EDITORS :

Paul Embrechts
Switzertand

D. Harry Reid
United Kingdom

Co-EDITORS :

Andrew Cairns
United Kingdom

René Schnieper
Switzerland

EDITORIAL BOARD:
Bjorn Ajne
Sweden

Marc Goovaerts

Belgium

Jacques Janssen
Belgium

William S. Jewell
USA

Jean Lemaire
Belgium/USA

Walther Neuhaus
Norway

Jukka Rantala
Finland

Axel Reich
Germany

James A. Tilley
USA

Volume 27, No. 1 May 1997

ASTIN

A Journal of the International Actuarial Association

CONTENTS

Editonal

ARTICLES
A E RENSHAW. S HaBERMAN, P. HATZOPOULOS
On the Duality of Assumptions Underpinning the
Construction of Life Tables
R VERNIC
On the Bivariate Generalized Poisson Distribution
J} PiNQUET
Allowance for Cost of Claims in Bonus-Malus Systems
M DpE LourRDES CENTENO
Excess of Loss Reinsurance and the Probability
of Ruin in Finite Horizon
J A NELDER, R J VERRALL
Credibility Theory and Generalized Linear Models
H BuHLMANN, A GISLER
Credibihty 1n the Regression Case Revisited
(A Late Tnbute to CHARLES A HACHEMEISTER)

WORKSHOP
S BERNEGGER

The Swiss Re Exposure Curves and the MBBEFD
Distnbution Class

L G DoRray
A Semu-Parametric Predictor of the IBNR Reserve

A J McNEIL
Esumating the Tails of Loss Severity Distributions
Using Extreme Value Theory

S 1 ResNICK
Discussion of the Danmsh Data on Large Fire Insurance Losses

MISCELLANEOUS
Book Reviews
Review of the 6th AFIR International Colloquium
ASTIN Colloquium, Cairns — Final Call for Papers
Actuarial Vacancy

ULLETIN

23

33

59

71

83

99

113

117

139

153
155
158
159

Ceuterick



EDITORIAL POLICY

Astiv Burremiv started 1in 1958 as a journal providing an outlet for actuanal studies in non-life
msurance Since then a well-established non-hife methodology has resulted. which 15 also applicable to
other fields of insurance For that reason As7iv BULLETIN has always pubhished papers wrilten from any
quantitative point of view—whether actuanal, econometric, engineering, mathemaucal, statistical,
etc —attacking theoretical and applied problems 1n any field faced with elements of insurance and risk
Since the foundauon of the AFIR section of 1AA, 1e since 1988, AsTin BULLETIN has opened 1ts
editorial policy to include any papers dealing with financial risk

Asnn Butrerin appears twice a year (May and November), each i1ssue consisting of at least
80 pages

Details concerning submission of manuscripts are given on the inside back cover

MEMBERSHIP

ASTIN and AFIR are sections of the International Actuanal Association (IAA) Membership ts open
automatically to all IAA members and under certain conditions to non-members also Applicauons for
membership can be made through the National Correspondent or, in the case of countries not
represented by a nauonal correspondent, through a member of the Commuttee of ASTIN

Members of ASTIN receive Astiv BuLLeriv free of charge As a service of ASTIN to the newly
founded section AFIR of IAA, members of AFIR also recetve Astiv BULLETIN Free of charge

SUBSCRIPTION AND BACK ISSUES

Asun Butierin 1s published and pninted for ASTIN by Ceuterick sa, Brusselsestraat 153,
B-3000 Leuven, Belgium

All queries and communications concerning subscriptions, ncluding claims and address changes, and
concerning back 1vsues should be sent to Ceuterick

The current subscription or back 1ssue price per volume of 2 issues including postage 1s
BEF 2 500

Back 1ssuey up to 1ssue 10 (= up to publication year 1979) are avalable for half of the current
subscription price

INDEX TO YVOLUMES 1-20

The Cumulative Index to Volumes 1-20 15 also pubhshed for ASTIN by Ceuterick at the above address
and 1 available for the price of BEF 400

