 0 ≤ l ≤ 20%) for the three values of m.
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In figure 2 we observe – as earlier pointed out generally in proposition 1 –
that the higher the market interest l is, the lower is the true excess point, and
hence the more favorable the insurance contract is for the insurance customers.
Or in other words; an increasing force of interest in the money market generates
a lower true excess point and more reported claims to the insurance company,
and vice versa. And as we observe, this effect is stronger the harder the pre-
mium increase m is after a claim.

Premium vs. the contractual excess point

Recall the underlying assumption of a fixed dependency between the contrac-
tual excess point d and the premiums p0(s + t) and p1(s + t) in the expressions
(8)-(10) in section 6. In a real world the premium size is obviously influenced
by the size of d. Hence, if we want to interpret d as a varying parameter, we
have to make concrete assumptions about the dependency between the pre-
mium and the customer’s choice of d. One very simple method is to let the
premium = p (d) = wp where w = exp(–bd). w is here interpreted as the per
cent discount of the deductible d: p(0) = p and p (∞) = 0. The parameter b has
to be determined such that w generates reasonable values.

The above premium modifications give p0(s + t) = exp(–bd)pkt and p1(s + t)
= exp(–bd)(p + m)kt. Hence formula (5) in section 6 is e.g. corrected to c (x) =
mexp(–bd) / (d – lnk), which again leads to similarly corrections in the expres-
sions (6)-(12).



8. CONCLUDING REMARKS

The outline of optimal loss financing under bonus-malus contracts is based
on a set of assumptions of the purchasing behavior of the customers. Two
assumptions may generate some discussion: 1) The loss of bonus z after a loss
occurrence will always be paid by the customer, and 2) the customer will always
choose the most profitable financial alternative after a loss occurrence.

An objection to the first assumption may be that the loss of bonus z
becomes zero if the customer breaks the insurance contract the year after the
claim. This situation is, however, taken care of by definition (2) of z in section 4.
Definition (2) gives in this case z = 0 since both p1(s + t) = 0 and p0(s + t) = 0
after the contract break. Hence, the value of z is based on the individual
(behavior of the) customer, as earlier pointed out in section 4. If the time
horizon of the customer is to break the contract the year after a loss, then z
becomes zero and the bonus-malus contract becomes a one period standard
contract without malus adjustments.

An objection to the second assumption may be that the customers may
choose insurance compensation even if it is more optimal to carry occurred
losses themselves. Hence c*(x) in definition 2 in section 4 becomes negative.
This will typically happen if the customer is forced to choose insurance com-
pensation because of his or her bad financial position. This situation may be
eliminated if the insurer offers a loan facility as a supplement to the bonus-
malus insurance contract, and hence takes care of the financial needs of the
insurance customer. These needs are probably underestimated by insurance
companies as well as by banks. Holtan (1995) gives some ideas of financial
services based on these needs. Anyway, because the aim of this paper is to
find optimal loss financing properties under bonus-malus contracts, the sec-
ond assumption seems after all to be a reasonable assumption.

The question of optimal loss financing is directly linked to insurance pur-
chasing questions like: If it is rarely worth to let the insurance company carry
a loss, why then purchase the contract? Or in other words: Should – or should
not – an individual buy a bonus-malus insurance contract? And if so, what
insurance coverage should he or she prefer? These questions lead to a classical
field of insurance economics: optimal insurance coverage. Holtan (2001), which
is based on – and a direct extension of – this paper, analyses these questions
particularly for bonus-malus contracts.

As a concluding remark we may put forward a final question: What does
all this mean for the future and the design of insurance contracts with bonus-
malus scales? A good prediction seems to be that bonus-malus systems will
still exist within products and markets where individual claim experience is
a significant risk parameter. However, the ordinary systems seem to be more
customer friendly as they will be more and more part of the marketing pro-
filed product advantages within the insurance companies; see e.g. Holtan
(1994) and a reply paper by Lemaire & Zi (1994) where such a system is pre-
sented, discussed and analyzed. On the other hand, this movement generates
an even stronger emergence of individual price adjustments which is not com-
municated openly to the customers. These price adjustments will take care of
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the real need for at least limited differentiated experience rating, and hence be
based on pure statistical rating techniques, preferably on customer – not
product – level. In other words, we may tend to have two bonus-malus sys-
tems which influence each customer, one open and communicative system
and one “black box” closed and not communicative system. This trend will
obviously be a consequence of the increased competition world wide within
the non-life insurance markets.
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ABSTRACT

The paper analyses the questions: Should – or should not – an individual buy
insurance? And if so, what insurance coverage should he or she prefer? Unlike
classical studies of optimal insurance coverage, this paper analyses these ques-
tions from a bonus-malus point of view, that is, for insurance contracts with
individual bonus-malus (experience rating or no-claim) adjustments. The paper
outlines a set of new statements for bonus-malus contracts and compares them
with corresponding classical statements for standard insurance contracts. The
theoretical framework is an expected utility model, and both optimal coverage
for a fixed premium function and Pareto optimal coverage are analyzed. The
paper is an extension of another paper by the author, see Holtan (2001), where
the necessary insight to – and concepts of – bonus-malus contracts are outlined.

KEYWORDS

Insurance contracts, bonus-malus, optimal insurance coverage, deductibles,
utility theory, Pareto optimality.

1. INTRODUCTION

Should – or should not – an individual buy insurance? And if so, what insur-
ance coverage should he or she prefer? These fundamental questions are of
main practical interest within the field of insurance purchasing, and have
been extensively studied under varying conditions in insurance economics.
Classical references are e.g. Mossin (1968), Arrow (1974) and Raviv (1979).
A common factor of all these studies is their straightforward focus on insur-
ance contracts without individual bonus-malus (experience rating or no-claim)
adjustments. However, both from a customer’s point of view and from a
theoretical point of view, insurance contracts with bonus-malus adjustments,
like e.g. motor insurance contracts, are usually much more complex to con-
sider with regard to optimizing the insurance coverage. The increased com-
plexity is caused by the bonus hunger mechanism of the customers; that is,
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the tendency for insurance customers to carry small losses themselves in order
to avoid an increase of future premium costs. The aim of this paper is to take
this bonus hunger mechanism into account within the framework of optimal
insurance coverage under bonus-malus contracts. The paper is an extension
of another paper by the author, Holtan (2001), where the necessary insight to
– and concepts of – bonus-malus contracts are outlined.

The paper is organized as follows: Sections 2 and 3 describe the general
insurance contract and an expected utility approach to the problem. Sections 4-6
outline some new propositions of the field of optimal insurance coverage
particularly for bonus-malus contracts. These propositions are compared to
their correspondingly classical propositions for standard insurance contracts.
Section 5 treats optimal coverage for a fixed premium function, while section
6 treats pareto optimal coverage. Section 7 gives a summary of the conclu-
sions of the paper.

2. THE GENERAL INSURANCE CONTRACT

We recapitulate briefly the main features of a general bonus-malus insurance
contract as outlined in Holtan (2001). Consider an insurance buyer represent-
ing a risk of loss X, where X is a stochastic variable with probability density
function f(x) and x ≥ 0. The damage side of the contract is characterized by
a contractual compensation c (x) and a true compensation c*(x) if loss X = x
occurs, where 

if c (x) > z
*( )

( )
c x

c x z

0
=

-* (1)
if c (x) ≤ z.

The true compensation function c*(x) is the actual compensation function
because of its bonus hunger component z, while the contractual compensa-
tion function c(x) is no more than the loss amount minus the contractual
deductible. The fixed amount z is the excess point of the optimal choice of
self-financing generated by the customer’s bonus hunger strategy after the
loss occurrence, or in other words, the present value of the loss of bonus, and
is defined as 

( ( ) ( )) ,z e p s t p s t dttl
1 0

0

= + - +
3

-# (2)

where l is the non-stochastic market rate of interest of self-financing, p1(s + t)
is the premium paid at time t after a loss occurrence at time s if the loss is
reported to the insurer, and p0(s + t) is the correspondingly premium if the
loss is not reported. The premium processes p0(s + t) and p1(s + t) are assumed
to be continuous non-stochastic for all t > 0. See Holtan (2001) for a more
detailed and complete description of bonus-malus effects on an insurance
contract.
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An important statement which partly follows from (1) and (2) is that inde-
pendent of the contractual compensation function, the true compensation func-
tion has always an individual deductible; see proposition 2 in Holtan (2001).
As we discuss later, this statement explains much of the optimal coverage
characteristics of bonus-malus contracts outlined in this paper.

3. AN EXPECTED UTILITY APPROACH

The existence of a true compensation function obviously influences the indi-
vidual in his or her choice of insurance coverage within bonus-malus insurance
contracts. Recall hereby our introductory questions in section 1: Should – or
should not – an individual buy insurance? And if so, what insurance coverage
should he or she prefer? Or more precisely: What is the optimal insurance
coverage for the individual? As pointed out earlier these questions have tradi-
tionally been treated within the framework of insurance economics; in gen-
eral see e.g. Borch (1990), chapter 2.1, 2.9, 6.3 and 6.4, or a more updated
overview in Aase (1993), chapter 8. A brief summary of this classical treat-
ment is as follows:

Consider the insurance customer and the insurance contract described in sec-
tion 2. Assume w to be the certain initial wealth of the customer. Assume the
risk taking preference of the customer to be represented by expected utility
Eu(·), that is, facing an uncertain choice the customer is assumed to maximize
his expected utility of wealth. Or more precisely: The customer will prefer an
uncertain wealth W1 to another uncertain wealth W2 if Eu(W1) ≥ Eu(W2). The
preference period of the customer is assumed to be one-period, which is the
usual contractual period in non-life insurance. Note that even if the loss of
bonus is accumulated over many years, the customers act on the present value
of the loss of bonus, and hence the one-period preference period is a consis-
tent assumption in this context.

Classical optimal condition: For the moment consider the classical point of view
where the insurance contract has no bonus-malus adjustments. Thus the nec-
essary condition for the customer to purchase a coverage c (·) for a premium
p is:

( ( ) ) ( ).Eu w X c X p Eu w X$- + - - (3)

In other words; the customer prefers to buy an insurance coverage c (·) if the
expected utility of the coverage is greater than or equivalent to the expected
utility of not buying insurance at all. Note that within this framework the
random variable X represents the total risk exposure of the customer, which
not only includes the uncertain loss amount, but also the uncertain proba-
bility of loss occurrence. The probability distribution of X, f (x), is hereby a
mixed distribution, containing the probability that no accident occurs at the
mass point x = 0 and, conditional on one or more accidents, a continuous
loss size distribution for x > 0.
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There may of course exist more than one coverage which satisfies (3). Hence
the optimal choice of insurance coverage is the one which maximizes the left
hand side of (3) with respect to the function c (·) and the function p, where p
in this context obviously must depend on c (·).

Bonus-malus optimal condition: Let us now consider the situation where the
insurance contract contains bonus-malus adjustments. Thus (3) is not longer
a valid purchasing condition for the customer. The corrected optimal condi-
tion is rather influenced by the generalized true compensation function which
was defined by (2). More precisely, the necessary condition for the customer
to purchase a contractual coverage for a premium p is simply:

( *( ) ) ( ).Eu w X c X p Eu w X$- + - - (4)

In (4) p follows the rules of a general bonus-malus system and is also a func-
tion of c (·). If (4) holds for at least one contractual coverage c (x), then the
bonus-malus optimal choice of coverage is simply the one which maximizes
the left hand side of (4).

Within the framework of bonus-malus insurance contracts condition (4)
will obviously influence a wide specter of classical propositions and state-
ments within the theory of optimal insurance coverage. In sections 4-6 some
of these classical propositions are presented and thereafter corrected by the
effect of the true compensation function within a bonus-malus framework.

4. THE INDIFFERENT PREMIUM

Classical proposition I: Assume the classical framework of a standard insur-
ance contract with no bonus-malus adjustments. The maximum premium the
customer will pay for the insurance coverage is the premium p = pmax which
generates a “=” instead of a “≥” in (3). The premium pmax is hence the pre-
mium where the customer is indifferent between buying and not buying the
insurance coverage, and is therefore also called the indifferent premium. The
existence of such a premium is actually one of the axioms of the von Neumann-
Morgenstern utility theory.

The utility function u (·) is usually assumed to be concave and monotoni-
cally increasing, i.e. u’(·) > 0 and u”(·) < 0, which means that the customer is
assumed to be risk averse. Hence, by trivial use of Jensen’s inequality, we may
find that

> ( ),p Ec Xmax (5)

which is one of the key propositions in insurance economics. A practical
interpretation of (5) is that a risk averse customer is willing to participate in
an unfair game (pmax = Ec(X) is a fair game).
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Bonus-malus proposition I: Indifferent premium

Within the framework of a bonus-malus contract the indifferent premium sat-
isfies

> *( ),p Ec Xmax (6)

where c*(·) is defined by (1). ¡

Proof: From Jensen’s inequality it follows that u (w – EX) > Eu(w – X) since
u”(·) < 0. Hence the equality sign in (4) will hold for some pmax > Ec*(X). ¡

The practical interpretation of (6) is in fact the same as for (5), that is, a risk
averse customer is willing to participate in an unfair game, but the unfair pre-
mium limit (the indifferent premium) is different between (5) and (6).

5. OPTIMAL COVERAGE FOR A FIXED PREMIUM FUNCTION

The two introductory questions in section 1 concern the problem of rational
insurance purchasing for a fixed set of bonus-malus contracts offered by the
insurer. In other words, the terms of the insurance contract are assumed to be
exogenously specified and imposed on the insurance customer. This approach
reflects a realistic purchasing situation in an insurance mass market, where
the customers just within certain limits have possibilities to influence the terms
of the insurance contract. The next proposition give attention to a classical
statement and to a correspondingly bonus-malus statement within such an
exogenous point of view. The contractual compensation assumes to be on
excess of loss form, which is probably the most common contractual compen-
sation form in the world wide insurance market.

Classical proposition II:

Assume the classical framework of a standard insurance contract with no
bonus-malus adjustments. Assume the contractual compensation to be c (X) =
max[X – d,0], where d ≥ 0 is the contractual excess point, and the premium to
be p (d) = (1 + g)Ec (X) + k, where g ≥ 0 is a safety loading factor and k ≥ 0 is
a flat cost fee. If g = 0 (and w > p(d) + d) and k is not too high, it is always
optimal to buy maximal contractual coverage, that is, d = 0 is the optimal choice
of insurance coverage. If k is too high, the only alternative is not to buy
insurance at all. ¡

This classical statement is e.g. outlined in Borch (1990), pp. 33-34. As we will
find, this statement of maximal coverage is also valid under bonus-malus
contracts. The point is, however, that the specification of maximal coverage is
different under bonus-malus contracts.
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Bonus-malus proposition II:

Within the framework of a bonus-malus contract assume the contractual com-
pensation to be c(X) = max[X – d,0], where d ≥ 0 is the contractual excess point,
and the premium to be p(d) = (1 + g)Ec* (X) + k, where g ≥ 0 is a safety load-
ing factor and k ≥ 0 is a flat cost fee. If g = 0 (and w > p(d) + z(d) + d) and k
is not too high, it is always optimal to buy maximal true coverage, that is, a
value of d which gives z�(d) = –1 is the optimal choice of insurance coverage.
If k is too high, the only alternative is not to buy insurance at all. ¡

Remark: It is not obvious that insurance companies explicitly calculate Ec*(X)
in the premium expression p(d) = (1 + g)Ec* (X) + k. However, implicitly they
do because they use the actual reportet claims – which are affected by the bonus
hunger of the customers – as data input to the risk premium estimation.

Proof: From (1) the true compensation is c*(X) = max[X –d – z(d),0], where the
bonus hunger excess point z(d) obviously is a function of d since p (d) depends
on d.

The optimal coverage maximizes the left hand side of (4). Hence we have:

( ) *( ) ( )U d Eu w X c X p d= - + -6 @
( ) ( ) ( ) ( ) ( ) .u w x p d f x dx u w d z d p d f x dx

( )

( )

d z d

d z d0

= - - + - - -
3+

+

# #6 6@ @ (7)

The first order condition for a maximum is U’(d) = 0. Hence by straightforward
calculus we find:

( ) ( ) ( ) ( )'U d p d u w x p d f x dx� �

( )d z d

0

= - - -

+

# 6 @
( ( ) ( ) ( ) .( ) ( ))z p w d z d p d f x dxd d u1 � � �

( )d z d

- + - - -+
3

+

#6 @ (8)

We have:

( ) ( ) *( ) ( ) ( ( )) ( ) ,p d Ec X k x d z d f x dx kg g1 1
( )d z d

= + + = + - - +
3

+

# (9)

which gives:

( ) ( )( ( )) ( ) ,p d z d f x dxg1 1� �
( )d z d

=- + +
3

+

# (10)
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and hereby:

( ) ( ) ( ( )) ( ) ( ) .z d p d z d f x dx f x dxg1 1� � �

( )

( )

d z d

d z d0

+ + = + -
3+

+

# #
R

T

S
S
S

V

X

W
W
W

(11)

Hence, by substituting (10) and (11) into (8), followed by straightforward cal-
culus, we find:

( ) ( ) ( )U d z d f x dx1� �
( )d z d

:= +
3

+

#6 @ (12)

( ) ( ( ) ) ( ( ) ( )) ( ) ( ( )u w p d x u w p d d z d f x dx w p dg gu1 � � �

( )d z d

0

+ - - - - - - + - -

+

#
R

T

S
SS

6 @

( )) ( )d z d f x dx
( )d z d

-
3

+

#
V

X

W
W
W

Since u�(·) > 0  and u� (·) < 0, we observe from (12) that if g = 0 and w > p(d)
+ z(d) + d, we have

U�(d) = 0 if and only if z�(d) = –1.

From (12) we also have generally

U’(d) > 0 if z�(d) < –1
U’(d) < 0 if z�(d) > –1,

which implies that z�(d) = –1 is a maximum point of U(d), as shown illustratively
in figure 1:
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U�(d) > 0
U�(d) < 0

U(d)

z’(d) –2 –1 0



FIGURE 2

Hence, if g = 0 and w > p(d) + z(d) + d, then a value of d which gives z�(d) =
–1 generates an optimal coverage solution (maximal expected utility) for the
customer. ¡

If D(d) = d + z(d) = the true deductible, then D�(d) = 1 + z�(d), and hence
D�(d) = 0 if z�(d) = –1. Since D�(d) < 0 when z�(d) < –1 and D�(d) > 0 when
z�(d) > –1, then z�(d) = –1 represents a minimum point of D(d). This minimum
is greater than zero because z(d) > 0 for all d ≥ 0.

From (10) we have correspondingly p�(d) = 0 if and only if z�(d) = –1.
Since p�(d) > 0 when z�(d) < –1 and p�(d) < 0 when z�(d) > –1, then z�(d) = –1
represents a maximum point of p(d).

