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EDITORIAL CHANGE 

Readers will have been delighted to hear of the appointment last year of 
Henrik Ramlau-Hansen as editor of ASTIN Bulletin in succession to 
Harry Reid. Henrik has subsequently been promoted to the position of chief 
executive of his company in Denmark and has felt it necessary to step down 
as editor. We all congratulate Henrik on his promotion and express our 
regret that he was not able to have a longer term as editor. 

ASTIN BULLETIN, Vol. 30, No, I, 2000, p. I 



EQUITY AND EXACT CREDIBILITY 

BY 

S. DAVID PROMISLOW AND VIRGINIA R. YOUNG 

ABSTRACT 

We consider an alternative to the usual credibility premium that arises from 
squared-error loss, namely, a so-called equitable credibility premium 
(Promislow and Young, 1999). We derive formulas for the credibility weight 
in certain cases and give sufficient conditions for exact credibility. 

I .  INTRODUCTION 

When setting premiums for insurance, inequities will necessarily arise when, 
due to imperfect information, some policyholders are charged more than 
they should be and others less. By building on the previous work of 
Promislow (1987, 1991), we deal with the problem of choosing premiums to 
minimize this inequity (Promislow and Young, 1999). Much of our work 
parallels classical credibility theory, but in place of the traditional squared- 
error loss functions, we use the family of entropy loss functions. This is a 
familiar family that has frequently appeared in the economics literature for 
the purpose of measuring income inequality. We obtain formulas for the 
optimal premiums, and in certain cases, we obtain explicit formulas for the 
best affine approximation to the optimal premiums. A natural question, 
then, is to ask how good the affine approximations are. A basic result of the 
classical squared-error approach is that they are often exact. This occurs 
(given certain regularity conditions) when probability distributions are 
chosen from the linear exponential family with conjugate priors (Jewell, 
1974a,b). The purpose of this note is to investigate conditions of exactness 
for a particular case of an entropy loss function. 

In Section 2, we set our notation and assumptions and briefly review 
previous work in credibility theory, including some of our work in 
Promislow and Young (1999). We consider a specific case of our equitable 
credibility estimator. In Section 3, we study the case for which the equitable 
credibility premium is constrained to be an affine function of the claim data. 

AS'TIN BULLETIN,  Vol. 30, No, I, 2000, pp. 3-11 



4 S. DAVID PROMISLOW AND VIRGINIA R. YOUNG 

For the special case investigated in this paper, we have an explicit expression 
for the credibility weight and determine a sufficient condition for exact 
credibility. 

2. BACKGROUND 

Assume that the total claims of a policyholder, or risk, in the i 'h policy 
period, is a random variable Xi whose distribution depends on 
0, i = 1, 2, ..., in which 0 varies across policyholders and may be vector- 
valued. Assume that the Xg are independent (conditional on 0) and 
identically distributed. The value of 0 completely determines the claim 
distribution of  the policyholder. Assume that the value 0 is fixed for a given 
risk, although it is generally unknown and unobservable. Denote the 
probability (density) function of 0 by ~-(0), also called the s t r u c t u r e  f u n c t i o n  
(Biihlmann, 1970). 

One goal of credibility theory is to calculate a premium for period n + 1 
of  a policyholder, given that the policyholder's claim experience in the first n 
periods is X,, = x,, = (xl, x2, ..., x,,) E (R+) '', or more generally given any 
information, such as a demographic data. Consider general credibility 
estimators, denoted by Y, in which Y is a real-valued function on the 
information given, such as (R+) '', if the information is prior claim data. We 
use a capital letter to denote the credibility premium Y to emphasize that it is 
a random variable. If we constrain Y to be a linear function of the claim data 
x, then we write L for Y. 

If one knew the value of 0 that determines the claim distribution of a 
policyholder, then E(X,,+IL0) would be the most equitable premium for 
period 17 + l, or more simply E(X]0). Let ~L(0) denote E(X[0); also, let p, 
denote EX. The inequity of any other premium is measured relative to this 
most equitable premium. A general procedure is to select an appropriate loss 
(or unfairness) function U and then to choose Y(x , , )  to minimize 

EU[(r(x,,), 

In Bfihlmann's classical theory (1967, 1970), the loss function U is taken to 
be the traditional squared error. That is, 

U[(Y(x,,), /,L(0))] = (Y(x,,) - #(0)) 2. (2. I) 

The resulting credibility premium is the posterior expected value of the 
conditional mean 

Y(x,,) = f E(X, ,+I  ]O)Tr(O[x,,)dO. (2,2) 
J 
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By restricting the form of the credibility premium L to be a linear 
combination of prior claims, and by assuming that the claims are 
conditionally independent and identically distributed, one deduces the 
credibility estimator 

L(x,,) = (1 - Z);~ + ZX, (2.3) 

in which # = EX = E[t~(0)] is the overall, or grand, mean; Yc is the sample 
mean, 

I1 
Z - k '  (2.4) n +  

in which 

k - E[Var(XI0)] (2.5) 
Var[tz(0)] 

is the ratio of the expected process variance to the variance of the 
hypothetical means. 

In certain cases, the predictive mean (2.2) is an affine function of the 
sample mean and, thus, equals the linear credibility estimator (2.3). Jewell 
(1974a,b) verifies conditions under which this exact credibility occurs: Under 
certain regularity conditions, exact credibility occurs for probability 
distributions from the linear exponential family when one uses the conjugate 
prior. 

Promislow (1987, 1991) and Promislow and Young (1999) argue that 
squared error is inappropriate for measuring unfairness, and they justify 
using the entropy family in its place. Squared error is a function of the 
absolute difference between the charged premium and the true premium, 
while unfairness should depend on the relative difference between these two 
quantities. For example, we consider an individual who should be charged 
l unit but is actually charged l0 units to be treated more unfairly than an 
individual who should be charged 1001 units but is actually charged 
1010 units. 

Promislow (1987, 1991) and Promislow and Young (1999) show that 
appropriate loss functions to meet this objective are of the form 

U(Y, #(0)) = #(O)g(r), 

in which r denotes the ratio Y/Ft(O). That is, loss is expressed as a function of 
the relative difference, weighted by the true premiums. It is shown, 
moreover, that the function g should be convex and satisfy g(I) = 0. In 
this paper, we will deal with the case in which g(r) = r 2 - 1, which leads to 
the loss function 

rZ U2(Y, Iz(O))-iz(O ) ~ ( 0 )  ( 2 . 6 )  
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In place of g, we could take the function h given by h(r) = ( r -  1) 2 . Since h 
differs additively from g by a multiple of (r - 1), it is not difficult to see that 
there will be no effect on the result when we compute expectations. It is of  
interest to note that the classical squared error loss can be expressed in a 
similar form but at the cost of  distorting the weights. We can write (2.1) in 
the form 

u(r ,  ~(0)) = ~(0)2h(,'), 

in which h(r) = ( r -  1) 2 . The weights now are the squares of  the true 
premiums, which give much higher weight than before to the high cost 
situations. Also, we can also compare this with squared percentage error, 
where the loss function is 

u(r ,  ~(0)) = h(r). 

In this case, the weights are distorted by being independent of the true cost. 
Note that the loss function in (2.6) equals Uc(Y, #(0)) from Promislow 

and Young (1999) in the special case for which c = 2. We will restrict our 
attention to this case for the remainder of  this paper. In place of formula 
(2.2), one now gets an optimal premium of 

Y2(x,,) = ~ (2.7) 
I 

There is a convenient analogue of formulas (2.3) through (2.5). Indeed, (2.3) 
holds with Z replaced by z2 given as follows: 

n 
z2 = j , (2.8) 

n --I- 

'V2 ] I-Var(XI0)-] 
in which J =  E ~ - / ~ =  E[-~ ~ -[, and W(A) = E ( A )  E(A - I ) -  l, 

for any positive random variable A (Promislow and Young, 1999). Note that 
z2 approaches 1 as n goes to infinity. 

The expression in (2.8) is similar to the formula for Z, given by (2.4) and 
(2.5), with J replacing the expected process variance E[Var(X[0)] as a 
measure of the variability in X given a value of 0, and with #W(F~(O)) 
replacing the variance of the hypothetical means Var(l~(0)) as a measure of 
the heterogeneity of the risks. See Promislow and Young (1999) for further 
discussion of the "variance" measures J and W and for the derivation of z2. 
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3. C O N D I T I O N S  FOR EXACTNESS 

For the linear exponential family and conjugate priors, we derive a sufficient 
condition for exact credibility. By exact credibility, we mean that the 
equitable credibility estimator Y2(x.) given by (2.?) is an affine function of  
the sample mean and, therefore, equals the credibility estimator 
L2(x,~) = (I - g 2 ) #  qt_ Z2~% with z2 given by (2.8). 

Suppose X]O is distributed according to a distribution from a linear 
exponential family. Specifically, the pf or pdf of X]O is of the form 

f (  xlO ) - P( x )e-"° 
q(O) ' 

for x>_0  and for 0 taking values in an interval (00, 0t), where 
-cx~ _< 00 < 01 < oo. Note that q is the Laplace transform of p because 
q(O) = ~oP(X)e-~°dx. The conditional mean of  X[O is given by 

# ( 0 ) -  q'(O) 
q(O)'  

(Klugman et al., 1998). We concentrate on linear exponential families 
because if the sample mean is a sufficient statistic for 0 and if the support of  
the pdf of the continuous random variable XIO is independent of  0, then the 
distribution of XI0 comes from a linear exponential family (Lehmann, 1991, 
Theorem 5.4). 

The natural conjugate prior of 0 has the form 

7r(O) = {q(O)}-ke-I'k°, Oo < 0 < 01, 
c(#,k) 

for some # and k > 0. The value c(F*, k) is a normalizing constant for given 
values of  # and k. Assume that 7r(fl0) = 7r(01). It follows that EX = #, the 
posterior density of 0 given x,, is of the same form as the prior with 

k* n + k and #* #k + n~" = - , and the predictive mean equals 
k + n  

k n 
= 

in which k = E[Var(X]O)]/Var[F,(fl)]. Thus, we get exact credibility for the 
predictive mean. 

To obtain exact credibility for the equitable estimator Y2, assume that 
~-(fl0) = rr(fll) and that 7r(fl0) v(flo) = 7r(fll) v(fll), in which 

v( f l ) -  q(fl) 
q'(fl) 
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is the multiplicative inverse of the conditional mean. We next prove the 
following result for exact credibility. 

T h e o r e m  3.1 Suppose that {f(XI0)} is a linear exponential family and that the 
natural conjugate prior satisfies the regularity conditions on its boundary given 
above. I f  v satisfies the differential equation 

It V : a v  t 

for  some constant a, then tile equitable credibility estimator Y2 is exact. 
Specifically, 

Y 2 ( x )  = ( |  - -  Z2)/-I, if- Z2-~- 

11 
Moreover, z2 -- 

n + k - a /#  

Proof :  
E[~(0)lx]-'= ~ v(O)~r(Ol~)dO = c(k*, ~*)-' ~o' u(O)q(O)-k'e-"Oe-OCk'-")OdO" 

Note that [q-k, ve-,O]'= _ k ,  q-~'-~ q, ve-,O + q-k" v, e-,O _ aq-k" ve-,O. By using 

the definition of v and the fact that v' - av is a constant, we deduce that 

[q-k" ve-aO]'= Kq-k" ve-,O 

for some constant K. 
We next integrate by parts and obtain 

E[t,(O)lx]_,_ K 
#*k* - a" 

Since #*k* = #k + nYc, we have that 

Y 2 ( x )  - t~(n + k) - a (/~k + n.2 - a) ,  

and the result follows. [] 

Remarks." 
(1) Note that z2 will be equal to, greater than, or less than the corresponding 

Bfihlmann credibility weight Z, according as a is zero, positive, or 
negative. 

(2) The possibilities for v are limited, l f a  = 0, then v(O) = clO + c2, for some 
constants cl and c2. If a ¢ 0, then v(O) = q e  "° + c2, for some constants 
cl and c2. After the following examples, we determine the functions q 
and p that correspond to these forms of v. 



EQUITY AND EXACT CREDIBILITY 9 

Example 3.2 (Gamma-Gamma) Let X[O ,,~ Gamma(3', 0) with conditional mean 

0 and conditional variance ~ ,  in which the shape parameter 3' > 0 is known, 

and let 0 ~ Gamma(a,/3). The differential equation of Theorem 3.1 holds with 

a = O, z2 - n a3'/3 1 a - 1  = Z ,  r 2 ( x ) = ( 1 - z 2 ) . - - + z 2 . . ~ = E [ X , , + l l x , , ] .  [] 
n - - b - -  

"7 
Example 3.3 (Poisson-Gamma) Let XIA ,-~ Poisson(A) with conditional mean 
A, and let A ~ Gamma(a,/3).  To put this in standard form, let 0 = -ln(A). 
Then, v (O)= e °, and the differential equation for v holds with a = I. 

n 17 
The credibility weight z2 equals versus Z - - -  and 

17 +/3 - / 3 / a  n +/3' 
a 

Y 2 ( x ) = ( 1 - z 2 ) . ~ + z 2 - . L  Note that Z < z 2 ,  so that the equitable 

premium Y2 gives more weight to the policyholder's experience than in the 
Bfihlmann credibility estimator. [] 

Example 3.4 (Binomial-Beta) Let Xlp ,,~ Binomial(r,p) with conditional 
mean rp, and let p,-~ Beta(a,/3). To put this in standard form, let 
0 = - l n ( p / ( l - p ) ) .  Then, v(O)= (1 +e°)/r,  and the differential equation 

/7 
for v holds with a = 1. The credibility weight z2 equals (a + / 3 ) ( a -  1) 

n-~ 
r a  

17 r a  
versus Z -  a +  /3, and Y 2 ( x ) = ( 1 - z 2 ) . - ~ - ~ + z 2 . , ~ .  Note that 

n + - -  
r 

Z < z2 because a > 0, as in Example 3.3. [] 

Example 3.5 (Negative Binomial-Beta) Let X I p  ~ Negative Binomial(r,p) 
with probability function 

f ( x . p ) =  ( r + x - 1 )  (1 p)", x x p" - . . . .  0, 1, 2, , 

in which r > 0 is known, and let p ,-, Beta(a,/3). To put this in standard 
form, let 0 = - I n ( I - p ) .  Then, v ( 0 ) = ( e  ° - l ) / r ,  and the differential 
equation for v holds with a =  I. The credibility weight z2 equals 

n n r/3 
( a -  1)(/3- 1) v e r s u s Z -  a - l ,andY2(x) = (1 -z2) .~-~_l+Z~_ .+L 

n + n + - -  
r/3 r 
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Note  that Z < z2 because a > 0, as in Examples 3.3 and 3.4. [] 

It is not  always the case for the linear exponential  family with conjugate 
prior,  that the equitable premium Y2 is an affine function of  the sample mean 
if, as we see in the next example. 

(x + 1)02e-X°, for x > 0, a member  of  Example 3.6 Let X[O have pdff(xlO) = 0 + ! 

02e-O 
the linear exponential  family, and let 0 have pdf  propor t ional  to OT-T' for 

0 > 0, the natural  conjugate  prior for 0. After some tedious calculation, one 
finds that for n = 1, 

Y2(x) (x c 34 4b ~ + 4b 2 2b e2b du + 32e 2b - du , 
,ll U ,]2 U 

I 1 I 3 4e2b f ~ ° e  -2b'' 1 in which - -  - du + e 2b - - d u  i L, and 
c = 4b 3 262 + 2 b  dl u tt 2 

x + l  
b -  Via numerical calculation, one can verify that Y2 is not linear 
i n x .  2 []  

Now, we return to the problem of  determining which distributions of  XIO 
lead to ~/' = av', for some constant  a. We consider the following cases: 
(1) a = 0 =:> v(O) = clO+ c2, for some constants  cl and c2, not both 0. 

(a) cl = 0 ~ q(O)= c3e -o/c2, for some constant  c3. Because p is the 
inverse Laplace t ransform of  q, we have that p(x) is a point mass at 
x = 1/C2. It follows that f (xl0)  = 1 if x = 1/c2 and 0 otherwise. 

(b) cl ~ 0 ~ q(O)= c3(c10+ c2) -1/c:, for some constant  c3. It follows 
that p(x) is propor t ional  to x'r-le -~x, in which 7 = 1/cl and 
A = c2/cl. Thus , f (x l0 )  is propor t ional  to x'r-~e -x('x+°), from which it 
follows that X]O is distributed according to G a m m a ( 7 ,  A + 0). In 
Example 3.2, we saw a special instance of  this case in which A = 0. 

(2) a :~ 0 :=> v(0) = t ie  <'° + c2, for some constants  cl and c2, not both 0. 

(a) c 2 = 0  => q ( 0 ) =  c3exp(c~cle-"°) ,  for some constant  c3. i t  follows 

that p(x) is propor t ional  to 

1 1 1 
6(x) + -  6(x - a) + 26(x - 2a) + ... + H!(acl ),""""--'----"-~ {5(.V -- ,t'l) -t-..., 

acj 2(acl)  
e-xO 

in which (5 is the Dirac delta function. Thus, f(xlO) oc 
(acl)Xl"(x/a)! ' 

for x = 0, a, 2a, .... If a = cl = 1, then we have that X]0 is 
distr ibuted according to the Poisson distr ibution with condit ional  
mean e -°, as in Example  3.3. 
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(b) c2 -¢ 0 ~ q(O) = c3(cl + c2e-aO) I/c2, for some constant  c3. It follows 

that p ( x ) i s  proport ional  to Y~',,,~=0 ( l / c 2 ] ( c l / c 2 ) ( I / c 2 - m ) ~ 5 ( x - - a m )  , 
\ ] IT/ 

under appropriate regularity conditions. For example, if 1/c2 = r, a 
positive integer, if cl = c2, and if a = 1, then we have the binomial 
distribution, as in Example 3.4. If 1/c2 = r, a negative integer, if cl = c2, 
and if a = 1, then we have the negative binomial distribution, as in 
Example 3.5. 

We see that in some sense, Examples 3.2 through 3.5 cover the simplest of  
the interesting cases for the distribution of  X]O for which the conditions o f  
Theorem 3.1 hold. Also, note from the above discussion that if #(0) _> 0, 
then a _> 0 from which it follows that z2 > Z. 
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A NOTE ON CHRISTOFIDES' CONJECTURE REGARDING 
WANG'S PREMIUM PRINCIPLE i 

BY 

W A N G  J [ N G - L O N G  

East China Normal University, Shanghai, China 

1. I N T R O D U C T I O N  

Young (1999) discussed the conjecture proposed by Christofides (1998) 
regarding the premium principle of Wang (1995, 1996). She shows that this 
conjecture is true for location-scale families and for certain other families, 
but false in general. In addition Young (1999) states that it remains an open 
problem to determine under what circumstances Wang's premium principle 
reduces to the standard deviation (SD) premium principle. 

In this paper we will provide further discussion of this problem. We will 
show that, for a fixed distortion, the natural set on which Wang's premium 
principle can reduce to the SD premium principle is and only is the union of 
location-scale families which satisfies some condition. Furthermore, it will be 
shown that the natural set is and only is a location-scale family if Wang's 
premium principle can be reduced to the SD premium principle for any 
distortion. 

2. RESULTS 

As we all know, the standard deviation premium principle applied to a 
random variable X gives the premium 

E(X) + A ~ - - ~  

for some A > O, and Wang's (1995, 1996) premium principle gives the premium 

0 ¢x~ 

: / + / H.(x) 
, y  

- -oo 0 

i Project 19831020 Suppor ted  by Nat iona l  Na tu ra l  Science F o u n d a t i o n  o f  China .  
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where Sx(t) = P(X  > t) is the decumulative distribution function (ddf) of  X, 
and the distortion g is a non-decreasing function from [0, 1] onto itself. 
Suppose that Wang's premium principle reduces to the SD prenlium 
principle for a set F of  distributions, i.e. for any X E F, we have 

E(X) + A ~ X )  = Hg(x) 

Hence for any X, Y E F, we have 

Hg(X) - E(X) Hg(Y) - E(Y) 

Further, such a set is called the natural set for the given g, if for any X E F 
and Y ~ F, the following condition is satisfied: 

Hg(X) - E(X) Hg(Y) - E(Y) 

As Young (1999) shows, Wang's premium principle reduces to the SD premium 
principle on the location-scale family I I = { X = # + c r . Z : # E R , ~ > 0 } ,  
where Z is a random variable. We call Z the underlying distribution of this 
location-scale family 1-I. In fact, any a distribution of rI can be regarded as 
the underlying distribution of 1I. Obviously, if F is a natural set, 1I C_ F for 
Z E F. That means the location-scale family with the underlying distribution 
being a element of the natural set F for which Christofides conjecture is true 
is a subset of F. 

Christofides (1998) conjectures that for a parametric family of distribu- 
tions with constant skewness Wang's premium principle reduces to the SD 
premium principle. Young (1999) shows that this conjecture is false in 
general. Otherwise, if Wang's premium principle reduces to the SD premium 
principle for a parametric family of  distribution, is this family with constant 
skewness? It is also not true in general. See the following examples. 

Following and example in Young (1999), let X be a random variable have 
a two-sided exponential distribution with parameters ct = 1, fi = 2.27466 
and w = 0.1. Its ddf  and skewness are, respectively: 

= ~ w + ( l - w ) ( l - e ~ q ' ) ,  t <0 ;  
Sx(t) 

L we -c~t, t > O. 

 {tx- E/x/l 
S k e w X =  = 1.84166 

3 
{Var(X)]2 

Let the distortion g(p) = p0.5. Then 

Hg(l~ - E(X) = 1.02386 
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Let Y have a Pareto distribution with parameters c~ = 43.41704 and /3. Its 
ddf, expectation, variance and skewness are the follows respectively: 

2 

E( Y) = Var( Y) = 
- - 1 '  ( C t -  l ) 2 ( C t -  2) 

2(c~ + l ) v ~  - 2 
Skew(Y)  = v/-~(oe - 3) = 2.146777 -7 (: Skew(X)  

Let the distortion be the same as above, then 

1 

Hg(Y) - E()I) = { ol "~= 1 . 0 2 3 8 6 = H g ( X ) - E ( X )  
~ y )  \ c ~ - 2 ]  

Hence, for the distortion g(p) = p0.S, Wang's premium principle can reduce 
to the SD premium principle for the union IIl U 1I2, where 

111 = { # + a . X  : # E R ,  a > 0 }  

r[2 ~ - { / } - ~ - r .  Y : u E R ,  r > 0 }  

are the location-scale families with underlying distributions X and Y 
respectively. Thus, Wang's premium principle reduces to the SD premium 
principle for a parametric family of distribution 1-[ I ~ 1-[ 2 whose members do 
not all have the same skewness. 

From the preceeding discussion we get the following proposition. 

Proposition I. 
For a f ixed  distortion g, the natural set on which Wang's premium principle 
reduces to the standard deviation premium principle is and only is the union of  
location-scale families. 

Uic:l]]i 

where 1 is an index set, .fat" any i E I, IIi is a location-scale family .  
IIi = {#i + ai . ,Vi : #i E R, rri > 0}, and their underlying distributions 
X,(i E 1) satisfy the followhTg condition." for  any i , j  E I we have 

H~(X,) - E(X~) _ H~(Xj) - E(Xj) 
m 

Furthermore, the natural set is and only is a location-scale family if Wang's 
premium principle can reduce to the SD premium principle for any 
distortion. 
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Proposition 2. 
The natural set on which Wang's premium principle can reduce to the standard 
deviation premium principle for any distortion is and only is a location-scale 
family. 

Proof: 
Suppose that for any distortion Wang's  premium principle can reduce to the 
SD premium principle on the set F of  distributions. Then for any X, YE F 
and for any distortion g, we have 

Hg( X) - E( X) _ Hg( ]7) - -  E(Y) 
(l) 

Let 

x -  E(X) 
U -  V =  

Y - E(Y) 

From equation (1), we have 

Hg(U) = Hg( V) (2) 

because Hg is location and scale equivariant. Denote the decumulative 
distribution functions of  U and V by Se(t) and Sv(t) respectively. Firstly, 
using proof  by contradiction,  we will show that Sv( t )= Sv(t) when t >  0. 
Assume that there is a t 0 > 0  so that Su(to) >Sv(to). Let a=Sv( to) ,  O<_a< 1. 

o Case 1. 
Suppose that {t : Sv(t) = cw} ¢ {0 
Let 

u, = inf{t : Su(t) = a}, 'ui = inf{t : Sv(t) = &} 

Because the non-increasing dd f  is a right continuous function, 
Su(ut)  = Sv(vl) = a,  which implies that  vl _< to < ul. Let the distortion 

1, c~<w_< I; 
g ( w ) =  0, 0 < w < a .  

Then Hg(U) = ul, and for v, E ( -oo ,  oo), it can be proved that Hg(V) = v,. 
Hence Hg(U) ¢ Hg(V), contradicting equation (2). 

o Case 2. 
Suppose that {t : Sv(t) = oL} = O. 
Then there is a u0 so that Su(u0 - 0) _> c~ > Sv(uo) and Sv(t) > c~ when 
t < uo. Obviously, to < uo. Let the distortion be the same as above, then 
Hg(U) = u o ,  H g ( V ) = v l ,  which implies Hg(U)¢Hg(V) ,  again contra- 
dicting equation (2). 
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Because a ddf  is a non-increasing function, the set consisting of  points at 
which the ddf i s  discontinuous (that is, {t: ddf  isn't cont inuous at point t}) is 
either a finite set or a countable set. Therefore, it is proved that  
Su(t )  = Sv( t )  when t > 0. 

Now, we will show St/Q) = Sv( t )  when t < 0. Let 0 = - U and I7" = - V. 
Then the decumulative distribution functions of  0 and I7" are 
So( t  ) = 1 - S v ( - t -  0) and+ Sf,(t) = 1 - S v ( - t -  0) respectively. From 
equation (2), we have H g ( U ) =  Hg((/). According to the above result, 
So( t  ) = Sf,(t) when t > 0, which implies Su( t  - O) = Sv( t  - 0) when t _< 0. 
Hence Su( t )  = Sv( t )  when t _< 0. 

To sum up, So( t )  - Sv( t ) .  Hence, U = V almost surely. The proposition 
is proved. 

In fact, the assumption of  this Proposition can be weakened: that is, the 
natural set on which Wang 's  premium principle can reduce to the standard 
deviation premium principle for any two-step-up distortion is and only is a 
location-scale family. Is and only is the natural set a location-scale family for 
any power distortion? This is a subject of  future study. 
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A B S T R A C T  

This paper discusses the modelling and control of pension funds. 
A continuous-time stochastic pension fund model is proposed in which 

there are n risky assets plus the risk-free asset as well as randomness in the level 
of benefit outgo. We consider Markov control strategies which optimise over 
the contribution rate and over the range of possible asset-allocation strategies. 

For a general (not necessarily quadratic) loss function it is shown that the 
optimal proportions of the fund invested in each of the risky assets remain 
constant relative to one another. Furthermore, the asset allocation strategy 
always lies on the capital market line l'amitiar from modern portfolio theory. 

A general quadratic loss function is proposed which provides an explicit 
solution for the optimal contribution and asset-allocation strategies. It is 
noted that these solutions are not dependent on the level of uncertainty in 
the level of  benefit outgo, suggesting that small schemes should operate in 
the same way as large ones. The optimal asset-allocation strategy, however, 
is found to be counterintuitive leading to some discussion of  the form of the 
loss function. Power and exponential loss functions are then investigated and 
related problems discussed. 

The stationary distribution of the process is considered and optimal 
strategies compared with dynamic control strategies. 

Finally there is some discussion of the effects of constraints on 
contribution and asset-allocation strategies. 
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1. INTRODUCTION 

The analysis and control of pension fund dynamics is becoming increasingly 
important as members start to pay more attention to the security of 
promised benefits and as sponsoring employers become more concerned 
about the timing and stability of cashflows. 

This paper discusses some current problems in the analysis and control of  
defined benefit pension funds. Under a pure defined benefit pension fund the 
benefits payable to an individual member depend only upon his or her salary 
and length of past service. 

The principal alternative to a defined benefit scheme is a defined 
contribution occupational pension scheme. Here the benefits are defined 
by the level of contributions which are paid into an individual member's 
fund or 'pot'  and by the investment returns which are achieved over the 
period tip to retirement. Since the pot is used to purchase an annuity at 
the time of retirement the level of  pension is also determined by the 
annuity rate which prevails at the date of retirement and, in particular, 
the term structure of  interest rates on that date. Generally the rates of 
contribution by the sponsor and by the member are fixed. All of the 
investment risk is borne by the member and there is no opportunity for 
the member to smooth out the effects of  adverse investment returns. 
Existing literature on defined contribution problems typically deals with 
the case where the terminal utility is a function of the fund size at 
retirement (for example, see Merton, 1990, Gerber & Shiu, 2000, 
and Deelstra et  al. ,  1999). The case where the terminal utility is a function 
of pension purchased at retirement (that is, fund divided by annuity 
rate) in a stochastic interest-rate environment has been considered by 
Cairns et  al. (2000). 

Under a defined benefit scheme the sponsoring employer has no ability to 
vary the timing or amount of the benefits payable. In contrast to this and to 
a defined contribution scheme the rate at which contributions are paid into 
the fund are (within limits) very flexible. Typically this flexibility rests fully 
with the fund sponsor while individual members contribute a fixed 
percentage of their salaries. 

Increasingly, we also see schemes which provide elements of  
both defined benefit and defined contribution. Most common are 
schemes which allow for discretionary increases to pensions in 
payment with the size of the increase depending upon recent investment 
returns. Other 'hybrid' schemes provide a pension which is equal to 
the maximum of a defined benefit pension and a defined contribution 
pension. 

Within the pure defined benefit framework there is considerable scope for 
freedom: 
o in how the variable contribution rate should be varied; 
o in the choice of asset allocation strategy. 
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1 . 1 .  C o n t r i b u t i o n s  

By-and-large, the fund sponsor has considerable freedom in how the 
contribution rate can be varied. The basic principle underlying how the 
contribution rate is set is that it should take account of the amount of 
surplus or deficit (that is, the excess of assets over liabilities). Thus, in some 
sense, the contribution rate can be reduced during periods of surplus and 
increased above the normal rate when the scheme is in deficit. The role of the 
actuary is to take account of the needs of the sponsor and of the members 
before recommending to what extent surplus or deficit should affect the 
contribution rate. 

The overall level of flexibility may be restricted by the presence of certain 
constraints: 
o There may be a legal requiremen! to keep the funding level (the asset/ 

liability ratio) above a certain minimum level (the method of calculation 
of which can take a number of forms). If the funding level drops below 
this minimum the sponsor may be compelled to make up the deficit 
immediately. 

o Similarly there may be a restriction on the maximum size of the fund. 
This may require refunds to the sponsor or improvements to the benefits 
(although, in the latter case, the fund would cease then to be a 'pure' 
defined benefit scheme). 

o The fund sponsor may wish to keep the contribution rate below a certain 
level (for example, twice the normal rate). 

o Regulations or plan rules may prevent refunds to the employer, or 
perhaps refunds are only permitted when the funding level is sufficiently high. 

1.2. A s s e t s  

A pension fund will normally fall under the responsibility of a group of 
t ru s t ee s  or m a n a g e r s  who must act in lhe best interests of the fund members. 
Within this remit they can choose how to invest the assets of the fund. 
Appropriate investment strategies will take account of: 
o prudence; 
o requirements to 

- maximise returns; 
- minimise risk; 
- diversify; 
- avoid self-investment; 

o immediate cashflow requirements; 
o security; 
o the tax status of the fund and of the various potential assets. 

Besides taking the advice of their fund managers, trustees may also seek the 
advice of the fund actuary before deciding upon an appropriate strategy. 
How the funds available should be allocated presents an interesting problem 
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for the actuary. The solution to such a problem must take accountof  many 
things: 
o the balance between the conflicting interests of the members and the 

sponsor; 
o the expected returns on the various assets and the associated risks and 

dependencies (both between individual assets and through time); 
o the current level of funding; 
o constraints on short selling of assets. 

1.3. Objectives 

For an actuary to set an optimal contribution rate and asset allocation 
strategy it is necessary to use a well defined objective function with 
appropriate constraints. Objective functions must be sufficiently precise to 
avoid ambiguous or non-sensical solutions. For example, the imprecise 
objective minimise variance leads to various outcomes which minimise the 
variance of the funding level and/or the contribution rate. 

Other apparently precise objectives lead to optimal solutions which do 
not entirely make sense. In such circumstances it may be necessary to revise 
the objective ftmction. 

1.4. Types of model 

A basic question which must be answered first is should we use a 
deterministic or a stochastic model. Deterministic models are adequate for 
cashflow projections and valuations but little else. Stochastic models, on-the- 
other-hand, allow us to investigate fully the dynamics of the fund through 
time and, for example, devise suitable control strategies. Here we consider 
stochastic models only. 

A separate question is whether models should be kept simple or be 
made very realistic. The answer here depends on the reasons for 
modelling. In a more academic study we are looking for the major drivers 
of pension fund dynamics. Simple models allow detailed study of these 
factors. Often it is possible to derive analytical results which can then be 
used to provide specific links between causes and effects. A more complex 
model, on the other hand, may be required if the modeller has in mind a 
specific pension fund with a very specific benefit structure. As models 
become more complex wg input more and more factors and find that more 
detail comes in the output from each simulation. It then becomes very 
difficult to identify why certain effects are evident. However, simple 
models provide the backup in the analysis of complex models. Such 
models give pointers to what we should be investigating. Thus we may be 
able empirically to observe the same links between causes and effects as 
were found analytically in the simple model. More-often-than-not such 
comparisons can explain, with ease, the majority of the variation in the 
dynamics of a complex model. 
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In some problems the aim may be to devise an optimal control strategy. 
As we show here it is possible using simple models to derive precisely an 
optimal control. This then gives us the starting point for further study and 
optimisation within a more complex model. 

This paper has a number of aims. First, it will pull together some recent 
results in continuous-time pension fund modelling (O'Brien, 1986, 1987, 
Dufresne, 1990, Boulier et al., 1995, 1996, and Cairns, 1996, 1997). Fresh 
proofs of these results will be presented as appropriate along with further 
discussion of their implications. Second, some new avenues will be developed 
to show how this earlier work can be modified to consider some 
generalisations and to pull the results closer to current practice. Third, the 
paper will discuss some open problems. 

Within this framework the paper will proceed as follows. Section 2 
introduces the continuous-time stochastic model for the dynamics of a 
pension fund in its most general form which will be used in the majority of  
the paper. 

Section 3 considers dynamic stochastic control of  the model by 
making reference to a value function which discounts exponentially future 
random values of a quadratic loss function. The section proceeds by 
looking at various cases both constrained and unconstrained. The 
advantages and disadvantages of  the quadratic loss function are discussed 
in detail here. Finally, power and exponential loss functions are considered 
with problems similar to those under the quadratic loss function 
identified. 

In Section 4 we take the longer-term view and consider the stationary 
distribution of  the process (although the distribution of the model 
nears its stationary form within 10 to 15 years usually). This includes a 
look at the continuous proportion portfolio insurance approach to 
asset allocation introduced by Black and Jones (1988) and compares 
this with a static investment strategy. Section 5 compares the results 
of dynamic versus stationary optimisation derived in Sections 3 and 4 
and shows how sensitive these results are to changes in the control 
parameters. 

Finally Section 6 discusses how the model and value function might be 
developed in the future to come closer to reality. 
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2. A GENERAL MODEL 

In this paper we consider continuous-time stochastic models for pension 
fund dynamics which allow for n risky assets and for noise in the level of 
benefit outgo. The general form of this simple model is: 

d x ( ; )  = x ( r ) .  dCr(t, x(1))  + c(r) .  dl - B .  dr - oh.  dZb(r) ( l )  

where X(I) = fund size at t 

d~x(t, X(t)) = instantaneous return on assets between t and t + dr 

c(I) = o(i, x ( 0 )  

= contribution rate 

B = expected rate of benefit outgo 

and ab = volatility in benefit outgo 

Discrete-time models have been considered by Cairns (1995), Cairns & 
Parker (1997), Dufresne (1988, 1989, 1990) and Haberman & Sung (1994). 
Such models have yielded a number of useful analytical results with wider 
applications. Continuous-time models, which are, in some ways, more 
idealised, yield further analytical results (for example, see Dufresne, 1990, 
Boulier et al., 1995, and Cairns, 1996). Similar results can then be sought 
empirically in discrete-time models. 

The contribution rate, c(t), is a predictable process and provides us with 
one of the means of controlling the dynamics of the pension fund. Dufresne 
(1990) and Cairns (1996) considered continuous-time models in which the 
contribution rate was a linear function of the current fund size, X(t). Boulier 
et al. (1995) considered more general forms for c(t) but found that the 
optimal solution to a simple control problem was that the contribution rate 
should indeed be linear in X(t). These results are discussed in detail in 
Sections 3 and 4 of this paper. O'Brien (1987) considered a similar objective 
function where the contribution rate only was controllable and where there 
was a stochastic reserve (in contrast to the constant target Xp relative to 
salary roll used in Section 3 of this paper). He found that the optimal 
contribution rate was linear in the anaount of surplus. However, other 
aspects of the model used by O'Brien (1987) were unrealistic even for a 
simple pension scheme, making a fresh start here appropriate. 
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The other means of  control is through the asset-allocation strategy. First 
we may allow for the possibility of  a risk-free asset (or cash) which has a 
value at time t of  Ro(t) = R0(0)exp(cS0t). There are, in addition, n risky 
assets, the prices of  which (including reinvestment of  dividend income) we 
assume follow correlated geometric brownian motion: that is, 

dRi(l)  
- = 6, .  + 2.5, J z j ( t )  

Ri j=l 

or d6(t) = 6.  dt + S .  d Z  

where d~5(t) = (d~Si (t), ..., d~5,,(t)) v 

= (6 [ ,  . . . ,  6n)  T 

(0)" S =  o" id.=l 

d Z  = (dZn, ..., dZ,,) v 

(2) 

(3) 

and Z(t)  is s tandard n-dimensional Brownian motion.  We assume that Z(t)  
and Zb(t)  are independent.  

For convenience later on, we define D = S S  T (the instantaneous 
covariance matrix) and A = (Aj, ..., A,,) r where Ai = CSs- 60 is the risk 
premium attached to asset i. 

Let us assume that 6i > 50 for all i > 1 (that is, investors are rewarded 
with higher expected returns for taking on some risk). No assumption is 
made about  the level of  correlation between the returns on the various stocks 
including, for example, the benefits (or otherwise) of  diversification. The 
proport ion of  the assets invested in asset i (i = 0, 1, ..., n) is denoted by 
pi(t, X(t)) .  It follows that ~-'~in=oPi(t, X(t))  = 1. In the development below we 
write p = p(t ,  X( t ) )  = (Pl (t, X( t ) ) ,  ..., p , ( t ,  X( t ) ) )  r. The instantaneous rate 
of  return on the fund is then: 

l-}2p, (41 
i=l / '  i=1 

In this paper we will consider a range of  constraints on the proport ions 
invested in each asset. These include the possibility that we hold no cash (or 
a fixed percentage of  the fund in cash) and that there shall be no short-selling 
of  assets. 

We allow for more than one risky asset for two reasons. First, it allows 
for a degree of  realism without  complicating substantially the analysis. 
Second, the experience of  the U K  pension funding scene is that pension 
funds only use cash for short-term liquidity rather than as a serious asset. 
Instead funds use government bonds (fixed interest and index linked) as low- 
risk (but non-zero-risk) assets. This situation is modelled in Section 3.3. 
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3. OPTIMAL DYNAMIC STOCHASTIC CONTROL 

3.1. The general quadratic ease 

We consider first the case where there is no constraint on the amount 
invested in cash. Following Boulier et al. (1995) we define the value function 
for a general controlled pension fund process 

] W(t, x)(c,p) = E exp(-/3s)L(s, c(s, X(s)), X(s))dslX(t ) = x (5) 

Here exp(-/3s) is a discount function and L(s,c,x) is a loss function given 
that at time s, J((s) = x. This value function is also a function of the chosen, 
Markov contribution strategy c(s, X(s)) and investment strategy p(s, X(s)) 
which we abbreviate, where appropriate to c and p respectively. 

Let g(t ,x)  = inf(c,p)W(t,x)(c,p) = W(t,x)(c*,p*) assuming that such 
optimal control strategies c ~ and p* exist. Then V(t,x) satisfies the 
Hamilton-Jacobi-Bellman equation (for example, see Merton, 1990, 
Oksendal, 1998, or Fleming & Rishel, 1975): 

where V,=O V/Ot 

V,.-OV/Ox 

V,.,.=~ V/Ox 2 (6) 

We differentiate the expression in brackets with respect to c and p to find 
that: 

---~(.) = e-~'Lc + l'~r = 0, where Lc = OL/Oc (7) 

=z~ c * ( l , x )  = g c  I ( -e /3t  Vx) (8) 

and ~p(.) = AxV,. + Dpx2V,.x = 0 (9) 

\ "  X?,'/ 

We see from the form of p* that the amounts invested in each of the risky 
assets always stay in the same proportion. Thus we may define a special 
portfolio, A, which is a mixture of  assets 1 to n in the same proportions 
(in market value terms) as D-tA. Then for any x we hold a proportion 
/5(x) (which depends upon V(t,x)) in portfolio A and i - /5(x)  in cash. 
This result has obvious parallels in modern portfolio theory where the 
combination here of cash and portfolio A mimics movement along the 
capital market line. However, here we have not yet specified any form for 
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the loss function L(t, c, x) whereas modern portfolio theory (which works 
in discrete time) relies upon the use of  a quadratic loss function. Further 
consideration of the model shows that portfolio A (which is efficient in the 
sense of minimising the value function) is also efficient in the sense of 
modern portfolio theory: that is, it has the lowest instantaneous volatility 
for a given rate of return. 

Classical portfolio theory has been extended to include liabilities by Wise 
(1984), Wilkie (1985), Sharpe and Tint (1990) and Keel and Mfiller (1995). 
Working in discrete time and using a quadratic loss function Keel and 
M011er (1995) find that the composition of efficient portfolios can be altered 
by the inclusion of  liabilities: in particular, where liabilities are random and 
not independent of  the asset returns. 

The precise form for V(t,x) is, of course, still not yet known: we only have 
expressions for c* and p* involving V(t,x). 

It is necessary that the loss function is a strictly convex function of  c. This 
ensures that the inverse of Lc exists. This requirement excludes, for example, 
downside loss functions which are convex but not strictly convex. 

Here we restrict ourselves to the following quadratic loss function: 

L(t,c,x)=(c-cm)2+Zp(c-cm)(x-xp)+(k+pZ)(x-Xp) 2 (I1) 

where k >_ 0. 

Thus L;' ( -e  at V.,-) = Cm - p(x - Xp) - ~e 3' V.,. (12) 

(that is, if c=c,,,-p(X-Xp)-exp(3t)I/,,./2 we have Lc(t,c,x)=-exp(flt)V,.). 
A special case of this loss function is the one suggested by Haberman and 
Sung (1994) (in a discrete-time framework). 

We apply this to the Hamilton-Jacobi-Bellman equation to give: 

0=e  -/J' -~e~tV.,. +k(x-Xp)  2 +V,+(6ox-B)V , -ArD-I~AxV. , .  

] /3t [ X 2 (  "'v ~ ,~To-loo-I,~--~O~b I ( 1 3 )  +g-"-"[ ,,xV.,..,.] 
Given the form of the objective function (Markov and time-homogeneous) it 
is clear that the optimal strategies c* and o* depend only upon x and not 
upon t. Thus V(t,x) will be of the form e-mF(x) and therefore: 

I 2 0 =~F, .  + k ( x  - xp) 2 - / 3 F +  (~50x - B)F,. - ArD- 'A F2 
• e x  x 
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Try F(x) = Px 2 + Qx + R, and write e = ArD-IA. Then:  

= _ l ( 2 P x  + Q)2 + k(x - xp) 2 - / 3 ( P x  2 + Qx + R) + (a0x - B)(2Px + Q) 0 

1 (2Px+ Q)2 
+ (Cm- p(X -- Xp)) (2Px + Q) + Po-~b (15) ~e 2P 

=> 0 = x 2 [_p2 + k - / 3 P  + 2P~o - Pe - 2pP] 

+ x [ - P Q  - 2kxp - /3Q - 2PB+ Q~o - Qe - pQ + 2P(Cm + pXp)] 

+ -  O2+kx - R- O- (16) 

Define /5  = 2~o - fi - e - 2p. Then we find that: 

/5+ x / ~  + 4 k  
P(k) = 2 

Q(k) = 2 [P(k ) (B-  Cm -- pXp) +/,'Xp] 

I [ ~ kxp2 Q(k)2¢ 
R ( k ) = ~ -  Q(K)2+ - B Q ( k ) -  4P - - +  (c,,, + pxp)Q(k ) + P(k)~r~] 

(17) 

(19) 

This is an admissible solut ion provided /5 > 0. 
We find then that: 

1 (2P(k)x  + Q(k)) (20) c*(x) = c,,, - p (x  - xp) - 5 

or c*(x) = c~ - c~x (21) 

p*(x) = (2P(k)x  + Q(k) )o_ ,A  (22) 
2P(k)x 

or p*(x) - p~ + p~x (23) 
x 

where p~ and p~ are both n x I vectors which are propor t iona l  to D-IA. 
Note  that  when x = - Q ( k ) / 2 P ( k ) ,  p*(x)= 0: that  is, we are invested 

entirely in the risk-free asset. Fu r the rmore  if a portfolio,  A, is synthesised 
from the n risky assets in the propor t ions  D - t k  as described earlier, then, 
given a funding level of  x, we should hold a p ropor t ion  of  the fund: 

~(x) = erp*(x) = - 2P(k)x  + Q(k)erD_lA (24) 
2 P ( k ) x  

in portfol io A and 1 - /5 (x)  in cash. ( e r =  (1, ..., 1) is the unit vector.) 
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We can also note that F(x) is minimised at x = -Q(k)/2P(k),  which we 
will denote by Xmi,, say. As discussed in Section 3.6 this presents, to a certain 
extent, a barrier through which it is difficult for the funding level, X(t), to 
pass. Depending upon the relationship between Cm, k and Xp this could take 
the form of a ceiling or a floor. 

It is important to note that P(k) and Q(k) do not depend upon erb. It 
follows, therefore, that the optimal control strategy (both contributions and 
investments) do not depend upon al,. Thus, demographic variability is a 
factor which affects the value function V(t,x) only and we should treat small 
funds in the same way as large funds. 

It is also important to note that the precise proportions of each asset held 
in portfolio A do not depend upon the form of the loss function, nor does it 
depend upon crh. 

Remark 
The non-linear ordinary differential equation (14) is subject to the boundary 
condition 0 _< F(x) for all x. We have two degrees of freedom in how we 
solve this equation. Numerical work suggests that there are also solutions to 
(14) which either have singularities (which we regard as an inadmissible 
solution) or which are asymptotically linear as x-- ,  +oo. Now if 
F(x) ~ a + b x  as x ~  +oo, c*(x),,~c,,,-b as x---+ +oo. With such a 
solution we may find that X(t) will drift off to infinity. This drift, however, 
is countered by the asset-allocation strategy which is quite extreme: 
o As X(t) gets very large the fund goes very long in cash and very short in 

risky assets. This ensures that there is a very inefficient strategy which 
more-or-less throws away money in order to get back to the target 
funding level Xp. 

o As X(t) gets very small the fund goes very long in risky assets and very 
short in cash to get a high expected return to help us get back to a better 
funded position as quickly as possible. 

In the quadratic-F(x) case these problems with the asset-allocation strategy 
also apply but they are much less extreme. Furthermore, the optimal 
contribution rate is a linear function of X(t). It is a necessary condition for 
stationarity that the contribution rate is at least linear. (Note, however, that 
linearity is sufficient only when the slope c~ is greater than a certain 
minimum level described later in this paper.) 

Thus we can reasonably put in the further boundary condition that 
F ( x ) / x  2 --~ constant as x ~ 4-00. 

3.2. Constraints on cash 

We have up until now assumed that the amount of money invested in cash 
could vary without bound. Here we go to the other extreme and assume that 
we invest a proportion p,,, of the fund in risky assets and 1 -p,, , ,  in cash, 
where p,,, is fixed. It is reasonable that Pm< 1 allowing for a small but fixed 
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amount  in cash to provide short-term liquidity for the fund to cover 
immediate benefit payments.  (A typical figure for a U K  pension fund in the 
UK is 5% cash and p,,, = 95% risky assets.) Subject to this constraint,  there 
is total freedom in the proport ions invested in the n risky assets. 

Recall the Hamilton-Jacobi-Bellman equation: 

0 =  inf~.,p ( e - ~ ' L ( t , c , x ) + V t + [ ( 6 o + p r A ) x + c - B ] V x + ~ V , . . , . ( x 2 p r D p +  
erp=p,,, 

where e = (1, ..., 1) r. 

(25) 

We differentiate the expression in brackets with respect to c as before to get: 

0 
O---c (') = e-St L° + l/.,. = 0, where Lc = OL/Oc (26) 

c*(t, x) = L-~' (e -;st V.,-) (27) 

To minimise over p subject to the constraint  we use the method of  
Lagrangians. Thus we minimise the function: 

1 . 2  
G(P,7) = xVxATP + ~.x VxxpTDp + 7(eTp -- Pro) (28) 

over p and 7. 

OG _ xV,.A + X 2 VxxDp + 7e = 0 (29) 
Op 

OG _ eT p _ P,,, 0 (30) 
07 

for which the solution is: 

p = p ( x ) =  p,, ,+ V,. eTD_.A ~ D - ' e - - -  A (31) 
xV,..,. ] e D-  e xVx.,. 

= d 0 + d l  D - l e  -----:--  A (32) 
- XXl  X Vxx 

Pin 
where do -- eTD_le 

eTD-]A 
and dl - - -  

e T D - l e  

We note, as in the previous section, the connection with modern portfolio 
theory. We have already discussed the relevance of  D-~A. Here we note that 
portfolios which invest in the same proport ion as D- le  have the minimum 
variance given that there are to be no investments in cash. Furthermore,  all 
efficient portfolios are linear combinat ions of  D-IA and D-le .  
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Again because of the form of the value function we substitute 
V(t, x) = e-5'F(x).  

Now L(t,  c, x) = (c - Cm) 2 + 2p(c - c,,)(x - Xp) + (k + pZ)(x - xp) 2 (33) 

I 
L;  I (-eet  V., -) = Cm - p(x - xp) - ~F,. (34) 

We apply this to the Hamilton-Jacobi-Bellman equation to give: 

=~F~ + k (x  - x?) 2 - flF 0 

_ 1 - B / F v  + [ ( ~ 5 o + A r D - l ( d o e + ( d l e - A ) ~ ) ) x + c m - p ( X - X p )  -~]z,. 
] 

'[  ] 
As in the unconstrained case this has a quadratic solution 
F(x) = P(k)x  z + Q(k)x  + R(k).  The form of p(x) indicates that we require 
two portfolios A and B. Portfolio A is made up of fixed proportions of assets 
1 to n in proportion to the vector D-IA, while portfolio B is synthesised 
similarly but in proportion to the vector D-~e. 

As in Section 3.1 portfolios A and B are independent of the form of the 
loss function. 

3.3 .  F u r t h e r  d i s c u s s i o n  o f  the  g e n e r a l  m o d e l  

We now consider the optimal asset-allocation strategy in more detail. In 
particular, consider the instantaneous rate of return on the investments: that 
is, 6o + ATp*(x). Consider the unconstrained case first: 

2P(k)x  + Q(k) ArD_ I 
~5o + Arp*(x) = 6o - 2P(k)x  A (36) 

Q(k) ArO_ I = 6o - ArD- IA  2P(k)--mv A (37) 

Now D is positive definite so that A r D - t A  is positive. Furthermore, P(k) is 
positive and Q(k) is normally negative. Hence 60 + Arp*(x) is normally a 
decreasing function of x. 

Similarly consider the constrained case. 

[ 2P(k)x + Q(k ) (d lD- ' e  - A)] (38) Arp*(x) = AT d°D-l~° -~ 2P(k)x  

Q(k) ATD_I(dl e __ A) ( 3 9 )  = d°ArD- le  + d l A r D - t e  - ATD-IA + 2P(k)-~x 
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Note that eTD -I  (dte-A)=0. Hence ATD -l  ( d l e - A ) = - ( d l e - A ) T D  - l  (die-A) 
<0 since D is positive definite. Again P(k)>0 and normally Q(k)<0 so that 
ATp *(x) is a decreasing function of x. 

Furthermore an analysis of the instantaneous variance of the investments 
confirms that as the instantaneous rate of return decreases, the instanta- 
neous variance decreases also and then starts to increase as we go long 
(effectively) in low-risk assets and short in high-risk assets. 

Thus we find that when the funding level is low we invest more in high- 
risk assets and as the funding level rises we shift from high-risk into low-risk 
assets. This is a rather counterintuitive investment strategy. We would expect 
that as the funding level falls that we might shift into lower-risk assets to 
protect our position. The strategy we have found here does the opposite. The 
reason for this is because of the quadratic form of the objective function. 
This, in a sense, defines an ideal funding level Xp and an ideal contribution 
rate cm. If the funding level is below this then we invest in high-return, high- 
risk assets to increase the chance of getting quickly back to the ideal level. 
Conversely if the funding level is too high then we are prepared to invest in 
what is effectively an inefficient, high-risk, low-return investment strategy in 
order to get back to the ideal level. Indeed the fund will go long in cash and 
short in equities. In effect the scheme would be throwing money away since, 
for the same level of risk (that is, volatility of asset returns) it could have a 
higher expected return. The inefficiency here turns out, with hindsight, to be 
a result of the quadratic loss function. This actually prefers the positive 
target contribution rate, c,,,, to refunds. In other words, it is better to throw 
money away than to take a refund. (There is nothing new in this 
observation. Related problems in other branches of financial economics 
come to the same counter-intuitive conclusions where, for example, 
quadratic utility functions are employed.) 

Now consider the optimal contribution rate. Sometimes this is written in 
the form (co - ClXp) - c l ( x  - Xp) where x - Xp is the surplus relative to the 
target fund size Xp. c~ is the rate at which we try to remove surplus or 
amort ize  this surplus. It can be noted that the optimal amortization rate, 
c~ = P(k), depends on k, 60, A and D but not on cm, Xp or ~ .  

On the other hand, c; also depends on Xp and c,,, but again not on o-~. 
Similarly it can be seen that p*(x)  does not depend upon o'b 2. Thus, it has 

been demonstrated that for such a quadratic loss function L(.) the optimal 
contribution and asset-allocation strategies do not depend in any way upon 
the randomness in the level of benefit outgo (at least where this uncertainty is 
uncorrelated with investment returns). 

