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EDITORIAL 

THE CHALLENGE FOR ASTIN IN THE 21st CENTURY 

Perhaps I could start by mentioning two currently fashionable key phrases: "change 
management" and "teamwork". It ,s not my concern here to attribute precise 
meanings to these terms they are included as being indicative or symptomatic of 
underlying changes affecting the manner m which non-hfe insurance is being 
transacted at the end of the 20th century. Whdst it could be argued that the history 
of insurance is one of change, and that there is nothing new in the idea of 
teamwork, I think it is indisputable that, in Western Europe at least, change in the 
social and economic environments has forced a corresponding rate and depth of 
change m many aspects of insurance 

To be specific, I need only refer to such developments as the burgeoning market 
m telesales insurance m the UK, with other countries variously following behind, 
the significant impact on the UK market of developments in mortgage related 
insurance; the problems which have beset Lloyds and, in a somewhat different veto, 
the stream of EC Directives not only having the effect of shaping internal markets, 
but introducing some degree of convergence between territories in aspects where 
diversity may have previously been the norm 

Other developments include changes m solvency testing m the US, the securitls- 
atlon of insurance risks and the increasing prominence given to hnkmg risk arising 
from both insurance and its supporting assets. 

Accompanying what might be regarded as market changes of this kind, the 
continuing evolution of computing power has brought undreamt-of capability to the 
desk of the most junior actuary. A consequence has been the continued tipping of 
the balance between, on the one hand, classical analysis and, on the other, 
numerical methods and simulation. Of course the old problems have not been force 
entirely off-stage--rather the onward march of processing capablhty has unveiled 
new problems which previously either did not arise in the conditions of the day, or 
could safely be put m the "too difficult" box with the expectation that competitors 
would do likewise--if indeed they recogmsed the problem. If solutions were needed 
m practice they could be prowded by a non-actuarial management. 

We now have a situation where what might be regarded as a surge of change is 
taking place across the insurance markets of the world. In turn, new problems m 
managing and controlling insurance and reinsurance operations are arising. In 
company wxth these developments, the force of competition, which decades ago 
might have been regarded as a gentlemanly, if not gentle, breeze, has suddenly 
become a gale 

What does this mean for Astin? 
To attempt to answer this, we have to look at the scope of Astm, which, as we all 

know, is concerned with actuarial studies in non-hfe insurance But what do 
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2 EDITORIAL 

"actuarial  s tudies"  embrace, either in terms of subject material or nature ? Have we 
stretched the boundaries of the objects of our studies in line with the changing 
market scenario and the changing capabili t ies of  modem technology 9 Have we got 
the right balance between " in -dep th"  academic studies of  very specific topics and 
more superficial, less " respec tab le"  examinations of  a broader subject matter which 
does not lend itself so conveniently to a " n i c e "  treatment'~ 

Every member  of Astln will have his own answers to these questions : perhaps I 
could try to stimulate discussion by looking again at familiar areas of activity. 

For many yea r s - - s ince  the formation of  A s t m - - w e  have been concerned with a 
tradmonal subject matter embracing the areas of  risk and ruin, moving more 
recently into such areas as claim reserving and risk costing (as distinct from 
rating). 

If we look at what happens in an actual insurance operation, in arrwing at a rate 
for a risk, it is difficult to deny that each of  these areas should be represented. 
However,  in practice, other considerations come into play whose significance may 
dwarf  those mentioned (with the possible exception of claim reserves) 

These a reas - -assuming  we are concerned with setting rates in a competi t ive 
marke tp lace- -would  embrace (to select a few items at random)" 
- -  how to relate rates to risk in the presence of  classificatory factors : for some of 

which only limited information, but for others extensive experience, may be 
available should we use explicit, purpose built models, neural networks, 
etc. ,  

- -  how to estimate outstanding claims for the purposes of rating, and to reflect risk 
and other factors in the basis used for claim development,  given the existence m 
some cases of  possibly vast historic stores of  relevant detailed past experi- 
ence ; 

- -  how to take into account competi tors '  activit ies,  
- -  how to take Into account more or less well-defined cycles of insurance-related 

experience;  
- -  how and to what extent to take into account risk and return on assets supporting 

the insurance activity;  
- -  how tO define meamngful objectives, to which rates can be attuned, which 

reflect the rating cycle, uncertainty of  experience, the need to relate risk and 
return to the performance of other capital markets, etc., etc 

To take another example - -  after decades of  papers on claims reserving, the 
methodology employed in practice is in most cases, 1 would guess, extremely basic 
and subjective. This most fundamental of  actuarial activities 1 suspect suffers from 
the lack of  a generally agreed basic approach which effectively utilises the extent of  
information available in a systematic way 

Is something going wrong9 If Astln was intended and is intended as no more 
than a group whose objectives either do not include practical usefulness of  output, 
or include it only incidentally, then we could claim all is well. If, on the other hand, 
as a sub-group of  IAA, Its objective is to support the progress of actuarial 
sc ience- -and  not least ac tuar ies- - then I suspect at the very least some of these 
issues deserve an airing 



EDITORIAL 3 

Let me make two suggestions: 
- -  authors of papers to the Workshop Section of AB should be encouraged to write 

papers whxch descrnbe problem areas they have encountered, wnthout necessarily 
offerung a solution; 

- -  the Astin Comrmttee Itself should take stock of  the extent to which 
(a) actuaries are moving into less traditional areas of  non-life insurance, and the 

extent to which they have the support of  a range of  actuarial methodolog- 
ies. 

(b) areas of  insurance operation in which actuaries have only peripherally, if at 
all, been involved, now offer serious actuarial challenges. 

The turn of  the millennium represents a series of  challenging opportunmes tbr the 
profession - -  but only if it reaches out an grasps them before others develop the 
necessary skdls 

HARRY REID 





ON THE DUALITY OF ASSUMPTIONS UNDERPINNING 
THE CONSTRUCTION OF LIFE TABLES 

A. E. RENSHAW, PH D ,  S. HABERMAN, PH.D., F.I.A., AND P. H A T Z O P O U L O S ,  M.Sc. 
of Cto' Universtty of London 

A B S T R A C T  

We investigate the m~pllcat~ons of a dual approach to the graduation of the force of 
mortality based on the modelling of the exposures as gamma random variables, as 
opposed to the modelling of the numbers of deaths as Poisson random variables. 

K E Y W O R D S  

Graduation, Life Tables; Exposure Response Models; Generahsed Linear Models 

1 I N T R O D U C T I O N  

In this paper, we describe as the 'conventional' approach to graduation the method 
whereby the force of mortality is graduated by fitting a parameterised formula to the 
crude mortality rates under the assumption that the actual numbers of deaths are Pols- 
son random variables conditional on the matching central exposures to the risk of 
death, e.g. Forfar, McCutcheon & Wxlkxe (1988) Under this approach, the Polsson 
assumption gwes rise to a characteristic hkehhood which is ophmJsed to provide esti- 
mates for the parameters m the graduation formula. It has been noted, e.g. page 113 of 
Gerber (1995), that the same formal expression for the likelihood arises under the 
different assumption that the central exposures to the risk of death are gamma random 
variables conditional on the matching numbers of deaths The imphcatlons of adopting 
this dual approach for the parametric graduation process are investigated m this paper. 
Following Renshaw (1991), both approaches are formulated within the generahsed 
linear modelling (GLM) framework , whde the conclusions extend to include non- 
linear parametensed graduation formulae. 

A brief description of the sahent features of GLMs is presented in Section 2 for 
completeness The consequences of switching from the 'conventional' approach to the 
dual modelling approach when the data are based on head counts, or equivalently, on 
pohcy counts m the absence of duphcate police . are discussed in Section 3. The im- 
plications for both approaches when duplicate policies are present in the data counts 
are then discussed m Section 4 and Section 5 respectively Finally an dlustration of the 
~mphcat~ons of the switch from the 'conventional' approach to the dual approach, 
which reside largely in the reporting of the graduation, is presented in Section 6. 
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6 A E R E N S H A W ,  PH D , S H A B E R M A N ,  PH D , F I A , A N D  P H A T Z O P O U L O S ,  M S C  

2 GENERALISED LINEAR MODELS 

The purpose of  this section is to provide a brief introduction to GLMs. A complete 
treatment of the theory and application can be found m McCullagh & Nelder (1989) 
and Francis, Green & Payne (1993). 

The basis of  a GLM is motivated, in the first instance, by the assumption that the 
data are sampled from a one parameter exponential family of distributions with log- 
hkehhood 

l = ~0 - b(O) + c(y, q)) 

for a single observation y, where 0 is the canonical parameter and ~ is the dispersion 
parameter, assumed known. It is then straightforward to demonstrate that 

m =  E(Y)=  ~ 0  b(0) and V a r ( Y ) = ( 9 ~ o 2 b ( O ) = ( p b " ( O ) .  

We note that Var(Y) ~s the product of  two quantities The quantity b"(O) is called the 
variance function and depends on the canonical parameter and hence on the mean We 
can write this as V(m). 

The log-likelihoods for some common &strlbUtlOnS of interest and which conform 
to these properties are 

l = y log m - m - log yV 

0 = Iogm, b(O) = exp0,  V(m)  = m, (a = 1 

for the Poisson dlstribuuon with mean m, and 

Y + log 1 

l -  m m ÷ v l o g y + v l o g v - l o g F ( v )  
1 

v 

0 = - -L- ,b (O)  = - I o g ( - O ) ,  V(m)  = m2 ,~  = v -I 
m 

for the gamma distribution mean m and v a r i a n c e  m2/v. 
More generally a GLM is characterlsed by independent response variables { Yu" u = 

1,2, . ,n} forwhlch  

E(Y . )  = m,,, Var(Yu) = qW(m,,) (2.1) 
o) u 

comprising a variance function V, a scale parameter (~ > 0) and prior weights 09.. 
Covanates enter via a linear predictor 

P 

~1, = Z Xuj ~J 
j = l  
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with specified structure (x.j) and unknown parameters j3j linked to the mean response 
through a known dlfferentlable monotonic link function g with 

g(m.) = 17.. 

The special hnk function g = 0, so that 0(m) = r/, is called the canonical link function. 
Examples are the log link in the case of the Polsson distribution and the reciprocal link 
in the case of the gamma distribution 

The suffices or units u have structure, either intrinsic or imposed. The data compri- 
se reahsations {y. } of the independent response variables, matched to the structure of 
the units. Generally in any one study, the detail of the distribution and link are fixed, 
while the predictor structure may be varied 

Model fitting is by maxlmlslng the quasi log-likelihood 

11 n ntu 

q = q(y,m)= Z % = £  CO. "J y" -Sds (2.2) 
- , , = i  , , = l  , .  CV(s) 

leading to the system of  linear equations 
t !  

Z 0 9 .  y" - m,, 0 m. 
0 V J 

in the unknown fl,,s These are solved numerically, e.g Francis, Green & Payne (1993), 
McCullagh & Nelder (1989). Detail of the construction of standard errors for the pa- 
rameter estimators, based on standard statistical theory, is also to be found in these 
references Denote the resulting values of  the parameter estimators, linear predictor 

and fitted values, for the current model c, /3j, ~,, and nS. respectively, where 

P 

j = l  

For members of the exponential family of distributions, the quasi Iog-hkelihood is 
synonymous with log-likelihood The maximal structure possible has the property that 
the fitted values are equal to the observed responses, that ~s dr. = y.  for all u, and ~s 
called the full or saturated m o d e l f  

The (unscaled) deviance of the current model c is 

t l  n Y~ 

O(c,f) = d ( y ; ~ )  = d,, = ~.a 2co,, j = - 2  0 q (y ;~) ,  
= u = l  ~h~ " 

in which the fitted values under the current and saturated models impact on the for- 
mula through the lower and upper limits of the integral respectively. The correspon- 
ding scaled deviance is 

d(y,~_) /7 

S(c,f) = d*  (y;~_)= = Z2co. r[ Y,, -Sds - = - 2  q(y;..~_) ( 2  3 )  
- ~ q ¢ V(s )  - 

I I = ]  l i l t  I 
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For fixed distribution, fixed link and hierarchical model structures cj and cz, with c2 
nested in c~, the difference m scaled deviance 

S(c:,  f') - S ( c , , ~  

may be referred, generally as an approxlmatmn, to the chi-square d~stnbuuon with v 2 - 
v~ degrees-of-freedom, where v~ and v 2 denote the respective degrees-of-freedom. 

Two types of residuals (which are idenncal only in the case of the Gaussian d~str~- 
buuon, for which V(s) = 1) are of interest, the Pearson residuals 

^ 

y,  - m,, (2.4) 

or the deviance residuals 

sign (y,, - th . ) . f~-  

where d. is the uth. component of the (unscaled) deviance above 

3. HEAD OR POLICY COUNTS WITH NO DUPLICATES 

3.1 Distribution Assumptions 

In keeping with common practice, let 

u~ = the force of mortality at age x 
,.p~ = the probablhty that a life aged x surwves tot age x + w 

and recall the basic idennty 
w 

wP~ = exp -  j /~ ~+ ~ds (3 I ) 

0 

with the imphed assumpuon that ~ is a functmn of age alone and ~s therefore assumed 
to be constant with respect to varmnons m calendar time within a fixed observation 
window. 

Focus on a set of mdwJdual lives or policyholders. If the latter, and the data are ba- 

sed on policy counts, then it is assumed throughout this Section that all policyholders 
possess a single policy Individual members of the set are assumed to be observed 
between ages x and x + 1 m t h e f a e d  calendar period or observauon window t to t + t o, 
with pre-specified pohcy durauon where relevant, and their survxval experience ~s 
assumed throughout to be independent Typmally to = 4 years in many Umted King- 
dom (UK) actuarial mortality studies. There is also interest m the case to -- 1 year 

when modelhng trends in mortality, e g. Renshaw, Haberman & Hatzopoulos (1996). 
Within such a cell, identified in this instance by the suffix x, suppose an individual t 
enters observation at age v~, and leaves it either by death (1,, = 1) or by censorship 
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(I,, = 0) at age 15, + w, where x _< v,, < v~, +w,, _< x + 1, Then It Is well known see, e g 
Section 3.2 of Cox & Oakes (1984), that each such datum contributes an amount 

/ 
L,, =w. P,,,,/-tv~:+,,., 

to the hkehhood, or, on resorting to the use of expression (3 I), an amount 

w., 

l,, = log L,, = - I It~',, +sds + lu log//,., +,,,, 
0 

to the log-hkehhood. Thus the total contnbutmn to the log-likehhood from such a cell 
1s 

nt it x ;v~: l 

where the summatmn extends to all n, individuals contributing to the experience in the 
cell If m addmon ,u~ is assumed to be piecewlse constant with respect to age within 

each cell and accorded the central value/a, + m, expression (3.2) can be written as 

l, = - r r / . / ~ + ) / 2  + a ,  Iog~r+l/2 

where 
tie n r 

rr =Ewu,ax=El .  
t = l  t = l  

denote the respective central exposure and actual number of deaths associated with 
cell x. The expression for the full Iog-hkehhood 

l = E l  , = E{- r , / . /~+l /2  +axlogp,+l/2 } (3.3) 

then follows by summation over all such cells. It Js of specJfic interest to note that this 
expression may be interpreted m one of two ways 

Firstly, and somewhat exclusively m the context of an actuarial gladuanon, expres- 
sion (2.3) ~s ~dentlfiable as the kernel of the Iog-hkehhood under the assumption that 
the actual numbers of deaths, a,, are modelled as independent reahsanons of Po~sson 
random variables A~ condmonal on r,, such that 

A, ~ Poi(r ,~,+l /2) .  

For this case, the detail of the distributional reqmrements to set up the appropriate 
GLM (equanon (2 1) with u -z x) is either 

responses {Ax},wlth m~ = r ,u ,+l /2 ,  V(m~ ) = mr,~p = 1,o9~ = 1, (3 4a) 

or eqmvalently 

responses{A, /r~ ,with m, =tJ~+l/2.V(m,)=m~,gp=l,og~ =r~ (34b)  
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Secondly,  e.g. Section l 1 5 of Gerber 1995), expression (3 3) is also identifiable as 
the kernel of  the log-hkelihood under the assumption that the exposures to r.sk, r,, are 
modelled as independent reallsatlons of gamma random variables R, condmonal  on a,, 
such that 

R~ - gam (a~,/./~+ I/2 ) 

Superficmlly this result is perhaps a little unusual m-so-far as the gamma &strabutlon 
is generally associated with two unknown parameters, whereas here, as with the Pols- 
son distribution above, there is only a single parameter to estimate For this case, the 
detad of  the distributional reqmrements to set up the appropriate GLM (equation (2 I) 
with u --- x )  is either 

responses {R, },with m t  = a a - -  

or eqmvalently 

t + l / 2  

responses {R, / a ,  }, with m, = - -  
1 

f l  ~+1/2 

,) 
, V ( m ~ ) = m ~ , ( 9 = l , c o ~  = a , ,  (35a)  

, V (m ,  ) = m~,(~= l,og , = a,  (3.5b) 

The data comprise the ordered pairs of numbers of deaths and central exposures (a,, r~) 
over a range of  ages x All of the r,s are non-zero by ~mphcat~on, but ~t is conceivable 
that certain of  the a,s are zero. This ms most likely to occur at the extremities of the age 
range were the data are sometimes sparse Note that whde such data cells are retained 
in any analysis of  the data based on distributional assumptions (3.4a & b), they are 
weighted out of  any analysis based on &stnbutlonal assumptions (3.5a & b) 

3 . 2  D i s c u s s i o n  

The optlmlsat lon of expression (3 3) under the former mterpretatlon (based on the 
Polsson &stribution) ~s central to the current graduation practice of  the Continuous 
Mortahty lnvesttgatlon (CMI) Bureau in the UK, e g. Forfar et al (1988), while the 
opt~misat~on of  expression (3.3) under the alternative interpretation (based on the 
gamma distribution) would appear  not to have been investigated previously in an 
actuanal graduation setting. 

It is possible to derive the first set of assumptions, m which the number of  actual 
deaths A, form the response variables, by taking expectations and variances under the 
~dent~ty 

A ,  = Z / , ,  
t=l 

where l,, Is the zero-one indicator random variable, introduced previously, in Section 
3.1. It has the property 

E(I~,) = E(I~,) = P ( I .  = 1) = 1 - e x p -  J~+~ds 
0 
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and is assumed to be independent for all individuals t. The results then follow under 
the assumptmn that/.t~ is plecewlse constant within cells, so that 

E(I~,) = (E(I~,)= 1 - exp(-ll ,+l/2w~,),  (36)  

and on neglecting second and higher order therms in the power series expansion of  
exp ( - u  r+l / 2 w 3, ), so that 

Var(l~,) = E(I~,) = I.t,+j/2w . .  

Under the second set of assumptions, for which the responses satisfy 
,1 t 

gx =~W., 
t=l 

the individual exposures W. are modelled as random variables. Under the addmonal 
assumption that the individual exposures are independent and identically distributed, it 
follows trivially from the reproductive property of  the gamma distribution that they 
have the gamma distribution 

W,, - gam(a~,p~+l /2  ) 
g/x 

Again based on the reproductive property of the gamma distnbuuon, note that it is also 
possible to construct the identical GLM by defining 

tl  a LI t  

R,=ZW,,=Zr,, 
i=l j= l  

m which the T~js are assumed to be independent and identically distrthuted gamma 
random vmables,  such that 

T~s ~ gam(l,/J,+l/2), 

and where at least one death is recorded m every cell Here it is possible to interpret T,j 
as the sum of randomly selected censored exposures W,, the last of which is associated 
with a death 

The target of the graduation process is the force ofmortahty 13~ under d~stnbutlon 
assumptions (3.4a & b) and the force of vltahty 1//.t, under distribution assumptions 
(3.4a & b). In using the latter description, we follow the terminology of  Lambert 
(1772) see, e g Daw (1980) 

The value of  the scaled deviance, (expression 2.3, with u- :  x)  is identical tinder 
both sets of modelling assumptions (3 4a & b) and (3.5a & b) and is equal to 

S(c ' f )= Z 2 { a '  t rdJ~+'/2 ^a~ ( a r _ r , ~ , + , / 2 ) }  (37) 

where /~, denotes the graduated values of/.1, provided deaths are recorded for all ages 

0 e. a, > 0 V x)  so that none of  the terms are weighted out of the expression on the 

right hand side (RHS) of equation (37)  under the dual modelling assumptions (3.5a & 
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b) This is perhaps a surpns,ng result on the surface It reflects the fact that the same 
objective function, expression (3 3), which Is embedded m the construction of  the 
scaled devmnce as the quasi log-likehhood function, (expression 2 2, with u = x)  is 
optimlsed when fitting the model structure (or graduation formula). 

Subject to the weighting out of  any data cells containing zero a,s in the one case, 
the two sets of  distribution assumptions lead to identical graduat,ons for/.t, Thus, 
assumption (3 4a) with responses {a, } in combination w,th log-link based graduation 
formulae of  the type 

P 

log//,+l/2 = E h v f l j  (3 8) 
3=0 

so that 
p 

logm~ = q, = logr, + log/a,+l/2 = Iogr, + E h v f l j ,  
./=0 

gives ,dentical graduations to those obtained under assumption (3 5b) with responses 
{ r, }sothat  

P 

logm~ = r/, = loga~ -Iog/ . t ,+l /2 = loga.~ + E/lv,/3j.  
j = 0  

Typically the parameterlsed structure of  the RHS of the graduation equation (3.8) is a 
polynomial in x with either the log r, or log at terms declared as offsets, as the case 
may be The estimated values of  the parameters flj are identical in magn,tude but op- 
posite in sign in the two cases Similarly assumption (3.4b) with responses {a/r ,  } m 
combination w~th the power link graduation formulae of the type 

P 
7 

] " / t + l / 2  = Ehvflj 
j = 0  

gives identical graduations to tho~e obtained under assumption (3 5b) with responses 
{ r / a  x } so that 

P 
- 7  

~ + 1 / 2  = Zhu~j 
j=O 

This ume the esumated values of  the parameters flj are identical m both magnitude and 
sign in the two cases. Thus the general conclusions of this paper extend to non-hnear 
parametensed graduauon formulae via the identity link under the 'convenuonal '  ap- 
proach and the reciprocal link under the dual approach. 

Let e, = q/.t~+j/2 denote the expected number of  deaths predicted at age x, under 
the conventional graduation methodology encapsulated by equations (3.4a &b). and 
define the statistics 
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dev, 
dev~ =a' -er'4~/~-=~f~-'Lr= ~ -' looC"'e., (3.9) 

It is common practice for these to be tabulated (subject to possible cell grouping in the 
tails of  the age range) as part of the diagnosuc checking procedure of  a graduation• 
Note in particular that the staustlc z, ~s the Pearson residual of  the corresponding 
GLM, (expression 2.3, with u-= x). Thus typically the value of the approximate chl- 

square statistic E z~ is quoted as one of  the many test statistics of  a graduation. The 

equivalent staustlcs under the dual graduation methodology encapsulated by equations 
(3.5a or b) revolving definition ,~ = a~ /P ,+ l /2  or expected exposure predicted at age 

x, are 

r, i d v, = _ , = ._2_,~, =--7--- ,  100 r~- (3 10) 

Again note that these statistics are defined in such a way that z,a denotes the Pearson 
residual of the associated GLM (3.5a or b). The relationship between the values of the 
deviation tinder the dual and 'convenuonal '  graduation methodologies, namely 

-d~v ~ 
d~v~ - Jd~+l/2 

~mplies that the res|duals under the two methodologies have opposite signs. Although 
only strictly exact provided all the a,s are positive, this relationship provides a very 
close approximation when the a,s take zero values at the extremmes of the age range 
concerned. Detaded examination of  the respective formulae defimng the Pearson resi- 
duals z, and ~,, reveals that they differ m magnitude (and have opposite signs) On the 
other hand, because of the equality of the deviance components under the two metho- 
dologies established above, the deviance residuals defined by either 

as the case may be, where d, ~s the general term in the summauon on the RHS of ex- 
preqsion (3 7), are identical in magnitude (and opposite m sign) under the dual metho- 
dologies. It is also of interest to note that the final statistics quoted in expressions (3 9) 
and (3 10), corresponding to the respective dual modelhng scenarios, are the recipro- 
cals of one another prior to scaling by 100 Again both of  these features are exact 
when all the a,s are posiuve and represent a very close approxlmauon when any of  the 
a~s are zero at the extremmes of the age range 
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4 P O L I C Y  C O U N T S  W I T H  D U P L I C A T E S :  C L A I M  N U M B E R  R E S P O N S E  M O D E L S  

4.1 Preliminaries 
The data used in the construction of actuarial life tables are generally based on pohcy 
rather than head counts Consequently, the death of  a pohcyholder  with more than one 
pohcy will appear as more than one death m the raw data The resulting graduatmn 
needs to account for this overd~spersmn, for a review of  the issues Involved, readers 
should consult Forfar et al. (I 988) and Renshaw (1992). 

Let 

D ,  = the number of  policies held by pohcyholder  i, age x 
C~, = the number of policies held by pohcyholder  t, age x, resulting m a claim. 

Assume that the random variables D,, are a.i.d V i and let D, denote the generic type. 
For each i, the events (C,, = k I I,, = 1) and (D,, = k) are such that 

(C, ,=k[l , ,= 1) ¢:, (D,,=k),  k =  I, 2, 3, .. 

and thus have identtcal probabdities. Define 

P( O~ = k )= P(C,, = k l I~, = l)= {~ ('k) 

where 

Denote 

and 

Ck~ _> 0 ,~ . .  Jr~ *~ I 
k=l 

E(D~) = E(c~, f / . ,  = 1) = ~ , J r ~  *~ =, u ,  

~=1 

k =1 ,2 ,3  .... 

otherwise 

E( D~ ) = E( C~ [I,, = 1)= ~ k2,rt "~a~ ~ = 2 ~  • 

It also follows by definition that 

so that 

P(C~, = O I I ,  = 0 ) = 1  

E(C, ,  I 1 .  = 0) = E(C~. t 1,, = 0) = 0 

Hence the uncondittonal distribution of  C ,  Is given by 

j l  - E(/xl ), k = 0 

P(C,, = k) = [ E ( l a , ) ~ l  ' k = 1,2,3, 
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for which 

E(C,,)=llrrE(lu),  E(C~,)=2:n'~ E(/ , , )  

These equations, in combination with expression (3 6) for E(I~,), on neglecting second 
and higher order terms in the power series expansion of  exp(-/-t~+~ a w,), imply that 

E(Cu ) = i.R',[da+l/2Wrt and Var (C, )  = 2./~t/./,+l/21wu. (4.1) 

We also have an interest in the first two moments of  the product random variable 
Dr, Ix, Under the mild assumption that the number of  policies, D~,, held by pohcyhol- 
der t. aged x, is statistically independent of the mode of censorship, I,,, It follows that 

E(D, It, ) = E(D,, )E(I ,  ), Var(D,,/, ,  ) = E(D~, )E(I~, ) - { E(D~, )E(I ,  )}2 

These equations in combination with expressions (3 6), on neglecting second and 
higher order terms in the power series expansion of exp(-,Ux+m w,), then mlply that 

E(D~,I~,) =l ~,,u ~+I/2w,, and Var(D, , / , , )=  2zGIJ,+l:zw~, (4.2) 

4.2 Distribution Assumptions 

Let 

A~ = the number of policies giving rise to a clmm through deaths 
r~ = the cental exposure to the risk of death based on pohcies. 

' Z  Note that r, = d,,w.,, 
t= l  

where d,, (_> I) denotes the number of  policies held by policyholder i, reducing to q if 
and only if d,, = 1 V i. Throughout this Section the A~s are modelled as random van- 
ables condmonal on q'. It follows on taking expectations and variances under any one 
of  the following identities 

A~ = Z D , ,  (with A, > 0),A[ = Z C a , , A :  = Z D , ,  1. (43) 
t=[ I=] I=l  

that the detail of  the distributional requirements to set up the appropriate GLM 
(equation (2.1), with tt ~ x)  is either 

responses {A;}, with m, = r~tJ,+l/z, U(m,) = m x, ~ = 1, o) x = ~b~ l , (4 4a) 

or equivalently 

responses {A; / r'}, with m~ = Ya+l/2, g ( m r )  = t t / , ,  (~ = I, 09~ = r ~  l ,  (4 4b) 

where ~.~ = 2/r~ 
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4.3 D i s c u s s i o n  

The result (4.4a) follows from the first of  the |dentines (4.3) which, under the assump- 
tion that A~ IS independent of  the {D~, } imphes, in combination with equations (3.4a) 

E(A~) = E(D~ )E(A~ ) =j :rr,r~,tl~+j/2 

and 

Var(A~) = Var(D,)E(A~)+{E(D,)}2Var(A~)-  E(D~) E(A~)= 21r' E(A~) 
E(D~ ) i trx 

Under the independence of  the terms in the respective summations, the same result 
follows trivially from either the second of  the identlues (4.3) m combination with 
equations (4 I), or the third of  the identmes (4.3) in combination with equations (4.2). 
In all three cases, the product term ~zr, r, In the expression for E(A~) involving the 
unobserved central exposure based on lives has been replaced by r~, the observed 
central exposure based on policies The result (4.4b) follows trivially from result 
(4 4a) 

The justification for (4.4a) based on the second of the identities (4.3) and equations 
(4.1) is a generahsation of the method described in Renshaw (1992) for initial exposu- 
res and the binomial response model. This work establishes a link with much earher 
work on the modelling of  duplicate policies using an empirical approach, e.g. Beard & 
Perks (1949). 

A knowledge of the reciprocals of the overdlspers~on parameters 9, is needed to 
form the weights, if the distributional assumptions (4 4) are to be fully implemented 
Insight into the potential variation of q~, with x is provided by studies of  the propert,es 
of  so-called var,ance ratios, the empirical equivalent of 0,, e.g Forfar et al. (1988). 
These are defined as 

' ~  2 r ( l )  
t Ja 

vr, = ~ tf~,) 

I 

where f~') denotes the proportion, at age x, of policyholders who have l policies and 

where 

f~" _> O V i = l,2,3, . , ~ tf~') = l ~ vr, _> l 
I 

There are a number of  alternative practical posslbflmes When available, varmnce 
rauos can be used as esumates for the dispersion parameters ¢, and graduation can 
proceed m accordance with assumptions (4 4) On the other hand, Forfar et al. (1988) 
acting for the CMI Bureau in the UK, elect to transform the data by dlvldmg both the 
policy counts a~ and exposures r,' by the matching variance ratios prior to graduation 
with assumptions (3 4) &splaclng assumptions (4 4) When a detaded knowledge of 
the relevant variance ratios is not available for analysis a possible method of genera- 
tmg estimates for the dispersion parameters is described m Renshaw (1992). Alterna- 
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tlvely, under the assumption that the underlying modelhng distribution of  the number 
of  duplicate pohcles is identical across all ages x in the absence of  any further detailed 
knowledge about this distribution, the dispersion parameters q~ may be replaced by a 
constant scale (or dispersion) parameter 0 in assumpnons (4 4), e.g. Renshaw (1992) 
It IS estimated as 

~ =  unscaled deviance 

degrees - of  - freedom 

and is root # used to scale the Pearson residuals z, of expressions (3 9) or ~ of  

expressions (3 10), by muluplymg either V, or V, by ~ ,  as the case may be. Here the 

unscaled deviance is calculated using the expression on the RHS of equation (3.7). 
(Recall that 4~ was set to one when deriving this expression, so that the scaled deviance 
S (c ,~  is also the unscaled deviance m this instance.) This latter approach is closest in 
spirit to that adopted by Forfar et al. (1988) revolving the transformauon of  the data 
prior to graduation m-so-far as it produces identical graduations, while al lowing the 
presence of duplicate policies to impact solely on the second moment properties of the 
graduation process 

5. POLICY COUNTS WITH DUPLICATES: EXPOSURE RESPONSE MODELS 

5.1 Preliminaries 

As before, let 

Dr, = the number of policies held by policyholder i, age x 
W,, = the contribution to the exposure by policyholder t, age x 

Recall that D,, Dr, are assumed to be 1.1 d. V t with 

E( D~ ) =l 7r ~ , E( D~ ) =2 7c,. 

Recall also the duahty property of Section 3 2, namely that the central exposure to risk 
of death based on head counts, at age x 

n 

R~ = Z W~, ~ gam(a, , l l ,+l l2  ), 
t=l 

so that 

a, E "R2"t , )  a ~ ( l + a ~ )  E(R~)=- 
] " /~+l /2  ] ' /¢+112 
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Consider the identity 

R: (5.1) 
t= l  

which defines the central exposure to risk of death based on pohcy counts, at age x 
Assuming that the number of  pohcles held by an indw~dual pohcyholder is indepen- 
dent of the corresponding contribution to the exposure to nsk from that individual and 
that the indlvtdual exposures are independent, ~t follows fiom the identity (5 1) that 

t t  t 

E( R~ ) = E( D, ) Z  E( W,, ) = E(O, ) E( R, ) - 17r, a~ (5.2) 
s=l J"/~+1/2 

and 
n 

2 "~ E(R[ 2) = E(D~ )E( Z W,,)" = E(D~)E(R~) = z ;,r ~a,9 (1 + a , )  
,=j bt~+~/2 

after slmphficatJon. 

(53)  

5.2 Distribution Assumptions  

Let 

R~ = the central exposure to the risk of  death based on pohc~es 
a~ = the number of  policies gwmg rise to a claim through deaths 

Throughout this section the R~ s are modelled as random variables condmonal on a'~. 

It follows from equations (5.1), (5.2) and (5.3) that the detail of  the distributional 
requirements to set up the appropriate GLM (equauon (2 1), with tt - x)  is either 

1 
responses {R[}, with m, = a ~ - - , V ( m ~ ) = m ~ , ¢ = l ,  co, =l/t~ I, (54a)  

] ' / t + l / 2  

or eqmvalently 

• -- m ~esp.mses {R~/a,  }, with m, 

where this time 

/"/~ +1 / 2 

, V ( m , )  = m~, ¢ = I. 09, = I/t~ I, (5.4b) 

(_Z_+ / ~zr~ ] 
Ip,, = - 1  + -  (55)  
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5 .3  Discussion 

In parallel with the previous case, this time the product term ,~a~ in the expression for 
E ( R ~ )  revolving the unobserved number of  deaths a, based on head counts has been 
replaced by a~, the observed number of deaths base on policy counts. Again result 
(5 4b) follows trivially from result (5 4a) 

A knowledge of  the reciprocals of the dispersion parameters V, is required to form 
the weights if the distribuuon assumptions (5.4a or b) are to be fully implemented In 
the event that the results of  a study into the variance ratios for the pohcles m question 
are available, this will furnish estamates for the first two moments ,lr, and 2rr, of  the 
number of  duphcate policies so that modelling can proceed. Alternatively if It IS assu- 
med that the square of the coefficient of  variation of  the number of duplicate policies 
held by an ind~vtdual is sufficiently small so as to make the first term on the RHS of 
expression (5.5) for V~ is negligible in comparison with the second term, 

1 
~ = ~, "-7 

C/a 

and the situation is analogous to that discussed in Section 4.3. 