Hence we conclude: z�(d) = –1 generates a maximum value of the premium
p(d) and a minimum value of the true deductible d + z(d), which together gives
maximal true coverage. In other words, maximal true coverage gives maxi-
mal expected utility for the customer, given that g = 0 in the assumed premium
function.

Note that there may exist more than one value of d satisfying z�(d) = –1;
call them dmax. All other values different from dmax give lower expected utility
from the customers point of view. Figure 2 gives an illustrative interpretation
of this result by illustrating the existence of a tangent line z�(d) = –1 touching
z(d) in the maximum expected utility point dmax. For simplicity the figure
assumes the existence of just one maximum point dmax satisfying z�(d) = –1
and a bonus-malus contract with decreasingly premium reduction generated
by the deductible d.
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The bonus-malus rules of the contract, the market rate l and the individual
premium level at the purchasing time, decide the individual value(s) of dmax as
well as the decreased expected utility for values of d different from dmax. This
quite complex and individual dependent conclusion reflects to some extent the
practical purchasing situation: Both the insurance company and the insurance
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customers find it difficult to recommend and choose an individual contrac-
tual deductible under bonus-malus contracts. And, if the premium reduction
generated by the contractual deductible d has an upper limit (as most insur-
ers have), there may not for some customers exist individual value(s) of dmax
at all. Hence, these customers should probably not buy the insurance coverage
either. These customers are typically customers with low bonus level, high
premium level and hard malus rules in an economic market with low market
rate l. On the other hand, customers with high bonus level, low premium level
and nice malus rules in an economic market with high market rate l, should
obviously buy the insurance coverage and choose dmax as the contractual
deductible.

To summarize this section we conclude within our bonus-malus model:
Given an excess of loss contractual compensation and a premium function
without a safety loading factor, then there exists a specific choice of contractual
coverage which gives maximum expected utility compared to other choices of
coverage. This optimal contractual coverage is defined when the true insurance
coverage is maximal, that is, when z�(d) = –1. This conclusion is in accordance
with the correspondingly standard insurance contract without bonus-malus
adjustments, where maximal (contractual) coverage is optimal for the customers.

Note that even if we in our model have defined the true deductible as a net
present value based on an infinite-horizon consideration of the loss of bonus,
the above conclusions will also hold for other considerations and assumptions
of z(d). The only condition is that z(d) depends on d in some way.

6. PARETO OPTIMAL COVERAGE

The conclusion in section 5 leads to a more general approach of deriving the
optimal insurance coverage under bonus-malus contracts. A reversed key ques-
tion is hereby: What is the optimality of a bonus-malus contract in an insurance
market? And even more critical: Does there exist such an optimality at all?
These problems involve Pareto optimal analysis techniques, where both the
insurance customer and the insurer is analyzed from a risk-sharing point of
view.

Hence consider a general insurance contract with bonus-malus adjustments.
The necessary condition for the insurer to offer the true compensation c*(X)
= max[c(X)-z(p), 0] for a premium p is obviously

( *( ) ) ( ),Eu w c X p u w0 0 0 0$- + (13)

where u0 (·) is the utility function of the insurer satisfying u�0 (·) > 0 and u�0 (·)
≤ 0, w0 is the initial wealth of the insurer and p follows the rules of a general
bonus-malus system. In order for a bonus-malus contract to be acceptable to
both the insurer and the customer, both (13) and (4) have to be satisfied.
If such a contract exists at all, then the Pareto optimal contract is the one
which maximizes the total risk-exchange utility for the insurer and the insured,
that is, the contract which maximizes the left hand side of (4) and (13). This
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simple risk-exchange model is hereafter referred to as the standard risk-exchange
model, which is e.g. part of Borch’s classical 1960-theorem of Pareto Opti-
mality. Within this framework Borch’s theorem says in fact that a sufficient
condition that our (bonus-malus) contract is Pareto Optimal is that there
exist positive constants k0 and k such that

( *( )) ( *( )),k u w p c X ku w p X c X� �0 0 0+ - = - - +

which mathematically expresses a common linear maximizing of the left hand
side of both (4) and (13). See Borch (1990), chapter 2.5 or Aase (1993), chap-
ter 3, for a more detailed presentation.

We have:

Bonus-malus proposition III: A bonus-malus contract can not be Pareto Opti-
mal within the standard risk-exchange model. ¡

Proof: A direct application of Borch’s Theorem gives the first order condition
for the Pareto optimal sharing rule between the insurer and the customer

( *( )) ( *( )),u w p c X k
k u w p X c X� �0 0

0
+ - = - - +b l (14)

where k and k0 are arbitrary positive constants. Following Aase (1993), chap-
ter 8, a differentiating of (14) with respect to X leads to

*( ) ( *( )) ( *( ))
( *( ))

,X c X R w p c X R w p X c X
R w p X c X

0 02
2

=
+ - + - - +

- - +
(15)

where R and R0 are the Arrow-Pratt measures of absolute risk aversions for
the customer and the insurer. If both the customer and the insurer are risk
averse, then directly from (15) we establish the general Pareto optimal criteria

< *( )<X c X0 1
2
2 for all X ≥ 0. (16)

On the other hand, under bonus-malus contracts we have c*(X) = max[c(X)-

z(p), 0]. Hence *( )X c X 0
2
2

= for c(X) ≤ z(p), and hence quite generally the Pareto

optimal criteria (16) will not hold for all X ≥ 0. ¡

Under standard insurance contracts without bonus-malus adjustments the cor-
responding proposition is as follows; see Aase (1993), chapter 8, for a general
proof which follows the same lines as the above proof:

Classical proposition III: The Pareto optimal sharing rule of a standard insur-
ance contract without bonus-malus adjustments involves a positive amount of
coinsurance within the standard risk-exchange model. A contractual compen-
sation with a deductible can, however, not be Pareto optimal within the stan-
dard risk-exchange model. ¡
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Proposition 2 in Holtan (2001) states that independent of the contractual com-
pensation function, the true compensation function has always an individual
deductible under bonus-malus contracts. Hence, given the standard risk-exchange
model, it is intuitively correct that the Pareto optimal statement for standard
contracts with a deductible is valid in general for bonus-malus contracts.

As concluded in Aase (1993), chapter 8, standard insurance contracts “with
a deductible can only be Pareto optimal in models where one or more of the
following are included; costs, moral hazard, asymmetric information, non-
observability or alternative preferences (e.g. star-shaped utility)”. Standard
references within this context are: Arrow (1974), who included a fixed percent-
age (cost)loading to show optimality of deductibles, Raviv (1979), who found
that a deductible is Pareto optimal if and only if the insurance costs depends on
the insurance coverage, Rothschild & Stiglitz (1976), who included asymmetric
information and found that low-risk individuals would choose high deductibles,
and Holmstrøm (1979), who found that moral hazard gives rise to deductibles.

These expanded model assumptions are in general in accordance with the
main intentions of a bonus-malus system in an insurance market:

1) Adverse selection: Measure and smooth out asymmetric information by
individual a posteriori tariffication.

2) Moral hazard: Reduce the claim probability by economic punishment.
3) Costs: Reduce the administrative costs generated by claims handling.

Hence, since no one of these intentions was included in the model in this paper,
we put forward the following conjecture:

Conjecture: A bonus-malus contract can only be Pareto optimal if the risk-
exchange model includes one or more of the bonus-malus intentions 1-3. ¡

Proposition 3 and 4 in Holtan (2001) state that the compensation function of
a bonus-malus contract without a contractual deductible is equivalent to the
compensation function of a standard insurance contract with an individual
deductible. Hence it should be easy to formally prove the existence of the con-
jecture for bonus-malus contracts without a contractual deductible.

On the other hand, if we do not restrict a bonus-malus contract in this way,
then the size of the loss of bonus deductible depends on the individual choice of
the contractual deductible, cf. the discussion in section 5. This dependency compli-
cates the Pareto optimal analysis, and hence also the proof of the above conjecture.

As a concluding remark to the above discussion, we may point out that
ordinary deductibles are usually used in the insurance market as the main
instrument to reduce the claim probability (moral hazard) and to reduce
the costs generated by claims handling. Therefore, the main intention of a
bonus-malus system is to handle the problem of adverse selection generated
by individual asymmetric information (even if Holtan (1994) outlines a model
with high deductibles financed over a period of time as an adverse selection
alternative to bonus-malus systems). Hence, as a general rule bonus-malus
systems should only be used if individual loss experience is a significant risk
parameter within the insurance market.
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7. SUMMARY

The paper outlines some new statements of optimal insurance coverage under
bonus-malus contracts and compares them with corresponding classical state-
ments under standard insurance contracts. The theoretical framework is an
expected utility model, but neither adverse selection, moral hazard nor costs
are part of the model. Under the assumption of an excess of loss contractual
compensation and a premium function without a safety loading factor, it is
outlined that maximal true coverage gives maximal expected utility for the
customers. This result is in accordance with classical theory of standard con-
tracts without bonus-malus adjustments. On the other hand and within the
same expected utility model, it is outlined that bonus-malus contracts are not
optimal to both the customers and the insurer at the same time, that is, Pareto
optimal. The conjecture in section 6, which is not formally proved, states as a
natural consequence that bonus-malus contracts can only be Pareto optimal if
adverse selection, moral hazard and/or costs are included in the analysis model.
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FINANCIAL DATA ANALYSIS WITH TWO SYMMETRIC
DISTRIBUTIONS

BY

WERNER HÜRLIMANN

ABSTRACT

The normal inverted gamma mixture or generalized Student t and the symmetric
double Weibull, as well as their logarithmic counterparts, are proposed for mod-
eling some loss distributions in non-life insurance and daily index return distrib-
utions in financial markets. For three specific data sets, the overall goodness-of-
fit from these models, as measured simultaneously by the negative log-likelihood,
chi-square and minimum distance statistics, is found to be superior to that of
various “good” competitive models including the log-normal, the Burr, and
the symmetric a-stable distribution. Furthermore, the study justifies on a sta-
tistical basis different important models of financial returns like the model of
Black-Scholes (1973), the log-Laplace model of Hürlimann (1995), the nor-
mal mixture by Praetz (1972), the symmetric a-stable model by Mandelbrot
(1963) and Fama (1965), and the recent double Weibull as limiting geomet-
ric-multiplication stable scheme in Mittnik and Rachev (1993). As an appli-
cation, the prediction of one-year index returns from daily index returns is
discussed.

KEYWORDS

Claim size data, financial market data, index return, normal inverted gamma
mixture, generalized Student t, symmetric double Weibull, goodness-of-
fit.

1. INTRODUCTION

The fitting of probability distributions to financial data is a statistical subject
with a long tradition in both actuarial and financial literature. The detailed
analysis of the available models leads to many unsolved problems of theoret-
ical and practical importance, and this field of research always generates new
challenges. The present contribution is a further piece of this big puzzle.

The proposed models belong, after appropriate transformation, to the class
of symmetric distributions. Let us argue in favor of such a seemingly severe

ASTIN BULLETIN, Vol. 31, No. 1, 2001, pp. 187-211



restriction. First of all, applying an adequate transform T(X) to a random
variable X often reveals approximate symmetry in the sense that

,( ) c ZT X $= +n (1.1)

where (m, c) are location and scale parameters, and Z is a symmetric random
variable with mean zero. The ubiquitous transform in this respect is the loga-
rithmic transform T(X) = ln(X). Another motivation for considering sym-
metric distributions for Z in (1.1) is the desire to measure the departure from
a normal random variable. Besides its practical appeal, the latter working
hypothesis finds some theoretical foundation (e.g. Efron (1982)). Empirical
arguments are also available. Important financial data for which this approach
has been considered adequate include in particular daily returns in equity
markets (e.g. Taylor (1992), p. 45). Furthermore, the logarithm of non-life
claim sizes has often a low skewness, and can therefore be modeled using the
device (1.1). A short outline of our study follows.

Section 2 presents the method applied to determine the unknown parameters
and the goodness-of-fit statistics used to assess the overall fit of an estimated
distribution. Sections 3 and 4 introduce the proposed symmetric distributions.
The required formulas to do all calculations for the comparative distributions
used in our study are summarized in the Appendix. The results of our exten-
sive data analysis are exposed in Sections 5 and 6. Finally, to illustrate the
potential use of the proposed models, we show in Section 7 how one-year index
returns can be predicted from the distributions of daily index returns.

2. ESTIMATION METHOD AND GOODNESS-OF-FIT STATISTICS

Given a restriction to two and three parameter distributions, the distribution
of Z in (1.1) is either parameter-free or contains one shape parameter. The
location and scale parameters m and c in (1.1) are throughout estimated with
the maximum likelihood method. The theoretical justification of this proce-
dure lies in asymptotic statistics, and is explained in many of the modern
statistical textbooks. A recent unification result about the maximum likelihood
estimation of location and scale parameters is presented in Hürlimann (1998a).
A remaining shape parameter a is either included in a three parameter maxi-
mum likelihood estimation or it is treated as nuisance parameter. In the latter
case, it is chosen to minimize individually or simultaneously some of the
goodness-of-fit statistics presented below. Maximum likelihood estimators are
denoted m̂, c, â. The value of a nuisance parameter is simply denoted by a
(without a “hat”). The estimation procedure for the shape parameter is moti-
vated as follows. As our experience has shown, a simultaneous three parame-
ter maximum likelihood estimation often causes numerical difficulties, and
does not always lead to an overall best fit. The latter point is illustrated in the
text with the NIG ranked 5 in Table 6.3.

In the practical analysis, it is assumed that the data sets consisting of n
observations are grouped into m classes with boundaries z0, z1, …, zm. The

188 WERNER HÜRLIMANN



only available information are the frequencies l1, l2, …, lm of the correspond-
ing classes (z0, z1], (z1, z2], …, (zm–1, zm]. Financial results are supposed to occur
at the average values in (zi–1, zi], say at mzi, i=1, …, m. Often, in particular in
case the average value is not known, we set by convention ( ),mz z zi i i2

1
1= +-

i =1, …, m. Suppose that the data are observations from a random variable X
with a survival distribution S(x) = Sx (x;q), q = (q1, …, qp) an unknown para-
meter vector, and that the data are truncated at z0. Of interest is thus the
truncated random variable X0 = (X |X > z0) with survival distribution

( )

, ,

( )
( )

, .>
S x

x

S
S x

x

z

z z

1

0

0

0
0

#

=

Z

[

\

]]

]]
(2.1)

In case the data is not truncated at z0, we assume that S(z0) = 1 and our sub-
sequent analysis remains valid with S0(x) = S(x).

The quality of fit of the various models will be measured using 5 good-
ness-of-fit statistics, the first 3 of which have a well-known theoretical justifi-
cation. The other 2 ad hoc statistics are based on reliability measures, and
have been used and motivated by some actuaries (see e.g. Hogg and Klugman
(1984), pp. 108-111). To assess the overall goodness-of-fit, a decision under
multiple criteria is necessary. Our simple overall rank is based on the first
3 theoretical criteria. A fitted distribution is ranked before another one if two
of the negative log-likelihood, chi-square and minimum distance statistics
have a smaller value. One should emphasize that the defined criterion is
merely another decision rule, which helps to select good models. It cannot
replace a formal statistical test like the chi-square goodness-of-fit test or the
Kolmogorov-Smirnov test for the ultimate validation or rejection of a model
(consult Klugman et al. (1998), Section 2.9, for further discussion on this). In
particular, any informal decision rule is necessarily a subjective judgement,
which may lead to inappropriate conclusions. A significant illustration of this
phenomenon is provided in Section 6. We do not include the other empirical
measures in our overall goodness-of-fit criterion. There are two reasons for
this. First, our examples show that the LE- and ME-statistics defined below
are quite sensitive to changes in parameter values. Second, it is possible to
find low LE- and ME-values even if the 3 theoretical criteria do not attain at
all their minimal values (e.g. the lnNIG ranked 5 in Table 5.3, the NIG ranked
5 and the log-normal in Table 6.3). A decision including the LE- and ME-sta-
tistics appears thus inconsistent with our estimation method, at least with respect
to the negative log-likelihood and chi-square criteria.

2.1. The negative log-likelihood statistic

The negative log-likelihood of X0 reads

( ) ( ( ,ln lnlnL n S S Sz l z z) )k k k
k

m

0 1
1

$ $- = - --
=

! 8 B (2.2)
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and the goal is to minimize this quantity. This is achieved through application
of the scoring method (e.g. Hogg and Klugman (1984), chap. 3.7 and 4.3, or
Klugman et al. (1998)). Define

( ( )
( ) ( )

, ,..., ,)P P S
S S

i mq z
z z

1i i
i i

0

1= =
-

=- (2.3)

and consider the information matrix A=A (q) with elements
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and the score vector S=S (q) with elements
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Given a preliminary estimate q0, then an iterative method to get the maximum
likelihood estimate q̂ of q is described by the recursion

( ) ( ), , ,...A S kq q q q 1 2k k k k1 1
1

1$= + =- -
-

- (2.6)

In case this sequence converges to q̂, insertion in (2.2) will yield a numerical
approximation to the desired minimum value of –lnL. Even if the sequence
does not converge, it is possible to obtain with this method estimates q̂ with a
comparatively small practical value of –lnL.

2.2. The chi-square statistic

With grouped data the quality of fit is often measured using Pearson’s goodness-
of-fit statistic

( (
(

) )
)

nP
nP

x x q q
l q

i

i i

i

m
2 2

2

1

= =
-

=

!_ i
, with (2.7)

A comparatively small value x2 of is an indicator of an acceptable fit according
to the following elegant theory (e.g. Hogg and Klugman (1984), p. 107). Sup-
pose qmin solves the minimization problem

( ) ( ) .minx x q x qmin min
q

2 2 2
= = 9 C (2.8)

Then the statistic xmin
2 has an approximate chi-square distribution with m – 1

– p degrees of freedom (e.g. Cramér (1946), Fisz (1973), p. 512-513). If xmin
2

is sufficiently small, then one accepts ( ; )S x qmin0 as a reasonable model. However,
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if zxminmin a
2

$ , where Pr( ( ) )m p zx a1 a
2

$- - = , then one rejects the model S0(x;
qmin) at the a significance level. Even if the minimum chi-square estimate qmin
is actually too tough to be calculated, the x2-statistic is very useful. For exam-
ple, if the maximum likelihood estimate or another estimate q̂ is substituted
into x2(q) instead of qmin, then x2(q̂) xminmin

2
$ . Therefore, using x2(q̂) instead of

xminmin
2 , a model will be rejected at a somewhat larger significance level as that

required. Another justification for this substitution is the fact that the maxi-
mum likelihood and the minimum chi-square estimators are asymptotically
equal in case the same class boundaries z0, z1, …, zm are used (e.g. Cramér
(1946)).

