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A B S T R A C T  

In the present paper we generahse Pan ler's (1981) recursion for compound 
distributions to a mulUvariate s~tuauon where each claim event generates a 
random vector We discuss situatmns within insurance where such models 
could be apphcable, and consider some specml cases of the general 
algorithm. Finally we deduce from the algorithm a multwanate extension 
of De Prd's (1985) recurslon for convolutions. 

I INTRODUCTION 

1 A. Let N denote the number of  claims occurring m an insurance portfoho 
within a given period, and U, the amount  of  the tth of these claims We 
assume that these claim amounts are positive, integer-valued, mutually 
independent and identically dlstnbuted with common probability function fl, 
and independent of N. Let p denote the probabdlty function of  N Then the 
distribution of the aggregate clatms X = EtN=i U t IS a compound distribution 
with probabfltty function 

oo 

g =  ~ p(n)f"* ( i . I )  
Pt=O 

Panjer (1981) presented an algorithm for recurslve evaluation of g when p 
satisfies a recursion m the form 

p(n)= ( a + ! ) p ( n -  l) (n= l,2,. ) (1.2) 

We obtain that N has a Polsson dlstnbut~on when a = 0, a negatwe bmomml 
dlstnbutzon when a > 0, and a bmomml distribution when a < 0. Panjer's 
paper motwated the development of  an extenswe theory on recurswe 
methods for compound d~stnbUtlOnS as well as other types of distributions 
that would be approprmte for aggregate claims of  insurance portfohos. 
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I B Hesselager (1996) presented some blvarlate extensions of  Panjer's 
recurslon, using bivarlate generahsaUons of  the counting d ls tnbuuon.  He 
considered a situation with two portfolios. For  j = 1, 2, let Nj denote the 
number  o fc lmms in portfoho.! and W,j the amount  of  the tth of  these claims. 
We assume that the W,j's are posltwe, integer-valued, mutually independent, 
independent of  the claim numbers, and for f ixedj  ldenucally distributed with 
common probability f u n c t l o n f .  The aggregate claim amount  from portfolio 
/ i s  Xj = E,N'i Wq. Let q denote~ the joint probability function of  Ni and N2 
and g the joint  probability function of  X~ and X2. Then 

~.l \2 

= Z Z q(1, ,,,w;' ' (.,-,)s;:' 
nl =0 n2=O 

(xl, x2 = O, 1, ..) 

Hesselager deduced recurslons for g m some cases where q can be interpreted 
as a blvarlate extension of  Panjer's counting d~strlbuuons. 

lC. In the present paper we shall study a multivariate extension of  Panjer's 
recurslon In another  direction than Hesselager. We shall still assume that the 
claim number is one-dimensional,  and that ~ts distribution satisfies (1.2). 
However, we now assume that each claim is an m-&menslonal random 
vector, and that these vectors are mutually independent and identically 
distributed and independent of  the number  of  claims. This can be interpreted 
as if the number  of  claims is now the number  of  claim events within a 
portfolio of  m policies and the seventy vector represents the vector of  
payments  to each policy caused by one claim event. We shall motivate this 
mode[ further in Section 2. 

After the motwat lon  in Secuon 2 we deduce the mare result In Section 3 
In Section 4 we discuss some special cases Finally, in Section 5, we look at 
an additional special case, from which we deduce a multivarmte extension of  
De Prll'S (1985) recurslon for convolutions. 

2 MOTIVATION 

2A. Let N denote the number  of  claim events, 

U, = (Utl,.. . ,  Utm) t (l ---- 1,2, ...) 

an m-dimensional vector generated by the ith of  these events, and 

N 

t = l  
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(we interpret  }--~1=~ = 0 when d < c). We assume that U i ,  U2 . . . .  are mutual ly  
independent  and identically distr ibuted with probabi l i ty  function J, and 
independent  o f  N. It is further  assumed that  all the Uv's are non-negative 
Let p and g denote  the probablh ty  functmns of  N and X respectively. Then 
(1.1) still holds. 