Later in this paper we will return to the dynamic optimisation problem 
where we have a different objective function and where there are constraints 
on the investment strategy and on the funding level. 
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3.4. Optimal strategy when p is fixed 

Suppose instead that the asset-allocation strategy is static: that is, p(t, x) = p 
for all t, x, for some p. We can still apply the Bellman equation but minimise 
over c(t, x) only. Thus we find that 

O=[~F~ +k(x-Xp) 2] -/3F 

+i,0x +(c,,, (40) 

Again we try t o  find a solution of  the form F(x) = P x  2 4- Qx + R and we 
find that 

/5+  v/ -~-  + 4k 
P = P(k)  = 2 (41) 

where /5 = 2~o - / 3  - 2prA - 2p + pTDp (42) 

Q = Q(k) = _2[kxp + e ( k ) ( B - c , , , -  pXp)] (43) 
P(k) +/3 - ~5o + pTA + p 

R = R(k) = ~ - Q(k) 2 + kxg - BQ(k) + (Cm + pxp)Q(k) + P(k)~r (44) 

The question now arises: how do we choose the optimal static p? 
We will consider one option here: minimise P(k) over p. This 

means that the optimal curve F(x) will be as close as possible in the 
limit as x tends to -+-oe to the superior solution derived in Section 3.1. 
Clearly the solution derived in Section 3.1 will be lower for all x 
regardless of  the value of  p. (Other possibilities include minimising 
F(x) over p for a specific value of  x. or minimising the minimum of  
F(x) over p.) 

To minimise P(k) over p we differentiate: 

dP dPd/5 
dp d/sdp 

(~ 1/5(P2 + 4k)-½)(-2A + 2Dp) = +-~ 

=>/5 = D-IA 

(45) 

(46) 

(47) 

A consideration of  the form o f / 5  as a function of  p shows that this is a 
minimum at ~b. 

We note that the proport ions in the risky assets as given in /3 are the 
same as those derived in Section 3.1. Furthermore,  we find that, given 
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P = P ,  b = 250 - / 3 - 2 p - A T D - I A  (again the same as in Section 3.1). This 
means that: 
o for large or small values of x the loss of optimality as a result of fixing p 

does not become too great; 
* - = * - c*tx then '* is not affected by the restriction on o if we write c ( t , x )  c o c I 

the investment strategy (that is, the rate of amortization of surplus or 
deficit is not affected). 

3.5. Comparison of the strategies 

Let us consider a specific example to compare the effectiveness of the optimal 
strategies derived in Sections 3.3 and 3.5 compared to that in Section 3.1. 
The fixed parameters are as follows: 

 004) 000 ) 
60=0.03,  6 =  \0 .06 ' S =  20.0.5 , B = I ,  ab=0 .1  (48) 

The control parameters are: 

Cm=0.6, k=0 .001 ,  x p = l O ,  /3--0.03, p = 0  (49) 

In this and in subsequent sections we define the funding level, X ( t ) ,  as the 
value of the assets divided by the expected rate of benefit outgo. 
Alternatively, if expected benefit outgo is defined as it is here as B = 1 
then X ( t )  is also the fund size. 

The optimal value functions F ( x )  are plotted in Figure 1 and their 
stationary distributions (as derived later on in Section 4) are plotted in 
Figure 2. 

Selected statistics are given in Table 1. From Table ! and Figure 1 we can 
see that the unconstrained solution is significantly better that the other two. 
The unconstrained and static cases are quite similar in some ways (shape and 
contribution strategy) but the lack of flexibility in the investment strategy 
adds on a fixed and substantial penalty. The constrained (no cash) case looks 
much more different. By reference to Figure 1 it performs well in the middle 
of the range and, indeed, attempts to stay there by applying a more 
aggressive amortization strategy. For more extreme values of x this strategy 
is much poorer than the static case. However, by-looking also at the 
stationary densities of the funding level under the three strategies (Figure 2) 
we can see that such extreme values will occur very rarely indeed. 
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FIGURE I: Comparison of value functions for three investment/contribution strategies. (a) (solid line) 
unconstrained optimum. (b) (dotted line) optimum under the constraint of no cash (p,,, = I). (c) (dashed line) 

optimum under a static investment strategy. 
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FIGURE 2: Comparison of stationary densities for three investment/contribution strategies. (a) (solid line) 
unconstrained optimum. (b) (dotted line) optimum under the constraint of no cash (Pro = 1). (c) (dashed line) 
optimum under a static investment strategy• (The funding level ~s defined here as fund size divided by the 

expected rate of benefit outgo•) 
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T A B L E  I 

COMPARISON OF OPTIMAL STRATEGIES WITH AND WITHOUT CONSTRAINTS 

P Q R Minimum F(.v) c~ c[ 

U n c o n s t r a i n e d  0.073 - 1.60 9.00 0.19 1.40 0.073 

C o n s t r a i n e d  (p,,, = 1) 0 .086 - I . 7 5  9.79 0.85 1.48 0 .086 

Sta t ic  0.073 - I . 6 0  16.70 7.89 1.40 0.073 

As mentioned in Section 3.1 we can look at Figures 1 and 2 and see that 
under the unconstrained investment strategy the value function is 
minimised at x,,,i,, = - Q / 2 P  = 11.01 and that this, in effect, turns out to 
be a ceiling (although X(t) can have brief excursions above this value 
because of volatility in the benefit outgo). Under such circumstances 
(that is the existence of, effectively, a ceiling) some of the criticisms of 
the approach with the quadratic loss function become somewhat 
irrelevant since we are practically never at a funding level where we 
choose effectively to throw away money (in the sense described in 
Section 3.4). 

Under other circumstances (for example, here if we took k --- 0.001 and 
Xp = 10 as before but changed c,,, from 0.6 to 0.8) the ceiling would turn 
into a floor at 8.99 and the funding level would spend most of the time 
above this floor. While this appears to be an appealing strategy the 
reservations about the investment strategy discussed in Section 3.4 are well 
founded here. 

Under the constrained strategy the value of x,,,i,, is 10.19 but we can 
see that the funding level can frequently go above this level. At x,,,i,, note 
that the fund here is invested in proportion to the minimum variance 
portfolio D-re. 

Finally we can see from Figure 2 that the static investment strategy leads 
to much wider fluctuations in the funding level which could only be reduced 
by increasing the value of k in tile loss function. 

We will return to this example in Section 5. 

3.6. Power and exponential loss functions 

3.6. I. Power loss function 

Let us complete this section now with a short analysis of the special case 
where ab = 0 and 

i ( c , , , _c )  "1 f o r c < c , , ,  f o r 0 <  < 1. L ( t ,  c ,  x )  = - - "r ( 5 0 )  
+ 0 0  f o r  c > Cm 
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Again we assume that the optimal value function takes the form 
V(t, x) = exp(-flt)F(x). Then the Hamilton-Jacobi-Bellman equation takes 
the form: 

i nf{-~(c,,,-c)'-/~F+[('o+p":,)x+c-~]F,+~F,,x2pTDp}=O (51) 
(We restrict optimisation to strategies which keep the fund size positive. 
Without this condition it is clearly optimal to take contribution refunds of 
infinite size.) 

Now 

0 ~(.) = 0  

( c , ,  - c)  "-I  + F,. = 0 

=~ C*(X) = C , , , -  ( - F x )  1/(7-1) 

o( 
.) = o  

=:¢, p*(x) = -D- '  A Fx 
X Fx A. 

Inserting c*(x) and p*(x) into equation (51) we get 

( F ~ )  v/('t-l) -t3F+(6oX+Cm B)F,. 2Fxx 

We try for a solution of the form F(x) = - k ( x -  x,,,)% 
Inserting this into equation (57) we get, for all x. 

(i,.~)~/(~-,)(x_ ,.,,,)~(~,-,)/(~-~) ('~ ~____2 l) 
+/3k(x-  x , , ) " - 6 o ( x  B~oC'")kc~(x- x,,,)~-' 

k2ot2{x x" ~2a-2 
1 L ~_--5,,,,j_____ ATD_~A 

+ 2 k a ( a  - 1)(X--Xm) °-2 = 0 

(52) 
(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

B -  Cm 
X m  -- - -  

6o 

I 
and k = - c7 -l 

where el = ]____7~ 

(59) 

(60) 

(61) 

(62) 



38 ANDREW CAIRNS 

Hence 

c*(x) = c,,, - c, (x - Xm) (63) 

p*(x) = O- 'A  (x - Xm) (64) 
(l -y)x 

We note the similarity of the problems and solutions here with a well-known 
optimal-consumption problem described by Merton (1971, 1990). Equiva- 
lence is achieved by equating the controllable level of consumption with 
B - c * ( t )  in the current model. This enables us to speculate that recent 
extensions of  this work to include the effects of transactions costs can be 
applied to the present problem. For example, the problem of proportional 
transactions costs has been considered by, amongst others, Davis & Norman 
(1990) and Shreve &Sone r  (1994). 

As with the quadratic loss function, contributions decrease linearly with x 
with the amortisation rate Cl being determined by the discount rate/3 and the 
risk-aversion parameter 7 (but not the maximum acceptable contribution 
rate, c,,,). 

Investment in risky assets, p*(x), x increases linearly in x above the 
minimum x,,,, and therefore appears to conform better with conventional 
wisdom. However, it turns out that this solution gives rise to one of two 
trivial stationary solutions for X(t): that is, X(t) ---, x,,, or +eo depending 
upon the value of/3. 

Returning to the dynamics of the funding level X(t) we find that c*(x) and 
p*(x) give rise to 

d X ( t ) - = ( X ( t ) - X m ) [ ( 6 0 + l - ~ T A r D - I A - c l ) d t + l - ~ T A T S - ' d Z ( t ) l  (65) 

l ArD_IA_c I d t + l _ ~  -x,,,) 60+1_ 

where 2 ( 0  is another Brownian motion. It follows that (and inserting the 
known form of cl): 

X(t ) -x , , ,=(X(O)-xm)exp[  (6o+2( II~_7) A T D-'  A - /3 ) t+  I_,7 
1 

(67) 
That is, X(t) -x , , ,  is a geometric Brownian motion which tends to zero if 
/3 > 6o + ATD-IA/2(I - 7) and to +oo if/3 < ~50 + ATD-IA/2(1 - 7). 

There are some similarities between this solution and that of Boulier et  al. 
(1995) under which x,, - X(t) is also a geometric Brownian motion. 

With either the introduction of  volatility in benefit outgo (orb > 0) or with 
restrictions on the amount of cash we cannot have both a lower bound on 
the funding level and an upper bound on the contribution rate. 
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The loss function L(c) = c'~/7 for c > 0 and 3" > 1 has been considered by 
Siegmann & Lucas (1999). They obtain similar results to those described 
above, except that x,,, becomes a maximum, and contributions are bounded 
below by 0 rather than above by c,,. 

3.6.2. Exponential loss function 

Similarly, we can consider the exponential loss function (for example, see 
Siegmann & Lucas, 1999): 

L(t, c, x) = exp(Tc - Ox) (68) 

where 7 > 0 and 0 > 0. Here the relationship between 7 and 0 determines the 
relative emphasis on the employer and the members. 

This gives us the solution: 

F(x) = exp(a - bx) (69) 

where b = 76o + 0 

7 - 1 3 + ( 7 6 o + 0 ) B + ( 7 6 o + 0 ) / 7  - I A r D - I A  
and a = log 76o + + 0 (';,60 + 0)/,,/ 

c*(t) = co - ctx (70) 

1 
p*(t) = xPO (71) 

-/3 + (760 + O)B + (3'60 + 0)/3"-  ½ A T D-I/~ 
where co = 3'6o + 0 

Cl = 60 

D - I A  

andp0 3'60+0 

This solution is more like the quadratic loss function considered in earlier 
sections: that is, the proportion of the fund invested in risky assets decreases 
as x increases. If we increase 0 then P0 decreases. This reflects the fact that 
there is a greater degree of risk aversion when we consider the interests of the 
members, so we invest less in risky assets. 

With a little algebra we can see that X(t) follows a Brownian motion 
with d r i f t ~  ( - /3+(3 '60+0) /3 '+½ATD-IA)/ (3 '60+0)  and volatility 

T I v"-~= ~/ArD-UA/(3'60 +0).This means that the solution is unsatisfactory 
because it is both non-stationary and because it gives rise to a 'counter- 
intuitive' investment strategy. 
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4. THE STATIONARY DISTRIBUTION OF X(t) 

4.1. General model 

Assume now that 

c(t,x) = c(x) = co -C lX  (72) 

p(t, x) :- p(x) = po + p ,x  (73) 
x 

where P0 and Pl are n x 1 vectors. 
The reason for assuming a linear form for c(x) and xp(x) is simple. They 

are consistent with the optimal dynamic controls derived in Section 3 when 
we use a quadrat ic  loss function. Fur thermore  let us recall the value function 

If 3 W(t, x)(c,p) = E exp(-/3s)L(s, c(s, X(s)), X(s))dslX(t ) = x (74) 

As / 3 4  0, / 3 W ( t , x ) ~  E[L(s,c,X)]: that is, the limiting optimal dynamic 
controls are also optimal in the static case if we use the same quadrat ic  loss 
function. 

The dynamics of  the fund size, X(t), are then 

V # . d t -  vX.dt+ (a+/3X+TX 2) V2dZ (77) 

where 2 ( 0  is a s tandard n-dimensional Brownian Motion,  and Z(t) is a 
s tandard Brownian motion which depends upon 2 ( 0  and Zb(t), 

11, = c0 - B + p~-A (78) 

u = cl - 60 - p ~ A  (79) 

a = p~Dpo + a~ (80) 

/3 = 2p~Dpl (81) 

"7 = p(Dp, (82) 

In order to discuss the properties of  this model we state the following 
theorem: 

Theorem 4.1.1 
Let the continuous-time stochastic process X, satisfy the stochastic d~ffbrential 
equation 

dX, = (5 +/3X, + "TX~)~/2dZ + ~clt - ~,X, dt (83) 
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subject to the constraints on ttte parameters ¢x > O, 3' > O, /3 2 - 4o~ 7 _< O, 
I-t > 0 and u > O. 
(a) If/3 2 - 4c~7 < O, the stationary density function of  Xr is 

fx (x)  = K exp[2a tan-l X + b] (cr + /3x (84) 

for - cxD < x < o<) 

1 
w h e r e a -  /4aT_/32(ff~/37 + 2 #  ) 

b=~___ 
27 

-/32 
C - -  

27 

(b) If/32 _ 4c~7 = 0 and Xo > -b ,  the stationary density function of  Xt is 
( 

fx (x)  = ~ K(x + b)-° exp[-49/(x + b)] 

t 0 

where b /3 
27 

u/3 + 2/_t 7 
49- .y2 

that 
0 - 1 > 0  
(X - k)- '  ,,~ Gamma(og fl).) 

In each case K is a normalizing constant. 

for x > - b  tf 0 > 0  

for x < - b  /f 0 < 0  

otherwise 

(85) 

is. the Translated-Inverse-Gamma distribution with parameters -b ,  
and 49 > 0 (TIG(-b,  O -  I, 49)). ( I f  X. . .  TIG(k,c~,/3) then 

Proof: Proofs of these two results have been provided before by a number of 
authors. Distribution (b) was first derived in the context of pension funding 
by Dufresne (1990) in the case where there is one risky asset, no cash and no 
demographic volatility (ab = 0). Dufresne also noted that the stationary 
distribution of the funding level was the same as the distribution of a 
perpetuity. An alternative proof  for the distribution of the present value of a 
perpetuity was also shown to have distribution (b) by Yor (1992) and by 
De Schepper el al. (1994). F611mer and Schweizer (1993, Theorem 5.1 and 
erratum) considered the diffusion process defined above as underlying a 
model for stock prices. They derived both of  the limiting distributions given 
in (a) and (b). 
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The two distributions above are also known as Pearson type IV and type 
V distributions respectively (for example, see Johnson et  al.,  1994). 

Let us consider the Pearson Type IV distribution. This distribution has 
four degrees of freedom. The fifth degree of freedom used in the dynamics of 
the fund size determines the speed of the process. 

Following the notation of Johnson et  al. (1994) we define It', = E[Xq. We 
define #'-t = 0 and have 1~{) = I. It is easy to show that the ~'~ satisfy the 
following recursive relationship: 

- k o r # ' r _  - _ = ,+(/,'3 ( , '+l)k,) t , '~+(l  (r+2)k2)F~'r+l 0 (86) 
a /3 "r / 3 - 2 u  

wherek0-2(3`+u------~, kl-2(3`+-------3, k2-2(3`+u~,  k3-2(3`+u-------- 3 (87) 

Hence we have 

E[< =d, _kl (88) 
1 - 2 k 2  u 

, k o + ( 2 k l - k 3 ) # / u  o ~ u + / 3 # + 2 #  2 (89) 
E[X2] ='u2 = 1-3k2 - u(Zu-  3`) 

= V a t [ X ] =  °~u+/3`L+2/-L2 /~2--uz(ct+/3~+3`~) -°~+/3E[X]+TE[X]2 (90) 
u (2 u -7 )  u 2 u2(2u-3`) 2 u - 7  

I.L 
r r  t=',,LLCL~)I = co - c, E[X] = Co - c , -  (91) 

/] 

c~ +/3E[X] + 3`E[X] 2 (92) 
Var[c(X)]  = c'~ Var[X] = c~ 2u - 7 

The stationary distribution exists if and only if 2(1 + u / 3 ` ) >  1: that is 

cl > ~50 +pMrA-2 3  ̀ (in fact, 3`~/2 is the asymptotic volatility as Ix[ ~ oc). 
, i  

Similarly E[X] exists if and only ifc~ > ~50 +p(A and Var[kq exists if and only 
1 

ifcj > 60 +plrA +~3`. 

Coming back to the optimal solution for the dynamic problem we found 
'* = P ( k )  = P ( k , / 3 ) .  Thus the condition for stationarity is that c~ 

, T  1 , T  , 
P ( k )  > 60 + Pl A -- ~P l  DPl (93) 

where p~ = -D- IA (unconstrained case). 

P ( k )  > 60 +3ATD-IA (94) 
Z 
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N o w  P(k,/3) is a decreasing function of/3 and an increasing function of  k, so 
the condit ion above is less likely to be satisfied if fl is large or k is small. 
Under  such circumstances the funding level will diverge as t tends to infinity. 
The situation, therefore, is that with a relatively large value of/3 we pay more 
attention to control o f  short-term variability in the contr ibut ion rate at the 
expense of  larger fluctuations in the long term. Likewise, if the value of  k is 
too small then we also pay too much attention to short-term contr ibut ion-  
rate stability. 

4.2. Continuous proportion portfolio insurance 

The idea of  cont inuous  propor t ion  portfol io insurance (CPPI) was 
introduced by Black and Jones (1988) and Black and Perold (1992). 

The previous sections in this paper  have concentrated upon quadrat ic  loss 
functions. The motivat ion behind CPP1 is that in certain countries there exist 
minimum funding constraints: that is, there exists a floor below which the 
funding level must not fall. CPPI was proposed as a means of  reducing the 
risk that the fund falls below this floor. 

Under  CPPI  if the funding level is low then the fund will be invested more 
in low-risk assets (in particular, those which will best match variations in the 
floor). As the funding level improves the fund can be shifted more into risky 
assets which provide the fund with higher upside potential. 

Suppose that the minimum funding level (or floor) is M. We have a low- 
risk portfolio A with a propor t ion 7r,4g of  the fund invested in asset i (i = 1, 
2 . . . .  , n). We also have a higher-risk portfolio B which invests in propor t ion 
to the vector Tr;;. At funding level x a propor t ion p,4 (x) of  the fund is invested 
in portfolio A and po(x) = 1 --pA(x) in portfolio B. Since A is less risky we 
have (normally): 

~r~,,k < 7cer,k (that is, A has a lower expected return) (95) 

TraDer,4 < 7r~DTr;; (that is, A is lower risk) (96) 

We define p,(x) in one of  the following ways: 

x - M  
p/3(x) - - -  (97) 

x 

or/~o(x) = max - ,0 (98) 
x 

We will concentrate here on p~(x) for the sake of  mathematical  convenience 
since it is normally the case that the probabil i ty that X(t) falls below M 
under this strategy is very small if A is very low risk. 
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The vector o f  p ropor t ions  invested in each asset under  CPPI  is thus: 

M x - M  
pc(X) =- -TrA + - - 7 r 8  (99) 

x x 

Pco + Pcl x 
- ( l o o )  

X 

where p~o = M(TrA -- ~rB) 

Pcl ~ 7rB 

We can, therefore,  apply all o f  the results discussed in Section 4.1 to CPPI.  
For  example,  it is of  interest to compare  the effectiveness o f  CPPI relative to 
a static investment strategy. Let us look first at the s ta t ionary mean and 
variance of  the funding level. In the equat ions below we use a subscript c for 
calculations under  CPPI  and s where we are considering the static strategy. 
Thus: 

E[Xc] - "" - c o  - B + p~A 
u~ el - 6o - p ~ A  = m~ (101) 

and Var[Xc] c ~ c + f l c m ~ + T d n ~  2 say. (102) 
= 2uc - "7c = sc 

We will assume that the floor, M, is sufficiently small and that portfolios A 
and B, and the contr ibut ion strategy have been chosen in such a way that 
X(t)  is s ta t ionary with M < mc < oc. 

Now suppose that we will employ a static investment strategy under 
which we hold assets in propor t ion  to the vector psTrA + (! -ps ) r r8  for all x 
where p.,, is some scalar quanti ty.  Then we have: 

E [ X . , . ]  = c o  - B = m~. (103) 
Cl -- 60 -- (psTrA + (1 - -  ps)TrB)TA " 

Now choose Ps in such a way that ms = m~: that is, 

m , . ( c ,  - 6o - ~ : ~ )  - ("o - B )  M ( ~ A  -- ~ B ) ~ A  M 
p~. . . . .  (104) 

mc(:~A - ~8)r .X  . , c ( ~ A  - :~e)r~  ,,7. 

Note  that 0 < Ps < 1. 
We now claim that Va,'[Xs] < Var[X~]. 

=o~/~ + M2(TrA - 7rB)TD(TrA - 7rB) + 2M(TrA - 7ro)VDTrsmc + 7r~DTrBm~ (106) 

=o~h + ( M(Tr,4 - ~rB) + mcTrB)T D( M(Tr A -- 7rlt) + mcTrlt) (107) 

=cr~b + (p:rA -I- (1 -- pc)TrB)rD(p,TrA -t- (1 - p ( l ) T l B ) / , ]  12 (108) 

where Po = M / m , .  



SOME NOTES ON THE DYNAMICS A N D  OPTIMAL C O N T R O L  45 

We also have: 

a~ +/3~m~ + %m2s = ~ + (p,rrA + (1 - ps)rrB)rD(psrrA + (1 -- p,)rrA)m.{ (109) 

But  m~ = m~. and  Pc = P~ so that  ctc -I-/3~mc + 7cm~ 2 = C~s 4-/3~ms + %m~. 
N ex t  consider :  

% = - ( l l O )  

- (PTA + (I --p.,.)TrB)rD(p.,.TrA + (1 --p.~)TrB) (111) 

= 2(c, - 60 - 7rTA) -- 7rTDTrB -- 2ps(TrA -- 7rB) TA . (112) 

(ll3) + [TrTDTrB--(p.~Tr,4 + ( 1 - - p s ) T r B ) T D ( p T A + ( 1 - - p s ) r r s ) ]  

N o w  0 < Ps < 1, (rrA - 7re)r)~ < 0 and 

[TrTDTrB--(psTrA+(l--ps)TrB)TD(psTrA+(l--ps)TrB)l > 0  (114) 

(since the express ion  in square  bracke ts  is convex ,  q u a d r a t i c  in Ps and  
7rT DTr A < 7r~DTrs). 

There fo re :  

Hence:  

2t<,. - 3'.; > 2u~ - "),c. (115) 

Oes +/3sins + "ysm 2 oec +/3dnc + "7cm2~ < 
2u,. - "7~ 2u~ - % 

Var[Xs] < Var[Xc] 

This  can be summar i s ed  in the fo l lowing  theorem:  

(116) 

(117) 

Theorem 4.2.1 
For any CPPI  investment strategy let me and s 2 be the stationary mean and 
variance o f  the fimding level X,. There exists a static investment strategy under 
which the stationary mean fimding level, m.~, is equal to mc but the stationary 

2 is less than ,2 variance o f  the funding level, s s , '~c" 

Interpretation: In the var iance  sense, the stat ic s t ra tegy  is more efficient than  
CPPI :  tha t  is, given a C P P I  s t ra tegy  we can a lways  find a stat ic s t ra tegy  
which delivers the same mean  funding  level bu t  a lower  var iance .  

One  example  i l lustrat ing this result  is p lo t ted  in F igure  3. Here  we use the 
same fixed pa r am e te r s  as in Sect ion 3.5. In add i t ion  we have co = 1.5 and  
cl = 0.07 for  bo th  the static and  C P P I  strategies.  U n d e r  C P P I  we have a 
f loor  o f  M = 10 with 7r T = (0 ,0)  and 7r T = (0 .2 ,0 .8)  (mean ing  tha t  at  the 
f loor  ( (X(t )  = M) the fund is invested 100% in cash).  This  gives rise to a 
mean  funding  level ( that  is, assets d ivided by expec ted  benefit  ou tgo )  o f  17.1 
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while the variance of the ftmding level is, in fact, infinite. Under the 
matching static investment strategy the expected funding level is also 17.1 
while the standard deviation of the funding level is 5.4. This marked 
difference in the variances is caused by the fatness of the tail of  the CPPI 
distribution although this is not clear from Figure 3. What we can see in 
Figure 3 is that the two distributions are quite different. 

One might ask why would we use CPPI when the static strategy has been 
shown to be more efficient. The answer to this is that it depends upon the 
objectives of  the pension fund. If the objective is to minimise variance then 
clearly the static strategy is superior (although we have shown in Section 3 
that a form of "inverse" CPPI is better still). On the other hand, if the 
objective is to minimise the probability that the funding level falls below the 
floor, M, then CPPI is clearly superior. 

0 
O4 
0 

1.0 

5 

c ~ d 
" 0  

d 

q 
0 

~CPPI 

' \ "\ static 

0 10 20 30 40 50 

funding level, x 
FIGURE 3: Compar i son  o f  s ta t ionary  distr ibutions for static and CPPI investment strategies. Both 

distr ibutions have the same mean. 
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5. N U M E R I C A L  EXAMPLES 

We consider now an example in which the following parameters are fixed (as 
in Section 3.6): 

(0.04) :0.05 0005 ) .  60=0.03, 6=\0.06J' S=\0.05 , B = I ,  orb=0.1 (118) 
Here we consider an analysis of  the sensitivity of  the optimal control 
strategies to variation of  the input parameters in the value function and the 
loss function. The central parameter values which we will use are: 

c , , = 0 . 6 ,  k = 0 . 0 0 1 ,  xp=  10, / 3 = 0 . 0 3  (119) 
Furthermore, we assume that none of  the fund can be invested in cash (as in 
Section 3.3 with Pm = 1). Throughout this analysis we keep the fifth input 
parameter p equal to 0. 

In Tables 2 (Dynamic optimisation) and 3 (Stationary optimisation) 
below we give the values of  the input parameters (c,,,, k, Xp and /3), the 
optimal values of  p0, Pl, co and cl, and the mean and standard deviation of  
the stationary fund size and the contribution rate. 

The values given for pB0 and Pm relate to the proportion of  the fund 
invested in the more risky but efficient portfolio B: that is, the portfolio in 
which investments are in proportion to the vector D-~A. In particular, the 
proportion of  the fund invested in portfolio B is pB(X)= (PBo +pmx)/x. 
Since Pm = I the remainder of  the assets are invested in the minimum 
variance portfolio A: D-le / (erD-le) .  

TABLE 2 

DYNAMIC OPTIMISATION 

El'. C m k xp ~ Gb pl~ PBI CO Cl E[X] SD[,~] E[C] SO[(.] 

I 0.6 0 - 0.02 

2 0.6 0 - 0.03 

3(*) 0.6 0.005 10 0.03 

4 0.5 0.05 10 0.03 

5 0.6 0.005 10 0.03 

6 0.6 0.005 15 0.03 

7 0.6 0.005 10 0.03 

0. 

0. 

0. 

0. 

0. 

0. 

0.2 

20.7 - I .97  1.00 0.038 8.9 3.8 0.660 0.146 

20.7 - I .97  0.89 0.028 7.0 oe 0.699 o o  

20.1 - I . 97  1.48 0.086 9.6 1.5 0.651 0.132 

19.8 - I .97  3.00 0.238 9.9 0.8 0.647 0.194 

22.1 - I . 97  1.47 0.086 9.7 1.6 0.633 0.141 

26.0 - I .97  1.74 0.086 14.2 2.3 0.512 0.194 

20.1 - I .97  1.48 0.086 9.6 1.6 0.651 0.139 
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T A B L E  3 

S T A T I O N A R Y  O P T I M  [ S A T I O N  

ex. cm ~ x, # o~ p~  p,, co ~, e[x] so[xl e[c] so[c] 

I 0.6 0 - - 0.1 20.7 - 1 . 9 7  1.21 0.058 9.7 2.2 0 .644 0.127 

2 - - 

3 ( ' )  0.6 0.005 10 - 0.1 20.1 - I . 9 7  1.68 0.105 9.8 1.3 0.647 0.141 

4 0.6 0.05 10 - 0.1 19.9 - [ . 9 7  3.16 0 .254 9.9 0.8 0.647 0 .200 

5 0.5 0 .005 10 - 0.1 2 2 . 4 - I . 9 7  1.70 0.105 10.3 1.4 0.619 0 .152 

6 0.6 0 .005 15 - 0.1 2 5 . 6 - I . 9 7  1.97 0.105 13.7 1.9 0 .526 0 .197 

7 0.6 0 .005 10 - 0.2 20.1 - 1 . 9 7  1.68 0.105 9.8 1.4 0 .647 0 .149 

5.1. Notes  on the numerical examples  

o Examples 1 and 2 show the effect of changing the risk-discount rate /3 
when k = 0. Note how the variances in the dynamic case become infinite 
as/3 increases. However, when/3 = 0.03 the dynamic optimum still has a 
stationary distribution, albeit with infinite variances. 
When k = 0 we can also see that the optimal asset-allocation strategies 
for the dynamic and static cases are the same and do not depend upon/3. 
We also see tha.t c~ = c s - / 3  if k = 0. 
As /3 tends to 0 the optimal dynamic solutions converge to the same 
values as the optimal static solution. The effect of /3 is therefore to 
suppress variance in the short term through a lower value of c~. A low 
value of c~ may reduce variance in the short term but it increases it in the 
long run by allowing fluctuations in the fund size to persist. 
In Example 1 we also see that E[C] > era. This reflects that fact that the 
minimum variance of C falls as E[C] increases (and E[X] falls). 

o In Example 1, the fund is invested 100% in portfolio B when X equals 
about 7.0. Below this the fund goes long in portfolio B and short, in 
portfolio A. Conversely, when X reaches just above 10.5 the fund has 
100% in portfolio A. When X goes above this there is a long position in 
portfolio A and a short position in portfolio B. 
Similar ranges apply for each of the other examples. 

o Examples 2, 3 and 4 show the effect of increasing k. This shifts the 
emphasis onto reducing the variance of the fund size rather than of the 
contribution rate. The principle effect is that c~ increases with k: that is, 
surplus or deficit is amortised more quickly. The changes in P0 and co are 
primarily a knock on effect. 

o Examples 3 and 5 demonstrate the consequences of changing c,,,. Pl 
remains unchanged as it does throughout. The changes in the remaining 
control parameters have the effect of shifting the mean values principally 
but also affect the variances. 
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o Examples 3 and 6 consider the effect of changing the target fund size x?. 
There is no change in Cl orpl .  P0 and co change in order to shift the mean 
fund size. The variance rises because the target fund size is being moved 
away from the more natural mean observed in Example 3. This increases 
the tension on the mean contribution rate since a target fund size of 15 is 
not entirely consistent with a target contribution rate of 0.6. 

o Examples 3 and 7 show the influence of the uncertainty in the level of 
benefit outgo. As was remarked in Section 3, ab has no effect on the 
optimal values of P0, Pl, co and el. Furthermore, the increases in the 
variances are small indicating that at this level (a6 = 0.1 or 0.2) the main 
source of variability in the contribution rate is due to investment risk. 

o The stationary distributions for the fund size for the dynamic and the 
stationary optima in Example 3 are plotted in Figure 4. It can be seen 
that the results are similar although the dynamic optimum gives rise to a 
stationary distribution which is less peaked and which has fatter tails. In 
other cases (for example, Example 6) if there is some tension between the 
target funding level, Xp, and the target contribution rate, Cm, there will be 
more of a difference between the two stationary distributions. 

c5 

-- d 
tD~ 
t-- 

C5 
tO,,,= 

O 

t..D v-. 

"- c5 (D 
"O 

O 

O 0 20 

~ "  i" stationary 

5 10 15 

funding level, x 
FIGURE 4: Example 3: Comparison of the stationary distribution of the funding levels for the dynamic and 

stationary optimal solutions. 
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6. CONSTRAINTS AND DISCONTINUITIES 

A number of possible constraints can be put in place which complicate 
considerably the proceeding analyses. These are: 
o upper and lower barriers for the funding level, X(t). These might be 

legislative requirements or self-imposed by the fund sponsor and the 
trustees. 

o an upper limit set by the fund sponsor on the contribution rate. 
o restrictions on the short-selling of assets. 

Further discontinuities might exist where the objective function has a non- 
standard form. For example, we may have 

L(t ,c ,x)  = ( c -  c,,,) 2 + k(max{xp - x, 0}) 2 (120) 

where the second term only introduces a penalty when the funding level 
drops below Xp. Such a function can also be used as a means of investigating 
the effects of a barrier since as k gets larger and larger the optimal 
contribution rate below Xp will increase in an effort to raise the funding level 
above Xp as quickly as possible. For large k this will have the effect of 
looking like a reflection off the barrier 

Analysis of many of these problems is under way but there are only a few 
interesting results to discuss at this stage. 

6.1. Dynamics in the presence of a minimum barrier 

A much simplified version of the minimum funding requirement in the UK is 
as follows. There is a floor M below which the funding level should not fall. 
If X(t) does drop below M then it is immediately increased to M by a special 
contribution. 

This problem can be approached by modifying the original setup 
described in Section 2 by adding an additional contribution rate 
c +.  m a x { M - X ( t ) , 0 } :  that is, when the funding level is below M. As c + 
tends to infinity the dynamics of the model approach that described above 
and the process reflects off the barrier M. In this limit the process can be 
written as follows: 

The new term in this formula, dL~, is called the local time of the process, 
X(t), at M and is defined as 

I' L2 ~ = dL., M. (122) 

'/o' --1ill,- I(M _< X(O < M + e)d.  (123) 
~---~0 ~" 
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where l(-) is equal to l when X(t) lies between M and M + E and 0 otherwise. 
L~  is a measure of  how much time the process spends in the vicinity of  M. 

The d L ~  term represents the additional contributions required when the 
process hits the barrier to keep X(t) above M. In a sense it gives the process a 
small upwards 'kick' every time it hits the barrier. 

It is possible to analyse the stat ionary distribution of  such a process when 
c(x) and p (x ) .  x are linear in x away from the barrier: it has a truncated 
Pearson type IV distribution. However, Var[c(X)dt + dL~/]/dt  2 is infinite 
whereas the variance is finite when there is no barrier. This inhibits the 
optimisation of, for example, qu;adratic objective functions. For  such 
problems it is easier to replace dL~ 4 by c + m a x { M -  X(t),  O}dt and consider 
what happens as c + tends to infinity. 

A more suitable loss function which accommodates  local time as a result 
of  the existence of  upper and lower barriers is: 

L(c) -= Ioc + d l  + IT(c-/2) 2. (124) 

Note that as c ~ +oo, L(c) ~ (Io + Ii )c, while as c ~ - o o ,  L(c) ,.~ (Io - Ii )c. 
This asymptotic linearity is required to ensure that the expected value of  the 
loss function does not become infinite when a reflecting barrier and local 
time is introduced. If  l0 < Ii then L(c) is increasing and convex. In other 
words, the fund sponsor prefers to pay less rather than more and prefers 
stability to instability. Furthermore,  the employer will be prepared to pay a 
higher average contribution rate in the long run in return for lower volatility 
in the contribution rate. 

6.2. No short-selling of assets 

Suppose that the holdings in each asset must be non-negative: that is, 
0 < p( t , x )  _< 1 for all t, x. 

Let us consider the following piecewise linear model for the proport ion of  
the fund invested in the more risky asset 2 in a 2-asset model: 

C ( X )  = C O - -  C I X  for all x (125) 

1 i f x  < x0 

x o ( x l - x )  if x0 ~ x < x l  (126) 
p2(x) = (xl x0) x 

0 if Xl < x 

In the unconstrained case: 

p2(x) = x0 

( x , - x 0 )  

X I m X) 

X 
(127) 
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for all x. The use of  x0 and xl here makes it easier to see where the 
constraints lock in. For  asset 1 and cash we have: 

Pl (x) = 1 - p2(x) (128) 

po(x)  = 0 (129) 

Over each interval [0, x0), [x0,xl) and [xl, ~ )  the stat ionary distribution 
function is a scaled Pearson type IV with different parameters over each 
interval. Since p ( x )  is continuous the stat ionary density function is 
continuous.  This allows numerical evaluation of  an objective function and 
hence optimisation over co, cl, x0 and xl.  

Let us consider a numerical example. We use the same model parameter 
values and objective function as in Section 5. In the unconstrained problem 
the optimal solution is linear in x as usual. In the constrained problem the 
optimal solution will not be linear or piecewise linear in x, but here we 
optimise only over piecewise linear strategies. 

It can be seen by referring to Table 4 that the effects of  the constraints in 
this example are fairly small but, nevertheless, significant. The size of  the 
effect of  the constraint  depends upon to what extent the interval [x0,xl) 
comes into play in the unconstrained case. If  X(t)  falls into [x0,xl) most of  
the time then the effect of  the constraint  will be small. Here, in the 
unconstrained case, most  of  the time the fund is invested long in the low-risk 
asset 1 and short in the high-risk asset 2. 

TABLE 4 

STATIONARY OPTIM[SATION UNDER CONSTRAINTS 

c ,  se x. x, ~o ~, e[x] so[x] e[c] so[el e[L(c,x)] 

Constrained 3.87 7.40 1.77 01123 9.29 1.50 0.628 0.184 0.0485 

Unconstrained 3.96 7.89 1.68 0.105 9.85 1.35 0.645 0.142 0.0315 

6.3. Upper limit on the contribution rate 

Boulier et al. (1996) considered the effect of  an upper bound on the optimal 
contribution rate. This resulted in a nearly linear form for c(x) and a bell- 
shaped curve for p(x ) .  Their solution required the existence of  a risk-free 
asset for the fund and zero volatility in the benefit outgo: otherwise the 
dynamics of  the model would be non-stat ionary since a sufficiently large 
deficit will eventually build up which cannot  be eradicated. 
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7. CONCLUSIONS 

This paper has considered the optimal control of  a pension fund using the 
asset-allocation strategy and the contribution strategy. 

Optimal solutions have been derived for power and exponential loss 
functions (with no demographic risk -¢7h = 0) and, in more detail, for a 
quadratic loss function. In most cases the contribution strategy appears to 
be sensible and conforms with current practice. In each case aspects of the 
solution were not completely satisfactory. First power and exponential loss 
functions were found to give rise to non-stationary solutions. Second, when 
we considered the quadratic and exponential loss functions, the optimal 
asset-allocation strategy derived was rather counterintuitive: moving, say, 
out of  equities into bonds when the level of surplus is growing. 

This has one of two explanations. Funds may be operating in a very non- 
optimal way. Alternatively, they may be operating optimally but with 
different objectives. For example, in the UK, the government has recently 
introduced minimum funding legislation. This should lead to loss functions 
which heavily penalise events when the fund size falls below the legal 
minimum. Boulier et al. (1996) considered a related problem in which the 
contribution rate was subject to an upper constraint (say, twice the target 
rate). However, in the present framework (in which all assets are risky and 
where there is volatility in the benefit outgo) it is not possible to constrain 
the contribution rate in this way, for otherwise the fund size would 
ultimately drift off to minus infinity. 

There is, however, some sense in a shift out of equities if the fund size 
is well above its target level. First if there is too much surplus then there 
will be pressure on the sponsoring employer to use this surplus to pay for 
discretionary pension increases which, perhaps, had not been promised. In 
any event the members would be benefitting from good investment returns 
while the employer has to pay when things go badly. Second if the 
employer is able to take a refund, the refund may be liable to tax (for 
example, in the U K  this is 40% with the aim of inhibiting exploitation of 
the tax advantages enjoyed by a pension fund). Third, too much surplus 
may lead to the removal of part o1" all of the fund's special tax status 
(again this is the case in the UK). All of these reasons mean that it should 
be advantageous to put a bigger proportion of the fund into low-risk 
assets when the fund has a large surplus. The results described in this 
paper back up this viewpoint. 

It is clear from the results contained in this paper that we must look for 
alternative loss functions. The target are ones which give rise to stationary 
solutions and sensible asset-allocation strategies. 

The results presented in this paper and in that of Boulier et  al. (1995) also 
draw attention to the following issues: 
o what objective functions (if any) are used by pension funds? Are pension 

funds currently operating in a sub-optimal way or do they have different 
objective functions from the one considered here? 
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o what constraints (if any) on contributions and investments are appro- 
priate? Can investment constraints be circumvented by prudent use of 
derivatives? 

o is too much emphasis placed on the calculation of  the so-called actuarial 
liability when this may have no relationship to the target funding level 
under the optimised objective function? Here the problems have been 
analysed solely with reference to the objective function. A framework 
which relies heavily on the actuarial liability might result in a solution 
which is sub-optimal with reference to this stated objective function. 

It must be stressed again that we have assumed a stable membership 
structure in the pension plan. In many problems there may be a reason, for 
example, to incorporate changes in the membership as a sponsoring 
company evolves or restructures. Such situations would require an 
adaptation of, for example, the use of X(t) = F(t)/W(t) as the key process 
and of the objective function. The findings in this paper suggest that the 
interests of  the employer and fund members might be served better by a 
combination of dynamic control theory and more traditional actuarial 
valuation techniques. In this respect, theoretical solutions to simplified 
problems give us a basis for investigations of more complex situations. 

ACKNOWLEDGEM ENTS 

I would like to thank the many people who have commented on earlier 
versions of this paper and at various talks. In particular, 1 have had 
useful conversations with or suggestions from Jean-Francois Boulier, 
Daniel Dufresne, Martin Schweizer, Wolfgang Rungaldier, Michael Taksar, 
Hanspeter Schmidli, Ravi Mazumdar, Paul Embrechts, Gary Parker, 
Martino Graselli, Mary Hardy, David Wilkie, Terence Chan, Iain Currie, 
Jack Carr, Ken Brown, and Andrew Lacey. 

REFERENCES 

BLACK, F. and JONES, R. (1988) Simplifying portfolio insurance for corporate pension plans. 
Journal of  Portfolio Management 14(4), 33-37. 

BI.AC¢, F. and PEROLD, A. (19,92) Theory of constant proportion portfolio insurance. Journal of 
Economic Dynamics and Control 16, 403-426. 

BOUHER, J-F., TRUSSANT, E. and FLORENS, D. (1995) A dynamic model for pension flmds 
naanagement. Proceedings of  the 5th AFIR International Colloquium I, 361-384. 

BOULIER, J-F., MICHEL, S. and W]SNIA, V. (1996) Optimizing investment and contribution 
policies of a defined benefit pension fund. Proceedings of  the 6th AFIR lnternatiomd 
Colloquium l, 593-607. 

CMRNS, A.J.G. (1995) Pension funding in a stochastic environment: the role of objectives in 
selecting an asset-allocation strategy. Proceedings of the 5th AFIR hzternational Colloquium 
1,429-453. 

CAtRNS, A.J.G. (1996) Continuous-time stochastic pension fund modelling. Proceedings of  the 
6th AFIR International Colloquium I, 609-624. 

CAmNS, A.J.G., BLAKE, D. and DOWD, K. (2000). Optimal dynamic asset allocation for defined 
contribution pensionplans. To appear in Proceedings of the 10th AFIR International 
Colloquium. 



SOME NOTES ON THE DYNAMICS AND OPTIMAL CONTROL 55 

CAIRNS, A.J.G. and PARKER, G. (1997) Stochastic pension fund modelling, hzsurance 
Mathematics and Economics 21, 43-79. 

DAvis, M.H.A. and NORMAN, A.R. (1990) Portfolio selection with transaction costs. 
Mathematics of Operatio,s Research I 5, 676-713. 

DEELSTRA, G., GRASSELLI, M. and KOEHL, P-F. (1999) Optimal investment strategies in a CI R 
framework. Preprint. 

DE SCHEPPER, A., TEUNEN, M. and GOOVAERTS, M. (1994) An analytical inversion of a Laplace 
transform related to annuities certain, h~surance: Mathematics and Economics 14, 33-37. 

DUFRESNE, D. (1988) Moments of pension contributions and fund levels when rates of return 
are random. Journal of the I,stitute of Actuaries 115, 535-544. 

DUFRESNE, D. (1989) Stability of pension systems when rates of return are random. 
Insurance: Mathematics and Economics 8, 71-76. 

DUVRESNE, D. (1990) The distribution of a perpetuity, with applications to risk theory and 
pension funding. Scandinavian Actuarial Journal 1990, 39-79. 

FLEMING, W.H. and RISHEL, R.W. (1975) Deterministic and stochastic optimal control. 
Springer-Verlag, New York. 

FOLLMER, H. and SCHWEIZER, M. (1993) A microeconomic approach to diffusion models for 
stock prices. Mathematical Fi, a,ce 3, 1-23. (Erratum: 4:285.) 

G~,RBER, H.U. and SHIU, E.S. (2000) Investing for retirement: optimal capital growth and 
dynamic asset allocation. To appear in North American Actuarial Journal 4 (2). 

HABERMAN, S. and SUNG, J-H. (1994) Dynamic approaches to pension funding. Insura,ce: 
Mathematics a,d Economics I 5, 15 I- 162. 

JOHNSON, N.L., KOTZ, S. and BALAKRISHNAN, N. (1994) Co,ti, uo,s Univariate Distributions. 
Volume 1, 2nd Edition. Wiley, New York. 

Kr:F,L, A. and MOLLER, H.H. (1995) Efficient portfolios in the asset liability context. ASTIN 
Bulletin 25, 33-48. 

MV-RTON, R.C. (1971) Optimal consumption and portfolio rules in a continuous-time model. 
Journal of Economic Theory 3, 373-413. 

M ERTON, R.C. (1990) Co,timtous-Time Finance. Blackwell, Cambridge, Mass. 
O'BRIEN, T. (1986) A stochastic-dynamic approach to pension funding. Insura, ce: Mathematics 

and Economics 5, 141-146. 
O'BRIEN, T. (1987) A two-parameter family of pension contribution functions and stochastie 

optimization, hzsura,ce." Mathematics and Economics 6, 129-134. 
~OKSF, NDAL, B. (1998) Stochastic Differe,tial Equations, 5th Editio,. Springer-Verlag, Berlin. 
SHARPE, W.F. and TINT, L.G. (1990) Liabilities - a new approach. Journal of Portfolio 

Ma,agement Winter 1990, 5-10. 
SIEGMANN, A.H. and LUCAS, A. (1999) Continuous-time dynamic programming for ALM with 

risk-averse loss functions. Proceedings of the 9th A FIR h,ernatio,al Colloquium 2, 183-193. 
SHREVE, S.E. and SONER, H.M. (1994) Optimal investment and consumption with transaction 

costs. Ammls of Applied Probability 4, 609-692. 
WIt, V.:IE, A.D. (1985) Portfolio selection in the presence o1" fixed liabilities. Jour,al of the 

hlstitute of Actuaries 112, 229-277. 
WIsl-, A. (1984) The matching of assets to liabilities. Journal of the Institute of Actuaries i l  I, 

445-50 I. 
YOR, M. (1992) Sur certaines foncionnelles exponentielles du mouvement brownien r~el. 

Jour, al of Applied Probability 29, 202-208. 

ANDREW CAIRNS 
Depar tment  of Actuarial  Ma themat i c s  and Statistics" 
Heriot-  Wat t  University 

Edinburgh E H 1 4  4 A S  
Scot land  





A M ULTIVARIATE GENERALIZATION OF THE GENERALIZED POISSON 
DISTRIBUTION 

B¥ 
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A B S T R A C T  

This paper proposes a multivariate generalization of the generalized Poisson 
distribution. Its definition and main properties are given. The parameters are 
estimated by the method of moments. 

K E Y W O R D S  

Multivariate generalized Poisson distribution (MGPm); generalized Poisson 
distribution (GPD); bivariate generalized Poisson distribution (BGPD). 

1. I N T R O D U C T I O N  

The univariate generalized Poisson distribution (GPD), introduced by CONSUL 
and JMN (1973), is a well-studied alternative to the standard Poisson 
distribution. CONSUL (1989) provided a guide to the current state of modeling 
with the GPD at that time, and documented many real life examples. GPD has 
also been making appearances in the actuarial literature (see GERBER, 1990; 
GOOVAERTS and KAAS, 1991; KLING and GOOVAERTS, 1993; AMBAGASPmYA 
and BALAKRISHNAN, 1994 etc.). A bivariate generalization was developed by 
VERNIC (1997) and was applied in the insurance field. 

The multivariate generalization that we present in this paper is derived from 
the GPD in a similar way with the BGPD. In consequence, the BGPD can be 
obtained from the MGP,,, for m = 2. In section 2 we present some properties of 
the MGP,,,. The method of moments is used in section 3 for the estimation of the 
parameters. In section 4 the particular case of the BGPD is considered together 
with its application in the insurance field, based on the paper of VERNIC (1997) 
and illustrated with a numerical example. Since the BGPD is well fitted to the 
aggregate amount of claims for a compound class of policies submitted to 
claims of two kinds whose yearly frequencies are a priori dependent, it is natural 
to consider that the MGPm is a good candidate for the aggregate amount of 
claims for a class of policies submitted to claims o fm kinds. 
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2. THE MULTIVARIATE GENERALIZED POISSON DISTRIBUTION 

2.1. Development of the distribution 

If N ~ GPD(A, 0), then its probabil i ty function (p.f.) is given by (CONSUL 
and SHOUKRI, 1985) 

f ( n ) =  P ( N = n )  = ~ ~A(A + n O ) " - t e x p { - A - n O } ,  n = 0 ,  1, ... 
(2.1) 

( 0, f o r n > q w h e n 0 < 0  

and zero otherwise, where A > 0, m a x ( - 1 , - A / q )  _< 0 < I and q > 4 is the 
largest positive integer for which A + Oq > 0 when 0 < 0. 

V~RNIC (1997) used the trivariate reduction method to construct  the 
B G P D  in the following way: let N,., i = 1, 2, 3, be independent generalized 
Poisson random variables (r.v.), Ni ,,~ GPD(Ai, Oi), i =  1, 2, 3, and let 
X = Ni + N3 and Y = N2 + N3. Then (X, Y) ,,, BGPD(Ai,  Oi; i = 1, 2, 3). 

Similarly, we obtain the m-dimensional generalized Poisson distribution 
by taking ( m +  1) independent generalized Poisson random variables, 
Ni ~ GPD(Ai, Oi), i =  O, ..., m, and considering X1 = NI + N o ,  ..., X,,, = 
N,,, + No. Then (X~, ..., X,,,),.. MGP, , (A ,  O), where A = (A0, Ai, ..., A,,,) 
and O = (00, 01, ..., 0,,). This method can be called the multivariate 
reduction method, as an extension of  the trivariate reduction method.  

It is easy to see that the joint  p.f. of  (Xi, ..., X,,,) reads 

p ( x ~ ,  . . . ,  x , , , )  = e ( x ~  = x ~ ,  . . . ,  x , , ,  = x , , , )  = 

min{xl , . . . , x , , }  

= Z f '  (Xl - k )  • . . .  " f m ( x m  - -  k ) f o ( k ) ,  (2.2) 
k=O 

where f ,  is the p.f. of  the r .v.  Ni. 
Using (2.1) in (2.2) we get 

,xm) I tl] 1 e x p  - :~ - F _ .  : , ;O j  • 

j = l  

Z k=o v=, (x:-  k)! ] 

k! exp k - 0 o  , 

xl ,  ..., x,,, = O, 1, 2, ..., 

where A = k Aj and O! = 1. 
j=O 

(2.3) 
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2.2. Properties of the distribution 

We will first make some remarks on the GPD.  
The G P D  reduces to the Poisson distribution when 0 = 0 and it possesses 

the twin properties of  over-dispersion and under-dispersion according as 
0 > 0 or 0 < 0. When 0 is negative, the G P D  model includes a truncation due 
to the fact tha t f (n)  : 0 for all n > q (see 2.1). In the following, the moments  
expressions and the other formulas for the G P D  are valid only for the case 
A > 0, 0 _< 0 < l and q : oo, as discussed in SCOLI_NIK (1998). This is a point  
frequently misrepresented in the literature. 

In conclusion, we will assume for simplicity that 0 >  0. F rom 
AMBGASPITIYA and BALAKR1SHNAN (1994) we have the following formulas 
for N ~ GPD(A, 0): 
- the probabil i ty generating function (p.g.f.) 

F IN( t )=  e x p { -  ~ [ W(-Ot  exp{-O}  ) + 01} . (2.4) 

- the moment  generating function (m.g.f.) 

Mu(t)  = exp - - ~ [ W ( - 0 e x p { - 0  + t}) + 0] , (2.5) 

where the Lamber t  W function is defined as W(x) exp{ W(x)} = x. For  more 
details abou t  this function see CORLESS et al. (1996). 
- the first four central moments  

{ E ( N ) =  #1 = AM;  Var(N) = lZ2 = AM 3 } (2.6) 
/23 = A ( 3 M - 2 ) M  4; # 4 = 3 A  2 M 6 + A ( 1 5 M  2 - 2 0 M + 6 ) M  5 _ '  

where M = (1 - 0 )  -I .  

The probability generating function of the MGP,. 
Let now Hi(t) denote the p.g.f, of  the r.v. Ni, i = O, ..., rn. Then the joint  
p.g.f, of  (XI, ..., Xm) is 

HI,,, ( , , , , )  E tl (tl t,,,) = 
• ~ = . . .  ~ . . .  I m • . .  