2.3. The minimum distance statistic

With grouped data, another important measure of the quality of fit is the weighted
Cramér-von Mises statistic

( ) ( ) ( )F S
m F FK z z z

i i
i i

i

m

0 0
0

1
$

$= -
=

! 6 A2, (2.9)

with , ,...,...,F n i ml1
1i j

j

i

1

= =
=

! , the empirical distribution function (e.g. Hogg and

Klugman (1984), p. 135). For the “true” parameter vector q, each term has
a chi-square distribution with one degree of freedom, which justifies this
statistic for empirical testing. Though substitution of an estimate q̂ for q
will destroy the chi-square property, the K-statistic is an appealing measure.
Each term makes an equal contribution to the total, and the weights ( )w zi =

( ) ( )m F Sz zi i0 0
1

$ $
-7 A are largest at the ends of the distribution. In particular,

the K-statistic is useful for the analysis of long-tailed data.

2.4. The mean excess distance statistic

Consider the mean excess function of ( > )X X X z0 0= , that is

,where (2.10)( ) > ( )
( )

, >

( ) ( )

e x E X x X x S x
x
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(2.11)

is the stop-loss transform of X, and its empirical counterpart
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In general, the mean excess plot of (2.12) exhibits an increasing slope for
long-tailed data, a constant plot for exponential distributions, and a decreas-
ing slope for short-tailed data. As our financial market data sets have shown,
a convex plot may also occur quite frequently. Due to scarce observations in
the tails, there may be a large uncertainty about the true behavior of e(x),
especially in the tails of the distribution. The best fit in this respect might
not always lead to the best actuarial decision (Hogg and Klugman (1984),
chap. 4). Despite of these and other shortcomings (lack in sampling distribu-
tion theory, see however Carriere (1992)), it seems useful to consider the mean
excess distance statistic

( )
( ) ( )

,ME e
e e

z
z z

i

i i

i
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1 2

=
-

=

-

! = G (2.13)

which should be as small as possible for a good fit.

2.5. The limited expected value distance statistic

In some situations it is impossible to calculate the mean excess function, for
example when the mean of X does not exist, or it is impossible to compute
the empirical mean excess function, for example when the data are censored.
It is then useful to consider the limited expected value function of X0 at x
defined as the mean of X0 censored at x through the expression

( ) ( , ( )

( )
minLE x E X x S

S t dt
z z

x

z
0 0

0

0= = +
#7 A (2.14)

If the mean excess function exists, one has the relationship

( ) ( ) ( ) ( ).LE x e S x e xz z0 0 0 $= + - (2.15)

The empirical counterpart of (2.15) is (e.g. Hogg and Klugman (1984), p. 151)

( ) , ,..., .L n m F i mE z l z z1
1 1i j
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! 6 @ (2.16)

As a goodness-of-fit measure one uses the limited expected value distance sta-
tistic
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which should be as small as possible.
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3. THE NORMAL INVERTED GAMMA MIXTURE OR GENERALIZED

STUDENT T DISTRIBUTION.

The following distribution has been proposed to model financial returns by
Praetz (1972) (see also Blattberg and Gonedes (1974), Kon (1984), Taylor (1992),
Section 2.8). Its potential usefulness in actuarial science has been pointed
out in Hürlimann (1995a).

If (X|q) is conditional on q normally distributed with mean m and variance
1/q, and q follows a conjugate gamma prior G(†c2, a), a > 0, then X has the
unconditional density (e.g. Hogg and Klugman (1984), p. 52-53, Heilmann
(1989), example 3.7):

( )
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> H (3.1)

with G(x) the gamma function. We say that X has a normal inverted gamma
mixture with parameters m, c, a, abbreviated NIG(m,c,a). The location-scale

transform Z = c
X m-

has a Pearson type VII density (e.g. Johnson et al. (1995),
Section 28.6)
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where ( , ) )
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(

( )
B a b

a
b
b
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is a beta coefficient. This can be viewed as a gener-

alized Student t distribution because if a = u
2
, u = 1,2,3,… is an integer, the

random variable Zu $ has a Student t with u degrees of freedom. In partic-
ular, a =

2
1 is a Cauchy and a = 1 is a Bowers distribution (for the latter see

Hürlimann (1993/95a/97/98b) among others). The substitution t
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from which it follows that the survival distribution satisfies the equivalent expres-
sions
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( )
, ; , ,

, ; , ,
S z

z

z

b a

b a

0

1 0
z

z

z

2
1

2
1

1

1

2
1

2
1

1

1

2

2

$

#
=

-

+

+

`
`

j
j

Z

[

\

]]

]
(3.5)

FINANCIAL DATA ANALYSIS WITH TWO SYMMETRIC DISTRIBUTIONS 193



where ( , ; ) ( , ; ) ( , ) ( )a b x b a x B a b t t dtb b1 1
1

1
a b

x
1 1

0

= - - = -
- -# is a beta density. While

the mean and skewness of Z are zero, the variance (if a>1) and kurtosis (if
a>2) are given by

( ), .ZVar
Var Z

E Z
s a g a

a
2 1

1
3

2
1

,z z
2

2 2

4

$= =
-

= =
-
-6 6

7@ @
A b l (3.6)

The kurtos is takes values in ,3 3g6 , and is therefore capable to model lep-
tokurtic data. The scoring method for maximum likelihood estimation requires
the knowledge of the partial derivatives of the survival distribution found in
the Appendix.

The stop-loss transform of this statistical model reads (trivial exercise)
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( ) ( ) ( ).d
c d

f d d S dp a
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m
2 1X X X

2 2

$ $=
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+ -
- - (3.7)

Setting ( )t a Z2 1a $= - if a >1, a standardized NIG(0,1,a), one gets with c =
( ),s a s s2 1 X$ - = , that
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As a " 3 one knows that ta is a standardized normal random variable, hence
(see also Hürlimann (1995a) for a special case)

( ) ( ) ,lim d
d
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d

p s f s
m

m s
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FX
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$ $=
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- -
-

"3
c cm m (3.9)

with F(x) the standard normal distribution, ( ) ( )x xF F1= - and ( ) ( )x xf F�= .
This is the stop-loss transform of a normal N (m, s) random variable. Using
that the stop-loss transform uniquely determines the distribution function (e.g.
Gerber (1979), Müller (1996), Hürlimann (2000)), one sees that a NIG (m, c, a)
is asymptotically normally distributed as a " 3.

Of interest is also the logarithmic version of the above. The random variable
X such that ln(X) = m + c . Z, with Z a NIG (0, 1, a) random variable, defines
the logarithmic normal inverted gamma mixture, abbreviated lnNIG (m, c, a). Its
density and survival distribution are given by

( )
( )

, ( )
( )

.
ln ln

f x cx f c
x

S x S c
xm m1

X Z X Z=
-

=
-c cm m (3.10)

Since E ecz 3=8 B the mean and stop-loss transform do not exist. However,
since NIG (0, 1, a) converges asymptotically as a " 3 to a normal distribu-
tion, the lnNIG (m, c, a) is a valuable alternative to the log-normal. This situa-
tion occurs in case the mixture is used as a Bayesian prediction model as in
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Hürlimann (1995a). Indeed, if ( , ..., )D x xn n1= is a sample of n observa-
tions from X, then the up-dated parameters of the predictive distribution

( , , )lnNIG cm an n are (see Hürlimann (1995a), (2.2))

( ) , .lnc c x nm a a
2n i

i

n

n
2 2

1

= + - = +
=

!6 @ (3.11)

For n sufficiently large, the predictive distribution will be very close to a log-
normal.

4. THE DOUBLE WEIBULL DISTRIBUTION

Recently the Weibull distribution has received much attention in the modeling
of financial returns (e.g. Mittnik and Rachev (1993)). This is due both to
its theoretical capability to model the complexity of financial market data as
well as its competitiveness in empirical fitting.

Applying the general location-scale transform ( )T X Zm s $= + with sym-
metric Z about zero, we are interested in the standardized double Weibull dis-
tribution with parameter a > 0, abbreviated SDW(a), whose density and sur-
vival distribution are given by
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Observe that the value of the parameter la is chosen such that the variance is
one. The special case ,a l1 21= = defines the Laplace distribution, which
plays a central role in the geometric-multiplication stable scheme in Mittnik
and Rachev (1993). It appears also as limiting case of the simple logarithmic
modified double exponential model of financial returns in Hürlimann (1995b).
The skewness of Z is clearly zero, and the kurtosis is
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Since ,g 1 6,Z2 ! 6 @ for a ≥ 1 and ,g 6,Z2 3! g6 for a ≤ 1, this distribution covers the
whole range of practical kurtosis values.

The logarithmic version of the above distribution is also considered. The
random variable X such that ( )ln X Zm s $= + , with Z a ( )SDW a , defines
the logarithmic double Weibull distribution with parameters , ,m s a, abbreviated

( ), ,lnDW m s a . It is a simple alternative to the log-normal model with density
and survival distribution
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Though the stop-loss transform cannot be expressed in closed form, it can be
evaluated using series representations.

Proposition 4.1. The stop-loss transform exists if a > 1, or if a = 1 and <s l1 =
2, and is given by
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where I (x; y) and J (x; y) are the infinite series
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and G (b; x) is a gamma distribution with shape parameter b.

Proof. Consider first the case x em
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A series expansion of the last integral uses that
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To obtain expressions for the moments, first note that the mean equals (if
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Since E X e E e Zm s
$=6 8@ B, the series in (4.8) is nothing else than the moment gen-

erating function ( )M t E eZ
tZ

= 8 B evaluated at t = s. From this observation one
gets the higher order moments of X as
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In the attractive special case a = 1 (and <s l 21= ) of the log-Laplace distri-
bution, the relevant expressions can be given in closed form. One obtains
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It is interesting to observe that the log-Laplace has Pareto tails with index s
2,

and thus this simple special model is consistent in the tail region with Man-
delbrot’s Paretian hypothesis for financial returns (see Mandelbrot (1963),
Fama (1963/65)). In particular, the mean excess function is linear in the tails
and equals
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Since this function is increasing, and in accordance with extreme value theory
(e.g. Embrechts et al. (1997)), the log-Laplace is thus susceptible to model
long-tailed data. Concerning further properties and motivation, the interested
reader is invited to have a look at Hürlimann (1995b).
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5. FITTING NON-LIFE INSURANCE DATA

To start with, it appears attractive to test the goodness-of-fit of the proposed
models at data sets already examined in the actuarial literature. Our analy-
sis concentrates on the theft claim size data in Hogg and Klugman (1984),
Table 4.4, and on the industrial fire insurance claim statistics in Beard et al.
(1984), Table 3.5.1.

5.1. Theft loss insurance data

The n = 32451 observations are grouped into m = 18 classes with boundaries,
average losses and frequencies given in Table 5.1.

TABLE 5.1

THEFT LOSS DATA

i zi mzi li

0 100 0 0
1 125 115 583
2 150 140 1368
3 156 154 280
4 175 166 1165
5 200 192 2082
6 211 206 631
7 250 232 2074
8 300 277 2285
9 350 327 1990

10 400 377 1646
11 500 452 2792
12 600 567 3271
13 850 713 4339
14 1100 972 2379
15 5100 1997 5181
16 10100 6870 286
17 25100 14354 91
18 50100 30430 8

Apart the quite good log-gamma, two parameter distributions do not seem
to fit very well the present data. For example, Hogg and Klugman (1984) do
not consider the log-normal, Pareto, Weibull and gamma as reasonable
choices. The Benktander type I and II (see Benktander and Segerdahl (1960),
Benktander (1970), Beard et al. (1984) and Embrechts et al. (1997)) defined
uniquely by the mean excess functions
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are similar unreasonable choices with high values of the goodness-of-fit sta-
tistics (see Table 5.3). However, note that the Benktander distributions were
introduced to describe the excess losses over some higher threshold (for use in
reinsurance) rather than the entire range of losses (for use in direct insurance),
which is our main concern in the present study.

Among the three parameter distributions they consider, Hogg and Klug-
man (1984) found that a Burr provides the best fit with respect to the limited
expected value criterion. The results of our parameter estimation are given in
Table 5.2 and our goodness-of-fit analysis is summarized in Table 5.3.

Our implementation of the scoring method did not yield in a straight-
forward way the maximum likelihood estimators m̂, c, â for the lnNIG (m, c, a).
Instead, and for comparisons, several possible fits were made. Each of the
four lnNIG minimizes by varying a approximately one of the goodness-of-fit
statistics. More precisely, overall rank 2 corresponds to a minimum x2, rank 3
to a minimum K, rank 4 to a maximum lnL, and rank 5 to a minimum LE.
Since maximum likelihood estimation for the lnDW (m, c, a) using the scoring
method has been successful, such a distinction appears superfluous. The over-
all ranks in Table 5.2 match those in Table 5.3.

TABLE 5.2

PARAMETER VALUES OF THEFT LOSS DISTRIBUTIONS

Overall rank Distribution Parameter values

1 lnDW (m, s, a) â = 1.270795, m̂ = 6.013325, ŝ = 1.020931
2 lnNIG (m, c, a) a = 5.3, m̂ = 6.044392, c = 2.966822
3 lnNIG (m, c, a) a = 5.1, m̂ = 6.043941, c = 2.903233
4 lnNIG (m, c, a) a = 5.6, m̂ = 6.045009, c = 3.059974
5 lnNIG (m, c, a) a = 4.1, m̂ = 6.041057, c = 2.564565
6 Burr (a, b, t) t̂ = 1.66932, â = 1.09626, b̂ = 2.6691.02903
7 BenktanderI(a, b) â = 0.00339, b̂ = 146.813
8 BenktanderII(a, b) â = 0.8745, b̂ = 364.6117

TABLE 5.3

GOODNESS-OF-FIT OF THEFT LOSS DISTRIBUTIONS

Overall Distribution –lnL x2 K 103 . LE MErank

1 lnDW 83551 914 0.4702 8.94 1.85
2 lnNIG 83648.60 1142.79 0.4362 3.00 –
3 lnNIG 83649.20 1143.09 0.4359 2.57 –
4 lnNIG 83648.30 1143.33 0.4376 3.67 –
5 lnNIG 83660.33 1156.86 0.4480 1.29 –
6 Burr 83672 1186 0.4645 1.04 0.46
7 BenktanderI 92902 18762 67.70 1193 1006
8 BenktanderII 83153 12.8 . 106 7304.57 16.5 2.78
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Though the fitted Burr has the lowest LE- and ME-statistics, it takes the
worst overall rank among the three parameter distributions. It is also beaten
by a non-optimal lnNIG with a similar LE-value. The preferred distribution
is a lnDW. As the x2-values are rather high, a formal chi-square test, which
would validate one or several of the models, is not undertaken. However, as
demonstrated in Section 6, such a validation is sometimes possible.

5.2. Industrial fire loss data

The n = 8324 observations are grouped into m = 29 classes with boundaries
and frequencies given in Table 5.4. The obtained parameter values and good-
ness-of-fit of four distributions are summarized in Table 5.5 and Table 5.6.
In this situation maximum likelihood estimation using the scoring method
has been successful, and a further distinction as in Section 5.1 appears
akward.

The fitted Burr, whose mean does not exist, is beaten by three distributions
and has here the highest LE-value. A simple two parameter log-normal fits
better than the Burr. The log-normal is beaten by both the lnDW and the lnNIG.
While the lnNIG has the lowest LE-value, the lnDW is the preferred distrib-
ution. No formal test is undertaken.
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0 0 0

1 10 283

2 16 280

3 25 157

4 40 464

5 63 710

6 100 781

7 158 530

8 251 446

9 398 491

10 631 673

11 1000 779

12 1585 741

13 2512 520

14 3981 425

15 6310 323

16 10000 179

17 15849 173

18 25119 112

19 39811 94

20 63096 57

21 100000 39

22 158489 22

23 251189 17

24 398107 12

25 630957 5

26 1000000 5

27 1584890 3

28 2511890 1

29 6309570 2

TABLE 5.4

INDUSTRIAL FIRE LOSS DATA
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TABLE 5.5

PARAMETER VALUES OF FIRE LOSS DISTRIBUTIONS

Overall rank Distribution Parameter values

1 lnDW (m, s, a) â = 1.41561, m̂ = 5.79645, ŝ = 2.16935
2 lnNIG (m, c, a) â = 25.7746, m̂ = 5.89543, c = 15.23085
3 lnN (m, s) m̂ = 5.90396, ŝ = 2.15982
4 Burr(a, b, t) t̂ = 0.80607, â = 0.98114, b̂ = 110.35718

TABLE 5.6

GOODNESS-OF-FIT OF FIRE LOSS DISTRIBUTIONS

Overall rank Distribution –lnL x2 K LE ME

1 lnDW 24128 442 2.46 3.83 3.83
2 lnNIG 24213 637 1.86 2.53 –
3 lnN 24216 663 2.33 3.60 7.63
4 Burr 24281 758 1.71 9.09 –

6. FITTING FINANCIAL MARKET DATA

The distribution of the daily cumulative returns on a stock market index has
been the subject of many past and current investigations. It is thus of great
importance to look at the overall goodness-of-fit of the proposed models
when compared with “good” competitors like the log-normal (justified by the
model of Black and Scholes (1973)) and the symmetric a-stable distribution
(justified by the work of Mandelbrot (1963), Fama (1965), and Peters (1994)).
Our analysis is based on the SMI (Swiss Market Index) daily cumulative returns
between September 29, 1998 and September 24, 1999.

The n = 250 observations are grouped into m = 26 classes with boundaries
and frequencies given in Table 6.1. The parameter estimation is provided in
Table 6.2 and the goodness-of-fit in Table 6.3. For the sake of comparisons,
we distinguish between two NIG fits. The NIG minimizes approximately x2

by varying a and maximum likelihood estimation of m, c while the NIG2 uses
maximum likelihood estimation of m, c, a.

The fitted log-normal, with high x2- and K-values, seems unreasonable at
first sight. The relative low LE- and ME-values in this example, which are
quite smaller than the corresponding values of the two overall best fitted dis-
tributions, illustrate the apparent irrelevance of the LE- and ME-criteria (see
however the comments to Figure 6.1). Also, the NIG2, whose three parameters
have been estimated with the maximum likelihood method, has high x2- and
K-values and takes only overall rank 5. By the way, it has the lowest LE-value
and a quite small ME-value. The other four distributions seem to fit quite well.
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It is remarkable that the two-parameter log-Laplace is not significantly beaten
by the lnDW. The preferred SMI distributions are a NIG followed by a sym-
metric a-stable distribution, abbreviated SaS, whose characterisitcs are sum-
marized in the Appendix. The ranked 3 lnDW and the log-Laplace have smaller
LE- and ME-values.