2B. In this subsection we shall indicate some SltUatmns where our  model 
could be appropriate .  
I. As mdmated in Section l, in a portfol io  with m policies we can 

interpret  U,/ as the claim amoun t  o f  policy j caused by claim event i A 
natural  example is windstorm insurance where one windstorm could 
affect more than one policy. The variable ,,~ represents the aggregate 
claims o f  policy j. 

2. If we let U,: be equal to one if claim event t causes a payment  on pol icy/ ,  
and zero otherwise, then Xj will be the number  of  claims o f  policy j. 
Analogously  we can develop multivariate count ing dls t r lbuuons in the 
following examples. 

3. Another  application of  the model would be to a situation where each 
claim event can induce various types of  claims These types could have 
different reinsurance covers. Let  m be the number  of  types and U,j the 
payment  of  type j at claim event I Then Xj represents the aggregate 
clamas of  type j .  We assume that X I is covered by a reinsurance such that 
the insurance company  retains t)(Xj). Thus  the total aggregate claims will 
be Z = Y~,,l'" rj(Xj). From g we can evaluate the distr ibution of  Z. 
Perhaps Z ' ~ s  covered by an umbrella cover. Then we can apply the 
distr ibution of  Z to evaluate the premium for the umbrella A good 
example o f  an insurance class where different types of  claims could have 
different reinsurance covers, ~s mo to r  insurance, where the reinsurance 
would often be different for vehicle damage and personal inJury 
Analogously,  in workers" compensa t ion  insurance one could have 
different reinsurance for sickness and acodent .  

4 We now return to the case with only one type of  claim and let m = 2. Of  
claim i the ceding company  retains U,~, and the reinsurer covers the rest, 
U,z. Then Xi and )(2 represent the total payments  o f  the insurer and the 
reinsurer respecnvely, and by our  generahsed Partier recurslon we can 
evaluate their jo int  distr ibution In subsection 4H we shall study this 
situation in the special case of  unlimited excess-of-loss reinsurance 

5. Let us now consider the run-off  of  the claims incurred in an insurance 
portfol io  during a specified year. We assume that all claims will have been 
settled after m years. Let U,j be the part  o f  the Ith claim paid in 
development  y e a r / .  Then Xj will be the total payments  m development  
year j. 

2C By condl t lomng on N we easily obtain that 

Cov (Xj, Xk) = E N  Coy (Uo, Ulk) + E U  b BUlk V a r N  (2.1) 
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If  Utj and Ulk a r e  independent,  then (2. I) gives 

Coy (,~, Xk) = EUij EUik Var N > 0, (k C j )  

that is, because N affects all the policies, the aggregate claims of  different 
pohcles will be positively correlated when the seventies of  different pohcles 
are independent.  

We rewrite (2.1) as 

C o v  ( ~ j ,  X k )  = EN EUij Ulk + EUIj EUik (Var N - EN).  

if  N is Polsson distributed, then Var N = EN, and we obtain 

Cov ( ~ ,  Xk) = EN EUij U,k. 

We see that in this case, for k C j ,  Xj and Xk are uncorrelated if and only if 
EUij Umk = 0. This imphes that Uij and Ulk cannot  both be posit,ve. In the 
situation where U v denotes the amoun t  caused to pohcy j by claim event i, 
this means that a clatm event cannot  hit more than one pohcy. In the 
situation where U,j denotes the amount  of  type j caused by one claim, it 
means that  a claim cannot  cause payments  of  more than one type; there 
cannot  at the same tame be payments  on death and d~sab,l~ty. In fact, m this 
case we have not only that X~ and Xe are uncorrelated, but they are even 
independent,  cf. e.g. Sundt (1993). 