Copynight © 1997 Ceutenck



EDITORIAL

THE CHALLENGE FOR ASTIN IN THE 21st CENTURY

Perhaps I could start by mentioning two currently fashionable key phrases : “change
management” and “teamwork”. It 1s not my concern here to attribute precise
meanings to these terms they are included as being indicative or symptomatic of
underlying changes affecting the manner in which non-life insurance is being
transacted at the end of the 20th century. Whulst it could be argued that the history
of insurance 1s one of change, and that there 1s nothing new in the idea of
teamwork, I think 1t 1s indisputable that, in Western Europe at least, change in the
social and economic environments has forced a corresponding rate and depth of
change 1n many aspects of insurance

To be specific, I need only refer to such developments as the burgeontng market
in telesales insurance 1n the UK, with other countries variously following behind,
the significant impact on the UK market of developments in mortgage related
insurance ; the problems which have beset Lloyds and, 1in a somewhat different vein,
the stream of EC Directives not only having the effect of shaping internal markets,
but ntroducing some degree of convergence between territories in aspects where
diversity may have previously been the norm

Other developments include changes 1n solvency testing in the US, the securitis-
ation of insurance risks and the increasing prominence given to linking risk arising
from both insurance and its supporting assets.

Accompanying what might be regarded as market changes of this kind, the
continuing evolution of computing power has brought undreamt-of capabulity to the
desk of the most junior actuary. A consequence has been the continued tipping of
the balance between, on the one hand, classical analysis and, on the other,
numerical methods and simulation. Of course the old problems have not been force
entirely off-stage—rather the onward march of processing capability has unveiled
new problems which previously either did not arise in the conditions of the day, or
could safely be put in the “too difficult” box with the expectation that competitors
would do likewise—if indeed they recognised the problem. If solutions were needed
in practice they could be provided by a non-actuarial management.

We now have a situation where what might be regarded as a surge of change is
taking place across the insurance markets of the world. In turn, new problems in
managing and controlling msurance and remsurance operations are ansing. In
company with these developments, the force of competition, which decades ago
might have been regarded as a gentlemanly, if not gentle, breeze, has suddenly
become a gale

What does this mean for Astin?

To attempt to answer this, we have to look at the scope of Astin, which, as we all
know, 1s concerned with actuarial studies in non-hife nsurance But what do
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2 EDITORIAL

*“actuanal studies ” embrace, either in terms of subject material or nature ? Have we
stretched the boundaries of the objects of our studies in line with the changing
market scenario and the changing capabilities of modern technology ? Have we got
the right balance between “in-depth” academic studies of very specific topics and
more superficial, less “ respectable” examinations of a broader subject matter which
does not lend itself so conveniently to a “nice” treatment?

Every member of Astin will have his own answers to these questions : perhaps 1
could try to stimulate discussion by looking again at famihar areas of activity.

For many years—since the formation of Astin—we have been concerned with a
traditional subject matter embracing the areas of risk and ruin, moving more
recently into such areas as claim reserving and nsk costing (as distinct from
rating).

If we look at what happens 1n an actual insurance operation, in arriving at a rate
for a risk, it 1s difficult to deny that each of these areas should be represented.
However, 1n practice, other considerations come nto play whose significance may
dwarf those mentioned (with the possible exception of claim reserves)

These areas—assuming we are concerned with setting rates in a competitive
marketplace—would embrace (to select a few items at random)-

— how to relate rates to risk in the presence of classificatory factors: for some of
which only limited information, but for others extensive expertence, may be
available should we use explicit, purpose built models, neural networks,
etc.,

— how to estimate outstanding claims for the purposes of rating, and to reflect risk
and other factors tn the basis used for claim development, given the existence in
some cases of possibly vast historic stores of relevant detailed past experi-
ence;

— how to take into account competitors’ activities,

— how to take 1nto account more or less well-defined cycles of insurance-related
experience;

— how and to what extent to take into account risk and return on assets supporting
the insurance activity;