A quick look at the graphs of the empirical and fitted mean excess func-
tions in Figure 6.1 is very instructive (similar observations hold for the
non-life insurance data sets, an analysis which can be left to the reader). The
behavior of the empirical graph is quite erratic in the right tail. The simplest
fit for this is anticipated by a parabola or more generally a convex curve. In
contrast to this, in non-life insurance, an increasing and concave curve fitting
has been proposed, at least in the right tail (see Benktander and Segerdahl
(1960), and Benktander (1970) on this point). The two best fitting distributions
distinguish themselves from the others by a considerable slope in the right tail
(in accordance with extreme value theory). This is the reason for the high
ME- and LE-values of these fitted distributions. A suggestion for future work
might be the definition of more adequate weighted LE- and ME-statistics, which
take this phenomenon into account. This could perhaps also allow these sta-
tistics to enter into an extended goodness-of-fit test.
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0 0.950 0
1 0.955 1
2 0.960 4
3 0.965 0
4 0.970 1
5 0.975 1
6 0.980 11
7 0.985 14
8 0.990 15
9 0.995 43
10 1.000 31
11 1.005 36
12 1.010 25
13 1.015 30

14 1.020 22
15 1.025 8
16 1.030 3
17 1.035 2
18 1.040 1
19 1.045 0
20 1.050 0
21 1.055 0
22 1.060 1
23 1.065 0
24 1.070 0
25 1.075 0
26 1.080 1

TABLE 6.1

SMI DAILY CUMULATIVE RETURNS
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Empirical

NIG2 (and others) NIG1

SaS

TABLE 6.2

PARAMETER VALUES OF SMI DISTRIBUTIONS

Overall rank Distribution Parameter values

1 NIG1 (m, c, a) a = 1.875, m̂ = 1.00063587, c = 0.022579
2 SaS (m, c, a) a = 1.8, m̂ = 1.0006, c = 0.01012
3 lnDW (m, s, a) a = 1.005, m̂ = 0.00038779, ŝ = 0.016489
4 lnLaplace (m, s) m̂ = 0.00038277, ŝ = 0.016547
5 NIG2 (m, c, a) â = 6.71936, m̂ = 1.00063727, c = 0.049471
6 lnN(m, s) m̂ = 0.00058706, ŝ = 0.0151181

TABLE 6.3

GOODNESS-OF-FIT OF SMI DISTRIBUTIONS

Overall rank Distribution –lnL x2 K 107 . LE ME

1 NIG1 623.47 46.51 2.30 18.00 24.60
2 Sas 623.14 49.53 2.73 12.77 303
3 lnDW 629.40 58.25 3.35 5.85 3.90
4 lnLaplace 629.64 58.26 3.36 6.11 3.97
5 NIG2 625.64 241.47 36.51 2.86 4.42
6 lnN 633.07 4490 485 5.96 5.87
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An ultimate validation and selection among the above models must necessar-
ily be based on a formal statistical test and consider other alternative decision
rules for selection. To perform a correct formal chi-square test, the raw data
in Table 6.1 must be grouped in a different way. According to Moore (1978/86)
a number of rules are to be fulfilled (e.g. Klugman et al. (1998), p. 121).
Recommended is an expected frequency of at least 1% in each class and a
5% expected frequency in 80% of the classes. In view of this, the raw data is
regrouped as in Table 6.4.

TABLE 6.4

SMI DAILY CUMULATIVE RETURNS FOR CHI-SQUARE TEST

i zi li

0 0.95 0
1 0.97 6
2 0.985 26
3 1.00 89
4 1.015 91
5 1.03 33
6 1.08 5

Based on the parameter values in Table 6.2, the up-dated goodness-of-fit
statistics, together with the p-value of the test, are found in Table 6.5, which
order the distributions according to the new overall rank.

TABLE 6.5

GOODNESS-OF-FIT UNDER CHI-SQUARE TEST

Overall rank Distribution –lnL x2 p-value K 107 . LE ME

1 NIG2 351.87 0.75 0.69 0.014 7.76075 0.9382
2 SaS 352.85 1.34 0.51 0.056 5.82119 0.5710
3 NIG1 353.28 2.63 0.27 0.055 11.14234 0.6414
4 lnN 353.11 3.08 0.38 0.061 2.67507 0.9077
5 lnDW 354.33 4.85 0.09 0.082 5.44844 0.6345
6 lnLaplace 354.42 5.00 0.17 0.084 5.45984 0.6275

With critical values of 5.99 (by 2 degrees of freedom for 3 parameters) and 7.82
(by 3 degrees of freedom for 2 parameters) for a 5% significance level, it is
remarkable that all models are validated through this test. In view of the high
x2- and K-values in Table 6.3, this could not be expected a priori for the NIG2
and the lnN. This shows once more that informal decision rules are to be
applied very carefully. The dramatic change in the proposed overall ranking
coincides exactly with the brute x2-ranking and almost with the negative like-
lihood and K-ranking. The LE- and ME-values behave still quite erratically.
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Since there are different number of parameters, the p-value ranking differs.
This is a reason for considering further alternative selection rules.

If parsimony is a concern, the best three parameter NIG2 needs to be
compared with the log-normal and log-Laplace. For this it is usual to apply
a likelihood ratio test (though this is here only an informal decision rule). The
test statistics are 2 . (353.11 – 351.87) = 1.24 (lnN versus NIG2) and 2 . (354.42 –
351.87) = 2.55 (lnLaplace versus NIG2). With one degree of freedom, the
critical value is 3.84, and the log-normal and log-Laplace are selected first.
A perhaps more appropriate alternative to this informal hypothesis test is a
penalized likelihood scoring method, called Schwartz Bayesian Criterion (SBC)
and introduced by Schwartz (1978) (see Klugman et al. (1998)). To the negative
likelihood one adds the penalty p . [ln(n) – ln(2p)], where p is the number of esti-
mated parameters and n is the sample size, to obtain the SBC-score, which
decides upon ranking. The result of this SBC selection is reported in Table 6.6.

TABLE 6.6

SBC RANKING OF SMI DISTRIBUTIONS

SBC rank Distribution -lnL penalty SBC score

1 lnN 353.11 7.37 360.48
2 lnLaplace 354.42 7.37 361.79
3 NIG2 351.87 11.05 362.92
4 SaS 352.85 11.05 363.90
5 NIG1 353.28 11.05 364.73
6 lnDW 354.33 11.05 365.38

To the knowledge of the author, the above study should be a unique first one,
which justifies statistically several different and important models of financial
returns motivated through financial economic and other principles. It places
Black-Scholes (1973) model at the top rank, and justifies also the simple lim-
iting log-Laplace model in Hürlimann (1995b). Furthermore, it does not
reject other good alternative choices like the normal inverted gamma mixture
by Praetz (1972) (used by J.P. Morgan Stanley), the prominent symmetric
a-stable distribution by Mandelbrot (1963) and Fama (1965), and the more
recent double Weibull as geometric-multiplication stable scheme in Mittnik
and Rachev (1993).

7. ON THE PREDICTION OF ONE-YEAR INDEX RETURNS

FROM DAILY INDEX RETURNS

To conclude the present study with a practical illustration of the results in
Section 6, it is interesting to compare the actual SMI index of 6966 at the end
of the observation period with the SMI index resulting from a fitted distribution
under a strict white noise assumption (independent and identically distributed
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daily returns). The obtained 250 days return for the fitted lnN, lnLaplace,
NIG2, SaS, NIG1 and lnDW are respectively 19.19%, 13.94%, 17.26%, 16.18%,
17.22% and 14.05%. The average between the two extremes is 16.565%, which
is quite close to the observed . %100 1 15 716020

6966$ - =_ i . The range of variation
for the SMI index at the end of the period is [7017 ± 158], where the midpoint is
quite close to the actual index of 6966. The closest value to the actual index is
6994 for the SaS. Whether these extremely good fits are mere coincidence or of
a deeper nature requires further investigations. Used as naive prediction value, if
the index performs similarly in the next period, then the SMI index at the end of
September 2000 should stay between 7945 and 8166. This corresponds approxi-
mately to the expected SMI index of 8200 at the end of year 2000 as predicted
by a model of the Credit Suisse First Boston (see Tages-Anzeiger (1999)).

The above naive calculation is done under the strict white noise assump-
tion, which is easy to test and refute from a pure statistical point of view (e.g.
Taylor (1992), p. 19). However, it yields an acceptable value of the one-year
return from a pure investment point of view. Must the independence hypothesis
be rejected or can it be used for the present purpose? This well-known dilemma
has been noted and studied in detail by Fama (1965), which states:

“Dependence that is important from the trader’s point of view need not be impor-
tant from a statistical point of view, and conversely dependence which is impor-
tant for statistical purposes need not be important for investment purposes.”

Recall that Fama’s tests did not reveal any evidence of important dependence
from either an investment or a statistical point of view.

There exist some more formal mathematical calculations, which can justify
the prediction of a one-year index return based on the distribution of the
daily index returns. Under the made strict white noise assumption and for the
distributions of Table 6.6 (except the SaS, for which more complex calcu-
lations are required), we have computed the four main characteristics of a dis-
tribution, namely the mean, standard deviation, skewness and kurtosis. For
the NIG(m, c, a) distributions, we have additionally calculated these characteris-
tics for the Bayesian prediction models NIG(m, cn, an) with up-dated parameters

,c c x nm a a
2n

i

n

n
2

1
2

1

= + - = +
=

!6 @ , as well as for the normal approximation to this

prediction model as a "3, where these models have been discussed in Section 3.
The obtained results are summarized in Table 7.2. The required formulas for
the first four moments mk,k = 1,2,3,4, are straightforward and listed below in
Table 7.1 for the convenience of the reader. The one-year return corresponds
here to T = 250 days. The mean of the one-year return is then mT = m1, the
standard deviation is m msT 2 1

2
= - , while the skewness gT and kurtosis g2,T are

calculated using the formulas

m m m m
g

s
3 2

T
T
3

3 1 2 1

3

=
- +

(7.1)

m m m m m m
g

s
4 6 3

, T
T

2 4
4 1 3 1

2
2 1

4

=
- + -

(7.2)
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TABLE 7.1

MOMENT FORMULAS FOR ONE-YEAR INDEX RETURN PREDICTION MODELS
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( , , )BNIG cm an n (Bayesian NIG prediction model)

The same formulas as for the NIG hold with c, a replaced by the up-dated
parameters cn, an calculated with the n = 250 daily observations.

( , )NNIG m sa (normal approximation to Bayesian NIG prediction model)

( )
c

s
a2 1

a
n

n=
-

, ( ) , ( ) , ( )m m m mm m s m ms m m s s3 6 3
T T T T

a a a a1 2
2 2

3
3 2

4
4 2 2 4

= = + = + = + +

TABLE 7.2

ONE-YEAR RETURN PREDICTION FROM DAILY RETURN DISTRIBUTIONS

Distribution mT sT gT g2,T

LnN 19.19% 29.03% 0.75 4.003
LnLaplace 13.94% 32.36% 2.61 30.717
LnDW 14.05% 32.21% 2.54 28.686
NIG1 17.22% 32.20% 0.84 4.144
BNIG1 17.22% 28.70% 0.75 4.004
NNIG1 17.22% 28.70% 0.75 4.004
NIG2 17.27% 27.47% 0.71 3.918
BNIG2 17.27% 28.63% 0.74 3.998
NNIG2 17.27% 28.63% 0.74 3.998
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The comparison of the figures in Table 7.2 are quite instructive. The Bayesian
NIG models and their normal approximations have skewness and kurtosis
parameters very close to the best SBC ranked log-normal model in Section 6,
and these values are also closest to empirical values obtained from long-term
one-year returns. The skewness and kurtosis parameters are overestimated by
the log-Laplace and log-double Weibull models. From this perspective, only the
log-normal and normal inverted gamma mixtures are selected for practical pur-
poses. For a cautious prediction, the Bayesian normal inverted gamma mixture
and its normal approximation should be the preferred models for prediction.

Appendix: comparative distributions

The formulas for the scoring method and the stop-loss transforms for the
evaluation of the LE- and ME-statistics are listed.

Normal inverted gamma mixture

( )S x S c
x m

X Z=
-d n, with defined in (3.4)

( ) ( ), ( ) ( )S x f x c S x c
x

f xm
m

X X X X$
2
2

2
2

= =
-d n

( )
( ) ( ) ( ) , ; , ,

( ) ( ) ( ) , ; , ,
S x

S x x

F x xa

c a c a a b a m

c a c a a b a m

2 1 1

2 1 1

( )

( )

X

X c x
c

X c x
c

m

m

2
1

4
1

2
1

2
1

4
1

2
1

2 2

2

2 2

2

$ $

$ $
2
2

$

#

=
+ - + - -

- + - - - -

+ -

+ -

_ a
_ a

i k
i k

8
8

B
B

Z

[

\

]]

]]

where ( ) ( )lnx xc Gdx
d= is the digamma function or psi function.

( )
( )

( ) ( ) ( )x
c x

f x x S xp a
m

m
2 1X X X

2 2

$ $=
-

+ -
- -

Double Weibull distribution
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where G (b; x) is a gamma distribution with shape parameter b.
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Log-normal
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Symmetric a-stable distribution

Explicit expressions exist only in the special cases a = 1 (Cauchy) and a = 2
(normal). Bergström (1952) developed series expansions that Fama and Roll
(1968/71) and other authors applied in case a > 1. The density and distribution
of the normalized case m = 0, c = 1 is first stated.
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INTRODUCTION TO DYNAMIC FINANCIAL ANALYSIS

BY

ROGER KAUFMANN, ANDREAS GADMER AND RALF KLETT

ABSTRACT

In the last few years we have witnessed growing interest in Dynamic Financial
Analysis (DFA) in the nonlife insurance industry. DFA combines many eco-
nomic and mathematical concepts and methods. It is almost impossible to
identify and describe a unique DFA methodology. There are some DFA soft-
ware products for nonlife companies available in the market, each of them
relying on its own approach to DFA. Our goal is to give an introduction into
this field by presenting a model framework comprising those components
many DFA models have in common. By explicit reference to mathematical
language we introduce an up-and-running model that can easily be imple-
mented and adjusted to individual needs. An application of this model is pre-
sented as well.

KEYWORDS AND PHRASES

Nonlife insurance, Dynamic Financial Analysis, Asset/Liability Management,
stochastic simulation, business strategy, efficient frontier, solvency testing, inter-
est rate models, claims, reinsurance, underwriting cycles, payment patterns.

1. WHAT IS DFA

1.1. Background

In the last few years, nonlife insurance corporations in the US, Canada and
also in Europe have experienced, among other things, pricing cycles accompa-
nied by volatile insurance profits and increasing catastrophe losses contrasted
by well performing capital markets, which gave rise to higher realized capital
gains. These developments impacted shareholder value as well as the solvency
position of many nonlife companies. One of the key strategic objectives of a

1 The article is partially based on a diploma thesis written in cooperation with Zurich Financial Ser-
vices. Further research of the first author was supported by Credit Suisse Group, Swiss Re and UBS
AG through RiskLab, Switzerland.
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joint stock company is to satisfy its owners by increasing shareholder value
over time. In order to achieve this goal it is necessary to get an understanding
of the economic factors driving shareholder value and the cost of capital.
This does not only include identifying the factors but investigating their
random nature and interrelations to be able to quantify earnings volatility.
Once this has been done various business strategies can be tested in respect of
meeting company objectives.

There are two primary techniques in use today to analyze financial effects
of different entrepreneurial strategies for nonlife insurance companies over
a specific time horizon. The first one – scenario testing – projects business
results under selected deterministic scenarios into the future. Results based
on such a scenario are valid only for this specific scenario. Therefore, results
obtained by scenario testing are useful only insofar as the scenario was cor-
rect. Risks associated with a specific scenario can only roughly be quantified.
A technique overcoming this flaw is stochastic simulation, which is known as
Dynamic Financial Analysis (DFA) when applied to financial cash flow mod-
elling of a (nonlife) insurance company. Thousands of different scenarios
are generated stochastically allowing for the full probability distribution of
important output variables, like surplus, written premiums or loss ratios.

1.2. Fixing the Time Period

The first step to compare different strategies is to fix a time horizon they
should apply to. On the one hand we would like to model over as long a time
period as possible in order to see the long-term effects of a chosen strategy. In
particular, effects concerning long-tail business only appear after some years
and can hardly be recognized in the first few years. On the other hand, simu-
lated values become more unreliable the longer the projection period, due to
accumulation of process and parameter risk over time. A projection period of
five to ten years seems to be a reasonable choice. Usually the time period is
split into yearly, quarterly or monthly sub periods.

1.3. Comparison to ALM in Life Insurance

A DFA model is a stochastic model of the main financial factors of an insur-
ance company. A good model should simulate stochastically the asset ele-
ments, the liability elements and also the relationships between both types of
random factors. Many traditional ALM-approaches (ALM = Asset/Liability
Management) in life insurance considered the liabilities as more or less deter-
ministic due to their low variability (see for example Wise [43] or Klett [25]).
This approach would be dangerous in nonlife where we are faced with much
more volatile liability cash flows. Nonlife companies are highly sensitive to
inflation, macroeconomic conditions, underwriting movements and court
rulings, which complicate the modelling process while simultaneously making
results less certain than for life insurance companies. In nonlife both the date
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of occurrence and the size of claims are uncertain. Claim costs in nonlife are
inflation sensitive, whereas they are expressed in nominal terms for many tra-
ditional life insurance products. In order to cope with the stochastic nature of
nonlife liabilities and assets, their number and their complex interactions, we
have to rely on stochastic simulations.

1.4. Objectives of DFA

DFA is not an academic discipline per se. It borrows many well-known con-
cepts and methods from economics and statistics. It is part of the financial
management of the firm. As such it is committed to management of prof-
itability and financial stability (risk control function of DFA). While the
first task aims at maximizing shareholder value, the second one serves main-
taining customer value. Within these two seemingly conflicting coordinates
DFA tries to

• strategic asset allocation,
• capital allocation,
• performance measurement,
• market strategies,
• business mix,
• pricing decisions,
• product design,
• and others.

This listing suggests that DFA goes beyond designing an asset allocation
strategy. In fact, portfolio managers will be affected by DFA decisions as well
as underwriters. Concrete implementation and application of a DFA model
depends on two fundamental and closely related questions to be answered
beforehand:

1. Who is the primary beneficiary of a DFA analysis (shareholder, management,
policyholders)?

2. What are the company individual objectives?

The answer to the first question determines specific accounting rules to be
taken into account as well as scope and detail of the model. For example,
those companies only interested in getting a tool for enhancing their asset
allocation on very high aggregation level will not necessarily target a model
that emphasizes every detail of simulating liability cash flows. Smith [39] has
pointed out that making money for shareholders has not been the primary
motivation behind developments in ALM (or DFA). Furthermore, relying on
the Modigliani-Miller theorem (see Modigliani and Miller [34]) he put for-
ward the hypothesis that a cost benefit analysis of asset/liability studies might
reveal that costs fall on shareholders but benefits on management or customers.
Our general conclusion is that company individual objectives – in particular
with respect to the target group – have to be identified and formulated before
starting the DFA analysis.
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FIGURE 1.1: Efficient frontier.