Leawng the Poisson assumption,  but keeping the assumption that 
EUIjUIk --- 0 for k C j ,  we obtain 

C o v  (.~j ,  Xk) = E Uij E Ulk (Var U - EN).  (k # j)  

When N is negative binomially distributed, we have Vat  N > EN, and thus 
Xj and Xk are posltwely correlated. On the other hand, if N is bxnomially 
d,s tnbuted,  then Vat  N < EN, and Xj and Xk are negatively correlated 

3 MAIN RESULT 

3A. In the following we shall apply the notation 

( )' ( )' X -~ Xl~ .~X m ; U ~ UI~..  ~U m 

D1 DI 
x - - Z x , ;  . - - Z . ,  

j=l  J=l 

We shall always tacitly assume that the elements o f x  and u are non-negative 
integers By u < x we shall mean that uj <A) f o r . i =  1, ..., m a n d b y u < x  
that uj < .x) for j = 1, , m with strict mequahty for at least one j For  
j =  t ,-  , m we define ej to be the m x 1 v e c t o r w h o s e j t h e l e m e n t l s l  and all 
the other elements are O. 
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Under the addmonal  assumpuon that p satisfies (1.2), we shall deduce 
multivariate extensions of Panjer's recurslon. 

T h e o r e m  1 The probabdity f unc twn  g satt.~es the recurston 

g(O) = Z p ( n ) f ( O )  ~ 
H=O 

(3 1) 

1 
xkg(x)  -- 1 -- af(O) Z (axk + b u k ) f ( u ) g ( x  -- u) (X > O) (3 2) 

O<u_<x 

f o r k = l ,  2, . , m. 

Proof. Formula (3.1) follows from (I.1) and the assumption that )-~" ~ Ulj is 
non-negauve. 

When x > O, we have 

xkg(x) = ~ xkp(n)f" '  (x) = Z x~p(n - 1) a + f " '  (x) = 
n =  1 n =  [ 

~ p ( n  - I)E axk + bU, k U, = x f ' r  (x) = 
I I  = ] l =  

O Q  

Z p ( n  - 1) ~ (axk + b u k ) f ( u ) f ( " - l ) ' ( x  -- u) = 
n = l  O < u < x  

o o  

Z (axk + buk)f(u) Zp(n--  l ) f ( " - ' ) ' ( x - -  u) = 
O < u < x  n = l  

Z (axk + b u k ) f ( u l g ( x  -- u) = 
0 < u < x  

ax/f(O)g(x) + Z (axk + b u k ) f ( u ) g ( x  -- u), 
O < u < x  

and solving for x/,-g(x) gives (3.2) 
This completes the proof  of Theorem 1 Q.E.D. 

When xk > 0, we can divide (3.2) by xk We obtain 

g ( x ) -  1 - a f ( O )  Z a + b  / ( u ) g ( x - u ) ,  ( x > e k )  
O<u_<x 

whmh together with (3 l) can be applied for recursive evaluation ofg .  

(3 3) 
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Whenf lO)  = O, (3.1) and (3.3) reduce to 

g(O) =p(O)  

/ u,?~ 
g(x)  Z 

O<u<x 

In the s)tuation with a por t foho  with m pohc~es, thls assumpt)on means that 
any claam event wdl affect at least one pohcy When 177 = I, (3.4) reduces to 

.<-.> = I . ,  = 1,,, > 
It=] 

N 

Thls )s the recurslon deduced by Panjer (1981) 

3B. It is interesting to notlce that when b-~ 0, the recurs)on (3 3) is not 
symmetr)c in the pohcies, one of  them, pohcy k, is treated in a special way. In 
practice )t seems to be computa t lonal ly  most  effic)ent to choose the policy 
where the clmm amoun t  can take the least number  o f  values. We shall return 
to thls in Sect)on 4. 

Also, we see that we have to apply another  pohcy than po l i cy / ,  as the 
speclal pohcy when ,vk = 0. Let us apply pohcy I when -\A = 0 and xt > 0. 
However ,  when x~ = -¥I = 0, we have to apply a thlrd policy as the special 
policy, and so on. In the worst case, we wdl have to revolve each of  the m 
pohcles as the specml pohcy at some stage. Th)s may make the recursaon o f  
Theorem I awkward to program. However ,  )t wdl normally involve less 
ar)thmet)c operat)ons than brute force evaluat)on by (I I). 