6. ILLUSTRATION 

The dual methodologies are illustrated using the Pensioners' widows 1979-1982 expe- 
rience reported in Table 15.5 of  Forfar et al  (1988). The data (a, ,  r ,) ,  comprising the 
numbers of deaths a~ and matching central exposures r,, are reported in the age range 
17 to 108 years inclusive. There are 2 + 5 = 7 completely empty cells m the extremi- 
ues of the age range and 28 + 12 = 40 cells contain no reported deaths The detail of  
the graduation contained in the above Table is based on Gompertz 's  formula fitted by 
the 'conventional '  approach, in which the numbers of  deaths are modelled as Polsson 
random variables The data have been regraduated using both the 'conventional '  ap- 
proach based on assumptions (3.4a) with predlctor-hnk formulauon 

+ ~ ( x - 7 0 " ~  
log , , , ,  -- l o g  ,-, + log -- log + n0 ( - g - 6 - ) '  

and the dual approach based on assumptions (3 5a) with equivalent predictor-link 
formulauon 

^ ( x - 7 0 " ~  
log m, = log a, - log/a,+./2 = log a, + ]30 +/J, ( ~ ) ,  

where  m~ denotes  the respective inean responses The associated gl'aduatton formula, 
imphed by these forrnulae, is taken frown Forfar et a l  (1988). Some details of  the res- 
pective fits including the parameter estimates are recorded in Table 6.1 The corres- 
ponding parameter estmaates have opposite signs as expected, but differ slightly m 
absolute value because the data entries revolving zero deaths feature only m the 
'conventional '  analysis Sn'nilarly the corresponding values of both the deviances and 
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the degrees-of-f reedom differ for the same reason. These differences are found to 
disappear when the ' convent lonar  analysis is apphed to the reduced da{a set and tden- 
tical graduauons result as a consequence (subject to very minor differences induced by 
the numerical fitting algori thm operating under the two different approaches ) An 
extract of  both graduattons based on the detail of  Table 6 1 ts reproduced m Table 
6 2(a&b), along wtth detatl of the assocmted staustlcs of expressions (3 9) and (3. I 0), 
as the case may be The detail of Table 6.2a ts m complete agreement wtth that to be 
found m Table 15.5 of Forfar et a! (1988), whtle the relattvely mmor effects of the 
excluded data under the dual modelhng approach are demonstrated. The basic diffe- 
rences in the accompanying ~tattsUcs used to monitor the effectiveness of a graduation 
under the two different approaches, as described m Section 3.2, can be venfied 

7 CONCLUSIONS 

The ' convent lonar  actuartal approach to the construcuon of H,-graduattons based on 
the fitting of  a w~de class of parameterlsed mathematical formulae by optlmismg the 

hkehhood,  m which the death counts are modelled as Polsson random vanables con- 

d m o n a l  on the central exposures, ~s effecuvely equtvalent to a dual approach m which 
the central exposures are modelled as gamma random varmbles condlt ional on the 
death counts The dual approaches lead to ldenucal graduations provided deaths are 
recorded m all data ceils, otherwise small differences occur m practice as a conse- 
quence of the loss of mformauon from any data cells m whtch no deaths are recorded 
under the one approach Key dtfferences occur in the dmgnostlc stattsucs of a gradua- 
tion, w~th restduals being accorded oppostte signs under the two different approaches 
In practice, a detailed knowledge of the specific nature of the empwlcal d~stnbuuons 
on duphcate pohc~es has only a mmmaal effect on the first moment of  a graduation 
under the two formulauons descrtbed here In the absence of this knowledge,  these 
first moment properttes may be neglected and a free standing constant scale (or disper- 
sion) parameter mtroduced, under either formulation, to represent the second moment 
properties o f a  graduauon in the presence of  duplicate pohcies. 

The dual approach to/, t ,-graduatlon would appear to have d~stmct advantages over 
the ' convenuonar  approach to graduatton, when it is adapted and apphed to the con- 
struction of select mortahty tables. This is dtscussed further m Renshaw & Haberman 
(1996), who successfully use the dual approach to model the log crude mortality rauos 
for individual select durations relative to the ultmaate experience 
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TABLE 6 1 
PARAMETERS bSTIMATES WITH (STANDARD ERRORS) 

'conventional' approach 

deviance ts 60 98 w~th 83 d f 

scale parameter ~= 1 
^ 

flo = -3 553 (0 03923) 

flo = 4 317 (0 1966) 

dual approach 

deviance is 45 99 with 50 d f 

scale parameter 0= I 
^ 

flo=3 543 (0 03925) 

_ flo = -4 332 (0 1979) 

TABLE 6 2(a) 
GRADUATION EXTRACT, 'CONVFNTIONAL' METHOD 

17 
30 
40 
50 
60 
65 
70 
75 
80 
85 
95 

108 

X G l~x+t/2 a x e~ d e v  x 

0 5 0 00029 0 0 00 0 00 
36 0 0 00091 0 0 03 -0 03 

115 5 0 00215 0 0 25 -0 25 
378 5 0 00509 3 I 93 I 07 

10290 001208  14 1243 I 57 
10290 0 0 1 8 6 0  21 19 14 I 86 
941 0 0 02864 21 26 95 -5 95 
607 0 0 04410 33 26 77 6 23 
323 5 0 06790 25 21 97 3 03 
1325 010455  11 1385 1160 

4 0 0 24790 2 0 99 I 0 I 
2 0  076154  0 I 52 -152  

\FVx zx lOOax/G 

353  0 4 5  1126 
4 37 0 43 109 7 
5 19 -I 14 7 7 9  
5 17 1 20 123 3 
4 69 0 65 113 8 
3 72 -0 77 79 4 

x 

17 
30 
40 
50 
6O 
65 
7O 
75 
80 
85 
95 

108 

TABLE 6.2(b) 
GRADUAT[ON EXTRACT, DUAL METHOD 

ax /-/x + t/2 rx 

0 0 00029 0 5 
0 0 00090 36 0 
0 000215  1150 
3 0 00511 378 5 

14 0 0 1 2 1 6  10290 
21 001876  10290 
21 0 02893 941 0 
33 0 04461 607 0 
25 0 06880 323 5 
II 0 10611 1325 
2 0 25237 4 0 
0 0 77841 2 0 

G d~vx ,jf~ Zx ! OOG/Jx 

5867  -2082  3387  -061 6 4 5  
1151 1 -122 I 3076  - 0 4 0  8 9 4  
11196 -906  2443  -037  91 9 
7 2 5 9  215 I 1584 1 36 1296 
7397  -1327  1288 -I 03 82 I 
363 4 -39 9 72 7 -0 55 89 0 
1037 288  31 3 0 9 2  1278 

7 9 -3 9 5 6 -0 70 50 5 



ON THE BIVARIATE GENERALIZED POISSON DISTRIBUTION 
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Untver,stty "'Ovtdtu,s" Constanta, Romanta 

ABSTRACT 

This paper deals with the blvarlate generahzed Po~sson distribution. The distribution ~s 
fitted to the aggregate amount of claims for a compound class of policies submitted to 
clarets of two kinds whose yearly frequencies are a priori dependent. A comparat ive 
study with the bwarlate Poisson distribution and wtth two bivarlate mixed Po~sson 
distributions has been camed  out, based on dala concerning natural events insurance 

in the USA and third party hability automobde insurance in France 

KEYWORDS 

Btvariate generalized Po~sson dtstribut~on, generahzed Potsson distribution, bwariate 
mfxed Poisson dzstr|butlons 

1. INTRODUCTION 

Whereas  numerous b~vanate discrete dis tr ibut ions are used in the statistic field 
(KOCHERLAKOTA and KOCHERLAKOTA, 1992), only a few of  them, apart from the 

bwarlate  Polsson distribution, have been applied in the insurance field. It ~s worth 
noting the studys by PICARD (1976), LEMAIRE ([985) and PARTRAT (1993) 

In this paper, we discuss the b~vanate generahTed Po~sson distnbutton (BGPD) m 
detad. The dis tnbuuon is derived from the generahzed Po~sson distribution (CONSUL, 
1989; AMBAGASPITIYA and BALAKRISHNAN, 1994) u~mg the tnvarmte reduction me- 
thod. In section 2 we present some properties of the BGPD The method of  moments is 
used m section 3 for estimation of  the parameters We dlustrate the usage of  this me- 
thod through two exarnples m section 4 

2. BIVARIATE GENERALIZED PO[SSON DISTRIBUTION (BGPD) 

2.1 Development of the distribution 

We use the tnvanate  reduction method to construct the d~stribution (KOCHERLAKOTA 
and KOCHERLAKOTA, 1992). Let N~, N2 and N~ be independent generahzed Po,sson 
ASTIN BUI.LI~"rIN Vol 27 No I 1997, pp 23-31 
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random variables (GPD), N, - GPD (~,, 0,), i = I, 2, 3. Let X = N, 
Y = N 2 + N 3 We get the3omt probabdtty functmn (p.f) of (X, Y) as 

mln(r,Q 
P(X=r,Y=s)= Efl(r-k)f2(s-k)f3(k), 

I~=0 

where f,(n) is the p.f. of  the random variable N, 

+ N 3 and 

(2.1) 

Since N - GPD(~, 0), if its p f is given by (CONSUL and SHOUKRI, 1985) 

(.A(2 +"O)"-'exp(-A--nO) for ,,=O,l,2 1 .... 
f(n) = P(N = n) = n w , (2 2) 

0 , otherwise ) 

where ~ > 0, max(-I,  -X/m) _< 0 < 1 and m >_ 4 is the largest positive integer for 
which ~ + 0m > 0 when 0 < 0, from (2 I) we have 

P(X = r,Y = s) = p(r,s) = 212223exp{-(21 + 22 + A3) -  rOj - ~02} 
m,°,r,, (Z, + - k)0, )r- , - ,  , - , - ,  

E (r_k)[(s_k)ik, + ( s -  k)02) (23 + k03) I-' (2 3) 
/~=0 

exp{k(0. +02 - 0 3 )  } , r , s ~  N. 

2.2 Properties of the distribution 

Remark All the formulas that follows for the GPD are taken from AMBAGASPITIYA 
and BALAKRISHNAN (1994) and the general equations for a bldlmenslonal dlstnbunon 
are from KOCHERLAKOTA and KOCHERLAKOTA (1992) 

Probability generating function (pgf) 

The pgf of a random var,able N is defined by H N ( t ) =  E(t N)_ _ and the pgf of the pair 

of random variables (X, Y) , s  I - I  (" ' t2)=E(f i  xt~') 
Let the pgf 's  of  the random variables under conslderanon be H ( t ) ,  i = 1, 2, 3 

Then the joint pgf of  (X, Y) is 

H(tl,t2)=Ht(tl)H2(t2)H3(tlt2). (24)  

For slmphc~ty, we assume the parameters 0, > 0, t = 1, 2, 3 AMBAGASPITIYA and 
BALAKRISHNAN (1994) has expressed the pgf of  the GPD m terms of  Lambert 's  W 
function when 0 > 0, as follows 

~ u  ( t )=  exp{-~-[W(-Ozexp(-O))+O]}, (2.5) 
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where the Lambert's W functmn is defined as W(x) exp(W(x)) = x. For more detads 
about thas function see CORLESS et al. (1994) 

From (2 4) and (2 5), the pgf of (X, Y) is 

I"I (t,, t2) = exp{-0- ~- W(-Oit, exp(-01))-0~-W(-O2t2 exp(-02 ) ) -  

(2.6) 
23 
03 W(-O3qt~. "exp(-03)) -  2 t  

with k = k, + ~ + k3- 

Moment  generating function (mgf) 

If the mgf of N, as M, (t), ~ = 1,2, 3 then the mgf of (X, Y) as 

M(q, t  2) = Mt(tl)M2(t2)M3( h +t2) (2.7) 

The mgf of the GPD, when 0 > 0, is gwen by 

Using (2.8) In (2.7) we get 

M(t , . t2)= exp{-0-~-W(-0 , exp(-0, + t l ) ) - ~ z z W ( - O 2 e x p ( - O  2 +t  2 ) ) -  

(2 9) 

~3 W(_O 3 e x p ( _ O  3 + tl + t2 )) _ }L l 
03 J 

Moments  

The expressmns for the first four central moments of the GPD are as follows 

E( N) = I.t~ = 234 

V(N) = P2 = ~tM3 

u 3 = )t(3M - 2)M 4 (2 10) 

P4 = 3Z2M6 + Z(I 5M 2 - 20M + 6)M 5, where M = (1 - O) - I  

Since X = N t + N 3 and N~, N 3 independent, we have E(X) = E(Nt) + E ( N 3 )  and 
V(X) : V(N,) + V(N3) , so that 

E(X) = ,~iMi + ,~.~M 3 ] 

V(X) = £iM~ + ~3M~ [ 
(2.1 1) 

E(Y) = A2M 2 + A 3 M  3 [ 
I 

V(Y) = ~ M ~  + ~3M3 3 J 
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r_ _ _  _ 1  
Let = EI(X-~x)r(Y-~Js I be the (r, s) 'h central moment of  (X, Y). The 

equation for p, ,  gwen /,t~ ') the k 'h central moment of N,, t = I, 2, 3, ~s 

~lr, ~ = tdl lttj  l - t r + s - i - )  
t = 0  j = 0 \  / 

Hence 

t211 =/~3M33 } 

1"12, I't12=23(3M3-2)M~ (2.12) 

This is enough to apply the method of  moments. 

Recurrence relations 

The terms m the first row and column can be computed using the umvarmte generah- 
zed Polsson distribution, as is seen from 

p(O,O) : exp{-A} 

p(0. 0 = it2(& + s 0 2 ;  -~ s! exp{-Z-aO2}=f(s'Z2'O2)exp{-(~' + z3)}' s > 0  

P(r,O) = 2'(A' +rOl)r-' exp{-Z-rSl}= f(r;2.1,Ol)exp{-(~'2 +'~'3)}, r > 0  
r I 

Gwen the probabdiues m the first row and column, the probabilities for r >_ 1, s _> 1 
can be computed recurswely as 

m m l r , s }  , 

P(r's)= 'a'3 exp{*} t_~o ~ p(r-k'O)p(O's-k)(a3 + ko3)k-' exp{-k03} 

Independence 

Using (2 12) we have cov(X,Y) = AaM ~, hence 

~3M33 
' 2  

Since ~-3 >- 0 andM~ > 0, it follows that for this model px.r_> O. This shows that the 
condition of zero correlatmn ~s a necessary and sufficmnt condmon for the indepen- 
dence of the random variables X and Y 
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Marginal distributions 

The marginal distributions are. 

IOi )t-I  ( ~  3 + ( r - i ) 0 3 )  r-t-I r + 
P(X= r ) =  ~,Z 3 exp{-(2  1 + X3)- r03}  Z 

,=0 i l(r-t)!  

exp{ - J (0 , -03 )  } 

s 

P(Y= s )=  ~ Z  3 e x p { - ( ~  + Z 3 ) - s 0 3 } ~ .  ' ( ~  + '02)'-'(X3 +(s- t )O3f- ' - '  
,=0 zV(s-0! 

e x p { - / ( 0 2 -  03)}. 

In pamcular, if 0 t = 0 2 = 0 3 = O, this reduces to X ~ GP(Aq +.~j, O) and Y 
GP(~ + A 3, 0). 

3 E S T I M A T I O N  OF T H E  P A R A M E T E R S :  M E T H O D  OF M O M E N T S  

Let (x, y,), i = 1, 2 . . . .  n be a random sample of size n from the population. We will 
assume that the frequency of the pair (r, s) ~s n,~ for r = 0, l, 2, . , s = 0, 1, 2, . . We 
recall that Znr~ = n. Also 

r.5 

I ' ~  ~ Z  r ~ 2 x = ~ . Z ( r _ 2 2 ) 2 n r  + 
= 71 Xt = llr+ ' 

= // r=0 r=0 

l "  l y ,  1 
I1 t=l . = n ~=0 

n 

I J i i = ~ Z ( x , - 2 ) ( Y , - Y ) = ~ Z r  s nrs-X Y 
t= l  r , ~ = 0  

f l 21=~l~a(3 . ' , - - . - f ) 2 (Y , -Y )=! l  Z ( r - . ~ ) 2 ( s - y ) n r s  
t=[  r,s=O 

(3.1) 

The classical method of moments consists of equating the sample moments to their 
populanons eqmvalents, expressed m terms of the parameters The number of mo- 
ments requwed is six, equal to the number of  parameters. Using (3 I), (2.1 I) and 
(2 12) we have 



28 RALUCA VERNIC 

.~" = &iMj +2,3M 3 ] 

"Y= 2~-M2 +23M3 / 

A, = ~3M~ / 

where a = ~21 
/SIJ 

We use the fact that 0 < 1, so M = 

I=  1,2,3. 

I 
1 - 0  

M~- I + ,# ; -~  
3 

- M# 

M, =#~x-A, 
/.,3 M3 

- A3M 3 
Mi 

M2 
"~/y -- ~,3M3 

- Y - 23M 3 

M2 

,, (3.2) 

> 0, when chosen the solution for M,, 

4. NUMERICAL EXAMPLES 

Example 1: The North atlantic coastal states m the USA (from Texas to Maine) can 
be affected by tropical cyclones. We divided these states into three geographical 
zones:  

Zone 1. Texas, LoUlslane, The MlsSmslpl, Alabama; 
Zone 2: Florida; 
Zone 3: Other states 

We were interested m studying the joint distribution of the pair (X, Y), where X and 
Y are the yearly frequency of humcanes affecting respecuvely zone 1 and zone 3. To 
do that we used the data m table 1, first row m each cell, giving the realizations of 
(X, Y) observed during the 93 years from 1899 to 1991 (PARTRAT, 1993) 

For these data we compute 

2 = 0 7 4 1 9 4 ,  o'~,=0.62158, ~ = 0 0 2 5 3 2 ,  

.~=0.47312, ~ = 0 5 2 8 8 5 ,  p2j=0.128341. 

Under the hypothesis (X, Y) blvarlate Polsson &strlbuted P2(~t,A2, I.t), we have 

from PARTRAT (1993), method of maxmmm Iikehhood, the m le  '~1=0.71876, 
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: 0.44994, /~ = 0.02317. The theoretical frequencies for P2[~.,,~2,1])'' are given ,n 

table 1, middle row m each cell 

TABLE 1 

COMPARISON o r  OBSERVED AND THEORETICAL YEARLY FREQUENCIES OF HURRICANES 

( 1899-1991 ) HAVING AFFEC'I ED ZONE I AND ZONE 3 

Z o n e  3 
Zone I 0 I 2 3 5" 

27 9 3 2 41 
28 24 1271 2 86 0 4 8  44 29 
26 29 1 I 26 2 84 0 65 41 04 

24 13 1 0 38 
20 30 9 79 2 35 0 42 32 86 
23 81 10 29 2 62 0 61 37 33 

8 2 I 0 II 
7 29 3 75 0 9 6  0 19 12 19 
7 90 3 47 0 92 0 20 12 49 

I 0 2 0 3 
2 12 I 16 0 3 2  0 0 6  3 6 6  
I 24 0 5 6  0 2 8  0 0 6  2 14 

60 
32 57 95 

59 24 

first row . observed frequency 

middle row : theoretical frequency 
last row . theoretical frequency 

24 7 2 
2741 6 4 9  I 15 
25 58 6 66 1 52 

for P2 
for BGPD 

93 

The Z 2 goodness-of-f i t  test, after grouping in 7 categories (0, 0), (0, 1), (0, 2 and 

above),  ( I ,  0), (1, 1), (2, 0), (other cases) to fulfill the Cochran cnterxum, lead us to 

Zobs2 = E(obs-th) 2/th = 5 96 and a s igni f icance  value & ver i fy ing  0 20 _< ~ _< 

0 54. 

We consider  now the case of  (X, Y) BGPD-d l s tnbu ted  Then  from the method of  
moments  we have 

,a, = 0 8 1 2 5 7 ,  01 = - 0 . 1 0 8 6 8  

A 2 = 0.44555, 02 = 0.03995 

k. 3 = 0 00538, 03 = 0.40306 

The theoretical frequencies  in this case are given in table 1, last row in each cell, 

and Zo2~ = 2.66 for the same categories: 0 < & < 0.85. 
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Example 2: Automobde third party liability insurance. 
The claims experience of  a large automobile portfoho in France including 181038 
liabdxty pohcles was observed during the year 1989. The corresponding yearly claim 
frequencies, collected m table 2 (first row in each cell), have been divided into mate- 
hal damage only (type I) and bo&ly Injury (type 2) claims We obtain 

2=0 .05100 ,  ~ = 0 . 0 5 3 8 8 ,  /~1=0.00019,  

y = 0 00553, d-2r = 0.00552, /~2L = 0.00023. 

Type 2 
Type 1 

4 
and above 

TABLE 2 

COMPARISON OF OBSERVED AND THEORETICAl.. Y~RLY ~EQU~CIES  

0 1 

171345 918 2 
171348 7 897 I 4 7 
171348 7 897 5 4 6 
171351 30 923 08 002  

8273 73 
8275 5 86 3 
8279 5 84 9 
8248 39 71 01 

389 5 
398 2 6 2 
391 5 70  
41541 352 

31 I 
191 0 4  
21 3 0 6  
22 18 0 19 

1 0 
10 OI 
14 OI 
1 32 001  

180039 997 
180042 5 9901 
180042 4 9901 
180038 60 997 81 

_ L  _ 

first row observed frequency 
second row • theorencal frequency for P - G  2 

thxrd row : theoretical frequency for P-IG2 
last row . theorencal frequency for BGPD 

2 and above 

172265 O0 
172250 50 
172250 80 
172274 40 

0 8346 00 
0 7 8362 50 
0 8 8365 20 
0 14 8319 54 

0 394 00 
0 404 40 
0 I 398 60 
1 37 420 30 

0 32 00 
0 19 50 
0 21 90 
0 06 22 43 

0 I O0 
0 110 
0 I 50 
0 1 33 

2 
54  
5 5 181038.00 
159 
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For the companmve study we have, from PARTRAT (1993) 

I _-0,0 401 
• Bivariate Poisson Gamma P-G2 (a," r, 13) the re.I.e. J? = 1.00772 ~. 

75693j 

The theorettcal frequencies are provided in table 2, second row m each cell. 

[3 = 0  10840] 

• B'var ia tePo ' s son lnverseGaussmnP- lG2(a . l  1, T) theml .e .  J/~=005101~. 
| / 

= 0 05155j 

The theoretical frequencies are provided in table 2, third row 

Under the hypothesis (X, Y) BGPD, we have, using (3 1) 

I ~  =004945 '  t~1=002701 1 | 

^ 0.00537, 02 - 0  00266~, the theoreucal frequenctes are given in table 2, last 

L~3 0.00016, 03 0.04976 J 

r o w  

The Z 2 goodness-of-fit test Is applied on the 9 following categories: (0, 0), (0, 1), 

(0, 2 and above); (I, 0), ( I, I and above): (2, 0); (3, 0); (4 and above, 0); (other cases) 
For this grouping we obtain 

• In the P-G2 case Z,~b, = 11.94 and a sigmficance value 0.03 _< & _< 0 15; 

• In the P-I  G 2 case. Z~b~ = 8.8 and a slgmficance value 0.12 <_ & _< 0.36 

In the BGPD case we used 7 categories (0, 0), (0, 1), (1, 0); (1, 1), (2, 0), (3, 0); 
(other cases), and we have ZoO, = 6 36 wzth a significance value 0 00 _< ~ _< 0.4. 
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ALLOWANCE FOR COST OF CLAIMS IN 
BONUS-MALUS SYSTEMS 

JEAN PINQUET ~ 

THEMA, Umversl O, Parts X, 92001 Nanterre, France 

A B S T R A C T  

The objective of this paper is to make allowance for cost of claims in experience ra- 
ting. We design here a bonus-malus system for the pure premium of insurance con- 
tracts, from a rating based on their individual characteristics Empmcal results are 
presented, that are drawn from a French data base of automobde insurance contracts. 

K E Y W O R D S  

Bayesian and heterogeneous models Number and cost residuals. Bonus-malus for 
frequency of claims, average cost per claim, and pure premmm, 

I N T R O D U C T I O N  

Bayesian models lead to a postenon ratemakmg of insurance contracts (Buhlmann 
(I 967)) Suppose that the number of claims follows a Polsson dlsmbutlon. A bonus- 
malus system for the frequency of claims is obtained if we consider that the parameter 
follows a gamma distrzbuuon (see Lemalre (1985, 1995)) This model may include a 
ratemakmg of policyholders on an mdwidual basis, the parameter of the Polsson dis- 
tributlon depending then on rating factors (see D)onne et al (1989, 1992)). 

The allowance for severity of claims m experience rating can be achieved by consl- 
denng the dichotomy between claims with material damage only, and claims including 
bodily injury (see Lemaire (1995)) In this model, the number of claims that caused 
bodily inJury follows a binomial distribution, the parameter of which follows a beta 
distribution. 

In this paper, the severity of claims will be taken into account by using their cost. 
The analysis of cost of clanns makes clearly appear a positive correlation between the 
average cost per clam1 and the frequency risk (see Renshaw (1994), Pmquet et al 
(1992)) An a priori ratemakmg will therefore be influenced by the allowance for 
costs Concerning the third party liability guaranty, it can be noted that. 
• The settlement of claims with material damage is pertbrmed partly through fixed 

amount compensations from an insurance company to the third party 

Thanks to Georges  Dionne for motlvam~g this work,  as well a~ Chr~stran Gour16roux, Eric Renshaw and 
two anonymous  referees for comments  This  research received financial ~upport from the F6d6railon 
Fran~al~e des Socl6t6~ d 'A, , surance  

AS'FIN BULLETIN Vol 27, No I, 1997, pp 33-57 
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• The amount of  compensatzons related to clanms including boddy injury depends on 
the socml posntion of the vnctzm 
Hence, it ~s difficult to explain the cost of these claims by the rating factors, and we 

shall mvestngate the damage guaranty m the empnncal part of the paper 
Allowing for cost of  clanms m bonus-malus systems can be achieved m the follo- 

wing way. starting from a rating model based on the analysis of number and cost of  

claims, two heterogeneity components are added They represent unobserved factors, 
that are relevant for the explanation of  the severity variables Later on, we shall rel~r 
to any variable explained by a rating model (nuraber, cost of  claun, total cost of  
claims, and so on) as a "seventy variable". These unobserved factors are, for instance, 
annual mileage for number distributions, and speed (and the dr iver ' s  behavlour m 
general) for number and cost distributions. A bonus-malus coefficient can be related to 
the credibility estimation of a heterogeneity component 

In this paper, costs of claims are supposed to follow gamma or log-normal distribu- 
tions The rating factors, as well as the heterogeneity component,  are included m the 
scale parameter of  the distribution Considering that the heterogeneity component also 
follows a gamma or log-normal distribution, a crednbnlnty expressnon us obtained, 
which provides a predictor of the average cost per claim for the following period. For 
instance, a cost-bonus will appear after the first claxm if nts cost ns inferior to the esti- 
mation made by the rating model 

Experience rating with a bayesian model ns possible only zf there Js enough hetero- 
geneity in the data For instance, m the negatzve binomial model without covarlates, 
the estimated variance of  the heterogeneity component xs equal to zero if the variance 
of  the number of  claims us inferior to their mean (see Pmquet et al (1992)) In that 
case, a priori and a posteriorl tariff structures are the same, and the bayesian model 
fads. 

A sufficient condltson for the existence of  a bonus-malus system derived from a 
bayesian model is provided in section 2 3 The existence is equivalent to an overd~s- 
persaon of residuals related to the severity varmble. Thas approach allows one to test 
for the presence of a h~dden Information. that is relevant for the explanatnon of the 
seventy varmbles. 

The heterogeneity on dzstribut~ons for seventy variables, that ~s not explained by 
the rating factors, is revealed through experience on policyholders The paper mvestl- 
gates the rate of  this revelation, which ~s found to be lower for average cost per claim 
than for the frequency 

For the sample considered here, the unexplained heterogeneity related to costs ts 
stronger for gamma than for log-normal dnstnbut~ons Besides, the latter family gives a 
better fit to the data. 

If the heterogeneity components on number and cost distributions are independent, 
the bonus-malus coefficient for pure premmm us the product of  the coefficients related 
to frequency and expected cost per claim. But one may think that the behawor of the 
pol icyholder  influences the two heterogeneity components  in a similar way, and so 
that they are posztwely correlated 

Lastly, this paper proposes a bonus-malus system for the pure premium of insu- 
rance contracts, that admits a correlation between the two components Although thc 
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likelihood of  a model based on number and costs of  claims is not analytically tractable 
m the presence of such a correlation, consistent estm~ators for the parameters exist. 
The correlation between the number and cost heterogeneity components appears to be 
very low for the sample investigated here 

1 A PRIORI RATEMAKING 

Let us suppose a sample of pohcyholders indexed by 1, the pohcyholder  t bemg obser- 
ved dunng T, periods The analysis of the correlauon between the number and cost 
heterogeneity components shows the necessity of  considering a non constant number 
of periods for each policyholder. The working sample is presented tn 1 3 

1.1 Frequency of claims 

We write 

N,t~P(•,,),=,. ,L ,A,t = exp(w.  O0 

to represent the Polsson model where n.. the outcome of N., is the number of claims 
reported by the pohcyholder  t in period t The parameter ~,, is a mult lphcatwe function 
of the explanatory variables, the l ine-vector w. represents their values, and c~ is the 
column-vector of the related parameters. 

The f requency-premium (esnmauon  of the expectat ion of N,,) is denoted as 

~,, = exp(w,  t~). and nre% = n, - ~,, ,s the number-residual for the pohcyholder  t 

and period t. The maxmmm hkehhood estimator of a ~s the solutton to the equanon: 

E /trestt wtt = 0, 
t , t  

which is an orthogonahty relation between the explanatory variables and the residuals 
The rating factors have in general a fimte number of levels, and the explanatory varia- 
bles are then indicators of  these levels The preceding equation means that, for every 
sub-sample associated to a given level, the sum of  the frequency premiums is equal to 
the total number of clanns This property means that the preceding model provides the 
multlphcatlve tariff structure that does not mutuahze the frequency-risk. 

One may think of  replacing n,, by to,,, the total cost of  claims (pure premium rate- 
making) m the hkehhood equauon. When applied to the working sample, this non 
probablhstzc model shows that the elasuclty of the pure prenmlm risk with respect to 
the frequency risk is greater than one (see section 1.4.1 ). 

1.2 Models for average cost per claim and pure premium 

1.2.1 Gamma distributions 
Let c,,: be the cost of the j  'h claim reported by the pohcyholder  i in period t (1 <_j_< n,,, 
/f n,, >_ 1). We shall suppose m the paper that the costs are strictly posmve.  This as- 
sumpuon gives another reason to discard the third party hablhty guaranty" owing to 
fixed amount compensations,  a pol icyholder  involved in a claim caused by the third 
party can make his insurance company earn money. 
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Consldenng gamma distributions, we write 

C,,j ~ ~'(d,b,t),b,,  = exp(z,t]3), 

or b,,C,j  ~ T ( d ) .  The coefficzent b,, is a scale parameter, a mul t lphca twe 

function of the covariates, that are represented by the hne-vector z,. 

Let 2,, = d//~,, = d / e x p ( z , t ~ )  be the estmlauon of the average cost for each clama 

reported by the pohcyholder t m period t. If we suppose that the costs are independent, 
the maximum likelihood esumator of ~ is the solution of the following equation. 

(n,, - (tc,,/~,, )) ztt = ~ cres,t z ,  = 0 
I , f  i , I  

The term ntt - - ( tC a /C,t) IS the sum, for the claims reported by the policyholder t m 

period t, of their cost residual I - ( c , o / ~ , t ) .  it is written cres,, The likelihood equa- 

tion in ,/3 can hence be interpreted as an orthogonahty relation between the explanato- 

ry variables and cost-residuals. 

The average cost per claim increases with the frequency risk (see 1 4.2), which con- 
firms the previous conclusions about the risks related to frequency and pure premium 

1.2.2 Log-normal distributions 
The other distribution famdy considered in this paper is the normal distribution family 
for the logarithms of costs 

l°g C, tj ~ N(z,t] 3,cr2) ¢=~ I°g C,1~ = z,,]3+E,tj, ~,tj ~ N(0,° '2)  • 

The hkehhood equation giving /~ is 

This equation is also an orthogonahty relation between explanatory variables and 
residuals. 

1.2.3 Pure premium model 
The total cost of claims reported by the pohcyholder t m period t may be written as' 

N a 

TC, t = ~ Cio 
j=l 

It is a sum of N,, i.~ d outcomes from a variable that we denote as C,,. The pure pre- 

mium IS" E(TCs, ) = E(N,t)  E(C~,). 
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1.3 Presentation of the working sample 

The sample investigated m the paper is part of  the automobde policyholders portfolio 
of a French insurance company It is composed of more than a hundred thousand poli- 
cyholders The damage guaranty being considered here, only the contracts with that 
kind of  guaranty were kept Policyholders can be observed over two years, and each 
anniversary date, changing of vehicle or coverage level entails a new period. Only 
claims concerning the damage guaranty and closed at the date of obtentlon of the data 
base were kept Reserved costs were thus avoided The rating factors retained for the 
estimation of number and cost dlstrlbuuons are 
• The characteristics of the vehicle, group, class, age 
• The characteristics of the insurance contract" type of  use, level of  the deductible, 

geographic zone 
Other rating factors are the pohcyholder 's  occupation, as well as the year when the 

period began (in order to allow for a generation effect) These eight rating factors have 
a finite number of levels, the total number of which is 44 The explanatory variables 
are binary, and indicate the levels for the policyholders' in order to avoid colhnearlty, 
one level is suppressed for each rating factor, the intercept being kept anyway. There- 
fore, we shall consider (44-8)+1=37 covanates. With the notations of  the paper, we 
obtain: 0~,]3 ~ ~37. ,Wtt,Ztt E {0,1} 37 

The estimated coefficients derived from the rating model depend on the level sup- 
pressed for each rating factor. Results that are independent from the suppressions are 
obtained by dividing the coefficients by their mean in the multiphcatlve rnodel. These 
standardized coefficients can be compared with the relative seventy of  the levels 

The periods having not the same duration, the paralneter of  the Poisson distribution 
must be proportional to the duration. The results given on the frequencies remain 
unchanged if, d,, being the duration of period t for the policyholder i, we write' 

)q, =d,, exp(w,, o~), and A,, =d,, exp(w,t &) 
The working sample includes 38772 policyholders and 71126 policyholders- 

periods These pohcyholders reported 3493 claims The average duration of  the 
periods is nine months, and the annual frequency of the claims is 6 7%. 

1.4 Empirical results 

1.4.1 A priori rating for frequency and pure premium 
When apphed to the number of claims or their total cost, the Polsson models provide 
standardized coefficients, that can he compared with the relative seventy of  the levels 
For almost each rating factor, the variance of the coefficients related to the levels is 
inferior to the variance of  the relative sevent.~ For instance, for the "type of  use" 
rating factor, one gets 
frequency relative severity standardized coefficient 

professional use 1.623 I 278 
standard use 0 982 0 992 
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pure premium relative seventy standardized coefficient 
professional use 1 747 I. 177 

standard use 0.979 0 995 

The dis tnbuuons of the policyholders anaong the levels of the different rating fac- 
tors are not independent from one another Policyholders with a professional use have, 
for the other rating factors, more nsky levels than the other pohcyholders The Poisson 

model does not mutuahze the risk: hence these pohcyholders have, with respect to 
other rating factors, a level of relatwe seventy equal to (1.747/1 177) - 1 = 48 4% 
more than the average, m term of pure premmm. 

The elast~clty of the pure premmm with respect to the frequency risk is equal to 
1 52 on the sample, and the difference from I is s~gmficant (the related Student staus- 
tic is equal to 5.93) Hence, if the frequency risk is multiplied by two, the average cost 

per claim mcreases by 2052 - 1 = 43.5%, and the pure premium increases by 187%. 

This posmve correlation between the risks on frequency and average cost per claim 
,s observed on each rating factor, except for the geographical zone 

1.4.2 A priori rating for average cost per claim 
On the sample of clamls, the gamma model leads to the following results (rating fac- 
tor: type of use) 

average cost relative seventy standardized coefficient 
professional use 1.076 0 933 

standard use 0 996 1 003 

The estimated elasticity of the average cost per claim with respect to the frequency ~s 

equal to 0 51, which confirms the results obtained m the preceding section. 

2 EXPERIENCE RATING FOR FREQUENCY AND AVERAGE COST PER CLAIM 

2.1 Heterogeneous models 

In a bayesian framework, the allowance for a hidden information, relevant for the 
rating of risks, can be performed m the following way 
• the starting point is an a priori rating model If 3' represents the severity variable(s), 

the likelihood o f y  will be written fo(y/Oi,x), where x is the vector of explanatory 

variables, and 0j the vector of parameters related to them 

• A heterogeneity component (scalar, or vector) is added to the model, which measu- 

res the influence that unobserved variables have on the severity distribution. If u ts 
this component, a distribution of ~, conditional on u and the explanatory variables ~s 
defined, and we denote its hkehhood as fi.(y/Oi,.r,u) In practice, the a priori dis- 

tribution ~s equal to the distribution defined conditionally on u, for some value u ° 

o f u  f.(y/Oi,x, uO)=fo(Y/Oi,x)VOi,x,y l f u l s a s c a l a r ,  u ° = 0  or l ,accordmg 

to the fact that u ~s included additively or multlpllcatlvely in the conditional distri- 
bution 
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• The credibili ty estmaatlon of  u,, the heterogenmty component for the policyholder  

t, leads to a bonus-malus system. It rests on a heterogeneous model, m whmh u, is 
the outcome of  a random varmble U,, the (U,) ,=i . .p  being i i d. and thmr dlstnbu- 
uon being parametenzed by 0 2. The hkehhood of y, m the model with heteroge- 
nmty ~s obtained by integrating the condmonal hkehhood over U,, that ~s to say 

f ( y , / O , x , )  = E o 2 l f . ( y  , / Oi , x , ,U , ) ] ,  

with 0 = (01,02). The heterogeneity component vector on number and cost d~stnbu- 
uons wdl be denoted, for the policyholder 

where n stands for the numbers and c for the costs The hnk between heterogeneous 

and bayesian models is made clear m the example that follows 

2.2 Examples  of heterogeneous models 

2.2.1 N u m b e r  of claims 
With the notations of I I, the dlsmbutlons defined conditionally on u,. are 

N .  ~ P(~.,tUn,), with U,,, ~ y ( a , a )  

m the heterogeneous model The expectation of U,,, is equal to one, and its variance IS 
l /a  On a period, the number of  clamls dlstrtbuuon is negative bmonual m the hetero- 

geneous model 
The negauve bmomml model can be considered as a Polsson model with a random 

component,  ff we write A.,,U,,, = ~,, If the intercept is the first of k explanatory varia- 

bles, and if e I is the first vector of the canonical base of ~ ,  we have 

A. = exp(%, a + Iog(U., )) = exp(w.  ( a  + l og (U. , ) e  t )) = exp(w,, &,) 

In the last expressmn of  k.,,. the parameter  &, = ce + Iog(Un,)e I ~s random, and the 
formulation is bayesmn But tt ~s less tractable than that of  the heterogeneous model. 
as well for bonus-malus computauons as for staUsucal reference. 