1.5. Analyzing DFA Results Through Efficient Frontiers

Before using a DFA model, management has to choose a financial or eco-
nomic measure in order to assess particular strategies. The most common
framework is the efficient frontier concept widely used in modern portfolio
theory going back to Markowitz [32]. First, a company has to choose a return
measure (e.g. expected surplus) and a risk measure (e.g. expected policyholder
deficit, see Lowe and Stanard [30], or worst conditional mean as a coherent risk
measure, see Artzner, Delbaen, Eber and Heath [2] and [3]). Then the mea-
sured risk and return of each strategy can be plotted as shown in Figure 1.1.
Each strategy represents one spot in the risk-return diagram. A strategy is
called efficient if there is no other one with lower risk at the same level of return,
or higher return at the same level of risk.
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For each level of risk there is a maximal return that cannot be exceeded, giving
rise to an efficient frontier. But the exact position of the efficient frontier is
unknown. There is no absolute certainty whether a strategy is really efficient
or not. DFA is not necessarily a method to come up with an optimal strategy.
DFA is predominantly a tool to compare different strategies in terms of risk
and return. Unfortunately, comparison of strategies may lead to completely
different results as we change the return or risk measure. A different measure
may lead to a different preferred strategy. This will be illustrated in Section 4.

Though efficient frontiers are a good means of communicating the results
of DFA because they are well-known, some words of criticism are in place.
Cumberworth, Hitchcox, McConnell and Smith [10] have pointed out that
there are pitfalls related to efficient frontiers one has to be aware of. They criti-
cize that typical efficient frontier uses risk measures that mix together system-
atic risk (non-diversifiable by shareholders) and non-systematic risk, which
blurs the shareholder value perspective. In addition to that, efficient frontiers
might give misleading advice if they are used to address investment decisions
once the concept of systematic risk has been factored into the equation.



FIGURE 1.2: Main structure of a DFA model.

1.6. Solvency Testing

A concept closely related to DFA is solvency testing where the financial posi-
tion of the company is evaluated from the perspective of the customers. The
central idea is to quantify in probabilistic terms whether the company will
be able to meet its commitments in the future. This translates into determin-
ing the necessary amount of capital given the level of risk the company is
exposed to. For example, does the company have enough capital to keep the
probability of loosing a · 100% of its capital below a certain level for the risks
taken? DFA provides a whole probability distribution of surplus. For each
level a the probability of loosing a · 100% can be derived from this distribu-
tion. Thus DFA serves as a solvency testing tool as well. More information
about solvency testing can be found in Schnieper [37] and [38].
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1.7. Structure of a DFA Model

Most DFA models consist of three major parts, as shown in Figure 1.2. The
stochastic scenario generator produces realizations of random variables repre-
senting the most important drivers of business results. A realization of a ran-
dom variable in the course of simulation corresponds to fixing a scenario.
The second data source consists of company specific input (e.g. mean severity
of losses per line of business and per accident year), assumptions regarding
model parameters (e.g. long-term mean rate in a mean reverting interest rate
model), and strategic assumptions (e.g. investment strategy). The last part,
the output provided by the DFA model, can then be analyzed by management
in order to improve the strategy, i.e. make new strategic assumptions. This
can be repeated until management is convinced by the superiority of a certain
strategy. As pointed out in Cumberworth, Hitchcox, McConnell and Smith
[10] interpretation of the output is an often neglected and non-appreciated
part in DFA modelling. For example, an efficient frontier leaves us still with a



variety of equally desirable strategies. At the end of the day management has
to decide for only one of them and selection of a strategy based on preference
or utility functions does not seem to provide a practical solution in every case.

2. STOCHASTICALLY MODELLED VARIABLES

A very important step in the process of building an appropriate model is to iden-
tify the key random variables affecting asset and liability cash flows. Afterwards
it has to be decided whether and how to model each or only some of these fac-
tors and the relationships between them. This decision is influenced by consider-
ations of a trade-off between improvement of accuracy versus increase in
complexity which is often felt being equivalent to a reduction of transparency.

The risks affecting the financial position of a nonlife insurer can be cate-
gorized in various ways. For example, pure asset, pure liability and asset/lia-
bility risks. We believe that a DFA model should at least address the following
risks:

• pricing or underwriting risk (risk of inadequate premiums),
• reserving risk (risk of insufficient reserves),
• investment risk (volatile investment returns and capital gains),
• catastrophes.

We could have also mentioned credit risk related to reinsurer default, currency
risk and some more. For a recent, detailed DFA discussion of the possible
impact of exchange rates on reinsurance contracts see Blum, Dacorogna,
Embrechts, Neghaiwi and Niggli [5]. A critical part of a DFA model are the
interdependencies between different risk categories, in particular between
risks associated with the asset side and those belonging to liabilities. The
risk of company losses triggered by changes in interest rates is called interest
rate risk. We will come back to the question of modelling dependencies in
Section 5.1. Our choice of company relevant random variables is based on the
categorization of risks shown before.

A key module of a DFA model is an interest rate generator. Many models
assume that interest rates will drive the whole model as displayed for example
in Figure 4.1. An interest rate generator – or economic scenario generator as it
is often called to emphasize the far reaching economic impact of interest rates –
is necessary in order to be able to tackle the problem of evaluating interest
rate risk. Moreover, nonlife insurance companies are strongly exposed to
interest rate behaviour due to generally large investments in fixed income assets.
In our model implementation we assumed that interest rates were strongly
correlated with inflation, which itself influenced future changes in claim
size and claim frequency. On the other hand, both of these factors affected
(future) premium rates. Furthermore, we assumed correlation between inter-
est rates and stock returns, which are generally an important component of
investment returns.

On the liability side, we explicitly considered four sources of randomness:
non-catastrophe losses, catastrophe losses, underwriting cycles, and payment
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patterns. We simulated catastrophes separately due to quite different statistical
behaviour of catastrophe and non-catastrophe losses. In general the volume of
empirical data for non-catastrophe losses is much bigger than for catastrophe
losses. Separating the two led to more homogeneous data for non-catastrophe
losses, which made fitting the data by well-known (right skewed) distributions
easier. Also, our model implementation allowed for evaluating reinsurance
programs. Testing different deductibles or limits is only possible if the model
is able to generate sufficiently large individual losses. In addition, we currently
experience a rapid development of a theory of distributions for extremal
events (see Embrechts, Klüppelberg and Mikosch [16], and McNeil [33]).
Therefore, we considered the separate modelling of catastrophe and non-cat-
astrophe losses as most appropriate. For each of these two groups the number
and the severity of claims were modelled separately. Another approach would
have been to integrate the two kinds of losses by using heavy-tailed claim size
distributions.

Underwriting cycles are an important characteristic of nonlife companies.
They reflect market and macroeconomic conditions and they are one of the
most important factors affecting business results. Therefore, it is useful to have
them included in a DFA model set-up.

Losses are not only characterized by their (ultimate) size but also by their
piecewise payment over time. This property increases the uncertainties of the
claims process by introducing the time value of money and future inflation
considerations. As a consequence, it is necessary not only to model claim fre-
quency and severity but the uncertainties involved in the settlement process as
well. In order to allow for reserving risk we used stochastic payment patterns
as a means of estimating loss reserves on a gross and on a net basis.

In the abstract we pointed out that our intention was to present a DFA
model framework. In concrete terms, this means that we present a model
implementation that we found useful to achieve part of the goals outlined in
Section 1.4. We do not claim that the components introduced in the remain-
ing part of the paper represent a high class standard of DFA modelling. For
each of the DFA components considered there are numerous alternatives,
which might turn out to be more appropriate in particular situations. Provid-
ing a model framework means to present our model as a kind of suggested
reference point that can be adjusted or improved individually.

2.1. Interest Rates

Following Daykin, Pentikäinen and Pesonen [15, p. 231] we assume strong
correlation between general inflation and interest rates. Our primary stochastic
driver is the (instantaneous) short-term interest rate. This variable determines
bond return across all maturities as well as general inflation and superimposed
inflation by line of business.

An alternative to the modelling of interest and inflation rates as outlined
in this section and probably well-known to actuaries is the Wilkie model, see
Wilkie [42], or Daykin, Pentikäinen and Pesonen [15, pp. 242-250].
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2.1.1. Short-Term Interest Rate
There are many different interest rate models used by financial economists.
Even the literature offering surveys of interest rate models has grown con-
siderably. The following references represent an arbitrary selection: Ahlgrim,
D’Arcy and Gorvett [1], Musiela and Rutkowski [35, pp. 281-302] and Björk
[4]. The final choice of a specific interest rate model is not straightforward,
given the variety of existing models. It might be helpful to post some general
features of interest rate movements, which we took from Ahlgrim, D’Arcy
and Gorvett [1]:

1. Volatility of yields at different maturities varies.
2. Interest rates are mean-reverting.
3. Rates at different maturities are positively correlated.
4. Interest rates should not be allowed to become negative.
5. The volatility of interest rates should be proportional to the level of the

rate.

In addition to these characteristics there are some practical issues raised by
Rogers [36]. According to Rogers an interest rate model should be

• flexible enough to cover most situations arising in practice,
• simple enough that one can compute answers in reasonable time,
• well-specified, in that required inputs can be observed or estimated,
• realistic, in that the model will not do silly things.

It is well-known that an interest rate model meeting all the criteria mentioned
does not exist. We decided to rely on the one-factor Cox-Ingersoll-Ross (CIR)
model. CIR belongs to the class of equilibrium based models where the
instantaneous rate is modelled as a special case of an Ornstein-Uhlenbeck
process:

(2.1) ( ) ,dr r dt r dZk q s g
= - +

By setting g = 0.5 we arrive at CIR also known as the square root process

(2.2) ( ) ,dr a b r dt s r dZt t t t= - +

where
rt = instantaneous short-term interest rate,
b = long-term mean,
a = constant that determines the speed of reversion of the interest rate

toward its long-run mean b,
s = volatility of the interest rate process,
(Zt) = standard Brownian motion.

CIR is a mean-reverting process where the short rate stays almost surely pos-
itive. Moreover, CIR allows for an affine model of the term structure making
the model analytically more tractable. Nevertheless, some studies have shown
(see Rogers [36]) that one-factor models in general do not satisfactorily fit
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empirical data and restrict term structure dynamics. Multifactor models
like Brennan and Schwartz [6] or Longstaff and Schwartz [29] or whole yield
approaches like Heath-Jarrow-Morton [20] have proven to be more appropri-
ate in this respect. But this comes at the price of being much more involved
from a theoretical and a practical implementation point of view. Our decision
for CIR was motivated by practical considerations. It is an easy to imple-
ment model that gave us reasonable results when applied to US market data.
Moreover, it is a standard model and in widespread use, in particular in the US.

Actually, we are interested in simulating the short rate dynamics over the
projection period. Hence, we discretized the mean reverting model (2.2) lead-
ing to

(2.3) ( ) ,r r a b r s r Zt t t t t1 1 1= + - +- - -

where
rt = the instantaneous short-term interest rate at the beginning of year t,
Zt ~ � (0,1), Z1, Z2, ... i.i.d.,
a, b, s as in (2.2).

Cox, Ingersoll and Ross [9] have shown that rates modelled by (2.2) are posi-
tive almost surely. Although it is hard for the short rate process to go negative
in the discrete version of the last equation the probability is not zero. To be
sure we changed equation (2.3) to

(2.4) ( ) .r r a b r s r Zt t t t t1 1 1= + - +- - -
+

A generalization of CIR is given by the following equation, where setting g =
0.5 yields again CIR:

(2.5) ( ) ( ) .r r a b r s r Zt t t t
g

t1 1 1= + - +- - -
+

This general version provides more flexibility in determining the degree of
dependence between conditional volatility of interest rate changes and the
level of interest rates.

The question of what an appropriate level for g might be leads to the field
of model calibration which we will encounter at several places within DFA
modelling. In fact, the problem plays a dominant role in DFA tempting many
practitioners to state that DFA is all about calibration. Calibrating an inter-
est rate model of the short rate refers to determining parameters – a, b, s
and g in equation (2.5) – so as to ensure that modelled spot rates (based on
the instantaneous rate) correspond to empirical term structures derived from
traded financial instruments. Björk [4] calls the procedure to achieve this
inversion of the yield curve. However, the parameters can not be uniquely
determined from an empirical term structure and term structure of volatilities
resulting in a non-perfect fit. This is a general feature of equilibrium interest
rate models. Whereas this is a critical point for valuing interest rate derivatives,
the impact on long-term DFA results may be limited.
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With regard to calibrating the inflation model it should be mentioned
that building models of inflation based on historical data may be a feasible
approach. But it is unclear whether the future evolution of inflation will fol-
low historical patterns: DFA output will probably reflect the assumptions
with regard to inflation dynamics. Consequently, some attention needs to be
paid to these assumptions. Neglecting this is a common pitfall of DFA mod-
elling. In order to allow for stress testing of parameter assumptions, the
model should not only rely on historical data but on economic reasoning and
actuarial judgment of future development as well.

2.1.2. Term Structure
Based on equation (2.2) we calculated the prices F(t, T, (rt)) being in place
at time t of zero-coupon bonds paying 1 monetary unit at time of maturity
t + T, as

(2.6) ( , ,( )) ,�F t T r e r e log
�t

r ds
t

A r Bt s
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A proof of this result can be found in Lamberton and Lapeyre [27, pp. 129-
133]. Note, that the expectation operator is taken with respect to the martin-
gale measure � assuming that equation (2.2) is set up under the martingale
measure � as well. The continuously compounded spot rates Rt,T at time t
derived from equation (2.6) determine the modelled term structure of zero-
coupon yields at time t:

(2.7)
( , ,( ))

,
log log

R T
F t T r

T
r B A

,t T
t t T T=- =

-

where T is the time to maturity.

2.1.3. General Inflation
Modelling loss payments requires having regard to inflation. Following our
introductory remark to Section 2.1 we simulated general inflation i t by using
the (annualized) short-term interest rate rt. We did this by using a linear
regression model on the short-term interest rate:

(2.8) ,i a b r s et
I I

t
I

t
I

= + +
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where

( , ), , , ... . . .,i i de e e0 1�t
I I I

1 2+

aI, bI, sI: parameters that can be estimated by regression, based on historical
data.

The index I stands for general inflation.

2.1.4. Change by Line of Business
Lines of business are affected differently by general inflation. For example,
car repair costs develop differently over time than business interruption costs.
Claims costs for specific lines of business are strongly affected by legislative
and court decisions, e.g. product liability. This gives rise to so-called super-
imposed inflation, adding to general inflation. More on this can be found in
Daykin, Pentikäinen and Pesonen [15, p. 215] and Walling, Hettinger, Emma
and Ackerman [41].

To model the change in loss frequency dt
F (i.e. the ratio of number of

losses divided by number of written exposure units), the change in loss sever-
ity dt

X, and the combination of both of them, dt
P, we used the following for-

mulas:

(2.9) ( , ),max a b id s e 1t
F F F

t
F

t
F

= + + -

(2.10) ( , ),max a b id s e 1t
X X X

t
X

t
X

= + + -

(2.11) ,d d d1 1 1t
P

t
F

t
X

= + + -` `j j
where

( , ), , , ... . . .,i i de e e0 1�t
F F F

1 2+

( , ), , , ... ,. . .,i i de e e e e0 1�t
X X X

t
F

t
X

1 2 1 2
+ independent ,t t1 26 ,

aF, bF, sF, aX, bX, sX: parameters that can be estimated by regression, based
on historical data.

The variable dt
P represents changes in loss trends triggered by changes in

inflation rates. dt
P is applied to premium rates as will be explained in Sec-

tion 3, see (3.2). Its construction through (2.11) ensures correlation of
aggregate loss amounts and premium levels that can be traced back to
inflation dynamics.

The technical restriction of setting dt
F and dt

X to at least –1 was necessary
to avoid negative values for numbers of losses and loss severities.

We modelled changes in loss frequency dependent on general inflation
because empirical observations revealed that under specific economic conditions



(e.g. when inflation is high) policyholders tend to report more claims in cer-
tain lines of business.

The corresponding cumulative changes d ,
t
F c and d ,

t
X c can be calculated by

(2.12) ( ),d d1
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t
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s
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s t

t

10

= +
= +

%

(2.13) ( ),d d1
,

t
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s
X

s t

t

10

= +
= +

%

where

t0 + 1 = first year to be modelled.

2.2. Stock Returns

The major asset classes of a nonlife insurance company comprise fixed income
type assets, stocks and real estate. Here, we confine ourselves to a description
of the model employed for stocks. Modelling stocks can start either with con-
centrating on stock prices or stock returns (although both methods should
turn out to be equivalent in the end). We followed the last approach since we
could rely on a well established theory relating stock returns and the risk-free
interest rate: the Capital Asset Pricing Model (CAPM) going back to Sharpe-
Lintner, see for example Ingersoll [22].

In order to apply CAPM we needed to model the return of a portfolio that
is supposed to represent the stock market as a whole, the market portfolio.
Assuming a significant correlation between stock and bond prices and taking
into account multi-periodicity of a DFA model we came up with the follow-
ing linear model for the stock market return in projection year t conditional
on the one-year spot rate Rt,1 at time t.

(2.14) ( ),� r R a b e 1,t
M

t
M M R

1
,t 1= + -8 B

where

e 1
R ,t 1- = risk-free return, see (2.7),

aM, bM = parameters that can be estimated by regression, based on historical
data and economic reasoning.

Since we modelled sub periods of length one year, we conditioned on the one-
year spot rate. Note that rt

M must not be confused with the instantaneous
short-term interest rate rt in CIR. Note also that a negative value of bM means
that increasing interest rates entail expected stock prices falling.
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Now we can apply the CAPM formula to get the conditional expected
return on an arbitrary stock S:

(2.15) ,� �r R e r R eb1 1, ,t
S

t
R

t
S

t
M

t
R

1 1
, ,t t1 1= - + - -` ``j jj8 8B B

where

e 1
R ,t 1- = risk-free return,

rt
M = return on the market portfolio,

bt
S = b-coefficient of stock S

=
( )

( , )
.

r
r r

Var
Cov

t
M

t
S

t
M

If we assume a geometric Brownian Motion for the stock price dynamics we
get a lognormal distribution for 1 + rt

S:

(2.16) r1 t
S++ lognormal ( , ), ,r rm st

S S2
1 2 , … independent,

with mt chosen to yield

,m e /
t

m s 2t
2

=
+

where

�m r R1 ,t t
S

t 1= + 8 B see (2.15),

s2 = estimated variance of logarithmic historical stock returns.

Again, we would like to emphasize that our method of modelling stock returns
represents only one out of many possible approaches.