— how to define meaningful objectives, to which rates can be attuned, which
reflect the raung cycle, uncertainty of experience, the need to relate risk and
return to the performance of other capital markets, etc., etc

To take another example — after decades of papers on claims reserving, the
methodology employed in practice 1s in most cases, 1 would guess, extremely basic
and subjective. This most fundamental of actuanal activities 1 suspect suffers from
the lack of a generally agreed basic approach which effectively utilises the extent of
information available in a systematic way

Is something going wrong? If Astin was intended and is intended as no more
than a group whose objectives either do not include practical usefulness of output,
or include 1t only incidentally, then we could claim all 1s well. If, on the other hand,
as a sub-group of IAA, its objective 1s to support the progress of actuanal
science—and not least actuaries—then I suspect at the very least some of these
1ssues deserve an airing



EDITORIAL 3

Let me make two suggestions:
— authors of papers to the Workshop Section of AB should be encouraged to wnte
papers which describe problem areas they have encountered, without necessarily
offering a solution;
— the Astin Commuttee itself should take stock of the extent to which
(a) actuanies are moving into less traditional areas of non-life insurance, and the
extent to which they have the support of a range of actuarial methodolog-
ies.

(b) areas of insurance operation in which actuaries have only peripherally, if at
all, been involved, now offer serious actuanal challenges.

The turn of the millennium represents a seres of challenging opportunities for the
profession — but only if 1t reaches out an grasps them before others develop the
necessary skulls

HarrY REID






ON THE DUALITY OF ASSUMPTIONS UNDERPINNING
THE CONSTRUCTION OF LIFE TABLES

A. E. RENSHAW, PH D, S. HABERMAN, PH.D., F.I.A., AND P. HATZOPOULOS, M.SC.
of City University of London

ABSTRACT

We nvestigate the implhications of a dual approach to the graduation of the force of
mortality based on the modelling of the exposures as gamma random variables, as
opposed to the modelling of the numbers of deaths as Poisson random variables.

KEYWORDS

Graduation, Life Tables; Exposure Response Models; Generalised Linear Models

I INTRODUCTION

In this paper, we describe as the ‘conventional’ approach to graduation the method
whereby the force of mortality 1s graduated by fitting a parameterised formula to the
crude mortality rates under the assumption that the actual numbers of deaths are Pois-
son random variables conditional on the matching central exposures to the risk of
death, e.g. Forfar, McCutcheon & Wilkie (1988) Under this approach, the Poisson
assumption gives rise to a characteristic likelihood which 1s optimised to provide esti-
mates for the parameters in the graduation formula. It has been noted, e.g. page 113 of
Gerber (1995), that the same formal expression for the likelthood arises under the
different assumption that the central exposures to the risk of death are gamma random
varnables conditional on the matching numbers of deaths The implications of adopting
this dual approach for the parametric graduation process are investigated 1n this paper.
Following Renshaw (1991), both approaches are formulated within the generalised
linear modelling (GLM) framework , while the conclusions extend to include non-
linear parameterised graduation formulae.

A brief description of the sahent features of GLMs 1s presented in Secnion 2 for
completeness The consequences of switching from the ‘conventional’ approach to the
dual modelling approach when the data are based on head counts, or equivalently, on
policy counts 1n the absence of duplicate police . are discussed 1n Section 3. The 1m-
plications for both approaches when duplicate policies are present in the data counts
are then discussed 1n Section 4 and Section S respectively Finally an illustration of the
implications of the switch from the ‘conventional’ approach to the dual approach,
which reside largely in the reporting of the graduation, is presented in Section 6.

ASTIN BULLETIN Vol 27 No | 1997 pp 5-22



6 A E RENSHAW,PHD,S HABERMAN,PHD ,FT1 A, ANDP HATZOPOULOS, M SC

2 GENERALISED LINEAR MODELS

The purpose of this section 1s to provide a brief introduction to GLMs. A complete
treatment of the theory and application can be found in McCullagh & Nelder (1989)
and Francis, Green & Payne (1993).