In some cases the problem of  xk = 0 is reduced or vanlshes completely. 
We see that the problem arises when xk = 0 and ,x) > 0 for at least o n e j  ~ k 
If U,k is always posmve when at least one of  the other  Uu's is pos)tive, then 
Xk as also posmve only when at least one of  the other  X/s  )s posmve.  
Therefore  g(x) = 0 when x~ = 0 and some other  ,x) )s posmve,  and the case 
xk = 0 does not  create any problem for the recurs)on. In the s~tuat~on w)th 
excess-of-loss reinsurance mentioned m Example 4 m subsection 213 the 
ceding company  w)ll always make payments  for own account  when there are 
pos ture  reinsurance payments ,  and thus, with k = I, the case xk = 0 ts 
unproblematic .  We shall return to th)s s)tuation m subsectlon 4H. 

It seems that in practice the multwariate recurs)ons would be apphcable only 
when m ~s small, as otherw)se the computat)onal  work would be prohabltive 

3C. Let c = (Cl,...,Cm)' be a constant  vector Mult)plicat)on o f  (3 2) by c~ 
and summat)on over k g)ves 

I 
g ( x ) c ' x  - 1 - af(O) S (ac 'x  + b c ' u ) f ( u ) g ( x  - u) (x > O) (3 6) 

O<u<x 
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When c 'x  -¢ 0, we can divide (3.6) by Cx,  and we obtain 

g(x)  -- 1 - a f (0)  E a + b f ( u ) g ( x  - u).  (c 'x  :~ O) (3 7) 
O < u < x  

Normal ly  we would choose the cj's equal to zero or one. In particular,  when 
c = ek (3 7) reduces to (3.3) Another  interesting case is when cj = 1 for all / .  
Then C x  = x., which IS always positive when x > 0 Thus  

1 (a + (x > g ( x ) - - i - a f ( 0 )  E , b~')f(u)g(x-u) O) (3.8) 
O < u < x  

Under  efficient programming,  (3 8) is not necessarily significantly rnore time- 
consuming than (3 3), and it has the advantage that it can be applied for all 
x > 0  

When m = 1, the recursion (3 8) reduces to Panjer 's  recursion (3.5). 
For  the rest of  the paper  we shall mainly concentra te  on recurslons with 

division by Xk and leave to the readers to deduce corresponding recurslons 
with dlwslon by x or c 'x.  

3D The way we extended Panjer 's  u n w a n a t e  recursion,  can easily be 
apphed  to other  umvar la te  recul's~ons. As an example,  let us generalise the 
recurslon (3 3) to the si tuation when p satisfies a recurs,on 

 (as + b"]p(,, - s) p(n) = n / 
s=  ] 

(n = 1 ,2 , . . )  (3 9) 

for some positive integer r; we have p(n) = 0 for n < 0 When r = I, (3.9) 
reduces to (1.2). By modifying the p roo f  of  Theorem 9 in Sundt  (1992) 
analogous to the way we modified the p r o o f  of  Theorem 10.6 m Sundt  (1993) 
for the p r oo f  o f  Theorem I, we obtain 

g(x)  = I - E : = ,  as f (O) '  g (x  - u) a, + -  / ' * ( u ) ,  
O < u < x  ~=1 S 

and analogous to (3.8) we obtain 

l ( +b~u'xj,, u 

O<II~X S=I 

X > ek) 

These recurstons reduce to respectively (3 3) and (3 8) when r = 1, and to the 
recursion of  Sundt  (1992) when n7 = 1. 

The recursions of  the present subsection are further  analysed in Sundt  
(1998). 