2.3. Non-Catastrophe Losses

Usually, non-catastrophe losses of various lines of business develop quite
differently compared to catastrophe losses, see also the introductory remarks
of Section 2. Therefore, we modelled non-catastrophe and catastrophe losses
separately and per line of business. For simplicity’s sake, we will drop the
index denoting line of business in this section.

Experience shows that loss amounts depend also on the age of insurance
contracts. The aging phenomenon describes the fact that the loss ratio – i.e.
the ratio of (estimated) total loss divided by earned premiums – decreases
when the age of policy increases. For this reason we divided insurance busi-
ness into three classes, as proposed by D’Arcy, Gorvett, Herbers, Hettinger,
Lehmann and Miller [13]:
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• new business (superscript 0),
• renewal business – first renewal (superscript 1), and
• renewal business – second and subsequent renewals (superscript 2).

More information about the aging phenomenon can be found in D’Arcy and
Doherty [11] and [12], Feldblum [19], and in Woll [44].

Disregarding the time of incremental loss payment for the moment, the
two main stochastic factors affecting total claim amount are: number of losses
and severity of losses, see for instance Daykin, Pentikäinen and Pesonen [15].
The choice of a specific claim number and claim size distribution depends on
the line of business and is the result of fitting distributions to empirical data
requiring foregoing adjustments of historical loss data. In this section we
shall demonstrate our model of non-catastrophe losses by referring to a neg-
ative binomial (claim number) and a gamma (claim size) distribution.

To simulate loss numbers Nt
j and mean loss severities ( )X X it

j

N t
j

i

N1
1

t
j

t
j

=
=

! for

period t and renewal category j we utilized mean values mF,j, mX,j and standard
deviations sF,j, sX,j of historical data for loss frequencies and mean loss sever-
ities. We took also into account inflation and written exposure units. Because
loss frequencies behave more stable than loss numbers, we used estimations of
loss frequencies instead of relying on estimates of loss numbers.

As an example of a distribution for claim numbers Nt
j we consider the neg-

ative binomial distribution with mean m ,
t
N j and variance v ,

t
N j. Generally, we 

reserved the variables m and v for mean and variance of different factors.
These factors were referred by attaching a superscript (N, X, Y, …) to m or v:

(2.17)
Nt

j
+ NB (a, p), j = 0, 1, 2,

,N Nj j
1 2, … independent,

with a and p chosen to yield

( )
,�m N p

a p1,
t
N j

t
j

= =
-9 C

(2.18)

( )
( )

,v N
p

a p
Var

1,
t
N j

t
j

2= =
-

where

m ,
t
N j = w m d, ,

t
j F j

t
F c,

v ,
t
N j = w s d, ,

t
j F j

t
F c 2a k ,

wt
j = written exposure units; introduced in more detail and modelled in

(3.3),

m ,F j = estimated frequency, based on historical data,

226 R. KAUFMANN, A. GADMER AND R. KLETT



s ,F j = estimated standard deviation of frequency, based on historical data,

d ,
t
F c = cumulative change in loss frequency, see (2.12).

Negative binomial distributed variables N exhibit over-dispersion: Var(N) ≥
�[N]. Consequently, this distribution yields a reasonable model only if v ,

t
N j ≥

m ,
t
N j.

Historical data are a good basis to calibrate this model as long as there
had been no significant structural changes within a line of business in prior
years. Otherwise, explicit consideration of exposure data may be a better basis
for calibrating the claims process.

In the following we will present an example of a claim size distribution for
high frequency, low severity losses. Due to the fact that the density function
of the gamma distribution decreases exponentially under appropriate choice
of parameters it is a distribution serving our purposes well:

(2.19)
Xt

j
+ Gamma (�, q), j = 0, 1, 2,

,X Xj j
1 2, … independent,

with � and q chosen to yield

,

( ) ,

�

�

�m X

v XVar

q

q

,

,

t
X j

t
j

t
X j

t
j 2

= =

= =

9 C

where

m ,
t
X j = m d, ,X j

t
X c,

v ,
t
X j = /s d d, , ,X j

t
X c

t
F c2` j ,

m ,X j = estimated mean severity, based on historical data,

s ,X j = estimated standard deviation, based on historical data,

d ,
t
X c = cumulative change in loss severity, see (2.13),

d ,
t
F c = cumulative change in loss frequency, see (2.12).

By multiplying the number of losses with the mean severity, we got the
total (non-catastrophic) loss amount in respect of a certain line of business:

N Xt
j

t
j

j 0

2

=
! .

2.4. Catastrophes

We are turning now to losses triggered by catastrophic events like windstrom,
flood, hurricane, earthquake, etc. In Section 2 we mentioned that we could
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have integrated non-catastrophic and catastrophic losses by using heavy-tailed
distributions, see Embrechts, Klüppelberg and Mikosch [16]. Nevertheless, we
decided for separate modelling, see our reasons given in Section 2.

There are different ways of modelling the number of catastrophes, e.g.
negative binomial, poisson, or binomial distribution with mean mM and vari-
ance vM. We assumed that there were no trends in the number of catastrophes:

(2.20)
Mt + NB, Pois, Bin, … (mean mM, variance vM),

,M M1 2, … i.i.d.,

where

mM = estimated number of catastrophes, based on historical data,

vM = estimated variance, based on historical data.

Contrary to the modelling of non-catastrophe losses, we simulated the total
(economic) loss (i.e. not only the part the insurance company in consideration
has to pay) for each catastrophic event i ∈ {1,…, Mt} separately. Again, there
are different probability distributions, which prove to be adequate for this
purpose, in particular GPD (generalized Pareto distribution) Gz,b. GPD’s play
an important role in Extreme Value Theory, where Gz,b appears as the limit
distribution and Mikosch [16, p. 165]. In the following equation Yt

i describes
the total economic loss caused by catastrophic event i ∈ {1,…, Mt} in projec-
tion period t.

Y ,t i+ lognormal, Pareto, GPD, … (mean mt
Y, variance vt

Y),

(2.21) ,Y Y, ,t t1 2, … i.i.d.,

,Y Y, ,t i t i1 1 2 2
independent !( , ) ( , )t i t i1 1 2 26 ,

where

mt
Y = m d ,Y

t
X c,

vt
Y = s d ,Y

t
X c 2` j ,

mY = estimated loss severity, based on historical data,

sY = estimated standard deviation, based on historical data,

d ,
t
X c = cumulative change in loss severity, see (2.13).

After having generated Yt
i we split it into pieces reflecting the loss portions of

different lines of business:

(2.22) , ,..., ,Y a Y k l1, , ,t i
k

t i
k

t i= =
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where

k = line of business,

l = total number of lines considered,

,..., : ,..., , , �i M a a x x1 0 1 1, ,t t i t i
l l l1

1
6 ! ! ! 1=` j 6 @! #+ - is a random convex

combination, whose probability distribution within the (l –1) dimensional
tetraeder can be arbitrarily specified.

Simulating the percentages a ,t i
k stochastically over time varies the impact of

catastrophes on different lines favoring those companies, which are well diver-
sified in terms of number of lines written.

Knowing the market share of the nonlife insurer and its reinsurance struc-
ture permits calculation of loss payments allowing as well for catastrophes.
Although random variables were generated independently our model intro-
duced differing degrees of dependence between aggregate losses of different lines
by ensuring that they were affected by same catastrophic events (although to
different degrees).

2.5. Underwriting Cycles

More or less irregular cycles of underwriting results several years in length
are an intrinsic characteristic of the (deregulated) nonlife insurance industry.
Cycles can vary significantly between countries, markets and lines of business.
Sometimes their appearance is masked by smoothing of published results.
There are probably many potential background factors, varying from period
to period, causing cycles. Among others we mention

• time lag effect of the pricing procedure
• trends, cycles and short-term variations of claims,
• fluctuations in interest rate and market values of assets.

Besides having introduced cyclical variation driven by interest rate movements
– remember that short-term interest rates are the main factor affecting all other
variables in the model – we added a sub-model concerned with premium cycles
induced by competitive strategies. In this section we shall describe this approach.

We used a homogeneous Markov chain model (in discrete time) similar to
D’Arcy, Gorvett, Hettinger and Walling [14]: We assign one of the following
states to each line of business for each projection year:

1 weak competition,
2 average competition,
3 strong competition.

In state 1 (weak competition) the insurance company demands high premiums
being aware that it can most likely increase its market share. In state 3 (strong
competition) the insurance company has to accept low premiums in order to at
least keep its current market share. Assuming a stable claim environment,

INTRODUCTION TO DYNAMIC FINANCIAL ANALYSIS 229



high premiums are equivalent to high profit margin over pure premium, and
low premiums equal low profit margin. Changing from one state to another
might cause significant changes in premiums.

The transition probabilities pij, i, j ∈ {1, 2, 3}, which denote the probability
of changing from state i to state j from one year to the next are assumed to
be equal for each projection year. This means that the Markov chain is homo-
geneous. The pij’s form a matrix T:

.T
p
p
p

p
p
p

p
p
p

11

21

31

12

22

32

13

23

33

=

J

L

K
KK

N

P

O
OO

There are many different possibilities to set these transition probabilities pij, i, j
∈ {1, 2, 3}. It is possible to model the pij’s depending on current market con-
ditions applicable to each line of business separately. If the company writes l
lines of business this will imply 3l states of the world. Because business cycles
of different lines of business are strongly correlated, only few of the 3l states
are attainable. Consequently, we have to model L � 3l states, where the tran-
sition probabilities pij, i, j ∈ {1,…, L} remain constant over time. It is possible
that some of them are zero, because there may exist some states that cannot
be attained directly from certain other states. When L states are attainable, the
matrix T has dimension L ≈ L:

.T

p
p

p

p
p

p

p
p

pL L

L

L

LL
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12

22

2

1
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=
h h j h

J

L

K
K
KK

N

P

O
O
OO

In order to fix the transition probabilities pij in any of the above mentioned
cases each state i should be treated separately and probabilities assigned to
the variables pi ,…, piL such that p i1i jj

L
1

6=
=

! . Afterwards, the stationary prob-
ability distribution p has to be considered which the chosen probability distribu-
tion generally converges to, irrespective of the selected starting point, given that
the Markov chain is irreducible and positive recurrent. We took advantage of
the fact that p = pT to check whether the estimated values for the transition
probabilities are reasonable because it is easier to estimate the stationary proba-
bility distribution p than to find suitable values for the pij’s. Since it is extremely
delicate to estimate the transition probabilities in an appropriate way, one should
not only rely on historical data but use experience based knowledge as well.

It is crucial to set the initial market conditions correctly in order to pro-
duce realistic financial projections of the insurance entity.

2.6. Payment Patterns

So far we have been focusing on claim numbers and severities. This section is
dedicated to explaining how we managed to model the uncertainties of the
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FIGURE 2.1: Paid losses (upper left triangle), outstanding loss payments and future loss payments.

claim settlement process, i.e. the random time to payment, as indicated in
Section 2. We considered a whole loss portfolio belonging to a specific line of
business and its aggregate yearly loss payments in different calendar years (or
development periods). The piecewise (or incremental) payment of aggegrate
losses stemming from one and the same accident year forms a payment pat-
tern. An (incremental) payment pattern is a vector with length equal to an
assumed number of development periods. The i-th vector component describes
the percentage of estimated ultimate loss amount (on aggregate portfolio level)
to be paid out in the (i – 1)-st development year. If we consider yearly loss
payments pertaining to a specific accident year t then the i-th development
year refers to calendar year t + i.

In the following we will denote accident years by t1 and development years
by t2. For simplicity’s sake, we will drop the index representing line of busi-
ness for the most part of this section.

Very often one finds payment patterns treated as being deterministic in
DFA models. This will be justified by pointing out that payment patterns do
not change significantly from one year to the next. We believe that in order to
account for reserving risk in a DFA model properly one has to have a sto-
chastic model for the timing of loss payments as well.

Generally, for each prior accident year considered, the loss amounts which
have been paid to date are known. Figure 2.1 displays this in graphical for-
mat. The triangle formed by the area on the left hand side of the bold line –
the loss triangle – represents empirical, i.e. known, loss payments whereas the
remaining parts represent outstanding and future loss payments, which are
unknown. For example, if we assume to be at the end of calendar year 2000
(t0 = 2000) considering accident year 1996 (= t0 – 4), we know the loss amounts
pertaining to accident year 1996, which have been paid out in calendar years
1996, 1997,…, 2000. But we do not know the amounts that will be paid in
calendar year 2001 and later. Some very popular actuarial techniques for
estimating outstanding loss payments – which are characterized by those cell
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entries (t1, t2), t1 ≤ t0, belonging to the right hand side of the bold line – are
based on deriving an average payment pattern from loss payments represented
by the loss triangle.

In the simplified model description of this section we will not take into
account the empirical fact that payment patterns of single large losses differ
from those of aggregate losses. We will also disregard changes in future claim
inflation, although it might have a strong impact on certain lines of business.

For each line we assumed an ultimate development year t when all claims
arising from an accident year would be paid completely. Incremental claim
payments denoted by Z ,t t1 2

are known for previous years t1 + t2 ≤ t0. Ultimate

loss amounts :Z Z ,t t tt
ult t

01 1
=

=
! vary by accident year t1. In order to determine

loss reserves taking into account reserving risk we first had to simulate ran-
dom loss payments Z ,t t1 2

. As a second step we needed to have a procedure for 
estimating ultimate loss amounts Zt

ult
1

at each future time.
We distinguished two cases. First we will explain the modelling of out-

standing loss payments pertaining to previous accident years followed by a
description to model loss payments in respect of future accident years.

For previous accident years (t1 ≤ t0) payments Z ,t t1 2
, with t1 + t2 ≤ t0 are

known. We used them as a basis for predicting outstanding payments.
We used a chain-ladder type procedure (for the chain-ladder method, see
Mack [31]), i.e. we applied ratios to cumulative payments per accident year.
The following type of loss development factor was defined

(2.23) : , .d
Z

Z
t 1,

,

,
t t

t tt

t
t t

0

1 21 2

1

2

1 2 $=

=

-!

Note that this ratio is not a typical chain-ladder link ratio. When mentioning
loss development factors in this section we are always referring to factors
defined by (2.23).

Since a lognormal distribution usually provides a good fit to historical loss
development factors, we used the following model for outstanding loss pay-
ments in calendar years t1 + t2 ≥ t0 + 1 for accident years t1 ≤ t0:

(2.24) ,Z d Z, , ,t t t t t t
t

t

0

1

1 2 1 2 1

2

$=
=

-

!

where 

d ,t t1 2
+ lognormal ( , )m st t

2
2 2

,

mt2
= estimated logarithmic loss development factor for development year t2,

based on historical data,

st2
= estimated logarithmic standard deviation of loss development factors,

based on historical data.
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This loss payment model is able to provide realistic loss payments as long as
there have been no significant structural changes in the loss history. However,
if for an accident year t1 ≤ t0 a high percentage of ultimate claim amount had
been paid out in one of the first development years t2 ≤ t0 – t1, this approach
would increase the reserve due to higher development factors leading to over-
estimation of outstanding payments. Consequently, single large losses should
be treated separately. Sometimes changes in law affect insurance companies
seriously. Such unpredictable structural changes are an important risk. A well-
known example are health problems caused by buildings contaminated with
asbestos. These were responsible for major losses in liability insurance. Such
extreme cases should perhaps be modelled by separate scenarios.

Ultimate loss amounts for accident years t1 ≤ t0 were calculated as

(2.25) Z Z ,t t t
t

ult
t

0
1 1

=
=

!

The second type of loss payments are due to future accident years t1 ≥ t0 + 1.
the components determining total loss amounts in respect of these accident
years have already been explained in Sections 2.3 and 2.4:

(2.26) ( ) ( ) ( ) ( ) ( ),Z k N k X k b k Y R k,t t
j

j
t
j

t t i
k

i

M

t
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2

1

t

1 1 1 1 1 1

1

= + -
= =

! !

where

( )N kt
j
1

= number of non-catastrophe losses in accident year t1 for line of
business k and renewal class j, see (2.17),

( )X kt
j
1

= severity of non-catastrophe losses in accident year t1 for line of
business k and renewal class j, see (2.19),

( )b kt1
= market share of the company in year t1 for line of business k,

Mt1
= number of catastrophes in accident year t1, see (2.20),

Y ,t i
k
1

= severity of catastrophe i in line of business k in accident year t1,
see (2.22),

( )R kt1
= reinsurance recoverables; a function of the Y ,t i

k
1

’s, depending on the
company’s reinsurance program.

It remains to model the incremental payments of these ultimate loss amounts
over the development periods. Therefore, we simulated incremental percent-
ages A ,t t1 2

of ultimate loss amount by using a beta probability distribution
with parameters based on payment patterns of previous calendar years:

(2.27)
,
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where

B ,t t1 2
= incremental loss payment due to accident year t1 in development year

t2 in relation to the sum of remaining incremental loss payments per-
taining to the same accident year

~ beta(�, b), �, b > –1.

Here � and b are chosen to yield

(2.28)
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where

m ,t t1 2
= estimated mean value of incremental loss payment due to accident

year t1 in development year t2 in relation to the sum of remaining
incremental loss payments pertaining to the same accident year, based

on  
A

A
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t tt t

t t
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1 2
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! , …,

v ,t t1 2
= estimated variance, based on the same historical data.

It can happen that a > –1, b > –1 satisfying (2.28) do not exist. This means
that the estimated variance reaches or exceeds the maximum variance
m ,t t1 2

(1 – m ,t t1 2
) possible for a beta distribution with mean m ,t t1 2

. In this case,
we resorted to a Bernoulli distribution for B ,t t1 2

because the Bernoulli distrib-
ution marks a limiting case of the beta distribution:

( ).B Be m, ,t t t t1 2 1 2
+

This approach limited the maximum variance to ( )m m1, ,t t t t1 2 1 2
- .

For each future accident year (t1 ≥ t0) we finally calculated loss payments
in development year t2 by:

(2.29) Z A Z, ,t t t t t
ult

1 2 1 2 1
= .

So far we have been dealing with the simulation of incremental claim pay-
ments due to an accident year. We still have to explain how we arrived at
reserve estimates at each time during the projection period. For each accident
year t1 we estimated the ultimate claim amount in each development year t2
through:

(2.30) ( ) ,e ZZ 1, ,t t t t
t

t

t t
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where

mt = estimated logarithmic loss development factor for development year t,
based on historical data,

Z ,t t1
= simulated losses for accident year t1, to be paid in development year t,

see (2.24) and (2.29).

Note that (2.30) is an estimate at the end of calendar year t1 + t2, whereas
(2.26) represents the real future value. Reserves in respect of accident year t1
at the end of calendar year t1 + t2 are determined by the difference between

estimated ultimate claim amount Z ,t t
ult
1 2

and paid to date losses in respect of

accident year t1. Reserving risk materializes through variations of the differ-
ence between the simulated (real) ultimate claim amounts and the estimated
values.