The basis of a GLM is motivated, in the first instance, by the assumption that the

data are sampled from a one parameter exponential family of distributions with log-
likelihood

1= 7"”;(9) +c(3.6)

for a single observation y, where 8 1s the canonical parameter and ¢ 1s the dispersion
parameter, assumed known. It 1s then straightforward to demonstrate that
PL

d
m=E(Y)= Eb(@) and Var(Y) = ¢E0_2

b(B) = b (6).

We note that Var(Y) is the product of two quantines The quantity »”'(8) 1s called the
variance function and depends on the canonical parameter and hence on the mean We
can write this as V(m).

The log-likelihoods for some common distributions of 1nterest and which conform
to these properties are

I=ylogm-m-logy'
O=logm, b(B)=expl, V(im)=m, ¢ =1

for the Poisson distributton with mean #1, and

y 1

——+log—
[= ml M+ vlogy+vlogv—log(v)
v

6= —-l—,b(9) = —log(-6), V(m)=m?,p=v""!
m

for the gamma distribution mean m and variance m*/v.
More generally a GLM is characterised by independent response vanables { ¥, u =
1,2, ., nj forwhich

oV(m,)

u

E(Y,y=m, Var(Y,)= eR))

"

comprising a variance function V, a scale parameter (¢ > 0) and prior weights @,.
Covarnates enter via a linear predictor

r
M = Z«anﬂ;
s=1
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with specified structure (x,,) and unknown parameters f3, linked to the mean response
through a known differentiable monotonic link function g with

g(nlll) = T’“ -

The special link function g = 6, so that 8(m) =7, 1s called the canonical link function.
Examples are the log link in the case of the Poisson distribution and the reciprocal link
in the case of the gamma distribution

The suffices or umits « have structure, erther intrinsic or imposed. The data compri-
se realisations {y,} of the independent response variables, matched to the structure of
the units. Generally 1n any one study, the detail of the distribution and link are fixed,
while the predictor structure may be varied

Model fitting 1s by maximising the quasi log-likehhood

m,

n n yl -5
g=q(y.m)= Y q, =y 0, | 2—ds (2.2)
B u=\ u=1 v, ¢V(T)

leading to the system of linear equations

n

y,—m, dm
w u 1 It - 0 v
Z “ovim,) 9, /

u=|

in the unknown Bs These are solved numerically, e.g Francis, Green & Payne (1993),
McCullagh & Nelder (1989). Detail of the construction of standard errors for the pa-
rameter estimators, based on standard statistical theory, 1s also to be found in these
references Denote the resulting values of the parameter estimators, linear predictor

and fitted values, for the current model ¢, f,,1), and rm, respectively, where

P ~
i, =g (M) T —Z Xy B,

=1

For members of the exponential family of distributions, the quasi log-likelihood 1s
synonymous with log-likelihood The maximal structure possible has the property that
the fitted values are equal to the observed responses, that is 1, =y, for all u, and 1s
called the full or saturated model f.

The (unscaled) deviance of the current model ¢ 1s

D(c, f)—d(v,m)—zd,, Zzw,‘jy“_‘ s = =2 6 q(y; i),

u=1 w=| i,

in whach the fitted values under the current and saturated models 1impact on the for-
mula through the lower and upper himits of the integral respectively. The correspon-
ding scaled deviance is

d n
S(e, )= d* (i) = (’(pm)_z J';“T(—d\——zq(y,m) 2 3)

t=|
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For fixed distribution, fixed link and hierarchical model structures ¢, and ¢,, with ¢,
nested 1n ¢, the difference 1n scaled deviance

S(cs, H - Slci /)

may be referred, generally as an approximation, to the chi-square distnbution with v, —
v, degrees-of-freedom, where v, and v, denote the respective degrees-of-freedom.