(x > o) 
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4 SPECIAL CASES 

4A We consider the s~tuat~on where a clmm event can reduce various types 
o f  claims, and assume that one clmm event cannot  reduce clmms of  more 
than one type. Fo r  j = 1,2 . . . . .  m let U,/be equal to one ff the tth claim event 
reduces a claim of  t y p e j  and zero otherwise. Then ~]j"-I U,j = 1. Let 

h(l) = P r ( U  v = 1). ( j  = 1 ,2 , . . . ,m)  

A pphc a non  of  (3.8) gwes 

( g(x)  = aq- ~ h ( j ) g ( x - e j )  ( x >  0) 
j = l  

4B. For  the rest o f  Section 4 we shall for slmphclty restrict our  presentat ion 
to the case n7 = 2, and we assume that f ( 0 , 0 )  = 0. Some of  the examples are 
pr imardy o f  theoretical interest whereas others have practical relevance 

Let U,-~ U,t, Vt= U,2, X =  Xi = ~,U= I U,, and Y=X2=Y'~,N_ I V, In 
this case (3.4) gives 

3. F 
It 

g(x,y) = ~ (a + bx)  Z f ( u , v ) g ( x - u , y - v )  (41)  
u--O I'--0 

(x = 1,2, ..; y = 0, l, ...) 

±( g(x,y) = a + b f (u ,  v)g(x - u,y - v), (4.2) 
v - 0  u=0 

( x = 0 , 1 , . ,  y =  1 ,2 , . . )  

and from (38)  we obtain 

g(x ,y )= a + b x + y  f ( u , v ) g ( x - u , y - v ) .  ( ( x , y ) ¢ ( 0 , 0 ) )  (4.3) 
u 0 v = 0  

Notice that,  unlike in (3.4), in these formulae we have included (u, v) = (0, 0) 
in the summat ions  to simplify the display o f  the formulae.  However ,  as by 
assumption f ( 0 ,  0) = 0, the extra term ~s equal to zero. 

If we were to base our  evaluat ion ofg(x ,y )  on (4 1) for all (x ,y) ' s  such 
that x > 0, then we could evaluate g(0 ,y)  by (4 2), that is, 
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However ,  if U, is always positive, then together  with g(0, 0) the recurslon 
(4.1) specifies g completely In this case we have 

g(0 ,y)  = 0. (y = 1,2, ) 

4C. To  assume that U, and V, are independent  does not seem to bring 
any substantial slmphficatlon to our  recurslons. In that case, if h and k 
denote  the marginal p robablh ty  functions of  U, and V,, then we can write 
(4.1) as 

g(x,y) = ~ (a + bU)h(u)~k(v)g(x-u,y-v) .  
u=0 u-O 

( x = 1 , 2 , . . . ,  y = O ,  1, 

4D. Let us now consider the situation with two types of  chums. Unlike in 
subsection 4A we do not  exclude the possibility that one claim event can 
induce payments  o f  both types. We let U, = 1 if claim event t leads to 
payments  of  type 1, and U, = 0 if that is not  the case Analogously  we let 
V, = 1 if claim event t leads to payments  of  type 2, and V, = 0 if that is not 
the case. Then X and Y are the total numbers  o f  claims o f  type I and 2 
respectively In this case flu, v) can be positive only when u ,v  E {0, 1}, and 
(4.1) reduces to 

g(x,y) = a+~ ( f ( 1 , 0 ) g ( x - l , y ) + f ( l , l ) g ( x - l , y - 1 ) ) +  

a f ( 0 , 1 ) g ( x , y -  1). ( x =  1 , 2 , . ,  y = 0 , 1 ,  ) (4.4) 

4E. We now leave the restriction that U, and V, can only take the values 0 
and 1, and consider the case when EU, V, = 0. As pointed out  m subsection 
2C, in the situation with different types o f  payments,  this corresponds  to the 
case that a claim cannot  have payments  of  more than one type Let c denote  
the probabih ty  that a claim IS of  type I, h the condit ional  probabil i ty  
function of  the claim amoun t  given that the claim is of  type 1, and k the 
condit ional  probabil i ty  function of  the claim am o u n t  given that the clann is 
o f  type 2 As f ( 0 , 0 )  should be equal to zero, we have that h(0) = k(0) = 0 
Then 

ch(u) 
= (r - c ) k ( u )  

0. 