Similarly, at the end of calendar year t1 + t2 we got an estimate for dis-
counted ultimate losses for each accident year t1. Note that only future loss
payments are discounted whereas paid to date losses are taken at face value:

(2.31) ( ) ,e e e e e ZZ 1 1, ,
,

t t
R R

s t t t
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t t
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ult disc m m
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1
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, ,t t t t t s t s t

1 2

1 1

2 2

1

2

1 2 2 1 2 2= + + +
- -

= + = +

-

=

+ + + -! % !e o
where

R ,t T = T year spot rate at time t, see (2.7),

mt = estimated logarithmic loss development factor for development year t,
based on historical data,

Z ,t t1
= simulated losses for accident year t1, paid in development year t, see

(2.24) and (2.29).

Interesting references on stochastic models in loss reserving are Christofides
[8] and Taylor [40].

3. THE CORPORATE MODEL:
FROM SIMULATIONS TO FINANCIAL STATEMENTS

As pointed out in Section 1.4, DFA is an approach to facilitate and help jus-
tify management decisions. These are driven by a variety of considera-
tions: maximizing shareholder value, constraints imposed by regulators, tax
optimization and rankings by rating agencies and analysts. Parties outside
the company rely on financial reports in making decisions regarding their
relationship with the company. Therefore, a DFA model has to bridge the gap
between stochastic simulation of cash flows and financial statements (pro
forma balance sheets and income statements). The accounting process helps
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organize cash flow simulations into a readily understood and consistent
financial structure. This requires a substantial number of accrual items to
be generated in order to develop accounting entries for the model’s finan-
cial statements.

A DFA model has to allow for a statutory accounting framework if it
wants to address solvency requirements imposed by regulators thoroughly. If
the focus is on shareholder value the model should predominantly be con-
cerned with economic values, implying, for example, assets being marked-to-
market and all policy liabilities being discounted. While statutory accounting
focuses on solvency and balance sheet, generally accepted accounting principles
(GAAP) emphasize income statements and comparability between entities of
different nature. Consequently, a perfect DFA model should, among other
things, include different accounting frameworks (i.e. statutory, GAAP and
economic). This increases implementation costs substantially. A less burden-
some approach would be to concentrate on GAAP accounting taking into
account solvency requirements by introducing them as constraints to the
model where appropriate. Our DFA implementation focused on an economic
perspective.

In order to keep the exposition simple and within reasonable size we will
mention only some key relationships of the corporate model. A much more
comprehensive description is given in Kaufmann [24].

One of the fundamental variables is (economic) surplus Ut, defined as the
difference between the market value of assets and the market value of liabili-
ties (derived by discounting loss reserves and unearned premium reserves).
The amount of available surplus reflects the financial strength of an insur-
ance company and serves as a measure for shareholder value. We consider a
company as being insolvent once Ut < 0.

Change in surplus is determined by the following cash flows:

(3.1) DUt = Pt + (It – It–1) + (Ct – Ct–1) – Zt – Et – (Rt – Rt–1) – Tt

where

Pt = earned premiums,

It = market value of assets (including realized capital gains in year t),

Ct = equity capital,

Zt = losses paid in calendar year t,

Et = expenses,

Rt = (discounted) loss reserves,

Tt = taxes.

Note that Ct – Ct–1 describes the result of capital measures like issuance of new
equity capital or capital reduction.

We derived earned from written premiums. For each line of business, writ-
ten premiums Pt

j for renewal class j should depend on change in loss trends,
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the position in the underwriting cycle and on the number of written expo-
sures. This leads to written premium Pt

j of

(3.2) ( )( ) , , , ,c
w

w
jdP P1 1 0 1 2,t

j
t
P

m m
t
j
t
j

t
j

1
1t t1

= + + =
-

--

where

dt
P = change in loss trends, see remarks after (2.11),

mt = market condition in year t, see Section 2.5,

c ,A B = constant that describes how premiums develop when changing from
market condition A to B; cA,B can be estimated based on historical
data,

wt
0 = written exposure units for new business,

wt
1 = written exposure units for renewal business, first renewal,

wt
2 = written expoure units for renewal business, second and subsequent

renewals.

Description of the calculation of initial values Pt
j

0
in (3.2) will be deferred to

the paragraph subsequent to equation (3.4). Variables cA,B have to be available
as input parameters at the start of the DFA analysis. When estimating the
percentage change of premiums implied by changing from market condition
A to B it seems plausible to assume that the final impact is zero if market con-
ditions change back from B to A. This translates into (1 +cA,B) (1 + cB,A) = 1.
Also, the impact on premium changes triggered by changing from market
condition A to B and from B to C afterwards should be the same as changing
from A to C directly: (1 + cA,B) (1 + cB,C) = (1 + cA,C). We assumed an autore-
gressive process of order 1, AR(1), for the modelling of exposure unit devel-
opment:

(3.3) ( ) , , , ,w a b w je 0 1 2t
j j j

t
j

t
j

1= + + =-
+

where

( ,( ) ), , ,... . . .,i i de s e e0�t
j j j j2

1 2+

aj, bj, s j = parameters that can be estimated based on historical data.

The initial values wt
j
0

are known since they represent the current number of
exposure units. Choosing parameter bj < 1 ensures stationarity of the AR(1)
process (3.3). When deriving parameters a j and b j, prior adjustments to
historical data might be necessary if jumps in number of exposure units
had occurred caused by acquisition or transfer of loss portfolios. We found it
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helpful to admit deterministic modelling of exposure growth as well in order
to allow for these effects, which are mostly anticipated before changes in the
composition of the portfolio become effective.

Setting premium rates based on knowledge of past loss experience and
exposure growth as expressed in (3.2) leaves us still with substantial uncertain-
ties with regard to the adequacy of premiums. These uncertainties are con-
veyed in the term underwriting risk. Note that written premiums represented
by equation (3.2) would come close to be adequate if the realizations of all
random variables referring to projection year t ( , , )c wd ,t

P
m m t

j
t t1-

were known in

advance and assuming adequacy of current premiums Pt
j

0
. Unfortunately, pre-

miums to be charged in year t have to be determined prior to the beginning of
year t. Therefore, random variables in (3.2) have to be replaced by estimations
in order to model written premiums Pt

j, which would be charged in projection
year t.

(3.4) , , , ,P
w

jc
w

P1 1 0 1 2,t
j

t
P

m m
t
j
t
j

t
j

1
1t t1

= + + =
-

--
dt` ^j h

where we got the estimates via their expected values:

t
Pdt = [1+aX+bX(aI+bI(ab+(1–a)rt–1))] [1+aF+bF(aI+bI(ab+(1–a)rt–1))]–1,

see (2.11), (2.10), (2.9), (2.8) and (2.4).

,p cc , , ,

( )

m m m m m m
m

l k

1
t t t t1 1 1

=
=
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!

( )l k = number of states for line of business k, see Section 2.5,

p ,m mt 1-
= transition probability, see Section 2.5.

w
t
j = a b wj j

t
j

1+ - , see (3.3).

While (3.2) represents a random variable that describes (almost) adequate
premiums, (3.4) is the expected value of this random variable representing
actually written premiums. Note that the time index t = t0 refers to the year
prior to the first projection year. By combining (3.2) and (3.4) we deduce that
the initial values Pt

j

0
can be calculated via Pt

j
0
:

(3.5) , , , .
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dt

Pt
j
0

represent written premiums charged for the last year and still valid just
before the start of the first projection year. We assumed that premiums Pt

j
0

were
adequate and based on established premium principles allowing for the cost
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of capital to be earned. An alternative of setting starting values according to
(3.5) would be to use business plan data instead. This is an approach applic-
able at several places of the model.

By using written premiums ( )P kt
j as given in (3.4) where the index k denotes

line of business, we got the following expression for total earned premiums of
all lines and renewal classes (see explanation in Section 2.3) combined:

(3.6) ( ) ( ) ( ( )) ( ),P a k P k a k P k1t t
j

t
j

t
j

jk

l

t
j

1
0

2

1
1= + - -

==
-!!

where

( )a kt
j = percentage of premiums earned in year written, estimated based on

historical data.

We restricted ourselves to modelling only the most important asset classes, i.e.
fixed income type investments (e.g. bonds, policy loans, cash), stocks, and real
estate. Modelling of stock returns has already been mentioned in Section 2.2,
future prices of fixed income investments can be derived from the generated
term structure explained in Section 2.1. Our approach of modelling real estate
was very similar to the stock return model of Section 2.2.

Future investment profits depend not only on the development of market
values of assets currently on the balance sheet but also on decisions how new
funds will be reinvested. In order to build a DFA model that really deserves
to be called dynamic we should account for potential changes of asset alloca-
tion in future years compared to a pure static approach that keeps the asset
allocation unchanged. This requires defining investment rules depending on
specific economic conditions.

Capital measures DCt = Ct – Ct–1 were modelled as additions or deductions
from surplus depending on a target reserves-to-surplus ratio. A purely determin-
istic approach that increased or decreased equity capital by a certain amount
at specific times would have been an alternative.

Aggregate loss payments in projection year t were calculated based on
variables defined in Section 2.6:

(3.7) ( ),Z Z k,

( )

t t t t
t

k

k

l t

01
2 2

2

= -
==

!!

where

( )Z k,t t t2 2- = losses for accident year t – t2, paid in development year t2; see
(2.24) and (2.29),

t(k) = ultimate development year for this line of business,

k = line of business.
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We used a simple approach for modelling general expenses Et. They were cal-
culated as a constant plus a multiple of written exposure units ( )w kt

j . The
appropriate intercept aE(k) and slope bE(k) were determined by linear regres-
sion:

(3.8) ( ) ( ) ( ) .E a k b k w kt
E E

t
j
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0

2

1
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==

!!f p
For loss reserves Rt we got
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where

( )kZ ,
,

t t t
ult disc

2 2-
= estimation in calendar year t for discounted ultimate losses in

accident year t – t2; see (2.31),

( )Z k,t t s2- = losses for accident year t – t2, paid in development year s; see
(2.24) and (2.29),

( )kt = ultimate development year,

k = line of business.

An important variable to be considered are taxes, Tt, because many manage-
ment decisions are tax driven. The proper treatment of taxes depends on the
accounting framework. We used a rather simple tax model allowing for cur-
rent income taxes only, i.e. neglecting the possibility of deferred income taxes
for GAAP accounting.

4. DFA IN ACTION

The aim of this section is to give an example of potential applications of
DFA. Figure 4.1 displays the model logic of the approach introduced in this
paper in graphical format. By providing a simple example we will show how
to analyze surplus and ruin probabilities. It was not intended to describe a
specific effect when using the parameters given below. The parameters were
made up, i.e. they were not based on a real case.

Simplifying assumptions

• Only one line of business.
• New business and renewal business are not modelled separately.
• Payment patterns are assumed to be deterministic.
• No transaction costs.
• No taxes.
• No dividends paid.
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FIGURE 4.1: Schematic description of the modelling process:
stochastic and deterministic influences on surplus.

Model choices

• Number of non-catastrophe losses ~ NB (154, 0.025).
• Mean severity of non-catastrophe losses ~ Gamma (9.091, 242), inflation-

adjusted.
• Number of catastrophes ~ Pois (18).
• Severity of individual catastrophes ~ lognormal (13, 1.52), inflation-

adjusted.
• Optional excess of loss reinsurance with deductible 500000 (inflation-adjusted),

and cover ∞.
• Underwriting cycles: 1 = weak, 2 = average, 3 = strong. State in year 0: 1 (weak).

Transition probabilities: p11 = 60%, p12 = 25%, p13 = 15%, p21 = 25%, p22 =
55%, p23 = 20%, p31 = 10%, p32 = 25%, p33 = 65%.

• All liquidity is reinvested. There are only two investment possibilities:
1) buy a risk-free bond with maturity one year,
2) buy an equity portfolio with a fixed beta.

• Market valuation: assets and liabilities are stated at market value, i.e. assets
are stated at their current market values, liabilities are discounted at the
appropriate term spot rate determined by the model.

Model parameters

• Interest rates, see (2.4): a = 0.25, b = 5%, s = 0.1, r1 = 2%.
• General inflation, see (2.8): aI = 0%, bI = 0.75, sI = 0.025.
• No inflation impacting the number of claims.
• Inflation impacting severity of claims, see (2.10):

aX = 3.5%, bX = 0.5, sX = 0.02.
• Stock returns, see (2.14), (2.15) and (2.16):

aM = 4%, bM = 0.5, bt
S ≡ 0.5, s = 0.15.

• Market share: 5%.
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FIGURE 4.2: Simulated expected surplus and ruin probability for the evaluated strategies.

• Expenses: 28.5% of written premiums.
• Premiums for reinsurance: 175 000 p.a. (inflation-adjusted).

Historical data

• Written premiums in the last year: 20 million.
• Initial surplus: 12 million.

Strategies considered

• Should the company buy reinsurance coverage or not?
• How should the reinvestment of excess liquidity be split between fixed income

instruments and stocks?

Projection period

• 10 years (yearly intervals).

Risk and return measures

• Return measure: expected surplus �[U10].
• Risk measure: ruin probability, defined as �[U10 < 0].

We ran this model 10 000 times for the twelve strategies summarized in Figure 4.2.
The first three rows represent a fixed asset allocation. The remaining ones are
characterized by an upper limit for the amount of money allowed to be
invested in bonds. The amount exceeding this limit is invested in stocks. For
each strategy we evaluated the expected surplus and the probability of ruin.
Figure 4.3 rules out only one strategy definitely, based on the selected risk and
return measures: strategy 1b has lower return but higher risk than strategy 6a.

If we replace the return measure “expected surplus” by the median surplus,
and evaluate the same twelve strategies, we get a completely different picture.
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FIGURE 4.4: Graphical comparison of ruin probabilities and median surplus for selected
business strategies.

FIGURE 4.3: Graphical comparison of ruin probabilities and expected surplus for selected
business strategies.

Figure 4.4 shows that by choosing the median surplus as return measure and
ruin probability as risk measure all six strategies with a ruin probability above
3% (i.e. strategies 3a, 3b, 4a, 4b, 5a and 5b) are clearly outperformed by the
strategies 2a and 2b, where half of the money is invested in bonds and the
other half in stocks.

An advantage of median surplus is the fact that one can easily calculate
confidence intervals for this return measure. In Figure 4.5 we plotted confi-
dence intervals, based on the 10 000 simulations performed. These intervals
should be interpreted as 95% confidence intervals for ruin probability given a
specific strategy and 95% confidence intervals for median surplus given a spe-
cific strategy. Note that Figure 4.5 does not attempt to give joint confidence
areas. Furthermore it is important to be aware of the fact that a 95% confi-
dence interval for median surplus does not mean that 95% of the simulations at
the end of the projection period result in an amount of surplus that lies in this
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FIGURE 4.5: 95% confidence intervals for ruin probability and median surplus, based on
10 000 simulations for each strategy.

interval. The correct interpretation is that given our observed sample of 10 000
simulations, the probability for median surplus lying in this interval is 95%.

5. SOME REMARKS ON DFA

5.1. Discussion Points

This introductory paper discussed only the most relevant issues related to
DFA modelling. Therefore, we would like to mention briefly some additional
points without necessarily being exhaustive.

5.1.1. Deterministic Scenario Testing
In Section 1 we mentioned the superiority of DFA compared to deterministic
scenario testing. This does not imply that the latter method is useless at all.
On the contrary, deterministic scenario testing is a very useful thing, in par-
ticular when it comes to assess the impact of extreme events at pre-defined
dates or when specific macroeconomic influences are to be evaluated. It is a
very useful feature of a DFA tool being able to switch off stochasticity and
return to deterministic scenarios.

5.1.2. Macroeconomic Environment
In life insurance financial modelling interest rates are often considered to be
the only macroeconomic factor affecting the values of assets and liabilities.
Hodes, Feldblum and Neghaiwi [21] have pointed out that in nonlife insur-
ance, interest rates are only one of various other factors affecting liability val-
ues. In Worker’s Compensation in the US, for instance, unemployment rates
and industrial capacity utilization have greater effects on loss costs than inter-
est rates have, while third-party motor claims are correlated with total volume
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of traffic and with sales of new cars. Although rarely done it might be worth-
while modelling specific macroeconomic drivers like industrial capacity uti-
lization or traffic volume separately. This would require a foregoing econo-
metric analysis of the dynamics of particular factors.

5.1.3. Correlations
DFA is able to allow for dependencies between different stochastic variables.
Before starting to implement these dependencies one should have a sound
understanding of existing dependencies within an insurance enterprise. Esti-
mating correlations from historical (loss) data is often not feasible due to
aggregate figures and structural changes in the past, e.g. varying deductibles,
changing policy conditions, acquisitions, spin-offs, etc. Furthermore, recent
research, see for example Embrechts, McNeil and Straumann [17] and [18],
and Lindskog [28], suggests that linear correlation is not appropriate to model
dependencies between heavy-tailed and skewed risks.

We suggest modelling dependencies implicitly, as a result of a number of
contributory influences, for example, catastrophes that impact more than
one line of business or interest rate changes affecting only specific lines. The
majority of these relations should be implemented based on economic and
actuarial wisdom, see for instance Kreps [26].

5.1.4. Separate Modelling of New and Renewal Business
In the model outlined in this paper we allowed for separate modelling of new
and renewal business, see Section 2.3. Hodes, Feldblum and Neghaiwi [21]
pointed out that this makes perfectly sense due to different stochastic beha-
viour of the respective loss portfolios. Furthermore, having this split allows a
deeper analysis of value drivers within the portfolio and marks an important
step towards determining an appraised value for a nonlife insurance company.

5.1.5. Model Validation
What is finally a good DFA model and what is not? Experience, knowledge
and intuition of users from actuarial, economic and management side play a
dominant role in evaluating a DFA model. A danger in this respect might be
that non-intuitive results could be blamed on a bad model instead of wrong
assumptions. A further possibility to evaluate a model is to test results com-
ing out of the DFA model against empirical results. This will only be feasible
in very few restricted cases because it would require keeping track of data for
several years. However, model validation should deserve more attention. This
needs to be recommended in particular to those practitioners dealing with
software vendors of DFA tools who do not intend to justify their decision of
buying an expensive DFA product by referring to the software design only.

5.1.6. Model Calibration
We have already touched on this at several places and pointed to its impor-
tance within a DFA analysis. However sophisticated a DFA tool or model
might be, it has to be fed with data and parameter values. Studies have
shown that the major part of a DFA analysis had been devoted to this exercise.
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Usually, the calibration part is an ongoing process during the course of an
analysis in order to fine-tune the model.