: r I , ( , , ) . . . . .  n, , , ( , , , , )rt0( , ,  . . . .  t,,,). (2.7) 

Using (2.4) in (2.7) and assuming that Oi > O, i = O, ..., m, we have 

II(tl ,  ..., t m ) = e x p  - -~i - ~0 W -Ooe-°° l -I  t ̀  - A . 
i=1 i= l  , /  
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The moment generating function of the MGPm 
I f  the m.g.f ,  o f  Ni is Mi(t), i = O, ..., m, then the m.g.f ,  o f  (Xj,  ..., Xm) is 

M(t, ,  ..., t m ) =  E(exp{ttX, + ... + t , , , X , , , } )  = E(e t'N' .... et"N"'e (''+'''+"')N°) 

= M,( t l )  • ..." M,,,(tm)MO(tl + ... +t,,,). (2.8) 

Us ing  (2.5) in (2.8), the jo in t  m.g.f ,  is given for  Oi > 0, i = 0, ..., m, by 

M(t , ,  ..., t , , , ) :  

-Oo xp - a  . 

i=1 i=1 

Ooments ) 
Let  #r, ....... = E (Xj - EX]) ° be the (rt ,  ..., r,,,) 'h cent ra l  m o m e n t  o f  

\ j = l  

t O.) the k th cent ra l  m o m e n t  o f  (Xz, ..., X,,). T h e  e q u a t i o n  for /zr ,  ........ g iven t k 
Nj, j = 0, ..., m, resul ts  as fo l lows 

#r~,...,r,,, = EIfiU =' ( N j -  E N j +  N o -  EN0)O] = 

= E rj (Nj - ENj)b(No - ENo) °-b = 

L j=, .=  !~ 

= ~ rj .z(/)) #(0! (2.9) 
(i,,...,/,,,)=(0,...,0) kj=l ij t 0 J ~--]~(o_/A 

]=1 

F r o m  (2.6) and  the i n d e p e n d e n c e  o f  Nj , j  = 0, ..., m, we a lso  have  for  Oi > O, 
i = 0, ..., rn, 

EXi = AiMi + AoMo 
Var(Xi) = A i M ~ + A o M g  ' i =  1, ..., rn, (2.10) 

and  f r o m  (2.9) we have ,  for  e x a m p l e  

/-L[ IO...O = /LO...OlO...OlO...O = /£~0) = AoMo 3 

P, l ll0...0 = lL0...0J0...010...010...0 = #(30) = A0(3M0 -- 2 ) M  4 

(2.11) 

#al...I = /Z~ ) 
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Marginal distributions 
The margina l  d is t r ibut ions  are 

P( Xi = r) -- P( Ni + No = r) = Ao)~iexp{-(~0 + Ai) - rOo }. 

1 (Ai +jOi) i-I _ j ! ( r - j ) !  (~o + ( r - j ) O o ) r - J - t e x p { - j ( O i  00)}, i =  1, ..., m. 

In part icular ,  if Oi = 00 = 0, this reduces to Xi ~ GPD(Ai  + Ao, 0). Else- 
where,  Xi is not  a G P D .  

Remark .  F r o m  the deve lopment  o f  the MGPm,  it is easy to see tha t  if 
(X~, ..., Xm) ~ MGPm(A,  O), then for any  {fi, ..., ik} C {1, ..., m} with 
2 <_ k < m, (Xi~, ..., Xi,)  ",, MGPk(A ' ,  e ' ) ,  where A' = (A0, Ai,, ..., Ai,) and  
0 ' =  (0o, Oi,, ..., Oil). 

For  k = 1 the remark  is no t  a lways  true. But if we consider  the par t icular  
case 0o = 01 . . . . .  0,,1 = 0, then fi 'om (XI, ..., X,,,) ,,~ M G P m ( A ,  O) it 
follows tha t  X, ,-, GPD(Ai + ~o, 0), i = 1, ..., m. 

Recurrence relations 
The margina l  p.f. can be c o m p u t e d  using the univar ia te  general ized Poisson 
dis t r ibut ion,  as it is seen f rom 

p(O, ..., O) = e x p { - ~ }  

m / 
p(O, ..., O, xj, O, ..., O )=J ) (x j )  I I f . ( O )  f o ( O ) =  

j i=1 
i¢-j 

=j ) ( . x ) ) ex l ) { - (A  - Aft}, j =  I, ..., m, xj > O. 

Given these probabil i t ies,  for xj > O, j =  l, ..., m, we have the fol lowing 
recurrence relat ion 

min{x~,...,x,,} 
p(.,-, , . . . ,  x,,,) = ~o ~ × p { ( m  - l ) ~ }  

k=O 

(,~o + kOo) k-I  
exp{-kOo}.  

k~ 

m ~ p ( 0 ,  ..., o, a~.- k, O, ..., 0)) .  
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3. ESTIMATION OF THE PARAMETERS: METHOD OF MOMENTS 

Let (xj i ,  ..., Xmi), i =  I, ..., n be a r a n d o m  sample  o f  size n f rom the 
popu la t i on .  We  will a s sume tha t  the f r equency  o f  the m- tuple  (s~, ..., s , , )  is 
ns,,....,.,,, for  sl, ..., s,,, = 0, 1, .... We recall tha t  ~ n,.,,...,.~,,, = n. Also  

SI + . . .  ,Sin 

I n+...+.~)+...+ = Z ns] ,...,s,, 
{s~lk=l,...,m, k#j} . (3.1) 

n+...+s,+...+~)+...+ ---- ~ ns,,...,s .... i < j 
{s~:[k=l ,...,m, k~j, k¢i} 

We deno te  

I 1 
.~j = - ~,sjn+...+s~+...+ 

n ~ , j= 1, . . . ,  m ,  ( 3 . 2 )  

1 Z ( s j - -  ~ = - xj)'n+..+.,:,+...+ 
n s~ 

and, with the notat ions in (3.1) 

/ ' xi.~)" = n Z sisjn+...+s,+...+~)+...+ , i < j 
St v~)" 

1 
XiXjNk = - ~ SiSjSkn+...+s,+...+sj+...+s~.+...+ , i < j < k tl 

Si~S.I~Sk 

It  is easy to see that  

#o...olo...010...0 = E ( X i X j )  - ' E ( X i ) E ( X j ) ,  i < j  
, j 

o , o . . o l o . . . o , o . . o  = E ( X i X j X k )  - E(Xi )E(Xk) - - , 

' ; * - E ( X i X k ) E ( X j )  + 2 E ( X i ) E ( X j ) E ( X k ) ,  i < j  < k 

so we can use the sample  m o m e n t s  

{ /2o...ol.o...ojo...o = x ix j  - xiY:j , i < j 

/2o...o~o...o~.o...oio...o = 7 ~ i ~  - x ix j  xk  - x ixk  .'cj - x jxk  Y,i + (3.3) 

+2Yc,~'2j~2k, i < j < k 
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T h e  g e n e r a l  m e t h o d  
The classical method of  moments  consists of  equating the sample moments  
to their populations equivalents, expressed in terms of  the parameters. The 
number  of  moments  required is equal to the number of  parameters which 
equals 2(m + 1). For  example, using (2.10), (2.11), (3.2) and (3.3), we can 
choose the following 2(m + 1) equations 

{ .~j = :~jMj + :~oMo 

^ 3 
~110...0 = '~0M0 

filllO...o = Ao(3Mo - 2)Mg 

Denoting a - - -  

, j =  1, . . . ,  m .  

filllO...O, the solution of  the system is 
~110...0 

I + x /1  + 3a 
M o -  

3 
FL1 io...0 

Ao - M~ 

V/6-~.-/2,,o...0 ' J = l '  ' "  m' 
M j =  J Y o ~  

Aj - "~j - AoMo 
Mj 

We used the fact that 0 < I, so M = ~ > 0. 

(3.4) 

P a r t i c u l a r  c a s e :  0o = 01 - - 0,,, = 0,  s o  M o  = M I  - -  - M , , ,  = M .  

Method 1. The number  of  parameters is now (m + 2) : A0, ..., A,,, and M, so 
we can use the following equations: 

{ 2j=(/~i+ Ao)M { M-l+x/i + 3 a  
3 

#110...0 /~110...0 = A0 M 3  ,with the solution A 0 - -  M 3  

"~J A0 /21110...0 = A0(3M-  2 )M a Aj = ~ -  

, j =  1, . . . ,  m .  

M e t h o d  El. Another  possibility is to use the method of  moments  in 
combinat ion with the zero cell frequency method. If  we denote by 

fo...0 = n0...0 the frequency of  the cell (0 . . . . .  0), we can consider the system 
n 

I. fo...o = exp{-(Ao + ... + A,,,)} 
II. ~j = ()v + ,Xo)M , j = 1, ..., m. 
t i t .  ~ = ()'S + ~o) M~ 
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We have here (2m+ 1) equations. By summing equations I and H 
separately, we get 

IV'k£'=(kAJ+mA°) \j=l 

, j =  I, ..., m. 

V. j = l k # =  (kAj+mA°) 

Dividing the two relations gives M2= \j=162 j 
solution V =t 

From equation I we have 

- In fo...o = Ao + ~ Aj, 
j=l 

and using equation IV we are lead to 
PH 

- In Jo...o = Ao + ~ Z £J - mAo , 
j 1 

so that 

- I  

) Z v J  + h, &0  o 

j=l 

Then, from equation II we have 

, hence the 

(3.5) 

(3.6) 

I Aj=--~.~j- A0, j =  i, ..., m. (3.7) 

Finally, the solution (M, A0, Aj, j = 1, ..., m) is given by (3.5), (3.6) and 
(3.7). 

Remark. In method I1, the estimation of M is based on the empirical 
moments from all m variables, while in method I only three variables are 
taken into consideration by flit10...0. 
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4. PARTICULAR CASE: BIVARIATE GENERALIZED POISSON DISTRIBUTION (BGPD) 

Considering m = 2, the multivariate generalized Poisson distribution reduces 
to the bivariate generalized Poisson distribution. The BGPD was introduced 
by VERNIC (1997) and was applied in the insurance field. The distribution 
was fitted to the aggregate amount  of  claims for a compound  class of  policies 
submitted to claims of  two kinds whose yearly frequencies are a priori 
dependent.  A comparative study with the classical bivariate Poisson 
distribution and with two bivariate mixed Poisson distributions has been 
carried out, based on two sets of  data  concerning natural events insurance in 
the U.S.A. and third party liability automobile insurance in France. The 
conclusion, after applying the ~2 goodness-of-fit test, is that the BGPD fits 
better to the data, so it can be considered as a valid alternative to the usual 
bivariate Poisson or mixed Poisson distributions. For more details see 
VERNIC (1997). 

In the following, we will consider another  example, based on the accident 
data  of  CRESSWELL and FROGATT (1963), with XI as the accidents in the first 
period and )(2 as the accidents in the second period. The data are given in 
table 1, first row in each cell. 

The summary statistics for these data  are: 

,7~ = 1.0014, .72=1.291,  ~ =  1.1935, ~ =  1.5961, 

fLi1 = 0.3258, f~21 = 0.365. 

Under  the hypothesis (XI , ) (2 ) ,~  BGPD(Ao, AI, A2; 00, 01, 02), we have 
from (3.4) 

{ 0 0 = 0 . 0 2 8 6 ,  0 , = 0 . 1 0 5 7 ,  0 2 = 0 . 1 2 0 0 }  
A0 = 0.2987, A1 = 0.6206, ~2 = 0.8653 " 

The theoretical frequencies in this case are given in table 1, second row in 
each cell. After grouping in 32 categories: (i,j)i=o..a;j=O..5; (0..4, 6 and above); 

(5 and above, 0 and above), we obtain ,2 Xob.,. = ~ (obs - th)Z/th = 25.935 and 

a significance level (P-value) verifying 0.45 _< & _< 0.75. So the distribution is 
adequate. 

We will now consider the particular case 00 = 0~ = 02 = 0, so that we 
have the hypothesis (Xt , ) (2)  ~ BGPD(Ao, AI, A2; 0). From (3.5), (3.6) and 
(3.7) we have 0 = 0.0935, A0 = 0.2778, Ai = 0.63, A2 = 0.8925, and the 
theoretical frequencies are given in table 1, last row in each cell. For  the same 
categories we have X 2 = 23.6082 and 0.7 < & < 0.85, so this particular 

o b s  - -  - -  

distribution fits even better than the general one. 
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T A B L E  I 

COMPARISON OF OBSERVED AND THEORETICAl. FREQUENCIES 

Xz 
0 1 2 3 4 5 6 7 

Xn 

0 117 96 55 19 2 2 0 0 291 

118.843 91.204 44.710 1 7 . 9 5 9  6.460 2 . 1 7 1  0.697 0.217 282.261 

117 95.100 46.748 18.088 6.081 1.865 0.537 0.148 285.567 

1 61 69 47 27 8 5 I 0 218 

66.356 85.419 51.437 23.005 8.820 3.087 1.019 0.324 239.467 

67.132 84.165 50 .881 22.205 8.065 2.608 0.780 0.220 236.056 

2 34 42 31 13 7 2 3 0 132 

24.834 38.319 30.090 1 5 . 5 7 7  6.505 2.402 0.822 0.267 118.816 

24.976 37.584 30.048 15.739 6.427 2.249 0 . 7 1 1  0.209 117.943 

3 7 15 16 7 3 1 0 0 49 

7.871 13 .249  12.124 7.260 3.386 1 . 3 4 1  0.480 0 . 1 6 1  45.872 

7.694 12 .602 12.004 7.911 3.849 1 . 5 1 6  0.520 0.162 46.258 

4 3 3 I I 2 1 I I 13 

2.287 4.040 3.860 2.610 1.676 0.616 0.226 0.079 15.394 

2.138 3.685 3.774 2.927 1.799 0.844 0.327 0 . 1 1 1  15.605 

5 2 I 0 0 0 0 0 0 3 

0.632 1.149 1.142 0.816 0.464 0.220 0.090 0.033 4.546 

0.558 0.995 1.075 0.910 0.647 0.382 0.176 0.068 4.811 

6 0 0 0 0 I 0 0 0 1 

0.169 0.313 0.319 0.236 0.140 0.071 0.031 0.012 1.291 

0.140 0.255 0.285 0.255 0.198 0.136 0.079 0.036 1.384 

7 0 0 0 1 0 0 0 0 I 

0.044 0.083 0.086 0.065 0.040 0.021 0.010 0.004 0.353 

0.034 0.063 0.072 0.067 0.055 0 . 0 4 1  0.028 0.016 0.376 

224 226 150 68 23 I1 5 I 

E 221.036 233.776 143.768 67.528 27 .491  9.929 3.375 1.097 708 

219.672 234.449 144.887 68.102 27 .121  9.641 3.158 0.970 
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A MATHEMATICAL MODEL OF ALZHEIMER'S DISEASE AND 
THE APOE GENE 

B¥ 
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Heriot-Watt University, Edinburgh 

ABSTRACT 

Alzheimer's disease (AD) accounts for a significant proportion of  long-term 
care costs. The recent discovery that the e4 allele of the ApoE gene indicates 
a predisposition to earlier onset of AD raises questions about the potential 
for adverse selection in long-term care insurance, about long-term care costs 
in general, and about the potential effects on costs of  gene therapy, or better 
targetted treatments for AD. This paper describes a simple Markov model 
for AD, and the estinaation of the transition intensities from the medical and 
epidemiological literature. 

KEYWORDS 

Alzheimer's Disease, Apolipoprotein E Gene, Genetics, Markov Models. 

1. INTRODUCTION 

Molecular genetics has far-reaching implications for all aspects of  health 
economics, including the effectiveness, or even practicability, of insurance- 
based funding of  all forms of care. Ill particular, if genetic test results are 
known by the individual but not by the insurer, there may be a tendency for 
those most at risk to buy more insurance, known as adverse selection. This is 
a natural subject for quantitative modelling. 

Such discussion as has taken place (in the United Kingdom) has tended to 
be confined to life insurance, in which context it has been suggested that the 
overall costs of  adverse selection might be limited (Macdonald, 1997, 1999; 
Pritchard, 1997). However, these papers acknowledge: 
(a) that different conclusions might hold in respect of  other forms of  

insurance; and 
(b) the lack of sound epidemiological data in respect of any but a few genetic 

conditions. 
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Thus, the model proposed by Macdonald (1997, 1999) was based on 
parameter estimates intended to be extreme, and to suggest an upper bound 
on the cost of adverse selection, rather than on data-based statistical 
estimates. Tan (1997) applied a similar model to annuity business, with 
results that suggested higher costs. 

The U.K. Government has so far avoided legislating on the very sensitive 
issue of  the use of genetic test information by insurers, but instead has set up 
the Genetics and Insurance Committee (GA1C), charged with the assessment 
of  the likely relevance and reliability of genetic test information as it relates 
to different kinds of insurance. Such considerations require actuarial models 
of the insurance process, allowing for the effects of specific genes on 
mortality and morbidity. To date, the only such study is Lemaire et  al. 
(1999) and Subramanian & Lemaire (1999), treating breast and ovarian 
cancer and the BRCA1 and BRCA2 genes. 

In this paper we propose a simple Markov model for Alzheimer's disease 
(AD) and estimate its transition intensities from medical and epidemiolo- 
gical studies. Genetic variation arises because the e4 allele of the 
Apolipoprotein E (ApoE) gene is known to indicate a predisposition to 
earlier onset of AD. 

In Section 2 we give a brief outline of genetics terminology, then describe 
AD and the evidence for a genetic component of AD. In Section 3 we specify 
the model, and in Sections 4 and 5 we estimate the transition intensities. We 
show some results in Section 6, and our conclusions are in Section 7. 

Applications of  the model include the study of long-term care insurance, 
(Macdonald & Pritchard, 1999) and the study of long-term care costs 
(Warren et  al. ,  1999). The processes leading to LTC insurance claims are 
complex, when compared with other forms of insurance, and there are no 
insurance data to speak of; therefore we (and insurance companies 
themselves) have to rely on data collected and published for a variety of 
reasons, mostly in the medical literature. As a result, our model is far from 
definitive, but we found the process of extracting information from the 
medical literature and putting it to actuarial use very instructive, and we 
suggest that any shortcomings of our model shed useful light on the 
problems that might be faced in the future. 

2. THE GENETICS OF ALZHEIMER'S DISEASE 

For a recent survey of the genetic epidemiology of  AD, see Slooter & 
van Duijn (1997); Breteler et  al. (1992), reviews the position before much was 
known about  the genetic component of AD. 

2.1. A Brief Primer on Human Genetics 

The following discussion gives only the briefest definitions of genetic terms, 
and omits all complications. For a proper account, see a text such as 
Strachan & Read (1999). 
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(a) Each cell of  the human body (except sperm and egg cells) has a nucleus 
containing 23 pairs of  chromosomes. Each cell carries an identical set of 
chromosomes at birth, unless some have been damaged. 

(b) A chromosome is a very long double strand (the famous double helix) or 
linear molecule, made up of  a sequence of  base pairs of  DNA. 

(c) A gene is a sequence of base pairs at a fixed location on a given 
chromosome that acts as a functional unit, coding for the production of 
a protein (usually). The term 'gene' strictly refers to the locus on the 
chromosome. 

(d) The gene at a given locus might have several variants (rather as chemical 
elements might have several isotopes); these are known as alleles. 
Different alleles are simply different sequences of  base pairs. Differences 
between alleles are the result of mutations, namely alterations to a gene 
caused by (for example) errors in replication of  the DNA when cells 
divide. If the mutation occurs in an adult (somatic) cell, it can only 
spread through cell division (which is what happens in cancers). If the 
mutation occurs in a gene carried by a sperm or egg cell, it can be passed 
to offspring. 

(e) Because the chromosomes are paired (except the X and Y chromosomes 
that determine sex) each cell has two alleles of every gene, one inherited 
from each parent. They may be the same (homozygosity) or different 
(heterozygosity). 

(f) Mutant genes will encode variants of the protein that the gene produces. 
These may have a beneficial, neutral or adverse effect on the cell or 
organism. If the altered protein is radically different, the cell will 
probably die, or the organism will fail to develop, or it will not survive to 
reproductive age. Less radical variations may manifest themselves as 
susceptibility to disease, or may be harmless but non-functional. 

(g) The great range of genetic diseases arises from the range of effects of the 
protein products of different alleles, and the simple combinatorics of 
inheritance. 
(I) If an allele encodes a harmless but non-functional protein product, 

the disease will appear only in homozygous individuals (autosomal 
recessive inheritance, such as cystic fibrosis). 

(2) Heterozygous cells will produce a mixture of  variants of the protein 
product; if just one of  these is lethal it will cause disease (autosomal 
dominant inheritance, such as Huntington's disease). 

(3) In between these extremes, alleles encode protein products that are 
more or less dangerous or fully-functional, the effect often depending 
on the environment. Then different levels of susceptibility to disease 
will appear, and homozygous individuals will often be more 
susceptible than heterozygous individuals. 

(h) Lifestyle and environment can affect the potency of susceptibility genes. 
For example, the activity of  the protein produced by a dangerous allele 
may be enhanced in certain environments, or a protective allele may be 
put at greater risk of being knocked out by a mutation. 
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Although the outline above mentions only single genes, most processes 
in the human body are complicated and involve very many proteins, each 
encoded by its own gene with its various alleles. Most genetic disease will 
result from combinations of several alleles, lifestyle and environment; 
the term for this is multifactorial disorder. 

2.2. Cognitive Impairment 

The term 'cognitive impairment' covers AD, which accounts for by far 
the greater number of cases, and other forms of mental deterioration, 
chiefly vascular in origin (for example, arising from strokes). Assessment 
is liable to be imprecise, making it difficult to decide on an exact date 
of inception of cognitive impairment, if such a thing exists. Moreover, 
although AD is the commonest form of cognitive impairment, it is hard 
to diagnose with certainty except by post-mortem examination. These 
factors introduce considerable uncertainty into epidemiological studies of 
AD. Breteler et al. (1992) noted that: 
(a) AD itself can have a significant vascular component; 
(b) some of the neuropathological symptoms of AD (see Section 2.4) can 

also be symptoms of vascular dementia; and 
(c) studies by Tierney et al. (1988) found that post-mortem examination 

confirmed only 64-86% of diagnoses of AD. 

2.3. The Pathology of AIzheimer's Disease 

The pathology of AD includes: 
(a) senile plaques (deposits on the outside of neurones (brain cells), 

consisting largely of the protein/3-amyloid); 
(b) neurofibrillary tangles (connections between neurones); 
(c) amyloid angiopathy (deposits of amyloid protein in the arteries of 

the brain); 
(d) loss of neurones; and 
(e) decreased activity of choline acetyltransferase (an enzyme). 

Therefore, any gene whose expression leads to the production, or over- 
production, of  substances associated with these changes is potentially a 
genetic marker for AD. 

2.4. General Evidence of a Genetic Contribution to Alzheimer's Disease 

AD is a disease of old age; it is rare below ages 60-70. These rare cases are 
called 'early-onset' AD, which should not be confused with early onset of 
AD within the usual age range. We are concerned only with the latter. 

Families with a history of AD are sometimes observed, but AD also 
occurs sporadically (that is, in the absence of a family history of AD) and it 
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is always possible that a case of AD in an affected family is, in fact, sporadic. 
The differences between familial and sporadic AD are not clear, although the 
former may be marked by earlier onset and more rapid progression. 

A very few families, have several cases of early-onset AD in 
several generations, consistent with autosomal dominant transmission 
(Levy-Lahad & Bird, 1996), and three genes have been found. First was 
the gene encoding for amyloid precursor protein (APP), involved in the 
production of fl-amyloid. It resides on chromosome 21, which is the 
chronaosome affected in cases of Down syndrome, sufferers of which often 
develop AD in middle age. Several mutations have been found, but they are 
rare. Later, mutations in two genes labelled presenilin-I (PS-I) and 
presenilin-2 (PS-2) were identified, which appeared to be associated with 
AD, though the mechanisms remain unclear. 

Familial AD is not restricted to early-onset cases and family history 
remains an important risk factor for late-onset AD (Jarvik et al., 1996). 
Susceptibility genes have been identified, of  which the most studied is that 
which codes for apolipoprotein E. 

2.5. The Apofipoprotein E Gene 

This summary is not comprehensive, but we hope that it is detailed enough 
to give an actuarial reader an impression of the progress made in 
understanding genetic factors of AD, as well as some of the problems and 
(perhaps most important) tile great speed at which human genetics is 
advancing. 

Apolipoprotein E (ApoE) is found in senile plaques and neurofibrillary 
tangles in AD patients. It has also been studied because of its r61e in lipid 
metabolism. The gene that encodes it is on chromosome 19, which was 
linked to families with late-onset AD by Pericak-Vance et al. (1991), making 
it a clear candidate gene for familial AD. Strittmatter et al. (1993) confirmed 
this hypothesis, which was rapidly supported by many other studies. The 
basic facts are as follows: 
(a) The ApoE gene has three common alleles - E2, e3 and ~4 - whose 

frequencies are roughly 0.09, 0.77 and 0.14 respectively. 
(b) Since each offspring receives one allele from each parent, there are six 

possible genotypes (~2/e2, e2/e3, e2/e4, e3/e3, ~3/e4 and e4/e4). 
Offspring with two copies of the same allele are called homozygotes, 
while those with two different alleles are called heterozygotes. 

(c) The ApoE e4 allele increases the risk of  AD in a dose related fashion, 
such that e4 homozygotes (e4/e4) are at greater risk than 
e4 heterozygotes (e2/e4, e3/e4), who in turn are at greater risk than 
those without the e4 allele (Bickeb611er et al., 1997; Corder et al., 1994; 
van Duijn et al.,  1995; Farter et al., 1997; Jarvik et al., 1996; 
Kuusisto et al., 1994; Lehtovirta et  al., 1995; Mayeux et al., 1993; 
Myers et  al., 1996; Poirier et al., 1993; Tsai et al., 1994). See Section 5.2 
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for risk estimates. The risk depends on age, being highest at ages 60-70, 
tapering off at older ages (Bickeb611er et  al., 1997; Corder et al., 1994; 
Farrer et al., 1997). 

(d) It is also possible that the e4 allele is associated with earlier onset of AD 
(not to be confused with early-onset AD). The effect may be dose dependent 
(Farrer et al., 1997; Frisoni et al., 1995; Gomez-Isla et al., 1996); or not 
(Lehtovirta et al., 1995; Stern et al., 1997; Corder et al., 1995); or it may not 
exist at all (Liddell et al., 1994; Masullo et al., 1998; Norrman et al., 1995). 

(e) Investigations into the rate of mental decline of AD patients by genotype 
found no evidence for any difference (Basun et al., 1995; 
Gomez-lsla et al., 1996; Masullo et al., 1998; Norrman et  al., 1995). 
There is conflicting evidence about mortality. It is possible that younger 
age at onset should imply longer survival times, because of the usual age- 
related mortality differentials, and therefore that the e4 allele should be 
associated with longer life after onset of AD. While some studies support 
this (Corder et al., 1995; Gomez-Isla et al., 1996; Norrman et al., 1995), 
others have found no difference (Basun et al., 1995; Stern et al., 1997). If 
e4 is associated with lighter mortality in AD patients then risk estimates 
from cross-sectional studies (the vast majority to date) should be 
interpreted with caution. An incidence study (Evans et al., 1997) 
confirmed e4 to be a significant risk factor, but the estimated increased 
risk of onset was at the lower end of  the reported range. 

(f) In contrast, the e2 allele has been found to have a protective 
effect against late-onset AD (Corder et al., 1994; Farrer et al., 1997; 
Gomez-lsla et al., 1996; Jarvik et al., 1996; Lambert et al., 1998; 
Masullo et al., 1998). However, a study of early-onset AD patients 
(van Duijn et  al., 1995), found a higher frequency of the e2 allele, and an 
association of e2 with a more aggressive form of AD, suggesting different 
r61es of ApoE in early-onset and late-onset AD. Findings relating to the 
e2 allele are based on the ~2/e3 genotype, as e2 homozygotes are rare. 
The risk attached to the e2/e4 genotype is not clear, possibly because e2 
and e4 have opposite effects (Jarvik et al., 1996; Levy-Lahad et al., 1996). 

ApoE e4 is the most important genetic risk factor for AD identified yet. 
Though it is neither necessary nor sufficient to cause AD it does increase 
susceptibility. Approximately 26% of Caucasians carry at least one e4 allele 
and it has been estimated that between 42% and 79% of AD cases are 
attributable to the associated excess risk (Nalbantoglu et al., 1994). 

2.6. Other Genetic Factors of Alzheimer's Disease 

In 1997, a gene for the K-variant of butyrylcholinesterase (BCHE K), not a 
risk factor by itself, was found to act in synergy with ApoE ~4, such that 
carriers of  both (an estimated 6% of Caucasians) were at over 30 times the 
risk of AD as a person with neither (Lehmann et al., 1997). Subsequent 
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studies (Brindle et al., 1998; Singleton et al., 1998) failed to reproduce the 
result. Although some explanations have been advanced, caution is 
advisable in using BCHE K as a risk factor for AD. 

Payami et al. (1997) reported an association between AD and the A2 allele 
of the human leukocyte antigen (HLA); the HLA-A2 phenotype and 
ApoE E4/c4 genotype had similar and additive effects on reducing age at 
onset of AD, at ages below 60 and above 75. Further studies would be 
needed to confirm these findings. 

Poduslo et al. (1998) found the apolipoprotein CI (apo CI) gene to be a 
risk factor for early-onset and late-onset AD, whether sporadic or familial. 
Apo CI A homozygotes had 4 to 5 times the odds of developing AD, 
heterozygotes about twice the risk. This was not unexpected, since Apo CI is 
closely linked to ApoE and in linkage disequilibrium with ApoE and AD. 
Linkage disequilibrium is the non-random assortment, in a population, of 
two genes on the same chromosome (the strength of the linkage is inversely 
proportional to the distance between them). It was thought that the 
association of AD with ApoE may be more significant. 

3. A MODEL FOR ALZHEIMER'S DISEASE 

3.1. Model Specification 

We use a continuous-time multiple state model. For general comments on 
these models, see Macdonald (1996a) or Waters (1984). Lives with each 
ApoE genotype are assumed to form a homogeneous population, suffering 
the different risks of AD discussed in Sections 2.5 and 5.2. 

An important reason for using these models is that they allow the most 
complete representation of the underlying process. It is then necessary to 
estimate a large number of transition intensities, for which adequate data do 
not always exist, but it is preferable to obtain a clear picture of the data 
needed than to sweep the issue under the carpet by working with some less 
adequate model in the first place. In particular: 
(a) if some simpler model is eventually recommended for use, because of 

missing data or for computational convenience, it is important to be able 
to assess its soundness in practice; and 

(b) if missing data become available later, for example, as the insured lives 
experience develops, it is a hindrance if too much has been invested in a 
model that cannot incorporate it. 

Modern computing power is such that the computational demands of  
multiple state models (numerical integration of  differential equations) can 
quite reasonably be met, for arbitrarily complex Markov models 
(Norberg, 1995) and for many semi-Markov models (Waters & Wilkie, 1987; 
Waters, 1991). The techniques can all be found in standard texts on 
numerical analysis, and no actuary should be prevented from choosing an 
adequate model by the need to use them. 
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Figure 1 shows a simple model of AD. Each genotype is represented by 
such a model; the transition intensities in each model will differ, representing 
the different genetic risks, x denotes the age at outset (for example, when 
insurance is purchased) and t the elapsed duration. The choice of states is 
dictated entirely by the events that have been studied in the medical and 
epidemiological literature. For certain purposes, it would be desirable to 
model other events, such as the start of  a long-term insurance claim. No data 
about  that event are available; however a major event that has been studied 
is institutionalisation. Although becoming institutionalised need not 
coincide with the start of an insurance claim, it is the best available proxy. 

Macdonald (1999) considered frailty models as an alternative to 
Markov models, for genetics and insurance applications. They offer the 
advantage of a simple model of  the genetic variability, if that is justified 
by the circumstances. They may be especially useful for modelling 
multifactorial disorders, or genes with very many alleles or mutations, but 
for a single gene with just a few alleles it seems reasonable to model each 
separately. Other possible models (such as Cox-type models) might be 
useful for modelling individual transitions but do not lend themselves to 
the inclusion of payments contingent upon complicated life histories. 

S t a t e  i1: No Alzheimer's 
disease. 

•i14 x-t-t 

•i12 x + t  

Sta te  i2: Onset of 

Alzheimer's disease. 
•i24 x-I-t 

Sta te  i4: Dead 

•i23 xd-L 

Sta te  i3: Institutionalised 
from Alzheimer's disease. 

j¢i34 x + t  

FIGURE I: A simple model of  Alzheimer's disease in the ith of M subgroups, each representing a different 
ApoE genotype, x is the age at outset, and t the elapsed duration. 
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3.2. An Expanded Long-Term Care Model 

AD alone does not account for all long-term care costs. Broadly speaking, 
the need for care arises because of cognitive disorder (including AD) or loss 
of ability to perform Activities of  Daily Living (ADLs) such as dressing, 
washing and feeding. A comprehensive model of long-term care costs can be 
specified in terms of these causes, with AD included as a component, and the 
impact of the ApoE gene on overall care costs can thereby be studied. 
However, incorporating AD explicitly in an expanded model will require 
data that describe, at the level of individual lives, the progress of AD and the 
loss of ADLs. Until such data are available, we can only estimate overall 
care costs by crude approximations: see Macdonald & Pritchard (1999). 

4. ESTIMATION OF TRANSITION |NTENSITIES NOT DEPENDING 
ON APOE GENOTYPE 

In this section we estimate the transition intensities for the events: onset of 
AD; institutionalisation; and death. All of these must be 'estimated' from 
results reported in the medical and epidemiological literature. Ideally, we 
would work with the original data, but these are almost never available. 
Reported results are not always ideal for the extraction of parameters for an 
actuarial model; often the age groups used are very wide, and not the same in 
different surveys; sometimes only graphs (such as Kaplan-Meier survival 
curves) are given. 

4.1. Prospective and Case-Based Studies 

A most important distinction must be drawn when estimating transition 
intensities from epidemiological studies (see, for example, Kahn & Sempos 
(1989), Clayton & Hills (1993), Lilienfeld & Hills (1993), Selvin (1996)). 
(a) Prospective studies, based on samples of  the general population, ought to 

yield the most reliable estimates of  population risk, but are expensive 
and time-consuming. Moreover, they are rarely even begun until 
substantial evidence of an effect has been accumulated from other 
studies. 

(b) Case-based studies, based on affected persons (and controls) often yield 
relative risks greatly in excess of the true population risks, precisely 
because the subjects are affected or at risk. However, early studies into 
any medical condition are almost inevitably of  this type. 

Our current knowledge of most genetic disorders is derived from case-based 
studies; this is certainly true of ApoE and AD (see Section 2.5). It is very 
likely that estimates of risk conferred by ApoE genotype will fall as more 
prospective studies are carried out (see the comment on Evans et al. (1997) at 
the end of Section 2.5(e)), but this will take time. 
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The approach we adopt is as follows: 
(a) in Section 4.2, we state assumptions about the general level of  mortality; 
(b) in Section 4.3, we estimate the aggregate incidence of AD, denoted IL,-+ADt, 

which has been investigated extensively; 
(c) in Section 4.4, we estimate the intensity of institutionalisation, following 

the onset of  AD (that is, ..,~3 ~ and the force of mortality following the bL~.+t] 
onset of AD (that is,/~.,-+i),"~4 ~: 

(d) in Section 4.5, we estimate the force of mortality for lives institutiona- 
lised with AD (that is,/~x+t), i 34  ",. 

(e) in Section 5.1, we estimate the population frequencies o f  the ApoE 
alleles; and 

(f) in Section 5.2, we estimate the incidence of AD for each genotype using 
odds ratios from the genetic studies: this gives estimates ~_af #.,-+i.n2 

4.2. Baseline Mortality Tables 

For convenience, we choose parametric approximations to the AM80 and 
AF80 Ultimate mortality tables as bases for mortality assumptions; for use 
in the model they are adjusted in a variety of ways. Gompertz curves were 
fitted to/_L.~.+I at ages 65-120, using log-linear least squares (see equation (1)): 

AMS0p,x+l = 0.0000941160 .o84554(.`.+0 ( 1 ) 

"~rS01Lx+ t = 0.000025934e0093605(x+0. 

Experiments with the AMS0 and AF80 tables themselves showed that the 
Gompertz approximations had a negligible effect in long-term care 
applications; we use them because they are sometimes useful in numerical 
work. For insurance use, some allowance must be made for future 
improvements in mortality. No experience is available to help, but following 
discussion with some actuaries experienced in pricing long-term care 
insurance, we have chosen 65% of these baseline tables as the aggregate 
mortality assumptions. 

4.3. The Onset of Alzheimer's Disease in the Population 

AD has been the subject of some large-scale epidemiological studies, many 
of them pre-dating the discovery of the ApoE gene. Some of these report 
incidence rates, or 'occurrence/exposure' rates, which are exactly the 
estimates we need for transition intensities. 

There is general agreement, in this literature, on the shape of the intensity 
AD /~.,+1 in the age range 60-85 years; it is very low at ages 60-64 (about 0 to 

0.002) and increases rapidly with age, approximately doubling every 5 years. 
Sayetta (1986) and Hebert et al. (1995) found that a Gompertz curve gave 
the best fit, despite trying a number of more complex models. 
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A number of studies report the incidence of AD (that is, the intensity #.,-+t)AO 
by age but not by genotype, including Copeland et al. (1992), Hagnell et  al. 
(1992), Kokmen et  al. (1993), Letenneur et  al. (1994), Nilsson (1984), 
Ott et  al. (1998), Rocca et  al. (1998) and Rorsman et  al. (1986). Of particular 
interest, however, is the recent meta-analysis of the incidence of AD by 
Jorm & Jolley (1998): 
(a) it draws on 23 studies world-wide, including 13 European studies; 
(b) the analysis is carried out separately for Europe, the U.S.A. and 

East Asia; 
(c) the incidence of AD is estimated by severity, categorised as Mild + and 

Moderate + AD, where Mild + includes all cases classified as mild or 
worse; and 

(d) point estimates of AD /~.,.+t were obtained for 5-year age groups from 65 to 
95, and no a pr io r i  shape of y o  .,-+t was assumed. 

We estimated/-~.,-+1'41) from Jorln & Jolley (1998) using the figures from the 
European studies and for Mild + AD. The estimates, 95% confidence limits 
and the log-linear least squares Gompertz fit: 

#,4/).~.+r = 1.31275 x 10-7e 0.145961(x+t) (2) 

are shown in Figure 2. It is clear that a Gompertz curve is a very good fit. 

r"3 o 

< c 5  

O 

O 
d 

[] Estimated incidence of AD, aggregated by sex and genotype 

Fitted incidence of AD, aggregated by sex and genotype 

........... 95% Confidence limits 

70 7'5 80 85 90 
Age (years) 

FIGURE 2: Aggregate incidence of Alzheimer's disease: point estimates and 95% confidence intervals. 
Source: Jorm & Jolley (1998). 
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Data on the incidence of  AD among the very elderly (> 90 years) are 
sparse, so estimates at these ages have wide confidence intervals and the trend 
is uncertain. The meta-analysis by Gao et al. (1998) found that the rate of 
increase in Ao #x+t slowed down with age, but other studies found no evidence of 
this (Hebert et  al., 1995; Jorm & Jolley, 1998; Letenneur et al., 1994). We have 
simply extrapolated the Gompertz formula above to all ages; the effect of this 
assumption will depend on the particular application, or type of  insurance, 
and this should be investigated when the model is used (see, for example, 
Macdonald & Pritchard (1999)). 

Many studies have found men and women to be at the same risk of AD 
(Kokmen et al., 1993; Nilsson, 1984; Ott et al., 1998; Rocca et  al., 1998) and, 
when differences have been reported (Gao et al., 1998; Jorm & Jolley, 1998; 
Letenneur et al., 1994), women were found to be at greater risk only at very 
old ages. Some experiments (not described here) in applying the rnodel to 
AD-related long-term care insurance costs using different rates of AD for 
men and women showed that it made little difference, and here we have used 
the aggregate rate (equation (2)). 

4.4. Time from Onset  of  Alzheimer's  Disease to ~nstitutionalisation or Death 
t23 ]~t'24 .i34 The available data do not allow us to analyse /.L.,.+, .,-+t or P'.,-+I by 

genotype. 
Table I summarises the literature on time to the first of  institutionalisa- 

tion or death ('first event') for AD patients, Some studies give times from 
entry to the study rather than from onset, which is usually not observed 
directly. A striking feature is that few lives die before becoming 
institutionalised. This  may seem surprising as AD patients have generally 
been reported to suffer higher mortality than healthy lives (see Section 4.5). 
However, AD's debilitating effects are not sudden, and we may expect 
patients to be in receipt of  informal care between onset and institutionalisa- 
tion, which might lead .,24 l~.,-+t to be relatively light. 

We used the data from the study by Jost & Grossberg (1995). Although it 
is not the largest study, it does have advantages: 
(a) it is a brain bank study, so all AD cases were confirmed by autopsy (the 

only reliable method of diagnosis); 
(b) there were no censored cases; and 
(c) the time from onset to institutionalisation is estimated. 
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TABLE I 

MEAN AND MEDIAN TIMES TO INSTITUTIONALISATION (INST'N) OR FIRST EVENT FOR AD PATIENTS 

81 

Age at Time (years)  to % fo r  which 

Reference is t  event is 
Onset Entry Inst 'n 1st Event death 

Berg et al, (1988) 71.4 (I)  7.1% 

Heyman et al. (1997) 72.0 (2) 3.1 (2) 13.1% 

Jost  et al. (1995) 75.1 (3) 4.3 (I)  15.0% 

Severson et al. (1994) 79.4 (I)  2.5 (2) (4) 10.0% 

(I)  Mean.  

(2) Median.  

(3) Mean  age at onset of  AD,  if inst i tut ionalised,  est imated as (mean age at ins t i tut ional isat ion 

- mean  time to inst i tut ional isat ion) .  

(4) Median  time from onset est imated as 5.6 years. 

Since we cannot  distinguish genotypes here, we will just write 23 ll, x+, and 
24 t23 /24 lq.+, instead of  P,,-+t and #,.+,, respectively. Guided by these data  we derive 
" - " ~ 3  • . . . .  p24 (the moment  estmaates of  P'2-+~ (the force of  lnst l tut |onahsatton) and 'x+, 

force of  mortal i ty of  an AD patient prior to institutionalisation). We define 
below the usual indicator functions (/j) and sample path functions (Nj~) in 
respect of  a single life (see Macdonald (1996b)): 

1 if life is in s t a t e j  at time t 

l j ( t ) =  0 otherwise 

I if life transfers from s t a t e j  to state k at time t 

d N j ~ ( t ) =  0 otherwise 

/0 Nj~(T)  = dNjk(t) = No. of  transfers from s t a t e j  to state k 

Also let P/J, be the probability that a life in s ta te j  at age x is in s ta te j  at age y. 
Then equation (3) below is the mean age at onset of  AD, given that the life 
was eventually institutionalised with AD (as in Jost & Grossberg (1995)): 

[/,; E x + Ii (l)dl N23(co  - x )  = 1 and It (x) = 1 = 

e , , { .L  ,2 X-~ J '"  ( I - -  " 12 II 23p.£~;ds}dl  " ( 3 )  

f . ~ ,  12nl lH,  t ".x't { J ' ~  [)',23p~,2d'~"} d l  ' 
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equation (4) is the mean time from onset of AD to institutionalisation: 

E 12(t)dt N23(~-  x ) =  1 and I t ( x )  = 1 = 

£7 2 e',; ( ,  - ,>23 Js}a , .  
. w , , 1 2 D i i  w 23 22 J.,. ,,, , . , . ,{f, P,.,.ds}dt 

and equation (5) is the probability that an AD patient dies before becoming 
institutionalised. The upper age bound, denoted co, is taken to be 120 years: 

P[N24(co-x)  = 1 N I 2 ( W ' - x ) =  1 and / i t x ) - - 1 ]  : 

w 12 II w 24 22 , 
f.,. #, e,. ,{y, I,~ P , s d s }  dl (5) 

co 12 II 
f x  #t  P.vt dt 

Setting equations (3), (4) and (5) equal to their estimated values from Table 1, 
we obtain 3 equations, which can be solved for at most 3 unknown 
parameters. The parametric forms we chose were as follows: 
(a) /,12x+, = A + t.L.~.+tat), where &,.+,,4o is given by equation (2). This Makeham 

term adjusts the incidence of AD to a level that gives the same mean age 
at onset (for AD patients who become institutionalised). 

23 (b) &,.+, = D. We felt that the data did not support anything more elaborate 
than a constant intensity. 

(C)  /~24 14 x+t = P&,.+t. That is, the mortality of an AD patient before becoming 
institutionalised is a proportion of  baseline mortality. 

(d) ~t,,.+t,14 baseline mortality, was taken as AM80 mortality, using the 
Gompertz approximation given by equation (I). Although it is 
appropriate to allow for future improvements in mortality in applica- 
tions, it is not appropriate to do so in estimation based on past data. The 
values of  D and P do not depend strongly on the baseline mortality. 

Solving these equations numerically yields the solutions: 

A = 0.02025038 D = 0.18895779 P =  0.33502488. 

The transition intensities .f13 and 24 .,.+, ~t,.,.+, are summarised in Table 3. 
The Makeham term, A, is a nuisance parameter used to adjust the 

incidence of AD so that the mean age at onset in the model is the same as 
that in the data. Its only purpose here is to improve the estimation of the 
other terms, as the survival of a cohort of AD patients is strongly related to 
their mean age at onset. It does not furnish an estimate of the incidence of 
AD in the whole population, which was described in Section 4.3. 

4.5. Mortality of Lives with AIzheimer's Disease 

AD patients have been found to suffer higher mortality than the general 
population (Barclay et al., 1985(b); Bonaiuto et al., 1995; Bracco et al., 1994; 



A MATHEMATICAL MODEl_ OF ALZHEIMER'S  DISEASE AND THE APOE GENE 83 

Burns et al., 1991; van Dijk et al., 1991; Evans et al., 1991; 
Heyman et al., 1996; M61sfi et al., 1986; Treves et al., 1986). However, 
there is little agreement on the magnitude of the increase, or its dependence 
on age at onset, duration since onset, sex, race, level of education, marital 
status, level of cognitive impairment, familial/non-familial AD and level of 
behavioural impairment. The main factors we need to consider are: 
(a) The magnitude o f  the increase in mortal i ty  for  A D  lives. The mortality of 

lives with AD has been investigated using different methodologies. For 
example, Evans et al. (1991), estimated the relative risk of  death for 
AD patients as 1.44 (95% confidence interval 1.05-1.96) times that of the 
unaffected. Others have suggested that AD has only a small impact on 
mortality: Barclay et al. (1985a) claimed that well-tended individuals 
may have life expectancy close to normal, and Sayetta et al. (1986) found 
that survival did not depend on disease acquisition. 

(b) The effect o f  age at onset on relative mortality.  The mortality of patients 
with AD increases with age (Bonaiuto et al. 1995; Burns et al., 1991). 
Most studies into survival times have found no relation between 
age at entry into the study and relative survival (Barclay et al., 1985b; 
Bracco et al., 1994; Heyman et al., 1996; Stern et al., 1995; 
M61sfi et al., 1986), except that Barclay et al. (1985b) found that 
younger lives had shorter relative survival times. Diesfeldt et al. (1986), 
investigating survival from onset of  AD, found that AD patients with 
onset before age 76 had reduced survival times, but not those with later 
onset. Comparing the two methods of investigation, Walsh et al. (1990) 
found that older age at onset affected survival adversely, whereas older 
age at entry into the study did not; a possible explanation was that older 
patients have symptoms for a shorter time before presentation. Although 
no definitive relationship between age at onset and relative survival 
emerges, it is clear that: 
(I) survival with AD depends on age; and 
(2) if age at onset affects relative mortality, the relationship is only weak, 

but possibly stronger at younger ages. 
In terms of the model in Figure 1, this suggests that mortality in state i3 
(institutionalised from AD) could be modelled by the addition of a 
Makeham term to the normal force of mortality; the latter is age 
dependent, and the Makeham term will be less significant at older ages. 

(c) The effect o f  the duration o f  A D on relative survival. Perhaps surprisingly, 
the duration of AD has not been found to be associated with increased 
mortality (Barclay et al., 1985a; Bracco et al., 1994; Burns et al., 1991; 
Diesfeldt et al., 1986; Heyman et al., 1996; Sayetta et al., 1986; 
Walsh et al., 1990). That is, AD patients with long duration of symptoms 
do not suffer higher mortality than patients, of the same age, with short 
duration of symptoms. In terms of the model, this means that the 
mortality of lives in states 2 and 3 (onset of AD and institutionalised 
from AD) does not depend on the time spent in these states. This is 
especially convenient, as it allows us to work in a Markov framework. 
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(d) The effect o f  gender on relative survival with AD. Many researchers have 
found that the differences in survival between men and women with AD 
can be explained by the usual mortality differential between men and 
women (Beard et al. ,  1994; Bonaiuto et al. ,  1995; Bracco et  al. ,  1994; 
Burns et al. ,  1991; Heyman et al., 1996; Walsh et al., 1990), though 
Barclay et al. (1985a), did find greater differences. In terms of modelling, 
allowing for the normal differences in mortality between genders should 
be sufficient. 

Table 2 summarises the literature on survival with AD. Since we cannot 
distinguish genotypes here, we will just write/.t?,.+,t4 instead of ] "zi34x+,' As in the 
previous section, we can write down the mean age at onset (see equation (6)) 
and the mean survival time (see equation (7)) in the model of Figure 1: 

E/, E x +  I i ( t ) d t  N i 2 ( c o - x ) :  1 a n d  l l (X)  = 1 : 

x + f~ (t - x)#12P ' 'at -" t  (6) 
f~o, i z p l i d  t 

,c I ' l l  . v t  

E I2(t)+13(t)dt  N j z ( w - x ) =  1 and I i ( x ) =  1 = 

,f.~ l-tl2 p l l  { f ~  (S -- l)(It~ . -Jr-I-ts24)ets22 d s +  jtcw/Z:"~3 ,',23r, s JsrW (r _ s)l_z~4p~)dr d s } d t  (7) 
~v w 12 1 I ttt Pxt dt  

TABLE 2 

SUMMARY STATISTICS ON SURVIVAl. TIMES OF A D  PATIENTS 

Mean (Med ian)  Mean (Median) 
Reference Age at Onset Survival Time Addition to #x34+t 

Barclay et al. (1985a) (73.3) yrs (8.1) yrs 0.15829 

Bracco et al. (1994) (72.4) yrs 7.3 yrs 0.25259 

Diesfeldt et al. (1986) 75.6 yrs 7.2 yrs 0.21056 
Heyman et al. (1996) (69.2) yrs (9.7) yrs 0.10993 
Jos te ta / .  (1995) 75.1 yrs 8.11 yrs 0.13345 
Kokmen et al. (1988) 80.4 yrs 6.2 yrs 0.26420 
Treves et al. (1986) 73.9 yrs (9.3) yrs 0.08135 
Average 0.17291 
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Setting equations (6) and (7) equal to their estimated values in Table 2, and 
noting that we have estimates of 23 and 24 /1,.,.+, #x+, from the previous section, we 
obtain 2 equations, which can be solved for at most 2 unknown parameters. 
The parametric forms we used are as follows: 

AD ~L AD is given by equation (2). This is just the (a) /z 12 = A +/Zx+,, where .,-+t x+t 
addition of a Makeham term to the force of incidence of AD, shifting the 
latter to a level that gives the estimated age at onset. 

(b) ~4 = K +AM80 It,~.+t l.t,,-+t. This is a Makeham term as discussed in (d) above. 

The estimated values of K for each of the references cited are given in the last 
column of Table 2. They range from about 0.08 to 0.27, with an average of 
0.173. The Makeham term A is, again, only included to improve the 
estimation of the other terms (see the end of the previous section). 

4.6. Summary of the Transition Intensities for the AD Model 

For clarity, we summarise the transition intensities estimated here. They all 
have the form: 

IZ!,.~+, = A + D B e  co'+')  (8) 

and the calculated values are given in Table 3. Three values are given for 
34 tZx+,, an upper bound, mean value and lower bound to enable a check of how 

sensitive the results are, in any particular investigation, to this term. 

TABLE 3 

SUMMARY OF TRANSITION INTENSITIES FOR TIlE AD MODEL WITH BASELINE MORTALITY 100% ( 6 5 % )  OF AM80 
AND AF80 

Parameter Values 

Transition B (x  10 -5) C (× 10 -2) 
Intensity A D 

Male Female Male Female 

,u 24 0 0.33502 9.4116 2.5934 8.4554 9.3605 XWt 

(0.21776) 
23 0.18896 0.00 # x + t  

~34 (Lower bound) 0.08 1.00 (0.65) 9.4116 2.5934 8.4554 9.3605 x+t 
/z 34 (Mean) 0.17291 1.00 (0.65) 9.4116 2.5934 8.4554 9.3605 X+I 

34 (Upper bound) 0.27 1.00 (0.65) 9.4116 2.5934 8.4554 9.3605 #x+t 
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5. ESTIMATION OF TRANSITION INTENSITIES DEPENDING 

ON APOE GENOTYPE 

5.1. Population Frequencies of the ApoE Genotypes 

Table 4 shows the population frequencies of the ApoE genotypes estimated in 
several studies. Others are Corder et al. (1994, 1995), Gomez-lsla et al. (1996), 
Lehtovirta et al. (1996), Liddell et al. (1994), Lopez et al. (1998), Nalbantoglu 
et al. (1994), Poirier et al. (1993), Roses (1995) and Tsai et al. (1994). 

Some features are clear: the e 3 / s 4  genotype is not uncommon (about 
21%) while the e2/e4 and e4/e4 genotypes are quite uncommon (about 3% 
and 1% respectively). We might expect to find lower proportions of 
'dangerous' genotypes at older ages, because these lives suffer a higher rate 
of AD onset, but the two age-related studies (Bickeb611er et al. (1997) and 
Corder et al. (1995)) gave conflicting results. However, there is reasonable 
agreement on the gene frequencies at around ages 60-70, which is what we 
need for our modelling. 

Farrer et al. (1997) is a meta-analysis, combining the results of 40 other 
studies, including 6,264 Caucasian subjects. As it is the largest study, and 
differentiates by ethnic group, gender and ascertainment methods, and as the 
ApoE s4 allele was found with the same frequency in respect of AD 
diagnosed at autopsy and clinically diagnosed probable AD, we use its 
estimated gene frequencies, namely: e2/e2 0.008; e2/~3 0.127; s 2 / e 4  0.026; 
e3/e3 0.609; e3/E4 0.213; e4/e4 0.018. The sharp-eyed will notice that these 
sum to 1.001, because of roundings used in Farter et al. (1997), but we have 
left this small discrepancy unadjusted. 

5.2. Genetic Risk of AIzheimer's Disease 

When we have a heterogeneous population, it is often convenient to think of 
a given intensity in each sub-population as a multiple (not necessarily 
constant) of a 'baseline" intensity, either in one of the sub-populations or in 
an aggregated 'average' population. Similarly, if Pt and P2 are the 
probabilities of an event in populations 1 and 2 respectively, the relative 
risk in population 2 (with respect to population 1) is P2/Pl.  A related 
quantity is the odds ratio: the odds in populations i and 2, respectively, are 
p l / ( i  - P l )  and p2/(l -P2) ,  and the odds ratio is: 

p2(l -p,) 
p, (1 - P2) " (9) 

When intensities are small, the odds ratio is a good approximation to the 
relative risk. In many studies, the published results are either relative risks or 
odds ratios. 