2.2.2 G a m m a  distributions for costs of claims 
The heterogeneous models that follow, which allow us to design bonus-malus systems 
for average cost per clmm, suppose the independence of heterogeneity components on 
the number and costs dJstrlbuuons The empirical results presented later will make th~s 
assumption plausible. 

For the gamma model and with the notations of  1.2 I, the distributions condluonal 
o n  Ucl a r e  

G,j ~ 1'(d,b,,G,).  with Uc, ~ t ' ( 6 , 6 )  

m the heterogeneous model The heterogenmty component ~s included, as the rating 
factors, m the scale parameter of  the distribution 
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In the h e t e r o g e n e o u s  model ,  one can write" C. j=D,  t j/(b,,Uc, ). with 
D~j - 7 ( d ) .  U o - y ( 6 . 6 ) ,  D.j and Uc, being independent The variable C.j follows a 

GB2 dls tnbunon (see Cummins et al (1990)). and D,t J represents the relative severity 
of the claim. 

2.2.3 Log-normal distributions for costs of claims 
With the notations of 1.2 2, the heterogeneous model is 

log C,,j = z,tfl + e,,j + U~,, Ucc , ~ N(O, 0-~ ). 

where the e,u and U o are independent. The variable e.j represents the relative se- 
verity of  the claim 

The heterogeneous model used to design a bonus-malus system for pure premium 
will be presented after the empirical results related to the preceding models. 

2.3 A sufficient condition for the existence of a bonus-malus system derived 
from a bayesian model 

Experience rating with a bayesian model is possible only if there exists enough hete- 

rogeneity on the data Considering for instance the negative binomial model without 
covarlates, the estimated variance of  the heterogeneity component is equal to zero if 
the variance of  the number of  claims is lower than their mean (see Pmquet et al. 
(1992)). In that case, a priori and a posterlorl tariff structures do not differ, and the 
bayesian model fails. 

A sufficient condition for the existence of a bonus-malus system derived from a 

bayesian model is provided here: ~t will be applied later on to the models for number 
and cost of  claims 

Let us start from a heterogeneous model, as defined in 2 1 The heterogeneity com- 
ponent is supposed to be scalar, and its distribution is parameterlzed by the variance 

0 -2 The parameters of the model are 0 = (0,, o 2 )  and we shall write b ° = (0°,0) ,  ~o 

being the maximum hkehhood estimator of  01 m the a priori rating model. 

If  the r ight-derivat ive,  with respect to 0 "2, of  the log- l ikel ihood is posit ive in 
^0 ^'~ 0 , 0-" will be positive in the heterogeneous model. The existence of  a bonus-malus 

system is hence related to the sign of  a lagranglan, which is part of the score test for 

nullity of 0-z (see Rao (1948), Silvey (1959)). With the notations of 2 I, and denoting 
the lagrangian as/.., one can prove: 

logf(y , /O,  , or', x , ) -  Z l°g f ° ( Y ' / 0 ° '  x, )= L0- z + o(0- ' ) ,  with 
Z ^0 ~ 9 

C=i2(re4-s,); 
2 

l 

i o: res, = logf.(y,/Ol °, x,,u) 1 " s, - logf . (y , / (g l ° ,x , ,u) ]  
Ju=u ° ---- ~ }u=u o 
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See Pmquet (1996b) for a proof, and references to a recent hterature. The term res, is 

a residual, which Is related to those encountered m the hkehhood equations for nuln- 
bets and costs• The condmon for exIstence of  a bonus-malus system is 

L>o  Zr s,' >Zs, 
• I ! 

It can be interpreted as an overd~sperslon cond~tlon on residuals. 

2.4 Prediction with heterogeneous models and bonus-malus systems 

Let us suppose a pohcyholder  observed on T periods'  YT = (Yl, ,Y7 ) IS the sequence 

of  seventy variables, and X" T = (x I . . . .  xT) that of the covanates  The sequences A" r 
and YT take the place of  x, and y, m the preceding secnons The date of forecast T 

must be explicated here. and the individual index can be suppressed, since the policy- 
holder can be considered separately Besides, belonging to the working sample is not 
mandatory for this pohcyholder  

We want to predict a risk for the period T+I, by means of a heterogeneous model 
For the period t, this risk R, is the expectation of  a funcuon of  Y~ (y, is the outcome 
of  Yt) For instance, Yt is the sequence of  both number and costs of  claims m period t, 
and R,, the pure premmm, Is the expectation of the total cost. 

We now include a heterogeneKy component u, as defined in 2 I The dlStrlbunon of 
Yt condmonal  on u depends on 0 l , x  r and u. This apphes to R t, and we can write 
R, = ho, (x,)g(u),  for the three types of  risk dealt  with later (frequency of  clmms, 

average cost per clmm, pure premmm), g being a real-valued funcnon 
" T+I " T+I 

A pre&ctor for the risk m period T+I can be written as ho, (x;+ I) g(u),  with g(u) a 

credlbdlty estimator of  g(u), defined from: 
^ T+I 

g(u) = arg m,n Eo, [ (g(U)-a)  2 f .(Yr/Oi ,XT,U) ] , 

T 

J'(YT O~,Xr,U)= ~'~ L(Y, O~,x,,U). 
t= l  

The expectallon ~s taken with respect to U, and one obtains 

^ T+I Eoz [g(U) f ,(Yr/Oi ,XT,U)J 
g (u) = Eo[g(U)/X T ,Y,; ] - 

Eo2 [ f*(YT /O1,XT ,U)] 

the expectation of  g(U) for the posterior d lsmbut ion of U. Replacing 01 and 0 2 by 
their esnmat~ons m the heterogeneous model, we obtain the a posterion premmm 

~ T + I  
Y+l = h66 ' (X r+l )EbIg(U)/ XT, Yr ], 

computed for period T+I It can be written as 

( ) ~ [g (U) /x ,  . . . .  XT;y , . . . .  YT] 
hi, (XT+ ~)EO: [g(U)] x E~, [g(U)] 
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The first term is an a priori prelnlum, based on the rating factors of the current period. 
The second one ~s a bonus-malus coefficient it appears as the ratio of  two expecta- 
tions of  the same variable, computed for prior and posterlol d~smbut~ons Owing to the 

equahty Eo[Eo(g(U)/X r ,Yr)] = Eo[g(U)] = Eo. [g(U)]. the rating is balanced. 

2.5 Bonus-malus for frequency of claims 

2.5.1 Theoretical results 
With  the n o t a n o n s  of  2 2.1 and 2.4, we Wllte '  Yt = nt, -rt = wt ,  OI = f f  , 

R t = E(N,)  = Atu, ho, (x,) = A t, g(u) = u; X r = (wt, • Wr), Yr = (hi.- , n r ) .  The pos- 

terior distribution of U is a y ( a + E n , . a + E A , )  (see Dionne et al (1989. 1992)) 

Hence: 

T 

a + E n t  

Eo[U/wi,.. , wr.nl  ..... nr  I = ~r+l _ ,=IT (1) 

a + E A t  
t=l 

Replacing A t by ~t = exp(wt~) and a by t~ in equation (I )  leads to the bonus-malus 

coefficient. There will be a frequency-bonus ff the estimator of  ~r+l _ ! IS negative, or 

~ t ( n , -  ~,) is negam, e if the number-residual 

Considering in equation ( l )  that N, follows a Polsson dlsmbutlon,  with a parame- 
ter A,u, /~' +' converges towards u when T goes to + ~  The heterogeneity on number 
dlsmbutlons,  which is not explained by the rating factors, IS hence revealed comple- 
tely with time. It may be interesting to investigate the distribution of bonus-malus 
coefficients on a portfoho of  policyholders,  as well as ItS tune evolunon (see secnon 
2 5.2 for empirical results) 

We exphc~t now the condition for existence of a bonus-malus system for frequen- 
cies On the working sample, and with the notanons in 2 2. I, one can write 

^ 0 . ^ Iogfo(y,/O, ..~,.u)-- E [ n , , ( l o g  A,, + I o g u ) -  ~ , , u -  ,og(n , ' ) ] .  
! 

with A, = exp(w,&ll ) .  ~0 being the estimator of a m the a priori rating model With 

the notanons of 2 3. and w l l h  u ° = I ,  we obtain 

, e s , : Z ( n , , - ~ t , ) . s , = E n , , . L > O ¢ = ~ E n r e s ~ > E n , ,  
? I I I 

nres, = ~.,,(n,, - ~ , , )  IS the number-residual for policyholder ,, and n, = ~., ,i,, where 

is the number of clamas reported by this pohcyholder  on all periods This condmon 
means that, considering the total number of  clmms, its variance ~s superior to ~ts mean, 
the varmnce being calculated condmonal ly  on the explanatory variables. This empiri-  
cal overd~sperston condition can be related to the theoretical overdlsperslon of  Ihe 
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negauve bmomml model" if N, ~ P(X,U,),U, ~y(a,a)(wlth a=1 /0 .2 ) ,  one gets. 

V(N,) = A, + ~20.z >/l, = E(N,) 
A score test for nulhty of  0 .2 can be preformed from the Lagrange muhlpher 

L = (112)Z, (nres  ~ -n, ) The prevmus remarks allow us to reject the nulhty of 0 .2 if 

' S  large enough If the number of pohcyholders goes to infinity, {L = L / - ~ - ( L )  

converges towards a N(O, 1) d,stnbut,on. One can prove that V(£)=  I /2 .~ . , .~ ,  w,th 

.~, = Z , ~ .  If ul_ a is the quantfle at the level I - e  of  a N(O,I) d,strlbutlon, the null 

hypothe,qs 0 .2 = 0 will be rejected at the level g ,f {c _> ul-e. 

Besides. the lagrangmn provides an esumator of the parameters. Starting from &o 
A O  

and 0.2 = 0 m the algorithm of the hkelihood maxHmsauon, one gets at the following 

Znres~-n, Z [(n, -,~,)'2 - n,] 
&l ^ . ~ l  L = a ° ; 0 .  2 - - = - - -  ' ' (2) 

I I 

step 

A I  
The estmnators ~ and 0.2 can be shown to be consistent for the negauve bmomml 

model (see Pmquet (1996b) for demonstrauons) 

2.5.2  E m p i r i c a l  resul ts  

From the sample described m 1.3, we obtain 

Z nres~ = Z  ( n , -  ~,)2 = 3709.24; Z n ,  = n = 3493, 
I I i 

and expm mnce rating is possible for frequencms Without explanatory variables (apart 
from total duratmn of  observat ion for each pol icyholder) ,  one obta,ns:  

~nres~ =3746  25 The sum of square of residuals decreases when explanatory 

variables are added, and the condmon for existence of a bonus-malus system ~s more 
restncuve when they are present. This ~s logical because they are a cause of heteroge- 
nmty on a pnon &stributmns 

Besides, £ j , 2  = 389 48, and the esumator of 0.2 gwen in (2) ts 
I 

Znres~-£n ,  
6.2= L = , , ___216'24=0.555. 

~'(L) ~ , ~  38948 
I 

As a comparison, the maxnnum hkehhood esnmauon for the negatwe bmomml model 

i~ 6 .2 = 0 576. The score test for nulhty of 0.2 ~s based on the ,,tausuc 
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Z n r e s ~ - Z n ,  
~t, = L _ , , 216.24 

and the null hypothesis is rejected Examples of bonus-malus coefficients derived 
from the credibility formula are developped m actuarial and econometric literature 
(see Lerndlre (1985), Dlonne et al (1989,1992)) 

Evolution throughout time of bonus-malus coefficients, as well as a postenorl pre- 

miums related to them, will be investigated for the risks related to frequency and 

average cost per claun We consider here a smmlated portfolio, derived from the wor- 
king sample In this portfolio, the characteristics of each policyholder m the sample 
are those of the first period, and we suppose that they remain unchanged If this as- 
sumptmn does not hold individually, it Is however plausible on the whole population 
Investigating the distribution of bonus-malus coefficients m the heterogeneous model, 

one can measure their d~spersmn on the portfoho by estimating thmr coeff|cmnt of 

varlauon after T years (see Pmquet (1996a)) Considering the frequencies, with the 

tariff structure obtained m 1.4 1 and ~.2 = 0 576, we obtain: 

TABLE l 
RFVF[  A I ION THROUGHOU I TIME OF HETEROGIzNIEITY RELATED TO NUMBER DISTRIBU I IONS 

Coefficients of varmnon (fiequency of claims) 
a pnon premmm 0 372 

T= l T=5 T= I 0 T=20 T=+~ 

bonus-malus coelficmnt 0 144 0 300 0 392 0 494 0 759 
a postenon prcmmm 0 41 I 0 515 0 590 0 673 0 891 

The coefficient of variation is a measure of the relative dispersion of bonus-malus 
coefficients and premiums Apart from the a priori premium, the elements of the pre- 
ceding table are an estimation of the expectation m the heterogeneous model. After 
nine years, the relative dispersion of the bonus-lnalus coeffmmnts exceeds that of the a 
priori premium. This means that, after nine years, the heterogeneity revealed by the 

observation of policyholders becomes more .nportant  than that explained by the rating 
factors. 

2.6 Bonus-malus for average cost per claim (gamma distributions) 

2.6.1 Theoretical results 
With the notat ions in 2 . 2 2  and 2.4, we can write: yt=(ctj)y=l, n ,x t=z. t ;  

R, =/:'(C~j) = d/(htu); 01 = (fl, d);he, (x,) = d/b, ;g(u) = l/u. The bonus-malus coeffi- 

cient on average cost per claim for period T+ / Is derived from the credlbdlty estimator 
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of IA¢ Since the a priori distribution of U is a ) ' (S,~) ,  with a density proportional to 

#6 (u) = e x p ( - & 0  u a-I , one gets: 
d ( ~ n , ) + S - I  

fa (u )x  f . (YrlOi ,XT,U)=exp((S + Z b,%)u)u , 
t,I 

nines a coefficient independent of  u The posterior distribution of  U is therefore a 

r(6 + a+ and: 
! I,J 

We have 

+ E btcq 

17 77 +' o u ,YT 

t 

Eo: (I / U) = ~ 1(6 - I) (we suppose # > I, a necessary condition for I/U to 

have a finite expectation) Omfinng the period index, and writing S T for the set of  

clanns reported by the policyholder during the first T periods, the bonus-malus coeffi- 

cient is 

E I .ms~ 

E I 

where we wrote:  r / = ( 6 - 1 ) / d .  E 0 ( C j ) = E 0 2 ( d / ( b ; U ) ) = ( d / b j ) ( S / ( # - I ) ) .  The 

rating structure derived from (3) is obviously  balanced. Writ ing E ~ ( C i ) = ~ ; ,  and 

cres 7 = E j e S r ( I -  (c; /g;))  the cost-residual  for the pol icyholder ,  there wdl be a 

cost-bonus if the cost-residual is positive The bonus is then equal to 

4+ 2",#, 
l "t~-Sr - -  crew7 

;7 + ls,.I ;7 + lsTI 

The time evolution of the distribution of bonus-malus coefficients is investigated in 
2 6 2 Considering the simulated portfoho defined ,n 2 5.2, the heterogeneity unex- 
plained by the rating factors is revealed more slowly for cost than for number distri- 
butions This is not surpr.smg, as far as no claim means no information on the cost 
distribut,on - -  if there is no correlation between the two heterogeneity components - -  
whereas no claim generates frequency-bonus. 

Let us apply to this model the condition allowing experience rating. For the wor- 
king sample, we denote S, as the set of  claims reported by the pohcyholder  over the 

T, periods. One can write 

l og f , (y , / / }  ° x , , u ) =  E ( d ° l o g  ^o + . , u - b , ; % u )  z , ,  

JeS, 

where z, does not depend on u With the notations of 2 3 and with u ° = I, we obtain: 
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l ~ c r e s ~ >  1 
res, = ~ (~o _ bl ĵ Oc~j )," s, = n,d° ; L > O ¢::.~ - --~o 

j c S ,  n i d 

The total number of  claims over the sample Is n, and crew, as the cost-residual for 

the pol icyholder  t This residual is equal to 0 without claims, and otherwise. 

c r e s , = ~  jes, (l-(c~j/c,~))=~.z,,,,,,,,~les, crea,.~ , where ^° = d° //~,~ is the estimator for t h e c ~ ;  

of  C O Now,  we have '  E ( I - ( C o / E ( C u ) ) ) 2 = V ( C o ) / E z ( C , j ) =  expec ta t ion  

CV2 ( CO ) = l / d, if C U - ~/( d,b~j ) The condition for existence of a bonus-malus sys- 

tem is hence related to the square of  coefficients of  variation 

2.6.2  E m p i r i c a l  resul ts  

Consldenng the working sample, one obtains' 

~ ores) = 1.092; ~0  = 0 82 I. 
n 7 

and experience rating for average cost of  claims Is possible For the sample of policy- 

holders that reported claims, the maximum hkehhood estimators for the GB2 model 

are, 

~=3 .620 ,  d = 1  8 0 7 , ~ = ( 6 - I ) / d : 1  45. 

The bonus (negative m case of malus) related to average cost pet claim is equal to 

c r e s , / ( 0  + ISrl) It remains equal to zero as long as there are no claims. After the first 

clama, ff we consider the cases where the ratio actual cost-predicted cost is equal, 

either to 0.5 or to 2, the related cost-residuals are equal to 0 5 and - I respectively The 

mult lphcat |ve coefficient 1/(1 + ~) being equal to 0.408, we obtain a cost-bonus of 

20.4% in the first case. and a cost-malus of  40.8% m the second case This coefficient 

is mdependent of the period during which the claim occurs 

The distributions of bonus-malus coefficients and a postenorl premiums can be in- 

vestigated on the simulated portfolio defined m 2 5 2 With the tariff structures obtai- 

ned m I 4 I and 1 4.2 and ~ = 3 62, wc obtain (see Pmquet (1996a)) 

TABLE 2 
RI VELA rlCIN I t IROUGHOUT FIME Ob HETEROGIENEI I Y RFEI A FED TO COS [ DIS I RIB U I IONS 

Coefficients of varmtlon (expected cost per clam1) 
aprtonpremlum 0401 

T= l '1"=5 T= l0 T=20 T=+oo 

bonus-malus cocfficlcnl 0 128 0 268 0 356 0 453 0 786 
a postenort prcnuun~ () 42'7 0 504 0 568 0 648 () 937 

The relative dispersion of the bonus-malus coefficients exceeds the dispersion of the a 

priori premium after fourteen years Unexplained heterogeneity on cost distributions is 

revealed more slowly than it was for numbers 
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2.7 B o n u s - m a l u s  for a v e r a g e  cos t  per  c l a i m  ( l o g - n o r m a l  d i s t r ibut ions )  

2.7.1 T h e o r e t i c a l  r e su l t s  

W i t h  the n o t a t i o n s  in 2 .2 .2  and 2.4, we wr i te  y,=(Iogc,s)j= , ..... ; ~ , = z , ,  

logCts - N(ztfl+u,0" 2) ~ R, = E(Ctj)  = exp(z,  f l + u + ( 0 "  2 / 2 ) ) ,  0, = (fl,0"2), 

ho, (x~) = exp(ztf l  + (0 "2/2));  g(u) = exp(u) .  The  b o n u s - m a l u s  coef f i c ien t  is de r ived  

from the credibi l i ty  es t imator  of  exp(u).  Now 

fa~(u)xf.(YT/O,,~,u)=exp-~ ~-+ u . . . .  ,,,, +<0"-s-~-/0"O) J J 

,ndependent from u We wrote "w = E L " "  t imes a coeff ic ient  

Eo, (TLCT)= Z jess Eo, ( l ° g C j ) ; $ 7  is the sel of  c la ims  repor ted by the p o h c y h o l d e r  

daring the T periods (Iazl = '"T), and the period ,ndex is omit ted  Hence,  the poster ,or  

dis tr ibut ion of  U is 

(tlCT -- Eo, (TLCT ) I "~ 
U / ( XT , Y7 ) - N I - -  - - -  ¢ - Z ~  - " 

J t, m /+ (0 " /0 "u )  ( I / 0 " ~ ) + ( m T  10"2) 

The bonus-malus coefficient for period T+I is equal to 

[ Ic,'es T - ( t nTa~ j  / 2) t E°Iexp(U)/XT'YTI-exp 7-7T-7=-~1----- , 

EO [exp(U)] (0''/0"[j)+tn T J 

writ ing lcres T = Zj~s ,  lores,, lcre.,j = logcs  - EO, ( l o g % ) .  

The c o n d m o n  for ex is tence  of  a bonus-malus  sytem is eas i ly  in terpretable  with the 
log-normal  model  We have 

log f,~( y, lO l ° , x , ,u )  = - Z  ( l c r e ~ " 2 ; 0 2  

j~S, 2 0"2 

plus terms that do not depend  on u, with lcres,j = l o g ( % ) -  z,fl~ °. With  u ° = 0 (see 

2 3), the exis tence condi t ion is' 

JES, '1 I 
...'-,-o.2 . ~ o  - J.~o ~ Ic're~ u -n 0"2 > 0 

, ( 0",2 ) 0"2 ( 0"2 )" L ' k,~s, j 

A O  A O  
= ~ lores,J, with a 2 the m a x i m u m  hkeh-  Now, m the a prior,  rating model ,  no" 2 ,.J 

hood es tnnator  of  0"2. Exper ience  rating is poss ible  if 
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( )2 
2 ,  Zj~s, lcres,j - 2,.glcres,~ is positive, that is to say ,f 

Z ~lcres'glcre~'~>O 
i I n, >2 g,k~S, ,g~& 

This condition means that, for clmms related to policyholders having reported several 

of  them, cost-resxduals have rather the same sign. If the first claim has a cost greater 
than its predlcUon, it will be the same on average for the following ones. 

One can prove that, if L ~s the lagranglan with respect to o 2 ,  we have 

Z n , ( n ,  - I )  Z Zlc"es'j lores'' 
~ . 1  

^ ~ ' 
2( 0 .2 ) V(L) n,(n, - 1) 

1 
J ' ~ - I  

and that o-u z IS an consistent est imator of o-t~ (see Pinquet (1996a)). It appears to be 

the average, for the pohcyholders  having reported several clmms, of the product of 
residuals associated to couples of different claims 

2.7.2 Empirical results 
From the working sample, we obtain Z , / ~ , ~ 2 Z j  ~eS,4~lcres'j lcres,~ = 100 80, and 

experience rating is possible Hence 

A ,  Z Z Icres,j lcres,, 
a~ ,/n,_>2j,~S, j~k _ 100 8_____......_0. _ 0. 171. 

2 n , ( n ,  - 1) 590 
! 

The nulhty of  0" 2 .s tested for with e L =  L/~/-O(~= 2.86 The crlt,cal value for a 

one-sided test at a level of 5% is 1.645, and the null hypothesis is rejected The maxi- 

mum l ike l ihood es t imators  of  o-2 and cr 2 m the heterogeneous  model  are: 

6.~ = 0 172, 6 .2 = 0 .855 .  

Bonus-malus coefficients can be computed from the examples considered with the 
gamma d~strlbut~ons (one clmm, and a ratio actual cost-expected cost equal to 0 5 or 
2) The residual associated to a claim is the logarithm of the latter ratio In the first 
case, the bonus-malus coefficient is equal to 

FlcresT-(t,,T6. ~ /2)l F - I o g 2 - 0 . 0 8 6  
exp 7-:-3 ~ . . . .  exp . . . . .  l 

and ~s associated to a cost-bonus of 12 2% In the second case, the bonus-malus coef- 
ficient is equal to 1 107, and unphes a cost-malus of 10 7% These results can be com- 
pared with 20 4% and 40.8%, the bonl and mah derived from the gamma distributions, 
although the ratios actual cost-expected cost are different m the two models. They 
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must be different, smce the cost-residuals in the gamma and log-normal models are 
equal to 1 - (% " ^ s,~,n,n~, :2,: Iog-,,o,,,,,,t ) /c,: ) and Iog(c v / respectively, whereas they fulfill 

the same orthogonahty relatmns with respect to the covarlates. 
Considering the simulated portfolio defined in 2.5.2, the heterogeneity on cost 

distributions that is unexplained by the a priori rating model as more tmportant for 
gamma than for log-normal dasmbutaons This can be seen by comparmg the llmats of 
the coefficients of  varlat~on for the bonus-malus coefficients,  as we did m sections 
2 5 2 and 2 6 2 For the GB2 model,  this l imit  is the coeff ic ient  of  variat ion 

of  1 /U ,U-7 (6 .6 )  (see Pinquet  (1996a))  With  ~ = 3 . 6 2 ,  it is equal  to 

I / x / ~ -  2 = 0 786 Considermg the log-normal model, the hmH is the coefficient of 

varaatlon o f e x p  (U), U - N(0,o-~) 

With O't~ : 0.172. ,t Is equal to ~exp(OZu) - 1 = 0 433. 

This result can be related to a comparison between the two a prtori rating models 
I f  Fo,..r~ is the contmuous d ls t i lbunon functmn of Y: (here equal to the cost of 

the clmm j ,  or ats logar i thm) ej =Fo,., (Yj) is uniformly dis t r ibuted on [0,11 

= (Yj) and rearranging ej in the mcreaslng Computing the residuals ej, ej l~,,.b , 

orde r ,  by ec~ ) < .  <el,,), we de r ive  the K o m o l g o r o v - S m ~ r n o v  s ta tas t lc  

KS = ~ n  max izj_<,, I ( j / n ) -  e(:)l We obtam KS=2 83 (resp KS= 1.04) for the gamma 

(resp log-normal)  d~strabut,on famdy. The latter famdy seems to fit the data better 
than the gamma family, and wall be retamed for the bonus-malus  system on pure 
prem|um 

The two last results can be related to each other, there as more unexplained hetero- 
geneity for gamma than for log-normal d~smbuuons, and the latter provide a better fit 
to the data Thts fact r i s e s  a question: ~s apparent heterogeneity only explamed by 
h~dden reformation, or can it be also explained by the fact that the model does not 
make the best use of observable mformat~on'~ 

3 B O N U S - M A L U S  FOR PURE PREMIUM 

3.1 The heterogeneous model 

From the preceding results, we shall retam log-normal rather than gamma &strlbutlons 
for costs Besides, they are better integrated in a heterogeneous model with a jomt  
dlstrlbutmn for the two heterogeneaty components related to the number and cost dls- 
mbutJons We retam here a bivanate  normal distribution The parameters of  the rela- 
ted heterogeneous model can be eStllnated consastently, although the likelihood is not 
analytically tractable 

A way to derive consistent estimators for heterogeneous models is proposed in Pan- 
quet (1996b) It is based on the properties of  extremal estimators, the maxnnum hkeh- 
hood est imator bemg of  this type. The estlmators of  the parameters of  the a priori 
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rating model have a hml t  ~f the actual d~stnbut~ons include heterogeneity,  and this 
hm~t is tractable m the model investigated here Consis tent  est imators are then obtm- 
ned from a method of  moments  using the scores w~th respect to the varmnces and the 
covanances  ol the heterogeneity components  

The heterogeneous model ~s hence composed of Pmsson d~stnbutlons on numbers ,  

log-normal  d~strlbuttons on costs, and of  bwarla te  normal  dis t r ibut ions for the two 
heterogeneHy components .  The notations are the following. 
• The dis t r ibut ions  c o n d m o n a l  on tin, and u, , ,  the heterogenei ty  componen ts  for 

number  and cost distr ibutions of  the pohcyholder  t, are 

N,t - P(  ~,t exp(u, , ,  )), log C,t J = z , t f l  + e , j  + u,.,, with 

~,, = exp(w, ,a) ,  e,/  ~ N(0,cy2), t = 1 . . . .  T , ' j  = I, ,n,, 

• In the heterogeneous  model,  U,,, and U,, follow a bwar la te  normal dis t r ibut ion 

with a null expectation and a varmnce equal to 

The parameters of the model are 

01= ,02=  V~n 

0.2 Vc c 

Bonus-malus  coeff icients  are computed m the heterogeneous model from the ex- 
presslon given m section 2.4 

E~lg(U) / .~  , YT I 

Eb " [g(U)l  

We can write. 

_ (4) 

• g (u , , ,u , . )  = exp(u,,) for frequency 
• g (u , , . u~ )  = exp(u, ) for average cost per c laun 
• g (u , , ,u ,  ) = exp(u,, + u, ) for pure premmm, 

because the expectahons  of  N r, Crj and T C  t are re~pectwely proporuonal  to exp(u,, ), 

exp(u, ) and exp(u,, + u, ), ff computed condmona l ly  on it,, and u, The mathemahcal  

expectat ions that lead to the bonus-malus  coefficients  (see equat ion (4)) can be esti- 
mated ff we can write U = fo ,  ( S ) ,  where the d~stnbuuon of S is independent  from 0 2 

it ~s enough to s~mulate outcomes of S Such an expressmn can be obtained by wrm ng  
the Choleskl decomposmon  of the varmnces-covanances  matrix, i e. 

. . . .  
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One can write for the pohcyholder 

(/ U,,, = T~oS, ; S, = S, ~ N(O, 12), U, = Uc, Sc ' . 

and we have U, = J02($1). q9 being related to V, hence to 0 2. The hkehhood used m 

the bonus-malus expression (see equation (4)) is obtained as the product of the hkell- 
hoods related to numnbers and costs With the notations of 2 4,  we have 

Iogf.(YT /O] . ~ , U ) =  

X /  = ( x  i , . ,  x T); X, = ( w , ,  Z, ), Yr = (Yi . . . .  Y r) ,  Y, = (n , ,  ( % ) s : l ,  ,,, ), 

plus terms that do not depend on the heterogeneity components Replacing 01 by O i . 

we obtam 

f~(Yr/Oi , X  t ,U) = exp(Vr) x te rms  independent from U, with 

VT=_l~ t  ft,)exp(U,,)+tnTU,, tnrU~-2U,  lcre"T 
26_2 (5) 

A bonus-malus coefficient for a policyholder and for the period T+I depends then on: 

• Z '~1, which is proportional to the frequency premmm of the pohcyholder on all 
I 

periods This premium is equal to 

E(TNT)= Z ~ t  L'[exp(U,) ]=  A.t exp = X, exp . 
t 

• m T, the number of clauns reported by the policyholder dunng the T periods 
• lcres I , the sum of residuals on the logarithm of costs of clamls reported by the 

policyholder it represents their lelauve seventy. 
From equation (4), bonus-malus coefficients on frequency, expected cost per claim. 

and pure premmm are respecttvely equal to 

~;[exp(U,, + V# )] ~'[exp(U,. + V/)l E[exp(U,,+U, +VT)I 

E[exp(U, , ) ] / : [exp(Vr)] '  Elexp(U, )l EIexp(V7 )1" L'[exp(U,, +U,  )] E[exp(VT)]" 

The coefficients are estmlated by smaulations of outcomes of S,, and S,. For instance, 

we refer that the estimated covariance 

Co1"~(exp(U,,) exp(V,!  '1 
Elexp(U,,)l ' E[exp(V t ) l )  
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is a frequency-malus The existence of born and mall for the different risks can be 
interpreted through the sign of estimated covariances 

The a postenon premium is obtained by the expression given in section 2 4 

E~[g( U) / XT,YT ] 

The first term is the a priori premium It is an estimation of 

~T+iexp(zT+lfl ,E[exp(U,,+U,)l=exp(wT+lO~+ZT+l/3+(q)'" '+q)c")2+Cp'2~ 1 
2 

because U ,, + U, = ( q~ ,,,, + q~ ,,, ) S,, + ¢Pc, S~ . 

Bes,des. (~o,,,, "F~0~n) 2 +q22c = Vnn +2gtn + gcc. 
We should have consistent estimators for the parameters, m older to derive bonus- 

malus coefficients. A method to obtain such esumators was quoted m the introduction. 

When applied to the preceding model, it leads to the following results 

We write &0 flo, 0. 2 the estmmtors of the paratneters In the a priori rating model, and 

: : Z ,  >.  rLc, = = Z,,,,, . , , ,D o 

The variances and covarlances of the two heterogeneity components are consls- 

tently estimated by: 

V,,,, = log(l + V~,,). V,I,, = 

t 

tic, - t i c ,  )2 - n ,  0 .2 

(6) 
Consistent esumators of ~p.,,. ~0c, , and (p,, are given by the solutions of the equation 

T~T~ = V 

The estimators of ~0 are used in the computation of bonus-malus coefficients, remem- 

ber that U, = T¢S, (S, - N(O, / 2)), and that the coefficients are estimated through ~l- 

mulations of outcomes of S,. As for the parameters of the a prion rating model, they 

are consistently estimated by 

=d~ ° V'"' e k ° ~ t- .o ^ - - ~ -  n.,. D : - ~ , , e ~ . .  0-- : G 2 - V .  (7) 
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The intercepts are supposed to be the first of the k,, and k C explanatory variables for 

the number and cost distributions, and e, L (resp enl) are the first vectors of the ca- 

nonical base of N~" (resp IR ~ )  

3 .2  Empirical  results 

The numer,cal results Z ,  (n, - ~,)2 _ n, = 216.24; Z ,  ~'~ = 389 48. already used for 

bonus-malus on frequencies, lead to. 

( . ,  _ ~ ,  )2 _ ,,, 

I),,l, , - ' : 0.555.1),,,, : l o g ( l +  ~],,) : 0  442 ::::* ~b,,,, = ~ , , ,  : 0 6 6 5  

i 

In this paper, two dlstnbutmn famihes are considered for the heterogeneity component 
related to numbers We first took into account the gamma, and now the log-normal 
family (writing the heterogeneity component m a muluplicauve way) 

Considering an insurance contract without clmms, we can compare the born derived 

from the two models The sum Z , i ,  being the cumulated frequency premmm in the 

negauve bmonllal model, the bonus for the pohcyholder ]s equal to 

a C,Z,,i, 
- 

a+Z,x, a+,y..,i, i+(<,,y..,x,) 
For the log-normal tamdy, the bonus can be written as 

-Co"'v( exp(U,,) exp(V r)  ),U,=q),,,,S,,,Vr=_Z ~,exp(U,,) ' 
L E[exp(U,,)] ' E[exp(V 7 )l 

with S,, ~ N(O,I) With the values ol q],, and (b,,,, computed precendently, one ob- 

tains for example 

TABLE 3 
COMPARISON OF FREQUENCY-BONUS COEFFICIENTS 1 OR I ',~, O DIS I RIBUTIONS ON THE 

HETEROGLNLI'I Y COMPONENT (CONTRAC'I S WITIIOUT CLAIMS RI.POR [ ED) 

f r e q u e n c y  p r e m i u m  0.05 0 . l  0.2 0.5 1 2 

bonus (c~, g a m m a  dlstr tbutmns) 2 7 5 3 10 21 7 35 7 52 6 
bonus, ( ~ ,  Iog-nonlml dJ~,lrlbutlon~) 2 6 5 I 9 4 19 3 30 "~ 43 6 

The born derived from log-normal dlstnbuuons on the heterogeneity component are 
Iowm than those derived from the gamma distributions. The difference Is all the more 
mlportant since the frequency prennunl is high 
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Let us estimate the covanance between the two heterogeneity components '  

0, ,  - ~, )~tlc, - t ic ,  ) 

--~(n, - -it,)(tic, -tie,) = 7.96 ~ ~,, - ' = 0 013. 