5.1.7. Interpretation of Output
We mentioned in Section 1.5 that the interpretation process of DFA output
follows very often traditional patterns, e.g. efficient frontier analysis, which
might lead to false or at least questionable conclusions, see Cumberworth,
Hitchcox, McConnell and Smith [10]. Another example showing how critical
interpretation of results can be is this: A net present value (NPV) analysis
applied to model office cash flows can generate or destroy a huge amount of
shareholder value by making slight changes to CAPM assumptions, which
are often used for determining the discount rate. A way to keep feet on sound
economic ground and simultaneously remove a great deal of arbitrariness is
through resorting to deflators, see Jarvis, Southall and Varnell [23]. The use
of this concept, originating in the work of Arrow and Debreu, has been
promoted by Smith [39] and is further discussed in Bühlmann, Delbaen,
Embrechts and Shiryaev [7]. The cited references might be evidence for growing
awareness that our toolbox for interpreting and understanding DFA results
needs to be renovated in order to enhance the use of DFA.

5.2. Strength and Weaknesses of DFA

DFA models provide generally deeper insight into risks and potential rewards
of business strategies than scenario testing can do. DFA marks a milestone
towards evaluating business strategies when compared to old-style analysis of
considering only key ratios. DFA is virtually the only feasible way to model
an entire nonlife operation on a cash flow basis. It allows for a high degree of
detail including analysis of the reinsurance program, modelling of catastrophic
events, dependencies between random elements, etc. DFA can meet different
objectives and address different management units (underwriting, invest-
ments, planning, actuarial, etc.).

Nevertheless, it is worth mentioning that a DFA model will never be able
to capture the complexity of the real-life business environment. Necessarily,
one has to restrict attention during the model building process to certain fea-
tures the model is supposed to reflect. However, the number of parameters
which have to be estimated beforehand and the number of random variables
to be modelled even within medium-sized DFA models contribute a big deal
of process and parameter risk to a DFA model. Furthermore one has to be
aware that results will strongly depend on the assumptions used in the model
set-up. A critical question is: How big and sophisticated should a DFA model
be? Everything comes at a price and a simple model that can produce reason-
able results will probably be preferred by many users due to growing reluctance
of using non-transparent “black boxes”. In addition, smaller models tend to
be more in line with intuition, and make it easier to assess the impact of specific
variables. A good understanding and control of uncertainties and approxima-
tions is vital to the usefulness of a DFA model.
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5.3. Closing Remarks

We wanted to give an introduction into DFA by hinting to pitfalls and
emphasizing important issues to be taken into account in the modelling
process. Our intention was to provide the uninformed reader with a simple
DFA approach enabling these readers to implement DFA using our approach
as a kind of reference model. Many commercial DFA tools are roughly struc-
tured as the model outlined in this paper. Specific concepts and concrete imple-
mentation of the model components are often different. We are absolutely
aware that there are numerous alternatives to each of the sub-models intro-
duced in this paper. Some of them might be much more powerful or flexible
than our approach. We wanted to provide a framework leaving it up to the
reader to complete the DFA house by making adjustments or amendments at
his/her discretion. Although we did not necessarily target the DFA experts
our exposition might have also served to give an impression of the complex-
ity of a fully fledged DFA model.

ACKNOWLEDGEMENT

We would like to thank Paul Embrechts, Peter Blum and the anonymous
referees for numerous comments on an earlier version of the paper. We also
benefited substantially from discussions on DFA with Allan Kaufman and
Stavros Christofides.

REFERENCES

1. AHLGRIM K.C., D’ARCY S.P. and GORVETT R.W. (1999) Parametrizing Interest Rate Mod-
els, Casualty Actuarial Society Forum, 1-50

2. ARTZNER P., DELBAEN F., EBER J. and HEATH D. (1997) Thinking Coherently, RISK 10, 68-
71.

3. ARTZNER P., DELBAEN F., EBER J. and HEATH D. (1999) Coherent Measures of Risk, Math-
ematical Finance 9(3), 203-228.

4. BJÖRK T. (1996) Interest Rate Theory. In Financial Mathematics (ed. W. Runggaldier), Lec-
ture Notes in Mathematics 1656, 53-122, Springer, Berlin.

5. BLUM P., DACOROGNA M., EMBRECHTS P., NEGHAIWI T. and NIGGLI H. (2001) Using DFA
for Modelling the Impact of Foreign Exchange Risks on Reinsurance Decisions, Paper pre-
sented at the Casualty Actuarial Society 2001 Reinsurance Meeting on Using Dynamic
Financial Analysis to Optimize Ceded Reinsurance Programs and Retained Portfolios,
Washington D.C., July 2001. Available as ETH Zürich Preprint.

6. BRENNAN M.J. and SCHWARTZ E.S. (1982) An Equilibrium Model of Bond Pricing and a
Test of Market Efficiency, Journal of Financial and Quantitative Analysis 17, 301-329.

7. BÜHLMANN H., DELBAEN F., EMBRECHTS P. and SHIRYAEV A.N. (1998) On Esscher Trans-
forms in Discrete Finance Models, ASTIN Bulletin 28(2), 171-186.

8. CHRISTOFIDES S. (1990) Regression Models Based on Log-Incremental Payments, Claims
Reserving Manual 2, Institute of Actuaries, London.

9. COX J.C., INGERSOLL J.E. and ROSS S.A. (1985) A Theory of the Term Structure of Interest
Rates, Econometrica 53, 385-407.

10. CUMBERWORTH M.P., HITCHCOX A.M., MCCONNELL W.M. and SMITH A.D. (1999) Corporate
Decisions in General Insurance: Beyond the Frontier, available from http://www.actuaries.
org.uk/library/sessional_meeting_papers.html.

INTRODUCTION TO DYNAMIC FINANCIAL ANALYSIS 247



11. D’ARCY S.P. and DOHERTY N. (1989) The Aging Phenomenon and Insurance Prices, Pro-
ceedings of the Casualty Actuarial Society 76, 24-44.

12. D’ARCY S.P. and DOHERTY N. (1990) Adverse Selection, Private Information and Low-
balling in Insurance Markets, Journal of Business 63, 145-164.

13. D’ARCY S.P., GORVETT R.W., HERBERS J.A., HETTINGER T.E., LEHMANN S.G. and MILLER

M.J. (1997) Building a Public Access PC-Based DFA Model, Casualty Actuarial Society
Forum, 1-40.

14. D’ARCY S.P., GORVETT R.W., HETTINGER T.E. and WALLING R.J. (1998) Using the Public
Access DFA Model: A Case Study, Casualty Actuarial Society Forum, 55-118.

15. DAYKIN C.D., PENTIKÄINEN T. and PESONEN M. (1994) Practical Risk Theory for Actuaries,
Chapman & Hall, London.

16. EMBRECHTS P., KLÜPPELBERG C. and MIKOSCH T. (1997) Modelling Extremal Events for
Insurance and Finance, Springer, Berlin.

17. EMBRECHTS P., MCNEIL A.J. and STRAUMANN D. (1999) Correlation: Pitfalls and Alternatives,
RISK 12(5), 69-71.

18. EMBRECHTS P., MCNEIL A.J. and STRAUMANN D. (1999) Correlation and Dependence in
Risk Management: Properties and Pitfalls, Preprint ETH Zürich, available from http://www.
math.ethz.ch/~embrechts.

19. FELDBLUM S. (1996) Personal Automobile Premiums: An Asset Share Pricing Approach for
Property/Casualty Insurance, Proceedings of the Casualty Actuarial Society 83, 190-296.

20. HEATH D., JARROW R. and MORTON A. (1992) Bond Pricing and the Term Structure of
Interest Rates: A New Methodology for Contingent Claim Valuation, Econometrica 60, 77-
105.

21. HODES D.M., FELDBLUM S. and NEGHAIWI A.A. (1999) The Financial Modeling of Prop-
erty-Casualty Insurance Companies, North American Actuarial Journal 3(3), 41-69.

22. INGERSOLL J.E. (1987) Theory of Financial Decision Making, Rowman & Littlefield Studies
in Financial Economics, New Jersey.

23. JARVIS S., SOUTHALL F.E. and VARNELL E. (2001) Modern Valuation Techniques, Staple Inn
Actuarial Society, available from http://www.sias.org.uk/progold.htm.

24. KAUFMANN R. (1999) DFA: Stochastische Simulation zur Beurteilung von Unternehmensstra-
tegien bei Nichtleben-Versicherungen, Master Thesis, ETH Zürich.

25. KLETT, R. (1994) Asset-Liability-Management im Lebensversicherungsbereich, Master The-
sis, University of Freiburg.

26. KREPS, R.E. (2000) A Partially Comonotonic Algorithm for Loss Generation, Proceedings
of XXXIst International ASTIN Colloquium, 165-176, Porto Cervo, Italy.

27. LAMBERTON D. and LAPEYRE B. (1996) Introduction to Stochastic Calculus Applied to Finance,
Chapman & Hall, London.

28. LINDSKOG F. (2000) Modelling Dependence with Copulas and Applications to Risk Manage-
ment, Master Thesis, ETH Zürich.

29. LONGSTAFF F.A. and SCHWARTZ E.S. (1992) Interest Rate Volatility and the Term Structure:
A Two-Factor General Equilibrium Model, Journal of Finance 47, 1259-1282.

30. LOWE S.P. and STANARD J.N. (1997) An Integrated Dynamic Financial Analysis and Deci-
sion Support System for a Property Catastrophe Reinsurer, ASTIN Bulletin 27(2), 339-371.

31. MACK T. (1997) Schadenversicherungsmathematik, Verlag Versicherungswirtschaft E.V., Karls-
ruhe.

32. MARKOWITZ H.M. (1959) Portfolio Selection: Efficient Diversification of Investments, John
Wiley, New York.

33. MCNEIL A.J. (1997) Estimating the Tails of Loss Severity Distributions using Extreme Value
Theory, ASTIN Bulletin 27(1), 117-137.

34. MODIGLIANI M. and MILLER M. (1958) The Cost of Capital, Corporation Finance, and the
Theory of Investment, American Economic Review 48, 261-297.

35. MUSIELA M. and RUTKOWSKI M. (1998) Martingale Methods in Financial Modelling, 2nd
edition, Springer, Berlin.

36. ROGERS L.C.G. (1995) Which Model for Term-Structure of Interest Rates Should One Use?
In Mathematical Finance, IMA Volume 65, 93-116, Springer, New York.

37. SCHNIEPER R. (1997) Capital Allocation and Solvency Testing, SCOR Notes, 55-104.

248 R. KAUFMANN, A. GADMER AND R. KLETT



38. SCHNIEPER R. (1999) Solvency Testing, Mitteilungen der Schweizerischen Aktuarvereinigung,
11-45.

39. SMITH A.D. (1996) How Actuaries Can Use Financial Economics, British Actuarial Journal
2(V), 1057-1193.

40. TAYLOR G.C. (2000) Loss Reserving: An Actuarial Perspective, Kluwer Academic Publishers,
Boston.

41. WALLING R.J., HETTINGER T.E., EMMA C.C. and ACKERMAN S. (1999) Customizing the
Public Access Model Using Publicly Available Data, Casualty Actuarial Society Forum, 239-
266.

42. WILKIE A.D. (1995) More on a Stochastic Asset Model for Actuarial Use, British Actuarial
Journal 1(V), 777-964.

43. WISE A.J. (1984) The Matching of Assets to Liabilities, Journal of the Institute of Actuaries
111, 445-485.

44. WOLL R.G. (1987) Insurance Profits: Keeping Score, Financial Analysis of Insurance Com-
panies, Casualty Actuarial Society Discussion Paper Program, 446-533.

ROGER KAUFMANN

RiskLab
Department of Mathematics
ETH Zentrum
CH-8092 Zürich
Switzerland
kaufmann@math.ethz.ch

ANDREAS GADMER

Zürich Kosmos Versicherungen
Schwarzenbergplatz 15
A-1015 Wien
Austria
andreas.gadmer@zurich.com

RALF KLETT

Zurich Financial Services
Mythenquai 2
CH-8022 Zürich
Switzerland
ralf.klett@zurich.com

INTRODUCTION TO DYNAMIC FINANCIAL ANALYSIS 249





BOOK REVIEWS

Hartmut MILBRODT, Manfred HELBIG (1999): Mathematische Methoden der
Personenversicherung. de Gruyter. IBSN 3-11-014226-0

The book “Mathematische Methoden der Personenversicherung” by Hart-
mut Milbrodt and Manfred Helbig is a major textbook about life insurance
mathematics and has the ambitious aim to cover a large part of the classic
and modern life insurance mathematics in German. It is aimed at actuarial
students, life insurance professionals and at research fellows.

In order to reach this aim, the monograph has over 600 pages and 13 chapters:

• Versicherungsmathematik: Teil der Versicherungswissenschaft
• Elementare Finanzmathematik: Der Zins als Rechnungsgrundlage
• Ausscheideordnungen in der Lebensversicherung
• Stochastische Prozesse in der Personenversicherung
• Versicherungsleistungen in der Lebensversicherung
• Versicherungsleistungen in der allgemeinen Personenversicherung
• Berechnung erwarteter Barwerte spezieller Versicherungsleistungen mittels

Kommuationszahlen
• Prämien
• Das Deckungskapital einer Versicherung eines unter einem einzigen Risiko

stehenden Lebens
• Das Deckungskapital in der allgemeinen Personenversicherung
• Überschuss und Überschussanalyse in der Lebensversicherung
• Mathematischer Anhang.

From the above table of contents, it is seen that this book covers a large
amount of things an actuary in a life insurance has to know such as com-
mutation functions, smoothing of moralities, bonus schemes and multi-state
model for life insurance. From this point of view, the book is necessary for
each library. A particular highlight of this book is the treatment of mar-
kov models in life insurance in a very general way. The theory is as well
illustrated by practical examples. On the other hand, the book is rather long
and not as concise as for example “Life insurance mathematics” by Hans
Gerber.

One reason for being so long stems from the aim of the authors to present
all theorems in the most general framework. Therefore the definitions, propo-
sitions and theorems become rather involved and it is possible get lost. The
exercises are either very theoretical (mathematical) or bound to earth and so
there is something for every type of reader. The solutions are unfortunately
missing.

ASTIN BULLETIN, Vol. 31, No. 1, 2001, pp. 251-254



On the other hand, this book is unique because it tries to present the tra-
ditional and the modern life insurance mathematics within one book and
therefore I think that is in particular helpful for people who want to know
both types of life insurance mathematics.

MICHAEL KOLLER
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G.E. WILLMOT And X. SHELDON LIN (2000): Lundberg Approximations for
Compound Distributions with Insurance Applications. Springer Lecture Notes
in Statistics, 156. ISBN 0 387 95135 0.

Contents:

1. Introduction
2. Reliability background
3. Mixed Poisson distributions
4. Compound distributions
5. Bounds based on reliability classifications
6. Parametric bounds
7. Compound geometric and related distributions
8. Tijms approximations
9. Defective renewal equations

10. The severity of ruin
11. Renewal risk processes

Bibliography
Symbol Index
Author Index
Subject Index

In its broadest interpretation, one can say that Lundberg approximations
yield exponential inequalities and first order asymptotic expansions for com-
pound distributions. Typical applications include ruin estimation in risk the-
ory and approximations for the total claim amount over a given period of
time. Similar problems occur in dam theory, queueing theory and reliability.
The present text mainly uses techniques from the latter field to augment the
classical insurance results. The various chapters typically start with some gen-
eral results on the relevant topic; these results are then exemplified under spe-
cific distributional assumptions. Though the original Lundberg approxima-
tions were established for short-tailed distributions (as claim size, say), also
the long-tailed case (like the Pareto) is discussed.

The text is well written; proofs and examples are given very much in detail.
Consequently, the text can be used to augment a course on risk theory for
instance through the discussion of specific examples

PAUL EMBRECHTS
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J. GRANDELL: Mixed Poisson Processes. Chapman & Hall, London, 1997,
260 pages, ISBN 0 412 78700 8.

Mixed Poisson distributions and processes can loosely be regarded as Poisson
distributions or processes with random intensity parameters. The distributions
of these parameters are called structure distributions. It is surprising that such
a simple construction has a lot of applications and serves as a source for
further generalizations. By author’s words, “the present book can be looked
upon as a detailed survey, and contains no essential new results”. One can
agree with these modest words only on the understanding that the author
gave a deep insight in the topic and related fields, provided many examples
and counter-examples, historical remarks, and a comprehensive bibliography
resulting in an excellent book.

In order to feel a flavour of the book, let us briefly consider its contents.
Chapter 1 informally introduces readers into the subject. It contains relevant
references and comments about the history of the problem. The mixed Poisson
distribution is accurately defined in Chapter 2. Its various properties (e.g., the
infinite divisibility) and relationships with other distributions are examined.
Chapter 3 contains a mathematical background: point and Markov processes,
martingales. In Chapter 4, the mixed Poisson processs is introduced, its basic
properties are established, and relevant examples are given. As the author
indicates, this chapter “is, to a great extent, a slightly (this adjective seems
not to be adequate – V.K.) modernized summary of Lundberg’s work” [On
random processes and their application to sickness and accident statistics, 1940].
Various random processes such as infinitely divisible, Hoffman, Yule, birth,
Pólya, and others are considered in the light of their relations to mixed Pois-
son processes. Chapter 5 is of special theoretical and applied interest. It is
devoted to Cox, Gauss-Poisson, and mixed renewal processes regarded as
important generalizations of mixed Poisson processes that can be viewed as
approximations of a wide class of point processes. The emphasis is placed on
constructive definitions of these processes. In particular, the author considers
the thinning allowing to characterize the Cox and Gauss-Poisson processes.
Various characterizations of mixed Poisson processes are given in Chapter 6.
They are stated within sets of birth, stationary point, and general point
processes. Chapter 7 deals with certain aging properties of the structure dis-
tributions. These properties are used in Chapter 8 for bounds, asymptotic
formulae, and recursive evaluation of mixed Poisson distributions. The last
Chapter 9 is devoted to applications to risk business with the emphasis on
ruin probabilities, where contribution of the author is outstanding. Readers
can also find there other interesting topics, e.g., associated with subexponen-
tial distributions.

This compact book is well-balanced as it combines rigorous mathematical
treatments with informal discussions. It brings together many facts published in
journals and other issues and contains a comprehensive bibliography on the
subject and related topics. Certainly, it will serve as a valuable source of facts
and inspiration for actuaries, applied mathematicians, students, and researchers.

VLADIMIR KALASHNIKOV
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The Department of Statistics invites applications for a tenure-stream
position in Actuarial Science, rank open. The position is to begin
September 1, 2001 or as soon as possible thereafter. Duties will include
teaching courses in the actuarial science program at both the under-
graduate and graduate level, conducting research in actuarial science,
and service to the professional actuarial associations. Qualifications
required are a Ph.D. in actuarial science, statistics, mathematics or a
related area, professional accreditation in the CIA, SOA or CAS, and
an active research program. Salary and rank are commensurate with
experience.

We will begin reviewing applications on June 30, 2001 and continue until
the position is filled.

Letters of application with curriculum vitae should be sent to

Professor Nancy Reid
Department of Statistics
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