TABLE 4 

ESTIMATED POPULATION FREQUENCY OF A I o E  GENOTYPES 
> 

Country / No. o f  Age 
Reference Sex 

Ethnicity Lives Group 

Farrer et al. (1997) Caucasian 6,262 M & F All 
Afr-Amer 240 M & F All 
Hispanic 267 M & F All 
Japanese 1,977 M & F . All 

Bickeb611er et al. (1997) France 1,030 M & F All 
316 M All 

40 M < 60 
93 M 60-69 
80 M 70-79 

103 M > 80 
714 F All 

47 F < 60 
75 F 60-69 

143 F 70-79 
449 F _> 80 

van Duijn et al. (1995) Netherlands 532 M & F < 65 
228 M < 65 
304 F < 65 

Evans et al. (1997) E. Boston 490 M & F > 65 
Jarvik et al. (1996) not given 310 M & F 48-98 

I 17 M 48-98 
193 F 48-98 

Lambert et al. (1998) not given 308 M & F not given 
Levy-Lahad et al. (1996) not given 304 M & F not given 
Lucotte et al. (1997) France 248 M & F > 65 

> 
Allele Frequency Genotype Frequency 

m 
e2 e3 e4 e2/e2 e2/e3 e2/e4 e3/e3 e3/e4 e4/e4 ~: 

> 

0.084 0.779 0.137 0.01 0.13 0.03 0.61 0.21 0.02 ~, 
0.083 0.727 0.190 0.01 0.13 0.02 0.50 0.32 0.02 > t "  

0.067 0.823 0.110 0.00 0.12 0.01 0.67 0.18 0.02 K 
0.042 0.869 0.089 0.00 0.07 0.01 0.76 0.16 0.01 O 
0.085 0.770 0.145 0.01 0.12 0.03 0.59 0.24 0.01 r~ r'- 

0.070 0.815 0.105 0.01 0.10 0.02 0.67 0.19 0.00 O 
"r] 

0.050 0.800 0.150 0.00 0.08 0.02 0.62 0.28 0.00 > 
0.070 0.845 0.085 0.01 0.12 0.00 0.70 0.17 0.00 t- N 

0.060 0.840 0.090 0.00 0.10 0.02 0.71 0.16 0.00 : m 
0.081 0.795 0.125 0.01 0.11 0.03 0.64 0.20 0.01 ~- 
0.090 0.750 0.170 0.01 0.13 0.03 0.55 0.27 0.02 m 7~ 

0.075 0.735 0.190 0.00 0.15 0.00 0.51 0.30 0.04 u5 
0.075 0.730 0.195 0.01 0.11 0.02 0.52 0.31 0.03 
0.065 0.765 0.160 0.00 0.12 0.01 0.56 0.29 0.01 > 

0.095 0.750 0.165 0.01 0.13 0.04 0.56 0.25 0.02 
0.103 0.731 0.165 0.01 0.17 0.02 0.51 0.27 0.02 > 
0.105 0.705 0.190 0.01 0.16 0.03 0.48 0.29 0.03 Z 
0.100 0.745 0.155 0.01 0.17 0.01 0.53 0.26 0.02 .--I 

.-r 
0.062 0.854 0.084 0.01 0.09 0.01 0.74 0.14 0.01 
0.098 0.750 0.132 0.01 0.12 0.05 0.59 0.20 0.01 > 
0.068 0.791 0.124 0.02 0.09 0.02 0.64 0.21 0.01 O m 

0.117 0.725 0.137 0.01 0.15 0.07 0.55 0.20 0.01 
m 

0.081 0.805 0.114 0.00 0.13 0.02 0.65 0.18 0.01 Z 
0.100 0.765 0.135 0.01 0.13 0.05 0.60 0.21 0.01 m 
0.069 0.804 0.127 0.02 0.09 0.01 0.65 0.22 0.01 

O 0  
-...O 
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Few studies report prospectively the incidence of AD by genotype. Two 
that do are Evans et al. ,  (1997) and Slooter et al.,  (1998). Both have quite 
small study populations, and neither provides age specific estimates of AD 
risk, so they are not appropriate for our purposes. 

Table 5 gives the Odds Ratios (ORs) of AD and 95% confidence intervals 
from a number of genetic studies. The 'reference' populations (also shown in 
the table) were either the ~3/~3 genotype or the three non-e4 genotypes 
combined. The estimated ORs vary considerably across studies. For 
example, estimates of the OR for the e3/e4 genotype (relative to the 
~3/e3 genotype) range from 1.8% to 3.7%, and for the e4/¢4 genotype, from 
6.2% to 30.7%. Some of the variation may be explained by the differences 
between the studies themselves. In particular, differences may arise from: the 
method of ascertainment of patients, the countries of study, the method of 
diagnosis of AD, the age structure of the samples, the reference/risk 
genotypes, and whether they are cross-sectional or prospective studies. We 
make the following observations: 
(a) The study by Lopez et al. (1998) suggests that the risk of AD associated 

with the ApoE e4 allele may be different in different countries. 
(b) In support of  the above, Mayeux et al. (1998) found that the association 

between ApoE and AD may depend on ethnic group and, in particular, 
may not be present in black populations. 

(c) Despite the differences between studies: the presence of one or two 
e4 alleles is consistently reported to be significantly associated with AD; 
and homozygotes are generally reported to have higher risk of onset of  
AD than heterozygotes. 

(d) The weakest associations between ApoE and AD were reported in the 
two prospective studies, those by Evans et  al. (1997) and Slooter et  al. 
(1998). This is as expected for the reasons given in Section 4.1. 
For our purposes, the genetic risk of AD at different ages is important. 

Few studies have considered this; the odds ratios from two that have are 
given in Table 6. Bickeb611er et  al. (1997) is based on hospital admissions, 
and Corder et  al. (1994) on autopsy cases; both use e3/E3 as the reference 
population. Although some ORs are missing, because of small sample sizes, 
the trends are fairly clear: 
(a) The odds of AD among the higher risk genotypes (e3/e4 and e4/e4) fall 

with age. This may be expected as higher risk genotypes will succumb to 
AD more rapidly, reducing the proportion of such genotypes within the 
population. 

(b) Conversely, the protection conferred by the lower risk genotype (e2/e3) 
seems to weaken with age, possibly as tiffs genotype becomes more 
common in the remaining population. 
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TABI.E 5 

A G G R E G A T E D  ODDS RATIOS OF AD FOR THE APoE e4 ALLELE 
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Ascertainment  Reference Odds Ratio 
Reference GenoO,pe (2)  

Scheme ( I )  Genotype (2)  Mean 95% CI  

Evans et al. (1997) P 
Frisoni et al. (1995) C 

Jarvik et al. (1996) C 

Kuusisto et al. 0994) P 

Lambert et al. (1998) C 
Lehtovirta et al. (1995) C 

Liddell et al. (1994) C 

Lopez et al. (1998) C 

Mayeux et al. (1993) P 

Myers et al, (1996) P 

Nalbantoglu et al. (1994) A 
Slooter et al. (1998) P 

Tsai et al. (1994) C 

~3/e3 e3/e4 & e4/s4 2.27 I. I-4.9 
-/- e4/- 6.6 2.2.-19.5 

e4/e4 17.9 4.5-70.5 
~3/~3 ~2/~3 0.4 0.2-0.96 

~2/~4 1.4 0.6-3 
e3/s4 3.1 2-4.7 
~4/s4 30.7 7-13 I 

-/- ~4/- 2.7 1.4-5.2 
~4/~4 9.1 3.5-23.4 

-/- E4/- & c4/s4 4.66 3.14-6.93 
-/- ~4/- 5.1 2.4-1 I.I 

~4/~4 21.4 2.8-166.3 
-/- e4/- 2.2 I. 1-4.7 

~4/e4 10.7 2.3-48.8 
-/- e4/- & e4/e4 2.34 (3) 1.03-5.55 

E4/- & e4/~4 3.64 (4) 1.78-7.69 
-/- c4/- 4.2 (5) 1.8-9.5 

s4/E4 17.9 (5) 4.6-69.8 
e4/- & ~4/e4 15.3 (6) 3.0-78.1 
e4/- & E4/e4 0.7 (7) 0.1-6.4 
E4/- & e4/E4 4.5 (8) 0.7-27.7 

s3/e3 s3/e4 3.7 1.9-7.5 
E4/E4 30. I 10.7-84.4 

-/- e4/- & e4/e4 15.5 6.2-38.5 
~3/e3 e2/e3 0.4 0.1-1.0 

E2/e4 1.3 0.2-8.5 
e3/~4 1.8 1.0-3. I 
e4/e4 6.2 1.4-28.2 

-/- e4/- & e4/e4 4.6 1.9-12.3 
E4/- 3.6 1.5-9.8 

(I) Ascertainment Scheme: C indicates clinic/hospital; 
A, autopsy/brainbank. 

(2) Dash (-) represents ~2 or E3 alleles. 
(3) Study population - Gerona, Spain. 
(4) Study population - Pittsburgh, USA. 
(5) Mixture of White, Black and Hispanic ethnic groups. 
(6) White ethnic group only. 
(7) Black ethnic group only. 
(8) Hispanic ethnic group only. 

P, population/community; and 
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TABLE 6 

O D D S  RATIOS O F  A D  BY G E N O T Y P E  A N D  AGE 

Bickebb'ller et al. (1997) Corder et al. (1994) 

Age Odds Ratio Age Odds Ratio 
Group Genotype Mean 95% CI Group Genotype Mean 95% CI 

60-69 e2/~3 60-66 

70-79 

80+ 

60+ 

E2/c4 
e3/e4 

~4/e4 

E2/e3 

e2/e4  

e3 Is4 

e4/e4  

E2/E3 

e2/e4  

e3/e4  

s4/~4 

e2/e3 

e2/e4  

c3/e4  

e4 I~4 

0.3 0.0-2.3 ~3/e3 0.1 

- - E2/E4 1.2 

3. I 1.4-6.9 e3/e4 I I. l 

29.1 3.6-239.5 E4/e4 123.8 

0.4 0.1-2.3 67-74 e2/e3 0.3 

- - ~2/e4 I. I 
3.2 1.5-6.6 e3/c4 4.6 

- - e4/c4 20.8 

0.3 0.0-2.6 75-92 e2/e3 0.5 

- - ~2/e4 1.6 

1.3 0.5-3.4 e3/e4 3.2 

- - e4/e4 I 0.0 

0.4 0. 1-0.9 60+ ~2/e3 0.3 

1.6 0.5-5.5 e2/~4 I. I 

2.2 1.5-3.5 ~3/e4 4.4 

11.2 4.0-31.6 e4/~4 19.3 

w 

These trends are supported by the meta-analysis by Farrer et al. (1997), and 
as it is from this study that we take our estimates of  the ApoE genotype 
risks, we cite some relevant details: 
(a) The aggregate relative odds from Farter et al. (1997) (relative to the 

e3/~3 genotype) are shown in Figure 3. 
(b) The genotype risks of AD were not significantly different in respect of 

Caucasian males and females, except in the case of the e3/e4 genotype, 
for which women had a significantly higher risk of AD. The relative odds 
of AD by ApoE for Caucasian men and women are shown in Figures 4 
and 5. (The authors kindly provided us with the numerical values of the 
odds ratios; confidence intervals were not available.) 

(c) The genotypes e2/e2 and e2/e3 were combined as there were very few 
e2/e2 genotypes, and the risks associated with the two genotypes 
appeared to be similar. 

(d) Note that the risks associated with the ApoE E4 allele were considerably 
higher than those found in the two population-based studies by 
Evans et al., (1997) and Slooter et al., (1998). 
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FIGURE 3: Odds ratios (ORs) of AD relalive to E3/~3 genotype for males and Females combined. 
Source: Farter et al. (1997). 
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FIGURE 4: Odds ratios (ORs) of AD relative to e3/e3 genotype for e3/e4 and e4/e4 genotypes. 
Source: Farrer et al, (1997). 



92 ANGUS MACDONALD AND DELME PRITCHARD 

2. 

9. 

0 ¢ o .  
o 

rr 

-8o 
'1o 
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Men 02,/04 
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v Men e2Je3 
o Women e2__/e3 

4'0 4'5 s'o s's o'o o's io "/s 8'o 8's 9'0 
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FIGURE 5: Odds ratios (ORs) of AD relative to E3/E3 genotype for s2/e2 or ~2/e3 and s2/e4 genotypes. 
Source: Farrer et al. (1997). 

For use in our model, these odds ratios have to be converted into relative 
risks. More precisely, we have to find a plausible set of age- and genotype- 
dependent transition intensities that are consistent with the odds ratios and 
together are consistent with the aggregate incidence of AD. There is no 
unique solution to this problem. The method we used was to model the 
incidence of AD for the ith genotype as: 

i~il2 : i  A~ (10) 
x+t  ----- r l J j , + t l z ~ + t  

where: 
(a) iz.,.+rA° is the aggregate incidence rate of AD (from Section 4.3); 
(b)f,.+1 is a parametric function representing the risk relative to the 

aggregate incidence rate, where we take f~+t = 1 in the case of the 
e3/e3 genotype; and 

(c) rl is a constant chosen so that the aggregate incidence of AD based 
on the modelled intensities is consistent with the aggregate incidence 

AD 
I-l~.x-+t. 

We did this for males and females separately and combined. We confined 
our attention to ages 60 and over, in order to get a better fit in the age range 
of interest in applications. The form of the ORs, either rising to a peak and 
then falling, or gently declining, suggested a similar pattern of relative risks, 
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and we found the following family of  functions satisfactory (note that 
constant relative risks, or proportional hazards, result in odds ratios with 
exponential growth): 

f~+t = Ee-r((x+t)-k')2-G((x+t)-k2) 4- H.  (11) 

Actuaries will recognize this as a GM(1,3) function, familiar in the 
graduation of life tables (Forfar, McCutcheon & Wilkie, 1988), although 
as described below either F o r  G is set to zero. We found this flexible enough 
to give a good approximation to the ORs, and also suitable for extrapolating 
beyond age 90. The fitting procedure was as follow.s: 
(a) by considering the form of the OR, we set either F =  0 (giving an 

exponential function) or G = 0 (giving a bell-curve function), and set H 
equal to 0 or 1; 

(b) the best value Ofkl o r  k2 was found, to the nearest integer, by inspection; 
(c) the resulting ORs were calculated from the model in Figure I using the 

intensities from previous sections; and 
(d) the remaining coefficients (either E and F, or E and G) were fitted by least 

squares. 

For the 
(a) /~14 

x + l  

and 

(b) ~23 
x+/  

(c) uZ, 
(d) ~34 

.r+t 

calculations in (c) above we used the following parameters: 

0.65 x AMS° #x+~ for males and 14 xAb~0 = ,ux+ t = 0.65 #.~.+~ for females 

in aggregate, where AMS01~.,.+t and A~'~0/.Lx+ t are given by equation 1. 

= 0.189, calculated in Section 4.4. 

= 0.335 × i~1~.4 t calculated in Section 4.4. 
14 = 0.173 +/-!,.+t, the mean value calculated in Section 4.5. 

The fitted parameters are given in Table 7. Figure 6 shows that the modelled 
ORs closely reproduce the estimates from Farrer et al. (1997) (see Figure 3; 
only the aggregate ORs are shown, and the modelled ORs start at age 61 
because we start with unaffected lives at age 60). 

To determine the parameter rl, we calculated the aggregate incidence of 
AD in the whole model, and fitted this to #Ao by least squares, l f i p  II is the A'q-t - -xt  
probability that a life with genotype i, healthy at age x, is unaffected by AD 
at age x + t, and if p(,. is the population frequency of the ith genotype at age x 
then the aggregate incidence of  AD is: 

Aggregate incidence of  AD at age (x + t) = rl p.i. -_,-tJ.,-+~ /~.,-+~ 
i=1 
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TABLE 7 

PARAMETERS FOR THE RELATIVE RISK OF A D  FOR MALES, FEMALES AND IN AGGREGATE, BY GENOTYPE 

G e n d e r  G e n o O , p e  

Parameter Values 

E F G H kl kz r, 

Both 

Female  

Male 

~4/E4 13.5 0.00529 0 I 60 - 0.93 

e 3 / e 4  2.98 0.00312 0 I 62 - 

e2 /e4  2.87 0.00938 0 1 68 - 

E 2 / e 2 & e 2 / e 3  0.754 0 0.00859 0 - 60 

E4/~4 10.4 0.00504 0 1 60 - 0.88 

E3/E4 3.68 0.00319 0 I 62 -- 

e2 /e4  4.21 0.01020 0 1 68 - 

e2 /e2  & e2 /e3  0.675 0 0.00692 0 - 60 

c4 /e4  8.94 0.00656 0 1 60 - 1.27 

e3/~4 1.92 0.00103 0 0 51 - 

e2 /e4  1.42 0.00506 0 0 67 - 

e2 /e2  & e 2 / E 3  0.434 0 0.01600 0 - 60 
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FIGURE 6: O d d s  ra t ios  ( O R s )  o f  A D  relat ive to c3/~3 geno type  f r o m  F a r r e r  et al. (I 997), c o m p a r e d  with O R s  
c o m p u t e d  us ing  model led  relat ive risk funct ions .  
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We took x = 60, and for the p!,. we used the gene frequencies of  the 
Caucasian control populations in Farrer et al. (1997), which were given in 
Section 5.1 The incidence of  AD, AD • #x+t, was taken as that estimated in 
equation 2 and the occupancy probabilities, ip l l  were calculated by 

- - A ' I  ' 

solving Kolmogorov's forward equations numerically using a Runge-Kutta 
algorithm with step size 0.0005 years (Conte & De Boor, 1972). 

The values of  r~ are given in Table 7. The adjustment to the overall level 
only had a marginal effect on the modelled ORs for the individual genotypes. 

The relative risk functions for males and females are given in Figures 7 
and 8. For females, the e4/e4, e3/e4 and e2/e4 genotypes are unambigu- 
ously high-risk; the relative risks exceed 1.0 at all ages. For males, only the 
~4/e4 genotype confers higher risks at all ages. The e2 allele appears to be 
protective, so the e2/e2 and e2/e3 genotypes are low-risk, while the e3/e4 
and e2/e4 genotypes are initially at higher risk but are at lower risk from 
about age 75. The protection apparently given by the e2 allele in males 
means that the e3/e3 genotype confers slightly higher than average risk; this 
is why, in Table 7, r] > 1 for males. It must be remembered that data in 
respect of  males are relatively sparse, and data in respect of  very old males 
even sparser, so these effects should be treated with caution; we can have 
more confidence in the relative risks in respect of  females. 
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FIGURE 7: Modelled risk of  AD,  relative to the e3 /e3  genotype, for e4 / e4  and e3 /e4  genotypes. Based on 
odds ratios from Farrer et al. (1997). 
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FIGURE 8: Modelled risk of AD, relative to the E3/e3 genotype, for E2/E4 and ~2/~2 & e2/~3 genotypes. 
Based on odds ratios from Farrer et  al. (1997). 

These risk estimates probably overstate the true populat ion risks, perhaps 
quite substantially, as they are from clinic- and autopsy-based studies, which 
investigate precisely the subjects that are affected or already known to be at 
risk. To allow for this possibility we will also consider models assuming that 
the true relative risks are a proportion m < 1 o f  those estimated above. We 
do this by adjusting equation (10) so that for genotype i: 

~ i l 2  i .,.+, = r,,,{(f.~.+t - 1 ) m +  I }/z~+ D (13) 

where f~+t is as above,  and rm is chosen as above so that the aggregate 
AD Values ofr0.5 and r025 incidence of  A D  in the model is consistent with iLx+ t. 

are shown in Table 8. 

T A B L E  8 

rm FOR m = l, 0.5 AND 0.25 

G e n d e r  r I to.5 ro.2fi 

Both 0.93 0.96 0.97 
Female 0.88 0.94 0.97 
Male 1.27 1.11 1.05 
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Figure 9 shows that the aggregate incidence of  AD in the genetic model 
AD It also shows that increasing for both sexes combined is quite close to #x+~' 

the level of relative risk tends to overstate the incidence of  AD at younger 
ages, and to understate it at older ages; the reason is that higher relative risks 
deplete the high-risk groups more quickly, leaving a relatively healthier 
population at older ages. 

O 
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........... Aggregated Incidence AD (m = 1.00) / . . ' /  

...~'~ 2 ~  

.... ~ ...... ~.~ 
.............. ::.~5 ~ 
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FIGURE 9: Comparison of  estimaled population incidence of  AD it.,A°+~ with the aggregated incidence of  AD 
for different levels of  relative risk, males and females combined. 

Decreasing the level of relative risks for high-risk genotypes means 
increasing the relative risks for low-risk genotypes. Using a lower value of 
rm will diminish any effects of the (possibly anomalous) feature, noted above, 
that the e3/E4 genotype is low-risk for males. 

5.3. Comment  on Model  Selection 

We chose a simple model for the relative risks (equations (10) and (I 1)). We 
did consider alternatives, in particular cubic polynomials and Gamma 
functions, but these gave poorer fits, and were less suitable for extrapolation 
(cubics to older ages and Gamma functions to younger ages). Also, it is 
easily seen that if an OR is specified as a function of time, and the transition 
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intensity in the reference population is given, the transition intensity in the 
second population is determined (as the solution to an ODE); Figure 6, 
therefore, gives good support for our choice of model. Further refinement 
seemed somewhat spurious, given the data we were using, and in view of the 
major sensitivity analysis needed in respect of the dominant parameter m. 

6. RESULTS 

6.1. Occupancy Probabilities 

Figures 10 and 11 show occupancy probabilities up to age 90 for females 
healthy at age 60, with high (m = I) and low (m = 0.25) relative risks, 
respectively. Each shows: 
(a) Occupancy probabilities in respect of  each genotype (with c2/c2 and 

c2/~3 combined). 
(b) Occupancy probabilities calculated by aggregating all the genotypes in 

the model. In the notation of equation (12) the probability of being in 
• • • i = 5  i i I j  • state j (j = I, 2, 3, 4) at age 60 + t Is ~-~'~i-I P60 P60 t, where the sum is 

over all genotypes. These are labelled 'Aggregated ~enotypes' .  
(c) Occupancy probabilities based on the aggregate incidence of AD, #Ao 

A ' + I "  

These are labelled 'Aggregate Model'• 

With high relative risks (m = 1), the effect of  the e4/e4 allele is clear; AD 
cases rise to a peak in the early 70s, by which time over 10% of the original 
cohort are in one of the AD states, and then fall away. A similar but smaller 
effect can be seen for the e3/e4 genotype. With low relative risks (m = 0.25) 
these features are all diminished; in particular the peaks in the early 70s 
disappear. 

We omit the corresponding figures for males; the differences are as we 
would expect, given the modelled relative risks. 

For males and females with low relative risks (Figure 11) the aggregated 
results from the genetic model are very close to the results from the aggregate 
(population) model• For females with high relative risks, the rate of onset of 
AD seems to be too low at younger ages and too high at older ages. 

6.2. Prevalence Rates 

Also of interest are prevalence rates, namely the proportion of those alive at 
every age who are in each of the three live states. Figures 12 and 13 show 
these, for females, including, for convenience, the two AD states combined. 
We omit the corresponding figures for males• 

The most striking feature is the prevalence of AD in respect of the 
e4/c4 genotype under high relative risks (Figure 12); it increases almost 
linearly. Again, for males and females the aggregated results from the genetic 
model are quite close to those from the aggregate model• Moreover, they fall 
within the range of prevalence rates actually observed. Breteler et al. (1992) 
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cite the following rates: 47.2% at ages 85 and over (Evans e t  al . ,  (1989)); 
31.7% at ages 85 and over (Pfeffer et  al . ,  1987); and 28.0% at ages 90 and 
over (O'Connor et  al . ,  1989); some other studies gave lower figures. 

6.3. Gene Frequencies at Higher Ages 

We have assumed that the gene frequencies given by Farrer e t  al.  (1997) are 
appropriate for age 60. They will change with age, as higher-risk genotypes 
die more quickly. We must estimate these if we wish to consider entrants (to 
a study, or into insurance) at ages over 60. Table 9 shows estimates of the 
gene frequencies in respect of lives unaffected by AD at ages 65, 70 and 75. 
Using the notation of equation (12), these are given by: 

i/~l I 
P o+, = P,%o -6o,, 

~-,j=5 _j  j o t  l " (14) 
Z.~j=I 1760 r60,t  

These are not the gene frequencies in respect of the whole population; lives 
alive but who have AD are omitted (as is appropriate for insurance 
applications). Nor are they the gene frequencies in respect of  the healthy 
population; lives with disabilities other than AD are included. 

Gene frequencies in the whole population at older ages can also be 
estimated, as: 

• ( ip l l  ..l-iDl2 ip13 "~ 
P60 ~, --60,t " --60,t -~- --60,t] 

1 
• 13 ~"~j=5 _j (jpII _t..jpl2 q-JP60,t) ( 5 )  

z....~j=l 1'60 ~ 60,t - -  --60,t 

but these are not so relevant for insurance applications. 
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TABLE 9 

FREQUENCIES OF A P o E  GENOTYPES AMONG LIVES FREE OF ALZHEIMER'S  DISEASE AT AGES 65, 70 AND 75, 

ESTIMATED BY SOLVING THE K O L M O G O R O V  EQUATIONS FORWARD FROM AGE 60 

P r o p o r t i o n  GeneFrequenc~sinAD-free population 
Gender ofrelative Age e2/e2 & e4/e4 e3/e4 e3/e3 e2/E4 

r~k,m e2/e3 

M & F 1.00 65 0.0168 0.2103 0.6114 0.0258 0.1357 

70 0.0151 0.2055 0.6168 0.0251 0.1374 

75 0.0133 0.1978 0.6246 0.0241 0.1403 

0.50 65 0.0174 0.2115 0.6100 0.0259 0.1353 

70 0.0164 0.2090 0.6128 0.0255 0.1362 

75 0.0154 0.2050 0.6170 0.0250 0.1377 

0.25 65 0.0177 0.2121 0.6092 0.0259 0.1351 

70 0.0172 0.2109 0.6106 0.0258 0.1355 

75 0.0166 0.2088 0.6128 0.0255 0.1363 

1.00 65 0.0171 0.2097 0.6116 0.0257 0.1358 

70 0.0159 0 . 2 0 4 1  0.6176 0.0247 0.1377 

75 0.0145 0 . 1 9 5 1  0.6263 0.0232 0.1409 

0.50 65 0.0175 0.2112 0 . 6 1 0 1  0.0258 0.1354 

70 0.0168 0 . 2 0 8 1  0.6133 0.0253 0.1364 

75 0.0160 0.2033 0 . 6 1 8 1  0.0245 0.1381 

0.25 65 0.0177 0.2119 0.6093 0.0259 0.1351 

70 0.0174 0.2104 0.6110 0.0256 0.1357 

75 0.0169 0.2078 0.6135 0.0252 0.1365 

1.00 65 0.0169 0.2120 0.6094 0.0260 0.1357 

70 0.0153 0.2110 0.6105 0.0258 0.1373 

75 0.0138 0.2097 0.6105 0.0257 0.1403 

0.50 65 0.0175 0.2125 0.6088 0.0260 0.1352 

70 0.0168 0.2120 0.6094 0.0259 0.1359 

75 0.0160 0.2115 0.6094 0.0258 0.1372 

0.25 65 0.0177 0.2126 0.6086 0.0260 0.1350 

70 0.0174 0.2124 0.6089 0.0259 0.1354 

75 0.0170 0.2122 0.6089 0.0259 0.1360 

M 
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7. CONCLUSIONS 

7.1. The Model 

We have specified and calibrated a simple continuous-time Markov model of 
AD allowing for the variability of the ApoE gene, suitable for use in 
insurance and other applications, which will be the subject of  further studies 
(for example, Macdonald & Pritchard (1999)). Much uncertainty remains: 
(a) No single study yet exists that would allow all the intensities in the model 

to be estimated simultaneously. The estimation is based on a number of  
different studies, some quite small, of  different populations, with 
different research protocols and methods of analysis, and very likely 
different definitions of 'onset of AD' and 'instititutionalisation'. 

(b) The relative risks of the ApoE genotypes are based on case-based 
studies, not prospective population studies, and the risks associated with 
the e4 allele are almost certain to be lower than those estimated to date. 
We have been unable to do more than to show what effect this 
might have. 

Nevertheless, certain features of our model ought to be robust. Whatever 
reduction in relative risks we have used, we have adjusted the genotype- 
specific incidence rates of AD so that the aggregated (population) incidence 
rates are close to those actually observed. The latter is one of  the few 
reasonably reliable benchmarks available. Further, our model produces 
prevalence rates of  AD that fall within the range of those observed in many 
studies. 

As well as the intensities, we have estimated the ApoE gene frequencies at 
ages up to 75, in respect of lives unaffected by AD at these ages. These are 
needed in (for example) insurance applications. 

7.2. Discussion 

(a) The model specification is dictated entirely by the events studied in the 
medical and epidemiological literature, and not by the events that might 
be of interest in any particular application. If it is the case that actuarial 
models might, in future, need to incorporate more medical detail, it 
would be very useful to try to collaborate with medical and other 
researchers. 

(b) The published conclusions of  medical papers are usually in the form of 
summary statistics (means, medians, odds ratios and confidence 
intervals) and if age-related outcomes are shown they are usually in 
the form of graphs. These are not ideal for actuarial use. AD is a major 
condition, much studied, but we have had to make some crude 
assumptions in order to calibrate the model from published data only. 
There must be many medical data sets that could furnish age-related 
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estimates of  incidence rates, if only they could be re-analysed. Again, 
closer collaboration between actuaries and other researchers would be 
valuable. 

(c) Another common type of medical statistic is prevalence rates. The 
difference between prevalence rates and incidence rates is exactly the 
difference between the Manchester Unity approach to modelling 
Permanent Health Insurance, and the multiple-state model approach. 
Prevalence rates are often easier to estimate, as they can be based on 
census-type surveys, but it would be helpful if the greater versatility of 
incidence rates (transition intensities) was more widely appreciated. 

(d) As a consequence of fitting the intensities using published summary 
statistics, it is impossible to estimate even crude confidence intervals for 
them. In any application, therefore, sensitivity analysis is especially 
important. 

(e) Several epidemiological authors have suggested the use of  individual 
patient data rather than summary or published data, partly to avoid 
publication bias in meta-analyses. Useful references are Piantadosi 
(1997), Green, Benedetti & Crowley (1997) and Friedman, Furberg & 
DeMets (1998). 

(f) It is now about six years since the r61e of the ApoE gene in AD was 
confirmed. Since then, the gene has been intensively studied, to the point 
that meta-analyses including thousands of lives have been published. 
Even so, little is known about population risk, and data are very scarce 
in places, so that: 
(1) we have had to reduce relative risks rather arbitrarily to allow for the 

selectiveness of  case-based studies; and 
(2) the relative risks for males are suspect, with the e2 allele conferring 

such strong protection that carriers of  the e4 allele are not necessarily 
at higher risk overall. 

If this is typical, it seems likely that the time between the identification of 
a gene disorder, and the assessment of its impact on insurance, will be of 
the order of ten years. 

(g) Despite the fact that AD is a much-studied condition, many studies 
reach conflicting conclusions. When setting up an actuarial model, it is 
necessary to consider the body of  medical research in its entirety (hence 
the large number of references). Inevitably, some studies must be chosen 
as the basis of  the model, but to confine one's attention only to these 
risks overlooking important features or sources of variation, and could 
impair the credibility of the results in the eyes of medical experts. 

(h) ApoE is a relatively simple gene to consider, since it has only three 
relevant alleles, hence six genotypes. Other genes are more complex; for 
example, the BRCAI gene (predisposing to breast and ovarian cancer) 
has several hundred known mutations, some of which have only been 
observed in a single family. 

(i) We cannot stress too strongly the speed at which human genetics is 
developing. This work started in late 1997, and since then the volume of 
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papers on AD and the ApoE gene has increased greatly, as the references 
show. It is very likely that assessments of  the impact of specific genetic 
tests on insurance will have to be revisited quite frequently, if they are to 
remain credible. 

Points (a) to (c) above suggest ways in which medical data might be made 
more useful for actuarial models, but there is no a pr ior i  reason why medical 
studies should be planned with that in mind. However, actuarial models 
derived from insurance practice, capable of dealing with fairly general 
payments while in different states or on transition between different states, 
could make a useful contribution to health economics, and it would be 
helpful to pursue collaborations from that point of view. 
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ON MULTIVARIATE VERNIC RECURSIONS 
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ABSTRACT 

In the present paper we extend a recursive algorithm developed by Vernic 
(1999) for compound distributions with bivariate counting distribution and 
univariate severity distributions to more general multivariate counting 
distributions. 

t. INTRODUCTION 

IA. Panjer (1981) described a procedure for recursive evaluation of a 
compound distribution when the counting distribution belongs to a certain 
class. Vernic (1999) developed a bivariate version of this recursion, assuming 
that the counting distribution is bivariate and the severity distributions 
univariate. In the present paper we discuss a generalisation of the result of 
Vernic to a situation with an m-variate counting distribution and a 
univariate severity distribution. 

The recursions of Panjer and Vernic are briefly recapitulated in Sections 2 
and 3 respectively, and the multivariate extension is introduced in Section 4. 
In Section 5 we look at some examples, and, finally, in Section 6 we briefly 
indicate some possible extensions of the theory. 

I B. In the recursions that we study in the present paper, the distributions are 
expressed through their probability functions. For simplicity we shall 
therefore normally mean the probability function when referring to a 
distribution. 

We make the convention that a sunlmation over an empty set is equal to 
zero and multiplication over an empty set is equal to one. 

2. THE RECURSION OI--" PANJER 

In the univariate case, a compound distribution is the distribution of the sum 
of independent and identically distributed random variables where the 
number of terms is itself a random variable assumed to be independent of 
the terms. We shall assume that the terms are distributed on the positive 
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integers. Let p be the distribution of  the number of terms (the counting 
distr ibution),f  the distribution of the terms (the severity distribution), and g 

~" ' s  OO In\ # t l *  the compound distribution. Then g = 2_,,,=0Pt )J  • A s f i s  confined to the 
positive integers, we must havef"*(x) = 0 for all integers n > x, and thus 

x 

g ( x )  = ~ p ( n ) f l * ( x ) ;  (x  = O, 1,2,  ...) 
,,=0 

in particular we have g(0) = p(0). 
If p satisfies the recursion 

then 

X 

y =  ] 

This recursion was described by Panjer (1981). 

3. THE RECURSION OF VERNIC 

When extending the concept of  compound distributions to the multivariate 
case, one can go in two directions: 

1. Let the severities be independent and identically distributed random 
vectors. 

2. Let the counting distribution be multivariate and the severities one- 
dimensional; we consider the distribution of, say, n7 random variables 
with compound distributions whose counting variables are dependent 
whereas the severities are mutually independent and independent of 
the counting variables. 

The two approaches can be combined by letting the severities in Case 2 be 
random vectors. 

For Case I recursions have been studied by Ambagaspitiya (1999) and 
Sundt (1999); for Case 2 by Hesselager (1996) and Vernic (1999) in the 
bivariate case. 

In Case 2 the compound distribution is given by 

OC {DO D7 

Z .. Z ,",,,)1-IF'*. 
nl = 0  n,,, = 0  i =  I 
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When assuming that the severity distributions are restricted to the positive 
integers, like in the univariate case, we obtain that the infinite summations  
become finite when we insert an argument  in g: 

X I X m IH 

, /7  l i*  1 g ( x , , . . . , x , , ) =  Z . . .  Z p(n' ""' m) H f i  (xi); (x, . . . ,Xm=0,1 ,2 , . . . )  
nl =0 rim=0 i= I 

in particular we have g(O, ..., O) = p(O, ..., 0). 
Let us turn to the bivariate case. Vernic (1999) assumed that 

p(HI, 112) = '@12(/71, n2)p(nl -- I, n2 -- 1) + ~1 (nl, n2)p(nl - 1, n2) 
+ ~ 2 ( 1 1 1 ,  r t 2 ) P ( r t l , / 7 2  - -  1) (2) 

when at least one of//I  and n2 are positive, with 

a2 a12 
ao +a l  + - - +  - (nl,n2 = l ,2 , . . . )  

f f312( tTi ,n2)  = n l  n 2  n l n 2  

0 (otherwise) 

b0 + b l  
/7 I 

~bl (hi, n2) = do + d l  
I l l  

0 

co + c2 
n2 

~2(nl, 172) e0 + e2 

0 

and showed that then 

(h i , n2  = 1 ,2 , . . . )  

(nl = 1 , 2 ,  ...; n2 = O) 

(nl  = O; n2 = 1 , 2 , . . . )  

(t71, tl 2 = 1 , 2 ,  . . . )  

(nl  = O, n2 = 1 , 2 , . . . )  

(nl  = 1 , 2 ,  ...; n2 = O) 

A I A2 

g(x, ,x2)  = Z Z ~p,2(y, ,y2;xt ,x2)f , (y ,) f2(y2)g(x,  - y, ,x2  - Y2)+ 
y l = l  y2=l  

xi 

Z ~°'(yl;Xl 'X2)fl(Yl)g(Xl -- y l , x 2 ) +  
.FI = ] 

X2 

Z q02 ('Y2; X I '  x2)f2(y2)g(xl, x2 -- Y2) 
.t,2=1 

(3) 
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when at least one of  x I and x2 are positive, with 

'Ol2(yl ,)'2; xl ,  x2) = { 

YlY2 a0 + al Y_L + a2 Y2 + a12 - -  
xI X2 XIX2 

0 

(Yi = 1, ...,Xi; 

x i - -  1,2,...; i =  1,2) 

(otherwise) 

y~ 
bo + bt xi 

V'I (y i ;x t ,  x2) = do + dl Yl  
XI 

0 

(Yi = l , . . . , x i ;  x i  = 1,2,.. .;  i =  1,2) 

0'i = 1, ..., xl; xl = 1,2, ...; x2 = O) 

(otherwise) 

C0 q- C2 Y2 
-%'2 

~)2 (Y2; x i, x2) = eo + e2 Y2 
X2 

0. (otherwise) 

Some special cases are studied by Hesselager (1996). 
We see that already in the bivariate case the formulae and notat ion start 

getting rather  messy, and unfor tunate ly  it will get even worse when 
extending the theory to a more  general mult ivariate case. We shall therefore 
abstain from writing out  a general theory in full and rather give a rough 
outline o f  what can be done. 

(Yi : 1, ..., yi; x i = 1,2, ...; i = 1,2) 

(Y2 = 1,... ,x2; Xl = 0; x2 = 1,2,. . .)  

4. GENERAL RESULTS 

4A. When considering extension o f  the Vernic recursions from the bivariate 
case to the m-variate case, it will be convenient  to use some vector notat ion.  
We shall denote  an m x 1 column vector by a bold-face letter and its elements 
by the corresponding italic with the number  of  the element as subscript; 
subscript • denotes the sum of  the elements, e.g. x = ( x l , . . . , X m ) '  and 
x. = }--~-'i"=l x). By y _< x we shall mean that Yi ~--Xi for i =  l , . . . ,m,  and 
by y < x that y < x with y ¢ x. By ei,...i,, we shall mean the vector whose 
i:th element is equal to one f o r / ' =  l , . . . ,h ,  and all other  elements are equal 
to zero. We also introduce the vector 0 where all elements are equal to zero. 

It is tacitly assumed that all vectors introduced have integer-valued 
elements. 

4B. Let N be an m x 1 vector of  non-negative integer-valued random 
variables. We introduce positive, integer-valued random variables Y0 (i = 1, 
...,m; j =  1,2,...), assumed to be independent  of  N and mutual ly 
independent ,  and for fixed i identically distributed with co m m o n  distribution 
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f.. Let p denote the distribution of  N. We introduce the random vector 
X = (XI , . . . ,  Xm)' with Xi = Y':N_' I Yij for i = 1, ..., m. Then the distribution of  
X is the compound  distributio'n-g given by (1). 

4C. When trying to extend (2) and (3) to an m-variate situation, it is natural 
to look for pairs o f  functions (gai~...i,,, ~oi,...ih) such that 

p(n) = ~ Z ~i,...il,(n)p(n-ei,...ih) (n > O) (4) 
/1=1 I<_il<...<ih<_m 

h x t  s 

g(x) = Z Z Z ggi'"'ih(Yl' ""~Yh; X)× 
h=l I <il <,.. <i/, <m s=l y,=l 

h 
g ( x -  ZS'=l  yjeij ) H f t j ( y j ) .  (X > 0) (5) 

j=l 

Like in the Vernic recursion, we would normally have that for 
i c { l , . . . ,m} ,--{il...ih}~bi,...i1,(n) and ~Oi,...ih(yl,...,yh;X) depend on ni and 
xi respectively only to the extent o f  whether they are equal to zero or not. 

The following lemma describes the relation we need between a ~b and the 
corresponding ~o. 

Lemma 1. I f  f o r  different integers it , . . . ,  ih E {1, ..., m} 

E ~o(Yi, , , . . . ,Yi , , ;  x Yi, r = X i j  = e ( n )  
\ r= l  

VII" £n,* t' x.~ .for all x ,  n > O such that l l i=lJi  ~ ,/ > O, then 

I71 

~ b ( n ) p ( n -  e , , . . . , , , )Hf, '"*(x,)= 
n>o i= i 

h .x'i~ h 

2 x)g(x- ZI'=, I-I£(Y,) 
s =  I ) 's  = I j =  I 

(6) 

(x > O) 
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Proof. We extend the set {il, ..., ih} to a permutat ion {il, ..., ira} of  { i, ..., m}. 
For  all x > 0 we have 

I l l  

g , ( n ) p ( n  - e l , . . . , , , )  I-~./;"* (x,) = 
n>o i=1 

Z p ( n  - ei,...i,,)E ~o(Yi, i, ..., Yihl; X) Y6~ = .x'/j f .  (xi) = 
n > o  k , r= l  - 

h xi¢ 

Z p(n  - e/'''i~) Z ~ ~o(y, , . . . ,yh;  x) x 
n>o s=l ys=l 

f?-,-,,, ,+,~_l)., '" U__, ,,, ,,j,,,~ = tx,~-~;)] , ,=,,+ II n'~'u,,/=, 

h .  0 Z Z ~O',,...,y,,; ×1 f,~O'j × 
s=l ys=l "= 

) '~  ( ' ~ '  % _ ,  ,,,, = 

Y'~P(n -e ' , . . . ' , , ) l l l J " ,  )'(xo-Ys) rI ~ (..v,,) 
n > o  ~v/= 1 j=h+ I 

h .r,.~ h 

Z Z ~(,',,. ,,',,; x)~(x- Zj':I,',o,,) I>(~,)  
s=l  )'s=l j=l  

Q.E.D. 
In the univariate case Lemma 1 is closely related to Theorem 2 in Sundt & 
Jewell (1981). 

It is clear that if the pairs (qol, gal),..., (~o,,, g,,,) satisfy the condit ions of  
Lemma 1, then (}--~,~=, c',,cpv, }--~'=, cv~b,,) also satisfies the condit ions of  
Lemma 1 for all constants  c~, ..., c,.. 

As the severities are positive, Xi  = 0 if and only if Ni  = 0. This implies 
that if the pairs (~Pl ,~ l )  and (~02, ~2) satisfy the condit ions of  Lemma 1, then 
these condit ions are also satisfied by the pair (~p, ga) given by 

J '~l(y , , . . . ,yh;  x) (xi = 1,2,...) 
~oOq , . . . ,  yh;  X) / qo2(Yl , - . . ,Yh ;  X)  (Xi = O) 

ga,(n) (hi = 1 ,2 , . . . )  

V,(n) = V~2(n). (,,i = 0) 

We have already seen one application of  such a construction in the Vernic 
recursion, where the coefficients were allowed to depend on whether some of  
the variables were equal to zero. 

We are now ready to prove our main theorem. 
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Theorem 1. I f  there exist pairs of  function (~bi,..4, ~oi,...i,,) such that (4) holds 
1--li=lf (xi) > O, then (5) and each pair satisfies (6)for  all x, n > 0 such that '" ~'~* 

holds. 

Proof. From Lemma 1 we obtain that for all x > 0 

Itl 

g(x) = Z p ( n  ) H f m * ( x , ) =  
n > o  i= I 

,'H m 

Z ~ ~i'"ih(n)p(n-ei'i',) 1--[ f'''*(xi) = 
n > o  h=l l < h < . . . < g _ < m  i= l  

IH 

£ Z ~ ~i,...ih(n)p(n- eit...,e)Hf'"*(xi)= 
h=l l<f i  < . . . < g < m  n > o  i=1 

h -qls 

Z Z 
h = l  I<_il<...<ih<_m s = l  ys=l  

h 

I>o,,) 
j = l  

Q.E.D. 
Our next theorem shows a way to construct additional recursions for g if 
there are more than one set of  recursions that satisfy the conditions of  
Theorem 1. 

Theorem 2. I f  for  v = !,..., w (5) is satisfied with 

• (~) (I < i l  < < i h  < m ;  h =  1 . . . ,m)  

then (5) is satisfied with 

~o;,...;h(yl Yh; x) £ ,..., = c~(x)<, ; , . ( y , , "  (') ...,y,,); x), 
"u= [ 

(yj = l,...,xij; j = I,...,1l; 1 <_ il < ... < g <_ m; 17= l, . . . ,m; x > O) 

where the weight fimctions c~, are chosen such that ~ [ = ,  c.~(x)= l Jor all 
x > O .  

Proof. By assumption we have 

" "  ( v , -  
g(x)= Z ~ - - "  (") " '  x)g x -  yje,, 1--If,/*,), 

t1=1 I<f l<. . .< ih<m .s=l ys=l j = l  

( x  > O; v = 1, ..., w) 

and the theorem follows by multiplication by c,,(x) and summation over v. 
Q.E.D. 
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In Section 5 we shall consider an application of Theorem 2. 
The condition (6) in Lemma 1 is satisfied by the pairs 

q 1 ~(Y,, ...,Yh; x) = 1--[ YJ'; ~b(n) -- (q = O, 1, ...,h) 
j=l  "~'ij H } q l  nij 

and consequently by 

h q 

x) = c, + Z 1-I y '  
q=l I<sE<...<sq<h j=l Xisa 

(7) " 

h his i ""isq 
~b(n) = a +  Z Z I-Ijq.=, (8) 

q=l I_<.q <...<sq <_h tli9 ' 

Like in the Vernic rectlrsion the coefficients could depend on whether 
xi = n; = 0 for some i's; in particular this should be done to avoid division 
by zero. To give a general expression for (5) based on these flmctions would 
be notationally rather messy, and we shall therefore abstain from that and 
rather suggest that one develops the formulae in special cases. 

In the univariate case, (7) and (8) reduce to 

b 
~ P 0 ' ; x ) = a + b  y;  ~ ( n ) = a + -  . 

x I1 

From Theorem 3 in Sundt & Jewell (1981) follows that these are the only 
(~,~) ' s  for which (6) is satisfied for every possible choice of severity 
distribution. The present author believes that also in the multivariate case (7) 
and (8) give the only (% ~p)'s that satisfy the condition (6) of Lemma I for 
every possible choice of severity distributions. 

5. EXAMPLES 

5A. The following model is discussed by Hesselager (1996) in the bivariate 
case. We assume that the distribution p. of N. satisfies the Panjer recursion 

p.(n.)= (a+b)p.(n.-1), ( n . = l , 2 , . . . )  

and that the conditional distribution of N given that N. = n. is the 
multinominal distribution 

q(n) = n.! Wti I' 

i=1 nil 
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We have q = q]"* with 

{ w i  (y = ei; i = 1,2,.. .) 
ql(Y) = 0. (otherwise) (9) 

V""~OC / r l  \ t l .* Hence p is the compound distribution p = 2_~,.=0P.~ .)ql with univariate 
counting distribution p. and multivariate severity distribution ql. Such 
compound  distributions are discussed by Sundt (1999). From this Theorem 1 
follows that for h = l , . . . ,m and n > 0 we have the recursion 

, , / , p ( n )  = 

and insertion of  (9) gives 

(a,,,, + b . , , ) q ,  ( u ) p ( n  - u ) ,  
o<u_<n 

nhp(n) = bw/ ,p (n  - el,) + a n , ,  Z w i p ( n  - ei) . 
i=l  

When n > eh, we can divide by nh, and we then obtain 

p(n) = b W/'p(n - el,) + a ~ wip(n - -  e l )  = 

~7It i= i 

a + ~ w h p ( n -  el,) + - • 
i ( :h  

Hence 

g(x) = b 7-.  yh fh (y / , )g (x  -- y, ,eh) + a wi ~ - ~ j } ( y i ) g ( x  - y ie i )  = 
: . h  )'h = I i= I y i =  I 

- -  - f , . ( y i ) g ( x  ,,/, ~ a + ex ,  l :h(y, , )g(x y,,e,,) + wi - f l i e i )  

Yh = I i ¢ h  y i  = l 

(10)  

Formula  (10) gives m recursions for g. We shall now combine these 
recursions by using Theorem 2. Multiplying (10) by x / , / x ,  and summing over 
those values of  h where x/, > 0, gives 

m Xh 
f t .  Z,,',, E (. > o/ (,, 

h=l yt~=l 

Compared to (10), this recursion has the advantage that it holds for all 
x > O. On the other hand, as it involves more algebraic operations, it would 
presumably be more time-consuming. 
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As a special case of (1 I) we obtain 

p ( n ) =  ( a + b ) ~ w , , p ( n - e , , ) .  ( n > 0 )  
Is= 1 

This recursion was also given by Sundt (1999). 

5B. Teicher (1954) discusses a class of  multivariate Poisson distributions that 
satisfy the recursion 

0 ,n o, 
n m  It= I I <il <...<ih <nl-- 1 

as well as analogous recursions where we divide by nk instead of n,,,; 
k =  1, ..., m - 1 .  In the bivariate case the corresponding compound 
distributions are discussed by Hesselager (1996) and Vernic (1999). 

6. EXTENSIONS 

6A. In the univariate case Sundt (1992) gave the following extension to 
Panjer's (1981) recursion. 

Theorem 3. l f  p satisfies the recursion 

p ( n ) = Z  a,+ p(n- i ) ,  (n= 1,2,...) 
i=1 

then 

g(x)= g ( x - y )  Z ai+ fi*O, ). ( x =  1,2,...) 
y=l i=1 " 

An analogous extension of the theory in Section 4 would mean to allow the 
recursion for p to go k steps back. In that connection we would need the 
following extension of Lemma I. 

Lemma 2. If for different integers il,..., I"/, E { 1, ..., m} and positive #ltegers 
kl, ...,kh 

E ~; Yi,j, ..., Z Yi~j; x Yi~ = x,) = ~b(n) 
j=l  j=  \ r = l  

(12) 
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"1-[ m f r o *  ( ,~ for  all x,  n > 0 such that 1 li=lJi v i l  ~> O, then 

m 

Z ~b(n )p (n -  Z~h=l kjeij) r[J~"i* (x / )=  
n > o  i= I 

I1 xis h 

Z ~ S°(Y" ...,Y/z; x ) g ( x  -- ~--~j'=, yjei,) ]--[f;;/*(yj). 
s = l  y~=l j = [  

( x  > 0 )  

Theorem 1 can be extended analogously. 
The condition (12) in Lemma 2 is in particular satisfied for 

q 

~o()'1 Yh; X) r ' [ ~  -- 1 (q = 0, [ , . . . ,h)  , . . . ,  = ; 
j = l  J" J 
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6B. Analogous to the extensions by Ambagaspitiya (1999) and Sundt (1999) 
of Panjer's recursion to Case 1 of Section 3, we could extend the results of 
the present paper to the case where the severity distributions are 
multivariate. 

6C. In the present paper we have concentrated on recursions for multivariate 
distributions. In practice one will often approximate distributions by 
functions that are not necessarily distributions themselves, and thus it can 
be of interest to have recursions for more general functions. In the univariate 
case some recursions originally developed for distributions have been 
extended to more general functions by Dhaene & Sundt (1998) and Sundt, 
Dhaene & De Pril (1998); Dhaene, Willmot & Sundt (1999) discuss 
recursions for some classes of functions related to distributions, in particular 
cumulative distribution functions. Some multivariate extensions have been 
given in Sundt (1998). Analogously, the recursions of the present paper 
could be extended to more general functions. However, as the conditional 
expectation in (6) does not make sense if we leave the realm of distributions, 
we have to reformulate that formula. We rewrite it as 

:(y,, ...,:h; x )  ./:,Oj)f,, ' - y;) = 
s =  I y s =  I \ j =  I j=h+ I 

IH  

~(n) y [ f f ' *  (x,).  
i=1 

This is the relation that we need between @ and qa in the general case, and as 
this is the relation applied in the proof of the lemma, the proof still holds in 
the general case. Analogous for Lemma 2. 
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LONG-TERM RETURNS IN STOCHASTIC INTEREST RATE MODELS: 
APPLICATIONS 

B¥ 

GRISELDA DEELSTRA 

ENSAE,  C R E S T  and VUB 

ABSTRACT 

We extend the Cox-Ingersoll-Ross (1985) model of the short interest rate by 
assuming a stochastic reversion level, which better reflects the time 
dependence caused by the cyclical nature of  the economy or by expectations 
concerning the future impact of monetary policies. In this framework, we 
have studied the convergence of the long-term return by using the theory of  
generalised Bessel-square processes. We emphasize the applications of  the 
convergence results. A limit theorem proves evidence of  the use of a 
Brownian motion with drift instead of the integral fg rudu. For practice, 
however, this approximation turns out to be only appropriate when there are 
no explicit formulae and calculations are very time-consuming. 

KEYWORDS 

Interest rates; Cox-Ingersoll-Ross model; Stochastic reversion level; Gen- 
eralised Bessel-square processes; Convergence; Bond prices; Life insurance. 

1. INTRODUCTION 

In this paper, which has been presented at the 5th AFIR International 
Colloquium, we concentrate on the convergence of  the long-term return 
t - l  fo r,,du, using a very general two-factor model, which is an extension of 
the Cox-Ingersoll-Ross (1985) model. Cox, Ingersoll & Ross (1985) express 
the short interest rate dynamics as 

dr, = ~(3' - rt)dt + ~v/-~tdB, 

with (Bt)t>O a Brownian motion and ~, 3' and cr positive constants. This 
model has some realistic properties. First, negative interest rates are 
precluded. Second, the absolute variance of the interest rate increases when 
the interest rate itself increases. Third, the interest rates are elastically pulled 
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to the long-term value 3', where ~ determines the speed of adjustment. 
Empirical studies like Chan, Karolyi, Longstaff & Sanders (1992) or Brown 
& Schaefer (1994), however, have shown that there is only weak evidence for 
the existence of a constant long run level of reversion. 

We stress the long-term reversion level and the long-term interest rates 
since they are important in several issues in finance and insurance. For 
instance, for pricing an option to exchange a long bond for a short bond; or 
for mortgage pricing where the long rate determines when homeowners 
refinance their mortgages. In insurance, whole-life insurances are long-term 
products and the long-term interest rates play a dominant role. 

We therefore follow the idea of  Brennan & Schwartz (1982), who 
introduced a two-factor model by using short-term interest rates and consol 
rates (see Hogan (1993) for comments on this model). 

In this paper, we assume that the short interest rate X is governed by the 
stochastic differential equation 

dXs = (213Xs + 6s)ds + vvl~sdBs 

with the dri f t  rate parameter 13 < 0, v a constant and 6 a non-negative 
predictable stochastic process such that fo 6,,du < oo a.e. for all t E N+. This 
stochastic differential equation has a unique (non-negative) strong solution. 