One can think of  relating a positive or negahve sign of the covarmnce to the fact that 
the average cost per clmm increases or decreases with the number of clmms reported 
by the pol icyholder  To see this, suppose that the duration of observation is the same 
for all the policyholders,  and that the intercept is the only explanatory variable for 
number and cost dlstnbutlons We would then have 

~, = fi, tic, = n, logc ~ Z(n,-~,)(tlc,-t[c,)= £ ( n ,  - f i ) n , ( I - - ~ '  - logc)  = 
I I 

- i ) , ,  - c ) .  b e c a u s e  , ,  - l o g  , )  = O. 

I / n j > 2  I 

We wrote logc '  for the logarithms of  costs of claims reported by the pohcyholder  i, 

computed on average. The estimator of  the covariance would be positive if the average 
of the logarithms of costs of claims related to the policyholders that reported several of 
them was superior to the global mean 

On the working sample, the number of clam~s reported by the policyholder had lit- 
tle influence on the average cost 

The preceding results just ify the al lowance for a non constant number of periods 
related to the observation of pohcyholders To see th,s, we relnark that the more seve- 
re ~s a clmm, the greater ~s the plobablhty to change the vehlcule afterwards. Hence, 
there is less severity on average for several clmms reported on the same car If pohcy- 
holders were not kept ]n the sample after changing cars, a negative bias would appear 
m the estmmuon of the correlation coefficient between the heterogeneity components. 
Now, keep,rig the pol,cyholder ,n the salnple as long as possible leads us to consider a 
non constant numbei of  periods. 

When computing bonus-malus coefficients for average cost per clmm, we used (see 
2 7 2 )  

-I1, ~2 = Z Z&re% Icres'~ 100 80 
t I1,,I, ) 2  j I ~ S , . j # I  

A bonus-malus system for average cost per clmm can be considered if the observation 
of  the ratm actual cost-expected cost |or  a clmm brings mformatmn for the following 
claims. If the last expression is posmve, the cost residuals of claims related to pohcy- 
holders having reported several of  them have rather the same s~gn The relative se- 
verity of  a claim is assocmted to the sign of  the residual, and it may be interesting to 
compare the sign of  residuals for claims related to pohcyholders having reported two 
of  them. 
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Considering the working sample, we obtain 

number of pohcyholders negative residual posmve residual 
having reported two clmms (second claim) (second clmm) 
negative resIdual 
(first clmm) 74 46 

posmve residual 
(first claun) 36 70 

The sign of the residual does not change for 64% of pohcyholders having reported two 
clmms 

From eqmmon (6), we infer 

7~ A t l  
Z (tic,-tic,) ~ -n, (y2 

VLc  - -  t 

^ 

~2,, = 0 166, and ;,,, = V,,, _ = 0 048 

The correlatmn coeff ioent  between the heterogeneity components is posmve, but 
close to zero Hence 

,, = tp,,,,~,, ::~ q3o, = 0.020, q,. = q3,~,, + ~ :::> q3,~ = 0 407 

The born for average cost per clmm and pure premmm for the contracts without claims 
can be computed, and results can be compared to those obtained ['or frequency. From 

the expressions 

E[exp(U,.)] E[exp(VT)l ' I E[exp(U,,+U,.)l'E[exp(Vr)l ) 

we obtam 

TABLE 4 
BONI FOR AVERAGE COST PER CLAIM AND PURl. PREMIUM (CON I RA( I S WITHOUT CLAIM REPORTED 

frequency premium 0.05 0.1 0.2 0.5 1 2 

averageco~tperelmmbonu~(~) 0 I 0 I 02 05 09 15 
pure premtum bonus (%) 27 5 3 97 19 9 31 2 44 7 

Because of the pos,tlve correlation between the two heterogeneity components, a cost- 
bonus appears m the absence of cla,ms, but ~t ~s very low. 

We now compute bonus-malus coefficients for policyholders that reported one 

claim They are a funcuon of the cost-residual Icres7 = log(q ) -  :1/3 ( cl Is the cost of 

the clam1, and z I represents the pollcyholder's characteristics when the claim oceu- 

red), and of the frequency premmm From equations (5) and (7), we have 
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U~ 2 - 2 U c l c r e s  r 
V7 = - Z  A' exp(Un ) + Un 2d.2 

! 

E l c r e s ~  

^~ ~ . 0  ^ , ;  3588 
¢ 7 - = c r  2 - V c c  - ' ' j  v c - 0.166=0.861 ( 

n 3493 

We recall that the bonus-malus coefflclents on frequency, expected cost per claim and 
pure premium are respectwely equal to 

Elexp(U n + VT)] E[exp(U( + V 7 )1 E[exp(U n + U c + Vr) ] 
• ^ 

E[exp(U,,)] ~:[exp(Vr)] ' E[exp(Uc)] E[exp(Vr) ] ' E'[exp(U,, + Uc)] E[exp(Vr)] " 

We obtain for example (the bonus-malus coefficients are given in percentage) 

TABLE 5 
B O N U S - M A L U S  COEFrICIEN'TS ( P O L I C Y H O L D E R S  HAVING REPORTED ONE CLAIM) 

frequency coefficient frequency premium 
l o r e s  7 0.05 O. I 0.2 0.5 1 2 

-I 1474 142 I 133 1 1139 945 734 
-0 5 148 4 143 133 8 114 5 95 73 7 
0 149 3 143 7 134 6 115 95 3 74 
05  150 I 1446 1353 1156 957 743 
I 151 145 6 136 116 I 96  2 74  6 

a v e r a g e  c o s t  p e r  claim coefficient frequency premium 
l c r e s  T 0.05 0.1 0.2  0 .5  I 2 

- I 84  8 84  7 84  6 84  3 84 83 5 
-05 92 919 91 7 914 91 905 
0 997 99 6 99 5 99 I 98 7 98 I 
0 5 108 I 108 107 8 107 5 107 106 4 
I 117 I 117 1169 1165 116 1154 

p u r e  premium coefficien! frequency premium 
I c r e  s 7 0 .05  O. i 0 .2  0 .5  1 2 

-I 1246 120 1122 956  789 609 
-05 136 1 131 1223 1042 86 663 
0 1484 1427 1333 1135 935 722 
0 5 161 8 155 7 145 4 123 7 101 9 78 5 
I 1766 170 1584 1347 III  854 

Because of  the positive correlauon between the two heterogeneity components, the 
frequency coefficients increase with the cost-residual, which is related to the severity 
of  the claim In the same way, the coefficients related to average cost per clmm decre- 
ase with the frequency premmm, but these variatmns are very low Because of  the 
correlation, the coefficients related to pure premmm are not equal to the product of the 
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coef f ic ien ts  for f requency and expec ted  cost  per clatm. Here also, d i f fe rences  are very 

low 

4. CONCLUDING REMARKS 

We recall the mare results obta ined m this paper  

• The  u n e x p l a i n e d  h e t e r o g e n e i t y  wi th  r e spec t  to the cos t  d l s t r ibu t tons  d e p e n d s  

s t rongly on the choice  o f  the dis t r ibut ion famdy.  

• Besides,  it is revealed more  s lowly throughout  t tme than for number  dis t r ibut ions 

• On the work ing  sample ,  the co r re l anon  be tween  the he te rogene i ty  c o m p o n e n t s  on 

the number  and cost  d is t r ibut ions  is very low. 

In the long run, It would  be des t rable  to relax the assumpt ion  o f  l nvanance  o f  the hete- 

rogene i ty  c o m p o n e n t s  with respec t  to t ime Because  of  this, mvar i ance ,  the age o f  

c la ims has no inf luence on the bonus -ma lus  coef f ic ien ts  Now,  the fact that an ancient  

claim has the same inf luence on the coef f ic ien ts  that a recent  one is ques t ionable .  The 

a l lowance  for an mnova t ton  at each per iod for the he te rogene i ty  c o m p o n e n t s  would  

raise new problems, and would make ~t necessary to observe pohcyholders on many 
periods. 
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EXCESS OF LOSS REINSURANCE AND THE PROBABILITY 
OF RUIN IN FINITE HORIZON 
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ABSTRACT 

The upper bound provided by Lundberg 's  inequahty can be improved for the probabl- 
hty of rum in fimte horizon, as Gerber (1979) has shown This paper studies this upper 

bound as a functmon of the retention hmH, for an excess of loss arrangement, and com- 
pares it with the probability of  ruin 

KEYWORDS 

Excess of loss, reinsurance; fimte time rum probability 

1 INTRODUCTION 

Several studies about the effect of reinsurance on the ultimate probabili ty of ruin (for 
example Gerber (1979), Waters (1979), Bowers, Gerber, HJckman, Jones and Nesbltt 

(1987), Centeno (1986) and Hesselager (1990)) have concentrated their attention on 
the effect of reinsurance on the adjustment coefficient. 

Centeno (1986) has used an algorithm suggested by Panjer (1986) to calculate the 
probabihty of ultimate ruin, incorporating reinsurance, to show with some examples 
that the behavlour of this probability and Lundberg ' s  inequality are very similar, both 
considered as funcuons of  the retention level, provided that the mltml reserve is not 
too small This is consistent with the figures obtalnded more recently by Dickson and 
Waters (1994) for some other examples and using a different algorithm for the proba- 
bility of  ultimate rum In this paper, Dlckson and Waters have also calculated finite 
horizon rum probabdmes,  after reinsurance, by adapting the algorithm of  De Vylder 
and Goovaerts  (1988) and by an approxmaauon provided by the translated Gamma 
process Through an example they show that m continuous time for an excess of  loss 
arrangement,  the optimal retention limit m finite horizon can be quite far from the 
opumum value m infinite horizon. Of course, the sequence of optn'nal retention levels 
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converges to the mfimte hor,zon opumal level as the t,me increases But, for a fin,te 
horizon, Lundberg's inequality can be improved The purpose of this paper Is to show 
how we can use this improvement to redefine the "opumal" retenuon hm~t for an 
excess of loss arrangemenl, and to compare thls inequahty with the ruin probability in 
finite horizon and continuous time for some examples Of course, the same method- 
ology can be applied to proport,onal reinsurance provided that, the moment generating 

functmn of the individual cla,m amounts d~strlbuUon exists 

2 A S S U M P T I O N S  AND PRELIMINARIES 

In the classical r, sk process, the insurer's surplus at time t is denoted U(t), with 

U(t) = u + ct - S(t), 

where u ,s the Inlt,al surplus, c is the premmm income per umt of nine, assumed to be 
received continuously, and S(t) ,s the aggregate claims occurred up to ume t. {S(t)}, >_ o 
is assumed to be a compound Poisson process and without loss of general,ty the Pois- 
son parameter is assumed to be 1, which means that "trine t" IS the interval during 
which t claims are expected Let G(x) denote the individual claim amount distribution 

function and again without loss of generality, let us assume that this distribution has 
mean I, wh,ch means that the monetary unit chosen ~s the expected amount of a claim 
We further assume that G(0) = 0, with 0 < G(x)  < 1 for x > 0 and also that G is such 
that its moment generating function exists for x < T for some 0 < T < ~,  and that 

hm E[e rx ] oo = . (1) 
r---~ 7 

We assume that c is greater than 1, i.e. it is greater than the expected aggregate clmms 
in each period. Let 0be  such that c = I + 0 

The ruin probability before time t is 

~(u , t )  = Pr{U(s) < 0 for some s,0 < s < t}. 

Of course ~ (u, t) Is not greater than the ultimate probabfl W of ruin, denoted as ~ (u). 
Therefore the upper bound given by Lundberg's  mequahty is valid for finite horizon. 
Gerber (1979), pp 139, has shown that this bound can be maproved in finite horizon 
He proved that for u > 0 and t > 0 

_< ,}, <2) 

where Mx(r)  Is the moment generating function of the individual claim amounts and R 
denotes the adjustment coefficient, defined as the umque positive root of 

M x ( r  ) -  I = cr (3) 

In the following we refer to express,on (2) as Gerber 's inequality After an integration 
by parts, inequality (2) can be written as 

~(u , t )  < mm,ie ?, (4) 
"~R t J 
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and the equation defining the adJustment coefficient as 

'~ e "  (1 - G ( a ) ) d r  = c (5) 

Now suppose that the insurer has an excess of  loss arrangement such that when a 

clalnl X occurs he ~s responsible for rmn {X, M}, paying m return per unit of  time a 
reinsurance premium ~(M), which we assume to be calculated according to the expec- 
ted value principle with loading coetficlent ~, i.e. 

c(M) = (I + ~)j '~(I  - G(x))dx (6) 

Assuming that the reinsurance premiums are prod continuously, the insurer 's  surplus 
at time t is 

N(t) 
U(M;t) = u + ( c -  c(M))t - ~ mm {X~, M}, 

/I.=l 

where N(t) denotes the number of clmms up to time t. The rum probabdlty before t~me 
t i s  

tlt(M,u,t)= Pr{U(M,s)<O for some s,0 <,s _<t}. 

After thin arragement Gerber ' s  inequality becomes 

f . . . . . .  t[J~te~(t-G(,))d~-(~-c(M))]] 
~(M;u,t)_< mm ,ie ?, (7) 

r->R(M)[ J 

where R(M) denotes the adJustment coefficient after reinsurance, i e the umque posi- 
tive root of 

j.~.t (I - G(x)) = c - c(M), (8) e p~ dx 

when it exists or zero otherwise. Such a root exists if and only ff the expected profit 
after reinsurance is posmve 

We know that the value of M that maxlmises the adjustment coeffictent, when the 
excess of loss reinsurance premmm is calculated according to the expected value prin- 
ciple with ~ > O, is such that 

1 
M = --ln(1 + ~), (9) 

R 

(see for example Waters (1979)), nummmmg then the upper bound provided by Lund- 
berg 's  inequahty. 

In the next section we wall study the problem that consists in choosing M m such a 
way that the upper bound provided by (7) ts mmlm~sed 
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3. THE PROBLEM AND ITS SOLUTION 

We define as "optmml" retention the value of M that mmm~lses the upper bound of the 

probability of  ruin given by (7). We can write (7) as 

~(M;u , t )  _< exp(\~_>R{M) f ( r ,M,u , t ) ) ,  (10) 

where 

Ill' - G(x))dx- -c(M))J (II) 
3 

] ( r , M , u , t ) = - r u + r t  e ~' (I (c 

In the next result we will study the condition under which (I 1), as a function of r, 
possesses a minimum 

Result 1 
(t) For each M > O,f(r, M: u, t), defined by (11), for r > 0, has a local mlmmum and Jt 

is unique if and only if the expected surplus at t is positive 
(ii) Suppose that the expected surplus at time t is positive and let ~(M) be the value of 

r at which the local mlmmum of f ( r ,  M; u, t) occurs. Then ~(M)_> R(M),  where 
R(M) is the unique positive root of (8) if it exists or zero otherwise, if and only If 

L../. R(M)[MxeR{M)~(I - G(a))dx. (12) _> 
! JO 

Proof: 
O) It Is clear that for M > 0 

lira f ( r ,  M,u, t) = 0 
r--~O 

and, by assumption (1), that also for any M > 0 

lira f ( r ,  M;u,t)  = +oo. 

On the other hand 

j o M f - u + t  e r ~ ( l - G ( x ) ) c . ~ - t ( c  - c ( M ) ) + r t  xe~( l -G(x ) )cLr  (13) 
Or 

and 

c~2f IO M M f 2 r~ 
= 2 t  x e r ' ( l - G ( x ) ) d x + r t J o  x e ( I - G ( x ) ) d x .  (14) 

c0r 2 

As (14) is smct ly  posmve for any M > 0, thenf(r ,  M; u, t) will have a minimum if 
and only if the limit of (13)  is negative as r + 0 But 

r--sO ~ r 

which is negative ff and only if the expected surplus at time t is positive 
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(It) ~(M) IS the solution of 

8 f  =0, (15) 
8r 

with 8f/8 r given by (13) It IS clear that ;:(M) will be greater than or equal to R(M) 
if and only if c)ffc)r is non positive at the point r =  R(M), I e if and only if con+-  
tion (12) holds 

Let M 0 be the m i n i m u m  of the values for which the expected surplus at rune t is non 
negative, i e. 

I [ 1} = _ (I - G(x))d~ _>0 (16) M 0 min M M > 0 a n d u + t  c - c ( M ) -  

Note that M o will be zero if and only if uh _> ~ - 0 Then the fol lowing corollary fol- 
lows from the previous proof 

C o r o l a r y  1.1 For each M > M o, 

[ e f(?(M)'u't'M) if t_t > R( M)~:  xeR(M}x ( 1 - G( x))dx 

~(u,t;M)_< l t Jo (I - G(x))dx (17) e f(R(M}'u't 'M) I f  u _< R(M)r M xek~M) , 
t 

where R(M) is the unique  posit ive solut ion of (8) if it exists or zero otherwise and 
~(M) is the unique posiuve sohltion of 

M e r~ f~,,t 
f (I - G(.Q)dx - (c - c(M)) + r xe~'(I - G(x))dx = u-. (18) 
a0 ! 

Hence we can conclude  that for some values of M It will be possible to improve the 
upper  hound given by Lundbe rg ' s  mequahty ,  which imphes  that in some cases the 
value of M that min lmises  the upper hound provided by Gerber ' s  inequal i ty  is diffe- 
rent from the value of M that maxlmlSeS the adjustment  coefficient As this max imum 
IS attained at the unique solution of (8) satisfying (9) we can conclude that this value is 

different from the mlnlmlser  of Gerber ' s  inequali ty if and only if 

u [ ~ ' . ( ' + ~ )  
- > R* xeR''(I -- G(x))d~, (19) 
l J0  

where R* is the unique solution of 

f~ln('+~)e'~(I-G(x))d., = c -  c(-Ir In(I + ~) ) (20) 

Let us study the behavtour  of  Gerbe r ' s  bound as a funct ion of  the retent ,on hml t  
Notice that 
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rain I / t ( u , t ; M ) < e x p ( m l n  mm f (r ,M;u,t))  
M>M o ~ M~'M o r>R(M) 

(21) 
= e x p (  rain m,n f (r ,M;u, t )) .  

~.r>-R(M) M>_M o 

Differentmtmgf(r ,  M, u, t) with respect to M and considering (6) we get 

aT = r t ( l -  G(M))(e 'M - (1  +~)), (22) 
OM 

and dffferentmtlng twice 

02 f rt[rerM(i_G(M))+((i+~)_eRM)g(M)]. 
OM z - (23) 

which imphes that the first derivative is zero ff and only if 

M = 1_ In(I + ~), (24) 
r 

and that the second derivative is positive whenever (24) holds This means that for 
fixed r, u and t, fir, M, u, t) has a local minimum, which ~s umque and attained at the 

point m =-1 In(I +~) .  
r 

1 
Let r o = - ~ - l n ( I  + ~)wlth Mo gwen by (16). (Note that ro wdl be finite if and only 

if u/t < ~ - 0.) 
So, minimising fir, M; u, t) for r > R(M) andM > M 0, is eqmvalent to mlnlmlsmg 

f ( r , - t  ln(I + ~),u,t) for R* < r <  ro, where R* is the umque solution to (20) 
r 

Differentiating 
r 

ff(r, 1_ ln(I + ~), u, t) with respect to r we get 

-~r f ( r ' l  ln(l + ~);u,t) = -u + t f l  ln't+~'err -G(x))dx 

+rt xe ( I - G ( x ) ) d x ,  
.tO 

(25) 

and differentiating twine we get 
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c~ 2 r-I ln(l+'~) r t  ~, 1 
f (r ,  r ln( l+~) ,u , t )  = 2tJo xe u - G ( x ) ) d x  Or 2 

r - I In( l+~)  " r~ 
+rtJo x ' e  ( 1 -  G(x))dx 

(26) 

f [ I n ( l + ~ )  2 r r  . . . .  
= tj~ x e ao(x), 

which is positive, implying that f ( r ,  l- ln(I +¢),u,t) ts a convex function of r That the 
F 

three terms sum to the right hand side of  (26), can be easily checked, by integrating by 
parts this last expression Hence we can conclude that there is at most one solution to 

O f(r, lln(l+~);u,t)=O -57 
1 

and that when it exists it is the global nunmlum of f ( r , - ; - In( l  + ~ ) , u , t ) .  
r 

But on one hand 

hm f(r,-I ln(l + ¢),u,t) = O 
r--~O \ r 

and 

Lffr,2-1n(m + O, < hm O. 
r - - 4 0 8 1 "  ~ r ) 

On the other hand, if u/t < ~ -  O, then r o will be finite and 

f Mo 
lira f ( r , / l n ( I  +~) ,u , t  = rotJo (e '° '  - 1 ) ( 1 -  G(x))dx > 0 

r-'--> r o k F 

and if u/t >_ ~ -  0 then 

r - 4  r o r---~ r~ \ r 

= h m  ( - r ( .  - I ( ¢ -  0 ) ) )  = 4 ,  
r---~ r~ 

(27) 

so we can state the following result 

Result 2 
If ult _> ~ -  0 then the tipper bound to the rum probability before ume t, gwen by (10), 
attains its minimum at M = 0 

If u/t < ~ - / 9  then the upper bound, considered as a function of  M has an absolute 

__1 ln(l +~)  with r* = m l - n l m u m  w h i c h  is a t t a i n e d  at the p o i n t  M = r ,  

max(7, R*) where 7 is the soluuon to 
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I ( (1 "~'~ /'-I In(l+~) 
jo'"('+~)e"(l-G(x))~r - c -c  ; ln( l+~)JJ+rJo xe"(l-G(x))~t~=£(28), 

and R* is the umque solution to 
I ~:ln(l+¢)er~(l-a(x))~c=(l+O)-(l+~)f~ln(l+~)(l-a(x))dx, (29) 

if such a root exists or zero otherwise. 

4. EXAMPLES 

In this section we gwe some examples for the problem studmd in the previous section 
and compare the values obtained for the upper bound given by Gerber's mequahty 
with the values of Lundberg's bound and the values of ruin probability m finite hori- 
zon. 

Example 1: Let us consider first the case of exponential individual claim amounts, i e 
G(x)  = I - e-' for x > 0. Then the excess of loss reinsurance premium is c (M)  = 
(1 +) eMand 

M o = - l n ( U + t O 1  

Equation (8) defining the adjustment coefficient R(M) is, in this case, eqmvalent to 

(1 - e - ( ' - ~ ) M ) / ( I  -- r )  = ( l  + O) - (I  + ~ )  e - M  , ( 3 0 )  

and equation (18) definmg >(M) is equwalent to 

( I r / (  ) r [ ] 
_ + - -  i_e_Cl_r) M _ Me_( j_ , )M_ ( l + 0 ) _ ( l + ~ ) e _  M = u  (31) 

1 r (I - r) 2 I - r t 

>(M) wall be greater than R(M) if and only if 

> - (32) 
t l - R ( M )  U 1 - R ( M )  

Equations (30) and (31) can be ~olved for each M by standard numerical techniques 
given values of 0and 
l f u / t  < ~ - 0the upper bound to ~(M; u, t) gwen by (10) is attained at the point 

M = - k l n  (1 +~) (33) 
r ¢. 

with r* = max ( 7,  R*) where ~ is the solution to equauon (3 I) with M substituted by 

the right-hand side of (33) and R* is the solution to equation (30) again with M sub- 
stituted by the right-hand slde of  (33) 
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Let 0 = 0 2 and ~ = 0.4. In this case the value of M that mmml l ses  the upper bound 
provided by Lundberg ' s  inequahty  is M = 1.486, which gives a value for the adJust- 
ment coefficient of  R* = 0 226466 When  we mmlmise  the upper  bound provided by 

Gerber ' s  inequali ty we get a different solution for the excess of loss re tenuon hmlt  ~f 
u / t > 0.12075, the solution being M = 0 if u / t _> 0.2. Table  I gives the optimal M for 
different values of u / t 

TABLE 1 

'OPTIMAl.' RE'I ENTION AS A FUNC'[ ION OF toll, WITH CLAIM AMOUNTS EXPONENTIALLY DISTRIBUTED 

u/t 0 125 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 2  

M 1427 I 357 I 219 1078 0 9 3 2  0 7 7 9  0611 0 4 1 2  0 

1 E+O0 - _ ~  . . . . .  = . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  = :  . . . . . . . . .  = . . . . . . . . . . . . .  

: ::::: ::::::::::::::::::::::::: Lundberg's Bound :_!:_: 

"~::3 1E 02 I :  iI::::: :::::::::]::::::::::::::LPr::ab:lity of Ruin I -i::: 

"N 

0 1 2 3 4 5 
Retention Level 

FIGURE ] CLAIM AMOUNTS EXPONENT1AI.I.Y DISTRIBUq El) 

Figure 1 shows calculated values of I/t (M, u, t), Gerber ' s  upper bound and Lundberg ' s  
upper bound for u = 30 and t = 200 
Table  2 gwes  the values attained by these funcuons  at the m l m m u m  of  each of  them 
(rounded to two decimal places) 
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TABLE 2 

'OFrl IMAL' VAI.UEq WI'I H CI AIM AMOUNTS EXPONENTIALLY DISTRIBUTED 

M ~A/M;30,200) Gerber'~ bound Lundberg's bound 

0.83 0 2 1 8 x  lOt OlOI x 102 0 2 5 2 x  I01 
1.08 0 2 5 7 x  107 0 8 9 6 x  IO 3 0 2 1 9 x  IO 2 
1.49 0442  x 10s 0 104 x 102 0 112 x 102 

The efficiency measure defined by Dickson and Waters (1994) goes from 49% (= 
V(0  83;30. 200)/lff(l 49, 30, 200)) for the mlntmtser of Lundberg 's  bound to 85% (= 

(0.83,30, 200) /N(I .08 ,  30, 200)) for the mmimlser  of Gerber ' s  bound. 
The probabilit ies,  in all the examples,  were calculated using the algorithm of  De 

Vylder and Goovaerts (1988) as re-scaled by Dickson and Waters (1991) and adjusted 
to take into account reinsurance 

We started by dlscrettzlng the mdtvtdual claim amounts (before reinsurance) on 
1//3, 2//3 . . . . .  usmg the method suggested by De Vylder and Goovaerts  (1988) Then, 
for each value of M we have calculated the net premium (after reinsurance) m the new 
monetary untt, after whtch we have calculated the dtstrlbutton functton F of the aggre- 
gate claim amounts after reinsurance m a period of  tm~e with the rescaled Polsson 

parameter (in this case - with t = 1 - the inverse of the net premium). In this way the 
rescahng parameter depends on the value of  the retention. 2 

Then we have used the recurslon formula 

( t ( w ,  1) = 1 - F(w + 1) ,  w _< i7 + (fi - 1 ) ,  

w+l  

~(w ,n )  = I - F ( w + l ) +  E f j ~ t ( w + l - j , n - I ) ,  w<_ ~ + ( ~ - n ) , n  =2 ,  ,fi, 
j=0  

where ~ = u/3 and fi = {tP} where P denotes the net premtum in the new monetary 

unit and {x} denotes the least mteger greater than or equal to x 
We have used the approximation 

with ~ t ( w - I , n )  to be zero tf w ts zero, as suggested by De Vylder and Goovaerts  

(1988), for probabilities m continuous time 

TABLE 3 

'OPTIMAL" VALUES WITH CLAIM AMOUNTS PARETO DISTRIBUTED 

M IlKM;30,200) Gerber's bound Lundberg's bound 

0.83 0 1 0 2 x  102 0 5 4 9 x  102 I000  
1.03 0 109 x 10 z 0523  x 102 0644  
2.33 0 3 5 6 x  102 0 9 7 7 x  102 0013  

2 Note that w,th th,s reqcahng we are resmcted to evaluate the rum probabdmes for a posmve net 
premium 
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As tP may be not an integer we have used the following interpolation to calculate the 
probabilities of the original process 

~ ( M , u , t )  _= ~(u13,tP) _= ({tP} - tP)~(u13, ltP} - I )+  ( t P - ( { t P }  - l))~(u13, ltP}) 

In the calculauons of  Table 2 we have taken 13= 100 and the control parameter, ~, was 
set at 3 x 10 -9 This parameter is used for the calcnlatlons in the De Vylder and Goo- 
vaerts algorithm (see De Vylder and Goovaerts  (1988), p 7) For the calculations of  
the ruin probabilities necessary to perform Figure 1 we have used 13 = 20. 

E x a m p l e  2: Consider  now the case where G(x) = I - (I +x) -2, i e. ind,vldual claims 
follow a Pareto (2,1) distribution. Let 0 =  0 2 and ~ = 0 4 as In the prevmus example 
In this case the equauons defimng R(M) and ?(M) require numerical calculations of  
integrals of  the kand 

I ~  (I - G(x))dx  e r~ 

Instead of  using standard numerical techmques to calculate them, we have calculated 
R(M) and ?(M) based on the discretlzed dlsmbutmn.  Figure 2 shows the rum proba- 

blhty before time t = 200, for tt = 3 0 ,  and both Gerber ' s  and Lundberg 's  bounds 

0 

P. 

0.1 

~!:.:.I!:'!:-5!:_:..:!L~:.:':_:.!L:!_::.!E p~ob~b,ity of R~io :_!57:.:':-_--_:~ 

o 

o ool t :----: 
0.0 1.0 2.0 3.0 4.0 5.0 

Reterrtior Level 

FIGURE2 CLAIM AMOUNTS PARE~IO DISTRIBUTED 

Table 3 eqmvalent  to Table 2, but for the Pareto distribution The figures are even 
more indicative. 
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5. CONCLUDING REMARKS 

As we have already mentioned, the optimal retention hmlt, when the probability of 
rum in continuous time w~th a fimte horizon ~s mlnlmlsed, can be quite far from the 
optimal value when the probabdlty of rum m continuous time with an infinite horizon 
IS considered However, the calculations of  the ruln probabilities in finite horizon are 
very time consuming, making this cnterlon less appealing. 

Gerber's bound is computatlonally much easier to deal with than the rum proba- 
bdlty and in the examples considered ~t provides a solution that ~s very close to the 
solution obtained when the probability of ruin is used. The disadvantage of using 
Gerber's bound is that this bound is not always an improvement on Lundberg's bound 
- It depends on the value of  the ratio of u to t Our advice would be to use Gerber's 
bound, if it provides an improvement to Lundberg's bound, and use an approximation 
such as that provided by the translated Gamma process otherwise 

We have shown that when the reinsurance premium calculation principle is the ex- 
pected value principle, Gerber's bound has a umque minimum. However, this is not 
true m general. When th~s is not the case, m all the examples considered, the proba- 
blhty of ruin had a similar behavlour Some care should be taken in these cases. 
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CREDIBILITY THEORY AND GENERALIZED LINEAR MODELS 

J A NELDER ~ and R J VERRALL z 

ABSTRACT 

Thus paper shows how credibil i ty theory can be encompassed within the theory of 
Hierarchical  Genezahzed Linear Models.  It is shown that credtbdnty est imates are 
obtained by including random effects m the model. The framework of  Hierarchical 
Generalized Linear Models allows a more extensive range of  models to be used than 
straightforward credibil i ty theory. The model fitting and testing procedures can be 
carried out using a standard statistical package Thus, the paper contributes a further 
range of models which may be useful m a wide range of  actuarial apphcations, inclu- 
ding premmm rating and clmms reserving 

KEYWORDS 

Credlbnhty Theory, Hierarchical Generahzed Lmear Models; Generalized Linear Mo- 
dels; Premium Ratmg Random-Effect Models 

I INTRODUCTION 

Credtbihty theory began with the papers by Mowbray (1914) and Whitney (1918). In 
those papers, the emphasis was on deriving a premium which was a balance between 
the experience of  an mdwldual  risk and of a class of  risks Buhlmann (1967) showed 
how a credibil i ty formula can be derived m a distr ibution-free way, using a least- 
squares criterion. Since then. a number of papers have shown how this approach can 

be extended'  see pamcular ly  Buhlmann and Straub (1970), Hachemeister  (1975), de 
Vylder (1976, 1986). The survey by Goovaerts  and Hoogstad (1987) provides an ex- 
cellent introduction to these paper~. 
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The underlying assumption of  credlb~hty theory which sets it apart from formulae 
based on the individual risk alone is that the ask  parameter Js regarded as a random 
variable This naturally leads to a Bayesmn model, and there have been a large number 
of papers which adopt the Bayesian approach to credlbihty theory: for example Jewell 

(1974, 1975), Klugman (1987), Zehnwlrth (1977) Klugman (1992) gives an mtroduc- 
uon to the use of Bayesian methods, covering particularly aspects of  credlbd~ty theo- 
ry. A recent review of  Bayesian methods m actuarial science and credlb~hty theory ~s 
given by Makov et al (1996) 

It can be shown that, under statable assumptions, a cred~bthty formula can be deri- 
ved as the best hnear approximation to the Bayestan estimate, using a quadratic loss 
function Jewell (1974) showed that for an exponential  famdy of d ls tnbuuons,  the 
cred~blhty formula is the same as the exact formula, so long as the conjugate prior 
dJstnbuuon and a natural parametnsatton is used This result will be derived m a diffe- 
rent way m section 3, m order to place the basic model of  credtbfl~ty within a w~der 
framework. The choice of structure for the collective and the parametertsatlon will be 
discussed m more detail. Since exponenual  families form the basis of  General ized 
Linear Models  (GLMs) - see McCullagh and Nelder (1989) - it is natural to seek an 
extension of  credibil i ty theory encompassing the full range of models which can be 
formulated as GLMs.  This is particularly apposite as GLMs have many very natural 
apphcauons  m the actuarial field'  see, for example Renshaw (1991), Renshaw and 
Verrall (1994) This wdl also make possible more apphcatJons of credibility theory, 

The main purpose of this paper is to show how credlblhty theory can be incorpora- 

ted into the general framework of GLMs and implemented m the statistical package 
Genstat Although the formulation of the credibility model is similar m many ways to 
the Bayesian approach, our approach is hkehhood-based rather than Bayesian. The 
dispersion parameters will be estimated directly from the data without specifying prior 
dtstribut~ons No prior estimates for the parameters need to be supphed. All assump- 
tions used in the model can be checked using, for example, appropriate residual analy- 

ses Recent advances m the statistxcal literature on GLMs allow unobserved random 
effects to be estimated along with the parameter vector m the linear predictor A useful 
recent paper is Breslow and Clayton (1993) which covers the theory of  generahzed 
linear mixed models (GLMMs) GLMMs allow the inclusion of normally distributed 
random effects and have been applied to a wide variety of statistical problems We use 
the theory of  Lee and Nelder (1996), which develops hierarchical generahzed hnear 

models (HGLMs).  HGLMs also allow the inclusion of  random effects, but these are 
not restricted to be normally dlstnbuted Pure random-effect models, in which no fixed 
effects are included m the hnear predtctor, are known m the actuarial hterature as 
credlblhty models. They form one part of  a much w~der class of  models which have 
many potential apphcauons to actuarial data 

Thus, the purpose of this paper is further to umfy the actuarial theory; to show how 

modern statistical methods can be used to enable credibili ty theory to be applied in a 
standard statistical package, to allow extensions of basic credibil i ty theory and to 
show how the assumptions made can be checked This last point is important, since we 
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regard many aspects of actuarial work as exercises is statistical modeling, rather than a 
dogmatic application of nsk theory models 

It should be noted that the theory can be applied to models that specify only the 
mean and variance functions, using quasMlkelihood (Wedderburn, 1974, Nelder and 
Preglbon, 1987) - see section 5 

The paper is set out as follows. Sectmn 2 contains a brief introduction to GLMs and 
derives some results which will be used elsewhere. Section 3 shows how cred|b|hty 
theory can be treated within the context of HGLMs Section 4 outlines more general 
HGLMs. and how they are likely to be used for actuarial data Section 5 outhnes some 
extensions to the models in sections 3 and 4 

2 I N T R O D U C T I O N  TO G L M S  

This section contains a brief introduction to GLMs, and derwes some of the key re- 
sults which will be used later in the paper. A complete treatment of the theory and 
application of GLMs can be found in McCullagh and Nelder (1989). 