( u = l , 2 ,  .; v=O) 
( u = O ; v = l , 2 ,  .) 

otherwise 
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Insertion m (4.1) gives 

H 

I t ~  ] t ' =  [ 

(x = 1 ,2 , . . :  y = 0, 1,. ) (4.5) 

In the special case with a = 0, that is, N ms Po~sson distributed with 
parameter  b, the last summation xn (45) vanishes, and we obtain 

g(x,y)=--CbZh(u)g(x-u,v),  (x=1,2, .  , . v = 0 , 1 ,  ) (46) 
x 

u - I  

As pointed out in subsection 2C, m the present case we know that X and Y 
are independent. Thus g(,x, y) = s(x)t0, ), where s and t denote the marginal 
probablhty functions of  respectively X and Y. Insertion in (4.6) gwes 

c b  -~" 
s(x)t(y) = t ( Y ) x Z h ( u ) s ( x - u  ). ( x =  1,2,..., y = 0 , 1 ,  ) 

As there must exist some y such that t(y) > 0, we obtain 

cb "~ 
s(x) = z Z h ( u ) s ( x -  u). (x = 1,2,...) (4 7) 

u =  I 

This is the unlvarmate Panjer recurslon for a compound Poisson &strlbutlon 
with Po~sson parameter cb and severity distribution with probability 
function h. As 

s(x) = ~-~g(x,y), (x = 1,2, .) 
y=0 

we could also have obtained (4.7) from (4.6) by SUlnmatlon over y. 
If  we, leaving the Pomsson assumption,  define U, and V, as in subsection 

4D, we obtain 

f ( l , 0 )  = c; f ( 0 ,  I) = 1 - c; 

and insertion in (4.4) gives 

g(x,Y) = (a +b)cg(x - 

f ( l ,  1) = 0 ,  

l ,y )  + a(l - c)g(x,y-  1). 

( x =  1,2,.. ; y = 0 , 1 , . . )  

(4 8) 
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4F The model o fsubsecuon  4E can also be expressed within the framework 
of  subsection lB. For ! = 1, 2 let N: be the number of  claims of  t y p e j  and 
W,: the amount  of  the tth of  these claIms. Then the assumptions of  
subsecnon I B are fulfilled with fl = h and f2 = k 

The conditional distribution of  Ni given that N = n, is binomial with 

P r ( N i  = i l , ] N  = n )  = c n ' ( l  - 
n l 

( h i = 0 , 1 ,  .,n, n = 0 , 1 ,  ) 

Thus for nl,n2 = 0, 1,.. we have 

q(n,. 1?2) -~ Pr((Ul = nl) A (N2 = 1 1 2 ) )  = 

Pr((N, = n,) A (N = nl + n2)) = 

Pr (N = nl + n2) Pr(Ni = n, lN = nl + n2) = 

p(n, + n 2 ) (  n' + n 2 " ] c " t ( 1 -  c)"'. 
HI ./ 

We are now within Model A of  Hesselager (1996), and the rectirslons (4.5) 
and (4.8) are given in his Theorems 2.2 and 2.1 respectively. 

4G. Let us now consider a unlvariate situatmn Let W, be the amount  of the tth 
claim We assume that the W,'s are positive, integer-valued, mutually 
independent and identically distributed with common probability function /1, 
and independent of N. Lets be a posmve integer We say that a claim is of type 1 if 
tt is less than or equal to s, and of type 2 fist is greater than s. In this case we have 

g(x ,y)  = 0  ( x = 0 , 1 ,  , y =  1,2, . . . ,s)  

We now have a special case of  the situation of  subsection 4E with 

/ , ( . )  (z, = 1 , 2 , . ,  s, = o )  

f ( u , v )=  h(v) ( u = 0 ,  v = s + l ,  s + 2 ,  . . )  (4.9) 

0, otherwise 

and insemon m (4.1) Dyes 

tt 

0 ( x =  1,2, ...) 

s g 

~t=l  v = s + l  

( z = 1 , 2 , . . . ;  y = s + l ,  s + 2 ,  ...) 
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l n semon  of  (4 9) m (4.2) gives 

g(x,y) = .  ~ h(.)g(x- .,y)+ a+b h(~)g(x,y- ~) 
u =  I u =  s +  I 

( x = 0 , 1 , . . ; y = s + l ,  s + 2 ,  ...) 