It should be noted that the stochastic process (6S)s>0 determines a 
reversion level. I f  it is chosen to be a constant and i f  v - -  2, the process 
(Xs).,.>0 is a Bessel-square process with drift, a process which is studied in 
great-detail by for example Pitman & Yor (1982) and Revuz & Yor  (1991). 
As the model is a generalisation of Bessel-square processes with drift, it is 
fearly easy to treat. 

In Section 2, we concentrate on the convergence almost everywhere of the 

long-term return t-lJ~r,,du. We are interested in this limit as 

(exp(fo,',,du)) '/' is the average of  the accumulating factor (also called 

return) which can be useful in the determination of  models of  participation 
in the benefit or of saving products with a guarenteed minimum return. 
Using the results of  Deelstra & Delbaen (1995a), we found that in most 

existing interest rate models, (exp(J 0 r,,du)) I/' converges almost everywhere 

to a constant independent of the current market, as the observing period 
tends to infinity. We then say that the model has the "strong convergence 
property" (SCP), whereas we refer to models with the "weak convergence 
property" when the returns converge to a constant, that will generally 
depend upon the current economic environment and that may change in a 
stochastic fashion over time. This terminology appeared in a preliminary 
version entitled "Do  interest rates converge" (1986) of Dybvig, Ingersoll & 
Ross (I 996). 
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Dybvig, Ingersoll & Ross (1996) proved that the assumption of  no- 
arbitrage implies that tile long forward rate and the asymptotic zero-coupon 
rate never fall and moreover, they show that nearly all models have the 
surprising implication that long run forward rates and zero coupon rates 
converge to a constant, which is independent of  the current state of the 
economy. El Karoui, Frachot & Geman (1998) discuss the theoretical and 
practical consequences of  this observation for existing models. They also 
focus on some issues encountered in empirical work which can be related to 
the behavior of  the long-term yield structure of  interest rates. 

As noted by El Karoui, Frachot & Geman (1998) and Pearson & Sun 
(1994), parameter estimates are generally very unstable over time and this 
fact can be interpreted as an indicator of misspecification: the parameters 
have to capture the remaining uncertainty due to the stochastic long-term 
rates. As illustrated by Pearson & Sun (1994) and C h e n &  Scott (1992), the 
estimation of  multi-factor versions with no stochastic long-term reversion 
level, show low mean-reversion for one of the state variables. El Karoui, 
Frachot & Geman (1998) argue that this low mean-reversion reflects the fact 
that the long-term yield is not constant over time. 

Using the almost everywhere convergence theorem of Deelstra & 
Delbaen (1995a), we show that it is possible to build a model with the 
WCP in which the long-term return converges almost surely to a reversion 
level which is random itself. As an example we adapt the model of  Tice & 
Webber (1997). 

In Deelstra & Delbaen (1995b), we found conditions necessary to prove the 
convergence in law of a sequence of transformations of the long-term return 
to a Brownian motion. In Section 3, we propose a generalised theorem with 
measure-invariant hypotheses and we recall the idea of  approximating 
Jo r,,du for t large enough. If the objective is to approximate the distribution 
of the long-term return of an investment made at time 0, it is appropriate to 
approximate f~ r,du by a scaled Brownian motion with drift for t going to 
infinity. In the past, many authors have proposed Wiener models since in the 
long term, the Central Limit Theorems are applicable. In insurance, e.g. 
Beekman & Fuelling (1991), Dufresne (1990), Giacotto (1986), Goovaerts et 
al. (1994, 1995) and Milevsky (1997) modeled the accumulating factor 
exp(f0r ,  du) by the exponential of a Brownian motion with drift for the 
derivation of  prices of different i'nsurance products like annuities and 
perpetuities. 

For practical reasons, we are interested in an approximation of  fo r,,du for 
all values of t. Therefore we suggest an improved approximation, which is 
discussed and evaluated by looking at bond prices. The results show that one 
should be very careful by replacing the integral .for,,du by a Brownian 
motion with drift. This approximation should only be used if no exact 
formulae are available and the exact computations are very time consuming 
like could be the case in the derivation of  annuities. 
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In Section 4, we turn to the pricing of  n-year temporary life assurances, 
whole-life assurances and endowment assurances. We calculate the 
present value and the variance and skewness of  this present value of  
the benefit under these contracts by using on one hand the Cox- 
Ingersoll-Ross (1985) model and on the other hand a Brownian 
motion with drift which is suggested by the Central Limit Theorem. The 
results show that in general, it is inappropriate to use the Brownian 
motion with drift instead of the Cox-Ingersoll-Ross (1985) model or its 
extensions. 

Without further notice we assume that a probability space (f], (~,)0<,, P)  
is given and that the filtration (ft)0<t satisfies the usual assumtStions 
with respect to IP, a fixed probability o-n the sigma-algebra .Yoo = v,>_05c,. 
Also B is a continuous process which is a Brownian motion with respect 
to (gr,)0_<,. 

2. FACTOR MODELS WITH S C P  AND W C P  

In this section, we show by using a theorem obtained in Deelstra & Delbaen 
(1995a) that it is easy to verify that existing generalisations of the 
Cox-Ingersoll-Ross model have the strong convergence property, which 
means that the long-term return converges to a constant, which is 
independent of  the earlier shape of the term structure and of  the current 
state of the economic environment. By looking at anologous convergence 
theorems in e.g. a Gaussian setting, we could as a matter of fact prove that 
most existing interest rate models have the SCP, but this will not be done 
within this paper. 

Afterwards, we use the model of Tice and Webber (1997) to show that 
multifactor models do not necessarily imply that the strong convergence 
property holds. 

It should be noted that the almost everywhere convergence limit of  
t-l fo r,du is interesting to study since economists and actuaries work with 
the multiplicative accumulating factor (return) over t years, namely 

, t  
exp(j0 r, du). The average return in one year, where the average is taken 

over ,  years, is denoted by (expff;  rodu)) '/'. If the observing period goes to 

infinity, it converges to the exponent" of the almost everywhere limit of  

t -I forudu. 

We recall from Deelstra & Delbaen (1995a) that if X is defined by 

dX,  = (29X,  + + 
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with (Bs).~>0 a Brownian motion,  /3 < 0, v a constant  and 8 a positive, 
'S predic table  stochastic process such that s-I  Jo 8,,du ,,.e. S with 8 : f~ ~ IR +, 

then the following convergence almost  everywhere holds: 

a . e ,  

-s X ,  du ~ 2fl " 

It is easy to show that for rt = o2Xt /4 ,  v = 2,/3 = - ~ / 2  and 8t = 4~7 t /o  2, 
we obtain a generalised two-factor  Cox-Ingersol l -Ross (1985) model 

drt = ~(7, - rt)dt + Crv/-~tdBt 

with (Ts).~>0 a positive stochastic reversion level process. To ensure that the 
interest rate process (rt)t remains a.s. strictly positive, we should add some 
hypotheses.  Compar ison  theorems for Bessel-square processes with stochas- 
tic reversion level (see Deelstra (1995)) can be used to obtain some. Indeed, if 
X (~) and )((2) are two Bessel-square processes with respectively stochastic 
reversion level 8(0, 8(2) and issued from x (I), X (2) with X (2) ~ X (I) and 
6 (2) >_ 8 (I) a.s. for all t E ~,+, then 

lp[~2)  >_ ~ l ) f o r  all t >_ 0] = 1. 

Now,  it is well-known that if X (I) is a Bessel-square process with constant  
dimension 6 (I) _> 2, then X~t l) > 0 a.s. Therefore,  hypotheses like 4~7¢/o2 _> 2 
a.s. for all t E IR +, imply the strict positivity of  (r~)t a.s. Remark  that this is 
the generalisation of  the constraint  in case of  the Cox-Ingersol l -Ross model. 

In this paper, we further choose the process (%).~.>0 such that t -1 foq'sds 
converges almost everywhere to a random variable q,~ = o2S/4~ : f2 ~ ~.+. 
The central tendency process (')'S)s>_0 may be dependent  or independent of  the 
short  interest rate process. 

We stress this fact since if the reversion level process (%)s>0 
is independent of  the short-term interest rates it is possible to deri~ee 
(quasi-)explicit formulae for bond prices by using scaling properties of  
Bessel-square processes. This approach has been used in the papers by e.g. 
Maghsoodi  (1996), Delbaen & Shirakawa (1996) and Deelstra (2000), who 
consider t ime-dependent but  deterministic (7.,)s>0. However  if the reversion 
level process (Ts)s>0 is dependent  on the short interest rate process, no such 
formulae can be obtained. 

As an example, let us describe the stochastic reversion level process (TS)s_>0 
by a Cox-Ingersol l -Ross (1985) square root  process 

a T ,  = - 7,)at + avS;,d , 

or by a Cour t adon  (1982) process 

d T t = ~ ( 7 * - T t ) d t + 6 7 t d B ,  with 3 2 < 2 k ,  
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with (/}*).,.>0 a Brownian motion and with £, 7* and 6- positive constants. The 
Brownian motion (/;',),>0 may be correlated with the Brownian motion 
(Bs),>_o of the short rate-process and this correlation may be in a random 
way. As mentioned above, we do not need the technical assumption of  fixed 
correlation or independence between the two factors of the model: for 
example, as in Brennan & Schwartz (1982). 

The two proposed reversion level processes are from the same family. They 
both remain positive for £, ~,* > 0, a property which is necessary if one wants 
to work with nominal interest rates. For £, 7* > 0, these processes are mean- 
reverting to the long-term constant value 7", where £ represents the speed of 
adjustment. The volatility increases in both cases with the reversion level. 

For this class of  stochastic reversion levels, t - I  foT.~ds "*, 7" and since 
~ = 4~.,/.~/o -2, t - l  fo6~ds 254 4~7,/o -2. By the theorem mentioned above 
(see Deelstra & Delbaen (1995a)), the long-term return is shown to converge 
almost everywhere to a constant: 

rsds = ds 

We conclude that the long-term return in these two-factors model of short 
interest rates satisfies the strong convergence property. The average 
accumulating factor, where the average is taken over a period t, is found 
to converge almost everywhere to a constant as the period t tends to infinity, 
and this constant is independent of the current state of  the economy: 

e f  £ r,,du a.e. e~r'. 

As another example, we treat the two-factor model proposed by Cox, 
Ingersoll & Ross (1985). They assumed a stochastic reversion level process 
depending on Y, the state variable which describes the change in the 
production opportunities, namely 

dr, = n ( 7 , ' -  r,)dt + crx/~tdB, 

d> = £( r, - 7,)dr 

with r~, £, o, ( and 6 strictly positive constants. We assume that ~ is a strictly 
negative constant. We here only theoretically show that this model also has 
the SCP for the long-term return: since t -~ fo Y.~ds ~,.e. _ ~/~,  we have that 
t -I  Jo 7.,ds ""; - ( / ~  and by the same reasoning as above, we obtain 

1 f l ~.~'. - 4  
- -  r ~ d s  

t Jo " ( 
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As a consequence of the convergence of the long-term return to a constant, 
we can conclude that the long-term yield l imr_~Y(t ,T)  is uniformly 
bounded above as by Jensen'~ inequality (see also Yao (1998)) 

Y(t, T) = /rr,,clu) l <_ exP(Tl~_ t / r l E [ r , ] d u )  . 

It is not surprising that the previous examples satisfy the SCP since in each 
model, the reversion level process itself is elastically pulled to a constant 
independent of the economic state. We recall that the convergence theorem 
from Deelstra 8,: Delbaen (1995a) has no such strong hypothesis; on the 
contrary, the assumptions are very general. For example, the reversion level 
process does not have to be continuous. The convergence theorem only 
assumes a positive, predictable reversion (6,,),,> 0 such that s -I JO 6,du ,,.e. ~, 
where ~ may be a random variable. Models in Which this 6 really is a random 
variable, would imply that the long-term return converges to a random 
variable which will generally depend on the economic environment. 

As an example, let us look at the general dynamic mean interest rate 
model in Tice & Webber (1997) 

dr = a(7 - r)dt + crrdzr 

d Y  = c (#r ( t , r ,% Y) - IOdt + ardzr  

where z~, z 7 and zr denote Brownian motions, r is the short rate and ~, the 
level to which the short rates revert. Y is assumed to be a vector process 
summarizing the remainder of the dynamics in the model. Tice & Webber 
(1997) have interpreted this model within the IS-LM framework, which is a 
standard model in macroeconomics (see e.g. Hicks (1937)). As a particular 
case, Tice & Webber (1997) study a three factor model with the third factor 
related to the availability of transactions credit within the economy. To 
simplify the notations, Tice & Webber (1997) restrict themselves to err, a7 
and ay being constant but it is possible to consider e.g. ar = av"7. 

In that case, it is clear that we are dealing with an extension of the Cox- 
Ingersoll-Ross model with a stochastic reversion level. This model has the 
weak convergence property if the process is not recurrent. 

3. APPROXIMATION OF THE LONG-TERM RETURN AND OF BOND PRICES 

In this section, we give a generalised version of the Central Limit Theorem 
from Deelstra & Delbaen (1995b). We study the convergence in law since it 
is always useful to know how the long-term return is distributed in the limit 
so that approximations can be deduced. We are particularly interested in an 
approximation of for ,  du since this term appears in discounting factors, 
bond prices, annuities, perpetuities, etc. As a natural candidate appears a 
Brownian motion with drift. This process has been used in insurance before 
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for modeling the integral for,du, e.g. in Beckman & Fuelling (1991), 
Dufresne (1990), Giacotto (1986), Goovaerts et al. (1994, 1995) and 
Milevsky (1997). In order to evaluate this approximation, we compare in 
the settings of the Cox-Ingersoll-Ross model bond prices calculated by using 
the approximating Brownian motion with exact values. 

In order to obtain convergence in law, we have to make some more 
assumptions about our family of processes: 

Theorem: Suppose that a probability space (~, (f,),>0, IP) is given and that a 
stochastic process X : ~ × ~,+ ~ ~,+ is defined by the stochastic differential 
equation 

dXs = (2/3Xs + 6s)ds + ",,,v'~.~8~ Vs ~ ~,+ 

with (B,.)s> 0 a Brownian motion with respect to (f't)t>0, v a constant and 
/ 3 < 0 .  
Let us make the following assumptions about the adapted and measurable 
process 6: F tx  IR + ~ IR+: 

/o o ,, 6,du a.e. 8 where ~ is a strictly positive real number; 
. J  

'fo' o sup,>_1 }- 6~du < ec a.e.; 

o Fora,  a+ K O .  

Under these conditions, the following convergence in distribution holds: 

V v2&l J0 X,, + 2/3) ,>_0 - 

where (Bt)t>o denotes a Brownian motion and where ' ~---+' denotes 
convergence m law. 

Since the proof  of this theorem follows more or less the lines of the result in 
Deelstra & Delbaen (1995b), the proof  is omitted and we immediately turn 
to the applications. 

Inspired by this theorem, we estimate fo X,,du with X as in the settings of 
the theorem by 

f '  -6,, , -v2~ 
au + V--~-~--B, 

for t large enough. In Deelstra & Delbaen (1995b), we used the hypothesis 
I t a . e .  - • I t- fo6,du ~ 6, to approximate f oX ,  du by the sum of the long-term 
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constant -6 /2f l ,  to which the long-term return a.e. converges, multiplied by 
t and a scaled Brownian motion: 

f0 x.,u by (,/ 
It should be noted that in the case that (6,,),, is a stochastic process we 
replace the stochastic term (-2fl)  -I J0 6,,du by a constant times t. 

Another drawback of  this estimator is that the moments of fo X,,du do 
not equal those of the estimator, although they are the same asymptotically. 
If the period observed is large enough, this is satisfactory. If the objective is 
to approximate the distribution of the long-term return of  an investment 
made at time 0, it seems to be appropriate to approximate fo Xudu by a 
scaled Brownian motion with drift since the Central Limit Theorems are 
applicable on long-term. 

However, one of our objectives is to look at the approximation 

, 

fo .V, du by -~-fit+ V - - ~ - B '  

to find estimations of bond prices for all maturities. Therefore, the moments 
of  fo X,,du and of the estimator should be equal for all t. A second drawbacl~ 
of the approximation immediately appears in the bond price, namely 

?(0,,) = Ex0 e - £  xo.. ~ e x p  t - 1 - -~ t  ) . 

It is not realistic that the estimating bond price is independent of the current 
short interest rate -'go. Remark that we work with the default-flee bond 
prices. In the sequel, we omit without notice the adjective "default-free". We 
further assume that there is no market price of  risk, since we only want to 
compare different approximations theoretically. 

In case of  the Cox-Ingersoll-Ross (1985) square root process, the 
approximating bond price equals: 

::'"1- -,  (,' 
This estimating bond price is a decreasing function of  the speed of  
adjustment parameter ~;, where in case of  the Cox-Ingersoll-Ross (1985) 
model, two cases are distinguished: for r0 < '7, the bond price is a decreasing 
function of the parameter ~, and for r0 > "7, it is an increasing function of ~. 
In Deelstra & Delbaen (1995b), we compared these approximating bond 
prices with values obtained in the Cox-Ingersoll-Ross setting and found 
that there is an underestimation of  bond prices if r0 < '7  and an 
overestimation if r0 > "% 
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Trying to motivate the approximation of the integral of the short-term 
interest rates by a Brownian motion with drift, we searched for an improved 
approximation. It seems logical to propose the approximation 

X,,clu ,.~ E[X',,]du + V gO# B,. 

Then the expectation is equal for all t and the variance is still asymptotically 
equal. 

Since (2",,),,>o is defined by the stochastic differential equation 

clX, = (2 f i x ,  + 6,)ds + v v / - ~ d & ,  

the expectation value of Xs equals: 

f.~ E[Xs] = e2~"Xo + e 2fls e-2"quE[6u]du, 
dO 

which can only be calculated if IF,[cS,,] is known and J0 ;lE[~5,,]du < oo. As 
above, it should be noted that in the case of (6,),, being a stochastic process, 
we replace the stochastic term (2fl) -l Jo6, ,du by a deterministic time- 
dependent term. But at least in this way, the current state X0 is introduced in 
the approximation. 

As an example of the approximation, let us look 
Cox-Ingersoll-Ross (1985) two-factor model: 

dr, = n(7 ,  - r , )d t  + Ov~rdBr  , 

& ,  = ~,(3`* - 3`,)dr + ~v/57~&. 

The approximation becomes 

r,,~. ~ ~Ir,,la,, + V - ~ 8 '  

,~3`*t+ - r 0 - 3 '  - - - -  ~ - ~  

, -e  
+ ~ - -ft. , ~ + V - - 2 - B , .  

The bond price is estimated by: 

[- - {'"/"] exp (3,*t (2@. 2 - 1 ) )  

( 1 - e - ' ~ ' ( r 0 - 3 ` *  7 0 - 7 *  ) =  tc 
exp t~ t~ tc 

again at the 

i_;  
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Let us evaluate the approximation in case of the Cox-Ingersoll-Ross (1985) 
single-factor model: 

drt = t~(3` - rt)dt + 0-v"~tdB,. 

An anonymous referee remarked (see Deelstra & Delbaen (1995b)) that in 
this case, the moments of the first proposal (1) are equal for all t, as soon as 
the current short interest rate r0 is distributed according to the steady state 
distribution of the square root process, namely the gamma-function with 
parameters c~ = 2 n 3 ` / ~  and/3 = 2t;,/o2: 

lEro r,,du = 3`t = leo 3`t + Bt • 

In reality, r0 is not distributed this way, so an improvement is also necessary 
here to obtain good estimations of bond prices: 

t t /--G2,.),Bt £ r , , d u . . ~  IE[r,,]du+v-~- . 

Substituting the mean of the short interest rate, gives the expression 

fO0 ' 1 - e - ~ t  /-G2"),Bt , , ,au 3`t + ( ,o  - 3`) + 

and the estimating bond price is found to be 

IEr0[e J0 ] ,-~exp 3`t ~ - 1  - - ~  (r0-"7) . 

In case of the previous approximation (I), we found for r0 < 3' an 
underestimation of the bond prices. The approximation in this paper is 
larger since for r0 < 3', a positive term is added to the exponent, namely 

1 - e - ' ~ t  

- -  (r0 - 3`). In the same way, the underestimation in case of r0 > 3  ̀is 
N 

reduced. 
For the Cox-Ingersoll-Ross (1985) square root process, an explicit 

formula for the bond price is given by Pitman & Yor (1982) and Cox, 
Ingersoll & Ross (1985). We recall the bond price from Pitman & Yor 
( 1982): 

ro I + ~/wcoth(wt/2)le~.,./Oae~2~.,/o~ 
[ ( f ) ]  exp - - - w  t 0 -2 C ~ ~  T N----~- J 

IEr0 exp - rudu = 2~. 
(cosh(wt /2)  + ~ / w  sinh(wt/2)).-w- 

with w = x / n  2 + 2 e  2. 
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Using various values for the parameters, we have calculated this exact 
bond price and the improved approximation, for a large range of maturities. 
The deviations are always very small. The largest absolute deviations appear 
when the bond price has a value about 0.5. The reason therefore is that the 
bond price is a decreasing convex function of maturity and that the 
endpoints are fixed, namely for t =  0, the bond price equals 1, and for 
t = oe, the bond price converges to 0. Consequently, the largest deviations 
are to be expected around one half. 

In Table 1, the exact bond prices and the estimating bond prices are 
calculated with the parameters estimated by Chan, Karolyi, Longstaff & 
Sanders (1992), namely ~ = 0.23394, "7 = 0.0808 and a = 0.854. The results 
are given for r0 = 0.04 and for r0 = 0.1. We present the maturities between 6 
and 10 since then, the bond price is approximately 0.5 and the largest 
absolute deviations appear. Although the absolute error as presented in 
Table I is not a monotonic function, one should note that the error in the 
rate -InP(0,  t)/t does reduce for large values of t. 
In comparison with the first approximation (I), the underestimation and 
overestimation are reduced but the difference between the exact result and 
the approximation remains too large to be useful in practice. This 
approximation should only be used if no exact formulae are available and 
the exact computations are very time-consuming like could be the case in the 
derivation of annuities. 

TABLE I 

BOND PRICES EXACT VALUES AND APPROXIMATIONS. 

r 0 =0.04 r0 = 0 .  l 

Exact Approx Approx-Exact Exact Approx Approx-Exact 

I .9565 .9617 .0051 .9068 .9116 .0048 

6 .7061 .7254 .0192 .5843 .5978 .0134 

7 .6587 .6788 .0200 .5386 .5521 .0134 

8 .6135 .6339 .0204 .4970 .5102 .0131 

9 .5708 .5912 .0204 .4591 .47[9 .0127 

10 .5305 .5507 .0201 .4244 .4367 .0122 

20 .2503 .2630 .0127 .1968 .2040 .0071 

30 .1171 .1239 .0068 .0919 .0959 .0039 

40 .0547 .0582 .0035 .0430 .0451 .0021 
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4 APPLICATIONS IN LIFE ASSURANCE 

In this section, we follow the lines of Parker (1993, 1994) for deriving the net 
single premium and the variance and the skewness of the present value of  the 
benefit payable under some insurance contracts. If the short-term interest 
rates are determined by a Cox-Ingersoll-Ross model, the exact formulae 
follow from the result of  Pitman & Yor (1982). We compare these values 
with the approximation derived in Section 3. 

Following the notation of  Parker  (1992), we denote by K the integer- 
valued discrete random variable which represents the number of  completed 
years to be lived by a life assured, whose age is exactly x year at the issue of  
the contract. We let Z be the present value of the benefit payable under a 
given assurance contract. As the precise definition of Z depends on the 
specific assurance under consideration, we look at some examples: the n-year 
temporary assurance, the whole-life assurance and the endowment assurance 
(see e.g. Bowers et al. (1986)). 

Under the n-year temporary assurance, the benefit of 1 is payable at the end 
of the year of  death of  a life assured, if the death occurs within n years from 
the date of  issue. Thus Z is defined to be: 

{ ( S o  `+' ) Z =  exp - X u d u  K = O, 1, ..., n - I 

0 K = n ,  n +  1, ... 

where (X,),,> 0 denotes as before the short interest rate, 
by the stochastic differential equation 

dX, = (213X, + 6t)dt + vv/-~db,.  

The m - t h  non-centered moment of Z is given by 

[ , ,  TM )1 IE[Zm] = Z IF. e x p t - m  Jo X, ,du klq-,, 
k=0 

defined 

(f"+') Z = exp - X ,  du 
dO 

K = 0 ,  1, ..., w - x -  1, 

where klqx denotes the probability that the life assured dies between his 
(x + k)-th and his (x + k + l)-th birthday. 

Remark that for a whole-life assurance, the benefit certainly will be paid 
once, namely at the end of  the year of death. Consequently, 
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where w is the least age so that /~ = 0. The m-th non-centered moment is 
given by: 

F ( r  )1 IE[Zm] = Z E exp - m  X, du klqx. 
k=O dO 

Under the endowment assurance contract, the benefit is payable at the end 
of the year of death if death occurs within n years of the issue date or, if the 
insured person survives n years, the benefit is payable at time n. 
Consequently, the present value Z of an endowment assurance is defined as: 

z = f e x p ( - f K + ' x . d , )  K = 0 ,  1, ..., n -  1 
t exp(-  J~' X, ,du)  K : ,,, n + 1, . . .  

The m-th non-centered moment of the present value is given by: 

IE[Z"'] = ~ E e x p , - m  j0 X.d~, klq., + ~ exp - m  X.du .p.,.. 
k=O 

Approximations of the net single premium of each contract are easily 
calculated. Indeed, approximations of the expected value of Z are obtained 
by taking m -: 1 and by substituting the estimating bond price, proposed in 
the previous section. 

We have evaluated this approximation in case of the Cox-Ingersoll-Ross 
single factor model, with the parameters estimated within Chan, 
Karolyi, Longstaff & Sanders (1992) and with r0 = 0.07. We used the 
mortality table HD (1968-72), which is commonly used in Belgium and 
which is based in Makeham's formula/x = k~g  c~ with for the ages between 0 
and 69: k =  1,000,268, s=0.999147835528, g=-0.999731696667 and 
c = 1.115094352734; and otherwise k = 1,292,726, g = 0.995564574228, 
c = 1.077130677635 and the same value of s. 

In Table 2, the exact values and the approximations are given for the net 
single premiums of n-year temporary life assurances and endowment 
contracts. Remark that for n larger than 60 years, both assurances become 
whole-life assurances since the life assured is aged x = 30 at the date of issue. 
We conclude that the approximations of the single net premiums are not 
encouraging. 

The variance and the skewness of Z also are easy to find since the 
variance is defined as 

var[Z]-- E[Z'-] - E[Z]'-, 
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and the skewness is defined as 

sk[Z] : E [ ( z  - EIzl/ ] 
var[Z] 3/2 

_ E [  Z3] - 31E[Z2] E[Z] + 21E[Z] 3 

-- var[Z]3/2 

Each of these terms can be calculated by substituting m = 1, 2 or 3 in IE[Z m] 
and by using the approximation of the m-th non-centered moment of the 
discounting factor, namely 

, , m2~v t \ 
l E [ e x p ( - m f 0  X,,du)] ~ e x p ( - m f 0  E[X,]dU-l- ~ ) . 

TABLE 2 

NET SINGLE PREMIUMS: EXACT VALUES AND APPROXIMATIONS 

life assurance  e n d o w m e n t  assurance  

Exact Approx Approx-Exact Exact ,4pprox ,4pprox-Exact 

I .00154 .00155 .000008 .9313 .9363 .0049 

10 .01453 .01484 .000314 .4785 .4944 .0158 

20 .02896 .02985 .000887 .2354 .2453 .0098 

40 .06222 .06479 .002572 .0894 .0935 .0041 

60 .07635 .07979 .003439 .0767 .0801 .0034 

80 .07664 .08010 .003459 .0766 .0801 .0034 

In Tables 3 and 4, the variance and tile skewness of Z are calculated, for Z 
being the present value of the benefit under an n-year temporary life- 
assurance, an endowment assurance and a whole-life assurance (if n is very 
large). Again, we used the formula of Makeham and the Cox-Ingersoll-Ross 
(1985) model with the same parameters as above. These results seem to be an 
indicator that the appproximation by a Brownian motion with drift can only 
be used in practice when there are no explicit formulae or when the 
calculation is very time-consuming. 

We further admit that the major problem of taking into account 
stochastic interest rates in long-term life insurance products, is that the 
policies become dependent. With regard to the problems of setting 
contingency reserves and assessing the solvency of life assurance companies, 
it is therefore interesting to study portfolios of assurance policies (see e.g. 
Parker (1992, 1997)). 
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TABLE 3 

THE VARIANCES: EXACT VALUES AND APPROXIMATIONS. 

life assurance  e n d o w m e n t  assurance  

Exact Approx Exact-Approx Exact Approx Exact-Approx 

1 .00153 .00147 .00006 .00949 .05587 .04638 

10 .01182 .01071 .00111 .02844 .07711 .04867 

20 .01763 .01587 .00175 .01849 .02994 .01148 

40 .02021 .01796 .00225 .01567 .01833 .00266 

60 .01902 .01658 .00243 .01653 .01897 .00244 

80 .01898 .01654 .00244 .01654 .01898 .00244 

TABLE 4 

THE SKEWNF~SS: EXACT VALUES AND APPROXIMATIONS 

llfeassurance e n d o w m e n t  assurance  

Exact Approx Exact-Approx Exact Approx Exact-Approx 

1 25.245 24.866 0.379 -3.685 0.313 -3 .998 

l0 7.540 7.421 0.119 -0.957 1.048 -2 .005 

20 5.019 5.002 0.017 0.433 2.046 -1.602 

40 3.655 3.719 -0 .064 3.668 3.961 -0.293 

60 3.724 3.891 -0 .166 3,733 3.904 -0.171 

80 3.731 3.902 -0 .170 3.731 3.902 -0 .170 
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A BSTRACT 

In this paper we study some bivariate counting distributions that are 
obtained by the trivariate reduction method. We work with Poisson 
compound distributions and we use their good properties in order to derive 
recursive algorithms for the bivariate distribution and bivariate aggregate 
claims distribution. A data set is also fitted. 
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Bivariate counting distributions, Poisson compound distribution, mixed 
Poisson distribution, Hofmann distribution, recursive algorithms, fit. 

I. INTRODUCTION 

Ahmed (1961) and Papageorgiou and David (1995) discuss some bivariate 
counting distributions, namely, the joint distribution ( N , M )  where 
N = No + NI and M = No + N2 with No, N, and N2 independent random 
variables such that 

~0  ° °  
 (No = n) = , > o 

n! ' -- 

IP(NI = n) = e - x ' -  n! ' n > 0  

E'(N2 = n) = e -x2 A~ n! ' n_>0 

i.e. NI and N2 are Poisson distributed while No is mixed Poisson distributed 
with mixing distribution whose cumulative density function (cdf) is U(A). 

ASTIN BULLETIN, Vo]. 30. No. I. 2000, pp 141-155 
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The joint probability function (P0 of (N, M) is given by 

mi,O,,m) 
I P ( N = n , M = m )  = Z ~(No=k)I?(N, = n - k ) I P ( N z = m - k )  

k=0 

For some choices of the mixing distribution A, Papageorgiou and David 
(1995) give the density of (N, M) by using Stifling numbers of the second 
kind, C-numbers and modified Bessel functions of the third kind. 

Using a general class of counting random variables that are simulta- 
neously mixed and compound Poisson, it is possible to give simple 
expressions for the joint distribution of (N, M) which avoid these numbers. 
Moreover our methodology gives easily the joint pf of the random sums 

(SN, S M )  : (Xl -{- "" - ~ - / ~ N ,  V l  -t- . . .  -+- YM) 
where X,, X2, ... (resp. YI, Y2, ...) is a random sample of observations from 
X (resp. Y). 

X and Y are independent nonnegative arithmetic random variables that 
are also independent of (N, M). The distribution of (SN, SM) is of  interest in 
insurance problems where it represents the aggregate claims distributions 
when X and Y are claim amounts. 

We will also extend the model to (N, M) = (N O + Nl, No + N2) where 
No, Ni and N2 are mixed Poisson distributions. 

Finally a data set will be fitted, b 
We will use the following conventions: ~ = 0 when b < a and 

P ( N = n ,  M = m ) = 0 w h e n n < 0 o r m < 0 .  k=a 
In order to prove the algorithms leading to recursive formulae for some 

compound distributions, we will use extensively the concept of  ordinary 
generating function (see Panjer and Willmot (1992) for a reference in 
actuarial sciences). 
Let a sequence {a,,, n = 0, I, 2, ...} of real numbers. 
The ordinary generating function of this sequence is defined as 

OO 

To°(Z) : ~ o.~' 

Of course z must be chosen such that the sum exists. 
Ordinary generating functions have the following nice properties: 
- There is a one-to-one correspondence between {a,,, n = O, 1, 2, ...} 

and To,,(z)  

1 J " T o ° ( z )  
- a,, n! dz" ]z=0 
- c,, = ~a,,  + /~b , ,  ~ T,.,,(z) = ~ T . , , ( z )  + ~ T b o ( z )  

- c,, = ~ akb, , -k ~ Tc . ( z )  = To°(z )Te , , ( z )  
#=0 d 

- T,,o,, ( z )  = z d z  Ta. ( z )  
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The philosophy for using ordinary generating functions is the following: 
- we look for a relation between some sequences a,,, bn, cn, ... 
- go in the z map where the calculations become easier (think of the 

convolution that becomes a product) 
- go back to the initial map by inverting the expression in z thanks to the 

properties. 

The notion of ordinary generating function and its properties trivially extend 
in a bivariate setting. 
In this paper, the sequence a,, or a(,,,m) in a bivariate setting will be 
probability functions. As a consequence we will not have problems of 
convergence for the ordinary generating functions: [z[ < oz. 
In the present case, ordinary generating functions are just probability 
generating functions (pgf). 
From now on we will only refer to pgfand we will use them extensively in the 
sense of ordinary generating functions. 

2. A GENERAL FAMILY OF RANDOM VARIABLES THAT ARE SIMULTANEOUSLY 

MIXED AND COMPOUND POISSON 

Walhin and Paris (2000b) review the characteristics of a general family of 
random variables that have the property of being mixed and compound 
Poisson distributions. 

A mixed Poisson process is such that 

1-i(n, t) = I?(N(t) = n) = e -'x' (At)"dU(A) " 
n[ 

where N(t)  gives the number of occurrences in (0, t]. 
By choosing 

n ( 0 ,  r) = e - ° ( ' )  

0( , )  >__ 0 

0(0) = 0 

~tO(t)d completely monotone 

Walhin and Paris (2000b) show that N(t)  can also be interpreted as a 
compound Poisson model: 

L(t) 

N(,)  = 
i=1 
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where L(t )  is Poisson distributed and independent of the ~i which are 
independent identically distributed (i.i.d.) random variables. We will use this 
property in the sequel. A good choice for the function O'(t) is the choice 
made by Hofmann (1955) and studied in Walhin and Paris (2000b) and in 
Kestemont and Paris (1985): 

0 ' (0  - P ( l + c t )  ~ P > 0 '  c > O ,  a>_O 

By integration, one has 

P [(l + ct)l-a-- l] O ( t ) - - c ( l  a) 

O(t) = pin(1 + ct) by continuity for a = I 

Particular cases of interest are Poisson (a = 0), Poisson Inverse Gaussian 
(a - -0 .5) ,  Negative Binomial (a = 1), Polya-Aeppli (a = 2) and Neymann 
Type A (a ~ oo, c ~ O, ac---+ b). 

Some properties are 
c~ 

~u(,)(z) = ~ n( , , ,  t)~" = n (0 ,  ~ -  t_,) = e - ° ( ' - <  

t l~0 

EN( t )  = pt 

VarN(t)  = pt + pact 2 

( 1 )  ~3N(I) ( Z ) = e -O( t ) (  l-~g'(z)  ) 

where ~bx(z) = E[z x] denotes the pgf of the random variable X. 
The probability law of the ~i is deduced from 

q(0) = 0 
oo 

(2) f~(z) = Z q ( k ) z k  = 1 O ( t -  tz) 
k=~ 0(I) 

q(n) s 
(3) - - - r + - ,  n > l  

q(n - 1) n 
c! 

r - -  - -  
1 + c t  

s = r(a - 2) 

One says that the {i belong to the (r, s, 1) class. The I in (r, s, 1) is 
connected with the n > 1 in (3). 
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From now on we will refer to the Hofmann distribution (Ho(p,  c, a)) 
with the convention that t = 1. In model 1, No will be Ho(p, c, a) while in 
model 2, Ni will be no(pi, ci, ai), i = 0, 1, 2. Note that in general, the 
(r, s, 1) class is denoted as (a, b, I) class. We use the notation (r, s, 1) class 
in order to avoid confusion with the a of  the Hofmann distribution. 

3. MODEL 1' B1VARIATE COUNTING VARIABLES 

In this section we work with the model 

(N, M) = (No + Ni, No + N2) 

where No is Ho(p, c, a) and Ni and N2 are respectively Po(AI) and Po(A2). 
The three random variables are assumed to be mutually independent. 

Let 

cp(u, v) = Z p ( n , m ) u " v "  
n=0 m=0 

be the pgf of  (N,M) where we use the notation 

p(n ,m)  = I?[N = n, M = m] 

Let ~b0, ~bl and ~b2 the pgf of  No, Nl and N2 respectively. 
We have 

N0 NI N~ 

= 

--_ e-0(l)[I -~duv)] e-,X~(I-,,)e-A2(I-v) 

Differentiating with respect to u and multiplying by u gives 

o4(u, ) . . . .  o duv) 
u o - t )uv Ou 4(u,v)+uAj4)(u,v) 

Inverting this expression gives 

,nin(n,m) 
np(n ,m)  = O(1) 

k=l 

kq(k)p(n  - k, m - k) + Aip(n - l ,m) ,  n > 0 

Differentiating with respect to v gives a symmetric recursion. 

We have proved 
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Theorem 1 
For model 1 the probability function is given by the following recursion 

p(O, O) = e -°(I)-'x'-~z 
min(n ,m)  

np(n,m) =0(1)  ~ k q ( k ) p ( n - k ,  m - k ) + A l p ( , , -  l ,m),  n > 0  
k = l  

H,i,O,m) 
mp(n,m)=O(1)  ~ k q ( k ) p ( n - k ,  m - k ) + A 2 p ( n , m - l ) ,  m > 0  

k = l  [] 

Let us note that for the particular cases where No is Negative Binomial or 
Poisson Inverse Gaussian, we have easier recursions. 

The case Negative Binomial (a = 1) is given in Hesselager (1996) where 
the fact that the Negative Binomial belongs to the (r, s, 0) class is used: 

lF'(U0 = 0) = (1 + c) -'e 

I?(U0 = k) s 
~ ( N o = k _ l ) = r + ~  , k > O  

with 

C 
r m 

l + c  

p - - c  
S m 

l + c  

The Negative Binomial can be expressed in the following explicit notation: 

In this case the recursion becomes (Hesselager (1996)): 

p(0, 0) =(1 + c)-e~e -x'-A2 

p(n,m) =(r  +S)p(n  - 1, m - 1) + ~ p ( n  - l , m) 

A t r p ( n - 2 ,  m - l ) ,  n > 0  
n 

p(n,m) =(r  + S ) p ( n -  1, m - 1) + A2p(n,m - 1) 
IT/ I17 

AZrp(n - 1, 117 - 2), I1l > 0 
m 
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The case Poisson Inverse Gaussian (a = 0.5) is derived without using the 
distribution of the ~i (see equations (1) and (2)). The pgf of (N, M) has the 
following direct properties: 

(4) qS(u, v) =e @ ((' +c(, .... ))½-, ) e-A, (1-u) C-A2(I- ,,) 

~(14, V) ~1-] ([ ~_C~2llU]@ ~(lg, U) 

0 z 
v) 

(1 +c( l  - uv)) ]dp(u'v) 
p2vZ 2Alpv 

-t 1 -+- c(l - u v )  q~(u, v )  + (I + c ( l  --  uv)) ½ (9(u, v) 
0 2 ( l)~ ) 

(5) (1 + c ( 1 -  uv))~uz~b(u,v ) =~b(u,v) -A~(1 + c ) + A ~ c u v -  Icu+P 2'U2 

+ ~uq~(u,v)(2A, (l q-C)--2AICuv+lcv) 

From (4) we easily find the initializing terms: 

p(0, 0) = e -~' -;~2-2~((1+c) ° ' -  i) 

p ( l , o )  = 

p(0, l) = , 2p(0, 0) 

p ( I , l ) =  AIA2+(I + 

Inverting (5) and using its similar expression in v gives 

3 7 
(I +c)n(n- l)p(n,m)= c(n- 1 ) (n -~ )p (n -  l , m -  1)--~1 c(2n-~)p(n-Z,m-1) 

+2A, (1 +c ) (n -  1)p(n- 1,m)-A~(l+c)p(n-2,m) 

+k~cp(n -3 ,m-  l)+p2p(n-2,m-2), ,,>2 

(I +c)m(m- l )p(n,m) = c(m-1)(m-~)p(n- l ,m- ! ) -  A2c(2m-2)P(n-1,m- 2) 

+2A2(1 +c ) (m-  l)p(n,rn-1)-A~(l+c)p(n,m-2) 
+A~cp(n-l,m-3)+p2p(n-2,m-2), m>2 

We recall that p is one of the parameters of the Hofmann distribution 
(HoCo , c, a)) while p(n, m) is the pC of (N, M). 
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4. MODEL 1' B I V A R I A T E  R A N D O M  S U M S  

Now let us study the bivariate vector 

(aN, SAg) = ( X ]  Or- ... + XNo+N,, YI + ... + YNo+N2) 

whose pf is given by 
(DO O0 

Z Z  , , . m  ~[S N = x, S M = y] = g(.¥, y) = p(n, m)p~ ( x ) f y  ( y )  

n=0 m=O 

where fx(x)  (resp. fr(y)) is the pf of X (resp. Y). Our aim is to give a 
recursive scheme in order to derive the pf g(x,y). 

Let ~(u, v) be the pgf of (SN, SM) and let ~bx(u) (resp. ~by(v)) be the pgf 
of X (resp. Y). 
We have 

oo oo 

= 

(6) = e-O(0[ I -Vd~.,'(,,)~,'@))] e -;~, (l-¢,.,.(u)) e -~  (~-~,.(,)) 

Differentiating with respect to u and multiplying by u gives 

O~(u, v) -0(1' OO2~(u,v) (7) u Ou )u ~ ~(u,v)  + AlU if(u, v) 

where ~ ( u , v )  = ~b¢(~bx(U)~br(v)) is the probability generating function of 
the pair 

( X , + . . . + X ~ ,  Y , + . . . +  Y~) 

whose pf will be denoted by 

h ( i , j )=]? (X l+ . . .+X~=i ,  Y I + . . . +  Y ( = j ) ,  i>O, j > O  

Inverting (7) gives 

X V X 

(8) xg(x,y) = 0(1) ~ Z ih(i,j)g(x - i, y - j )  + A 1 Z  ifx(i)g(x - i,y), x > 0 
i=0 j = 0  i=0 

The following theorem is a trivial extension of the bivariate Panjer (1981) 
algorithm given in Walhin and Paris (2000a). The proof is given for 
illustration. 
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Theorem 2 
The probability function h (x,y) of  

( x ,  + ... + x ~ ,  y~ + ... + y~) 

is given by 

(9) h(0,0)=l 

(10) h(x,y)= 

(11) h(x,y)= 

0(1-fx(O)fy(O)) 
0(~) 

l 

1 -rfx(O)fy(O) 
.,. ,, . (y)\) 

r+s , x - i ,  x y , 

1 

1 -rfx(O)fy(O) 
X ~ 

( Z Z ( r + sJ-)fv( i)f y(j) h ( x -  i ,y- j )  + q(1 ) f  x( x ) f  v(Y ) , 
\ i j Y 

where we use the notation 

X .|' X y 

Z Z = Z "( ' , ; I  - w(o,o 
i j i=0 j = 0  

x>0 

y>0  

Proof 
Equation (9) follows immediately from equation (2). 
Now we prove equation (10). We have 

(12) k q ( k ) = r ( k - l ) q ( k - l ) + ( r + s ) q ( k - l ) ,  k > l  

d @x(u)g?y(V) and summing Multiplying each side of (12) by ~v --t (u) 
k =  1 to k =  cx~ we find 

_o %(u, v) - q(1)dox(u)Oy(v) 
Ou 

from 

= r~u ~((u, v)~bx(u)Oy(v) 

d 
+ (r + s)~((u, v)-~u~bx(u)~by(v) 

- (r 4- s)q(O)ff~bx(u)~by(v) 
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Multiplying by u and inverting gives 

X . "  I ' 

xh(x,y) = r  Z ~ (x - i)f~,(i)fy(l')h(x - i, y - j )  
i=0 j=0 

.X" P 

+ (r + s) ~ Z ( fx( i ) fy( j )h(x-  i, y - j )  
i=0 j = 0  

+ q(1 

Rearranging gives (10). 
(I 1) follows similarly. [] 

Of course more general results can be derived if (12) becomes 

kq(k) = r ( k -  I ) q ( k -  I) + (r + s ) q ( k -  1), k > m 

for a general m. In this case, one says that the {i belong to the (r, s, m) class. 
With the symmetric expression of (8) we have the following result: 

Theorem 3 
For tile model 1, the probability function g(x,y)  of  the compound distribution 
is given by the following recursion: 

(13) g(O, O) = e-°(l-f*(°lf"(°))e-A' (I-f.v(O))e-,{2(I-fr(O)) 

'j~=o xh ( i j )g (  x (14) g(x,y) = 0(1) - t - i, y - j )  
i=l 

X • 

+ A, ~-]£fx( i )g(x  - i,y), x > o 
i= l  X 

y . 

(15) g(x,y) =0(1 ~ "  ( ~/__.J-h,i,j,g(x-i, y - j )  
i=0  j = l  Y 

y 

+ A2 --~___J--fy(j)g(x,y - j ) ,  y > 0 
j=l Y 

where h(iff) is given by theorem 2. 

Proo[" 
Equation (13) is immediately derived from equations (6) and (2). 
Equation (14) follows immediately from equation (8) while its similar 
expression valid for y > 0 gives (15). [] 
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5. MODEL 2 

In this section we consider the following model 

(X, M) = (Uo + Xj, No+N2) 

where Ni are independent Ho(pi, ci, ai). The corresponding pf of  the ~i are 
denoted by q~. 
Then we have the following results. The proofs are similar to those given in 
sections 3 and 4. So we omit them. 

Theorem 4 
For model 2, the probability function p(n,m) is given by the following 
recursion: 

p ( 0 , 0 )  = e - °° ( I ) - ° '  (I)-o~o) 

,.i.(,,m) i -"--," " 
p ( n , m ) :  Z -Oo(I)qo(i)p(n-i,m-i)+~_. t-O,(l)ql(i)p(n-i,m), n > 0  

i=1 n i=1 n 

' m i n ( n , m )  . m i 

p ( n , m )  ~ lo0( l )qo( i )p(n- i ,m- i )+~mO2( l )q2( i )p(n ,m- i ) ,  m > 0  
i=1 "= 

[ ]  

Theorem 5 
For model 2, the probability function g(x,y) is given by the following 
recursion." 

g ( 0 , 0 )  = e -° ' '  (1-fv(0)f,.(0) )e-O, (I-J:,.(0)) e-0.~(I -fr(0)) 

x Y i . .  x i 

g( x'y ) = O°( l ) Z j~--o xh( t d)g( x - i' y - j) + Ol ( l ) i~t xb x( i)g( x - i'Y ) - -  "= . x > O 

.v y • I' • 

where h(i, j) is given by theorem 2 and bx(k) is given by 

b~(o)  = I O ~ ( I - f x ( o ) )  
0 . ( t )  

' ; ) 
bx(/,-) - I - , . : ~ , ( 0 )  + . ~ . ) f , & ) b x ( k  - i) + q.(l)f ,~(/ ,-)  , k > 0 

i =  I 

and by(k) is defined shnilarly. [] 
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R e m a r k :  for the case where the Ni belong to the (r, s, 0) class, Hesselager (1996) 
gives an easier algorithm. However, for the case Negative Binomial which is a 
member of the (r, s, 0) class, numerical examples show that this algorithm is 
not stable while the combination of theorems 5 and 2 give stable recursions. 

6. A FIT 

We use in this section a set of  accident data  used in Papageorgiou and David 
(1995) for illustration. 

We fit model 1 for the following choices of  No: 
- a = 0: Poisson 
- a = I: Negative Binomial 
- a = 0.5: Poisson Inverse Gaussian 
- a free: general Hofmann  distribution. 

The fits are proceeded by maximum likelihood. N and M are accident 
observations. 
It can be shown that 

= M  

where 19 (resp. ~ is the empirical mean of  N (resp. 34). 
This reduces the number of  estimates to be found by numerical techniques. 
For  the Hofmann  fit we need to maximize numerically the loglikelihood 
subject to three variables. 
We find the following estimates: 

T A B L E  I 

MAXIMUM LIKELIHOOD ADJUSTMENT 

Ai A2 p c a Ioglihelihood 

Poisson  1.0319 1.2724 0 .6388 0 - 112.7380 

P IG 1.0893 1.3298 0 .5815 0 .8432 0.5 - I  12.3577 

N B  1.0939 1.3344 0 .5769 0 .4092 I - I 12.3802 

H o f i n a n n  1.0796 1.3201 0 .5912 1.6697 0 .2546 - I  12.3467 

Based on the comparison of  the Ioglikelihoods, it does not seem necessary to 
work with a more complicated model than the one obtained with all N i ,  

i = 0, 1, 2 being Poisson distributed. A likelihood ratio test would not reject 
this hypothesis. 

The original data  with fitted values are in the next table: 
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TABLE 2 

O B S E R V E D  A N D  F I T T E D  D I S T R I B U T I O N S  FOR T H E  N U M B E R  O F  A C C I D E N T S  
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N M 0 I 2 3 4 5 6 7 

o.bs 5 6 4 I I 0 0 0 

a = 0 4.16 5.30 3.37 1.43 0.45 0.12 0.02 0.00 

a = 0.5 4.29 5.71 3.80 1.68 0.56 0.15 0.03 0.01 

a = 1 4.29 5.73 3.82 1.70 0.57 0.15 0.03 0.01 

a = 0.2546 4.29 5.67 3.74 1.65 0.54 0.14 0.03 0.01 

oh. ' ;  ' 

a = 0  

a = 0 . 5  

a =  

a = 0.2546 

4 9 3 4 3 0 0 0 

4.30 8.13 6.86 3.63 1.38 0.41 0.10 0.02 

4.68 8.06 6.58 3.46 1.33 0.40 0.10 0.02 

4.70 8.03 6.53 3.43 1.32 0.40 0.10 0.02 

4.63 8.10 6.65 3.50 1.34 0.41 0.10 0.02 

obs 

a = 0  

a = 0 . 5  

( . / ~  

a = 0.2546 

2 5 5 4 2 0 0 0 

2.22 5.56 6.14 4.06 1.87 0.65 0.18 0.04 

2.55 5.39 5.52 3.57 1.65 0.59 0.17 0.04 

2.57 5.35 5.47 3.55 1.65 0.59 0.17 0.04 

2.50 5.44 5.61 3.63 1.67 0.59 0.17 0.04 

obs 

a = 0  

a = 0 . 5  

a ~  

a = 0.2546 

I 6 4 I I 2 I 0 

0.76 2.39 3.30 2.70 1.51 0.62 0.20 0.05 

0.92 2.32 2.93 2.40 1.39 0.60 0.21 0.06 

0.94 2.30 2.91 2.41 1.41 0.62 0.21 0.06 

0.90 2.34 2.97 2.41 1.37 0.59 0.20 0.06 

obs 

a = 0  

a = 0 . 5  

a = 0.2546 

0 0 0 2 0 0 0 0 

0.20 0.74 1.23 1.22 0.82 0.40 0.15 0.05 

0.25 0.73 1.11 1.14 0.85 0.47 0.20 0.07 

0.26 0.73 1.11 1.16 0.87 0.49 0.21 0.07 

0.24 0.74 1.12 1.12 0.82 0.45 0.19 0.06 

obs 

a = O  

a = 0 . 5  

a =  

a = 0.2546 

0 0 I 0 0 0 0 0 

0.04 0.18 0.35 0.41 0.33 0.19 0.08 0.03 

0.05 0.18 0.32 0.41 0.39 0.29 0.16 0.07 

0.06 0.18 0.32 0.42 0.40 0.29 0.16 0.07 

0.05 0.18 0.32 0.39 0.37 0.27 0.15 0.06 

obs 

a = O  

a = 0 . 5  

U =  

a = 0.2546 

0 0 0 0 I 0 0 1 

0.01 0.03 0.08 0.11 0.10 0.07 0.03 0.01 

0.01 0.04 0.08 0. t l  0.14 0.13 0.10 0.05 

0.01 0.04 0.08 0.12 0.14 0.13 0.09 0.05 

0.01 0.04 0.07 0.11 0.13 0.12 0.09 0.05 
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We have also conducted a X 2 test in order to judge the goodness of  fit. As 
usual it is important to be extremely cautious with the results of  the ~2 test. 
The grouping rule we have adopted may lead to conclusions that are not 
matched by another grouping rules. Moreover the X 2 test is an asymptotic 
test. However we have only 79 observations in our data set. 

The grouping rule we have adopted is the rule A in Lemaire (1995), i.e. all 
the theoretical values > 1 and 80% of  the theoretical values > 5. 

The cells have been grouped as follows: (0,0), (0,1), (0, > 2), (1~0), (1,1), 
(1,2), ( i , >  3), (2,1), (2,2), (2,3), (2,_> 4), (3 ,>  0), (_> 4 , >  0). The X 2 values 
as well as the associated p-values are given in the following table. 

TABLE 3 

GOODNESS OF FIT TEST 

X. 2 df p-~'atue 

Poisson 5.36 9 0.80 

PIG 6.48 8 0.59 

NB 6.42 8 0.60 
Hofmann 6.42 7 0.49 

Based on this figures, all the fits are acceptable but the Poisson fit wins. This 
is coherent with the conclusions drawn after analysing the loglikelihoods. 
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ECONOMIC ASPECTS OF SECURITIZATION OF RISK 

BY 

SAMUEL H. COX, JOSEPH R. FAIRCHILD AND HAL W. PEDERSEN 

ABSTRACT 

This paper explains securitization of insurance risk by describing its essential 
components and its economic rationale. We use examples and describe 
recent securitization transactions. We explore the key ideas without abstract 
mathematics. Insurance-based securitizations improve opportunities for all 
investors. Relative to traditional reinsurance, securitizations provide larger 
amounts of coverage and more innovative contract terms. 

KEYWORDS 

Securitization, catastrophe risk bonds, reinsurance, retention, incomplete 
markets. 