The basis of GLMs is the assumption that the data are sampled from a one- 
parameter exponential family of distributions We first describe these and some of 
their fundamental properties 

Consider a single observation y A one-parameter exponential family of dlstr|bu- 
tlons has a Iog-hkehhood of the form 

yO - b(O) 
+ c(y, cp) (2 I ) 

cp 

where 0 Is the canonical parameter 

and ~ is the dispersion parameter, assumed known 

Haberrnan and Renshaw (1996) review the application of Generalized Linear Models 

m actuarml science, and include a section on loss distributions. In actuarial apphca- 

tlons, many distributions belonging to one-parameter exponentml famd~es are useful 
However, Haberman and Renshaw (1996) show how it is also possible to fit certain 
heavy-taded distributions using Generalized Linear Models 

Some examples of such families are given below It is straightforward to show that 

db(O) 
p = E(Y) - (2 2) 

dO 

dZb(O) 
and V a r ( Y ) -  ~o (2.3) 

dO 2 

dZb(O) 
Note that Var(Y) is the product of two quantities dO 2 

tlon and depends on the canonical parameter (and hence on the mean) We can write 
this as V(]d), since equation (2 2) shows that 0 is a function of p. 

- -  is called the variance func- 
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d2b(O) 
Thus V(/3) = dO 2 (2 4) 

In actuarial applications, it is possible to include determmlstm volume measures m the 
def inmon of Var(Y). A GLM may be defined by specifying a distribution, as above, 
together with a link function and a hnear pred,ctor. The link funct,on defines the rela- 
tionship between the linear predictor and the mean. The hnear predictor takes the form 

17 = X/5 (2 5) 

where ,/3IS parameter vector 
and X is defined by the design. 

For a single observat lon.X is a row vector, and for a set of observat,ons, X is the de- 
sign matrix 

The hnear predictor is related to the mean by 77 = g(~) The function g is called the 

link function, and the special case g(~)  = 0 i s  called the canonical hnk funcuon 
By way of  dlustranon, the Iog-hkehhoods for some common distributions are given 

below 
(t) Normal  

/Iv - ~ 3, 2 I iog(2Jr0. 2 ) 
The log-hkehhood is 0.2 20 .2 2 

Thus, 0 = p. and the canonical link functmn is the identity function. 
02 y2 ] 

b ( 0 ) =  - -2  and c(y, 0) - 2 0 . 2  log(2zr0. 2) 

V(/.J) = 1 and ~p = 0.2 

(ii) Poi~son 
The log-hkehhood is y log/J - tt - log yr 
0 = log u and the canomcal hnk is the log function 
b( O) = e ° and c(y, ¢p) = - log y 
V(la)=.,u and ~o= I 

(iti) Binomtal 

Suppose R ~ Binomial (m, 1.1). Define Y = --.R Then the log-likelihood is 
m 

y log  i ~ / j  - l og (1  - , u )  
, +,og//:v) 

?1l 

Hence 0 = log /.l , and the canonical link function is the loglt function 
1 - / /  

log( m / b(O) = log(l + e 0) and c(y, ~o) = \ m y j  
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I 
V(,u) = p(1 - ~)  and ¢p = - - .  

171 

Note that this parameterlsatlon may be unfalmhar because of the definmon of Y 

However, ~t enables us to give a coherem theory m the following section 
,9 

(tv) Gamma (with mean p and variance ~_.C__). 
9 

y I 
- -  + l o g -  

T h e  Iog-hkehhood as ,u /.t + v log y + v log v - log F(v) 
1 

I 
0 = - - -  and the canomcal I.nk as the reciprocal function. 

b(O) = - log( -0 )  and c(y, ~o) = v log y +  v log v - log V(v). 

V(p) =/.t 2 and ¢p = v -I 

This section has given a brief introduction to GLMs The following section shows how 
standard credlblhty theory can be apphed in this context Section 4 will show how 
more general models can be formulated 

3. THE B U H L M A N  M O D E L  FOR E X P O N E N T I A L  FAMILIES 

In this sect,on, we derive the credibili ty formulae for exponential families of distribu- 
uons, under the assumptions made by Buhlmann (1967) It IS possible to extend this to 
other models for example the assumptions of Buhlmann and Straub (1970) can be 
lncorpolated u~lng weight functions This section derives just the credibili ty formulae 
A brief dv;cusslon of the estmaatlon of the d~sperslon parameters is given m secUon 4, 

where the appropriate references are c~ted. 

Denote thc  data byy,j  fort  = 1,2, , t ; j =  1,2,  ,n,  Assume for the moment, as is 
common in credibili ty applications, that n, = k, 'v' /, but note that this restriction as not 
necessary for the derivation of HGLM~ 

Thus, t indexes the risks within the collective In credibil i ty theory, ~t is assumed 

that each risk has a risk parameter, which we denote by ~, for risk i 
The assumptions of the model of Buhlmalm (1967) are 

(i) The risks, and hence ~,, are independently, idenucally distributed. 

(u) % ~, are independently, identically distributed. 

We assume that y,j 4, is distr ibuted according to an exponential  family Define 

m ( ~ , , = E [ y  u ~,] Note that under the assumplions of  the model, E[y,j ~,] does not 
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depend on J. Hence the canonical parameter for observation y,j does not depend on j, 

and we assume that it can be wrmen as follows 

O~ = O(m(~, )) = O(u, ) (3 1 ) 

where 0 is the canonical link function and u, is a random effect for group t. Thus, for 
the standard credtbthty model, m(~,) = u, Define v, = 0 (u,); then, in this case, 

O; = v,, (3 2) 

Again, note that there is no j dependence here Note also that this also tmphes that 
Var(y,; I~,) does not depend onj  

This has defined the distribution of the random variable within each risk, conditio- 
nal on the task parameter. It is also necessary to define the structure of the collective - 
the distribution of {~, t = I, , t}. This is often done by defining a Bayesian prior 
distribution; here we use the same form of dlstnbutmn for the random effects, but do 
not perform a Bayesian analysts Instead, we defme a "hierarchical l ikelihood", h, 
which we maximize. 

We define the conjugate hierarchical generalized linear model (HGLM) by deft- 
ntng the kernel of the log-likelihood for O(u,) as 

atO; - a2b(O ~) (3.3) 

In the actuarial hterature, this distribution (the distribution of the random effects) ts 
known as the structure of the collectwe Note that we define the log-hkehhood of ~, 
imphcltly through that of O(m(~,)). We have condmoned on ~, through m(~,) = u,, since 
It ~s the latter that we wish to estimate, 

we may define a hierarchical log- From (3.3) and the dlstrlbutlon of y,j {,, 

hkehhood as 

I,J t 

~ ( Y , J O ; - b ( O ; )  I . . . .  
= - + c t y , j , p )  + alo, ' -a2b(O ~) 

~0 

(3 4) 

(3 5) 

When the distribution of both the data and the random effects is normal, this is Hen- 
derson's joint Iog-hkehhood (Henderson 1975). In other cases, it is an obvious exten- 
sion of the joint Iog-hkehhood. called the hierarchical log-likelihood We have now 
defined a hierarchical generalized hnear model (HGLM), in this case the conjugate 
HGLM In the particular case described m this section, the hnear predictor for y,j con- 

sists solely of a random effects term which is modelled in the second stage of the 
hkehhood, (3 2) It is possible to incorporate more structure into the model by inclu- 
ding fixed effects and generalizing the form of the random effects model However, m 
this section we are concerned solely with showing that the estimates obtained under 
the basic model described above are the usual credtblhty estimates Thus, we require 
an estimate of rn(~,) = u, The mean random effects {u, : t = 1 . . . .  t} are estimated by 

maximizing the hierarchical llkehhood, (3 4), as follows. 
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Usmg (2 2) 

cgb(O(u, )) 

Ov, 
- -  _ I I t .  

Hence 

&h 
Equating - - t o  0 gives 

o~', 

/( 

where y,+ = __~-,Yq 
j = l  

Hence 

0~-- = + al -- a2tll 
3=1 

3;+ - kh ,  + ~pa~ - ~ , 2 h ,  = 0 

/~, - Y , +  + q~a I 

k+~oa 2 

= Z y ,  + ( I  - Z)m 

(3.6) 

1 k a~ 
where ] : , = ~ y , + ,  Z - - -  and m = - - .  

" k + qxl 2 a 2 

Thus, we have shown that, with the choice of distribution for the random effects deft- 
ned m (3.3), and using the canomcal link function, the estimate of u, is m the form of a 

credtbihty estmlate provided E(m(~,)) = a l  This is straightforward to show, and was 
a 2 

also proved by Jewell (1974). The density of  u, Is propomonal  to 

ealO:-a2b(O:) 

Now c)e"'O:-a"b{O;)007 -- \(a I -- a 2 ~Ob(07))')Ca'O'-a2b(O:) 

= (cq - az ,n(~ ,  ))e ''°;-''2h~°;~ 

Integratmg over the natural range of 0 : ,  and assuming e " '°:-"2b~°;) is zero at the end 

points, we have 

a I - a 2 E [ m ( ~ ,  )] = 0. 

Hence, using (2 2), Elm(G, )1 = El . ,  I = c q  
a 2 

Thus, we have shown that the credibili ty estunate is the same as the esumate obtained 
using a conjugate HGLM wtth pure random effects. This shows that credtbthty theory 
ts closely connected to the statistical theory of random-effect models Of course, It ts 
possible to widen the scope of  the models considerably. Fixed effects terms can also 
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be included m the model, other hnk functions may be considered and the form of the 
random-effect models can be generahzed 

It is possible to formulate the pure random-effect model m another way, by inclu- 
ding a fixed effect which is constant for all the data This means that the overall mean 
ts estimated as a fixed effect and the randomeffects model departures from this overall 
mean There is no effect on the cred~bihty estimates, but the above derivation ~s, m 
some ways, closer to the actuarial theory 

The results m this section are closely related to those of Jewell (1974). The present 
approach differs m that it ~s not presented as a Bayesmn procedure, and the emphas~s 
is on the modelhng aspects encapsulated within Generalized Linear Models 

The estmlatlon of the dispersion parameters is discussed m section 4. This includes 

the estimation of ~ and of a~ and a2. It should be noted that if a constant fixed effect is 
included m the model, as outlined above, there ~s only one parameter to estmmte m the 
distribution of u, For this reason we adopt th~s approach henceforth 

By way of Illustratmn, we consider the four exponentml families outlined m section 
2 Note that we can derive the density of , ,  from the density of 0 (u,), defined m (3.3) 
The density of tl, is proportional to 

e.,O;_.:l.(o;) 30(u ,  ) 

c~g 

ealO~-a21'(O~ ) 

V(u, ) (3.7) 

(tt) N o r m a l  

The random effects have log-hkehhood whose kernel ts 
2 

IIt 
a l t l  t - -  _ _  a2 2 

DI l 
J e .  u ,  - N ( m .  0"02 ) al = ---5-, a2 = -ST and m = Elu, ] = a-L 

17~ 17 0 a 2 

( , )  Poisson  
u, has a hkehhood proportional to 
eal  log llt-a2ut 

U~ 

Hence u, - Gamma. parameters al and a2, and m = E[u, l = a ]  
0 2 

( m )  B m o m t a l  
u, has a hkehhood propomonal to 

log( u ,  - a ~  log exp a I k l - u ,  _ I - u ,  

u, (1 - u, ) 

J e t t ,  ~ Beta. paranaeters a~ and a2- a~. and 172 = Elu, ] = a l  
(/2 
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(iv) Gamma 
u, has a hkehhood proportional to 

exp(\ -alu, + a2 log u, ) 

2 
/H t 

I e u, - reverse gamma and m = E[u,] = a--L 
02 

Having shown that the estmmtes obtained using conjugate HGLMs for a simple ran- 
dora-effect model are the usual credibil i ty estimates, we now define a more general 
framework whmh encompasses credlbdlty inodels 

4 HIERARCHICAL GENERALIZED LINEAR MODELS 

Standard GLMs model differences between groups, paratnetnc varmnon and other 
effects as fixed effects in the linear predictor Random-effect models can be combined 
with standard GLMs m order to forlnulate models with both fixed effects and the 
random ettects of credibili ty inodels. To do this, we define an extended linear predic- 
tor for a single observauon as 

rf=rl+v (4 I) 
where q=X/3, asIn(25) 
and v ts a strictly monotomc function of u.v=v(u) 

When v = 0, (4.1) reduces to the standard linear predictor for GLMs. When 1"/= 0 and 
v = 0(u), we have the basis cred~blhty model described m section 3. 

The hmrarchlcal Iog-likehhood, (3.4), becomes 

h= y_l(/3,y,, ,,,)+ 
I ,J  t 

where v, = v(u,) 
The maximum hmrarch,cal hkel ,hood exumates (MHLEs) of /3  and u are obtained 

from the parr of  equations 

c)l___.~, = 0 and I=0/7 0 
0/3 &, 

whmh may be solved iteratwely using the procedures written by the second author for 
the statistical package Genstat 

We consider here the case when the canomcal link function ~s used for the fixed ef- 
fects and v = 0(u) In th,s case, equauon (3 I) for observation y,j becomes 

0,~ = O,j + O(u, ) (4 2) 

where G = X,fl 
0 ~s the canomcal hnk function 



8 0  JA  NELDERANDRJ VERRALL 

and X,j is the row from the design matrix for the fixed effects which relates to Yv 

The same log-hkehhood is used for 0(u,), as m (3 3) Then the kernel o f h  is 

t ~(y,~O,~ - b(O,~)) 

"J + ~ l (v , )  

~ ( y , j  - u~))x~,; 
Hence 3h _ ,.j (4.3) 

Z ( y ~ j  - u~ )) + ~,0a I 
Oh 

and _ _  = , , . t  - a2u , (4 4) 

where u~ = EIy,j u, ] = E[y,l ~, ], 

~ is the kth parameter in the fixed effects 

and &,~ is the kth entry of  the row vector X,j 

Note that m this case, unhke that m secnon 3, Ely,j ~, ] -7'= u, Instead, 

O(u,~ ) = O,j + O(u, ) (4 5) 

which imphes that ~ = u, when r/v = 0. 

We include the overall mean as a fixed effect and require that the random effects 
then have the appropriate mean (eg 0 for the identity hnk function). 

The d~spersmn parameters given the fixed and random effects are estunated by 
max~mlsmg the h-hkehhood after a statable adjustment. The adjustment, which results 
m an adjusted profile h-hkehhood, is necessary because the marginal maximum hkeh- 
hood esnmates may be btased. Further justifications for thts adjustment can be found 
m Cox and Reid (1987) and Let .,nd Nelder (1996) For the normal distribution, 
unbmsed esnmates are obtained ,4ors detads on estimation theory for random-effect 
GLMs can be found m McGdchrlst  (1994) and Schall (1991). 

The joint  estimates of  the mean effects (fixed and random) and the dlspersmn pa- 
rameters are obtained by iterating between the two sets of  estimating equatmns. These 
processes may be convemently carned out m Genstat, for which a set of  procedures is 
avadable from the second author. 

For the dis tnbunons dlustrated m section L the hkehhoods of the random effects 
are again approprmte, but the estimate wdl be different because of the difference bet- 
ween (3 1) and (4 2) 
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5 DISCUSSION 

It is possible to extend the class of  models to wluch these methods may be applied by 
specifying just the mean and variance functions This IS useful when greater flexibility 

Is required in the modelhng assumptmns For example,  Renshaw and Verrall (1994) 
show that the chain-ladder techmque m clmms reserving ~s essentially eqmvalent  to 
GLM with a Polsson likelihood and an appropriate linear predictor. By specifying just 
the mean and varmnce function, this model may be applied to a much wider class of 
data than is imphed by the Polsson assumptmn (which obviously lequlres the variance 
to equal the nean). This revolves the use of  extended quasl -hkehhood (Wedderburn 

1974, Nelder and Preglbon 1987). For HGLMs,  the equivalent extension is the exten- 
ded quasl -h-hkehhood,  in which the extended quast -hkehhood is used in the hierar- 
chical hkellhood This extension makes it possible, for example,  to include randoln 
effects in the chain-ladder linear model to allow a connection between accident years. 

HGLMs inay also be of use when a particular factor is hard to model parametrical-  
ly An example of  this, which has been inentloned above, ~s claims reserving, when it 
is inappropriate to model the accident years as completely independent, but a parame- 
tric relationship is also inappropriate. The same comment applies m motor premmm 
rating, when it IS usual to group a factor such as the age of  the policyholder.  Such a 
grouping may be inappropriate,  as it may be crude or doubtful because It  has been 
decided before the analysis of the data (for example,  according to the present rating 
structure). However, it is often inappropriate, because of computational and theroren- 

cal considerations,  to treat the ages as completely separate or to apply a paramemc 
model In this situation. HGLMs may be useful 

Apphcat lons  in life insurance include similar premium-rat ing situations as in ge- 
neral insurance, and also graduation theory The use of HGLMs for graduation would 
have some snTillarltles tO Whittaker graduation, which can be regarded as a GLM with 
a stochastic Ilncar predictor (Verrall. 1993). 
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CREDIBILITY IN THE REGRESSION CASE REVISITED 
(A LATE TRIBUTE TO CHARLES A HACHEMEISTER) 
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Wmterhur- Verswherungen 

ABSTRACT 

Many authors have observed that Hachemelsters Regression Model for Credlbdlty - ff 
apphed to simple linear r e g r e s s t o n -  leads to unstmsfactory credibili ty matrices they 
typically 'max up" the regressmn parameters and m particular lead to regression hnes 
that seem 'out of range' compared with both mdwldual and collectwe regression hnes 
We propose to anaend these shortcomings by an appropriate deflnmon of  the regres- 
sion parameters: 
- intercept 

- slope 
Contrary to standard pracnce the intercept should however not be defined as the value 
at time zero but as the value of the regressmn hne at the barycenter of tmle. With these 
definmons regression parameters which are uncorrelated m the collective can be esti- 
mated separately by standard one d~menmonal credibility techmques 

A slmdar convement reparalnetnzat~on can also be achieved in the general regres- 
stun case The good choice for the regression parameters Is such as to turn the design 
mamx into an array with orthogonal column,; 

1. THE GENERAL MODEL 

In his pioneering paper presented at the Berkeley Credibihty Conference 1974, Charhe 
Hachelnelstel introduced the lbl lowmg General Regression Case Czedlblhtg Model 
a) Descllpuon of individual risk r. 

risk quahty Or 
observanons (random vector) 

I XIr 1 

ASTIN BULLEIIN, Vol 27. No I 1997. pp 83-98 
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with distribution dP(Xr/Or) and where X w = observat ion of  risk r at t ime t 

b) Descript ion o f  col lect ive.  

{ 0 , ( r =  1, 2, . , N)} are l i d with structure function U(O) 

We are interested in the (unknown) 

individually correct pure premiums 11,(0r) = E[X, JO,] (7 = 1,2, . , n) 

112 ( 0 , ) / =  11(0, ) where 11,(0,) = individual pure premium at t ime t 
/ 

t11,,(o,)) 

and we suppose that these individual pure premiums fo l low a regression pattern 

R) 11(0r) = Yr'(Or), 

where 11(0,) - n-vector ,  ~(Or) ~p -vec to r  and Yr - n * p-matr ix  (= design matrix) 

Remark: 

The model  is usually applied for p < n and maximal  rank of  Y,, m practice p is much 

smal ler  than n (e g. p = 2). 

The goal is to have credibil i ty es t imator  l~(Or) for ]~(0,) 

which by hneari ty leads to the crediblhty est imator  ~ (0 r )  for 11(0r). 

2 T H E  ESTIMATION P R O B L E M  AND ITS R E L E V A N T  P A R A M E T E R S  AND SOLUTION 

( G E N E R A L  CASE)  

We look for 

k(Or)  =a + AX r 

a ~ p -  vector  

A - p *  n matrix 

The fo l lowing quantit ies are the "relevant  parameters"  for finding this es t imator  

EICov[Xr ,X '  r / O r ]  ] = (I3 t (I3 t -- n:: n matrix (regular) 

Covl1~(Or),,/~ (0,)]  = A A ~ p ":'p matrix (regular) 

Elfl(O, )1 = b b - p -  vector  

We find the credibil i ty formula 

Z.)b + Z, br x 

O) 
(2) 

(3) 

(4) 
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where 

Z r = ( I - W 7  IA - I ) - t  = ( W  r + A - I ) - I W r  = A ( A + W 7  I)-I 

~ credibility inatrlx(p * p) 

W r = Y~71Y, .  ~ auxihary matrix ( p , p )  

br x = WT-tY,'~TIX,. ~ individual estimate (p*  1) 

(5) 

(6) 

(7) 

Discussion: 

The generality under which formula (4) can be proved is nnpresslv, but this generality 
is also ItS weakness Only by speclallsanon it is possible to understand how the for- 
mula can be used for practical applications Fol lowing the route of Hachemelsters  
original paper we hence use ~t now for the special case of snnple linear regressmn. 

3 SIMPLE LINEAR REGRESSION 

Let 

and 

hence R) becomes 

Y{il/ 
13(0r) = (13°(0' )1 

Ll ,(or); 

~,  ( 0 . )  = f l0 (0 i  ) "]- I /~L ( 0 , )  (8) 

which is one of the most frequently apphed regression cases Assume further that ~ r  is 
diagonal, i.e. that observations X,r, Xj, given O, are uncorrelated fort  a j  
To smlplJfy notanon, we drop in the following the index r, 1 e we write ~ instead of 
qb, W instead of W r and Z instead of Zr 

Hence 

e g  

Let 

l 
a i- 0 

qb = 02 

2 
k 0 0 .  

v, = "volume" of observation at time i 

/ 1 A =  T~ Tol 
'rio r ~ )  % l = r ' °  

(9) 
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We find 

W =  Y qb-n Y = a~ 
k 

It is convenient to write 

,~ 0 "~ 
a / = - - ,  v =  v~ 

g/~ ,~=1 

(which Is always possible for dnagonal O) Hence we have 

Think of V~ as samphng weights, then we have 
V. 

a -  (El ' l [k]  El"l[k2]) 

where E ~'~, Va/'~ denole the moments with respect to the samphng dlstnbutnon 

(1o)  

(11) 

One then also finds (see (7)) 

b x, = W-nyO-IXr 

_ I (E~"lkZl E'IX~rI-E<~JIk] E¢'JlkX~]] 
Va?~l[k] ~ E'[kX~]- E~'~[kl E~'~[X~I ) 

(12) 

where EC'llkX~l = --~-kXhr, E~'IIX~r] = ,Y__,--~--X~r 
k 

Remark: 

It is nnstrucuve to verLfy by dnrect calculation that the values gnven by (12) to b0~, bl x 

are identical with those obtained from 

v~ (x~r  - b0~; - ;,b,'~ ) :  = m m '  
I=1 

The calculatzons to obtain the credzblhty matr,x Z (see (5)) are as follows 

% r l  - r~l \ - r0u  r2 \+P01 ,0~ 
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Abbreviate 

Hence 

(W+ A -I )-i = 

0- 2 
pa 7=ho 

O -2 
7 = Jl, 
G 2 

Pol ~ = hol  

(~3) 

W+A_ I V ( l + h  o E(')[kl+hol] 
=-~L E~')lkl+hol E(')[k2l+lq 

~2 1 (E(a)(s) [k2] "l-hI -(g(0 [k]-[- hoi 1 
V. (l+ho)(EI~)[k2]+hl)-(E(~ik]+hol) 2(-(E Ik]+hoO I +h o 

N 

Z=(W+A-I)-I W (14) 

I (Var(')lkl+hn -ho]EI')[k] E(~)lkllh - E(')[k2]hol ) Z 
-N~, hoE(S)[k] - 1701 Var(')[k] + hoE(~)[k 21- 1701E(')lk ] 

Discussion: 

The cre&bfllty matrix obtained Js not sausfactory from a pracucal point of view 
a) m&wdual weights are not always between zero and one. 

b) both intercept /~o(0, ) of the credibility hne and slope /~l (0r)  of the credibility line 

may not lie between Intercept and slope of mdwldual line and collective line 

Numerical examples: 

n : 5  Vk-=l 

collective regression hne. b o = 100 b L = 10 

individual regression hne' b~" = 70 bl x = 7 

Example I 0 . = 2 0  z o = 1 0  r 1 = 5  r i o = 0  

resulting credlblhty hnc. ~o(Or) = 88.8 ]~l(Or) = 3.7 

Example2  0"=20  z o =100 '000  zj = 5  z u l = O  

resulting credibility hne: j~o(Or) = 64 5 ~j(Or) = 8.8 

Example3  cy=20  z o = 1 0  z I = 1 0 0 ' 0 0 0  " q o = 0  

resulung credlbdlty hne ~o(0~) = 94 7 ~ ( 0 ,  ) = 0.3 
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Comments:  

In none of  the 3 examples do both, intercept and slope of the credibili ty line, he bet- 

ween the collect ive and the individual values In example 2 there ~s a great prior 
uncertainty about the intercept (% very big) One would expect  that the credibil i ty 
estmlator gives full weight to the intercept of  the individual regression line and that 

[~o(Or) nearly coincides with bo x.  But j~o(Or) IS even .smaller than b o and bo x in 

example 3 there ~s a great prior uncertainty about the slope and one would expect, that 

~l (0r)  ~ bl X But J~l (0r)  is much smaller than b I and b~ c 

For this reason many actuaries have either considered Hachemelsters iegresslon model 
as not usable or have tried to impose artificially additional constraints (e g De Vylder 
(198l)  or De Vylder  (1985)) Dannenburg (1996) discusses the effects of  such con- 
stramts and shows that they have serious drawbacks This paper shows that by an 
appropriate reparametrization the defects of the Hacheme~ster model can be made to 
disappear and that hence no additional constraints are needed. 

Example 1 

180 - - 1 ~ ~ 4  ~ ~ 
140 

120 

I 

~3 

Exarnl~e 2 

160 

140 

I00 

0 1 2 3 4 5 

Example 3 

140 

120 

100 A . ~ ± 

8O 

6O 
0 1 2 3 4 5 6 

-m cogectzve -o- m d h n d u a l  - . -  Credzbddy 

4 SIMPLE LINEAR REGRESSION WITH BARYCENTRIC INTERCEPT 

The idea, that choosing the time scale in such a way as to have the intercept at the 
barycenter of  time, is already mentioned m Hachemelsters paper, although it is then 
not used to make the appropriate model assumptions. Choosing the intercept at the 
barycenter of the time scale means formally that our design matrix is chosen as 
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i i 1- E"tkl / 
Y = 2 - E(s)[k]lS ] 

n -  E C )[k I) 

R e m a r k :  

It is well known, that any linear transformation of the time scale (or more generally of 
the covarlates) does not change the credlbihty estimates. But what we do m the follo- 
wing changes the original model by assuming that the matrix A is now the covarlance 
matrix of the 'new'  vector ~(O~),flo(0~) now being the intercept at the barycenter of  
time instead of the intercept at the tmae zero. 
In our general formulae obtained m section 3 we have to replace 

E(S)[k] ~---0 E(a)[k 2] ~ Var(S)[k] 

It IS also important that sample variances and covanances are no___!t changed by this shift 
of time scale. 

We immediately obtain 

and 

b¢~, = E"~[X~, ] 

Coy (s) (k, X~)  
b b  

Var(s)lk] 

(12~,~) 

formulae with credlbdlty weights 
1 1 V.  

Z l~ - I + h----~ - 0------~ - 0------~ 
I + _ ~ , ,  V + - -  

r o V. T(~ 

Var( ° [ k ] Var( O [ k ] 
Z22 Var(,)[kl+hl VarCS)[k] t 0-2 

r~V. 

(15) 

V Var(~)[k] 
0 -2 

V. Var (s) [k] + - .~  

1 (VarC')[k]+hl -Var(')[klhol ) (14b.r) 
Z= (l+ho)(VarCS)[k]+hl)_ho21 ~ -hm Var(¢)[k](l+ho ) 

These formulae are now becoming very well understandable, m particular the 
crosseffect between the credJblhty formulae for intercept and slope is only due to their 
correlation m the collective (off diagonal elements m the matrix A) In case of  no 
correlation between regressmn parameters m the collective we have 

Z = 1 (Var(S)[k]+h. 0 ) (14~,p) 

(l+ho)(VarCS)[k]+hl)~, 0 Va/°[k](l+ho) 

which separates our credibility matrix into two separate one-dimensional credlbd~ty 
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Remark: 

Observe the classical form of the credibility weights m (15) with volumes V. for Z~ 
and V Var('~[k] forZ22. 

Numerical examples 

The model assumpuons of the following three examples numbered 4 - 6 are exactly 
the same as m the examples numbered I - 3 of  the previous section with the only 
difference that the first element of the vector fl(0r) now represents the intercept at the 
barycenter Thus we have. 

collective regression hne. b o = 130 b I = 10 

individual regression line bo x = 91 bi x = 7 
The resulting credJbd~ty lines are: 

Example4. /3o(0,)= 108 3 /3~(0r)=8.8 

Example 5. ~o(Or) = 91.0 /31(Or) = 8 8 

Example 6: ~o(0, ) = 108 3 /~i(0~) = 7 0 

Comments: 

Intercept and slope of the credibility lines are always lying between the values of  the 
mdwldual and of the collectwe regression hne In example 5 (respectively m example 

6) the intercept ~o(Or) (respectwely the slope ~,(Or)) coincides with box (resp. bX). 

It is also interesting to note that the cred|bfllty line of example 5 is exactly the same as 
the one of example 2. 

E~amp~, 4 

160 

140 

12'0 

tO0 

8O 

6O 
0 1 2 3 4 5 6 

180 

160 

140 

120 

100 

80 

Example 5 

x 

1 2 3 4 5 6 

Example 6 

160 

140 

120 

100 

8O 

8O 
0 1 2 3 4 5 

-II- co l l ecUve  .~- i n d M d u a l  ~ C red ib i l i t y  
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5 HOW TO CHOOSE TI-IE BARYCENTER 9 

Unfortunately the barycenter  for each risk is shifting depending on the individual 
sampling distribution. There is usually no way to bring - simultaneously for all risks - 
the matrices K W, Z Into the convenient  form as discussed in the last section. This 
discussion however suggests thai the most reasonable paralnetrlzatlon ~s the one using 
the Intercept at the barycenter of  the collective Th~s has two advantages: it is the point 

to which individual barycenters are (in the sum of least square sense) closest and the 
orthogonahty property of parameters still holds for the collective. 
In the fol lowing we work with this parametrlzatlon and assume that the regression 
parameters in this paralnetrlzatlon are uncorrelated. 

Hence we work from now on with the regression line 

ao(Or)+(k- K)al(Or) , 

where K is the barycenter of  the collective i.e K = '~"" -~- i .  
~.i.~r = I V 

We assume also that the collective parameters are uncorrelated, I e 

If we shift to the individual barycenter E~l[k] we obtain the line' 

fl0 (0r) + (k - E ( ')[k])]31 (0 r) 

Hence 

fl[ ( O r )  "~ (~[ ( 0  r ) 

a 
• (s) flo(Or)=aO(Or)+al(Or)(E [ k ] -  K) (16) 

A(~) = ( ~  + r~ (EC~)fkl- K)2 
r~(E~')[k]- K) 

For the/Y-line we have further 

1 
po2= - , 

~o ~ 

I 
Pol  = - A  'r--~- ' 

r~(E(')Ik]-K))=( v~ Arl 2 '~r~lvl 2 ) 

ho ~ ' -  ~ ° ~ 2  _/,o'~' 
r~ V 

hlfl)= (72 2 cY2 h~a) +dx2ho(~) 
# . - - 7  + a  ¢o2 v - - C  = 

0 .2 _ - ~ h ~  ~¢) 

h°~'~' = a ~o ~ v 



92 H B U H L M A N N -  A GISLER 

Formula (14bAr) then leads to 

1 
Z =  

(Var (') [k] + hl a) )(1 + h~ a) ) + A2ho (c~) 
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has two orthogonal columns (using the weights of  the samphng distribution) This is 
the clue for the general regression case. The good choice of the regression parameters 
ts such as to render the design matrix into an array with orthogonal columns 

6.2  T h e  B a r y e e n t r i c  M o d e l  

Let [ ~l Y,2 ii"] __g~l : : 
Y= 

Ynl }~,2 p 

and assume volumes V~, V2, , V,, and let be V = Z ~ = ,  v~. 
We think of c o l u m n j  m g as a random variable Y~ whmh assumes I'~, with sampling 

weight Vk i n  short p(O[yj = yj~] = V~ where U 'J stands for the samphng distribution 
V V 

As m the case of  simple linear regression It turns out that also in the general case this 
sampling dlstnbuuon allows a concise and convement notauon. 
We have from (9) 

and from (10) 

where 

,t_~ =v__ v~ 

W = y , ~ - I y  = (w~j) 

v ec,)[y, Yjl WO = - -  
G2 

Under the barycenmc condmon we find 

w=7( o E(°[Y~] 
E(~)[gp21 

(18) 

i.e. a matrix of diagonal form. 
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Assulnmg non-correlation for the corresponding parametnzanon we have 

0 / 0 / 
A -- r~ A-I : ~ -  [ ]12 

0 r 2 0 hp 

with hj : -  - -  

Hence 

9 
I O'- 
2 V I"g 

( Ei ' )[ yi2 l + h I 

(W+A- ' )=7  0 E(~)[Yd]+h 2 
E(')[Y2p ]+hp 

and finally 

i 
r EcS)[ yi2 ] 0 

E(O[Yi2 ] + hi 
Z = (W + A-' )W = E(Olyi2] (19) 

0 E ( o I yp2 ] + hp 

(19) shows that our cred%d~ty rnatnx is of diagonal form. Hence the muludmlensJonal 
credibility formula breaks down into p one dimensional formulae with credlblhty 
weights. 

V E(~I[ Y) ] 
Zjj= o.2 (20) 

V E(')[Yj ] -t 
r; 

Observe the "volume" V. E(S)[ yjZ ] for the j-th component 

6.3 The Summary Statistics for the Barycentric Model 

From (7) we have 
b~ = W -I Y-I(l~-IXr = CX r 

where the elements of C are 

_ 1 Vj 
% E('[Y, 21% -7- (21) 

hence b,', ECS)[ Y, 2] j=l 
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o r  

e~'~tg Xr] b/r- t = 1,2,. p E(')[}~ 2 ] 
(22) 

6.4 How to find the Barycentric Reparametrization 

We start with the design mamx 
Y and its column vectors Y,, Y2 . . . . .  Yp 
and want to find the new design mamx 
Y* w,th orthogonal column vectors Yl", Y2 . . . . .  Y/~ 

The construcuon of the vectors Y~* is obtained recursively 

1) Start with ~* = Yi 

n) If you have constructed Yl', Y;, • , Y~-,, you find Y~ as follows 

a) Solve Ec')[(Y~ - a l  Y I - a z Y  z - . - a ~ _  I Y~_l) ']= mm I 

over all values of a ,  a> .., ak.~ 

b) Define Yt' "= Y a - a N Y 1 * - a ~ Y 2 ' -  - a ~ _ ,  Y~* , 

Remarks: 

1) obviously this leads to Y[ such that 

E(~)[Y~ Y/*I=0 forall  l < k  (23) 

11) The procedure of orthogonahsatlon is called weighted Gram-Schmltt  in Numerical 
Analysis 

ili) The result of this procedure depends on the order of  the colums of the original 
mamx  Hence there might be ~everal feasible solunons. 

With the new design ma tnxg '  we can now also find the new parameters 

fiE(Or) J = 1,2, p The regression equation becomes 

/~(0r) = Y'f*(Or) R) 

which reads componentwlse 

P 

.,(or)= Z 
./=l 

, V, and sum over Muluply both sides by Y,k "~- 

g. v, , 
Y,,,u,(or) -~-= Y,,Y, jI3j(O,) V 

t=l  j = l  I=] 

leading to 

EC~l Y;J'l(Or)] = E(s)[(Y;) 2] ill,. (Or) (24) 
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where, on the right hand sade, we have used the orthogonahty of Y~ and YJ* fory ¢ k 

Hence 

e, ,3~(Or)= E¢S)[Yk'g(Or)l k = 1,2 . . . .  p (25) 
E~s)[(Y[ )2 l 

which defines our new parameters an the barycentric model 
You should observe that this transformation of the regression parameters ~s (Or) may 

lead to new parameters 13~(0r) which are sometimes difficult to anterprete In each 

appllcanon one has therefore to decade whether the orthogonahty property of the de- 
sagn matrix or the mterpretabd,ty of the regressaon parameters ,s more m~portant 

Luckdy - as we have seen - there ~s no problem w~th the mterpretanon m the case of 

simple hnear regress,on and interpretabdity ~s also not decisive ~f we are interested in 
pred,ctaon only 

6.5 An example 

Suppose that we want to model gt(0r) as depending on nine m a quadranc manner, t e 

].1~ (Or) = 30(0,.) + k31 (Or) + k 21~2(Or) 

Our design matrix as hence of the following form 

:1 I I 

1 2 4 

Y= 
I k k 2 

1 n n 2 

Let us construct the destgn matrix Y' with orthogonal columns. 
Following the procedure as outlined m 6.4 we obwously have for the first two col- 
umns those obtaaned m the case of simple hnear regression (measuring tame from ~ts 

barycenter) and we only have to construct Y~' 

Formally 

1 1 -- E(S)[k] ~3  

2-E"~Ikl G 
y °  = 

n - E ~ ' ) [ k ]  Y,,'3 
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To find Y3 we must solve 
n * * 

v 
/{=1 

Using relation (23) we obtlan 

Hence we get 

Yt3 = k 2 - E ( ° [  k2] 

and from 

a I" = E¢Olk2  l 

, ECS)[k2(k _ E(')[k])] 

a 2 = Var(~)[k] 

E~I/"2 (k - E~)[k])] (k - E(')lk]) 
V a r ( ' ) l k ]  

k = 1, 2 ..... n (26) 

3 • . 