4H. In the previous subsection, we dlstmgmshed between claims less than 
or equal to s and claims larger than s A more interesting situation would 
be to let 

U, = min(W,,s) ;  V, = m a x ( W ,  - s, 0). 

Under  an unhm~ted excess-of-loss treaty with retennon s, U, and V, are 
respecnvely the retained and reinsured parts of  the ;th clmm. Thus X 
becomes the total payments  of  the ceding company and Y the total payments 
of  the reinsurer. In th~s case we have 

g(x,y) = O. (x = O, 1, . . . ,s- 1; y = 1 ,2 , . . )  

Analogous to (4.9) we obtain 

h(u) ( u = l , 2 ,  ,s, v = 0 )  

f(u,v) = h(v+s) ( u = s ;  v =  1,2,...) (4.10) 

0. otherwise 

Insemon m (4.1) gives 

U 
g(x,y) = ~ (a + b~r)h(u)(g(x- u,y)+ 

u =  1 

Y (4.1 I) (o 
(x = l, 2, ...; y = 0,1, .. ) 

As now U, ~s always positive, together w~th g(0, 0) this recursion completely 
specifies g. 

l n semon  of  (4.10) m (4.2) gives 

g ( x , y ) = a Z h ( u ) g ( x - u , y ) + Z  a+b h ( v + s ) g ( x - s , y - v ) .  
u=] t ' = l  

( x =  1,2, ..; y = 1 ,2 , . . )  

For small y this recurslon may be more convement than (4.11). However, we 
will still need (4 11) to evaluate g(x, O) 
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41. Let us finally consider the case when U, = IV, and V, = 1. Then X will be 
the aggregate clmms and Y the number  of  claims, that is, g wdl be the joint  
probabil i ty function of  the aggregate clmms and the number  of  claims. Thus 
we have 

g(x,y) = P r ( r  = y) P r ( X  = x I Y = y) =p(y)hY*(x).  

Furthermore,  

h(u) (u = 1,2, . . . ,s,  v = 1) 
f ( u , v )  = O, otherwise 

and lnsertxon in respectwely (4 I) and (4.2) gwes 

g(x,y)=£(a+b~)h(u)g(x-u,y-1) 
11 = [ 

(x ,y  = 0,1,...) 

(4 12) 

(x ,y  = 1 ,2 , . . )  (4.13) 

As both U, and V, are always pos)tive, together with g(0, 0) each of  the 
recurslons completely specifies g 

The recurslon (4 14) can easily be seen more directly By successwely 
applying (4 12) and (i.2) in the right-hand side of  (4 14) we obtain 

<, + h ( , , ) g ( x  - . ,  y - I) = 

,,,x 
I I =  ] 

. +  p ( y - 1 ) y ~ / , ( . ) / , 0 ' - , ) * ( x _  

u) = 

,) = p0,)/,"'(x) = g(x). 

It does not seem possible to give such a sunple interpretation of  (4.13) 

5 CONVOLUTIONS 

5A Let us now consider the special case of  Theorem I when p is the 
binomial probabil i ty function 

( ~ c " ( l - c ) ' - " .  ( n = 0 ,  l , .  ,,': , ' = 1 , 2 ,  . ;  0 < c < l )  (51)  p ( l l )  = 
k -  / 
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T h e n  

C £ 

- b = ( r + l ) l  c a 
1 - c '  

We assume that f(0) = 0. Apphcat lon of  Theorem I gwes 

g(O) = ( I  - c)' (5 2) 

c Z ((r+l)Uk-1) f(u)g(x-u) (x > ek) (53)  
g ( x )  - 1 - c x k  - 

0<u_<x 

We shall apply this recurslon to deduce a multlvarmte extension of  De Pnl 's 
(1985) recursmn for convolut ions 

5B Let V~, . ,V,  be r m-dnnenslonal independent and ldentmally distri- 
buted random vectors w~th non-negative integer-valued elements and 
common  probabil i ty function h. It is assumed that 0 < h(O) < I We want 
to deduce a recursmn for the probabil i ty function g of  X = ~ ' , - I  V, We 
obvxously have g = h'*. 