1. INTRODUCTION 

This paper explains securitization of risk with an emphasis on risks that are 
usually considered insurable risks. We discuss the economic rationale for 
securitization of assets and liabilities and we provide examples of each type 
of securitization. We also provide economic axguments for continued future 
insurance-risk securitization activity. An appendix indicates some of the 
issues involved in pricing insurance risk securitizations. We do not develop 
specific pricing results. Pricing techniques are complicated by the fact that, in 
general, insurance-risk based securities do not have unique prices based on 
axbitrage-free pricing considerations alone. The technical reason for this is 
that the most interesting insurance risk securitizations reside in incomplete 
markets. 

A market is said to be complete if every pattern of cash flows can be 
replicated by some portfolio of securities that are traded in the market. The 
payoffs from insurance-based securities, whose cash flows may depend on 
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hurricanes, earthquakes and so on, cannot be closely approximated by a 
portfolio of the traditional assets that are already traded in the market such 
as stocks and bonds. This is because there are states of the world reflected in 
insurance-based securities that are not reflected by the existing traditional 
securities. In a complete market a new security can always be priced relative 
to existing securities by finding a replicating portfolio and pricing it. The no- 
arbitrage property implies that the new security and the replicating portfolio 
must have the same price because they have the same payoffs. However, if 
the market is incomplete a replicating portfolio may not exist and arbitrage 
considerations alone may not determine a unique price. The appendix 
describes a method for dealing with incompleteness. In the main body of the 
paper we do not discuss arbitrage based pricing theory further but the reader 
who will ultimately be involved in the pricing of these products should bear 
in mind that there are fundamental practical differences between products to 
be valued in complete markets and products that are valued in incomplete 
markets. Incompleteness is one of the unusual characteristics of insurance- 
based securities relative to many other securitizations. It is very interesting to 
note that the fundamental reason insurance risk securitizations tend to reside 
in incomplete markets - namely that states of  the world reflected in 
insurance based securities are not reflected by the existing traditional 
securities, is also the fundamental reason why these securities provide 
diversification of  investment risk and thereby make these attractive 
investments for many portfolio managers. Although we will not explicitly 
use the notion of  incompleteness in the main body of the paper because the 
focus of  this paper is not on technical valuation, an actuary involved in these 
securitization deals must be aware of these fundamental pricing issues. 

Two actuarial principles, diversification and contractual risk transfer, 
play important roles in most securitizations, yet relatively few actuaries work 
in the securitization business. It seems that the opportunities for actuaries in 
securitization will increase and we may see more actuaries working in this 
field in the future. 

We begin this paper with an idealized catastrophe property risk 
securitization. This example illustrates the key ideas without abstract 
mathematical or financial theories. We hasten to emphasize that although 
the key ideas of securitization can be illustrated without these theories, the 
practical implementation of  a securitization deal requires financial theory for 
pricing and risk measurement. As a broad definition, securitization means 
"the bundling or repackaging of rights to future cash flows for sale in capital 
markets." In all the cases we mention here, and more generally in all of the 
deals we know of, the repackaging provides a more efficient allocation of  
risk. This process can be costly, but evidently the reallocation is valuable 
enough to make it worthwhile. 

After describing this simple example, we turn to the common features 
of securitization and then review some recent catastrophe risk securitiza- 
tions. We compare catastrophe risk securitizations with the asset secur- 
itizations: bond strips, mortgage-backed securities, life insurance policy- 
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holder loans, and life insurance premium loadings. The Chicago Board of 
lyade offers options based on property insurance loss ratios. We mention 
them only to contrast them with catastrophe risk securitizations. We 
discuss some possible future uses of securitization of insurance risks. The 
paper ends with a discussion of the economics of securitization. We offer 
a discussion of the reasons for these transactions and attempt to answer 
the questions: 
o Why do investors buy insurance-based securities? 
o Why do insurers use securitizations to cover insurable risks? 

2. S E C U R I T I Z A T I O N  OF C A T A S T R O P H E  R I S K  

We will give a simple illustrative idealization of catastrophe risk bonds - 
customarily referred to as cat bonds. During 1997 and 1998 there were 
successful catastrophe risk bond issues by USAA, Swiss Re, Winterthur, 
St. Paul Re, and others. Later we will provide an economic rationale for 
the supply (why to insurers sell cat bonds?) and demand (why do investors 
buy cat bonds?). For now we focus on the mechanics of these 
transactions. 

We illustrate the model with two examples, first a single-period model 
and second a two-period model. In each example catastrophe risk has a 
binomial structure. There is no interest rate risk in either example. The 
market interest rate on risk-free securities is a constant 8% per year. The 
probability of a catastrophe that triggers a "default" is a constant 3% per 
year ~. These values are merely to illustrate the mechanics of the 
transactions. In practice we would use the prevailing interest rate term 
structure and a model for insurance losses to determine the probabilities. 
Embrechts and Meister take this approach to develop a valuation model for 
exchange-traded insurance options [12]. 

Example 1. The first example is similar to the USAA bonds. The face 
amount is 100 and the annual coupon rate is 12%. Coupon and principle are 
at risk. This means that the principal and coupon are paid only if no 
catastrophe occurs during the period [0, 1]. The total principal and coupon 
112 is paid at time I only if no catastrophe occurs during the period [0, 1]. 
The catastrophe states and probabilities, along with the corresponding cat 
bond cash flows are shown in Figure 1. The positive cash flow is paid to the 
bondholders; the negative cash flow is the price the bondholders pay to 
obtain the rights to the future cash flow. 

Failure to pay a c o u p o n  or to repay the principal  because a ca tas t rophe  occurs  is not  a 
defaul t  in the legal sense. The  ca tas t rophic  event  is well-defined in the bond  indenture  and  
buyers  and  sellers unde r s t and  the c i rcumstances  under  which c o u p o n s  and  principal  will not  
be paid. Nevertheless ,  it is convenien t  to refer to this event  as a default .  
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-100.59 

09 // 

0.03 

112 

Up - No Catastrophe: 

D o w n -  Catas t rophe  

FIGURE I: One-Period Catastrophe Risk Bond Cash Flow. 

The expected bondholder payments, averaged over the catastrophe 
distribution, are (7:(1)= 112(0 .97)+(0) (0 .03)=  108.64. The discounted 
expected value, using the constant 8%, is the price of  the cat bond: 

I 
1.08 [108.64] = 100.59 

Consider a bond that has the same prospective cash flow (i.e., 12% coupon), 
but no possibility of default. This is called a straight bond. The price of the 
straight bond at the time the cat bond is issued is found by discounting the 
cash flow: 

I 
1.08 [112] = 103.70 

The cash flows of the straight bond are shown for comparison to the cat 
bond in Figure 2. 

-103.70 

09 // 
/ 

I> 

0.03 

112 

112 

Up - No Catastrophe: 

Down - Catas t rophe  

FIGURE 2: One-Period Straight Bond Cash Flow. 

Suppose an insurer (like USAA) issues the cat bond and simultaneously buys 
the straight bond. The straight bond is more expensive. The trades cost the 
insurer 3.11 per 100 of  face value (ignoring transactions costs). What does 
the insurer get in return? If there is no catastrophe, the insurer's net cash 
flow is zero because it receives the straight bond coupon and pays the cat 
bond coupon. However, if there is a catastrophe, it still receives the straight 
bond coupon and principal (112), but does not pay the corresponding cat 
bond cash flow. In effect, the insurer has purchased a one-year catastrophe 
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reinsurance contract which pays 12 in case a catastrophe occurs during the 
period. This increases the insurers capacity to sell insurance for one year 
(just as a traditional reinsurance does) by 112 at a cost of 3.11 per 100 of 
bond face value. The rate on line [ for this "synthetic" reinsurance is 
100 × 3.1 I/I  12 -- 2.78 per 100 of coverage per year. The net cash flow is 
shown in Figure 3. 

-3.11 

0 . 9 7 /  

0.03 

0 

Up - No Ca tas t rophe  

Down - Catas t rophe  

112 

FIGtJRE 3: One-Period Net Cash Flow: Long Straight Bond and Short Ca! Bond. 

There are several multiple period cat bonds. The majority are essentially 
extensions of the concept illustrated in Example 1 in that the bond 
"defaults" as soon as a catastrophe occurs, regardless of when the 
catastrophe occurs. The bond indenture may specify that future coupon 
and principal payments to bondholders are forfeited as soon as a 
catastrophe occurs. Alternatively it may specify that coupons only are at 
risk or that coupons and a fraction of the principal is at risk. USAA actually 
issued one series with coupon only at risk and another with principal and 
coupon at risk. The Swiss Re [20] and Yasuda Marine [29] bonds have a 
single limit applicable over several years. The Winterthur bonds take yet 
another form allowing the limit to be reset each year. Our second example is 
like the bond Winterthur issued in 199712]. 

Example 2. Coupons only are at risk. This means that the principal of 100 is 
paid to the bondholder at k = 2 with probability one. A coupon of 12 is paid 
at k = 1, 2 provided no catastrophe occurs during the period [ k -  I, k]. The 
catastrophe states and probabilities, along with the corresponding cat bond 
cash flows are shown in Figure 4. The positive cash flows are paid to the 
bondholders, the negative cash flow is the price the bondholders pay to 
obtain the rights to future cash flows. 

For a one-year policy, ra t e  o;1 l ine is the ratio of  premium to coverage layer, usually 
multiplied by 100. The concept  is not usually applied to multiple year policies. 
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-106.49 

112 

12 ~ 100 

~ 1 1 2  

100 

Up - No Catastrophe (0.97) 
Down - Catastrophe (0.03) 

FIGURE 4: Two-Period Catastrophe Risk Bond Cash Flow. 

As in the first example, the expected bondholder payments are 
g(I) = 12(0.97) = 11.64 and g(2) = 100 + 11.64 = 111.64. The discounted 
expected value is the price of the cat bond: 

'E 1.08 I 1.64 + I l 1.64 = 106.49 

Consider a bond that has the same prospective cash flow (i.e., 12% 
coupons), but no possibility of default. This is called a straight bond. The 
price of the straight bond at the time the cat bond is issued is found by 
discounting the cash flows: 

1.08 ~ -- 107.13 

The cash flows of  the straight bond are shown for comparison to the cat 
bond in Figure 5. 

-107.13 

112 

~ 1 1 2  

112 

~. 112 

Up - No Catastrophe (0.97) 
Down - Catastrophe (0.03) 

FIGURE 5: Two-Period Straight Bond Cash Flow. 

As before, suppose an insurer (like Winterthur or Swiss Re) issues the cat 
bond and simultaneously buys the straight bond. The trades cost the insurer 
0.64 per 100 of  bond face value and provide 12 units of coverage per period. 
The "rate on line" is 100 x 0.64/12 = 5.33, but one must keep in mind that 
this is the rate paid once at the beginning of the policy period for a two year 
cover. If we must compare this to a one year policy, we should divide by two: 
5.33/2 = 2.66. In each of  the two future periods, if there is no catastrophe, 
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the insurer's net cash flow is zero because it receives the straight bond 
coupon and pays the cat bond coupon. However, if there is a catastrophe in 
either period, it still receives the straight bond coupon (12), but does not pay 
the cat bond coupon. In effect, the insurer has purchased a two year 
catastrophe reinsurance contract which pays 12 in case a catastrophe occurs 
during either period. This increases the insurers capacity to sell insurance for 
each of the next two years by 12 at cost of 0.64 per 100 of face value (or 5.33 
single premium per 100 of coverage for a two year cover). The net cash flow 
is shown in Figure 6. 

- 0.64 

0 

o ~ 12 

12 w 

Up - No Catastrophe (0.97): 
Down - Catastrophe (0.03) 

FIGURE 6: Net Cash Flow: Long Straight Bond and Short Cat Bond. 

The actual deals we have described all increase the bond issuer's capacity. 
The technology required to issue cat securities is being developed and refined 
and thus the transactions costs of these deals will probably decrease in the 
future. Moreover, investors are becoming more familiar with the product 
which will have a further tendency to render future deals relatively less 
costly. Lastly, as others have pointed out [13], the insurance industry would 
be strained by a $50 billion hurricane loss, but the capital markets could 
withstand it with relative calm. Catastrophe bonds may become a routine 
method of transferring catastrophe risk. Practical considerations and 
econotnic theory would both predict this outcome. 

It should be emphasized that the line of insurance is immaterial to the 
capital market - it does not have to be catastrophe risk. We will show later 
that investors will demand these bonds because their returns have low 
correlation with stock returns. There may be many kinds of insurance risks 
that have low covariance with the stock market. At the 1997 Swiss Actuarial 
Summer School held at the University of Lausanne we heard from 
Winterthur actuaries of a proposal to issue bonds which would transfer 
mortality risk to bondholders ~. It seems intuitively clear to us that mortality 
risk has low covariance with the stock market and thus we expect these 
bonds would be attractive to investors. As we understand it, Winterthur has 
long term annuity liabilities and as a result faces the risk of unexpected 
improvement in beneficiary mortality. A security with bondholder cash flows 

In late 1999 we learned that three large international insurers are considering securitization of 
mortality risk. 
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tied to a mortality index would provide Winterthur with very long term 
coverage that is not available in the traditional reinsurance market. In the 
United States some companies offer very attractive term life insurance rates 
on selected lives in a very competitive market. There is little experience to 
indicate what the ultimate mortality will be for these select lives. 
Securitization would allow very long term coverage of the risk that ultimate 
mortality will diverge greatly from projected mortality for the selected lives. 

3. S T R U C T U R E  OF S E C U R I T I Z A T I O N  

The securitization technology applies to many kinds of risk, not merely 
catastrophe risk. In asset and liability securitizations the common structure 
typically involves four entities: retail customers, a retail contract issuer, a 
special purpose company, and investors. In the case of catastrophe risk 
bonds, the four entities are as follows: 
(1) Homeowners who buy policies from an insurer. 
(2) The insurance company that issues the homeowners policies (i.e., the 

retail contracts) and buys reinsurance from a special purpose reinsurer 
(i.e., the special purpose company). 

(3) The special purpose reinsurer that issues the reinsurance and sells bonds. 
(4) Investors who buy the bonds. 

Figure 7 illustrates the direction and timing of cash flows to and from each 
entity involved in or related to a securitization. 

Investor 1, Investor 2, Investor 3 .... 

Special Purpose 
Company 

Retailer 

Customer 1, Customer 2, Customer 3 .... 
FIGURE 7: Sccuntization Components. 
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Each of the arrows denotes an exchange of cash corresponding to a contract. 
The tinting varies with the application. For example, in the case of 
homeowners insurance, the customers pay a cash premium to the insurer and 
get a contract (the homeowners policy) in exchange. Later the cash flows the 
other way for those customers who suffer losses and obtain insurance 
benefits. The insurer pays a premium initially to the special purpose 
reinsurer and gets a reinsurance policy in exchange. Later, the cash may flow 
the other way if the catastrophic event or events occur. The investors initially 
pay cash to the special purpose company and get bonds in exchange. Later 
they receive coupons and principal, provided no catastrophes occur. The 
special purpose company invests the combined premiums and proceeds from 
the sale of the bonds in default free securities. 

These transactions provide a structure for which the price of the bonds 
(paid by the investors), the reinsurance premiunl (paid by the retailer) and 
investment income are adequate to cover the catastrophe loss with certainty. 
Tilley [25, 26] refers to this as a fully collateralized transaction since the 
special purpose insurer cannot default on the reinsurance contract. By 
collateralizing the transaction the risk of default, called c o u n t e r - p a r t y  r isk ,  is 
eliminated '. The ability to eliminate counter-party risk is an advantage of 
securitization relative to traditional reinsurance. 

Insurance risk securitizations present a moral hazard problem that has to 
be addressed. The insurer has an incentive to apply the coverage to a loss so 
it will not have pay a coupon, so the investors will want to see that the terms 
of the coverage are applied properly. We are aware of two methods for 
resolving the problem that have been used in practice. 

Method (1) 
The security can be written in terms of an independently determined loss 
ratio. This takes determination of the security's coverage out of the hands of 
the insurer, solving the problem, but introducing bas i s - r i sk  - the contract 
covers industry losses, not the insurer's own losses. 

Method (2) 
An independent firm is hired to provide claims services. 

We now turn our attention to some recent catastrophe risk bond deals. 

USAA hurricane bonds. USAA is a personal lines insurer based in San 
Antonio. It provides financial management products to current or former 
US military officers. Bus iness  I n s u r a n c e  [27] in reporting on the USAA deal, 
described USAA as "over exposed" to hurricane risk due to its personal 

' Counter-par ty  risk is the risk that the other party will fail to pay as required by tile contract.  
This can be t, significam risk in a reinsurance contract,  but it is nil in securitizations as we 
have described them. 
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automobile and homeowners business along the US Gulf and Atlantic 
coasts. In June 1997, USAA arranged for its captive Cayman Islands 
reinsurer, Residential Re, to issue $477 million face amount of one-year 
bonds with coupon and/or principal exposed to the risk of property damage 
incurred by USAA policyholders due to Gulf  or East coast hurricanes. 
Residential Re issued reinsurance to USAA based on the capital provided by 
the bond sale. USAA sold $450 million of similar bonds again in 1998 
according to an article in the Financial Times [I]. 

The 1997 bonds were issued in two series (also called tranches), 
according to an article in The Wall Street Journal [22]. In the first series 
only the coupons are exposed to hurricane risk - the principal is 
guaranteed. The return of principal will be at the end of the first year if 
there is no loss (described below), but the return will be at the end of ten 
years if a loss occurs. For the second series both coupons and principal 
are at risk. The risk is defined as damage to USAA customers on the Gulf 
or East coast during the year beginning in June due to a Class-3 or 
stronger hurricane. The coupons and/or principal will not be paid to 
investors if these losses exceed one billion dollars. That is, the risk begins 
to reduce coupons at $1 billion and at $1.5 billion the coupons in the first 
series are completely gone (and the principal repayment delayed nine 
years) and in the second series the coupons and principal are lost. The 
coupon-only tranche has a coupon rate of LIBOR plus 2.73%. The 
principal and coupon tranche has a coupon rate of LIBOR + 5.76%. The 
press reported that the issue was "oversubscribed," meaning there were 
more buyers than bonds, i.e., demand exceeded supply. The press reports 
indicated that the buyers were life insurance companies, pension funds, 
mutual funds, money managers, and, to a very small extent, reinsurers. As 
a point of reference for the risk involved, we note that industry losses due 
to hurricane Andrew in 1992 amounted to $16.5 billion and USAA's 
Andrew losses amounted to $555 million. Niedzielski reported in the 
National Underwriter that the cost of the coverage was about 6% rate on 
line plus expenses ~. According to Niedzielski's (unspecified) sources the 
comparable reinsurance coverage is available for about 7% rate on line. 
The difference, however, may or may not be completely offset by the 
expenses related to establishing Residential Re and the fees to the 
investment bank for issuing the bonds. One might argue that the higher 
cost of securitization is justified by lower counter-party risk. The rate on 
line refers only to the cost of the reinsurance. The reports did not give the 
sale price of the bonds, but the investment bank probably set the coupon 
so that they sold at face value. 

As we noted earlier, rate on line is the ratio o f  premiunl  to coverage layer. The  re insurance 
agreement  provides U S A A  with 80 percent o f  $500 rnillion in excess o f  $1 billion. The  
d e n o m i n a t o r  o f  the rate on line is (0.80)(500) = 400 million, so this implies U S A A  paid 
Residential  Re a p remium of  abou t  (0.06)(400) = 24 million. 
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As successful as this issue turned out, it was a long time coming. Despite 
advice of highly regarded advocates such as Morton Lane and Aaron Stern 
[13, 14, 19], catastrophe bonds have developed more slowly than many 
experts expected. According to press reports, USAA has obtained 80% of 
the coverage of  its losses in the $1.0 to $1.5 billion layer with this deal. On 
the other hand, we have to wonder why these are one year deals. Perhaps it is 
a matter of getting the technology in place, forcing reinsurers to lower prices 
on future deals, related US tax code issues, etc. The off-shore reinsurer is re- 
usable and the next time USAA goes to the capital market investors will be 
familiar with these exposures. If the traditional catastrophe reinsurance 
market gets tight, they will have a capital market alternative. The cost of  this 
issue is offset somewhat by the gain in access to alternative sources of 
reinsurance. The 1998 issue was more favorable to USAA; it a reported a 
yield to the bondholders of LIBOR + 4% [I]. 

Winterthur Windstorm Bonds. Winterthur is a large insurance company 
based in Switzerland. In February 1997, Winterthur issued three year annual 
coupon bonds with a face amount of  4700 Swiss francs. The coupon rate is 
2.25%, subject to risk of  windstorm (most likely hail) damage during a 
specified exposure period each year to Winterthur motor insurance 
customers. The deal was described in the trade press and Schmock has 
written an article in which he values the coupon cash flow [21]. The deal has 
been mentioned in US and European publications (for example, bTvestment 
Dealers Digest [18] and Euroweek [2]). If the number of  motor vehicle 
(automobile and motorcycle) windstorm claims during the annual observa- 
tion period exceeds 6000, the coupon for the corresponding year is not paid. 
The bond has an additional financial wrinkle. It is convertible at maturity; 
each face amount of CHF  4700 plus the last coupon is convertible to five 
shares of Winterthur common stock at maturity. Furthermore, due to the 
merger of Winterthur Insurance and Credit Suisse Group on December 15, 
1997, investors can now convert into 35.5 Credit Suisse Group registered 
shares at maturity of the WinCat bond t 

Swiss Re California Earthquake Bonds. The Swiss Re deal is similar to the 
USAA deal in that the bonds were issued by a Cayman Islands reinsurer, 
evidently created for issuing catastrophe risk bonds, according to an article 
in Business h~surance [28]. However, unlike USAA's deal, the underlying 
California earthquake risk is measured by an industry-wide index rather 
than Swiss Re's own portfolio of risks. The index was developed by Property 
Claims Services. The bond contract is written on the same (or similar) 
California index underlying the Chicago Board of Trade (CBOT) 
Catastrophe Options. The CBOT options have been the subject of numerous 
scholarly and trade press articles [8, 10, 11, 12]. As described above, in a 

We learned of this from one of the ASTIN referees. 
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securitization of insurance risk there is a moral hazard problem that has to 
be addressed in the contract defining the contingent events covered by the 
security. The investors demand that the losses be reported accurately and in 
accordance with the contract. The Swiss Re bonds are written in terms of the 
PSC index, neatly solving the moral hazard problem, although it introduces 
basis-risk. In this case, basis-risk is the risk that the actual Swiss Re losses 
differ from industry losses, evidently acceptably small. 

Zolkos reported details on the Swiss Re bonds in BusiHess hTsurance. 
There were earlier reports that Swiss Re was looking for a ten year deal. This 
deal is not it and perhaps they are still looking for such a ten year deal. 
According to Zolkos, SR Earthquake Fund (a company Swiss Re set tip for 
this purpose) issued Swiss Re $122.2 million in California reinsurance 
coverage based on funds provided by the bond sale. 

Yasuda Fire and Marine Bonds. Finally we note that recently Aon Capital 
Markets structured and marketed a catastrophe bond providing windstorm 
coverage to Yasuda Fire and Marine Insurance Company [29]. Munich Re 
"validated the transaction from the perspective of investors" and will 
provide claims services. Evidently, the moral hazard problem we mentioned 
earlier is resolved in this case by using Munich Re's claims services. No 
investment banks were mentioned in the reports because Aon Capital 
Markets acted as and is registered as its own investment bank. This is an 
example of how brokers and reinsurers have reacted to securitization - they 
are acquiring the skills needed to enter the business and marketing services 
explicitly. The coverage is long term, provides Yasuda with dual "trigger" 
options (we discuss these in detail in another paper [9]), and makes use of the 
reputation and administrative services of an established reinsurer. In the 
next section we review securitization of assets. 

4. ASSET SECURITIZATIONS 

We are going to describe five examples: stripping coupons, mutual funds, 
mortgage-backed securities, life insurance policyholder loans, and life 
insurance premium loadings. 

Stripping Coupons. Merrill Lynch and other investment banks create default 
free zero coupon bonds by means of an asset securitization. This is an 
example of securitization of securities- repackaging and reselling securities. 
The resulting securities are called T-bond-backed securities. The bank buys 
U.S. Treasury bonds. It issues its own zero coupon bonds based on the cash 
flow from its pool of coupon bearing bonds. In this case, the "custonaers" 
are all the same entity: the U.S. government. The retailer and the special 
purpose company are the same, the bank. The investors buy the zero coupon 
bonds from the bank. The zero coupon bonds are issued by a private 
corporation but the bond covenant conveys the pooled Treasury bond cash 
flow to the zero coupon bondholders. Therefore, the bank's bonds are 
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default-free. The popularity of zero coupon bonds led the U.S. and 
Canadian governments to assign registration numbers to coupons of some 
bonds when they are issued. This allows the coupons to be traded directly 
without securitization. Nevertheless, securitization is still used to create zero 
coupon bonds. The actuarial textbook [4, page 73] has a simple numerical 
illustration and the investments textbook [3, page 414] describes some of the 
marketing aspects of this securitization. 

T-bond securitization is a simple asset securitization example, but it 
illustrates the essential components and principles of these deals. The reason 
for this securitization is that the demand for default-fiee zero coupon bonds 
exceeds the supply provided by the government. A 30-year coupon bearing 
bond exposes its owner to changes in interest rates corresponding to 
maturities over the 30-year term of the bond. A zero coupon bond is 
sensitive only to the interest rate corresponding to its only payment. 
Therefore, this securitization divides the pooled cash flow into pieces that 
better meet the needs of some investors and provide a preferable (or more 
efficient) aUocation of interest rate risk. It is an illustration of the use of 
contracts to transfer and reallocate risk. 

Mutual Funds. Pooling also underlies mutual funds and mortgage backed 
securities (MBS). A mutual fund purchases assets, such as stocks or bonds. 
The fund sells securities (or shares) that provide the owner a proportional 
share of the market value of the pool. In this way, an investor receives the 
average return of the pooled assets without buying shares in each individual 
asset. Fund managers issue shares in the mutual fund to the investors in 
exchange for cash and the fund managers have a contractual obligation to 
buy individual stocks. Owners are entitled to a proportionate share of the 
fund, less operating fees and commissions. Why would investors prefer to 
buy a mutual fund rather than the individual shares? Under "'perfect 
market" assumptions, the absence of transactions costs, perfect divisibility 
of shares, etc . ,  investors would not  buy mutual funds as they could do for 
themselves exactly what tile mutual fund does for them. However, the real 
world is not perfect and mutual funds exist because of market "imperfec- 
tions." First consider transactions costs. Trading stocks is costly because 
stock brokers charge commissions, but the commission rates are less for 
those who make large trades on a regular basis. Therefore, a mutual fund 
has an advantage relative to individual investors because it will have lower 
transactions costs. A second imperfection is lack of divisibility. An 
individual may want to buy a stock with a high price per share. Berkshire 
Hathaway is trading for about $52,000 per share (January 2000). Some 
investors rnight want to have some Berkshire Hathaway shares, but buying 
as few as 10 shares might be impossible. On the other hand, the same 
individual may have shares in a mutual fund that can easily own 100 or more 
shares, providing the individual a fraction of Berkshire Hathaway's value. A 
third consideration is the cost of information acquisition. Under the 
conditions of "perfect markets" all investors have access to the same 
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information - an assumption that is clearly violated in the real world. 
Informat ion acquisition is expensive, but a mutual fund applies the same 
information on behalf  of  all of  its owners, providing an economy of  scale. 

Finally we consider the diversification of  risk. We begin with a brief 
discussion of  the Markowitz  [16] risk-return model in order to illustrate 
diversification. Later we will use the same model to determine the effect of  
adding insurance-based securities to a portfolio. We will follow the 
Luenberger 's  exposition [15]. A different but equivalent approach appears 
in [4, Chapter  8]. Luenberger shows how to use the model, with some 
additional assumptions,  to describe the effect of  diversification. This is a one 
period market  model, focused on the first two moments  of  the joint 
distribution of  return random variables R~, R2, ..., R,,, namely 
o the expected returns ~i = E[Ri] and 
o the covariance matrix 2 = [aO. ] where egi = Cov(Ri, Rj). 

These moments  can be estimated by observing return outcomes over several 
time periods, assuming stationarity. Statistics derived from the observations 
estimate the risk versus return relation in the future for portfolios of  assets. 

Following Luenberger 's discussion of  diversification [15, page 200], let us 
assume that we can write the return of  each asset in terms of  a single factor: 
R, = ai + b i F +  ei where ai and bi a re  constants, F is a random variable (the 
single factor), and the ei are random error terms. Assume that the following 
relations hold: 

E(ei) = O, E(eigj) = 0 for i C j ,  Cov (F ,  ei) = O, 

and their variances have a common bound Var(ei) < s 2. 
A portfolio is constructed from the n given assets by specifying the 

percentage of  the value of  the portfolio which is invested in each asset. 
Under the assumptions commonly  used, the scale of  investment does not 
affect the percentages in the sense that investors with the same risk-return 
preferences will select the same portfolios regardless of  the size of  their 
investments.. Hence in specifying a portfolio, we need only specify the 
percentage invested in each security. We let wi denote the percentage 
invested in the i-th asset; it is called the weight of asset i in the portfolio. 

For  a "well diversified" portfolio, we can assume that each weight is 
about  1/11. The portfolio return is R,,. = ~-]'i'=t W i l ' i  = a -}.- b F  + e where 

El = ~ wtai, b = wibi and e = wi~ i. 
i=1 i=1 i=1 

Under  the assumptions we made above, the variables e and F are 
uncorrelated so V a r ( R ) = b 2 V a r ( F ) + V a r ( e ) .  Since the errors ei are 
uncorrelated, V a r ( e ) =  s2/n and as n increases this term tends to zero. 
Diversification eliminates this component .  The other component  does not 



SECURITIZATION OF RISK 171 

tend to zero because b is the average of the bi. This term represents non- 
diversifiable risk. The diversification principle is familiar to actuaries from its 
application to pools of insurance policies. 

In summary, rnutual funds exist because they provide greater efficiency, 
overcome some of the effects of market imperfections, and provide 
diversification of risks more efficiently than individual investors can achieve 
on their own. 

Mortgage-Backed Securities (MBS). A mortgage is a loan requiring periodic 
payments of principal and interest with real estate as collateral ~ The 
mortgage may be for a residence or for commercial real estate. We limit our 
discussion to US residential mortgages 2 They are commonly issued with a 
fixed interest rate for a period of 15 to 30 years and require level monthly 
payments of interest and principal. Fixed-rate mortgages carry substantial 
interest-rate risk for the lender, especially in volatile economic times. For 
example, when interest rates fall, borrowers may re-finance their mortgages, 
returning the principal to the lender at a time when interest rates are lower 
than the rate at which the mortgage was issued. There are costs to re- 
financing, but when rates fall enough, borrowers have financial incentives to 
refinance. Mortgage securitization shifts the interest rate risk to investors 
through the securities market. 

For mortgage-backed securities the components of the securitization are 
easy to identify: The customers are the mortgage borrowers. Initially the 
borrowers obtain cash and in exchange provide the lenders with a contractual 
obligation to repay the loan. The lenders convey their rights to a trust in 
exchange for cash. The trust issues securities based on the pooled mortgage 
contracts. The securities can take a variety of different forms. 

One purpose of mortgage securitization (re-packaging) is to allow for a 
more efficient allocation of interest rate risk. Primary mortgage lenders 
(e.g., banks and thrifts) usually have short-term demand deposits as liabilities, 
so for most of them mortgage assets are not well matched to their liabilities. On 
the other hand, life insurers, with long term liabilities, may desire to have 
mortgage-backed securities in their asset portfolios. We discuss two mortgage- 
backed securities: pass-through securities and stripped mortgage-backed 
securities. Several other forms exist, but these illustrate the basic ideas. 

First we discuss pass-through mortgage-backed securities. With pass- 
through securities, mortgage borrowers make their monthly payments to the 
pool administrator. The pool collects the cash, deducts administrative fees, 

i This section relies on [24, Chapter  6]. 

2 Mortgage terms and lending practices are different in other  countries.  For  example,  in 
Canada,  mortgages are typically written for 5 or l0 years with a balloon payment  (which is 
often relinanced) and no prepayment  option.  The Canadian practices put the interest rate risk 
on the borrower,  lenders bear none. and there is no need for reallocating the lender 's interest 
rate risk - and no mortgage-backed securities. 
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and passes the remaining cash to the security owners on a pro-rata basis. 
Thus, ifa pool issues ten securities, each security owner receives one-tenth of 
the aggregate monthly cash flow, less fees. If a mortgage is repaid during the 
month, the repaid principal is paid to the security owners along with the 
monthly cash flow. Thus, the security owners bear the prepayment risk. 
Valuation of a pass-through security requires knowing the rates and 
maturities of the pooled mortgages. This and other information is provided 
to potential purchasers. An actuarial approach would involve modeling the 
"life" of a mortgage and considering the cash flow to be a cash-refund 
annuity. The difficulty, and the distinction from mortality-dependent cash 
flow, is that the mortgage life depends of the interest rate environment. All 
mortgage-backed securities present these same valuation problems. 

A stripped mortgage-backed security divides the payments from pooled 
mortgages into classes with each class's security holder receiving income only 
from its portfolio, instead of distributing it on a pro-rata basis. For example, 
consider a stripped security with two classes: interest only and principal 
only. The interest-only class receives the interest paid on the pooled 
mortgages each month. The principal-only class receives each month's 
principal payments. Suppose that a representative mortgage in the pool 
carries an outstanding principal of $90,000, an interest rate of 6 percent, and 
a level monthly payment of $600. Ignoring fees, the interest-only class would 
be allocated $450 ($90,000 x 0.06/12) this month from this mortgage. The 
principal-only class receives the principal paid with respect to the illustrative 
pool mortgage; that is, $150 ($600 - $450) if the mortgage is not repaid 
during the month. If the illustrative mortgage loan is repaid during the 
month, the principal-only class receives $90,000. The two classes receive 
similar payments from each mortgage with an outstanding balance at the 
beginning of the month. 

The stripped pass-through security owners bear the interest rate risk of 
the pool, but it is allocated differently than it is for straight pass-throughs. 
The interest-only class receives interest until all the mortgages are repaid. 
Refinancing activity increases with falling interest rates, so the downside for 
interest-only security owners arises with declining interest rates. The 
principal-only class benefits from a decline in interest rates because 
refinancing means principal-only security owners receive their principal 
sooner. Thus, the stripped pass-through divides the cash flow pool into 
segments that give a pure reflection of the result of  an increase or decrease in 
interest rates. This is more flexible than a straight pass-through mortgage- 
backed security and will appeal to many investors. After all, an investor who 
wants a straight pass-through could simply buy shares of both interest-only 
and principal-only classes. 

Securitization of the mortgage industry has allowed investors to enter the 
mortgage market without having to be (or own) a mortgage originator. 
Insurance companies and pension funds have become substantial investors 
in MBS. Thus, securitization has allowed for a better allocation of interest 
rate risk and provided a more efficient way for capital to enter the home 
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financing industry. The securitization technique is important for actuaries 
because the resulting products are used by insurance companies, the 
technique can be applied to other asset classes, and, perhaps most important, 
the expertise required to design and value these securities is fundamentally 
actuarial in nature. Let us illustrate this claim with the following idealized 
model. 

Suppose that we are interested in a pass-through MBS for which the 
contractually specified monthly payments for the mortgage borrowers (in the 
absence of  additional cash flows due to prepayment) per $ I of face amount 
of the mortgage is denoted by c. Let the contractually specified effective 
monthly interest rate on the mortgage be denoted by r. In the absence of  
prepayment risk, level monthly payments are made over the entire term of 
the mortgage and the present value of these payments is equal to the face 
amount of the mortgage pool. In practice, mortgage borrowers will prepay 
with varying intensity and this rate of prepayment could depend on a variety 
of economic variables. For the sake of this illustration, let us assume that the 
rate of prepayment depends on the time since the issue of  the mortgage (this 
makes an allowance for the average time a home is owned) and an 
annualized key interest rate level (for example, the 10-year yield rate on US 
treasury bonds, which makes an allowance for the cost of  refinancing) 
denoted i. Providing the actuary has access to sufficient data, he would then 
estimate a two-dimensional table of prepayment rates. Let q(t, i) denote the 
amount prepaid over month t to rnonth t + l  per dollar of principal 
remaining when the key rate is equal to i. Let g, denote the amount 
of principal remaining in the mortgage pool at the end of the t-th month 
after the mortgage is issued. The total cash flow to the mortgage pool over 
month t to month t + / is 

gtc + (g, - [e,c - g , r ] ) q ( t ,  i ) .  

11] words ,  th is m o n t h l y  cash f low is the o r d i n a r y  p a y m e n t  o f  interest  and 
p r i nc ipa l  - name ly  g,c, p lus the a m o u n t  o f  the r ema in i ng  p r i nc ipa l  that  is 
p repa id  ~ - name ly  (g, - [g,c - e,r ] )q( t ,  i). Th i s  is a s tochast ic  cash f low tha t  
depends on the key rate history. The evolution of  the remaining principal in 
the mortgage pool can be determined recursively through the equation 

e,+, = e, - [e,c - e,,.] - (e, - [etc - et,. l)q(t, ,) 

= [1 - q ( t ,  i ) ] ( e ,  - - e , , . ] ) .  

This is a stochastic equation for the evolution of the outstanding principal in 
the mortgage pool. The actuary can then value the MBS using stochastic 
cash flow valuation techniques from financial economics. The MBS market 
is a complete market and the valuation will be done in the context of a 

Note that g ,c  - g ,r  is the amount  of the regular payment that is applied to principal reduction 
that month prior to the prepayment amount being applied. 
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complete term structure model. Although the estimation of  the prepayment 
rates and the definition of the MBS cash flows are fundamentally actuarial, 
the actuary must also be able to use tools from moder-n financial economics 
to complete his calculation of the value of the MBS and to assess the risks in 
the MBS. 

Policy-Loan-Backed Securities. The laws of the United States and some 
other countries require certain life insurance policies to have cash values 
(savings). In still other countries, cash values are not legally required, but are 
commonly provided. In general, cash values emerge when the expected value 
of future benefits promised under a policy exceed the expected value of 
future (adjusted) premiums. In lay terms, cash values emerge when 
policyholders prepay future mortality costs. Cash values can be thought of 
as a type of savings within a life insurance policy that is available when a 
policyholder ternainates (surrenders) his or her policy. 

Economically, cash values are policyholder assets in the custody of the 
insurance company. Rather than surrendering their policies to obtain funds, 
policyholders may elect to borrow an amount not greater than the cash value 
from the insurance company on the security of  their cash values. In the 
United States and some other countries, cash value policies are required to 
allow such borrowing privileges. Of course, the policyholder pays interest on 
the loan. Traditionally, U.S. insurers offered fixed-rate policy loans, but as 
interest rate volatility increased in the 1970s and 1980s, most companies 
began issuing policies with an indexed loan interest rate. When the interest 
rate is fixed, the policy loan provision is an interest rate call option. The 
value of the option increases with the volatility of interest rates. 

Policy loans are carried on insurers' financial statements as assets. 
Securitization of  a portfolio of policy loans allows the company to sell them. 
One reason for doing this is to reduce the cash strain induced by policy loan 
activity. Also, there may be a tax advantage when the loans are sold at a loss 
relative to their statement value. These reasons led to a large securitization of 
policy loans by the Prudential Insurance Company of America in 1987. 

Policy loan interest and principal payments formed the cash flow to 
support the securities that were sold to investors as private placement policy- 
loan-backed securities. A special purpose corporation (SPC) was formed to 
issue the securities and simultaneously purchase the loan cash flow from 
Prudential, similar to collateralized mortgage obligations, as discussed in the 
preceding section. While the Prudential securitization borrowed concepts 
from the securitization of mortgage loans, it also employed new features. 
Since policy loan securitization was new, security buyers had no experience 
with loan repayment rates. To reduce the repayment risk to security owners, 
the securities provided for a minimum and maximum repayment schedule. If 
actual repayments fell behind the mininaum schedule, Prudential promised to 
advance the needed cash to meet the required payments to security owners. 
(Cash flow simulations indicated that this was highly unlikely.) If 
repayments proved more rapid than the maximum, the SPC would invest 
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the excess cash flow in a guaranteed investment contract (GIC). The SPC 
bought a 54-year GIC from a AAA-rated Swiss bank to provide security 
owners with evidence that the SPC would be able to perform on these 
promises. 

The circumstances surrounding this transaction may be comparatively 
rare. Perhaps high interest rates might make them attractive again someday. 
On the other hand, as the value of  the loan option in newer U.S. policies is 
nil, the magnitude of  the problem created by increased exercise activity is 
steadily decreasing. Also, the costs of a policy loan securitization are 
substantial. Therefore, it may be a long time before we see another policy 
loan securitization in the United States. 

Loadings in Premiums. In January 1997 the US life insurer American 
Skandia Life Assurance Corporation securitized mortality and expense risk 
fees that it will collect in the future from a portfolio of its variable annuity 
O"A) policies [6]. 

When a company issues a VA it pays a commission to an agent or 
financial advisor. Profits develop later. Thus issuing a VA requires cash, in 
contrast to other types of business that merely require setting up a reserve 
that may be financed with a non-cash asset or reinsurance. The faster the 
company grows the greater the need for cash. Skandia's fast growth led it to 
supplement traditional methods of financing growth (retained earnings, 
surplus notes, bank loans and reinsurance) with a securitization of the future 
fees Skandia will collect from a block of  policies. 

According to Connolly, the mortality and expense risk fees were taken 
from a block of approximately 33,000 American Skandia variable annuities, 
net of  reinsurance, issued during the period between January 1, 1994 and 
June 30, 1996. The rights to the fees for a specified period of time were sold 
to American Skandia Investment Holdings, American Skandia Life 
Assurance Corporation's immediate parent, which transferred them to a 
trust, collateralized them and sold them to two investors, T IAA-CREF and 
Prudential Insurance Company. A total of eight insurers expressed interest 
in the offering. 

Skandia managers think the costs of securitization will decrease as the 
process becomes more efficient and, ultimately, it should be cheaper than 
financing growth with reinsurance. 

In this example, the customers are the variable annuity policyholders. 
Skandia is the retailer and the trust is the special purpose company. The 
investors are TIAA-CREF and Prudential. The actuarial modeling 
developed for traditional purposes (designing, pricing, cash flow testing, 
etc.) can be used in the securitization process. Since the buyers are also life 
insurers, they should have the expertise to evaluate the future fee cash flows. 
In general, a securitization of insurance risks would probably require 
independent constllting actuaries to resolve this moral hazard problem. In 
general, investors are not likely to have the expertise and they are not likely 
to accept the retailer's analysis without independent corroboration. 
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We have not seen an increase in life insurance securitizations. Mutual  
companies have more difficulty than stock conlpanies in raising capital and 
cash. In the US many of  them are electing to demutualize but at least one 
U K  company is using securitization as an alternative. 

5. T H E  D E M A N D  FOR INSURANCE-BASED SECURITIES 

Why do investors buy catastrophe risk bonds? The delnand for securities 
based on insurance risk can be justified by the Markowitz naean-variance 
model. As we mentioned earlier, this is a one period market  model. The 
assets returns over the period are random variables RI, R2, ..., R,, with 
means and covariances assumed to be know and denoted by P,I = E(Ri) and 
2 = {a~,] where c,,j = Coy(R,,  Rj). 

The n by n matrix Z = [~i¢], called the covariance matrix, is symmetric 
and the diagonal elements are simply the variances. We assume it is 
invertible. 

A portfolio is constructed from the n given assets by specifying the 
percentage of  the value of  the portfolio which is invested in each asset. As 
stated earlier, we assume that the scale of  investment does not affect the 
percentages in the sense that investors with the same risk-return preferences 
will select the same portfolios regardless of  the size of  their investments. 
Hence in specifying a portfolio, we need only specify the percentage invested 
in each security. We let w~ denote the percentage invested in the i-th asset; it 
is called the weight of  asset i in the portfolio. 

The return on the portfolio specified by the vector 

is denoted by 

wT = [WI, W2, . . . ,  ll'n] 

R w = ~ w i R i "  

i= 1 

The portfolio return is the weighted average of  the individual security 
returns. Thus the expected portfolio return, IL,,. = E[R,,], and variance, 
~. = Var[R,,], can be calculated in terms of  the weights and the statistics of  
the individual securities as follows: 

I I  

. . . . .  Z ' " :E[R ' ]  : S . '  
i=I 

II  II  
"2 

= '", Z ,,,,Co,,( e,, ej) 
i=1 j = l  

= II:T ~ W 
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The portfolio variance is a function of  the vector of  weights 
w r = [w,, w2, ..., w,,] and the covariance matrix Z =- [crij]. 

An efficient portfolio is defined to be one which is not dominated by 
another  portfolio. It is a portfolio for which there is none other with lower 
variance I and an equal or higher expected return. Figure 8 illustrates the 
concept  o f  efficiency and the associated notion of  portfolio dominance.  Note  
that portfolio B dominates  portfolio A since it offers the same variance but 
has a higher expected return. Similarly, portfolio B dominates  portfolio C 
since it offers the same expected return but a lower variance. The basic 
portfolio problem is to find the maximum portfolio return for a given 
portfolio variance or the minimum portfolio variance for a given portfolio 
return. These optimal portfolios are said to be mean-variance efficient 
portfolios. 

# 

o B o C 

A 

O" 

FIGURE 8: Risk and Return Relations. 

There are a number  of  variants of  the general portfolio problem. The 
following formulation of  tile s tandard version comes from [4]: Given the 
investor 's required portfolio expected return r > 0 and a set of  n securities 

t Either portfolio variance o 2, or  s t anda rd  deviat ion o-,,, can be t, sed to measure  risk. In the 
gr~,phs we follow the usual  practice o f  p l on i ng  expected return I~. on the vertical axis and  risk 
represented by s t andard  deviat ion or., on the hor izonta l  axis. 



178 SAMUEL H. COX, JOSEPH R. FAIRCHILD AND HAL W. PEDERSEN 

with expected returns v e c t o r  tL T = [it, l, 1'2, . . . ,  # , , ]  and covariance matrix ~, 
determine the portfolio weights w in order to minimize the variance 

.1 c~;, = wTE:w subject to two constraints: 

~ - ~ W  i : l 
t'= J 

and 

~U, w : [ L T w  : I ' .  

The first constraint  simply requires that the portfolio be 100% invested in 
the n risky securities being considered for inclusion in the optimal portfolio. 
It is convenient  to introduce the n-vector e T :  [1, 1, ..., 1]. The first 
constraint  can be written compact ly  as wTe = 1. The second constraint  
selects the portfolio return to meet the investor 's requirement. Of  course 
there is a potentially different efficient portfolio for each target return we 
might select. In fact, we can graph an entire set of  efficient portfolios, 
plotting the points (cr,,,r) by solving the portfolio problem for different 
values of  or,. corresponding to a range of  values of  target expected returns r. 
This graph is called the e~'cient Ji'ontier for the given n assets. The efficient 
frontier can be completely defined in terms of  two efficient portfolios. This is 
the " two fund theorem,"  described by Luenberger  [15, page 163] as follows. 

The objective function, augmented with Lagrange terms corresponding to 
the constraints,  is 

~ i,J~w + ;~("Yt- '  - " )  + ~'('"% - l). 

The factor ½ in the variance term is for convenience only. The objective is 
quadrat ic  in the unknown weights w and linear is the Lagrange multipliers 
A,u, so the first order condit ions for a minimum form a system of n + 2 
linear equations: 

t !  

Z O'i,jWj -[- Ap, i + U = 0 for 0 < i < n 
j= l  

wT/_/~ : r 

wTe : I 

Write this as a single matrix equation 

~,,~[,,,  A, ,,]T= [0, ..., 0, ,', l]T (l) 
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where E:,ug is the result of  augmenting the matrix E with two rows and 

~aug 

columns: 

" O'1,1 0.1,2 ' "  0 . I ,n  Jtl 1 
0.2, I 0"2,2 . . .  0.2,n i t2  l 

0.n, I O'n,2 ..- O'n,n P 'n ] 

1/'1 /-/'2 . . .  [d'n 0 0 

1 1 .. .  1 0 0 

In addition to assuming that the covariance matrix E is invertible, we also 
assume the expected return vector IL is not a multiple of  e. This just means 
that the last two columns of  the augmented matrix Z "ug are linearly 
independent. Clearly, each of  the first n columns of  E '~ug is linearly 
independent of  each of  the last two. Because 2 is invertible, the first n 
columns of  Eaug are linearly independent. Because of the independence of  tl, 
and e, the last two columns of  Z? ug are linearly independent. Therefore, the 
columns of  Z; ~ug are linearly independent,  it is invertible, and there is a 
unique solution for the weights w and the multipliers A, u. 

Let (08, rs) denote the risk and expected return of  a minimum variance 
portfolio. By this we mean an efficient portfolio with minimuln variance 
among all efficient portfolios for various values of  r. In general, the 
minimum variance could be zero corresponding to a market  with a risk free 
security. However we assume that at this point we are considering only risky 
assets and 0"~ > 0. We nlight think of  this as a portfolio of  corporate bonds; 
they are risky but not so risky as equity securities. Let w,~, As, u/3 denote the 

I /2  
corresponding weights and multipliers. Of  course 0./~ ((wB)TEwe) = and 

FB = [ j r  WB" 

Select any other efficient portfolio with weights ws, multipliers As, us, 

(( )" return rs = / d w s  and risk 0.s = ws)T~ws with rs > r/~ and 0.s > ae. 

While the lower risk fund (0.B, r~) intuitively represents a bond fund, the 
more risky fund (as, rs) represents an equity portfolio. 

Given any point (0.,r) on the efficient frontier, form the portfolio with 
weights w and multipliers A, u satisfying 

[w, .x, ( 1 -  

where a -- ( r -  r~) / ( rs  - re). Now since 2"ug[we, Ae, ue] = [0, 0, ..., re, 1] r 

and [ws, As, us] = [0, 0, ..., rs, 1] T, then E""g[w, A,, A2] = [0, 0, ..., r, I]. 
The solution is unique so we have 

r = ~l,w = ( 1 -  a)rB + ars 
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and 

9 ') 
o-- = o~,,, = Var[(1 - a)RB + aRs] 

= (1 - a)2cflB + 2a(1 - a)pcrs<s + a2~. 

where we have abbreviated the notation with RB = #T W8 and Rs = l.t r Ws. 
Also we wrote the covariance term as 

Cov(Rs,  Rs) = pcreas, 

where the correlation coefficient is p. In effect every point on the efficient 
frontier can be obtained as a weighted average of  the two fixed portfolios 
W8 and Ws. This is what Luenberger calls the two fund theorem. Figure 9 
illustrates the two fund theorem, showing two frontiers that differ only in 
that the solid frontier has a greater value of  p than the dashed frontier. This 
illustrates that if nothing changes except the correlation is reduced, then the 
frontier pushes out to the left for those points between B and S. 

H 

0.15 

0 . 1  

0 . 0 5  

/// 

.~ s 

B 

0.i 0.2 0.3 0.4 0.5 0.6 

FIGURE 9: Efficient Frontiers - Two Fund Theorem. 

a 

Now we add to the investment opportuni ty  set two new securities. The 
first is a risk-free bond. It has return ~7, zero variance, and zero covariance 
with every other security. Every investor is better off (or no worse off) as a 
result of  this expanded oppor tuni ty  set. This is illustrated by the "one fund 
theorem" described by Luenberger [15, page 168]. There is an efficient 

portfolio M of  risky assets with weights w~t = [wl, ..., w,,] such that any 

efficient portfolio can be constructed as a combinat ion of  M and the risk-free 
bond. This is represented graphically in Figure 10. The equation of  the line is 

I" M - -  t ' f  o . .  
r = r f+  

(7" M 

This is called the capital market  line (CML).  



,U 
0.15 

0 . 1  

0 . 0 5  
M 

SECURITIZATION OF RISK l 8 l 

0.050.10.150.20.250.30.35 

FIGURE IO: Efficient Frontiers. 

(9" 

As before, the efficient frontier before introducing the risk-free bond is 
the curved line. Any point (or, r) on the CML can be obtained by investing the 
proport ion a = (era4 - ¢7)aT~t I in the risk-free bond and I - a in the fund M. 
The capital market  line lies above the original efficient frontier, except at M 
where they are equal. All investors hold a portfolio of  the form 
al7+ (1 --a)ra4 for some a, given this opportuni ty  set. That  is, all mean- 
variance optimizing investors will demand a portfolio on the capital market  
line I Luenberger shows how to solve for the weights defining the 
portfolio M, which we will refer to as the marke t  portJolio. 

Now we introduce an insurance-based security C with high expected 
return, correspondingly high variance, but relatively low correlation with 
other risky assets. C could be a cat bond. At least for the case that the 
underlying insurance risk is catastrophe property loss, there is evidence that 
the return has zero correlation with the market  portfolio M [5, 13]. The new 
asset has risk and return parameters crc and rc and its correlation with the 

Cov(Rc,  RM) 
market  PC, M = is relatively small. 

O'cO" M 
The portfolio returns obtained as linear combinat ions of  Ra4 and Rc  

R ,  = aRM + (1 - a ) R c  

correspond to points (o-~,, r,)  where 

,.,, = , E [ R M ]  + (1 - , ) E [ R c ]  = a,.,,,, + (1 - 

and 

2 = a20~M + 2a(I -- a )pc  maccr,vt + ( I -- a)2cr-C: O" a 

The one- fund  and  two-fund  theorems  are valid whether  marke t s  are comple te  or  not. 
Individual  investor  risk preferences are reflected in the choice o f  the factor a, but they 
nevertheless  choose  posi t ions on the C M L .  
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The dashed curve in Figure II illustrates the graph of  the parametr ic  
equat ions for the points {(~7,,, ,'~,)t0 < a < 1 } for the case that cTc > CrF and 
la, c > la, F. The following argument  shows that so long as p c , M  < ~rM/crc ,  the 
curve joining C and M has a negative slope at M (where a = 1) and so it 
punches through the CML. As a consequence the new CML, determined after 
investors take into account  the new security must have a greater slope than 
the original. This means all investors are better off. 

U 0.15 

0.i ~ . . ~  
: 1 0  

0"05/~B ~ M 

0.05 0.i 0.15 0.2 0.25 0.3 0.35 

FIGURE: 11: Etliciem Frontiers. 

a 

In order  for the curve to push up and to the left relative to the CML, it is 
sufficient that the slope of  the curve at M be negative. Calculation of  the 
slope goes like this: 

O~ 0o .2 
20" a - -  _ _  

Oa Oa 

For  a = I, we find that  

&7 
~aaa=l = oa,i - PC, McrC. 

The slope of  the curve at M, therefore,  is 

Ol'(I 

Oo rM - rc 
Oct O M  --  P c , M O ' c  " 

O a  

In the case illustrated ill Figure I I, rc  > r+~+ and the slope is negative 
provided only that PC.M < crM/~Tc. We think that this describes the 
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recently observed market  for cat bonds. The correlation does not have to 
be zero. All investors are better off" when catastrophe-based securities are 
introduced. 