,u,(O) = Z s = t  Y,j ft., (O,.) R) 

we get both 

- the interpretation of j3j (0,) (use (25)) 
y4, ^ ,  

- t h e  predict,on ~ , ( 0 ) =  2 1 = ,  ,jj3j(0,) 
^ ,  

where fl~ (0r) it the credibility estimator. Due to orthogonahty of Y" it can be obtained 

componentwlse 

7. FINAL REMARKS 

Our whole discussion of  the general case is based on a pamcular fixed sampling dis- 
tribution. As this distribution typically varies from risk to risk ~ ,  ]3' and Z depend on 
the risk rand  we cannot achieve orthogonality of Y" simultaneously for all risks r This 
Is the problem whmh we have already discussed in section 5 The observations made 
there apply also to the general case and the basic lesson is the same You should con- 
struct the orthogonal Y" for the samphng distribution of the whole collective which 
then will often lead to "nearly orthogonal" design matrices for the individual risks 
which again "nearly separates" the credlblhty forrnula into componentwlse procedu- 
res 
The question not addressed in this paper is the one of chome of the number of regres- 
sion parameters In the case of  simple hnear regressmn this question would be. Should 
you use a linear regression function, a quadratic or a higher order polynommal? Ge- 
nerally the question is. How should one choose the design matrix to start with? We 
hope to address this question m a forthcoming paper 
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TI lE  SWISS RE EXPOSURE CURVES AND 
THE MBBEFD ~ DISTRIBUTION CLASS 

STEFAN BERNEGGER 

ABSTRACT 

A new two-parameter family of analytical functions wdl be introduced for the model-  
hng of  loss distributions and exposure curves The curve family contains the Maxwell-  
Boltzmann,  the Bose-Einstein and the Fermi-Dirac  distr ibutions,  which are well 
known in statistical mechanics. The functions can be used for the modell ing of  loss 
distributions on the finite Interval [0, 1 ] as well as on the interval [0, ~].  The functions 
defined on the interval [0, I] are discussed in detail and related to several Swiss Re 
exposure curves used m practice The curves can be fitted to the first two moments Ft 
and o-of a loss distribution or to the first moment ~ and the total loss probability p. 

1 INTRODUCTION 

Whenever possible, the rating of non propomonal  (NP) reinsurance treaties should not 
only rely on the loss experience of the past, but also on actual exposure. For the case 
of  per risk covers, exposure rating is based on risk profiles All risks of  similar size 
(SI, MPL or EML) belonging to the same r,sk category are summarized in a risk band 
For the purpose of rating, all the risks belonging to one specific band are assumed to 
be holnogeneous They can thus be modelled with the help of  one single loss dlstribu- 
tlon function. 

The problem of  exposure rating is how to divide the total premiums of one band be- 
tween the ceding company and the reinsurer The problem is solved in two steps First, 
the overall risk prelnlUmS (per band) are estimated by applying an appropriate loss 
ratio to the gross premmms. In a second step, these risk premiums are divided into risk 
premmms for the retention and nsk prenllums for the cession Due to the nature of NP 
reinsurance, this ts possible only with the help of the loss distribution function. 

However, the correct loss distribution function for an indw~dual band of a risk profile 
is hardly known in practice. This lack of reformation is overcome with the help of  
distribution functions derived from large portfohos of similar risks. Such distribution 
functions are available in the form of so-called exposure curves These curves directly 
permit the extraction of  the risk premium ratio required by the reinsurer as a function 
of the deducnble. 

MaxwclI-Boltzmann. Bore-Einstein and Fermt-Dtrac dlstrtbuuon 

ASTINBUI.LIS'IIN Vol 27, No I 1997, pp 99-111 
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Often, underwriters have only a finite number of discrete exposure curves at their 
disposal. These curves are available in graphical or tabulated form, and are also im- 

plemented in computerized underwriting tools One of the curves must be selected for 

each risk band, but it is not always clear which curve should be used In such cases, 
the underwriter might also want to use a virtual curve lying between two of the dis- 

crete curves available to him. 

This can be achieved by replacing the discrete curves with analytical exposure curves 
Each set of parameters then defines another curve. If a continuous set of parameters is 
available, the exposure curves can be varied smoothly within the whole range of avai- 
lable curves However, the curves must fulfill certain conditions which restrict the 
range of the parameters In addition, practical problems can arise if a curve family 
with many (more than two) parameters is used. It might then become very difficult to 
find a set of parameters which can be associated with the information available for a 

class of risks. This problem can be overcome if a curve family is restricted to a one- or 

two-parameter subclass and if new parameters are introduced which can easily be 

interpreted by the underwriters 

In the following, the MBBEFD class of analytical exposure curves will be introduced 
As will be seen, this class is very well suited for the modelling of exposure curves 

used in practice. Before analysing the MBBEFD curves in detad, some general rela- 
tions between a dlstrtbutlon function and its related exposure curve will be discussed 
in section 2 These relations permit the derivation of the conditions to be fulfilled by 
exposure curves The new, two-parameter class of distribution functions will then be 
introduced in section 3 Finally, several practical aspects, and the link to the well 
known Swiss Re property exposure curves Y., will be discussed m section 4 

Convent ions  

Following the notation used by Daykln et al in [I ], we wdl denote stochastic variables 
by bold letters, e.g. X or x. Monetary variables are denoted by capital letters, for in- 
stance, X or M, while ratio variables are denoted by small letters, for instance, x = 

X/M. 

2. DISTRIBUTION FUNCTION AND EXPOSURE CURVE 

2.1. Definit ion of  the exposure curve 

In the following, the relation between the distribution function F(x) defined on the 
interval [0, 1] and its hmited expected value function L(d) = E[mln(d, x)] will be dis- 

cussed. Here, d = D/M and x = X/M represent the normalized deductible and the nor- 
malized loss, respectively. M is the maximum possible loss (MPL) and X < M the 
gross loss The deductible D is the cedent 's maximum retention under a non propor- 
tional reinsurance treaty M L (cl) is the expected value of the losses retained by the 
cedent while M • (L(I) - L(d)) is the expected value of the losses paid by the reinsurer 
Thus, the ratio of the pure risk premiums retained by the cedent is given by the relative 
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l imited expected value funcuon G(d) = L(d) /L(I )  [1] The curve representing this 
funcuon is also called the exposure curve 

d d 

( 1 -  FO,))dy ~ ( 1 -  FO'))dy 

G ( d ) -  L(d___)_ o o (2 1) 
t 

L(I) I ( 1 -  F(y) )dy  Elx] 

0 

Because of 1 - F(x) > 0 and F ' (x)  = fix) > 0, G(d) IS an increasing and concave func- 
tion on the interval [0, I] In addmon, G(0) = 0 and G(I )  = I by defimuon 

2.2. Deriving the distribution function from the exposure curve 

If the exposure curve G(x) is given, the corresponding dlstribuuon function F(x) can 
be derived from' 

G'(d)  = 1 - F(d)  (2 2) 
Elx] 

With F(0) = 0 and G'(0)  = I/EIx] one obtains 

1 I x = 1 
F(x)  = G ' (x )  0 < x < 1 

G'(O) 
(2 3) 

Thus, F(x) and G(x) are eqmvalent replesentatlons of the loss distribution 

2.3. Total loss probability and expected value 

The probability p for a total loss equals l - F( l - )  and the expected (or average) loss/1 

equals E[x]. These two functtonals of  the d l smbunon  function F(x) can be derived 
&rectly from the denvauves  of G(x) at x = 0 and x = I : 

1 
i.t = E [ x l -  

G'(O) 

p = 1 - F ( I - )  - G ' ( I )  (2.4) 

G'(0) 

The fact that G(x) is a concave and increasing function on the Interval [0 .1] with 
G(0) = 0 and G(1) = I mlphes '  

G ' (0)  _> I > G ' 0 )  > 0 (2.5) 

This is also reflected in the relation' 

0_< p_<//_< I (2 6) 
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2.4. Unlimited distributions 

If  the distr ibution function F(X) is def ined on the interval [0, oo]. the above  relations 

have to be slightly modif ied.  In this case there is no f lmte max imum loss M However ,  

the deduct ible  D and the losses X can be normal ized with respect to an arbitrary refe- 

rence loss Xo, l e x = X/X 0 and d = D/X 0 G(d) is still a concave  and increasing func- 
tion with G(0)  = 0 and G(oo) = I The expec ted  value  u = E[x]  is also g iven  by 

I /G ' (0) ,  but there are no total losses, i.e. G'(oo) = 0 

3 THE MBBEFD CLASS OF TWO-PARAMETER EXPOSURE CURVES 

3.1. Definition of the curve 

In this sect ion we will  inves t igate  the exposure  curves  and the related distr ibut ion 

functions def ined by. 

l n ( a + b ~ ) - l n ( a + l )  
G(x) = (3 I a) 

ln(a + b) - In(a + I) 

The  distribution function belonging to thas exposure  curve  ~s given by 

t: x:m F(x )=  (a + l)b ~ 0 _ < x < l  (3.1 b) 

a + b  ~ 

The denomina to r  and the term -In(a + 1) m the nomina tor  of  (3.1 a) ensure that the 

boundary condi t ions  G(O) = 0 and G ( I )  = I are fulfi l led As will be seen below, the 

cases a = {-1, 0, oo} or b = 10, I, ~}  have to be treated separately. 

Distribution functions of  the type (3 1), defined on the interval [0, oo] or [-~, oo], are 
very well known m ~tansttcal mechamcs (Maxwell-Boltzmann. Bose-Einstein, Fermi- 
Dirac and Planck distribution) The tmplementanon of  these [unctton~ tn n~k theom, 
does not mean that the distribution of  insured losses can be demved from the theory of  
statt ~ttcal mechamcs However, the MBBEFD distribution class defined m (3.1) shows 
itself to be very appropriate for  the modelhng of  empirical Ios~ distributions on the 
interval [0, I]. 

3.2. New parametrisation 

The parameters  {a, b} are restricted to those values, for which Gab(X ) iS a real, increa- 

sing and concave  function on the interval [0, 1] It ~s easier  to fulfill this condi t ion by 

using the reverse  g = l /p  of  the total loss probabdl ty  p as a curve  parameter  and to 

replace the parameter  a in (3 1). 

a + b  ( g -  l)b 
g = a - - -  (3 2) 

( a + l ) b '  I - g b  
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On the one hand, the c o n d m o n  0 < p < l is fulfil led only for g > 1. On the other  hand, 

G(x)  is a real function only for b > O. It can be shown that no other  restr ictmns regar- 

dmg the set of  parameters are necessary 

However ,  c a s e s b =  I 0 .e  a = - I ) , b = 0 o r g =  1 0 . e . a = 0 )  a n d b  g =  I ( i . e . a = ~ )  
must be treated as specml cases. The  cases b " g = I (t e a = ~) ,  b • g > I (~ e. a < 0) 

and b g < I (i.e. a > O) cor respond  to the MB,  the BE  and the FD d is tnbut ton ,  

r espec twely  (cf. f igure 4.1). By cons tdermg spectal cases b = 1, g = 1 and b - g = 1 

separately,  all real, increasing and concave  functmns  G(x) on the mterval  [0, 1] wtth 

G(0) = 0 and G ( I )  = 1 be long ing  to the M B B E F D  class (3 1) can be represented as 

fol lows '  

x g = l v b = O  

- - - ~ - ( - g ) - - l n ( I  + (g - l )x)  b = I A g > I 

l i 
Gb.g(X) = ~ bg = 1A g > I (3 3) 

(g - I T ( I t -  gb)b ' 

In " b > O A b ~ l A b g ~ l A g > l  
L In(gb) 

Io 1 0  , _ 

i°U  _ o ,q  DN  04  

rr ,  ° '  ° '  o o  . . . . .  p . . . .  i . . . .  I . . . .  ' . . . .  I . . . .  i . . . .  o o  

OO 02 Oq oe o8 ic oo 02 04 o6 oB io 

d - DiM d " O~M 

FIGURE3 I a) SctofMBBEFDexposure 
curvet with con•tanl parameter 

g = l / p = 1 0 a n d ~ = E [ x l = 0 1 1 ,  
0 2 . 0 4 . 0 6 , 0 8 , 0 9 9  

FIGUkL3 I b) Set of MBBEFD exposure 
curves with constant u = E[x] = 0 I and 

p=l /g=O099,0031,001,00031,0001 
The dashed hne with slope 1/u represents 

the tangent at d = 0 
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0.01 

, -UI 

O001 

O0 02 04 06 08 IO oO o~ 04 06 OO I0 

x XA'I • X.4'l 

FIGURE3 2 a) Distribution lunctmns 
belonging to exposure curves 

of figure 3 I a) 

FIGURE 3 2 b) Dtstnbutmn funcuons 
belonging to exposure curves 

of figure 3 I b) 

Examples  of  M B B E F D  exposure  curves  are shown in f igure 3 1 A set of  curves  with 

constant  total loss p robabdl ty  p = 0 1 (i.e. g = 10) is represented m figure 3.1 a). 

Figure  3. I b) contains a set of  curves  with constant  expected value/.J = 0.1 The cur- 

responding d~stnbuuon functions are shown m figures 3.2 a) and b) 

3.3. Derivatives 

The d e n v a n v e s  o f  the exposure  curves  are given by 

g = l v b = 0  

g - I  b = l A g > l  
In(g) 0 +(g-1)x) 

G'(x )  = In(b)b ~ 

b - I  

ln(b)(I - gb) 

[n(gb)((g - I)b ,-~ + (l - gb)) 

b g = I A g > l  

b > O A b ~ l A b g ¢ l A g > l  

(3 4) 

with 

G ' ( 0 )  = 

g = l v b = 0  

- - I  
b = l A g > l  

In(g) 

In(b) _ In(g)g bg = I A g > 1 
b - I  g - I  

I n ( b ) ( I - g b )  b > 0 A b  ~ I A b g  ~ 1 A g > 1 
I n ( g b ) ( 1 - b )  

(3 4 a) 
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and 

G ' ( I )  = 

g = l v b = 0  

g - I  b = l A g > l  
In(g)g  

l n ( b ) b  _ In(g)  bg = 1 A g > 1 

b - I  g - I  

l n ( b ) ( I - g b )  b > O A b  ~ I A bg ~ 1 A g  > 1 
In (gb )g ( l  - b)  

(3 4 b) 

The relation p = G'(I)/G'(0) = l/g Is obtained immediately from (3.4 a) and (3 4 b) 

3.4. Expected value 

A c c o r d i n g  to (2 4) the expec ted  va lue  ,u is g iven  by" 

In(g)  

g - I  
I 

1 1 = E [ x ]  - - -  b - I  g - 1  
G' (O)  - -  - - -  

In(b)  In(g)g  

ln (gb) ( l  - b) 

l n ( b ) ( l - g b )  

g = l v b = O  

b = l A g > l  

b g = l A g > l  

b > O A b ¢  I A b g  ~ l a g  > 1 

(3.5) 

T h e  expec ted  va lue  H is r ep resen ted  as a func t ion  of  the pa rame te r s  b and g m f igure  

3 3 and d i scussed  be low m sect ion 3.7. 

bO m 

2 

3 0  ~ 

20- 

J 
< 

o , 

0 

:ll 

i i , i 

0.3 # = 0.2 ~ - 0. I 

, i . i , i , i , i , ~ ,  i , i , q , i , i , i , i , i , ' ( " r ~ l ' ,  i , i , t , I 

t 0 t 5 2 0  2 5  

p a r a m e t e r  g = 1 / p 

FIGURE 3 3 Parameter b as a funcuon of g = I/p for u = E[x] = 0 I, 0 2, 
The dashed hne at g = I and the horizontal hne at b = 0 represent 

the parameter sets {b, g} with H = I 

09  
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3.5. Distribution function 

According to (2 3), the distribution function belonging to the exposure curve Gb,g(x ) is 
given by. 

F(x) = 

I x = l  

0 x < l A ( g = l v b = O )  
I 

1 . t < l ^ b = l ^ g > l  
l + ( g - I ) x  

1 - b  x x < l ^ b g = l ^ g > l  
1 - b  

1-  x < l ^ b > O ^ b ~ l ^ b g ~ l ^ g > l  
( g -  l)b ~-~ + ( I - g b )  

(3 6) 

The distribution functions belonging to the exposure curves of  figure 3.1 are repre- 
sented m figure 3 2  The set of  distribution functions with constant total loss proba- 
bility p = 0.1 (g = 10) is shown in figure 3 2  a). Figure 3 2  b) contains the set of  
distribution functions with constant expected value/~ = 0 I 

3.6. Density function 

Because of  the finite probability p = l/g for a total loss, the density function f(x) = 
F'(x) is defined only on the interval [0, I). 

0 

g - I  

(I + ( g - I ) x )  2 

f (x)  = _ln(b)b ~ 

( b -  l ) ( g -  I)ln(b)b ~-' 

( ( g - l ) b  I - '  + ( l - g b ) )  2 

g = l v b = 0  

b = l ^ g > l  

b g = l A g > l  

b > O ^ b ¢ :  l ^ b g C : l A g > l  

(37) 

3.7. Discussion 

It ~s instructive to analyse the expected value ft =/d(b, g) as a function of  the parame- 
ters b and g (3.5). Figure 3.3. shows the range of  pertained parameters in the {b, g} 
plane and the curves with constant expected value ~. One can see m figure 33  that 
,ug(b) is a decreasing function of  b (for g > I constant) and that ftb(g ) is a decreasing 
function of g (for b > 0 constant) 

3 

0 g > l ^ b > 0  (38) 
~g  lib(g) -<0 
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The expected value 1.1 is related as follows to the extreme values of the parameters b 
and g 

hm p~,(b) = 1; hm ]. lg(b) = 1/g = p 
b--+0 b ~  

(3 9) 
hm/%(g)  = 1; lira ut,(g) = 0 
g---~ I g----~ ~ 

3.8. Unlimited distributions 

So far. only distributions defined on the interval [0. l] have been discussed However, 
as the MB, the BE and the FD distributions are defined on the interval [-~, ~]  or 
[0, ~],  the MBBEFD distribution class can also be used for the modelling of loss dts- 
trlbuuons on the interval [0, ~]  If the losses X and the deductible D are normalized 
with respect to an arbitrary reference loss X o, then x = X/X~ and d = D/X 0 The above 
formula can now be modified as follows' 

- b  ~ b g  = I A g  > 1 

( (g --l)b_-I-(! _- gb)b ~ ) 
Gb.g(x)= n[ l - b  

O<b<lAbg¢ lAg> l 
(3 10) 

G'(x) = 

- In (b )b  r 

ln(b)(l - gb) 
bg=lAg>l  

O<b<lAbgC:lAg>l (3.11) 

I - In(b)  

ln(b)(I - gb) 

G'(O) = l l n (_ (~b)b ) ( i  _ b) 

bg=lAg>l  

O<b<lAbgC:lAg>l (3 11 a) 

- In(b)b 

l n (b ) ( I -gb )  

bg=lAg>l  

O < b < l A b g ~ l A g > l  (3 11 b) 

G'(oo) = 0 (3 11 c) 

l l - b '  
F(x) = 1 - b 

( g - I ) b  i-~ + ( I - g b )  

bg=lAg>l  

O<b<lAbgC:lAg>l 
(3.12) 
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The res tnctmn 0 < b < 1 ~s obtained immed|a te ly  from (3.12) and the condmon 
Fifo) = 1, while the restriction g > 1 is obtained from (3 10), where the argument of the 
logarithm m the denominator must be greater than 0 The same restriction is also ob- 
tained from the relation p = G ' ( I ) / G ' ( 0 )  = fig, which is still valid The parameter g Is 
thus the inverse of the probabili ty p of hawng a loss X exceeding the reference loss 

Xo 

4 CURVE FI'VF1NG 

4.1. Expected value/2 and total loss probability p 

Because of  (3 8) and (3.9). there exists exactly one distribution function belonging to 
the MBBEFD class for each given pair of functionals p and/2 (cf figure 3 3), provided 
that p and/2 fulfill the condmons (2 6) The curve parameter g = I/p is obtained dl- 
rectly The second curve parameter b can be calculated with the help of  (3 5) Here, 
the following cases must be distinguished: 

a) /2=1 ~ b = 0  
g - I  

b) /2= ~ b = l / g  
In(g)g 
In(g) (4 I) 

c) /2-  :=~ b = l 
g - l  

d) / 2 = l / g  ~ b = ~  

e) else ~ O < b < ~ ^ b ~ l / g A b ~ l  

In the general case e), the parameter b has to be calculated iteratively by solwng the 
equation' 

I n ( g b ) ( I - b )  
/2 - (4 2) 

ln(b)(l - gb) 

Because/2g(b) is a decreasing function of b (3 8), the iterauon causes no problems. An 
upper and a lower hmit for b can be derived directly from (4 1). 

4.2. Expected value/2 and standard deviation o" 

It ts also possible to fred a MBBEFD distribution assuming the first two moments (e g. 
/2 and o') are known, provided the moments fulfill certain conditions The first two 
moments of  a distribution function with total loss probability p are given by: 

I 

/2 = E[x] = p + J af(x)dr 

0 (4 3) 
I 

/22 +o.2 = E[x21 = p+ Ix2 f(.r)d~ _<12 
0 
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According to (4.3) the first two moments of  F(x) and p must fulfill the following con- 
dltlOnS 

9 
y -  _< E [ x 2 ]  _< 1.1 

(4 4) 
p < E[x 2 ] 

Calcula t ion  of g and b 

Bas|c idea: 1 Start with p~ = E[x 2] _> p as a first estimate (upper limit) for p, and 
calculate b '  and g° for the gwen functlonals/.t  and p* with the method 
described m 4.1 above. 

2 Compare the second moment E'[x-'] with the given inoment E[x 2] and 
find a new estimate for p*. 

3 Repeat unul E '[x 2] is close enough to E[x z] 

If the first moment /~ is kept constant, then the second m o m e n t  E ' l x  2] will be an in- 
creasing function of p'.  Thus the parameters g and b can be calculated without comph- 
G a l l o n s  

Remark. The second moment of  the MBBEFD d~stribuuon has to be calculated 
nulner~cally This is best done by replacing F(x) with a discrete dis- 
trlbutlon funcuon which has the same upper tall area L(x,+~) - L(x,) as 
F(x) on each dlscretlzed interval [x: x,+~] 

4.3. The  M B B E F D  d i s t r i b u t i o n  class and  the Swiss Re Y, p r o p e r t y  exposu re  
curves  

The Swiss Re Y, exposure curves (i = I 4) are very well known and widely used by 
non proportional property underwriters As will be shown in this section, all these 
curves can be approximated very well with the help of  a subclass of  the MBBEFD 
exposure curves. In a first step, the parameters b, and g, have been evaluated for each 
curve I By plotting the points belonging to these pairs of  parameters in the {b, g} 

plane, we found that the points were lying on a smooth curve in the plane In a next 
step, thzs curve was modelled as af t ,  ncuon of a single curve parameter c. Finally, the 
parameters c, representing the curves Y, were evahlated 

The subclass of the one-parameter MBBEFD exposure curves IS defined as follows' 

@ ( x )  = G~c,.~ ' (x)  (4.5) 

with 

be = b ( c ) =  e ~ I-o is11+,), 

g( = g(c) = e (0 78+012L ), 
(4 6) 
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FIGURF4 I Range  ot pa ramete r s  o f  the exposure  cu rves  Ghr(x ) The  expec ted  value/_t 
~s shown  as a funcUon o f  p = l /g  for specml cases  b = O,-b = p, b = 1 and b = 

In ad(htton, p and ~ are shown as a funct ton o f  the cu rve  pa rame te r  c for c = 0 10 
The  dashed part oI thl,, cu rve  has no empir ica l  counterpar ts  

The posmon  of  the curves c = 0 .  10 m the {p,/.t} plane is shown m figure 4 1 Here, 

the specml cases b = 0, p, 1, oo and g = I are also shown 

The curves  def ined by c = 0 0 . . . . .  5 0, which are shown m figure 4.2, are related as 

fol lows to several exposure  curves used m practice: 

• The curve c = 0 represents a distribution o f  total losses only because of  g(0) = 1 

• The four curves defined by c = { I 5, 2.0, 3 0 and 4 0} coincide very well with the 

Swiss Re curves {Y~, Y2, Ya, Y 4 } '  

• The  curve  def ined by c = 5 0 coincides  very well  with a L l o y d ' s  curve  used for 

the rating of  industrial risks 
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T h u s ,  the e x p o s u r e  c u r v e s  d e f i n e d  in ( 4 . 6 )  are v e r y  w e l l  sut ted  for pract ica l  p u r p o s e s  

T h e  u n d e r w r i t e r  can  u s e  c u r v e  p a r a m e t e r s  w h i c h  are v e r y  f a m d m r  to h m l  In a d d t h o n ,  

the  c l a s s  o f  e x p o s u r e  c u r v e s  d e f i n e d  by  (4  6)  ~s c o n t i n u o u s  and  the  u n d e r w r i t e r  has  at 

h is  d i s p o s a l  all curveq  l y i n g  b e t w e e n  the ind iv idua l  c u r v e s  Y,,  t o o  
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A SEMI-PARAMETRIC PREDICTOR 
OF THE IBNR RESERVE 

Louts  G. DORAY ~ 

Untversu~ de MontrEal 

A B S T R A C T  

We develop a seml-parametrtc predictor of the IBNR reserve in a macro-model when 
the claim amount for a certain accident and development  year can be expressed m a 
Ioghnear form composed of a deterministic part and a random error We need to make 
assumpttons only on the first two moments of  the error, without any specified para- 

metric assumption on its d~stnbution We gtve ~ts properties, present its advantages 
and compare the esttmates obtamed wtth vartous predtctors of  the IBNR reserve, pa- 
rametric and non-parametric, using a data set. 

K E Y W O R D S  

Chain-ladder; regression, least-squares; smeanng estimator. 

I I N T R O D U C T I O N  

In a macro-model ,  claims are grouped by accident year (year m which the accident 
giving rise to a claim occurrs) and development year (number of  years elapsed since 
the accident), and data are presented m a trapezoidal array Taylor  (1986) presents a 
comprehensive survey of  various macro methods and models, both deterministic and 
stochastic, developed to predict incurred but not reported (IBNR) reserves; tt Is usually 
assumed that the pattern of cumulatwe claims incurred or paid ~s stable across the 
development  years, for each accident year. The problem of setttng IBNR reserves 
consists m predtctlng for each accident year. the ultimate amount of claims recurred 
and subtracting the amount already paid by the insurer 

To illustrate the predictor proposed in this paper, we wtll use the cumulative claims 
appeanng m Doray (1996), which represent the liability clanns m thousands of dollars 
recurred by a Canadian insurance company over the ten-year period 1978-1987 We 
will perform the analysis on the incremental claims (see Table 1), obtained by diffe- 
rencing successive cumulative amounts, and assume that they are independent. Section 
2 presents the Ioghnear model used, and section 3 the semi-parametric predictor of the 
IBNR reserve, finally, we compare various predictors of the reserve with the claims of  
Table I 

The attthor gratefully , icknowledges the financial ~upport of  Ihe Natural Sciences and Engineer ing Re- 
search Councd  of  Canada  
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Accldcntyear I 2 

1978 8489 1296 
1979 12970 1796 
1980 17522 2783 
1981 21754 2584 
1982 19208 2341 
1983 19604 2469 
1984 21922 2311 
1985 25038 3363 
1986 32532 4474 
1987 39862 

T A B L E  I 

] NCREMEN FAL C L A I M S  I N C U R R E D  

z 

Development year 

3 4 5 6 

924 580 246 126 
1435 859 654 265 
1469 1023 423 652 
1163 783 887 355 
1220 619 841 703 
1223 1247 612 
1141 1508 
2144 

2 A LOGLINEAR MODEL 

We consider  models  of  the form Y, = exp(X,/3 + o'e,), or expressed as a Ioghnear  re- 
gression model. 

Z,=InY~=X,/3+~e, ,  Y , > 0  ( 2 1 )  

where  Y, is the ith e lement  of the data vector Y, of  dmlens lon  n, X ~s the regression 

matrix of d imens ion  n x p, whose ith row ~s the vector X,, e lement  (i. j) ~s denoted X,r 
and where we assume that the unit vector is in the co lumn space of X,/3 is the vector 
(of d imens ion  p) of unknown  parameters to be estimated, and e, are independent  ran- 
dora errors with mean 0 and variance 1 

For the regression parameters,  various choices are possible, for example a, +/3j for 
the stochastic chain ladder model,  where t is the accident year and j ,  the development  

year, or a +/3 Inj + 73 + t(t + j - 2), as m Zehnwlrth (1990). 
Thv~ paper does not study models  which rely on parametric assumpt ions  for the 

d~str~buuon of  the error e, instead, we present a semi-parametr ic  regression model 
which does not assume any part icular  density for e, but uses its first two moments  

only 

3 A PREDICTOR IMPLIED BY THE SMEARING ESTIMATOR 

Let us represent by Y~ a value to be predicted, cor responding to a cell in the lower 
right unobserved triangle of Table 1 (i = 6, , 10 a n d j  = 1 2 -  i, ., 66) Doray (19966) 
analyzed the two types off errors revolved m the prediction of the value Y~ by its ex- 
pected value, the est imation error on the parameter /3 from past values and the process 

error e~ for a future value, yielding X~fl + 0"e~, where X~ is the vector off coefficients of 

the parameters corresponding to Z~. 

According to Gauss-Markov theory, the least-square est imator  /.fi = (X' X) -I X' Z is 

the m i n i m u m  variance l inear unbiased estmlator  o1"/3, for any distr ibution of  e such 
that E(E)= 0 and Var(e)= 1. The vmlance  o': Is est imated by the mean-square  errol 
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~ 9  
or- = ( z -  x~) '  ( z -  x B) / ( , , -  p) For a fixed vector X~, X~,6 iS a l l  unbiased and con- 

sistent estmlator of Xt~, but exp(X~/.~) is not in general an unbiased or consistent 

estimator of E(Y,) The assumption that e is normal influences only the efficiency of 

the estimator ,~, if the true error is not normal, the estimator ,B xs still consistent and 

mmmaum variance linear unbiased. If e is normal, exp(Xk,~ + 6  "2/2)  is a consistent 

estimator for E(Y,), however, the predictor for Y, will not be consistent if the assump- 
tion that e is N(0, I) is wrong. 

Duan (1983) proposed the following smearing estnnator for the expected value of 

Y,, .~-,~.,,=. exp(X~,B+o'e,),  where ~, = Z , -  X,,8 denotes the least-squares residual. 

He shows that under certain regularity condluons,  the smearing estimator of  E(Yk) is 
weakly consistent and notes that for small o'2, its relative efficiency compared to the 

simple estnnator exp(X~,~ + ~2 /2 )  is very high when the error distribution is nonlaal 

(for o a <_ 1 00 and rank (X)_> 3, it is at least 94%) This efficiency increases as o 2 
decreases or rank (X) increases 

Using the smearing estmmtor, we can define the following semi-parametric predic- 
tor of the IBNR reserve, 

b~,, = ~.S ~'.,exp(x,l~ +Ge,)=| Zexp(&13)|x|- Zexp(,~,) 
t ~ J t .~, : l  

where ~ denotes a summation over all cells m the lower triangle to be predicted. 

4 COMPARISON OF VARIOUS PREDICTORS 

We can obtain a sm3ple apploxmlat lon for 0sl' when o'2 is small by using the first 

three terms of  the Tay lo r ' s  series expansion for exp(d'g~,), and the facts that 

Z " =  e, = 0  and Z " = i 6 " 2 ~  1 2 = ( n - i , ) ~  4 12. 

In Table 2, we compare the predicted values of  the IBNR reserve obtained with the 

non-parametric predictors, 0se, 0A, the chain-ladder (0CL), and predictors obtained 

when ~,'s in (2 I) are assumed to be l l.d N(0, I), the uniformly minimum variance 
unbiased predictor of  Doray (1996) 

2 ' 4 o'- exp(X~,B), 

where oF~(ot, z) ts the hypergeometrlc function defined as 

= - - ,  with (cQj = c~(~+l )  . ( a + . / - I ) ,  j_>l ,  and (~)0 = I, ° ~ ( c ~ ' z )  = .?(cOj 
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the predictor of  Kremer (1982),  OK = ~ . ,  exp(Xtfl),  and the sHnple estmaator 

0~ = Z exp(X~f l+~ '2 /2 )  The model used was the stochasuc chain ladder model 

(tx, + ,/3j), on the claims of Table 1. We notice that /ga, 0u and /9~ are of the form 

C x OK, where C is a factor depending only on 6 "2 

In conclusion, the smearing estimator possesses four ~mportant properties It is 
eastly calculated, consistent, highly efftc~ent ~f the error e has a normal distribution 
and robust against departure from the assumed parametric dJstnbuuon for e It can also 
be used with transformations other than exponential The semi-parametric predictor of 
the IBNR reserve based on the smearing estimator will share those properties and 
present a worthwhile alternative to predictors based on full parametric assumptions. 

TABLE 2 

PREDICTION OF I HE IBNR RESERVE 

Predictor Predtcted value 

lgSp 23.552 

0 A 23,589 

t~ct" 23,919 

0 u  24,403 

O K 23.549 

Oi 24,404 
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A B S T R A C T  

Good estimates for the tails of loss severity dustrlbutlons are essential for pricing or 
positioning high-excess loss layers m reinsurance We describe parametric curve- 
fitting inethods for modelling extreme h~storlcal losses These methods revolve around 
the genelahzed Pareto distribution and are supported by extreme value theory. We 
summarize relevant theoretical results and provide an extenswe example of thmr ap- 
plication to Danish data on large fire insurance losses 

K E Y W O R D S  

Loss severity distributions, high excess layers; exuelne value theory, excesses over 
high thresholds; generalized Pareto distribution 

1 INTROI)UCTION 

Insurance products can be priced using our expermnce of losses in the past We can 
use data on historical loss severities to predict the size of future losses One approach 
is to fit parametric dtsmbutlons to these data to obtain a model for the underlying loss 

severity dlstnbutuon; a standard refelence ozl this practice is Hogg & Klugman (1984). 

In thls paper we are specifically interested in modelhng the tails of loss severity 
distributions Thus is of particular relevance in reinsurance ff we ale required to choose 
or price a high-excess layer In this SltUatmn it is essential to find a good statistical 
model for the largest observed historical losses It is less unportant that the model 
explains slnaller losses, if slnaller losses were also of interest we could Ln any case use 
a m~xture dlstrlbutmn so that one model apphed to the taft and another to the mare 
body of the data However, a single model chosen for its ovelall fit to all historical 
losses may not provide a particularly good fit to the large losses and may not be suita- 
ble for pricing a high-excess layer 

Our modelhng is based on extreme value theory (EVT), a theory whmh until coln- 
paratlvely recently has found more apphcatlon m hydrology and chlnatology (de Haan 

ASTINBULLETIN, Vol 27. No I 1997 pp 117-1"17 
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1990, Smith 1989) than in insurance As Its name suggests, this theory is concerned 
with the modelhng of extreme events and m the last few years various authors 
(Be~rlant & Teugels 1992, Embrechts & Kluppelberg 1993) have noted that the theory 
is as relevant to the modelhng of extreme insurance losses as it ~s to the modelhng of 
high river levels or temperatures. 

For our purposes, the key result in EVT is the Pickands-Balkema-de Haan theorem 

(Balkema & de Haan 1974, Pickands 1975) which essentially says that, for a wide 
class of distributions, losses which exceed high enough thresholds follow the generah- 
zed Pareto d~strlbutlon (GPD) In this paper we are concerned w~th fitting the GPD to 
data on exceedances of high thresholds This modelling approach was developed in 
Davlson (1984), Davlson & Smith (1990) and other papers by these authors 

To illustrate the methods, we analyse Danish data on major fire insurance losses. 