Let 

c = 1 - h(0) (5.4) 

f ( y )  _ h(y)  (y > 0) (5 5) 
C 

The function f can be interpreted as the condlhonal  probablhty  function 
of  V, given that at least one of  ~ts elements is greater than zero. We now 
have that X has a compound  binomial distribution with counting 
distribution given by (5.1) with c given by (5 4) and seventy distribution 
with probabil i ty function /. l n semon  of  (5.4) and (5.5) m (5 2) and (5.3) 
gives 

g(0) = h(0)' 

1 ( t,k I)h(u)g(x - u). 
g(x) - h(0) ~ ( , .+ 1) x-7- 

O<u<x 

Analogously,  by apphcat lon of  (3 8) we obtain 

g(x) - h(O) ~ (' + I)-- - 1 h(u)g(x - u). 
O < u < x  X 

(x > ek) (5 6) 

( x  > O) 
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When m = l, both these recurslons reduce to 

g ( 0 )  = h ( 0 )  r 

g ( x ) = h ( 0 ) l  ~,=, ( ( r + l )  u x - 1 ) h ( u ) g ( x - u ) .  ( x =  1,2,.. .) (5.7) 

This Is the recurslon deduced by De Prll (1985) 
F o r j  = 1 . . . .  m, let h /and  g: denote  the marginal probabil i ty functions of  

V b and Xj respectwely As h(O) > 0, we must have hi(0 ) > 0 fo r j  = 1 .....  m 
If Vii, , Vi,,, are independent,  then Xt, .,X,,, are also independent,  and we 
have 

h ( u ) =  rlh:(uj);  g(x)  = h g j ( . x ) )  
J=[  j = l  

Insertion m (5 6) gwes 

o < . < x  /,:(0) (x _> (5 8) 
_ ./=1 

However,  m this case it seems more convenient  to evaluate each of  the gj's 
separately by the umvarlate  recursion (5 7) and then multiply them. 

If I-Ij#~ gj(•)) > 0, we can rewrite (5 8) as 

gk(xk)= 

(X>ek) 
_ ~ k  : :7~ h/(O)gj(:~)) 

As the umvarmte recurslon (5.7) gives 

g~(xk) (r+ I)-~-~- k - 1 hk(u~)g~(xk --Uk), (5.9) 

(Xk = 1,2,.. .) 

it IS tempting to conclude that we obtain 1 by  a summat ion  over the u:'s of  

~¢~k hj ( uj )gj (.\~_ - u: ) 

However ,  m the next subsection we shall see that it ~s not that simple. 
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5C Let us now consider the special case m = 2 In that case (5.6) with k = I 
gives 

1 h(u, v)-  g(x ,y )  -- h(O,O) ( r +  1 ) - -  1 v ) g ( x -  u , y -  u= I x u=o 

" ] ~ h ( O , v ) g ( x , y - v )  , ( x =  1,2,.. .;  y = O ,  1,...) (5 10) 
[ '2[  

as h(O,O) > O, we cannot  include (u,v)  = (0,0) in the summahon  as in (4.1) 
and (4.2) 

If Vii and Vi2 are independent,  (5.10) gives that for x = 1,2 .... , y  = 0, !, 

1 
gl (x)g20') -- hi (0)172(0) x 

[ ( ~ ( ( r + l ) - U - l ) h l ( U ) g l ( x - u ' )  x ,,=o 

hi (O)gl (x) ,.__, h2(v)g2(y - v) , 

that ~s, 

gl(x)g2(y)  = 

1 [ ~' 
hl(O)h2(O) A Zh2(~)g2(Y-TJ) - t -h l (O)gl (x )h2(O)g2(Y)  

t)~O 

(5 11) 

wah  

A = ~ ((r + ~)-~-l)h, 0,)g,(-,--.)- t,, (0)g, (.,-) 
y 

F rom (5.9) we see that A = 0, and thus the r ight-hand expression in (5.1 I) 
reduces to gl (x)gz(y) 
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