In the case that rc < ra,t, adding C also expands the efficient frontier 
provided that  the slope of  the (C, M)-curve is positive at M. This leads to the 
same condition, pc, at < cra4/~rc, o n  the correlation coefficient, as illustrated 
in Figure 12. Our conclusion is that adding a security with nonnegative 
relatively low correlation (or negative correlation of  any magnitude) with the 
market results in a new market  equilibrium in which all investors have 
improved opportunities. 

u 

0.15 

0.i 

0.05 

0.050.I 0.15 0.2 0.25 0.3 0.35 

FIGURE 12: Efficient Frontiers. 

O" 

We have shown that for the investment opportunit ies to improve it is 
sufficient that the covariance of  the new security's returns with existing assets 
is relatively small in absolute value or negative. For  example, it seems likely 
that long term bonds with coupons based on a mortal i ty index would also 
improve investment opportunities, even if the risk and return were below 
equity levels. Thus the mean-variance model provides a rational for the 
demand for new insurance based securities. That  is, all investors will now 
demand portfolios on the new capital market line t. The insurance press 
reports that investors (so far) like cat bonds. Some issues have been described 
as over-subscribed. This behavior seems to be consistent with the model. 

In our construction we assumed the original opportuni ty  set of  n risky 
assets had an invertible covariance matrix, which means that no single asset 
is a linear combinat ion of  the other n -  1 assets. We assumed also that 
transaction costs were zero, all available information was revealed to all 
investors instantaneously,  and other market  imperfections such as taxes were 
not present. We call these the perfect market  assumptions. 

I This holds regardless of  individual investor risk prcfcrcnces. 
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In the usual construction, the original n risky assets contain firm specific 
risks that we have now assumed to be engineered into cat bonds. This risk is 
usually assumed to be costlessly diversified away. Given the assumptions on 
transactions costs, information, etc.,  the equilibrium that obtains would not 
be altered by the introduction of cat bonds or other such securities. The 
introduction of such securities does not change the CML. 

Our argument is that in actual, imperfect markets, the introduction of 
such securities results in the market being more efficient. Their introduction 
allows investors to construct portfolios consistent with their preferences for 
less costs. The more efficient distribution of capital over risks restilts in a new 
equilibrium in which all investors are better off. 

Our construction was designed to show that by adding such securities the 
market is pushed closer to the idealized perfect markets equilibrium. This is 
done by increasing the present value of profits of the firm via this activity in 
ways investors cannot on their own account (increasing efficiency of the 
firm) and by packaging the risks (that are assumed to be in the original n 
risky securities) and issuing them to the market in such a way that investors 
can distribute capital over these risks more efficiently than they could when 
they were contained in the original n risky securities (due to increased 
etTiciencies such as lower bid-ask spreads, information acquisition costs, and 
SO OI1). 

We argue that this is the economic justification for this activity and, 
correspondingly, it should continue to be observed in the capital markets as 
long as securitization improves efficiency. 

6. T H E  SUPPLY OF INSURANCE-BASED SECURITIES 

Why do insurers and reinsurers securitize insurance risks? Capacity to 
handle very large losses is frequently mentioned as a motive for 
catastrophe risk securities [7, 13]. We note also that many of the 
catastrophe risk deals provide long terna coverage, in contrast to 
traditional reinsurance which is normally isstled for a one year term. What 
about other insurance risks? As we described earlier, there have been few 
securitizations of mortality risk. This makes sense economically. Securiti- 
zation brings more capital to cover risks that would not be covered 
otherwise. There seems to be a need for even more capital as economies 
develop and more properly is insured. Securitization of insurance risk is 
expensive compared to an asset securitization such as a T-bond securitiza- 
tion or traditional reinsurance. Some of the additional cost is due to costs 
of measuring the risks and explaining them to investors - resolving the 
moral hazard problem. However, we expect these costs will decline as 
investors become more familiar with the risks. Perhaps securitization will 
always be more expensive than reinsurance, but we expect it will continue 
to be used for these reasons: 
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Securitization often provides innovative contract terms such as larger amounts 
of coverage (catastrophe property risk), coverage of risks not provided by 
traditional reinsurance (long term mortality risks), or unusual risks. 

Counter-party risk is eliminated with securitization. 
Securitizations may provide more favorable tax treatment. The special 

purpose reinsurer is usually located in a jurisdiction which allows {hvorable 
tax treatment of reserves. 

The question (why do insurers buy reinsurance?) is interesting because in an 
ideal world - one with no taxes, transactions costs, or other "'imperfections" 
the insurance company shareholders would not compensate managers for 
managing a risk they can diversify on their own behalf in the capital 
markets. 

For example consider the risk of fire damage to the corporation's 
property. A shareholder with Xdollars invested in the corporation will suffer 
a loss if the property burns. However, the investor can find a second 
company and invest :(/2 in each company. This diversifies the shareholder's 
fire risk. Further diversification reduces the fire (and other risks) even more. 
This does not cost shareholders anything, so they will direct managers to 
retain diversifiable risks, rather than insuring them. This suggests corpora- 
tions should not buy insurance, yet they buy a lot. Mayers and Smith [17] 
offer answers that can be summarized as follows: real-world imperfections 
make insurance a rational corporate purchase. 

The rationale for reinsurance purchases and securitizations of insurance 
risk is analogous. The demand for securitizations will persist as long as it has 
an advantage in addressing the imperfections we described earlier. 

7. THE ROLE OF ACTUARIES IN SECURITIZATION 

So far actuaries have been on the sidelines with a few exceptions. Of 
course, actuaries were involved in Prudential's securitization of policy 
loans and Skandia's securitization of premium Ioadings. In addition James 
Tilley developed the concept of a catastrophe risk bond [25] in connection 
with Morgan Stanley's effort to help fund the California Earthquake 
Authority. Prakash Shimpi is leading a Swiss Re subsidiary dedicated to 
trading insurance risks [23]. These are important developments, but we 
should see many more actuaries working in the field. The role of the 
actuary should go well beyond modeling loss distributions. The actuary 
has the skills to see the big picture as well as the technical details. There is 
an opportunity to contribute to contract design, security valuation, 
investor communications, etc. 

8. SUMMARY 

There are four components of securitization. A retailer bundles customer 
risks and passes them as a group to a special purpose company. The special 
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purpose company issues securities based on the pool. The process can be 
used to reallocate risk or rearrange cash flows to better suit the needs of 
investors. When applied to insurance risk, the process is costly but costs may 
decline to some extent but will likely remain more expensive than traditional 
reinsurance. The additional cost may be the price to be paid to overcome 
counter-party risk. The securitization business will grow since it provides 
access to large anaounts of capital and it allows for innovative contracting, 
relative to traditional reinsurance. Introducing insurance-based securities 
into the capital market improves opporttmities for all investors provided the 
underlying insurance risk is not correlated with existing market risk. This 
provides a rationale for the demand for such securities. 

APPENDIX -- ON THE ROLE OF INCOMPLETENESS IN 
INSURANCE RISK SECURITIZATION 

In this appendix we attempt to give the reader a "feel" for the notions of 
completeness and incompleteness and why they are relevant and so 
important in insurance risk securitization. We begin by providing some 
general intuition on these concepts. 

Some Intuition. It can be difficult to differentiate between insurance markets 
which are complete and those which are incomplete. Table 1 provides some 
examples of insurance products each with its embedded insurance risk and 
the type of market (complete or incomplete) which the product resides in. 

TABLE I 

SOME EXAMPLE';; OF INSURANCE PRODUCTS AND THE TYPE OE MARKET THEY RESIDE IN 

Insurance Product Nature of Risk Market Tj,pe 

Variable Annuities Mortality Risk Complete 

Catastrophe Risk Bonds Catastrophe Risk Incomplete 
Mortality Risk Bonds Mortality Risk Incomplete 
Equity-Indexed Annuities Market Risk Complete 

We offer a brief rationale why each of these products resides in a complete or 
incomplete market. 

Variable Annuity: We shall assume that the primary risk in issuing 
variable annuities is that a contract holder dies during the contract period 
and the insurance company must honor the minimum investment return 
guarantee. Since the investments are made in standard securities such as S&P 
500 index funds, providing the mortality of the contract pool follows a 
deterministic mortality pattern, this investment risk can be fully hedged. 
Investors who purchase variable annuities are generally not purchasing 
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portfolio diversification. Instead, they are seeking tax advantages and 
protection of principal. These products offer little additional diversification 
of risk as the assets they are invested in are already available in the market. 

Catastrophe Risk Bonds: The primary risk in cat bonds is the occurrence 
of a catastrophe that triggers the loss of principle. Since there are no 
securities, other than cat bonds, whose payoffs are contingent on the 
occurrence of catastrophes, cat bonds cannot be priced in terms of a 
portfolio of the assets that are already traded and priced in the market. 
Therefore, cat bonds reside in an incomplete market. Furthermore, cat 
bonds provide investors diversification of risk because the payoffs from these 
bonds are contingent on states that are not picked up by existing securities. 

Mortality Risk Bonds: When mortality is assumed to follow a 
deterministic life table, the payments from traditional insurance products 
follow a fixed and known pattern. When deterministic mortality is assumed, 
even life insurance products whose benefits are contingent on the stock 
market or interest rates reside in a complete market. However, if there are 
substantial fluctuations in mortality experience across all policies then this 
risk cannot be hedged using existing securities because there are no existing 
securities whose payoffs are contingent on the mortality fluctuations. 
Consequently, mortality risk bonds reside in an incomplete market. 

Equity-indexed Annuities: Equity-indexed annuities have characteristics 
similar to variable annuities. For this reason, they too reside in a complete 
market. 

A Simple One-Period Example. We now consider the concepts of complete 
and incomplete markets in the context of a simple model involving ordinary 
default-free bonds. 

Let us consider a single-period model in which two bonds are available 
for trading, one of which is a one-period bond and the other a two-period 
bond. For convenience we shall assume that both bonds are zero coupon 
bonds. We further assume that the financial markets will evolve to one of 
two states at the end of the period, "interest rates go up" or "interest rates 
go down" and that the price of each bond will assume to behave according 
to the binomial model depicted ill Figure 13. 

One-period Bond Two-period Bond 

09434  1 ~ 0.9346 

0.8901 

1 0.9524 
FIGURE 13: Ptiyoffs from one-period and Iwo-period bonds. 
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The bond prices for this model could be derived from a specification of risk- 
neutral probabilities and one-period rates but for simplicity we merely 
display these prices and note that we obtained them from an arbitrage-free 
model. 

Suppose that we select a portfolio of the one-period and two-period 
bonds. Let us denote the number of one-period bonds held in this portfolio 
by nt and the number of two-period bonds held in this portfolio by n2. This 
portfolio will have a value in each of the two states at time 1. Let us 
represent the state dependent price of each bond at time I using a column 
vector. Then we may represent the value of our portfolio at time 1 by the 
following matrix equation. 

1 09 4 - [ . , ]  

1 0.9524 LI72] (2) 

The cost of this portfolio is given by 

0.9434nl + 0.8901n2. (3) 

The 2 x 2 matrix of bond prices at time I appearing in equation (2) is 
nonsingular. Theretbre, any vector of cash flows at time 1 may be generated 
by tbrming the appropriate portfolio of  these two bonds. For instance, if we 
want the vector of  cash flows at time I given by the column vector, 

CU ] [c, j (4) 
then we form the portfolio 

II" : [, 0934  
n2 I 0.9524 [ ca j 

at a cost of 0.9434nj + 0.8901n2. Carrying out the arithmetic, one finds that 
the price of  each cash flow of the form (4) is given by i the expression 

0.4717c" + 0.4717c a. (5) 

Since every such set of cash flows at time 1 can be obtained and priced in the 
model we say that the one-period model is complete. The notion of pricing in 
this complete model is justified by the fact that the price we assign to each 
uncertain cash flow stream is exactly equal to the price of the portfolio of 
one-period and two-period bonds that generates the value of the cash flow 
stream at time 1. 

Let us see how the model changes when catastrophe risk exposure is 
incorporated as part of  the information structure. Suppose that we have the 

i With the rounding errors introduced in the calculations the reader who perforlns this 
calculation will probably obtain the expression 0.4716c" + 0.4718c d instead. 
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framework of the previous model with tile addition of catastrophe risk. 
Furthermore, let us suppose that the catastrophic event occurs indepen- 
dently of the underlying financial market variables. Therefore, there will be 
four states in the model which we may identify as follows. 

{interest rate goes up, catastrophe occurs} = {u, +} 
{interest rate goes up, no catastrophe occurs} = { u , - }  
{interest rate goes down, catastrophe occurs} - {d, +} (6) 
{interest rate goes down, no catastrophe occurs} = { d , - }  

The reader will note that the symbol {u, +} is shorthand for "interest rates 
go up" and "catastrophe occurs" and so forth. This information structure is 
represented on a single-period tree with four branches such as is shown in 
Figure 14. 

{u,+} 

{u,-} 

{d, +} 

{d,-} 

FIGURE 14: Revised states of the world with the introduction of catastrophe risk. 

The values at time 1 of the one-period bond and the two-period bond are not 
linked to the occurrence or nonoccurrence of the catastrophic event and 
therefore do not depend on the catastrophic risk variable. We may represent 
the prices of the one-period and two-period bond in the extended model as 
shown in Figure 15. 

0 .9434  

One-Period Bond Two-Period Bond 

0.9346 

0.9346 

0.8901 

0,9524 

0 .9524  

FIGURE 15: Payoffs from one-period and two-period bonds when stales involving catastrophe risk are 
introduced inlo lhe model. 
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In contrast to equation (2), the state contingent payoffs at time l of a 
portfolio of tile one-period and two-period bonds is now given by the 
following matrix equation. 

1 0.9346 
l 0.9346 In , ]  
1 0.9524 [.tl 2 (7) 
1 0.9524 

The cost of this portfolio is still given by 0.9434nl + 0.8901n2. The most 
general vector of cash flows at time 1 in this model is of the following form: 

[ CU,+ 
Ctt, - 
c~/, + (8) 
C d, - 

On reviewing equation (7) we see that the span of the assets available for 
trading in the model [i.e. the one-period and two-period bonds] are not 
sufficient to span all cash flows of the form (8). Consequently, we cannot 
derive a pricing relation such as (5) that is valid for all cash flow vectors of 
the form (8). The best we can do is to obtain bounds on the price of  a general 
cash flow vector so that its price is consistent with the absence of arbitrage. 
This can be done using state price vectors and these calculations and some 
examples may be found in [4, Chapter 5]. 

Pricing in incomplete Markets. We will offer only the briefest of indications 
on how one can price insurance risk securitizations when working in 
incomplete markets. Details may be found in [4, Chapter 4] and references 
cited therein. 

The benchmark financial economics technique used to price uncertain 
cash flow streams in an incomplete markets setting is the representative 
agent. The representative agent technique consists of an assumed repre- 
sentative utility function and an aggregate consumption process. Let us 
suppose that we are in a T-period economy in which agents can make 
choices and consume each period. The agent makes choices about his future 
consumption, represented by the stochastic process {c(k) : k : 0, 1, ..., T}. 
The aggregate consumption process may be thought of as the total 
consumption available in the economy (for all agents) at each point in time 
and in each state of the world. Let us denote the aggregate consumption 
stochastic process by {C*(k)[k = 0, 1, ..., T}. Only the first choice is 
known with certainty at time k = 0. The other choices at future times are 
random and depend on the random state prevailing when each time point is 
reached. In "simple" applications it is customarily assumed that tile 
representative agent's utility is time-additive and separable as well as 
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differentiable. Time-additive and separable means that there are utility 
functions uo, ut, ..., UT such that the agent's expected utility for a generic 
consumption process {c(k) lk  = 0, 1, ..., 7"} is given by 

E Z u ~ ( c ( k ) )  . (9) 
Lk=O 

It follows from the theory of the representative agent that the price, which 
we will denote V(c), of a generic future cash flow process {c(k) lk  = 1, ..., T} 
at time 0 is given by the expectation 

v(c) = E . ; ( c * ( 0 ) )  
k=l 

If the aggregate consumption process in (10) is known (or can be determined 
for the model that is being used) then this equation gives a linear pricing 
relation for all uncertain consumption (or cash flow streams) for the model. 
This is very much like the risk-neutral expectation that occurs in complete 
markets valuation but here the model has been "closed" with an explicit 
assumption on utility. Evidently, different choices of  utility functions will 
generally result in different pricing relations. Note that the aggregate 
consumption process plays a role in the pricing relation. In many 
implementations of  this pricing relation the aggregate consumption process 
is assumed to evolve according to an exogenous process. 
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A B S T R A C T  

Based on the profit and loss account of  an insurance company we derive a 
probabilistic model for the financial result of  the company, thereby both 
assets and liabilities are marked to market. We thus focus o11 the economic 
value of  the company. 

We first analyse the underwriting risk of the company. The maximization 
of  the risk return ratio of the company is derived as optimality criterion. 
It is shown how the risk return ratio of  heterogeneous portfolios or of 
catastrophe exposed portfolios can be dramatically improved through 
reinsurance. The improvement of the risk return ratio through portfolio 
diversification is also analysed. 

In section 3 of the paper we analyse the loss reserve risk of the company. 
It is shown that this risk consists of  a loss reserve development risk and of  a 
yield curve risk which stems from the discounting of the loss reserves. This 
latter risk can be fully hedged through asset liability matching. 

In section 4 we derive our general model. The portfolio of the company 
consists of a portfolio of insurance risks and of  a portfolio of  financial risks. 
Our model allows for a silnultaneous optimization of both portfolios of 
risks. A theorem is derived which gives the optimal retention policy of  the 
company together with its optimal asset allocation. 

Some of the material presented in this paper is taken from Schnieper, 
1997. It has been repeated here in order to make this article self contained. 
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1. INTRODUCTION 

The p r o f i t  a n d  l o s s  a c c o u n t  of  an insurance company  typically details the 
following income items: 
- earned premiums (net o f  premiums for outwards  reinsurance), 
- investment income, 
- realized capital gains, 
and the following expendi ture  positions: 
- incurred claims (net o f  reinsurance recoveries), 
- expenses, 
- dividends to policyholders,  
- dividends to shareholders.  

We assume that the accounts  o f  the company  are on an accident year basis. 
Any other  commonly  used basis (e.g. underwri t ing year) can be dealt with 
after some minimal changes. We shall some times refer to the financial year 
which is the period covered by the company ' s  accounts.  

We split the premium into its different components ;  
- pure risk premium, 
- loading for expenses, 
- loading for profit. 

We split incurred claims into the following two components :  
- incurred claims pertaining to the current  accident year 

• - changes in claim amounts  in respect of  claims pertaining to previous 
accident years. 

We also take unrealized capital gains into account  as an income item. 
We make the following simplifying assumptions: 

- expenses and loading for expenses are identical and therefore cancel out; 
- dividends to policyholders are accounted for as claims, 
- we are interested in the change in value o f  the surplus of  the co m p an y  

before dividend to shareholders.  We therefore ignore this item, 
- the period under  considerat ion is the financial year of  the company.  This 

is an arbi t rary  assumption.  We could take any other  period e.g. a quar ter  
or a multi year period corresponding to the planing horizon o f  the 
company,  

- payments  pertaining to a given period are made at the end of  the period, 
- the premium written in a given period is earned in that period, i.e. the 

company  has no unearned premium reserves. (This assumption can be 
dropped at the cost o f  a slight increase in the model complexity.  The 
interest rate risk pertaining to the unearned premium reserves would be 
treated in a similar way as the interest rate risk pertaining to the loss 
reserves. Since the former  is much less material than the latter, we have 
chosen to ignore it.) 
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We make the following model assumptions: 
1. All random variables appearing in the model have finite second order 

moments. 
2. The pure risk premium is the present value of the expected loss payments. 
3. The loss reserves are equal to the present values of expected future loss 

payrnents. 
4. The discount factors used to assess the pure risk premium and the loss 

reserves are based on the yield curve as defined by the bond market. 
5. The assets of the company are valued at market value. 

We introduce the following notation, where random variables are denoted by 
a tilde: 

e 
AL 

/g 

/Xu 

total claims amount pertaining to the current accident year 
the mathematical expectation of the above random variable; this is 
the pure risk premium 
the profit loading for assuming the underwriting risk 
increase in claim amounts in respect of claims pertaining to previous 
accident years 
investment income plus realized capital gains plus unrealized capital 
gains 
capital (economic value) of the company at the beginning of the 
financial year 
increase in capital (in economic value) during the financial year, 
return of the company during the financial year. 

The following relation holds true 

A ,  = E(S) + e -  s -  AL + AA 

S - E ( S )  is referred to as the underwriting risk, A L - E ( A L )  as the 
loss reserve risk, A A -  E(fXA) as the asset risk and , ~ u - E ( A u )  as to 
the total risk of the company. 

2. UNDERWRITING RISK 

2.1. Simplified Model 

We split the assets of the company between a liability fund and a capital 
fund A = AL + Au. This means that some of the assets (AL) are earmarked 
to cover the liabilities of the company and the rest of the assets (Au) match 
the equity of the company. Since in this section we focus on the underwriting 
risk, we assume that there is no loss reserve risk and no asset risk. To be 
more specific, we make the following 
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Assumptions 
- There is no loss reserve risk, i.e. amount  and time of payment  in respect 

of  outs tanding losses are perfectly known to the company.  
- The liability fund, i.e. those assets which cover the liabilities, perfectly 

match the amounts  and maturities of  the liabilities. The liabilities are 
discounted with the discount factors corresponding to the liability fund. 
As a consequence any change in the yield curve will have a perfectly 
offsetting effect on AL and --A,4L. 

- The capital fund is invested in the risk free rate of  return: ~xAv = pot,. 

The total return of  the company now is 

? , .  = E ( # )  + e - # - zXL + ~ .4L + 2~Au = E(~ )  + e - ~q + m .  

2.2. Optimality Criterion 

The objective of  the present article is to provide a method to optimize the 
portfolio of  the company.  We first define and discuss the optimality 
criterion. The owners of  the company are interested in the excess return on 
equity provided by the insurance portfolio 

$(,,) _ X . -  p 0 .  

Let 

E( S) - g - S = ~_, E( )(i) + gi - )(i 
i =  I 

be a breakdown of  the portfolio into m individual risks (policies, lines 
of  business, customer segments, etc.). The company manages its portfolio 
by defining for each risk X i - E ( X i )  the share ai E [0, I] it wants to 
retain and by ceding ( 1 -  ~ i ) ( f ( i -  E()(i)) to its reinsurers. It is assumed 
that the company also cedes a proport ional  share of  the corresponding 
profit (1 - a ; ) g ;  to its reinsurers. The return of  the net retained portfolio is 
t h u s  

111 

~",,~, = Z ~;(e(,t,) + e, -  2;) + po,, 
i =  1 

and the corresponding excess return on equity is 

~(t,) _ Au,,,,, - pou _ ~ ~, E ( 2 , )  + e, - 2 ,  
I I  I t  

i =  1 
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We introduce the following notat ion 

,,,(,,) = E(%(,)) £(z,) = v,,.(%(,,)). 
We have now to define the criterion according to which the company  
optimizes its portfolio. The approach is the same as Markowitz ' s  mean 
variance method.  (See H. Panjer et al., 1998.) It is assumed that the owners 
of  the company  have two objectives: 
- maximization of  the expected value p,~(u) of  the company  return on 

equity 
- minimization of  the risk as measured by o-~(u). 

According to their preferences, the owners put weights on these conflicting 
objectives and maximize 

2r#~(u) - o-2(u), with r _> O. 

The parameter  r is called the risk tolerance. 
Note  that the total investment constraint  o f  the Markowi tz  Model  

o, _-,),s the , .mework  been d o  ed. 
i= I 

We first assume that the amount  of  equity of  the company,  u is given. The 
set of  all points in the (#,c~) diagram, which correspond to efficient 
portfolios is called the efficient frontier. The efficient frontier is convex, and 
piecewise hyperbolic. Because there exists a riskless investment, the first 
piece of  the efficient frontier is linear. (See H. Panjer et al., 1998.) 

E x a m p l e  

We assume that there are two uncorrelated risks with expected profit el and 
g2 respectively and s tandard deviation ol and a2 respectively. We introduce 
the following notation 

Ai = - -  
L/ 

We have 

The objective is 

O" i 
and T~:-- i =  1, 2. 

tt 

/Zc~(U ) = 0 ' 1 ~  [ -.+- 0'2.~ 2 

2rF,~(u) - o2~(u) = max!  with /3 = {celc~,,c~2 E [0, 1]} 

which leads to the following unconstrained op t imum 

Ai 
eei = r--- 5- i =  I, 2. 

r7 
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W i t h o u t  a n y  loss o f  genera l i ty  we assurne  

) e l  A~ ~>_ - 
7-r ;_2 

and we make the following case distinction: 

I. r <  T2 
- - A i  

In tha t  case a~ and  c~2 are  as a b o v e  and  

" t,7-2 7-:/ 
H e n c e  (#o,  o.o) descr ibes  a s t ra igh t  line as 7- varies .  

r# q 2. 7- E l-C-. '-~2! 
L-,I , , z j  

In tha t  case a I  = 1 and  a2 = r _  and  = A I  + r ~ ,  = 
r2 7-i 7-i 

and  (#o,  o.o) descr ibes  a h y p e r b o l e  as r varies .  

3. 7->7-2 
-AI  

In tha t  case ctj = a2 = 1 and  I*~,. = ~1 -]- A2, o2 : o .2 -t- o.2 and  this 
s e gmen t  o f  the efficient f ron t ie r  degene ra t e s  to a single point .  

W e  n o w  let the a m o u n t  o f  equ i ty  o f  the c o m p a n y ,  u vary .  W e  have  

k O~i~ i 
# O ( L I )  ---~ E ( ~ e c ( H ) )  - -  i=1 __ R(OL) 

H It 

~(.) = v a , . ( ~ , . ( . ) ) -  '~  - 
ld 2 ii 2 

I 

where q j  = Co~(2,, 2j). Hence ~ ( , )  - n ( ~ ) ,  o.~(~) _ V(_~)~ 
It I I  

Thus if P is a point on the efficient frontier as defined above - i.e. on 
the basis of a fixed amount of equity - any point on the straight line OP 
can be reached through a proper choice of the amount of" equity u. It  is 
therefore natural to start the optimization process with the following 
requirement 

1. R(-a) I ------ mmx] with e = {~lo~/E [0, I] all i} 
(v(_~))~ _~en 

the above requhement amounts to a maximization of the risk return ratio 
or,  in the t e r m i n o l o g y  o f  f inancial  e c o n o m i c s ,  o f  S h a r p e ' s  ra t io .  In 
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general, the above ratio is maximized for a whole set of  admissible values 
of  oe. Let fit denote the set of  those values. It is reasonable to make the 
following additional requirement 

£ O g i ~  i = n l & x  ! 
I= l  ctEfJi 

This amounts to maximizing the net expected profit. 
Let o a. I denote the net retentions for which the above requirement is 
satisfied. Let 

R=R(~,w) a.# V=  V(_~M). 

amount of  equity is now defined by the fol lowing The optimal 
requirement 

R V 
2. 2 r - -  - max ! 

It II 2 u 
which leads to the following optimal an3ount of  equity 

U = T -  I __ V 

R 

Remarks  
I. Whilst the present optimization method is based on the same objective 

function as Markowitz 's  mean variance method, there are however major 
differences between the two methods. First, the portfolio to be optimized 
consists of  a set of  insurance risks rather than financial assets. (Later we 
shall optimize a combined portfolio of  insurance risks and financial 
assets.) This leads to a different set of  constraints. In particular the total 
investment constraint (y~' eei = 1) is meaningless and has been dropped. 
Second, in addition to optimizing the composition of  the portfolio, the 
company can also decide on the amount  of  equity it needs to support the 
business. This additional degree of  freedom leads to a different efficient 
frontier than in the Markowitz  framework. 

2. One of  the drawbacks of  the above method is that it only takes into 
account the first two moments  of  the distribution of  the risks in the 
portfolio. In the case of  insurance risks which are typically skewed and 
leptocurtic, this is a serious limitation. In the remainder of  this section we 
shall nevertheless analyze a few insurance optimization problems with the 
help of  the above method. It is felt that this parallel between insurance 
and finance is of  interest in spite of  the above mentioned limitations. 
Within the framework of  our general model (introduced in section 4) we 
optimize a combined portfolio of  insurance risks and of  risky financial 
assets. Since the insurance risks entering into the portfolio are net of  
reinsurance, it is not unreasonable to assume that the distribution of  
returns is close to multivariate normal. 
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We now turn to tile problem of allocating capital to individual risks. Let 
Au = ~--~'i'=l k~ be any split of the total risk of the company into individual 
risks. The capital is proportional to 

Var( Au) = F_, Cov(,f;,, /xu) 
i = 1  

It is thus fair to allocate to each risk ~'i an amount of capital ui, which is 
proportional to tile contribution of  that risk to the overall volatility of the 

result of the company: ui = k .  Cov()(i, f~u). Since u = ~ '  ui we obtain 
i =  I ~ 

Cov( Xi, Au) 
ui-- u- Vc.'(ALO 

The excess return which the company expects to achieve for assuming the 
risk cT(~xu) is equal to (p - p0)u, where p0 denotes the risk free rate of return. 
It is fair to split the excess return proportionally to the capital. 

Definition 
The fair loading of risk )(i is 

Cov(Xi, Au) 
([)  - -  PO)Hi  = (D - -  [')0) " L'" V a r ( f ~ b l  ) 

It is equal to the cost of the capital needed for assuming risks Xi. 

We assume that the company is a price taker, the fair loading is thus not a 
way to compute prices but a way to define benchmarks, in general there will 
be cross-subsidies. Certain risks well have a higher expected profit than the 
fair loading, others will have a lower expected profit. Later we show that if 
the portfolio of risks is optimized ill an unconstrained way, the actual 
loading of each risk is equal to the fair loading. This is a further justification 
for our way of allocating capital to individual risks. 

We now turn to the problem of maximizing the underwriting risk return 
ratio. Assuming that the Ioadings of  individual risks are given there are two 
main possibilities to increase the above ratio: combining risks in a portfolio 
and buying reinsurance. We illustrate the impact of reinsurance and the 
portfolio effect on the risk return ratio. 

2.3. Portfolio Heterogeneity 

Let Xt, )(2, ..., ~',, be the uncorrelated risks of  a portfolio 5' = ~ ,~',. Let 
i =  I 

gi denote the loading of risk i and ~ its variance. We have thus 

I 
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Let us assume that for each individual risk i the company keeps a share o~i 
for its own account and cedes a share (1 - eci) to its reinsurers. 

Theorem 
Under the above assumptions,  the choice of  ~l,  ..., c~,, which maximizes the 
net underwriting risk return ratio 

o:igi 
r n e t  - -  1 

is 

o~i : c - -  

where c is some norming constant  which must be chosen in such a way that 

0 _< e~i _< 1 

for all i. With the so defined set of  retentions we have 

I 

Proof 
Deriving r,,e, with respect to c~j and setting the derivative equal to 0 we obtain 

I I 

E 2 2  O~ i O" i 

ej ej 
- oj  E - co  7 

and the value of  the optimal rnet is obtained by plugging the above value of  
~j into the expression defining r,,~,. []  

Special case 
Let 

and 

.e~.. i = f Li with probability p 

t 0 with probability I - p  

gi = E(Xi)A = pLiA 
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we now have 

V a r ( X i ) = p ( 1 - p ) L ~ - - p L ~  for p < <  I 

and the optimal retention becomes 

gi pLiA 1 
O: i ~ C -"~ ~" C ~--- - -  C /~ 

cr 7 p L  2 Li 
:=~ oziZ i = CA 

and the retention o f  each risk is such that the net mone ta ry  amoun t  retained 
is the same for all risks i.e. the reinsurance ar rangement  which maximizes the 
underwrit ing risk return ratio is a surplus treaty, where the retention is equal 
to the smallest sum insured. 

On a gross basis the risk return ratio is 

tl  

k L i p A  ~ L i  
i= l  i=1 

" -  I - ' X v ~  I @)' L2) 
and on a net basis 

I 

= 7 )  

It is seen that r,,el _> r. The  inequality is strict unless all Li's a r e  equal. 

Numerical Example 
Let us assume that there are two types of  risks 

1 with probabil i ty  10 -3  

Xi = 0 with probabil i ty  0.999 

and 

,~'2 = f 100 with probabil i ty 10 -3 
k 0 with probabil i ty 0.999 

There  are n = 10 5 risks of  the first type, and n = 10 3 risks o f  the second type. 
The profit loading is A = 3% of  the pure risk premium. We have 

¢7(S) "-~ V/10-3(105 + 107 ) = 100.5, e = 6.0, r = 0.060 
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According to the above theorem, the reinsurance arrangement  which 
maximizes the underwrit ing risk return ratio is a surplus treaty with a 
retention o f  1. On a net basis we have 

~_ v/lO -3 • (105 + 103) = 10.05, g = 3.03, r = °(grief) 0.301 

The net underwrit ing risk return ratio is much higher than the gross. 

2.4. Catastrophe Exposure 

Let S = k ~'i be a portfol io of  individual risks where each risk is tile sum of  
i= I 

an ordinary  risk and of  a ca tas t rophe risk: 

We have thus 

2,  = o2, + eL.  

?1 pl 

12,,x,, + Zcx-,. 
i=1 i=1 

It is further  assumed that 

{10 ii = j Col,(o.~i, o2j)  = (SijO~o for all i, ./, where ~5 0 = 

and that 

Cov(c~Vi,,.f(j) = ~ for all i,j 
i.e. ordinary  risks are uncorrelated and catas t rophe risks are perfectly 
correlated.  It is further  assumed that 

Cov(o)(i, c)(j) = 0 for all i,j. 

It follows that 

Coy(L,2 , )  = Coy(,,2, + , L ,  o2, +~&) = e0.4 + ~,~ 

and 

Va,.(~) = "•0 + ,,2~,~. 

Let us now assume that the catas t rophe exposure is reinsured through a per 
event excess of  loss reinsurance with retention x 

S,,cl = 0)(, + ~ A .x 
i= l  \ i=1 ] 

where x Ay  denotes the minimum of  x and y. 
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To compute the value of  

i=  I 

as a function of  x we would need to make distributional assumptions on the 
catastrophe risk. We make the extreme assumption that the catastrophe risk 
is fully reinsured, i.e. x = O. 

As a consequence we have 

Var(  g,,et ) = 1,O~oo . 

Let /~o and #c denote the pure risk premium of an ordinary risk and of  a 
catastrophe risk respectively. Let A,, and Ac denote the premium loading of  
an ordinary risk and of  a catastrophe risk respectively. We have 

g n(#oAo +#cAc) #oAo + #,.A,. 

Assuming that the loading of  the reinsurance premium for the catastrophe 
risk is the same loading as for the original catastrophe risk, we obtain 

r,et = x/n #oAo 
o- 0 

which is usually much larger than r. 

Numerical Example 

0Xi = ~ 100 with probability 10 -3 

L 0 with probability 0.999 

5 with probability 10 -3 
c)(i = 0 with probability 0.99 

0Xi could be a fire claim and cXi an ear thquake claims f iom a given fire 
policy. 

We have 

3 
#o = 0.1, #c = 0.05, ~70 ~-- 10-~. 100 = 3.16, oc "~ 10 -t • 5 = 0.5 

Let us assume that 

A o = 5 % ,  A ~ . = 2 0 % a n d n =  l0 s . 
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We obtain 

or(5") = 50'010 g = 1'500 , ' =  0.030 

cr(~,,~,) = 1'000 G,, = 500 ",,e, = 0.500 

The net underwriting risk return ratio is much higher than the gross. 
Assuming 7- = 0.25 we obtain the following amount  of  required equity 

u : 7--' ~2(~,,~,) _ 8'000 
~IICI 

which leads to the following optimal risk, excess return pair 

e,,e, '~(L,e,) 
# -  - 6 . 2 5 % ,  a - - - -  12.5%. 

tl II 

2.5. Portfolio Diversification 

Let ~'t, ~'2, ..., X,, denote the different insurance portfolios of  our company  
(e.g. homeowners ,  private automobile ,  commercial naultiperil, commercial  
automobile ,  assumed reinsurance business, etc.). 

Let 

~(,%) : E ( L )  + e, 

denote the premium 6f  portfolio k~, 6 is thus the corresponding loading. 
We use the following notat ion 

~u = Co,,(L,~j) ~ =  (Go.) 

We assume that the company  keeps a share c~i o f  portfolio Xi for own 
account  and cedes a share (1 - c~i) to its reinsurers. 

The combined net portfolio of  the company  is thus 

L,~, = ~ k ,  + 0,222 + ... + ~, ,L,  

and its combined net profit loading is 

g,,et = ~Igl q- 6~2~2 -}- .-. ac <e,,gn 

Theorem 
We assume that ~ - I  exists. 
1. The vector cV = (Oel, 0'2, ..., ~,,) wlaich maximizes the net underwriting 

risk return ratio 

~11C! 
rll('g - -  ~ ( S I i c i )  
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is given by 

c~ = c . E  -I .t '  

where _~' = (el, g2, ..., g,,) and c is a scalar which is chosen in such a way 

that max  c~:--- I. 
i =  l, . . . , l l  

The optimal risk return ratio is equal to 

I 
= 

2 .  o~ maximizes the risk return ratio if and only if the net loadings 
(eeigi i = 1, ..., n )  are equal to the fair loadings. 

R e m a r k  

The solution c, provided by the theorem is only meaningful ifc~i > 0 for all i. 
It is indeed unrealistic to assume that the company  can take a short  position 
in any of  the insurance portfol ios Xi. To  find a solution __a which always 
satisfies the condit ion c~ > 0 is a convex opt imizat ion problem with 
restrictions. It is a s tandard problem in finance theory,  see for instance 
W.F. Sharpe (1970). 

P r o o f  

I. We have to maximize the following expression 

C~l~ l  -t- CZ2£2 -+- . . .  -I- Oz,,~n 
r = I 

;J / 

deriving with respect to c~l, c~2, ..., c~,, and equat ing the expression to O, 
we obtain 

& - - = 0 ~ - ~'-(s,,,) 

e,,~r(S,c,)- e,,e,:~c~(S,,,,) 2 a:~r,j 
,5," _ \ J=~ = 0  



2 1 0  RENE SCHNIEPER 

and after some s t ra ightforward rearrangement  of  terms 

g~oa(L,,,,) = g,le,, ~ c,j~,j 
j=l 

or in matrix notat ion 

e"O'2(~'w') = e,,etj k c~J°nj 
j=l 

o2~.,) _ Ect 

c~ = ct2-1e 

This proves the first part  of  the theorem. (Note  that by definition A is 
only defined up to a norming constant  c.) 
We now prove the s tatement  about  rnet. 

i/ar(~ ) _-- C~t~Ct = C,2_~-I  ~ - I _ ~  = (C~I)(C.Z-I_~) : C.eIC~ 

r l I c ,  l -  ] = = _ _ 

V-E( ~_' e)~ v ;  
I 

r,,e, = (_e ' rT '_e)~ 

2. oeiei i =  1, ..., n are the fair loadings if and only if 
c~igi = c .  Cov(c~i2i,  o~,,e,) i = 1, ..., n for some constant  c. This in turn 
is equivalent  with the following system of  equat ions 

O~i~i = C" ~ O~iO[jGr(j i = 1, 2, ..., n 
j=l 

~ ? i = c ~ o q a j  i =  1, 2, ..., n 
j=l 

c~ = c - lE -~g  

which is equivalent with cr maximizing the risk return ratio. 
q.e.d. 

N u m e r i c a l  E x a m p l e  

There  are three portfol ios with 

CTlt = I ~t = 0.2 =¢ - 20% 

~-2 
0"22 = 4 ~2 = 0.2 ~ - 30% 



PORTFOLIO OPTIMIZATION 2 1 I 

We think of X] and X2 as of  a motor  portfolio and a homeowners portfolio 
respectively. We assume that both portfolios are exposed to the same natural 
peril (e.g. storm), which is only reinsured in excess of  a substantial retention. 
The correlation between the two portfolios is therefore positive. Let us 
assume that it is equal to 0.20. 

The third class of  business consists of  industrial risks with 

g~ 
c r33=9 . (1 .5 )  2 = 2 0 . 2 5  ~'3= 1.8 ~ - - : - -  = 4 0 %  

The interpretation is that for the same premium income as the homeowners 
portfolio, the industrial portfolio has a standard deviation of  3, instead of  2 
for the homeowners portfolio. The industrial portfolio has 50% more 
volume than the homeowners portfolio. It is assumed that the industrial 
portfolio and each of  the personal lines portfolio are uncorrelated. We have 
thus (,o.4o), 

~ - ~ =  0.4 4 0 _~ = 0.6 
0 0 20.25 1.8 

From our theorem we obtain that the optimal retentions are 

_~ '=(1 ,  0.93, 0.61) 

yielding 

~(S,,e,) = 3.57 _e,,~, t = 1.85 r,,~,, = 0.518 

Thus the optimal risk return ratio is much higher than each of  the risk return 
ratios of  the individual classes. 

Let S be the gross combined portfolio S = ,~'] + -~'2 + -~'3 we have 

gl + g2 + g3 2.6 
a ( S ) = 5 . 1 0  e = 2 . 6 0  r -  t - ~ - 0 5 0 9  

which is nearly as high as the optimal risk return ratio. To achieve the 
optimal ratio the company must cede 7% of its homeowners business and 
39% of its industrial business. It must thus forgo an expected profit of  0.75 
out of  a total expected profit of  2.6. It is questionable whether in this case the 
slight improvement in the risk return ratio is worth this sacrifice. 

Let us assume that for given R = E(/Xu) and V = Var(/Xu) the c o mp a n y .  
chooses the amount  of  equity u in such a way as to maximize 

R V 
2 7 - - - - - - -  

II  I t  2 " 
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This is t an tamount  to utilizing Markowitz 's  objective function to determine 
the optimal amount  of  capital for a given risk and return. The optimal 
amount  of  equity is 

I.I ~_  T _ I  _ _  V 
R 

For  r = 0.25 and utilizing the notat ion 

I 
F~ : E(~iu)),  o - :  VarS-(~(u)) 

we obtain 

Portfolio 
r a t t  u 

I 0.200 5% 107o 20.0 

2 0.300 7.5% 2.25% 26.67 

3 0.400 10% 4% 45.0 

4 0.509 12.75% 6.5% 40.0 

5 0.518 12.95% 6.71% 27.56 

where portfolio number 4 is the combined portfolio and portfolio number 5 
is the optimal portfolio. 

This example illustrates that combining portfolios results in substantial 
capital savings and improvements of  the risk return ratio. This example also 
illustrates the fact that, when we combine portfolios in a non optimal way, 
there is a cross subsidization between portfolios: Let S denote the gross 
combined portfolio. The fair loadings are 

gi -~- ]J'" /.l • 

thus 

Coy(Z, 
v(,,.( #) 

1.4 
gl = 6.5%. 40.0. - -  -- 0.14 g2 = 0.44 g3 = 2.02 

26.05 

whereas the actual Ioadings are 

gl = 0 . 2 0  g 2 = 0 . 6 0  g3 = 1.80 

There is a subsidization of  ~3 from -~'l and -~'z. 
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3. Loss RESERVE RISK 

3.1. Individual Accident Year 

Since we only consider one accident year, we can assume that the 
development year t of  risk )( is also the financial year t of  the company.  
This amounts  to a renumbering of  the financial years. We first analyze the 
problem_on an undiscounted basis. Later we introduce discounting. 

Let X denote a risk, or a portfolio of  risks pertaining to a given accident 
year. L e t  ~r(k) and g denote respectively the premium and the loading of  
risk X. We have 

~(~ = E ( ~  + e. 

As with all other random variables we assume that E()(2) is finite. Let us 
assume that )( is paid out over w development years. 

2= £ P , .  
t=  I 

/St denotes the payment  made in development year t in respect of  risk k.  
Let ~ t  denote the information of  the company on risk X in development 
year t. H0 is the information on the risk prior to underwrit ing it and we have 
thus E(X) = E(217-t0). 

We further introduce the following notation 

£ = E(~?I~,) 
)(i is the company ' s  estimate of  risk )( in development year t. 

We assume that H0, 7-/i, ..=, Hr, ... is an increasing sequence of  
a-algebras. It is easily seen that X, is a martingale. Let 

£, = E(k,+, + P,+2 + ...17~1) 

be the loss reserve of  the company at the end of  development year t in respect 
of  risk X. 

Based on the .pure risk premium E()~'), the contribution to results 
produced by risk X in the successive development years are as follows 

k , =  L,_, - P , -  L, t= 1, 2, ... 

and the following relation holds true 

R ,  = E ( f ( I H t - t )  - E( ,YIT-[ , )  t = I ,  2,  ... 

R, is the difference process of  a martingale (i.e. of  E(-.YIT-(,)). 
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Note that according to our terminology, /~, is the underwriting risk and 
/~2 + ... + R~ is the loss reserve risk. 

Since - X / = - E ( ~ r )  is a martingale and R, is the corresponding 
difference process, the following holds true 

E ( R , )  = 0 t = 1, 2, ..., Coy(R,,/~., .)  = 0 t # s, 

Wr(2) = ~ v<,(k,). 
t = [  

~ 

Let g denote the loading for profit pertaining to risk X. We make the 
assumption that g is earned over the whole development period of  risk X. 
The amoun t  earned during development year t is 

e, = e .  w t , . ( k , )  
v<,,.( 2) 

a)  

The above ensures that ~ (~t = g. 
t=l 

We now introduce discounting. Let ~(u),  a random variable, denote the 
interest rate intensity at time u. The present value at time s of  one monetary 
unit paid at time t is then 

t 

- f ~(,,)<t,, 
~(s ,  t) = e 

Let ~7, denote the cumulative information on the interest rate intensit,£ up to 
the end of  financial year t (which is also development year t of  risk X). It is 
assumed that {70, {71, ..., G~, ... is an increasing sequence of  a-algebras. 

We have now 

2 = ~(0, I). ;3, + ~(0, 2). k~ +.. .  + ~(0, ~) .  k~, 

Let 

£, = E ~(~, t + .~)A+.,.I~,,  g ,  
k,s=l 

be the loss reserve of  the company in respect of  risk ,~" at the end of  
development year t. As a sl~ecial case we have L0 = E(,,~'). 



PORTFOLIO OPTIMIZATION 215 

The loss development risk in development year t is 

~,  = £ , _ ,  - b , -  L, 

R,t --E © ( t -  ] , l -  l -}-s)Dt_l+.,.lT-(t_l,Cjt_l - P ,  
\ s=l 

" \ s = l  

" ) 
= E .o( , - i , r+s)~ ,+ .+l~ ,_~,G, ,_ ,  

\ s=O +-+ )] 
- e ( ~ ( , -  l , ,  + s),~,++l~,,~;,_, 

ks=0  

[(+< ) + E ~ ( , - I , , + . ~ ) , ~ , + s l ~ , , c j , _ ,  

( )] 
\ s=0 

R, = , R ,  + 2kl 

Assumption 6 
The interest rate process and the claims process are stochastically 
independent.  

Under the above assumption we obtain 

i [~, -- ~ E(~(t  - I, t + s)lG,_, ) .  (E(,'5,+.,.I~,_,) - E(P,+.,.I~,)) 
s=0 

I/~, is the loss reserve development risk. It is seen at once that E(I/~,) = 0. In. 
addition the company will earn a profit loading g, as defined above, for 
assuming the risk i R,. 
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We also have 

2/~, = ~ E(P,+.~I~,) • (E(O(t - 1, t + s)lG_l ) - E(~3(t, t + ,~')1~,)) 
S=0 

¢d--I 

2,~, = ~ E(P,+.,I~,) (E('b(t - 1, t + ,~)lg,-~) - E(O(t - 1, t + s)l@ ) 
,Y=0 

+ E(©(t - 1, t + s)lG ) - E(0(/, t + s)lg,)) 

2/~, = ~ E( /~ ,+ . , . I~ , )  • (E ( . 0 ( t  - 1, t + s ) l g , - ~ )  - E ( ~ ( t  - l ,  t + s ) 1 0 , ) )  
s=0 

+ ~ e ( L + , l ~ , )  • e ( ,~( t  - 1, ~ + ~)1~,1 • (1 - ~-~ (~ - 1, ~)) 
s=0 

and it is seen that the first term is the yield curve risk stemming from the 
discounting of  the loss reserves and the second term is the unwinding of  the 
discount.  

--2/~t can  be viewed as the yield in financial year t of  a bond portfolio 
with the amounts  E(P,I~,), E(P,+II~,), ..., E(/5~I~,) maturing at time 
t, t + I, ..., w respectively. The risk 2R~ can therefore be perfectly hedged 
through asset liability matching. 

3.2. Different Accident Years 

Let .'~1~ 22, ...r ~':.a denote a risk or a portfolio of  risks pertaining to accident 
years 1, 2 . . . .  , w. Let fit,, denote the claims payment  made in respect of  
accident year t, in development  year s. It is assumed that each -~'t is paid over 
w development  years. We have 

~--I+l 

f(, = ~ & ( t -  l , t - 1  + s)P,,s 
.~: = ] 

where ~(s, t) is defined as the preceding subsection. 7YIs(S -- I, 2, ..., w) is 
the a-algebra generated by {P/,a, Pr,2, ..., /3.,.}. G~ is the 'a-algebra generated 
by {8(u)lu < t}. The loss reserve held by the company  in respect o f  accident 
year t at the beginning of  financial year w is 

L t , ~ _ , = E (  s= ~-,+ O(w - I ' s + t - 1 ) b " ' l ~ " ~ - "  ~7~-') " 

At the end of  financial year w it pays Pr.~-~+t and puts up a reserve 

L,,~_~+, =E(.=~_,÷2 ~(w,s+t-l),~,,,.l~,,~_,+,, G). 
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The risk materializing during financial year co in respect of  accident year I is 

~ 

Rt,w-t+l = Lt,gO-t -- Pt,w-t+l -- L t ,w- t+l .  

And the overall loss reserve risk is thus 

gO--] 

~xL = - ~ Rr,~.-t+l • 
t=l 

Note  that k~,,t is the underwriting risk in respect of  accident year w and is 
therefore not part of  the loss reserve risk. 

Upon rearranging terms, we obtain 

/}':'°-'+~ =E (s= ~-,+ ©(w-l's+t-l)p''slT-l''~-''G~-') 
-E(s=~_t+, £,(co, s + / -  1 )/5,,.,,~,.~_,+,, G~o) 

Rt,w-t+l =l  Rt ,w-t+l -k- 2 Rt,~o-t+l 

Using assumption 6 we obtain 

S=to-- t +  [ 

• ( U ( ~ , , , [ ~ , , ~ _ , )  - E ( b , , , l ~ , , ~ _ , + , ) )  
gO 

2Rt ,w- t+'  = Z E(Pt ,s l"][ t 'w-t+l)  
s=w- t+ I 

• ( E ( , ~ ( ~ -  I , s +  1 -  l ) l ~ o - ~ )  - Eff,(<,+t- I ) l G ~ ) )  
co--I 

Let ~ L  = /~LI -+-/~L2 with 7~Li = ~ iR, .~- ,+l  i = 1, 2. 
t =  I 
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/XLI is the loss reserve development risk and ~L2 is the yield curve risk 
combined with the unwinding of  the discount. 

It is easily seen that E(ALI)  = 0. In return for the assumption of  the risk 
2xLi the company earns a profit loading 

~1 = Z ~t,w-t+l 
t= l  

where g;.~o-,+l is the profit loading pertaining to accident year t in 
development year ~ - t + 1 (see section 3.1). 

Upon rearranging terms we obtain 

to--I 

~xL2 = -- ~ Rt.a~-t+l 
t= l  

u2-1 

£XL2 =~_,  E([~t,sl'H,.~o_,+,) • (E(£, '(a),s+t- 1)]G~,) 
t= l  s=w--t+l 

- E ( © ( w -  l , s +  I - I ) l G ~ _ t ) )  

to--2 

AL2 = }--~ k~(E(~(~, ~ + s ) l ~ )  - e ( ~ ( ~  - l , ~  + s ) l~ -~ ) )  
5=0 

with 

Thus 

k., = ~ E(P,,~+,+,-,I~,,~-,+,). 
t=s+ I 

w - 2  

.';=0 

+ E ( ~ ( ~ o - l , ~  + , ~ ' ) 1 ~ ) -  E ( ~ ( ~ - l , ~  + s ) l~_~))  
w - 2  

AL2 -- ~ / , - , ( E ( ~ ( ~  - I,~, + s)lG~), f f - ' ( ~  - I ,~ ) ) )  
A~0 

W--2 

+ ~_k.,.(E(©(w - l ,w + .v)[{7~) - E(O(w - l,w, + s) l~._,))  
.','= 0 

where the first term is the unwinding of  the discount and the second term 
is the yield curve risk stemming from the discounting of  the loss reserves. 
We have thus 

~xL2 = / ? L  • L 
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¢o--2 
where L = y ~ k s E ( 9 ( c o - l , c o + s ) l ~ , o _ l  ) is the total discounted loss 

.~=0 
reserves at the beginning of  financial year co and /~/_ is the yield for 
financial year co of  a bond portfolio with the anaounts k,,. matur ing at the 
end of  financial year c o + s  ( s = 0 ,  I, ...; c o - 2 ) .  /~L is the rate of  return 
of  a bond_portfol io  with the same maturities as the liabilities of  the 
company.  AL2 can thus be perfectly hedged through asset liability 
matching. 

In summary the loss reserve risk consists of  two parts 

/~L = (/~LI - el) - ~ -  /~L" L 

a loss reserve development risk (/kLi) and a yield curve risk (/~L " L). 

4. GENERAL MODEL INCLUDING ASSET RISK 

4.1. Optimality Criterion 

We have obtained the following representation for the return of  the 
company during the financial year 

k , ,  = (E(~)  + e - ~) + (e, - A L , )  - & . L + 7",A 

The first two terms are insuranee risks (underwriting and loss reserve 
development risk), the last two terms are financial risks (yield curve risk and 
asset risk). 

It is assumed that there are n different categories of  assets. /~j, a random 
variable, denotes the return of  asset category j. Aj denotes the amoun t  
invested by the company in asset ca tegoryj .  We have 

XA = ~ kj. Aj. 
./= I 

Let P0 denote the return of  the risk free asset. We obtain the following 
representation for the excess return of  the company 

A t , -  pou = (E(S) + g -  S) + (g., - 7kL,) - (RL -- Po) " L + ~ ( R j -  po) " Aj 
d=[ 

where we have used the fact that the sum of  the liabilities of  the company is 
equal to the sum of  its assets 

L +  u = ~-~A,  
j=l  
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Let 

I l l  

e(~) + e - ~ = ~ e(2,) + e , -  2, 
i =  1 

I H  t 

e , -  ~,c, = Z e',- xl (e(<) =0) 
i =  I 

and 

I H  I 

(k, .  - ~,0). L = ~ (R', - r,0). L, 
i=1 

be a split of  the underwriting risk, the loss reserve development  risk and the 
yield curve risk into individual risks (e.g. lines of  business, market  segments, 
etc.). We assume that company  keeps a share c~i (c~i E [0, 1]) of  each 
individual underwriting risk and cedes 1 -oe ,  via quota  share reinsurance. 
Similarly the company  retains a share/3 9 of  loss reserve development  risk and 
of  the yield curve risk j. The excess profit o f  the company  now reads 

I l l  I?1 I 

7,.- ~o.-- E ~, (~ls~,)+ e,- k,) + E~,  ((e~- v,)- ~ ; -  ~o~ ~,) 
i=1 j = l  

+ ~ (&- r,0). A., 
i =  I 

And it is seen that portfolio optimization amounts  to an 'optimal '  choice of  
the oe's,/3's and A's. We now define the optimali ty criterion. 