We provide an extended worked example where we try to point out the pitfalls and 
hm~tatlons of the methods as well their considerable strengths 

2 MODELLING LOSS SEVERITIES 

2.1 The context 

Suppose insurance losses are denoted by the independent. ~dentlcally distributed ran- 
dom variables X~. X2, . whose common distribution function is Fx (x) = P{X < ,t} 
where x > 0 We assume that we are dealing with losses of the same general type and 
that these loss amounts are adJusted for inflation so as to be comparable. 

Now, suppose we are interested m a high-excess loss layer with lower and upper 

attachment points r and R respectively, where p is large and R > J This means the 
payout Y, on a loss X, is given by 

I 
0 i f 0 < X ,  < r ,  

Y, = X, - r if r_< X, < R, 

L R - r  l fR<_X,<o~.  

The process of losses becoming payouts is sketched in Figure 1. Of six losses, two 
pierce the layer and generate a non-zero payout One of these losses overshoots the 

layer entnrely and generates a capped payout. 

Two related actuarial problems concerning this layer are. 
1. The pricing problem Given r and R what should this insurance layer cost a 

customer 9 
2. The optimal attachment point problem. If we want payouts greater than a spec~- 

fled amount to occur with at most a specified frequency, how low can we set r? 

To answer these questions we need to fix a period of insurance and know something 
about the frequency of losses incurred by a customer in such a tnne period. Denote the 

unknown number of losses m a period of insurance by N so that the losses are X~,. , 

Xu Thus the aggregate payout would be Z = y~'~] Y, 
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FIGURE I Possible reahzat~ons of losses m futurc tm~c period 

t 

A c o m m o n  way of  pricing is to use the formula Price = E[Z] + k.var[Z], so that the 

price is the expected payout  plus a risk loading which is k t imes the var iance of  the 

payout,  for some k This  is known as the variance pricing principle and it requires only 

that we can calculate the first two molnents  of  Z 

The expected payout E[Z] is known as the pure pre lmum and it can be shown to be 

E[Y,]E[N]. It is c lear  that ,f we wish to price the cove r  provided  by the layer (r,R) 

using the variance principle we must be able to calculate E[Y,], the pure premluln for a 

single loss We will calculate E[Y,] as a s imple price Indication in later analyses in this 

paper  Howeve r ,  we note that the var iance  pricing pr inciple  ~s unsophis t ica ted  and 

may have its drawbacks  in heavy tailed si tuations,  since moments  may not exist  or 

may be very large An insurance company  general ly wishes payouts to be rare events  

so that one possible way of  fol mula tmg the at tachment point problem might  be choo-  

se r such that P{Z > 0} < p  for some stipulated small probabdlty p That is to say, r is 

determined so that in the period ot insurance a non-zero aggregate  payout occurs  with 

probabdlty at most p 

The  a t tachment  point p roblem essent ia l ly  bolls down to the estHnatlon o f  a high 

quant l le  of  the loss s even ty  distr ibution F~(x) In both of  these problems we need ~, 

good est imate of  the loss severi ty dlStrlbul~on for x large, that is to say, In the taft area 
We must also have a good es t imate  o f  the loss f requency distr ibution of  N, but this 

wdl not be a topic ot this paper 

2.2 Data Analysis 

Typica l ly  we will have historical data on losses which exceed a certain amount  known 

as a d isp lacement  It is practically impossible  to col lect  data on all losses and data on 
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small losses are of less importance anyway Insurance is generally provided against 
significant losses and insured parties deal wnth small losses themselves and may not 
report them 

Thus the data should be thought of as being reahzauons of random variables trun- 
cated at a displacement & where S<< r Thns dnsplacement ns shown m Figure I; we 
only observe realizations of the losses which exceed 6. 

The dlsmbuuon funcuon (d f ) of the truncated losses can be defined as m Hogg & 
Klugman (1984) by 

0 If x _< S, 

Fx~(X)= P{X-< x lX>&}= Fx(Q-Fv(6) I f X > 8 ,  
I - Fv(a) 

and ~t is, in fact, this d f that we shall attempt to esumate 
With adjusted historical loss data. which we assume to be realizations of indepen- 

dent, identically d,smbuted, truncated random variables, we attempt to find an esti- 

mate of the truncated severity distribution Fx6(X) One way of doing this is by fitting 
parametric models to data and obtaining parameter estimates which opt,mnze some 
fitting criterion - such as maximum I,kehhood But problems arise when we have data 
as m Figure 2 and we are interested in a very high-excess layer 
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Figure 2 shows the empirical distribution function of the Danish fire loss data evalua- 
ted at each of the data points. The empirical d f. for a sample of size n is defined by 

Fn(x) = n - '  2', '=. IIx, s~l '  i'e' the number of observations less than or equal to x diu-  

ded by n. The einplrlcal d f. forms an approximation to the true d.f which inay be 
quite good in the body of the distribution; however, it is not an estimate which can be 
successfully extrapolated beyond the data. 

The full Danish data comprise 2492 losses and can be considered as being essenti- 
ally all Danish fire losses over one mflhon Danish Krone (DKK) from 1980 to 1990 

plus a number of smaller losses below one mllhon DKK We restrict our attention to 
the 2156 losses exceeding one million so that the effective displacements5 is one We 
work in units of one million and show the x-axis on a log scale to indicate the great 
range of the data 

Suppose we are iequired to price a high-excess layer running from 50 to 200 In this 
intelval we have only six observed losses. If we fit some overall parametric severity 

distribution to the whole dataset it may not be a particularly good fit in this tail area 
where the data are sparse 

There are basically two options open to an insuralace coinpany Either it inay choo- 
se not to insure such a layer, because of too little experience of possible losses. Or, if it 
wishes to insure the layer, ~t must obtain a good estimate of the severity distribution in 
the tail 

To solve this problem we use the extreme value methods explained m the next sec- 
tion. Such methods do not predict the future with certainty, but they do offer good 
models for explaining the extreme events we have seen m the past. These models are 
not arbitrary but based on rigorous matheinatical theory concerning the behavlour of 
extrema 

3 EXTREME VALUE THEORY 

In the following we summarize the results from EVT which underlie our modelling 
General texts on the subject of extreme values include Falk, Husler & Reiss (1994), 
Embrechts, Kluppelberg & Mikosch (1997) and Reiss & Thomas (1996) 

3.1 The generalized extreme value d is t r ibut ion  

Just as the normal distribution proves to be the nnportant hmitlng distribution for 
sample sums or averages, as is rnade explicit in the central hnnt  theorem, another 
family of distributions proves important in the study of the hmltlng behavlour of sam- 
ple extrema. This is the famdy of extreme value distributions 

This family can be subsumed under a single parametrizatlon known as the generali- 
zed extreme value distribution (GEV). We define the d f of the standard GEV by 

J~exp(-(I + ~ , ) - " ¢ )  if ~ *  O, 
H:(x) 

" ~Lexp(-e-  ) if ~ = O, 
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where x is such that 1 + ~ > 0 and ~ is known as the shape parameter. Three well 

known distributions are specml cases, if ~ > 0 we have the Fr6chet d~stnbunon, if ~ < 
0 we have the Welbull distribution; ~ = 0 gives the Gumbel dlstnbunon 

If we introduce location and scale parameters/.t and cr > 0 respectively we can ex- 
tend the family of dls tnbunons We define the GEV H ~ o ( x )  to be H~((x - Lt)/cr) and 
we say that H,~ u o is of the type H e 

3.2 The Fisher-Tippett Theorem 

The FJsher-Tlppett theorem is the fundamental result m EVT and can be considered to 
have the same status in EVT as the central hmlt theorem has in the study of sums The 
theorem describes the hmltmg behavlour of appropriately normahzed sample maxmla. 

Suppose we have a sequence of i i.d random variables X~, X 2, from an unknown 

dlstnbutlon F - perhaps a loss seventy distribution. We denote the maximum of the 
first n observations by M, = max(Xp , X,,) Suppose further that we can find sequen- 
ces of real numbers a,, > 0 and b, such that (M,, - b,)/a,, the sequence of normalized 
maxima, converges in dlStrlbuhon 

That is 

P{(M, , , -b , ) /a ,  <x} = F"(anx + b,)---> H(x), as n--~ oo, (1) 

for some non-degenerate d f H(x) If this condmon holds we say that F is m the 
maximum domain of attracnon of H and we wnte F ~ MDA (H) 

It was shown by Fisher & Tippett (1928) that 

F ~ MDA (H) ~ H is of the type H~ for some ~. 

Thus, if we know that suitably normalized maxima converge in distribution, then 
the lnmt d ls tnbunon must be an extreme value dls tnbunon for some value of the pa- 
rameters ~, p and cr 

The class of distributions F for which the condmon (I) holds is large A variety of 
eqmvalent conditions may be derived (see Falk et al. (1994)) One such result is a 
condition for F to be in the domain of attracnon of the heavy tailed Fr6chet distribu- 

tion (H~ where ~ > 0). This is of interest to us because insurance loss data are generally 
heavy tailed 

Gnedenko (1943) showed that for 4 >  0, F ~ MDA (H~) if and only ff 1 - F(x) = 
x ~/~ L(x), for some slowly varying function L(x) This result essentmlly says that ,f the 
tall of the d f. F(x) decays hke a power funcnon, then the d,s tnbunon is in the domain 
of attraction of the Fr6chet The class of d~str|bunon,, whele the tall decays hke a po- 

wer function is quite large and includes the Pareto, Burr, loggamma, Cauchy and t- 

distributions as well as various mixture models. We call distributions m this class 
heavy tailed d~stribunons, these are the dlstnbuttons which will be of most use in 
modelling loss severity data 

Dlstrlbunons In the maximum domain of attracnon of the Gumbel MDA (Ho) inclu- 
de the normal, exponentml, gamma and Iognormal d,stnbunons.  We call these distri- 

butions medium tailed distributions and they are of some interest in insurance Some 
insurance datasets may be best modelled by a medium tailed d~stnbunon and even 
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when we have heavy taded data we often compare them with a medium taded refe- 
rence &stributJon such as the exponentml in exploratwe analyses 

Particular mention should be made of the Iognormal d~strlbuUon which has a much 
beaver tall than the normal &stnbutlon. The lognormal has historically been a popular 
model for loss seventy distributions; however, since it is not a member of MDA (HO 
for { > 0 ~t is not techmcally a heavy taded distribution 

Distributions in the domain of attraction of  the Welbull  (H{ for ~ < 0) are short 
taded distributions such as the uniform and beta d~strlbut~ons. This class ~s generally 
of  lesser interest m insurance apphcauons although ~t ~s possible to imagine s~tuat~ons 
where losses of  a certain type have an upper bound which may never be exceeded so 
that the support of the loss severity d~stribunon ~s finite Under these circumstances 
the tad might be modelled with a short taded d~str~bunon 

The Fisher-Tippet t  theorem suggests the fitting of  the GEV to data on sample 
maxima, when such data can be collected There ~s much literature on this topic (see 
Embrechts et a l ,  1997), particularly m hydrology where the so-called annual maxima 
method has a long history A well-known reference is Gumbel (1958) 

3.3 The generalized Pareto distribution 

An equivalent set of  results in EVT describe the behav~our of  large observations which 
exceed high thresholds, and this is the theoretical formulauon which lends ~tself most 
readdy to the modelhng of  Insurance losses This theory addresses the quesnon gwen 
an observation ~s extreme, how extreme might ~t be ̀ ) The &stribut~on which comes to 
the fore m these results Is the generahzed Pareto &stributlon (GPD) 

The GPD is usually expressed as a two parameter dlStrlbuuon with d f 

{ l l - ( l + ~ x / ° ' ) - I t ~  ' f ~ : 0 '  (2) 
G~.~(x) = - e x p ( - x  / or) if ~ = 0, 

where o ' >  0, and the support is x > 0 when ~ > 0 and 0 <.~ <-o"/4 when ~ < 0 The 
GPD again subsumes other d~Strlbuuons under its parametr~zatlon When ~ > 0 we 
have a reparametr~zed version of the usual Pareto distribution, if ~ < 0 we have a type 
II Pareto distribution, ~ = 0 gives the exponential distribution 

Again we can extend the famdy by adding a location p a r a m e t e r / l  The GPD 
G¢~,.o(x) is defined to be G~,,(x - la). 

3.4 The Pickands-Balkema-de Haan Theorem 

Consider a certain high threshold u which might, for instance, be the lower attachment 
point of  a high-excess loss layer u will certainly be greater than any possible displa- 
cement S associated with the data We are interested in excesses above this threshold. 
that is, the amount by which observahons overshoot this level 

Let xo be the fimte or mfimte right endpomt of the &stnbutJon F. That is to say. x 0 = 
sup {x 6 • . F(x)  < 1 } _< ¢o We define the distribution function of the excesses over 
the high threshold it by 
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F(x + u) - F(u) 
F,,(x)= P{X-u_< xl  X > u} = 

I - F ( u )  

forO<_x < x o - u  
The theorem (Balkema & de Haan 1974, Plckands 1975) shows that under MDA 

conditions (1) the generalized Pareto d~stnbution (2) ~s the hmlting dtstnbutlon for the 
d~stnbutlon of the excesses, as the threshold tends to the right endpolnt. That is, we 
can find a positive measurable function o'(u) such that 

hm sup F , , (x ) -  G~.,~o,)(x) = O, 
It'--) t 0 0 <  - ~¢<j it 0 --U 

if and only ff F ~ MDA (He) In this formulation we are mainly following the quoted 
references to Balkema & de Haan and Ptckands, but we should stress the important 

contribution to results of this type by Gnedenko (1943) 
This theorem suggests that, for sufficiently high thresholds u, the distribution func- 

tion of the excesses may be approximated by G ~ ( x )  for some values of ~and cr Equi- 
valently, for x - u > 0, the distribution function of the ground-up exceedances F,(x - u) 
(the excesses plus u) may be approximated by G~ °(x - u) = G~,, o(X) 

The staust~cal relevance of  the result is that we may attempt to fit the GPD to data 
which exceed high thresholds. The theorem gwes us theoretical grounds to expect that 
if we choose a high enough threshold, the data above wdl show generalized Pareto 
behavlour. This has been the approach developed ,n Davison (1984) and Davlson & 
Smith (1990) The principal practical diff iculty involves choosing an appropriate  
threshold The theory gives no guidance on th~s matter and the data analyst must make 

a decision, as wdl be explained shortly. 

3.5 Tail fitting 

If we can fit the GPD to the condttlonal dlstrlbutton of the excesses above some high 
threshold u, we may also fit it to the tad of  the original d~strlbutlon above the high 
threshold (Re~ss & Thomas 1996). For x > u, i.e points in the tall of the distribution, 

F(x) = P { X  < x} = (I - P I X  < u})F,,(x-  u) +P{X < u} 
We now know that we can estimate F,(x - u) by G¢ o(x - u) for u large We can also 

estimate P{X < u} from the data by F,(u), the empirical distribution function evaluated 

at u 
This means that for x > u we can use the tall estimate 

F(x)  = (1 - F,, (u))G~,,, a (x) + F,, (u) 

to approximate the distribution functton F(x) It is easy to show that ~'(x) is also a 

generahzed Pareto dlstribuuon, with the same shape parameter ~, but with scale para- 

meter 6- = cr(l - F,,(u)) ~ and location parameter /] = # - 6 - ( 0  - F,,(u)) -# - 1)/~.  

3.6 Statistical Aspects 

The theory makes exphclt  which models we should attempt to fit to historical data. 
However,  as a first step before model fitting ~s undertaken, a number of  exploratory 
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graphical methods provide useful preliminary infornlatlon about the data and m pan.i- 
cular their tall. We explain these methods m the next section in the context of an ana- 
lysis of the Danish data 

The generalized Pareto dlstnbution can be fitted to data on excesses of high thres- 

holds by a vanety of methods including the nlaxlmum likelihood method (ML) and the 
method of probability weighted moments (PWM) We choose to use the ML-method 
For a comparison of the relative merits of the methods we refer the reader to Hosklng 
& Walhs (1987) and Rootz6n & Tajvidl (1996). 

For ~ > - 0 5 (all heavy tailed applications) it can be shown that maximum likeli- 
hood regularity conditions are fulfilled and that maximum likelihood esnmates 

(~U,, ,~N,, ) based on a sample of N. excesses of a threshold u are asymptotically nor- 

really distributed (Hosking & Walhs 1987) 
Specifically for a fixed threshold u we have 

,v,, tON.) L to .s ' t .< : , ( l +¢ )  ' 

as N,, e oo. This result enables us to calculate approximate standard errors for our 
maximum likelihood estimates. 
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FIGURE3 Time sene~ and log data plolg for the Danish data Sample size ~s 2156 
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4 ANALYSIS OF DANISH FIRE LOSS DATA 

The Damsh data consist of  2156 losses over one million Danish Krone (DKK) from 
the years 1980 to 1990 inclusive (plus a few smaller losses which we ignore m our 
analyses) The loss figure is a total loss figure for the event concerned and includes 
damage to buildings, damage to furniture and personal property as well as loss of  
profits. For these analyses the data have been adjusted for Inflation to reflect 1985 
values 

4.1 Exploratory data analysis 

The time series plot (Figure 3, top) allows us to identify the most extreme losses and 
their approximate t~lnes of  occurrence We can also see whether there IS evidence of  
clustenng of large losses, which might cast doubt on our assumption of H.d data Th~s 

does not appear to be the case with the Danish data 
The h~,~togram on the log scale (Figure 3, bottom) shows the wide range of the data 

It also al lows us to see whether the data may perhaps have a lognormal right tall, 
which would be indicated by a familiar bell-shape m the log plot. 

We have fitted a truncated lognormal distribution to the dataset using the maximum 
likelihood method and superimposed the resulting probabdlty density function on the 

histogram. The scale of the y-ax~s is such that the total area under the curve and the 
total area of  the histogram are both one The truncated Iognormal appears to provide a 
reasonable fit but it is difficult to tell from this picture whether it is a good fit to the 
largest losses in the high-excess area m which we are interested 

The QQ-plot against the exponential distribution (Figure 4) is a very useful guide to 
heavy tads It examines visually the hypothesis that the losses come from an exponen- 

tial distribution, ~.e from a distribution with a medium sized tall. The quantlles of the 
empirical distribution function on the x-ax~s are plotted against the quantdes of  the 
exponential distribution function on the y-axis The plot is 

( ( X k . ,  .' n - k + l  = ,n}, G~, (-----~-~---11, ~ l, 

where X~ ,, denotes the kth order statistic, and G -~ 0: is the inverse of the d f. of the ex- 

ponentml dlstnbut,on (a special case of the GPD) The points should he approximately 
along a straight line if the data are an i.i.d, sample from an exponential distribution 

A concave departure from the ideal shape (as in our example) indicates a heawer 
tailed dlstnbutlon whereas convexity indicates a shorter taded distribution. We would 
expect insurance losses to show heavy tailed behavlour. 

The usual caveats about the QQ-plot  should be mentioned. Even data generated 
from an exponentml distribution may sometimes show departures from typical expo- 
nent,al behavlour In general, the more data we have, the clearer the message of the 
QQ-plot.  With over 2000 data points  m this analysis ~t seems safe to conclude that the 
tad of the data ~s heavier than exponential. 



ESTIMATING THE TAILS OF LOSS SEVERITY DISTRIBUTIONS USING EXTREME VALUE THEORY 1 2 7  

- -  ted 

uJ 

O )  

O 

QQPIot Sample Mean Excess Plot 

O " 

• e • 

/ 
0 50 1 O0 150 200 250 0 10 20 30 40 50 60 

Ordered Data 'Threshold 

FIC, URE4 QQ-pIoI and sample mean excess function 

A further useful graphical  tool is the plot o f  the sample  mean excess  function (see 

again Figure 4) which =s the plot. 

{(u,e.(.)),X .... <u<Xl , ,}  

where X t ,, and X,, ,, are the first and nth order  s tausucs  and e,,(u) is the sample  mean 

excess function defined by 

y_."=,(x, - . r  

i e. the sum of  the excesses  over  the threshold u d~vlded by the number  o f  data points 

which exceed the threshold u 

The sample  mean excess  function en(u ) IS an empir ical  e sumate  of  the mean excess  

funcuon which is def ined as e(u) = E[X - u  I X > u] The  mean excess  function descri- 

bes the expected overshoot  of  a threshold given that exceedance  occurs. 

In plott ing the sample  mean excess function we choose  to end the plot at the fourth 

order  staust~c and thus omit  a possible  three further points,  these points,  being the 

averages  of  at most three observations,  may be erratic. 
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The interpretation of the mean excess plot as explained in Beurlant, Teugels & 
Vynckler (1996), Embrechts et al. (1997) and Hogg & Klugman (1984). If the poants 

show an upward trend, then th,s ,s a s,gn of heavy tailed behavlour. Exponentially 
dtstr,buted data would give an approxamately horizontal lane and data from a short 
tatled distribution would show a downward trend. 

In particular, af the empirical plot seems to follow a reasonably straaght hne wnth 
positive gradtent above a certain value of u, then thts ns an mdtcatnon that the data 
follow a generahzed Pareto dastrtbut~on with pos]tave shape parameter an the tad area 

above u 
Thas as precisely the kind of behavaour we observe m the Dantsh data (Fagure 4) 

There as evtdence of a stra]ghtenmg out of the plot above a threshold of ten. and per- 

haps again above a threshold of 20. In fact the whole plot ]s sufficiently straight to 
suggest that the GPD maght provade a reasonable fit to the entire dataset. 

4 . 2  O v e r a l l  f i t s  

In thas sect,on we look at standard cho,ces of curve fitted to the whole dataset We use 

two frequently used seventy models - the truncated Iognormal and the ordinary Pareto 

- as well as the GPD 
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By ordmary  Pareto we mean the distr ibution with d f F(x) = 1 - (abe) '~ for unknown 

posi t ive parameters  a and o~ and with support  x > a This  distribution can be rewritten 

a s F ( x ) =  I - ( 1  + ( x - a ) / a )  " s o t h a t t t t s s e e n t o b e a G P D w l t h s h a p e ~ =  I / a ,  scale 

= a/a and locatton Lt = a. That  ts to say tt ts a G P D  where  the scale parameter  is 

cons t ramed to be the shape mul t tphed by the locatton It ts thus a little less f lexible  

than a GPD wtthout thts constramt where the scale can be freely chosen. 

As d iscussed earlier,  the lognormal  dlstr lbut ton ts not strictly speaking a heavy  

tailed distribution H o w e v e r  it is moderate ly  heavy tailed and in many apphcatzons it 
is quite a good loss severity model.  

In Ftgure 5 we see the fit of  these models  in the tall area above  a threshold of  20. 

The Iognormal  is a reasonable fit, a l though tts tall ts just a little too thin to capture the 
behavlour  of  the very htghest observed losses. The  Pareto, on the other  hand, seems to 

overes t imate  the probabil i t ies o f  large losses. Thns, at first sight, may seem a desirable,  

conservat ive  mode lhng  feature But it may be the case, that this d f is so conservat ive ,  

that tf we use tt to answer  our  at tachment point and premtum calculauon problems,  we 

wtll a m v e  at answers that are unrealist ically high 
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FIGURE 6 In left plot GPD Is fitted to 109 exceedances of the threshold I 0 The parameter esttmate~ are 
= 0 497, tU = 10 and ~ = 6 98 In nght plot GPD ts fitted to 36 exceedances of the threshold 20 The 

parameter esumates are ~ = 0 684. p = 20 and ~ = 9 63 
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FIGURE 7 Fatmg the GPD to tall of seventy d]stnbutton above threshold 10 
The parameter estimates are ~ = 0 497, ~ = -0 845 and c = I 59 

The GPD ~s somewhere  between the lognormal  and Pareto m the tall area and actu- 

ally seems to be qmte  a good explanatory model  for the highest losses The data are of  

course  truncated at I M DKK,  and ~t seems that, even above  th,s low threshold,  the 

GPD is not a bad fit to the data By raising the threshold we can, however ,  find models  
which are even better fits to the larger losses 

Estmlates  o f  h~gh quantt les and layer prices based on these three fitted curves  are 
gwen  m table I 

4.3 Fitting to data on exceedances of high thresholds 

The sample  mean excess  function for the Damsh  data suggests  we may have success 

fit t ing the G P D  to those data points  which exceed  high thresholds of  ten or 20, m 

Figure  6 we do precisely this. We  use the three parameter  form of  the GPD with the 

location parameter  set to the threshold value We obtain max imum hkehhood  eshma-  

tes for the shape and scale parameters  and plot the corresponding GPD curve supen m- 

posed on the empir ica l  dis tr ibut ion funct ion o f  the exceedances  The  resul tmg fits 

seem reasonable to the naked eye 
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FIGURE8 Esumates  of,shape by increasing threbhold on the upper  x-axm and 
decreas ing number  of  e \ c e e d a n c e s  on the lower x-axm, m Iolal 30 models  are fiued 

The esmnates we obtain are estitnates of the conditional dmtrlbutlon of the losses, 
given that they exceed the threshold Quantlle estimates derived from these curves are 
condmonal quantlle estimates which indicate the scale of losses which could be expe- 
rienced ff the threshold were to be exceeded. 

As described in section 3 5, we can transform scale and location parameters to ob- 
tain a GPD model which fits the seventy dls tnbuuon itself in the tad area above the 
threshold. Since our data are truncated at the displacement of one million we actually 
obtain a fit for the tall of the truncated seventy distribution Fxa(X) This is shown for a 
threshold of ten in Figure 7 Quantde estimates derived from this curve are quantlle 
estimates condmonal on exceedance of the displacement of one indhon. 

So far we have considered two arbHrary thresholds, in the next secuons we consider 
the question of optHnlzlng the choice of threshold by investigating the different esti- 
mates we get for model parameters, high quantlles and prices of high-excess layers. 

4.4 Shape and quantile estimates 

As far as pricing of layers or estimation of high quantfles using a GPD model is con- 
cerned, the crucml parameter is ~, the tall ,ndex. Roughly speaking, the higher the 
value of ~ the heavier the tall and the higher the prices and quantde estimates we de- 
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I=IGURE9 999 quantde esnmates (upper picture) and price md~c,'mom, for a (50,200) layer (lower picture) Ior 
increasing thresholds and decreasing numbers of exceedances 

rive. For a three-parameter GPD model G~u o the pth quantile can be calculated to be u 
+ o-/~((I - p )  ~ -  1) 

In Figure 8 we fit GPD models with different thresholds to obtain maximum hkell- 

hood estimates of ~, as well as asymptouc confidence intervals for the parameter 

esUmates. On the lower x-axis the number of data points exceeding the threshold is 

plotted; on the upper x-axis the threshold itself The shape estimate is plotted on the 

y-ax~s. A vertical hne marks the locaUon of our first model with a threshold at ten 

In using this picture to choose an optimal threshold we are confronted with a bias- 

variance tradeoff Since our modelling approach is based on a hmlt theorem which 

applies above high thresholds, if we choose too low a threshold we may get bmsed 

estimates because the theorem does not apply On the other hand, if we set too high a 

threshold we wall have few data points and our estimates will be prone to high 

standard errors. So a sensible choice wall lie somewhere in the centre of  the plot, per- 

haps a threshold between four and ten in our example 

The ideal s~tuauon would be that shape esumates in this central range were stable. 

In our experience with several loss severity datasets this is sometimes the case so that 
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the data conform very well to a particular generalized Pareto distribution in the tall 

and inference ~s not too sensitive to choice of threshold. In our present example the 

shape estimates vary somewhat and to choose a threshold we should conduct further 

i n v e s t i g a t i o n s .  

T A B L E  I 

COMPARISON OF SHAPE AND QUAN'I ILE ESTIMATES FOR VARIOUS MODELS 

Model  u Excesses  ~ s.e. .995 .999 .9999 P 

GPD 3 532 0 67 0 07 44 0 129 603 0 21 
GPD 4 362 0 72 0 09 46 3 147 770 0 24 
GPD 5 254 0 6 3  0 10 4 3 4  122 524 0 19 
GPD 10 109 0 5 0  0 14 4 0 4  95 306 0 13 
GPD 20 36 0 6 8  0 2 8  3 8 4  103 477 0 15 

MODELS FIT1ED TO WHOLE DATASET 
GPD all data 0 6 0  0 0 4  3 8 0  101 410 0 15 
ParcIo all data 66 0 235 1453 0 10 
Lognormal  all data 35 6 82 239 0 41 

SCENARIO MODELS 
GPD 10 1 0 9 -  I 0 3 9  0 13 37 I 77 201 0 0 9  
GPD 10 109+  I 0 6 0  0 1 5  4 4 2  118 469  0 1 9  

Figure 9 (upper panel) is a similar plot showing how quantlle estimates depend on the 
choice of threshold We have chosen to plot estimates of the .999 'h quantlle. Roughly 
speaking, if the model is a good one, one in every thousand losses which exceed one 
million DKK might be expected to exceed this quantlle; such losses are rare but thre- 

atening to the insurer In a dataset of 2156 losses the chances are we have only seen 
two or three losses of this magnitude so that this is a difficult quantlle estimation pro- 
blem involving model-based interpolation in the tall 

We have tabulated quantlle estimates for some selected thresholds in table I and 
give the corresponding estimates of the shape parameter. Using the model with a 
threshold at ten the 999 I" quantile IS estimated to be 95. But is we push the threshold 
back to four the quantlle estimate goes up to 147. There is clearly a considerable diffe- 
rence these two estimates and if we attempt to estimate higher quantlles such as the 
.9999 'h this difference becomes more pronounced Estimating the .9999'" quantile is 
equivalent to estimating the size of a one in 10000 loss event In our dataset it is likely 
that we have not yet seen a loss of this magmtude so that this is an extremely difficult 
problem entalhng extrapolation of the model beyond the data. 

Estimating the .995 t" quantlle is a slightly caller tall estimation problem. We have 
perhaps already seen around ten or 1 I losses of this magnitude For thresholds at ten 
and four the estimates are 40.4 and 46 3 respectively, so that the discrepancy is not so 

large. 
Thus the sensitivity of quantlle estimation may not be too severe at moderately high 

quantlles wtthln the range of the data but increases at more distant quantlles. This is 

not surprising since estimation of quantlles at the margins of the data or beyond the 



134 ALEXANDER J MC NElL 

data is an inherently difficult problem which represents a challenge for any method. It 
should be noted that although the estimates obtained by the GPD method often span a 
wide range, the estimates obtained by the naive method of fitting ordinary Pareto or 
lognormal to the whole dataset are even more extreme (see table) To our knowledge 
the GPD estimates are as good as we can get using parametric models 

4.5 Calculating price indications 

In considering the issue of the best choice of threshold we can also investigate how 
price of a layer varies with threshold To give an indication of the prices we get from 
our model we calculate P -- ElF, I X, > ~] for a layer running from 50 to 200 nnlhon (as 
in Figure 2) It is easily seen that, for a general layer (r. R), P is given by 

P = ~ x  - r)fx, (x)cL~ + ( R -  r)(I - Fx~ (R)), (3) 

where fx6(X) = dFxS(x)/dx denotes the density function for the losses truncated at 
Picking a high threshold u (< r) and fitting a GPD model to the excesses, we can esti- 
mate Fx6(x) forx > u using the tail esumation procedure We have the estimate 

~x~ (x) = (I - F,, (u))G~.,,.,~ (x) + F,, (u), 

where ~ and 6" are maximum-hkehhood parameter estimates and F,(u) is an estimate 

of P{X ~<_ u} based on the empirical distribution function of the data We can estimate 
the density function of the 6-truncated losses using the derivative of the above expres- 

sion and the integral in (3) has an easy closed form 
In Figure 9 (lower picture) we show the dependence of P on the choice of threshold 

The plot seems to show very smnlar behavlour to that of the 999 'h percentile estimate, 
with low thresholds leading to higher prices The question of which threshold is ulti- 
mately best depends on the use to which the results are to be put If we are trying to 
answer the optimal attachment point problem or to price a high layer we may want to 

err on the side of conservatism and arrwe at answers which are too high rather than 
too low. In the case of the Danish data we might set a threshold lower than ten, per- 
haps at four The GPD model may not fit the data quite so well above this lower thres- 
hold as it does above the high threshold of ten, but it might be safer to use the low 
threshold to make calculations 

On the other hand there may be business reasons for trying to keep the attachment 

point or premium low. There may be competition to sell high excess policies and this 
may mean that basing calculations only on the highest observed losses is favoured, 
since this will lead to more attractive products (as well as a better fitting model) 

In other insurance datasets the effect of varying the threshold may be different In- 
ference about quantdes might be quite robust to changes in threshold or elevation of 
the threshold might result m higher quantde estimates Every dataset is unique and the 

data analyst must consider what the data mean at every step The process cannot and 
should not be fully automated 
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4.6 Sensitivity of Results to the Data 

We have seen that inference about the tall of the severity distribution may be sensitive 
to the choice of threshold It is also sensitive to the largest losses we have m our data- 
set. We show this by consldermg two scenarios m Table I. 

In the first scenario we remove the largest observation from the dataset. If we return 
to our first model with a threshold at ten we now have only 108 exceedances and the 
estimate of the .999 'h quantlle is reduced from 95 to 77 whilst the shape parameter falls 

from 0.50 to 0 39 Thus omission of this data point has a profound effect on the esh- 
mated quantlles. The estimates of the .999 'h and 9999 'h quantiles are now smaller than 
any previous estimates 

In the second scenario we introduce a new largest loss of 350 to the dataset (the 
previous largest be,ng 263) The shape estimate goes up to 0.60 and the eStllnate of the 
999 "~ quantlle increases to 118 Th,s is also a large change, although m this case it is 

not as severe as the change caused by leaving the dataset unchanged and reducing the 
threshold from ten to five or four 

The message of these two scenarios is that we should be careful to check the ac- 

curacy of the largest data points in a dataset and we should be careful that no large 
data points are deemed to be outhers and omitted if we wish to make inference about 
the tall of a distribution. Addmg or deletmg losses of lower magnitude from the data- 

set has much less effect 

5 .  DISCUSSION 

We hope to have shown that fitting the generalized Pareto distribution to msurance 
losses which exceed high thresholds is a useful method for estimating the tails of loss 
severity dlstrlbut,ons In our experience with several msurance datasets we have found 
consistently that the generahzed Pareto distribution ~s a good approximation m the tall 

This Is not altogether surpr~smg As we have explained, the method has solid foun- 

dations in the mathematical theory of the behaviour of extremes; it is not simply a 
question of ad hoc curve fitting It may well be that, by trial and error, some other 
distribution can be found which fits the avadable data even better in the tall But such 
a distribution would be an arbitrary choice, and we would have less confidence m 
extrapolating it beyond the data 

It is our belief that any practitioner who routinely fits curves to loss severity data 

should know about extreme value methods There are, however, an number of caveats 
to our endolsement of these methods We should be aware of various layers of uncer- 
tamty which are present m any data analysis, but which are perhaps magmfied m an 
extreme value analys~s 

On one level, there is parameter uncertainty. Even when we have abundant, good- 
quality data to work with and a good model, our parameter estlmales are still subject 

to a standard error We obtain a range of parameter estimates which are compatible 
w~th our assumptions As we have already noted, inference is sensitive to small chan- 
ges m the parameters, particularly the shape parameter 
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Model uncertainty ~s also present - we may have good data but a poor model. Using 
extreme value methods we are at least working with a good class of models, but they 
are apphcable over h~gh thresholds and we must decide where to set the threshold If 

we set the threshold too high we have few data and we introduce more parameter 
uncertainty If we set the threshold too low we lose our theoretical jusuficauon for the 
model. In the analysis presented m th~s paper inference was very sensmve to the thres- 
hold choice (although this is not always the case). 