Let 

,5(z,) - k , , -  p0u, z,,(u) = E(S(z,)), , 2 ( , )  = W,,-(,5(,)) 
It  

The objective of  the company  is to maximize 

2r#(u)  - o'2(t,), with r >_ 0. 

(For  a discussion oF the above objective function see section 2.2). As in 
section 2.2 we have 

l'(u) _ R(~_, ~, A_) ~2(u) _ V(~, /3 ,  A__) 
I I  ~ /t 2 
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Thus the same arguments  apply and it is seen that the efficient frontier is 
defined by maximizing the risk return ratio (Sharpe's ratio). 

# ( . )  L(_~, _9.. A_) 
- -  - -  I = 1 " ( 0 : , / ~ ,  A__)  

Hence the following 

Definition 
A portfolio is optimal if and only if the corresponding risk return ratio 
r(c~,/3,A) is maximal. In addition c~ and /3 are such that the net retained 
insurance profit is maximized. 

Usually r(_~,/3, A_A_) is maximized under certain constraints such as ~i C [0, 1] 
and flj E [0, 1] ~md, if the company  is not allowed to issue securities Ai >_ O. 

Once the company  portfolio has been determined, the risk return ratio 
and the efficient border  of  the company  are given. The company  still has to 
choose a specific point on the efficient frontier. This choice is equivalent to 
the choice of  the amount  of  capital of  the company  which in turn is defined 
by the risk tolerance T (see section 2.2). 

Let ~xu = ~ 2 i  be any split of  the total risk of  the company  into 
i=l 

individual risks. Since the amoun t  of  capital required to assume the total risk 
Au is proport ional  to 

w,,.(&,) : ~ Co~(Z, A,) 
i= I 

We allocate to each individual risk Z'i an amount  of  capital ui, which is 
proport ional  to the contr ibut ion of  that risk to the overall volatility of  the 
result of  the company  

ui = k . Cov( Zi, ~xu). 

Since ~ tl i = ~l, we obtain 
i--I 

C o l , ( Z i ,  ALl)  
"i = " va, '(&u) 

The excess profit which the company  expects to achieve for assuming the risk 
~r2(~,u) is (p - P0) • u. It is fair to split the excess profit proport ional ly to the 
allocated capital. Thus 

Definition 
The fair loading of  risk Zi is 

co~,(Z, A.) 
(p - po).,~ = (p -  po). , ,  v,,.(A,) 
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Remark 
If  the 2~i s are uncorrelated the fair loading amounts  to the variance principle. 
The multiple of  the variance, which must be loaded, is derived from the 
company portfolio, capitalization level and return objective: 

(p - p0) • u. vc,,.-' (?,u). 

If  in addit ion the amount  of  equity is optimal 

-I vc,-(?xu) 
l l =  T 

(p  - p o ) u  

the loading factor is equal to (Tu) -I.  

4.2. Portfolio Optimization 

The excess profit of  the company is 

m 

; xu  - pou  = ~ ~,. (E(~,) + e , -  .~,) 
i=1 

i n  ! 

+ n) 
j = l  

I! 

+ Z ( g -  p0) • Aj 
i = 1  

and our objective is to maximize the risk return ratio of  the company.  
In a first step we have to maximize the risk return ratio of  the 

underwriting and loss reserve subportfolio through reinsurance buying. This 
leads to more homogeneous and less catastrophe exposed portfolios and 
hence to higher risk return ratios of the subportfolios. It also leads to 
distributions which are close to multivariate normal. This process is 
discussed in section 2. 

We now turn to the second step which consists in the optimization of  the 
global portfolio, i.e. in maximizing the risk return ratio as a function of  the 
a's ,  fits and A's.  

Let 

x ' =  (c~,  ..., c~, , , , /~,  ..., ¢~,,,, .4~, ..., A,,) 

t L' : ( e l ,  . . . ,  g,,, e '  I - -  ( R '  I - PO)" L , ,  . . . ,  gi,; - (R I , ;  - P o ) "  L , , / ,  

Ri - Po, ..., R,, - P0) 

Z = C o v ( - f ( i ,  ..., - f ( m ,  - f ~ l  - R ' ,L , ,  ..., -Xm' - Rm, L,,,,, R , ,  ..., R,,) 
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The opt imizat ion problem now reads 

.v' • # 

I 
(x ' .  z .  ~)~ 

with the condit ions 

x~ = ~ ~ [0, 1] 

x~ = ~,  ~ [0, I] 

- -  ] l l a , x  ! 
N 

i = m +  l, ..., i n + r e '  

and if the company  is not  able to issue securities 

Xi : Ai  >_ 0 i = m + m' + 1, . . . ,  m + 177' + n 

This is a s tandard mathematical  p rogramming  problem. The solution of  
which can be derived through s tandard algorithms. 

Remarks 
I. We restrict the reinsurance agreements to genuine quota  shares. The 

company  is not  allowed to take a short  position in any insurance 
s u b p o r t f o l i o -  which would be unrea l i s t i c -  or to increase its share of  any 
insurance subport fol io  beyond 100% - which would at t ract  impor tan t  
acquisit ion costs. 

2. In order  for any por t fol io  to be feasible the am o u n t  of  liabilities must 
exceed the a moun t  of  assets 

t l l  tZ 

> ZA,  
,=[  i=1 

If this is a true inequality, the assets corresponding to the excess liabilities 
can be invested in the risk free asset. This anaounts to a restriction in the 
choice of  the anaount of  capital 

i= [ i= I 

We refer to the right hand side of  the inequality as to the amount of net 
invested assets. 

3. Within the f ramework of  our  model we can simultaneously optimize the 
reinsurance policy and the investment policy of  the company.  The model 
allows for a symmetrical  t reatment  of  the insurance risks and of  the asset 
risks. 
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Theorem 
We a s s u m e  tha t  ~ is a r egu la r  ma t r ix  
1. T h e  unres t r i c ted  o p t i m u m ,  i.e. the vec to r  x which  max imizes  

p.' x 
r - -  - -  

1 

is g iven by 

x = c • ~-IFL 

(By def in i t ion .S is on ly  def ined up to a c o n s t a n t  f ac to r  c.) 
T h e  unres t r i c ted  o p t i m a l  risk re tu rn  ra t io  is equa l  to 

I 

r,,,,~ = ( / / E  -I/_~) ~ 

2. x is the unres t r ic ted  o p t i m u m  if and  on ly  if all the ac tua l  Ioadings  are  
equa l  to the fair  Ioadings .  

Proof  
1. W e  have  to m a x i m i z e  

I 

e q u a t i n g  to de r iva t ives  with respect  to _xi to zero,  we ob t a in  

) . '  ,jxj 

dr _ - = 0  
dx'i .VIE.\ " 

i = 1, ..., m + n where  (cro.) = Z. 
Af te r  r e a r r a n g i n g  t e rms  

]_/,i(.S'~.V) = (]_LtX) Z O'ff.\:j, a l l /  
J 

and  since E is r egu la r  

.X = c .  E-J lz  

P lugging  in the a b o v e  def ini t ion o f  x we ob t a in  

c • It '  ~ -  I ~L / ,~ I ,. = - _ , = i /~ '~- '  ) -5/.I, 

( c / d ~ - l  . ~, . c ~ - '  ~ )  5- 
\ /  
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2. All the actual Ioadings are equal to the fair loadings if and only if the 
following equat ions  are satisfied 

~i(e~+e'~) =/,-. Cov(-c~i(~', + ~e),7',z,) i - - 1 ,  ..., m 

{AI -- L ) ( R I  - P0) = k .  C o v ( ( A i  - L) /~ I ,  a u )  

Aj (R i  - po) = k .  Cov (A jR j ,  Au )  j = 2, ..., n 

Using the above notat ion,  this is equivalent  to 

xi#~ = k . Cov(x~2i, 7Xu) 

for an appropr ia te  choice of  Zi. 
Hence 

i = l ,  ..., 171+n 

= k • ~ Eijxj  i = !, ..., 177 + #i tl 

.i 

# = k . ~ . x  

which proves the 2nd s ta tement  of  the theorem 
q.e.d. 

Remarks 
I. The 2nd statement of  our  theorem is a fur ther  justification for our  capital 

al location formula.  
2. The theorem is a generalisation of  the theorem of  section 2.5. 

Example 1 
We now turn to a numerical example. The company  has two underwrit ing 
risks and two loss reserve risks which correspond to the different cus tomer  
segments o f  the company.  The risks and returns are as follows 

g 
Underwriting portfofio Risk g a - 

(7 

Private customers -~'1 4.5 15 30% 
Industrial customers ~'2 14.4 30 48% 

Note  that we do not give the premium income since it is irrelevant. 
Let Corr(Xi ,  Xi) = 6# where 60- is the Kronecker  Symbol  

I if i = j  
80 = 0 else 
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Loss Reserve Portfolio Risk L g a g 
~7 

Private customers xi 400 0.5 5 10% 
Industrial customers .Y2 600 1.6 10 16% 

I'OOO 

with C o r r ( ~ i i , ~ .  ) =60.  and C o r r ( ) ( i , ~ . ) =  6~ • 0.40. 

Note  that both in the case of  the private customer and of  the industrial 
customer  portfol io the ratio between loading and variance is the same for the 
underwriting and for the loss reserve risk. 

There are four different asset categories with risks and returns as defined 
below 

Asset Category Risk Ri - po a Ri - Po 
~7 

Bond portfolio with medium 
term duration (RI = /~L) /~l 1% 4% 25% 
Bond portfolio with long term 
duration ,~2 2% 6% 33% 
Equity portfolio R3 10% 20% 50% 
Real Estate portfolio R4 8% 20% 40% 

The correlation matrix of  the different asset categories is as follows 

I 0 . 9 0 . 4 0 . 4 -  I 

] C o r r ( k ~ , k j ) =  1 0.41 !i 44 

It is assumed that insurance risks and asset risks are uncorrelated 

Corr (X i , /~ j )  = 0 for all i ,j .  

Without  any loss of  generality we assume 

L = k', i =  l, 2. 

This amounts  to choosing bond portfolios with maturities matching the 
expected maturities of  the respective liability portfolios. 

We have 

# ~ =  (4.5, 14.4, -3 .5 ,  -10 .4 ,  0.01, 0.02, 0.10, 0.08) 
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and 

yl = 
Co~(2,,~) 

0 

cov(~,~.) 
Cou(,~, ~.) + L,Lj. Co~(k;, kj) 

- L j  . Cov( P,i, [~;.) 

0 

- - t  i " Col ; (Ri ,  R j )  

Coy(L, kj) 

= 

-225 0 30 0 
0 900 0 120 

30 0 281 518.4 
0 120 518.4 1396 
0 0 -0.64 - 1.296 
0 0 -0.864 -2.16 
0 0 -1.28 -2.88 
0 0 -1 .2  -2.88 

0 0 0 0 
0 0 0 0 

-0.64 -0.864 -1.28 -1.28 
-1.296 -2.16 -2.88 -2.88 

0.0016 0.00216 0.0032 0.0032 
0.00216 0.0036 0.0048 0.0048 
0.0032 0.0048 0.04 0.016 
0.0032 0.0048 0.016 0.04 

The unconstrained solution is 

x = c-E-~ .#  = (1, 0.8, -0.23, -0.18, -568.1, 245.1, 94.8, 54.4)' 

which is not admissible because it entails taking a short position in the two 
loss reserve risks and issuing the short term bond portfolio for an amount of 
568.1 monetary units. The constrained optimization problem is 

c . _ x / . # - x ' . Z - t . x = m a x !  
- -  X 

with 

X3 = X4 = X5 = 0. 

The associated objective function is 

Z = c . x ' . # - ~ ' - ~ . x + A 3 x 3 + A 4 x 4 + A 5 x 5  = m a x !  

where A3, A4 and As are the Lagrange multipliers associated with the above 
constraints. To solve the constrained optimization problem we must find 
Xl, ..., XN (N = m + m' + n) such that 

OZ OZ OZ OZ 
= 0  i =  1, ..., N and . . . . . .  0. 

OXi 0A3 0A4 0A5 

This leads to the following set of equations 

N 5 

- c . ,  + 2 Z ~,~ x ,  - Z ~,6,j = 0 
j=l  j=3 

X3 = X4 ~ X5 m_ 0 
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in matrix nota t ion 

2~ 

0 0 1 0 . . . . . . . . .  0 
0 0 0 1 0 . . . . . .  0 
0 0 0 0 1 0 ... 0 

0 0 0 
0 0 0 

- I  0 0 
0 - 1  0 
0 0 - I  
0 0 0 

0 0 0 

xi  

x2 

.\'8 
A3 
A4 

.As 

o r  

and the solution is 

x *  = 

The optimal  constrained portfol io of  the company  is thus 

= C "  

P2 

FL8 
0 
0 
0 

Contribution to 
Underwriting Risk Coefficient a, fl  or A Expected Profit m,erall variance 

-.~'l + gt + E(.~'I) I 4.5 225.00 

-X'2 + g2 + E(~'2) 0.80 11.52 576.00 

Loss Reserve Risk 

- ~ ,  + e', - ( R', - Po ) " L, 0 0 0 

- ~  + 6 - (R" - po) . L2 0 0 0 

Asset Risks 

R i - P o  0 0 0 
R2 - P o  82.30 1.65 82.30 

R3 - Po 94.14 9.41 470.68 
R4 - P o  52.47 4.20 209.88 

31.28 1563.86 
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The optimal amoun t  of  capital is 

/g = T _ I  __  V 

R 

with R and V are the expected profit and the contribution to overall variance 
respectively (see section 2.2.). Assuming ~- we obtain u = 199.98. 

The salient features of  the optimal portfolio are the following 
- The company cedes a 20% quota  share of  its industrial business. 
- The company fully reinsures the loss reserve risk. As a consequence its 

balance sheet is not leveraged at all. The liability side of  the balance sheet 
consists of  equity only, there is no debt. 

- The total amount  of  net invested assets is 228.91 which compares with an 
optimal amoun t  of  equity of  199.98. The optimal policy is only feasible if 
the company can raise an amoun t  of  debt of  28.93 monetary units at the 
risk free rate. 

- The company invests a substantial part of  its nets invested assets in shares 
and real estate (64%). The contribution to the expected profit and to the 
overall volatility from asset risks is substantial (49%). 

- The optimal risk return ratio is r = 0.791. 
- For  the unconstrained risks (i.e. all the risks except x3, x4 and xs) we have 

expected profit 
= constant  = 0.020. 

contribution to overall variance 

For the constrained risks the above quanti ty is irrelevant. 

E x a m p l e  2 
Based on the result of  the section on loss reserves, the model assumes 
that the loadings gg and g'g are .proportional to the variance of  the 
corresponding risks ~(~ ' i )  and o-z(~.). In practice however a loss portfolio 
transfer (/3. = 0) would probably command a much higher loading. Since 
there is no liquid reinsurance market  for loss portfolio transfers we make the 
following 

Assumpt ion  7 
m I : /77, ~ i  : o~i i : l~ .. .~ t?7. 

In addit ion we s impl i fy the  notat ion 
Xi + ~,. is replaced by Xi, and 
gi + t~i is replaced by el. 
The model now becomes 

i= l  j = l  
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We now reanalyze the preceding example. We have 

Insurance Portfolio Risk L e a [ 
o- 

Private customers "Y'l 400 5 17.61 28% 
Industrial customers "V'2 600 16 35.12 45% 

The other  model parameters  remain unchanged and we have 

# ' =  (1, 4, 0.01, 0.02, 0.10, 0.08) 

E = I Cov(Xi,)(j) q- LiLjCov(RSi, R ~) -LiCov(Rli, Rj) ] 
- L, Cov([~j, ~s) Cov([~,, [~j) 

Z = 

566 518.4 - 0 . 6 4  -0 .8 6 4  - I . 2 8  -1 .28  
518.4 2536 -1 .296  - 2 . 1 6  -2 .8 8  -2 .88  
- 0 . 6 4  - I . 2 9 6  0.0016 0.00216 0.0032 0.0032 
- 0 . 864  - 2 . 1 6  0.00216 0.0036 0.0048 0.0048 
-1 .28  -2 .88  0.0032 0.0048 0.04 0.016 
- 1.28 -2 .88  0.0032 0.0048 0.016 0.04 

The unconstrained solution is 

x = c .  E - I #  = (1, 0.8, --208.7, 935.3, 121.2, 69.6) 

which entails a short  position of  208.7 moneta ry  units in the medium term 
bond (in addit ion to the 400 moneta ry  units of  loss reserves with the same 
return k~t = Ri). Within the f ramework o f  this model this is not admissible. 
We therefore introduce the side condit ion 

x3 = 0  

which leads to the following objective function 

Z = c • x t •//, - x l~x  --F A3x3 = lna,x! 
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Deriving with respect to xi and A3, we obtain 

2~ 

0 0 l 0 0 

0 
0 

- I  
0 
0 
0 

0 0 

the following matrix equation 

x l  P.i 

• ~ c ' ' 

X6 /-/,6 

.A3. _ 0 

which is easily solved yielding the following optimal constrained portfolio 

Expected Contribution to 
Insurance Risk Coefficients ai L 

profit overall variance 

-.V, + e' l - (/~', - Po)" L, I 400 1 57.95 

- '~ 'z + g~ - ( / ~  - Po)" Lz 0.75 45.__00 2.99 173.35 

850 

Invested Expected Contribution to 
Asset Risks 

Amounts A) profit overall variance 

Ri - -Po  0 0 0 

/~2 - P0 776.2 15.52 899.64 

R3 - P0 112.1 l l.21 649.50 

/ ~  - P0 63.8 5.10 295.70 

952.1 35.82 2076.14 

Assuming "r = 0.25, the optimal amoun t  of  equity is 

U = 7._1 V = 2 3 1 . 8 3  

The salient features of  the optimal portfolio are the following 
- The company cedes a 25% quota  share of  its industrial business. 
- The company keeps most of its loss reserves (850 monetary  units out  of  a 

gross amount  of  1000) thus leveraging its balance sheet. 
- The total amount  of  net invested assets is 102.1 which compares with an 

optimal amoun t  of  equity of  231.83• The optimal policy is thus feasible 
without  borrowing. 
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- The contr ibut ion to the expected profit  and to the overall volatility from 
asset risks is much higher than the corresponding quantities from 
insurance risks (89% vs I 1%). This is in part icular  due to the fact that the 
short  position in yield curve risk acts as a hedge. 

- The optimal risk return ratio r = 0.786. 
- For  unconstrained risks, we have 

expected profit  
= constant  = 0.017 

contr ibut ion to overall variance 

Example 3 
So far we have assumed that the company  may not issue securities, or in 
other  words that Ai _> 0 i =  l , . . . ,n .  

We now make the following 

Assumption 8 
The company  may issue securities, i.e. As i = 1, ..., n are unconstrained.  

Wi thout  loss of  generality we also assume n _> m and 

Ri =-- Ri i = 1, ..., m 

and we introduce the following notat ional  simplification 

Bj = A j . -  ~ j L j  j = 1, ..., m 

The model can now be rewritten as 

m 

A u -  po " u = Z c~i(E(f(i) + gi - )(i) + (Rj - Po) ' Bj . 
i=l j=l 

We have 

# ' =  (5, 16, 0.01, 0.02, 0.10, 0.08) 

0 
~ = [ Cov(f(i,f(j)O Co~(Ri, kj) ] 

E = 

310 0 0 0 0 0 
0 1240 0 0 0 0 
0 0 0.0016 0.00216 0.0032 0.0032 
0 0 0.00216 0.0036 0.0048 0.0048 
0 0 0.0032 0.0048 0.04 0.016 
0 0 0.0032 0.0048 0.016 0.04 
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The unconstrained solution 

x = c .  E-lt~ = (1, 0.8, -608 .7 ,  455.3, 121.2, 69.6) 

is now admissible and the optimal portfol io  is 

Contribution to 
Insurance Risks Coefficients ai Expected profit overall variance 

E(,~'l) + g l  - ,~'l 1 5 310 

E(,Yz) + e2 - )(2 0.8 12.8 793.6 

Financial Risks Net invested Amounts Bj 

k~ - Po - 6 0 8 . 7  - 6 . 0 9  - 3 7 7 . 4  

/~2 - po 455.3 9. I1 564.5 

/~3 - po 121.2 12.12 751.7 

,~4 - P0 69.6 5.57 345.1 

37.4 38.51 2387.5 

Assuming ~- = 0.25, the optimal  amount  o f  equity is 

_ I V  
u = 7 -  ~ - 2 4 7 . 9 9  

The salient features of  the optimal portfol io are 
- The company  cedes a 20% quota  share o f  its industrial business. 
- The gross invested amounts  in asset category 1 and 2 are respectively 

-208 .7  and 935.3 which are identical with the corresponding amounts  
pertaining to the (inadmissible) unconstra ined solution o f  the preceding 
example. 

- The amoun t  of  net invested assets is 37.4 which compares  with an optimal 
amoun t  of  equity of  231.83. 

- The contr ibut ion to the expected profit and to the overall volatility from 
financial risks (including short  position in yield curve risk) is higher than 
the corresponding quantit ies from insurance risks (54% vs 46%). 

- The optimal risk return ratio is r = 0.788. 
- The ratio of  expected profit to cont r ibut ion  to overall variance is the 

same for all risks (0.016). 

D i s c u s s i o n  o f  A s s u m p t i o n  8 
A compar ison  between the last two examples shows that dropping  the 
constraint  Aj >_ 0 (for all j )  leads to a higher risk return ratio and to a lower 
anaount o f  net invested assets. In practice insurance companies  are allowed 
to issue preferred shares or - through a holding company  - obtain bank 
loans or issue corpora te  bonds. The amoun t  of  debt  they are able to raise is 
usually limited and commands  a spread over the risk free rate. 
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Generalization of Theorem 4.2 
From the above example it is seen that the constrained opt imum is obtained 
by comput ing the unconstrained solution 

- X = c ' E  - t  "t~ 

and by choosing c in such a way that the retained insurance profit is 
maximized (i.e. max -19 = I). 

i= I ,...,m+nf 

Let i~, ..., ik be those indices for which x 6 < 0. The constrained opt imum 
is obtained by maximizing the following objective function 

Z = A A "  • I t  - -  X t ~ X  - -  A i i X i l  - -  . . .  - -  A i ,  X&. 

where Ai,, ..., Ai, are the Lagrange multipliers associated with the 
constraints 

-¥i, = 0 0 =  I, ..., k). 

This leads to the following set of  equat ions 

O Z  k 

2 E - E = 0 
j j=l 

Xil  - -  - -  -¥ik ~ 0 

In particular for unconstrained variables x~, we have 

2 ~ O'ij-~i JLi 
A 

J 

which translates into 

gi = k . C o , ' ( -  f(i ,  ~xu) 

g~i - (R~i - p o ) L i  = k . C o v ( - ~  - [¢~i" Li ,  ~xu) 

R, - po = k . Co, , (  k ,  ,&,,) 
i.e. the loading pertaining to unconstrained variables is equal to the fair 
loading. This is a further justification for our capital allocation and pricing 
formula. 
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4.3. Insurance Risk and Financial Risk 

235 

We consider the expression for the excess profit of the company which we 
have derived at the beginning of section 4. 

;x~. - po .  = E(~)  + e + e, - (~  + ;XL,) - ( k L  - po)L  + ~ ( k j  - po)Aj 
j=l 

---- 2 + ( R  - po)A 

where 

= E ( S )  -[- e -~ e I - (,~ --[- /~LI)  

E ~j" Aj-- R~" L n 
]~ = J w i t h  A = Z Aj - L 

A j=l 

2 is the insurance risk, i.e. the sum of the underwriting risk and of the loss 
reserve development risk./? is the rate of return of the financial risk and A is 
the anaount of net invested assets. We introduce the following notation 

gz =- E ( Z )  = g + gl, cr~ = Var(f~) 

6R = E(R) - Po, ~ = Va,'(R), IC = Cor,'(Z, R) 

The following theorem expresses the overall risk return ratio as a function of 
the insurance risk return ratio and of the financial risk return ratio. 

Theorem 
Let/C =A +1. The overall risk return ratio 

E(?~u)  - p0u e, + 6R,4 
r (m)  

o-(£xu) ~/az 2 + (crRA) 2 + 2/Co~(crRA) 

is maximized for the following amount of net invested assets 

. - -  O'--~ O" R 

A =  

and the corresponding risk return ratio is 

r = r ( A )  = 
• i - - V  
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Proof 
We have 

E ( Z , z , )  - p0,, = ez + 6R. A, °~(? '")  = 0"1 + 4 A2 + 2160"~0"R- A 

it follows that 

r ( A )  = gz + 6RA = 6 ( A )  

V/0" 2 + (0"RA) 2 + 2160"z0"RA 

where 6(A) is E( fXu)  - po • u and V ( A )  is 0"2(Au) considered as function of  A. 
Putting the deriw~tive of  r with respect to A equal to zero, we obtain 

I I 

r ' ( A )  = 6 ' ( A )  " V ( A ) - 2 - ~ "  " "o~,A)t V ( A ) - Z V ' ( A )  = 0  

v(a) 

6 ' ( A ) V ( A )  - ~ 6 ( A ) U ( A )  = 0 

6R(O2zz + 0"2A2 + 2160"z0"RA) = (g.z + 6RA)(0"2R A + K0"z0"R) 

(~] 2 _ 16 e: 
6 R ~  - 16g:o..0"R g. <~] ~: o~ A : .  

ka:] a: ~R 

which proves the first s tatement of  the theorem. In order  to evaluate r(A), we 
introduce the following notation 

tOZ 6R 
r l  : - -  /.'2 = _  

(7 z o- R 

and we restate the expression for A 

0.z r2 - -  16rl  
A - -  

0.R ri - 16/.'2 
Thus obtaining 

v(A) - 

=:_ " - krl 16r2] +2/(7°2" rir2 _- 16r216ri 

d. 
2 ((rl - / ( 7 / ' 2 )  2 -J- (r9 _ 16rl  )2 f~Cr2"}. - + 216(r2 - 16r,)(r, - 16r2)] 

(r ,  
d. 

V ( A )  -- " (1 - -  ](72) • (r~ + r~ - 2Kr, r2) 
( r , -  7Cr2) 2 

~. j_ f5 R o': r2-lCr I / - o~ n-r.r2 = r~ + r~ - 216rl r2 

V 1 - 1 6 2  

r ( A )  = ri - 16r2 

~-- ((i - r:)(r, ~ + r~ - 2rr,,'~) 

which proves the theorem. 
q.e.d. 
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Remarks 
1. F r om the p roo f  of  the theorem it is easily seen that for K = 4-1 we have 

O', 
A = q:--:-" and V(A) = 0 i.e. the risk if fully eliminated. 

O- R 
2. F o r / ~  = 0 we have 

A -  (°~) and r ( A ) =  +(8___RR~ 

and it is seen that the assumption of  asset risk leads to a considerably 
higher risk return ratio. In practice we have K~ _~ 0 and the s tatement  is 
thus true for all practical situations. 

4.4. Realistic Example 

We now turn to a more realistic example. The insurance portfol io  of  
the company  is broken down into four subportfol ios  corresponding to 
different lines of  business and to different cus tomer  segments. The  risks and 
returns of  the combined underwrit ing and loss development  risks are as 
follows 

Insurance Subportfolio Risks P L o g e 
a 

Motor k~ 50 75 2.5 0.5 20% 

Homeowners X2 20 10 3.2 0.8 25% 
Industrial Fire ,~"3 10 5 4 I 25% 

General Third Party Liability ,'~% 10 20 4 1.5 37.5% 

90 110 3.8 

L denotes the a moun t  of  loss reserves. 
The premium volume is given for purely illustrative purposes.  It is 

not  used below. The ratio between s tandard deviation and premium 
volume as well as the ratio between loss reserves and premium are chosen 
in a realistic way. It is assumed that the moto r  and the homeowners  
portfol io  are both exposed to s torm and are therefore positively 
correlated.  

Corr(Xi, X2) = 0.20 

The other  correlat ions between insurance risks stem from the influence of  the 
economic  cycle and are treated below. 
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The different asset categories are as in the example  of  section 4.2. 

A s s e t  C a t e g o r y  R i s k  R i -- 190 O" Ri  - Po 
~r 

Bond portfolio with medium 
term duration (/~l =/?t.) /?l I% 4% 25% 
Bond portfolio with long 
term R2 2% 6% 33% 
duration 
Equity portfolio R3 10% 20% 50% 
Real Estate portfolio /~4 8% 20% 40% 

The corre la t ion matr ix  o f  the different asset categories is as follows 

1 0.9 0.4 0.4 

Cor,'([~i, Rj) = 1 0.4 0.4 
I 0.4 

i 

Dur ing  a b o o m  phase of  the economic  cycle interest rates and therefore 
inves tment  income f rom bonds  are high, but so is the inflation rate which 
leads to an increased loss anaount o f  the m o t o r  and of  the general third par ty  
liability portfol io.  Therefore  we assume 

Corr(-2,  , R, ) = Corr(- 2,,  R2) = - 0 . 2  

Corr(- )(4, R, ) = Corr(-)(4, /72) = - 0 . 2  

and 

Corr()(,, )(4) = 0.2 

When the e c o n o m y  goes into recession, equities and real estate depreciate,  
industrial fire results worsen - due to arson - and m o t o r  results improve  - 
because people  drive less. Thus  

Corr(-f(i ,  *~3) = Corr(-)(l,/~4) = - 0 . 2  

Corr(-)(3, R3) = Corr(-,g3, R3) = 0.2 

and 

Corr(Xi, X3) = - 0 . 2  
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In summary we have the following correlations 

-,~, -,~2 -~'3 -k4 k, ks k3 k4 

1 0.2 -0 .2  0.2 -0 .2  - 0 . 2  - 0 . 2  -0 .2  

0.2 1 0 0 0 0 0 0 

-0 .2  0 1 0 0 0 0.2 0.2 

0.2 0 0 1 -0 .2  -0 .2  0 0 

Thus 

# ' =  (0.5, 0.8, 1, 1.5, 0.01, 0.02, 0.10, 0.08) 

S =  

6.25 1.6 - 2  2 -0 .02  -0 .03  - 0 .  I -0 .1  
1.6 10.24 0 0 0 0 0 0 

- 2  0 16 0 0 0 0.16 0.16 
2 0 0 16 -0 .032  -0 .048  0 0 

-0 .02  0 0 -0 .032  0.0016 0.00216 0.0032 0.0032 
-0 .03  0 0 -0 .048  0.00216 0.0036 0.0048 0.0048 
-0 .1  0 0.16 0 0.0032 0.0048 0.04 0.016 
-0 .1  0 0. t6 0 0.0032 0.0048 0.016 0.04 

and it is easily seen that the unconstrained solution 

X = c ~ - I t  ~ 

is a solution which satisfies the conditions c~i ¢ [0, 1] for i =  1,2,. . . ,4. 
Choosing c ill such a way as to maximize the amount of business retained by 
the company we obtain the following optimal solution 

Contribution to overall 
Insurance Subportfolio Retention oi Expected Profit aigl 

Variance Cov(-aiff(i: f~kU) 
Motor I 0.5 4.47 

Homeowners 0.54 0.43 3.87 

Industrial Fire 0.44 0.44 3.93 

GTPL 0.81 1.21 10.82 

Contribution to overall 
Asset Category Amount blvested Aj Expected Profit AjRj 

Variance Cov( A)R, fXu) 

Medium bond -69.3 -0.69 -6 .20  

Long bond 77.9 1.56 13.92 

Equities 15.9 1.59 14.21 

Real estate 8.5 0.68 6.04 

5.72 5[.07 
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The risk return ratio is 0.80, the anaount of net invested assets is 33.0 and the 
amount of net loss reserves is 98.3. 

By perfect asset liability matching and by investing the equity into the 
risk free asset one can fully eliminate the asset risk. The vector of expected 
returns and the covariance matrix of the pure insurance risk are 
respectively 

/z 0' =(0.5,  0.8, 1, 1.5) 

and 

[" 6.25 1.6 - 2  2 
= 11"6  10.24 0 0 

0 16 0 
0 0 16 

and from the theorem of section 4.2 we know that the maximum risk return 
ratio which can be achieved in such a situation is 

I 

r = = 0.53 

which is considerably lower than risk return ratio obtained above. Thus, 
in this example too, it is seen that the assumption of asset risk leads to a 
considerable improvement of the risk return ratio of the portfolio. 

Through quota share cessions the company has reduced the expected 
profit of its insurance portfolio from 3.8 to 2.58, i.e. it forgoes a 
substantial anaount of profit in order to maximize its risk return ratio. As 
a comparison, we now look at the optimal portfolio assuming that the 
company cedes no quota share. In that case, we have the following vector 
of expected returns 

and covariance matrix 

51.69 
-0.052 

Zi = --0.078 
0.06 
0.06 

/~,'1 = (3.8, 0.01, 0.02, 0.1, 0.08) 

-0.052 -0.078 0.06 0.06 
0.0016 0.00216 0.0032 0.0032 
0.00216 0.0036 0.0048 0.0048 
0.0032 0.0048 0.04 0.016 
0.0032 0.0048 0.016 0.04 
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And the optimal solution excluding quota share cessions is 
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Contribution 
a resp. A Expected Profit 

to overall Variance 

Insurance Portfolio I 3.8 50.18 

medium bond (Ai - L )  -104.2 - I . 04  -13.75 
long bond I 14.0 2.28 30.10 

equities 21.8 2.18 28.83 
real estate 10.8 0.87 11.44 

8.09 106.79 

The risk return ratio is now r =  0.78 which is only slightly lower than the 
optimal risk return ratio of 0.80. In practical circumstances an insurance 
company may prefer the above solution with the much higher expected 
profit of 8.09 (vs 5.72) to the optimal solution even if this entails a slight 
decrease of the risk return ratio. 

The optimization method we have derived is nevertheless valuable since it 
provides us with a benchmark, the optimal portfolio, against which to 
measure any given portfolio. 

5. COMPARISON WITH OTHER RESULTS IN FINANCE THEORY 

5.1. Markowitz's Portfolio Selection Method 

The portfolio selection method presented here is based on the maximization 
of the same function as is used in the framework of Markowitz's mean 
variance method. There are however major differences. In the present model 
the anaount of equity u supporting the business can be chosen by the 
company. The consequences of the introduction of this additional degree of 
freedom are discussed in section .2.2. The present model allows a 
simultanious optimization of a portfolio of risky assets and of insurance 
risks. The major difference between insurance and financial risks is that the 
latter are easily traded whereas the former are not. Financial risks are 
standardized securities for which there exist liquid and transparent 
secondary markets. The transaction costs are very low, the position of the 
company can be frequently adjusted at virtually no costs. (Hence t h e  
c o n d i t i o n s  Ai E ( - ~ ,  C~) or  Ai >__ 0.) Insurance risks once taken on can only 
be traded on the reinsurance market which is neither liquid nor transparent. 
It is usually not possible to take a short position in an insurance risk. 
Increasing one's share of a risk beyond 100% leads to high transaction costs 
related to the acquisition of new blocks of business. (Hence the conditions 
O < c~i, fli < I, i =  I, ..., n.) 

A further difference between insurance and asset risks is the fact that 
the optimization of insurance risks is a two steps process. Whilst it would 
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in principle be possible to determine the optimal retention rates c~i and fli 
of each policy, this would hardly be a tractable method in practice, given 
the fact that even a medium sized company has hundreds of thousands of 
customers who often buy more than one policy from the company. One 
has therefore to build insurance subportfolios (e.g. along lines of business 
and customer segments), to optimize those subportfolios individually (e.g. 
via surplus, and excess of loss reinsurance as illustrated in section 2) and 
to build an optimal global, portfolio via appropriate quota share cessions. 
The process is therefore a two steps optimization process and the result 
depends on the sub portfolio structure which has been chosen. 

Finally, the optimal portfolio of  assets within the overall portfolio of the 
insurance company strongly depends on the portfolio of insurance risks. 
This is especially true since the loss reserve risk entails a short position in a 
bond portfolio. As a consequence, the portfolio of assets which pertains to 
the optimal overall portfolio is in general very different from the optimal 
portfolio of  assets on a stand alone basis, as derived from Markowitz's 
method. 

5.2. CAPM 

5.2.1. 

Each insurance company optimizes its overall portfolio of  insurance and 
asset risks. The optimal portfolio of  the company heavily depends on the 
gross insurance portfolio which varies considerably from company to 
company. As a consequence the optimal asset portfolios of  different 
companies are not colinear and are different From the optimal asset 
portfolio according to the CAPM. Thus the optimal asset portfolio of the 
company is not a market portfolio, as in the CAPM, but a company 
specific portfolio. Given the weight of insurance companies and pension 
funds as institutional investors, the above result may explain why 
empirical evidence does not confirm the CAPM (see H.S. Houthakker and 
P.J. Williamson, 1996). 

5.2.2. 

A further difference between tile CAPM and our general model is the fact 
that in our model insurance risks command a loading over and above the 
expected value of the losses they generate and this in spite of  the fact that 
those risks are not market risks and can be diversified away. The reason 
why individuals are willing to pay such a loading is because they are risk 
averse and unable to diversify their risk. Closely held corporations are in 
a similar position. The case of firms with diffuse ownership is more 
complex. Stockholders and bondholders of such firms can diversify their 
claims and do not need to buy insurance. There are however other 
stakeholders such as employees, clients and suppliers who cannot diversify 
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their claims. In the absence of insurance, employees and managers for 
instance would discount their expected future cash flows at a much higher 
interest rate to reflect the higher risk. It is therefore worthwhile for the 
firm to buy insurance even if the price is higher than the actuarially fair 
premium. Different other reasons such as a lowering of expected bank- 
ruptcy costs and a lowering of the company's expected tax liabilities also 
explain why the 'free lunch' enjoyed by insurance companies is consistent 
with finance theory. For a more detailed discussion of the topic see 
Mayers and Smith (1982). 

5.2.3. 

In addition to a free lunch insurance companies also enjoy a free loan. The 
assumption of  the yield curve risk as part of  the loss reserve risk is 
tantamount to issuing a bond without having to pay any spread. This allows 
the company to achieve a higher risk return ratio than would be possible if it 
could not isstle securities or if had to pay a spread. 

5.2.4. 

Both in the case of the CAPM and of our model the separation theorem 
holds true. The composition of the optimal portfolio follows from objective 
factors: the expected returns and the covariance between the returns of 
individual risks. The decision of  how much risk to assume, i.e. the choice of  a 
point on the efficient frontier is a subjective decision, which is separate from 
the selection of the optimal portfolio. 

5.2.5. 

Within the framework of CAPM, the expected return of asset i (Ri) and the 
expected return of the market portfolio (RM) satisfy the following 
relationship 

Cov(Di, kM) 
R i - P o = f i i ' ( R M - p o )  with f l i -  V<,r( R,,,, ) 

Within the framework of  our model (see example 3 of section 4.2) the 
following formulae hold true for the optimal portfolio 

R i  - P o  : Var( fXu) " 
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We can rewrite the CAPM formula as 

(Ri - Po) • Bi RM -- PO 

C o v ( R i .  Bi, RM) Var (kM)  

where B~ i = 1, ..., ,7 are the coefficients pertaining to the optimal portfolio,  
hence 

RM = ~ Ri" Bi" Bi 
•=1 k,i=l  

On the other  hand the formulae in our  model can be rewritten as 

&i " gi _ E( £xu) - pou 

C o v ( - & i k i ,  ~xu) Var( Au)  

( R i  - m )  ' B ,  _ E ( & , )  - p o u  

Cov(RiBi, Au) Var(Au) 
In the special case where there are only asset risks we have 

i.e. the optimal company  portfol io  and the optimal market  portfol io are 
identical. 

Setting u = ~ Bi, the second formula can be rewritten as 

(Ri -- PO) " Bi RM -- PO 

.Cov(f~iBi, RM) Var(RM) 

and it is seen that the formulae of  our  model are a generalisation of  the 
C A P M  formula.  Both types of  formulae state that the ratio of  expected 
profit to cont r ibut ion  to the overall covariance is the same for each risk. In 
the case of  the C A P M  the formula applies to asset risks only, in the case of  
our  model it applies to asset and insurance risks. In the first case, the 
reference portfol io  is the market  portfolio,  in the second case it is the 
company  portfolio.  

5.2.6. Discount  Rates  

Definition 
The rate of return o f  the company  associated with a given value u of  net asset 
value is 

k , ,  = u 
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Thereby u must be at least equal to the amount of net invested assets, i.e. 

?1 01 

i=  1 i=  1 

Theorem 
Assuming that the company may issue securities (Assumption 8) and that 
insurance risks and financial risks are uncorrelated (Cov(Xg, Ri) = 0 all i, j )  
we have 

I1 

k~o = RM -~ i=l 
UO 

where RM is the market rate of return for financial risks according to the 
CAPM and u0 is the amount of net invested assets. 

Proof 
Under the assumptions of the theorem we have 

~,. - po. = Z ~ , ( E ( 2 , / +  e , -  2,)  + (kj - po/Sj. 
i= l  j = l  

For any u > uo (see section 4.2). Hence 

Au ~ Rj. Bj 2 ai(E(f(i) + g i -  2,) 
R.o -- _ 

uo E Bj UO 

since u0 = ~ Ai - ~ o~jLj = ~ Bj. And since investment risks and insurance 
risks are uncorrelated 

= RM 

q.e.d. 

Remark 
Under the assumptions of the theorem we have 

2 a~ (e(2,)  + e, - 2~) 
k , , = u ° . k g +  

t l  bl 

According to the CAPM, the discount rate associated with /~,, 

Co~(k~, kM) 
k,~( . )  = po + ( k g  - po) 

Var(kM) 

k. .  
~ - -  IS 

t l  
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Assuming that insurance risks and investment risks are uncorrelated, we 
obtain from the above representation of/},, 

C o y ( R , , , / ~ M )  = u o .  V a , ' ( k , v l )  

We have thus derived the following 

Corollary 1 
Under the assumptions of the preceding theorem, the discount rate of the 
company is 

R<,(t,) = uo e M + ( I - u2] Po 
U II I 

Corollary 2 
The value of the company is 

E(&,) 
/?<1(.) 
- -  - -  u + - -  

R<l(,,) 

Proof 

E(&,) = po. + ~ o<,e,+ ~ Bj(Rj - po) 
i j 

and since insurance and investment risks are uncorrelated, we have 

hence 

E(&,) = uo. &+ + (, - ,o)po + ~ ~,e, 

e(&,) = & ( , ) . ,  + Z ~,e, 

which proves the corollary. 
q.e.d. 

The value of the comp,a, ny is thus the sum of its net asset value (at market 
prices) and of the goodwi!l of the company 

G -- ~ O'i£i -- E ~i~i 

Rd(U) UOu R,U-I- (1- '~)Po 

The goodwill depends on u and it is easily seen that G'(u) > Oand G'(u) < O. 
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Remark 
The goodwill  

R,l( u ) 

is the m a x i m u m  value one should be willing to pay  for the access to the 
business, i.e. for the dis tr ibut ion network.  It depends  on the a m o u n t  o f  net 
asset value which suppor t s  the business, since the higher the equity u, the 
more  valuable the excess return Au - pou. 

Assuming  that  the a m o u n t  of  equity is determined based on the risk 
tolerance T of  the owners  of  the c o m p a n y  

I V  

~-R 

(where V = Var(fXu) and R = E ( ~ x u ) -  p0u for the opt imal  portfol io) ,  we 
obtain  the following discount rate 

"rR U o R M + (  I "rR ) 
Ra = - V  - T u °  po 

and the goodwill  o f  the c o m p a n y  is arrived at by plugging this expression 
into the above  formula.  And it is seen that  the discount  factor  is an 
increasing function of  the risk tolerance.  Hence  the goodwill  is a decreasing 
function of  the risk tolerance. 

Example 
Example  3 of  section 4.2 satisfies the condi t ions  o f  the above  theorem.  
We have 

- 1  
U - = T  

let P0 = 5%, we have 

u0 = 37.4 

V 7-- I = .62.00 = 248.0, for "1-= 0.25 

20.71 
R,u - - -  t- 5% = 60.4% 

37.4 

and we obtain  

,,0 
R d  = - -  R M  + 1 - -  PO 

II 

Hence 

G - ~ eciei _ _ _  
R,l(u) 

-= 0.151 • 6 0 . 4 % + 0 . 8 4 9 . 5 %  = 13.37 

17.8 
-- 133.2 

0.1337 
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BOOK REVI EWS 

M.A. COPPINI: hlcomes Redistribution Through Social Security. Centro 
d'informazione e stampa universitaria (CISU) di Enzi Colamartini, Rome, 
ISBN 88 7975 201 4. 

This is a recently published English translation (by David Giddings) of  a 
book originally published in Italian 20 years ago. In spite of the time lapse, it 
does not appear to have been revised or updated and the references are all to 
work in the 1970s and earlier. 

However, notwithstanding the fact that the basic principles of  this work 
were presented as long ago as 1975 at the 6th ISSA Conference for Social 
Security Actuaries and Statisticians in Helsinki, it is likely that the 
methodologies will be unfamiliar to most actuaries, even to those working 
in the social security area. 

The problems addressed are measuring the redistributive effects of a 
social security system and quantifying the effectiveness of the system in 
achieving redistributive objectives. The study of this sort of problem is 
perhaps more often associated with economists than actuaries, but the 
author has the advantage of being both an economist and an actuary. 

Many readers may find the terminology and definitions somewhat hard 
to get to grips with. It may well be that some of the nuances are lost in 
translation, but it is often difficult to conceptualise what the notation is 
seeking to represent. The mathematics which follows is presented in full 
detail but requires careful study because of the definitional complexity. 

Measuring the effects of redistribution presents many technical problems 
because of the complexity of the transfer of a social security system, which 
differ by branch (e.g. pensions, sickness, unemployment, health care, etc.) 
and have different impacts when looked at by individuals or by households, 
with effects which depend on earnings level, age, sex, duration of period of 
study, etc. The mathematics is complicated by the fact that most participants 
in the system are both contributors and beneficiaries, although not always at 
the same time. The attthor develops a generalised framework for examining 
and quantifying these effects and then elaborates a stochastic methodology, 
with conceptual roots in the insurance risk process and classical risk theory, 
as a way of providing practical solutions to a problem of rather daunting 
complexity. 

Even more practical, perhaps, is the alternative approach of simulation 
which is offered by the author. However, dominant concerns in the book 
about the practicality of full simulation because of computing constraints 
more than anything serve to date the presentation. It seems unlikely that the 
application of  these techniques would be much constrained today by 
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availability of computing power, although I suspect that availability of raw 
data on earnings distributions, contribution density and other factors will 
prove more of a constraint in practical applications of the techniques. 

The author does present, in a final chapter, some examples of practical 
applications in the context of the Italian social security system. Since the 
ground-breaking work on this methodology has been developed by the 
author and colleagues and students of his in Rome, it is not clear from the 
book that any equivalent studies have been carried out elsewhere, and I am 
not aware of a wider literature having developed since the presentation of 
these ideas at the Helsinki Conference and at a subsequent ISSA meeting in 
Rome in May 1984. The author himself points out that this is very much 
"work in progress", rather than a definitive text-book on the techniques. The 
proof of  whether these techniques can be applied to improve understanding 
of redistributive effects in social security (and, for example, to confirm or 
rebut charges made by World Bank economists that traditional social 
security schemes do not redistribute nearly as much as it might be thought, 
for reasons such as differential mortality between high and low earners) will 
inevitably depend on further research into practical applications, most likely 
using simulation techniques. 

CHRIS DAYKIN 
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Y.K. KWOK: Mathematical Models of Financial Derivatives. Springer 
Finance, Singapore, ISBN 981 3083 255 (hardcover), 981 3083 565 (soft- 
cover), 1998. 

This book is described on the cover as being suitable for degree programs in 
mathematical and computational finance. As one who delivers a masters 
level course in derivative pricing to maths graduates l can see that this is 
indeed an appropriate audience. At the same time, I suspect that the typical 
masters student in finance with a first degree in a less numerate subject 
would struggle with this book. 

The book is well written and maintains a consistent approach 
throughout. Apart from all early mention of  the martingale approach to 
the pricing of derivatives and risk-neutral valuation the author sticks firmly 
with the partial differential equation (PDE) approach. Whether one should 
take the PDE approach or the martingale approach is really a matter for 
personal preference which often is the result of  the what background a 
student or researcher comes from (applied maths or applied probability). 
However, my own preference is for the martingale approach, not just 
because of my personal background but also because the martingale 
approach gives much more insight into the subject. In particular, the 
martingale approach makes it much easier, at least initially, to tackle any 
new problem which is thrown at you. The book also tends to avoid rigorous 
technical development and this can leave students less well prepared for new, 
perhaps more complex derivative-pricing problems. 

My overall impression of the book is, therefore, that it was not one which 
I would recommend to students as the core textbook in a course on 
derivative pricing. However, it is one which | would happily recommend as 
supplementary text. There are a number of reasons why I make this 
recommendation. First, the book, throughout, has good descriptive 
introductions to each topic. This carries through many of the essentially 
more technical sections where the author includes descriptive passages which 
turn an abstract problem and analysis into something more understandable. 
Second, each chapter ends with a comprehensive set of exercises which, 
again, is very useful for students wishing to reinforce what they are learning 
about the subject. 

Chapter 1 gives a general introduction to the subject of  derivative pricing, 
and presents essentially model-free results such as put-call parity and lower 
and upper bounds for prices. It then proceeds to introduce the models, tools 
and concepts used in the remainder of the book. 

Chapters 2 to 6 deal with equity options. Chapter 2 works on the basic 
European option with the Black-Scholes model and formula taking centre 
stage. There is also what is essentially a statement of  the Greeks without 
much intuitive explanation of  what they are or how they should be used. 
Chapter 3 looks at multi-asset options. Chapter 4 considers how to price 
American options. This includes good non-technical descriptions of the 
various issues. Chapter 5 deals with various numerical methods for tackling 
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these problems. It is a well written section and, of course, relates well to the 
dominant PDE approach in the book. Chapter 6 looks at a number of  
different exotic options. 

Finally, Chapter 7 gives a short introduction (unfortunately common to 
many books in this field) to bond pricing and interest-rate d.erivatives. 

In summary, therefore, this book is not perfect but there are many good 
things in it, so it is a worthwhile purchase. 

ANDREW CAIRNS 
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E. KREMER: Applied Risk Theory. 

This book of Erhard Kremer presents some selected chapters of risk theory. 
It starts with a nice 20 page summary of the basic results of  probability 
theory. 

Chapter two gives an overview about the common premium principles 
and proves their basic properties. Special emphasis is put on the "Swiss 
premium principle". 

Chapter three deals with classical credibility theory. The reader might 
actually be mislead by the title "rating theory", since beside credibility 
theory no other rating methods are discussed. 

In the introduction the author mentions that in his view reinsurance is 
one of the main and nicest topics in Risk Theory. Unfortunately, my high 
expectations raised by these comments were not fully met. Although the 
material treated in chapter four covers some important concepts, e.g. 
Panjer's algorithm or optimality of reinsurance covers, the link to practical 
applications is fully missing. Beside the classical material 1 would also have 
expected some words on today's hot topics like extreme value theory or 
modelling of correlated risks. 

The last chapter gives a short introduction to some methods used in life 
insurance, including applications of martingale theory. 

In nay opinion this book can be of value for actuarial students in order to 
quickly get a first idea about risk theory and some important actuarial 
principles. I wouldn't recommend it, however, to a practical actuary, who is 
usually interested in quite different types of questions. 

PETER ANTAL 



BOB ALTING VON GEI~ISAU 
1946-1999 

Bob Alting von Geusau died on November 4, 1999, only 53 years old. 
Though optimistic to the last, he knew he was terribly ill; with a final effort, 
he had given his goodbye lecture as a professor of actuarial science only a 
few weeks before. This impressive lecture, aptly called "The survival of the 
fittest", essentially described the plans he had had for the remainder of his 
career. It was attended by some 600 of his friends, colleagues and former 
students. It was a sad occasion, but endurable because of the way Bob 
handled his predicament, making everybody laugh at his stories and 
anecdotes. 

By students and colleagues alike, he will be sorely missed at the actuarial 
department of the University of Amsterdam. Apart from being an excellent 
and inspiring teacher and a really pleasant colleague, he was also 
outstanding at promoting actuarial science in the Netherlands. He 
persuaded many students to choose our profession, by presenting them 
with exotic and inspiring tales at their schools while they were trying to select 
a career. A recurrent part of these sessions was "Around the world in 
80 questions". A prospective student would be asked to name any country in 
the world, and Bob produced an interesting story about insurance relating to 
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this particular country. For these, he could draw from his years of 
experience. He managed to make actuarial science sound so much more 
interesting than accountancy! 

Bob has been involved with the department of  actuarial science for a 
period of  around 30 years. First as an assistent of the late Jaap van Klinken, 
then, after a period outside the university, as his successor. In the period 
between, he worked among others with the reinsurance company NRG,  and 
later started his own actuarial bureau. He was a former chairman of the 
Dutch Actuarial Society. Also, he was the founder and for a long period the 
chairman of the section AFIR.  

Apart from being the best PR-officer a university department could wish, 
his most important characteristic was perhaps that he was incredibly 
versatile: he has made contributions to actuarial science in life and in non- 
life insurance, as well as of course in the field in which he was appointed a 
professor, social security and pension funds. But he was also a pioneer 
promoting AFIR in the Netherlands. While the other lecturers at the 
department are mainly scientists of the "ivory tower" type, Bob has always 
maintained close links with actuarial practice; his job at the university was 
only part-time. Whenever a journalist needed an impartial and well-founded 
academic opinion on some matter newsworthy, Bob was able to give one. 
Invariably, he had presided some working group or conference attending 
just this matter a few years ago, had supervised a student writing his master's 
thesis about the subject, or had simply found the subject interesting. The 
Dutch Actuarial Society asked him to serve a second term as its chairman, in 
the period they celebrated their 100th anniversary. He was a really 
outstanding public speaker, and great at organizing meetings where he 
could display this ability. 

Astineers will fondly remember Bob from many ASTIN-colloquia, 
presenting a paper or being the chairman of a session. He was not only fluent 
in English and French, but also quite at home in Italian and some other 
languages. When he did give a talk in English, he pleased the part of the 
audience not quite so fluent in this language by using transparencies in 
French. One time, giving a talk on an application of compound Poisson 
distributions in Lausanne, in the few minutes allotted to him he meticulously 
explained to the audience the ins and outs of a traditional Dutch family 
game "sjoelbakken", a variant of shovel-board. In later years, his interests 
had shifted from ASTIN-subjects to the topics he was teaching, the Dutch 
system of social security and pension funds. 

It will be hard to fill his position at our department. Our hearts go out to 
his wife Hedwig and their children Karen and Niels. 

ROB KAAS 
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