Equally as serious as parameter and model uncertainty may be data uncertainty. In a 
sense, it is never possible to have enough data m an extreme value analysis Whilst a 

sample of 1000 data points may be ample to make reference about the mean of a dls- 
tnbuuon using the central hm~t theorem, our inference about the tad of the distnbuuon 
is less certain, since only a few points enter the tad region. As we have seen, inference 
is very sensitive to the largest observed losses and the mtroductton of new extreme 
losses to the dataset may have a substantial mapact For this reason, there may still be a 
role for stress scenarios in loss severity analyses, whereby historical loss data are 

enriched by hypothetical losses Io investigate the consequences of unobserved, adver- 
se events 

Another aspect of data uncertainly ts that of dependent data. In this paper we have 
made the fanuhar assumption of independent, identically d~stnbuted data In practice 
we may be confronted with clustering, trends, seasonal effects and other kinds of de- 
pendencies. When we consider fire losses m Denmark it may seem a plausible first 

assumption that individual losses are independent of one another, however, it is also 
possible to imagine that circumstances conducive or mhlbmve to fire outbreaks gene- 
rate dependenctes m observed losses. Destructive fires may be greatly more common 
m the summer months, buildings of a particular wntage and building standard may 
succumb easdy to fires and cause h~gh losses Even after ajustment for inflation there 
may be a general trend of increasing or decreasing losses over time, due to an increa- 

sing number of increasingly large and expensive buddmgs, or due to increasingly good 
safety measures 

These issues lead to a number of interesting stausucal questions in what is very 
much an active research area. Papers by Davlson (1984) and Davlson & Smith (1990) 
discuss clustering and seasonahty problems m environmental data and make suggesti- 
ons concerning the modelhng of trends using regression models built into the extreme 

value modelhng framework The modelhng of trends is also discussed m Rootz6n & 
Tajvldl (1996). 

We have developed software to fit the generahzed Pareto dls tnbuuon to exceedan- 
ces of high thresholds and to produce the kinds of graphical output presented in this 
paper It ~s wnten  m Splus and ~s available over the World Wide Web at 
http://www math ethz ch/~mcned 
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DISCUSSION OF THE DANISH DATA 
ON LARGE FIRE INSURANCE LOSSES 

SIDNEY I. RESNICK 

Conlell Umver~ttv 

ABSTRACT 

Alexander  McNel l ' s  (1996) study of  the Damsh data on large fire insurance losses 
provides an excellent example of  the use of  extreme value theory m an m~portam 
apphcat |on context. We point out how several alternate statistical techmques and plot- 
ting devices can buttress McNel l ' s  conclusions and provide flexible tools for olher 
studies 

KEYWORDS 

Heavy tails, regular vanat |on,  Hill estimator, Polsson processes, linear programming, 
parameter esumatlon weak convergence, cons|stency, esumatlon, independence, auto- 
correlauons. 

t I N T R O D U C T I O N  

McNefl ' s  (1996) interesting study of  large fire insurance losses provides an excellent 
case history illustrating a variety of extreme value techniques The goal of  my return'ks 
Is to show additional techmques and plotting strategies which can be employed for 
sm~flar data. 

Our remarks concentrate on the following: 
• Dmgnostics for assessing the appropriateness of heavy tailed models 
• Diagnostics for testing for independence. 

It is customary in many insurance studies |nvolvmg heavy tailed phenomena to as- 
sume independence without actually stausucally checking this important fact so some 
attention is given to this issue 

2 APPROPRIATENESS OF HEAVY TAILED MODELS 

Given a particular data set, there are various methods of checking that a heavy tailed 
model is appropriate. The methods given below (these are also reviewed in Resnlck 
1995, 1996, Feigln and Restock, 1996) supplement  the techniques discussed by 
McNeil such as mean excess plot,, and QQ-plots against exponenual quantdes. Unhke 
the mean excess plot, the following methods do not depend on existence of  a finite 
mean for the marginal distribution of the stationary time series This is m~portant since 
it ~s becoming clear that it is not difficult to find examples of heavy tailed data which 

AS'] IN BULLETIN, Vol 27, No I. 1997 pp I ~9-151 
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require infinite mean models for adequate fits (See for example the teletraffic exam- 
pies m Restock (1995, 1996)). 

For the discussion that follows, we suppose {X,,, n > I } is a stationary sequence and 

that 

PIXi  > xl = x "~ H x ) .  ~. ~ o o  (2 1 ) 

where L ts slowly varying and ct > 0 Consider the following techniques 
(1) The  Htl l  plot.  Let 

Xi~ ) > Xc2 ~ > . > X~,,~ 

be the order statistics of the sample X~,. , X,, We pick k < n and def, ne the Hill estn- 
mator (Hdl, 1975) to be 

1 ~ log X~'-----L-) 
Hk'n = k ~=1 X(/~+l) 

Note k ~s the number of upper order statistics used m the estmaatlon The Hill plot ~s 

the plot of 

( (L Hi.I,,), I < Ic < n) 

and ff the {X,,} process ns lid or a linear moving average or satnsfies certain mtxmg 

condtt,ons then since HA.,, P > a -I as n --~ oo k/n --, 0 the Hall plot should have a 

stable regime sitting at height roughly ~x See Mason (1982), Hsmg (1991), Restock 

and Stanca (1995, 1996a), Rootzen et al (1990), Rootzen (1996). In the Hd case, under 
a second order regular variation condition, H~, is asymptotically normal wnth asymp- 
totnc variance I / ~  (See de Haan and Restock, 1996) 

(2) The  .~mooHtll  P lo t  The Hill Plot often exh~bnts extreme volatnhty whuch makes 
finding a stable regm~e m the plot more guesswork than scnence and to counteract this, 

Restock andSt.~nc~ (1996a) developed a smoothing techmque y,eldmg the smooHlll 
plot Puck an integer u (usually 2 or 3) and define 

smooH~,,, (. 1)----~" y~ Hi.,, 
J=/~+l 

In the hid case when a second order regular variation cond~tnon holds, lhe asymptotic 

varmnce of~mooH~, ,  is less than that of the Hill estimator, namely. 

I 2 log u 
c~ 2 u (I - u ) 

The senstttvtty of the Htll esttmate to the chotce of k corresponds m McNefl's work to 
the sensitivity of the fit of the generalized Pareto to the data to the choice of threshold 

Perhaps some comparable smoothing technique would help m GPD fitting. 

(3) Al t  p lot t ing,  C h a n g i n g  the ~cale. As an alternatnve to the Hill plot, it ts sometu- 
mes useful to dxsplay the mfrormatton provided by the Hall or smooHlll estnmatlon as 
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and smallarly for the smooHtll plot where we write Fy-[ for the smallest integer greater 
or equal to y > 0 We call such plots the alternanue Hill plotabbrcviated AItHlll and 

the alternative smoothed Hill plot abbrevmted AltsmooHfll The alternative display is 
sometimes revealing since the mmal order statistics get shown more clearly and cover 
a bigger portion of the displayed space. However, when the data is Pareto or nearly 
Pareto, this alternate plotting device is less useful since in the Pareto case, the Hill 
estimator applied to the full data set is the maxmmm likelihood estimator and hence 
the correct answer is usually found at the right end of the Hill plot 

(4) Dynamic and static QQ-plots As we did [-'or the Hill plots, pick k upper order 
statistics 

X(i  ) > X(2  ) > . > X(k ) 

and neglect the rest Plot 

{ ( - l o g 0  - k---~), log X¢j)), I < j' < k}. (2.2) 

If the data are approximately Pareto or even if the marginal tall is only regularly va- 
rying, this should be approxmlately a straight hne with slope I/~.  The slope of  the 
least squares line through the points Is an esumator called the QQ-estunator (Kratz and 
Restock. 1996) Computing the slope we find that the QQ-estlmator is given by 

1 , 

i Y-,i--, ,, 
or---k,,, (2 3) 

k Z~=I ( -  log( k+-I ))- - ( k I 

There are two different plots one can make based on the QQ-est lmator  There is the 
A 

dynamic QQ-plot obtained from plomng {k, l /a- l t , , , , l  < k _< n} which is similar to the 

Hill plot. Another plot, the statfc QQ-plot,  is obtained by choosing and fixing k, plot- 
ting the points m (3 2) and putting the least squares line through the points while com- 
puting the slope as the estimate of ~-~ 

The QQ-estlmator is consistent for the nd model if k --~ ~ and k/n ---) 0 and tinder a 
second order regular vm lanon condmon and further restriction o n  k(n), it is asymptoti- 
cally normal with asymptotic variance 2 / ~  Th~s is larger than the asymptotic variance 
of the Hill estimator but the volatility of the QQ-plot always seems to be less than that 
of the Hill estmlator. 

(5) De Haan's moment es,mator McNeil discusses the extreme value distributions 
(see also Restock, 1987; de Haan, 1970, Leadbette~ et al, 1983, Casnllo,  1988, Em- 
brechts et al 1997) which can be parameterlzed as a one parameter family 

G¢ ( a ) =  exp{-( l  + ~x)-~--' }, ~ ~ 91,1 +~.r > 0 

When ~ = 0, we interpret Go as the Gumbel distribution 

Go(x) = e x p { - e - '  }. x ~ 9l. 
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A distribution whose sample maxima when properly centered and scaled converges 
in distribution to G~ is said to be in thedomam of attraction of G¢ which m McNetl ' s  
notation is written F6 MDA(G~) If ~ > 0 and F~ MDA(G 0 then I - F ~  RV_i/~ De 

Haan 's  moment est imator ~,,, (Dekker 's ,  Elnmahl, de Haan, 1989, de Haan. 1991, 

Dekkers and de Haan, 1991; Resntck and Startca, 1996b) ts designed to estimate ~ = 

1/C~ Note that ~x.,,, like the Hill estimator, is based on the k-largest order statistics 

Since most common densities such as the exponentml, normal, gamma and Welbull  
densities and many others are m the MDA(Go), the domain of attraction of  the Gumbel 
distribution, this provides another method of  dectdmg when a distribution ts heavy 

tailed or not If ~.,,  is negative or very close to zero, there is considerable doubt that 

heavy taded analysis ~hould be apphed and the moment esttmator is usually much 

more rehable in these circumstances than the Hill estmlator In particular, when ~ = 0, 
the Hill estimator is not usually informatwe and the moment estm~ator does a much 
better job of identffymg exponential ly bounded tails Smoothed versions of  the mo- 
ment est imator can also be devised (Resntck and Starlca, 1996b) which overcome 

volatility in the plot of {k,~x ,,, I _< k _< n} 

o 

D a n i s h  D ~ . t  e t  Q Q  D a n i s h  

~ 0 0  ~ 0 0 0  ~ 5 0 0  2 0 0 0  

FIGURL2 I T~plot and QQ plot of Damsh data 

Q Q  D a n i s h . a l l  

° . ~ . ~ .  . . . . . . .  % . . . . .  ~ , . ,  

P ~ r f l t  D a n i s h  

°i 
FIGURE 2 2 QQ plot of Ddm~h oil dala and parameter cst]mate 
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Hi l l  a n d  D y n a m i c  Q Q  
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n u m b e r  of  o r d e r  5 t e t l s t l c s  n u m b e r  o f  o r d e r  8 te t l s t Jcs  

FIGURE2 3 Hdl and QQ-ploI of  Damsh data 

Figure 2 1 gives a time series plot of the 2156 Danish data consisting of  losses over 
one million Danish Krone (DKK) and the right hand plot is the QQ-plot (2 2) of this 
data yielding a remarkebly strmght plot Figure 2.2 gives the QQ-plot  of  all of the 
2492 losses recorded In the data set labeled danish.all and shows why McNeil  was 
statistically wise to drop losses below one mdhon DKK (In the left hand plot the data 
is scaled to have a range of (0.3134041, 263 2503660) and the dots below hexght 0 

represent the 325 values which are less than 1 m the scaled data.) The right hand plot 
in Figure 2 2 puts a line through the QQ-plot  of  the losses above one milhon and 
yields an estimate of  a = I 386 Using only the largest 1500 order statistics and then 
estimating t~ from the slope of the LS line produces an estimate of a = 1 4 

We next attempted to estimate a by means of the Hill plot Figure 2 3 shows a Hill 
plot side by side with the dynamic QQ-plot .  Because the plot m the right side of  
Figure 2 I is so straight, we tend to trust the Hill plot near the right end of the plot 
This is because the ~tralght plot m Figure 2 I mdlcate~ the underlying distribution ~s 
close to Pareto and for the Pareto dlstnbuuon the maxmmm likelihood esumator of the 
shape parameter  ~s the Hill esumator  calculated using all thc data This analysis Is 
confirmed by the excellent  fit achieved by McNeil using a GPD with ~ = 0 684 or 

= 1.46 corresponding to losses exceeding a threshold of 20 million DKK. Such a 
GPD is a shlftcd Pareto 

On the other hand, examining the altHlll and al tsmooHdl plots in Figure 2 4 makes 
it seem unlikely that ~ could be as large as 2 01 which is what Is given m M c N e d ' s  
Figure 7. This corresponds to a ~ = 0 497. Our methods indicate a likely value of c~ = 
1 45 

In Figure 2 5 we present four views of the moment esumator  ~k.,, ol ~ = f la .  The 

upper right graph and the lower two graphs are m a l t  scale where k, I _< k_< n is 
replaced by Vn°]. 0 <_ 0 _< I Interestingly, we see here and m the four views of the Hall 
plot, that when the data are very close to Pareto, the alt scale is not advantageous 
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When the data ~s close to Pareto, the rehable part of the graph ~s toward the end and 
this is the part of the graph under emphasized by the air scale The s~tuatmn ~s very 
different for something hke stable data (Restock, 1995) where the tradmonal Hill plot 

is incapable of identifying the correct value of ~ but the alt plot does a superior job. 
Based on an amalgam of the QQ, Hill and moment plots, we settle on an esumate of 

a = l . 4 o r ~ =  71 

o. 

~ .  04 

ID 

E 

Hill pl0t AltHill 
o. 

Q. OD 

500 1000 1500 2000 0.2 0 4 0 6 0.8 1 0 
number of order statistics theta 

AltsmooHill  AItHill and AItsmooHil l  
q 

Ea.o~ 

0 2  0.4 0 6  0 8  0.2 0 4  0 6  0 8  1.0 
theta theta 

FIGURE2 4 Hill and smooHfll plot s., tor Dam~h data 

3 TESTING FOR INDEPENDENCE 

We outline several tests for mdependence which can help reassure the analyst that an 
ud model is adequate and that ~t ,s not necessary to try to fit a stationary ame series 

with dependencies to the data. Some of our tests are motivated by our experience 
trying to fit autoregressive processes to heavy taded data 

Here .s a survey of several methods which can be used to test independence Some 
of these are based on asymptotic inethods using heavy tailed ,malysls and the rest are 
standard rune series tests of homogeneity 

(1) Method based on sample acf: An exploratory, informal method for testing for 
independence can be based on the sample autocorrelatlon funcnon ,6(h) where for h 

any posmve integer 
/ t -h  

,b(h) = 2. , ,=,  (X,  - X ) ( X , . h  -- X )  

Z 2 ,  - 
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In many studies of heavy tailed data, the centering by the sample mean is omitted 
since If mathematical expectation does not exist, there is no advantage or sense to 

centering by the sample mean However, since our chosen value of ~ =1 4 imphes 
EIXJ < oo, we have decided to include the centering From Davis and Resnlck (1985a), 
if {X,} are nd with regularly varying tall probabilities, then 

hnl /~(h)={ I' I f h=0 ,  
, , ~  0, lfh :*: 0. 

Thus, ~f upon graphing /3(h), h = 0, ., n - h we get only small values for h # 0 there 
is no evidence against independence The Matt distribution of /~(h), h = I, . , q is 
known (Daws and Resntck, 1985b, 1986 Corollary 1) but it is somewhat difficult to 
work with and the percentiles must be calculated by simulation It is important to 
leahze that the 95% confidence bands drawn by a typical statistics package like Splus 
are drawn using Bartlett 's formula (Biockwell and Davis, 1991) on the assumption 

that the data is Gausslan or at least has flmte fourth moment This assumption is to- 
tally inappropriate for heavy tailed data and the confidence band must be drawn taking 
,nto account the heavy tailed limit distribution for f3(h), h = I , .  , l 
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FIGURE2 5 Moment esmnalor plots for Damsh data 

We discuss Jmplementauon of the acf based procedure when 1 < o~ < 2 since m the 
case of the Danish loss data we have settled on an estnnate of o~ = 1.4 Suppose { Yi, 

, Y.} are lid non-negative random variables satisfying 

P[,~ > x J - x - a L ( x ) ,  x ~ o o ,  l < ~ < 2  
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where L is slowly varying From Corollary 1, page 553 of Davis and Restock (1986), 
if we set /3y (]1) to be the lag h sample acf for Y~, . . Yo, then we have 

hm P[Ig,~-' b,~ tSr(h ) _< x l  = PIUh / V o -< x] 
/ t . - . ) ~  

where Uh is a one sided stable random variable with index o~ = 1 4 and V o is a posture 

stable random variable with index cd2 = 0.7 and b,, is the solution to 

PI Yz > x I = I / n 

and /~,, is the soluhon to 

P[YJY2 > x ] =  IIn 

Thus an approximate symmetric 95% confidence window for the sample correlauons 

of  the Y's would be placed at _+l/~,,/b,~ where /sausfies 

P[luh/v01-< l] = .95. 

We estimate the 95%-quantlle of  IUj/Uol by sm]ulatlon and if we assume the dlstnbu- 
uon of Y,'s ~s Pareto from some point on, we find 

i b,, l( n I -'`a 
b,; 

The assumpuon o f a  Pareto dlstnbuuon seems mild m view of Figure 2 2 and the good 
fit found by McNed of the GPD with posluve shape parameter 

F=gure 3 I presents this techmque apphed to the Damsh loss data. No sDke is 
protruding trom the band and hence this acf based techmque does not provide any 
evidence against the assumpuon of independence. 

9 5 %  C o n f i d e n c e  B a n d  

Q 

9 

I I , ] 
i ' i ' ) 

5 1 0  1 5  2 0  
L a g  

FIGURE 3 1 95% confidence band for the acf of the Dam~h loss data 
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(2) Test~ based on asymptotic theory Estm~ators of autoregresswe coefficients for 
heavy tailed time series can be used to fashion tests for independence against autore- 
gresswe alternatives If the autoregress~on ~s described as 

P 

X, ='~-'~,X,_, +Z, ,  t = 0 , 1  .... 

where {Z,} are lid heavy tailed residuals, then we test if 

4'1 = - = Or,  = O,  

that ~s independence, by rejecting when the maximal estimated coeff|cient 

P 

is too large This procedure has been mlplemented by Felgm. Restock and Statics1 
(1996) based on hnear programming (LP) estimators under the assumption that the lid 
heavy taded residuals {Z,} are non-negauve. See also Felgln and Restock (1993) 

It would not be possible to fix the size of  the LP test if the hmlt distribution of  the 
LP estimator d~d not considerably sunphfy Fortunately it does under the null hypothe- 
sis of  independence and we then have 

b,,(6,(,~), . , 6 , 0 ~ ) )  ~ L --- (V i - '  . . . .  V~7 ~ ) 

where for .~, > 0, ~ = 1, , p we have that 

P[V, < x , . l =  1. ,p]=expl- j~f  F(dy I) F(dye)} (3 2) 
- ~. ~'.)~10 ~1" = " ) ' I X I  " 

This means that i f  we want a 0 05 level rejection region, we should reject when 

v p I~ , (n) l  > K (05 )  where K(05)  is defined by t=] 

and to find an approxmlate value of K(.05) we write 

P ~,(n)l> g (  05) = P  L,>b,,K(05) <_pP[L,>b,,K(O5)]=pe -c(°~KC°5:, (33)  

where c = E(Z{ ~) Thl~ yields 

K( O5)= I-I°g('-O5 / p) ) _ ( l °g (~Op) / I / a  

b. b,, 

We need to esumate c~, c and b. One way to do this is to use the QQ-plot (Fe~gm. 
Restock andStfincfi, 1996; Kratz and Restock. 1996) which yields both /~. (as the 
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intercept of the fitted line) and ~ (as the reciprocal of the slope of the fitted line) and 
then we can get 

= ,,-'  x 7  
t= l  

The asymptotic test is implemented and shown In Figure 3 2 None of the estimated 
coefficient values extend above the bar representing K(05) so this method provides no 
evidence against the hypothesis of independence 

A s y m p t o t i c  T e s t  

Q 

Q 

g I I I I 
2 4 6 8 

n u m b e r  o t  c o e f f i c i e n t s  

FIGURE3 2 Asymptotic test for independence for the Damsh loss data 

1 0  

(3) Standard tests of  randomness. There are several standard time series tests of 

randomness (Brockwell and Davis, 1991, Section 9 4) which are non-parametric and 
can be employed In the present context. We give some examples below We use the 
notation 

Z,, ~ AN(p,,, a,~ ) 

as shorthand to mean that 
(Z,, - p , , ) l o ,  ~ N(O, I) 

( I )  Turn ing point test [ f  T is the number of  turning points alnong X~,.  , X,, then 
under the null hypothesis that the random variables are l id we have 

T ~ AN(2(n - 2) 13, (I 6n - 29) 190) 

and thls can be used as the basis of  a test 

(2) Difference-sign test Let S be the number of t = 2, , n such that X, - X, ~ is po- 
sitive Under the null hypothesis that the random varlablesX~ . . . .  X,, are lid we 
have 

S -  A N ( ~ ( n -  l),(n + 1)/12). 
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(3) Rank test Let P be the number of pairs (~,j) such that Xj > X, lo r j  > t and t = I, 

, n - I Under the null hypothesis that the random variables X~, , X,, are lid 
we have 

- A N ( ~ n ( n  - I ) , n (n  - l ) ( 2 n  P + 5)/8).  

We would reJect the lid hypothesis at the 0 05 level If any of these standardized vana- 
bles had an absolute value greather than 1 96. All of these tests are implemented m the 

Brockwell and Davis (1991) package ITSM. Data can easily be imported into their 

program and tested within the package for randomness. 
We canied out these tests on the Danish loss data using ITSM and achieved the 

following results 
Turning points 1409 AN (1436 00, 19 572) 
Diffelence-slgn 1079 AN (1077.50, 13.412) 

Rank test 1055894 AN (1161545, 50071 902) 

The rank test reJects the hypothesis of independence at the 5% level The turning 
points and difference-sign tests fail to reJect. 

(4) Stability testmg on subsets of the data An informal but useful technique us to 

take a stam~tnc, such as the sample acf, and compute it relative to different subsets of 
the sample If the data is uud, the values of the statistic should be smaular across diffe- 
rent subsets. 
For the sample acf, nf the graphs of /gu (h), h = I . . . . .  q look different for different 
subsets, then one should be skeptical of the correctness ot the rid assumption Often ut 
is enough to split the sample unto halves or thirds to generate some skepticism One 

could make acf subset plots for the Damsh data but since the acf values are not signifi- 

cantly different from 0, there seems httle point to pursuing this diagnostic in this case 

(5) Permutatton te~t for independence. Another approach to testing for indepen- 
dence in tmle series analysis us based on permutation tests. Here we can use any desi- 
red statistic that is designed to measure some form of dependence between successive 

data Thus statistic umght be a maxm~um autocorrelatuon or partial autocorrelatlon, or it 
may be a maximal autoregressuve coefficient estimated by the linear programming 

paradigm 
The permutation test us based on companng the observed value of the statistic with 

the permutation distribution of that statistic - -  that us with the distribution of values of 
the statistic under all the possible permutations of the time series data If there us no 

dependence structure m the data, then the observed value should be a typical value for 
this reference permutation distribution. If there us some dependence of the type to 
which the statistic us sensitive, then the observed value should be extreme with respect 
to thus reference distribution 

This approach allows one to perform tests without relying on the asymptotic theory 
for the partlculai statistic. As we have seen earlier, the asymptotic distribution for 
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P 
v ,~,(n) 
I=l  

revolves vattous parameters that have to be esumated Moreover, the fact that we are 
not sure of the rate of convergence to the asymptotic distribution, also suggests the 

precautionary tactic of using a pernautat~on test 
In the implementation we use below, we approxmaate the p - va lue  of the actually 

observed statistic This is achieved by generating 99 permutations of the time series, 
computing the statistic for each one, and counting the number (C) of these that are 
greater than or equal to the actually observed statistic The p-value is approximated by 
(1+C)%. The statistics considered are the maximum absolute autocorrelauon (macf), 

the maximum absolute partial autocorrelat~on (mpacf), and the maximum absolute 
linear programming coefficient estimate (mphl) In each case, one must specify the 
value of p, the order over which the maxunum is taken 

For the Damsh loss data, we took the order to be 10 and ran the tests yielding the 
tollowmg p-values 

maximum autocorrelatlon 0.52 

maximum partial autocorrelatlon 0.51 
maximum LP coefficient 0 22 

and thus at a reasonable level, none of these tests would reject independence 

4 CONCLUDING REMARKS 

There is very little evidence argtung against the hypothesis of independence and it 
seems McNell 's  presumption that the data were independent was a safe assumption to 
make for this data set Independence is not that common among teletraffic of finance 
data in my experience and thus should be treasured in the present insurance context 
Fittmg dependent data with a heavy tailed stationary time series model can be a frus- 
trating business (see Restock, 1996b, Felgln and Resnlck, 1996) so when one conclu- 

des the data can be modelled as ud, a loud sigh of rehef is heard 
The sensitivity of the estmmtion and fitting methods to the choice of threshold or 

the choice of the number of order statistics used in estimation ~s a persistent and 
troubhng theme In McNefl 's and my remarks. This seems inherent m the heavy tall 
and extreme value methods It ~s not clear at this point how much the techmques can 
be improved to reduce sensmv~ty to choice of k or threshold Smoothing techniques 

and alternate plotting help but are not a universal panacea. 
It is encouraging to see the accumulating mass of theoretical and software tools 

which can be used to analyze such data sets 
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BOOK REVIEW 

JAN BEIRLANT, JOZEF L TEUGELS and PETRA VYNCKIER (1996)" Practtcal Analysts 
of Extreme Values. Leuven University Press ISBN 90 6181 768 1 

This shol-t book aims to introduce the reader to some of  the practical methods of  
handhng extreme value statistics, with a particular leaning towards actuarial 
applications The emphasis  is on graphical methods of  fitting and comparing 
different types of  distribution, and the e,~tlmatlon of extreme value Index paralne- 
ters. 

The first chapter begins with elementary introductions to such concepts as density 
and distribution functions, and lists some of  the numerous palametrtc d~stnbutlons 
applied to non-hfe insurance data. In general this is accurate and informative, 
though the reader should be cautioned that the authors'  definition of  the "general -  
lzed Pareto"  distribution is not the same as the one adopted by other writers on 
extreme value theory The latter part of the chapter describes a number of graphical 
methods for choosing among distributional families 

The next three chapters concentrate on methods of estimating three different 
definitions of  the extreme value index the Pareto index (chapter 2), the index of  the 
general extreme value distribution (chapter 3) and Weibull  indices (chapter 4) The 
main method of  chapter 2 is the so-called Hill estimator, applied to the largest order 
statistics of  a sample The most n'nportant practical issue with this estimator is how 
many of the largest order statistics to include, and the authors provide a good 
discussion of the mathematical principles underlining this choice I am less 
convinced of  their proposed practical solution to the problem" it is based on a 
method only recently introduced by the authors themselves, and ~t seems to me that 
more experience Is needed before recommending it to practising actuaries Chapt- 
ers 3 and 4 are written m sm311ar style, though I really feel that the authors should 
have made ~t clear that the general form of extreme value distribution as due, 
modulo changes of notation, to the original foundational papers of Fisher and 
TIppett (1928) and Gendenko (1943), and not, as the text mlphes, to a 1995 paper 
by two of the present three authors! 

The final chapter 5 is a nice survey of  the actuarial applications of extreme value 
theory There are also a number of  data sels reproduced in an Appendix.  

1 feel that this book provides a useful survey of statistical techniques which will 
be accessible to readers without much background m statistics The desirable 
background in mathematics is somewhat  greater, though the reader who does not 
feel at home m the language of regularly varying functions or Taubenan theorems 
can skip over those sections without losing much of  the statistical thread. The 
book ' s  main weakness is that it hardly gives any hint of the vast array of  
probablhsnc and statlstscal extreme value theory which lies outside the rather 
narrow boundaries to which the authors have confined themselves here. 

RICHARD SMITH 





THE 6th AFIR INTERNATIONAL COLLOQUIUM 

Nurnberg, Germany, 1996 

The 6th AFIR International Colloquium was held at the Hotel Marltml in Nurnberg, 
Germany from 1 to 3 October, 1996 w~th about 190 participants frown 17 different 
countries. Although most participants were from European countries there were a 
s~gmflcant number from other countrtes including Australia, Israel, Japan, Talwan, 
and USA. The orgamsatlon of the Colloqmum was superb and the quahty of the 
presented papers very high. There were almost 70 contributed papers. The Scientific 
Committee, chaired by Peter Albrecht, and the Organization Committee, cha~red by 
Peter Burghard, are to be congratulated for an excellent meeting Invited lectures m 
Plenary sessions began both the morning and afternoon program Parallel sessions 
were then used to allow the authors of the contributed papers a reasonable time to 
present the main ~deas m their papers. This meeting format worked well allowing 
participants to attend sessions m their area of interest 

The social program for accompanying persons included bus tours to Bamberg, 
Rothenberg, a walk through "Romantic Niarnberg" and a guided tour of the court 
room of the "Nurnberg Trmls". All of this looked enticing but most of us were 
there for the business side of the meeting 

On completion of the Opening formalmes on Tuesday I October the first invited 
lecture was by Hans Foellmer from Humboldt-Umverslty of Berhn on "Recent 
Developments in Optton Pricing Theory" Option Pricing has been a theme of past 
AFIR CoIIoqum and this presentation was most appropriate It covered develop- 
ments in stochastic mathematics and ~ssues of incomplete markets. There followed 
parallel sessions with contributed papers on Option Pricing and on Asset Lmbdlty 
Management The area of asset-habflity management has also been a common 
theme of previous colloquia. 

After lunch, which provided the opportumty for further dmcusslon and network- 
rag, the invited lecture was by Paul Embrechts of ETH Zurich with an advertised 
topic of "Methodological Issues Underlying Value at Risk Estimation". Paul's 
lecture emphaslsed modelhng extreme values and the use of the generahsed extreme 
value dlstrlbuttons including the Wlebul, Fr6chet (Pareto related) and Gumbel 
(double exponential) cases Moreover, the generahsed Pareto d~strtbutlons are useful 
models for excess dtstrlbut~ons. He mentioned that software for extreme value 
modelling was available from the World-Wide-Web site http'//www.math.ethz.ch/ 
-mcneil/software html and Paul also referred to a forthcoming book by Embrechts, 
Kluppelberg and Mikosh on "Modelhng Extremal Events for Insurance and 
Finance" to be pubhshed by Spnnger m 1997. 

One of the afternoon parallel sessions was on the topic of Risk Measurement and 
Risk Control and the other was on Asset-Lmblllty Management. The Risk 
Measurement and Risk Control papers covered the areas of Value at Risk, 
Derivatives and reporting and superws~on. The asset-Ilabd~ty session covered papers 
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on pension fund and life insurance asset hablhty modelhng and asset allocation 
including optimal asset allocation strategies In the evening the participants and 
accompanying persons adJourned to the Germanlsches Natlonalmuseum for a 
perfornlance of the opera '~The Abduction from the Seraglio" by Wolfgang 
Amadeus Mozart followed by a stand up reception. This excellent performance was 
especially presented for the AFIR Colloqumm and the evening was most enJoya- 
ble. 

Wednesday 2 October commenced with an invited lecture by Wolfgang Buehler 
from the University of  Mannhelm on "An  Empirical Comparison of Valuation 
Models for Interest Rate Derivatives". The area of terrn structure models and their 
use in finance and actuarial applications has been an area of  rapid theoretical 
development and understand,ng the different models and when they are most 
appropriate is an important topic. I am sure there will be more contributions to this 
area as actuaries increase their use of  term structure models 

The two parallel sessions following included one on Apphcatlons of  Options in 
Investment Management and Insurance and one on Bond Valuation and Bond 
Management, The options session covered a wide range of  topics including shortfall 
risks and the pricing of  the new forms of  guaranteed index-linked life insurance 
policies These policies have been recently introduced in Germany and are also 
popular now ,n North America They demonstrate the potential of  exotic options for 
product design in life ,nsurance and will be an area of  much future interest as these 
products become more popular internationally The bond valuation session looked 
interesting but i chose to attend the options session. 

The afternoon of Wednesday was free and participants had the choice of a tour of 
the city or a special guided tour of  the Germamsches Nat~onalmuseum In the 
evening the social activities were "Frohcs  at the Imperial Castle" Europe is rich m 
history and, as these events testified, Nurnberg is no exception 

The final day of the Colloqumm was a holiday in Germany (German Umty Day) 
It opened with an invited lecture by David Wllkle on The European Single 
Currency. For both European and overseas participants this was a most interesting 
lecture. The intricacies involved m moving to a common currency range from 
deciding on a name for the currency to adJusting computer programs The following 
parallel sessions covered Apphcatlons of Numerical and Econometrlcal Methods in 
Finance and Portfoho-Capltal Market Theory and Investment Management The 
Numerical and Econometric presentations included topics on Neural Networks, 
Genetic algorithms, and error correction models. 

The final invited lecture was by Gerhard Rupprecht of  Alhanz Lebensverslche- 
rungs-AG who spoke on "The European Monetary Umon from the Perspective of  a 
Gerrnan Life Insurer" providing another perspective on this topic to that given by 
David Wdkle in the morning lecture The following parallel sessions were on 
Current Problems in Insurance and Finance and covered a wide range of interesting 
topics. 
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The scientific program flmshed with a closing session summing up the Collo- 
qmum and w~th Catherine Prime from Australia inviting everyone to the 7th 
International AFIR Colloqumm to be held m Calms Austraha from 13-15 August 
1997 with a joint day with the ASTIN Colloqumm on 13 August. We are all 
looking forward to next year and we have been inspired by the orgamsation of the 
Nurnberg Colloquium and intend adopting a stmdar structure wath invited lectures 
and parallel sessions. Already arrangements are well m hand and those who wash to 
submit a paper should notify the Chair of the Scientific Committee (Make Sherns) 
by emad (msherras@efsmq.edu.au) or by Fax (+61 298508572) as soon as 
possible. Final papers are due by 1 March 1997. The call for papers can be viewed 
at http://www.ocs.mq edu.au/--mshems/afir97.html whach Includes instructions for 
authors. 

For those who did not attend the Colloqumm I can recommend lhat you obtain 
the Proceedings There were many topics covered and you wall no doubt fred some 
new ideas 

The Colloquium concluded with a Gala night at the Hotel Marmm with 
entertainment, fine food and, most of all, fine company. 

MIKE SHERRIS 
School of Economic and Fmanctal Studies 
Macquarte Umver,~tty 
Sydney NSW 
Augtraha 2109 
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The Call for papers made some months ago requested qubmisslons by 1 March 
1997. Many were recmved but the flow has now ebbed considerably. 

This may reflect a behef on the part of prospect,ve authors that further 
subm~ssmns are now too late to be accepted. This not the case. 

Pnntmg arrangements have now been re-negotmted to allow submissions 
received up to the end of May 1997 to be included m the volume of preprmts 
circulated prior to the Colloqumm Indeed, the Scientific Committee remain wilhng 
to recmve papers up to the commencement of the Colloqumm Those recmved after 
May will remain ehgJble for mclusmn m the Colloqmum program but wIll not be 
mrculated m the preprmt volume 

Any further papers should be forwarded (3 copies + 1 electromc copy) to 
Greg Taylor 
Tllhnghast-Towers Pemn 
GPO Box 3279 
Sydney NSW 2001 
Austraha 

ASTIN Scientrfic Committee. April 1997 



FACULTY APPOINTMENTS IN ACTUARIAL SCIENCE & INSURANCE 

Nanyang Technologtcal Untver.w~., Singapore, 
School of Accountancy and Business 

Apphcations are invited for faculty posmons m Actuarial Science m the School of 
Accountancy and Business. The School offers undergraduate degrees m Accoun- 
tancy and Business, MBA degrees, and Master's and Doctoral degrees by research, 
and the latter by research and coursework. 

Applicants should be experienced and quahfied actuarial professionals with a 
strong interest m education, scholarslnp and research Besides a professional 
actuarial qualification, they should also hold a postgraduate degree In addition, 
they should be able to demonstrate academic and research achievement and 
potential 

The person appointed would be expected to teach in the B Bus (Actuarial 
Science) programme as well as actuarial subjects at a postgraduate level In 
particular, he/she should be able to teach the following subjects probabdlty and 
statistics, life contingencies, mathematics of finance, applied actuarial stattst,cs, 
mortahty investigations, social security and pension funds, actuarial management, 
and actuarial aspects of general insurance. 

The person appointed would also be expected to contribute actively to the 
School's research programme, to supervise research students and to take the lead on 
research projects. 

Gross  annual emoluments (for 12 months) range as follows 

Professor : S$150,000 -S$ 202,1 l0 Senior Lecturer : S$ 67,940 - S$138,000 
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