Two types of residuals (which are identical only in the case of the Gaussian distri-
bution, for which V(s) = 1) are of interest, the Pearson residuals

Y =M (2.4)
V(im,)
wll

sign(y, — ﬁru)\/z

where d, 1s the uth. component of the (unscaled) deviance above

or the deviance residuals

3. HEAD OR POLICY COUNTS WITH NO DUPLICATES

3.1 Distribution Assumptions

In keeping with common practice, let

U, = the force of mortality at age x
« P, = the probability that a life aged x survives tot age x + w

and recall the basic identity
WPy = XD [ My ds 31
0

with the imphed assumption that u, 1s a function of age alone and 1s therefore assumed
to be constant with respect to variations 1n calendar time within a fixed observation
window.

Focus on a set of individual hives or policyholders. If the latter, and the data are ba-
sed on policy counts, then it 1s assumed throughout this Section that all policyholders
possess a single policy Individual members of the set are assumed to be observed
between ages x and x + 1 1n the fixed calendar period or observation window ¢ to f + 1,
with pre-specified policy duration where relevant, and their survival experience 1s
assumed throughout to be independent Typically r, = 4 years in many United King-
dom (UK) actuarial mortality studies. There 1s also interest 1n the case ¢, = 1 year
when modelling trends 1n mortality, e g. Renshaw, Haberman & Hatzopoulos (1996).
Within such a cell, identified 1n this instance by the suffix x, suppose an individual
enters observatiton at age v,, and leaves 1t either by death (I,, = 1) or by censorship
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(I,=0)atage v, +w, wherex<v,<v, +w,<x+ |. Then 1t1s well known see, e g

W=

Section 3.2 of Cox & Qakes (1984), that each such datum contributes an amount
I
Lu =w" pl'"/‘lv:-#w"

to the likelthood, or, on resorting to the use of expression (3 1), an amount

W,

l\l = log L\l =- J-:u\rn -+-_vds + Iu Iog :u\'"+w“
0

to the log-likelihood. Thus the total contribution to the log-likelihood from such a cell
18

", n Wy

[\ = Z,u = z - J.':u\r,,+\ds+ Iu log“v"+wu (3 2)

=1 1=1 0

where the summation extends to all n, individuals contributing to the experience in the
cell If in addition . is assumed to be piecewise constant with respect to age within
each cell and accorded the central value (4, , ,,, expression (3.2) can be wnitten as

L==rpta, 1081y,

where

Il‘ Il'
=Y wea,= 0,
=1 =1

denote the respective central exposure and actual number of deaths associated with
cell x. The expression for the full log-likelihood

l=zll =2{_r\:ul+l/2+ax lOg:u\+l/2} (3.3)
t v

then follows by summation over all such cells. It 1s of specific interest to note that this
expression may be interpreted in one of two ways

Firstly, and somewhat exclusively 1n the context of an actuarial giaduation, expres-
sion (2.3) 1s 1identifiable as the kernel of the log-likelihood under the assumption that
the actual numbers of deaths, a,, are modelled as independent realisations of Poisson
random vanables A conditronal on r, such that

Al - POi(r\lu\-o-I/Z)'
For this case, the detail of the distributional requirements to set up the appropriate
GLM (equation (2 1) with i = x) s etther

responses {A, },withm, =r it o102, V(m)=m, ,¢=lLw, =1, (3 4a)

X

or equivalently

responses {A /r},withm, = ;2. V(m)=m_ ¢=1l0 =r (3 4b)
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Secondly, e.g. Section 11 5 of Gerber (1995), cxpression (3 3) 1s also 1dentifiable as
the kernel of the log-likelihood under the assumption that the exposures to risk, r,, are
modelled as independent realisations of gamma random variables R, conditional on a,,
such that

R\ - gam(at’:“l\'+|/2)

Superficially this result 1s perhaps a httle unusual in-so-far as the gamma distribution
is generally associated with two unknown parameters, whereas here, as with the Pois-
son distribution above, there 1s only a single parameter to estimate For this case, the
detail of the distributional requirements to set up the appropriate GLM (equation (2 1)
with u = x) s either

responses {R, },withm, =a, Ven)=mlo=1l0 =a, (35a)
Hora
or equivalently
responses {R, /a },withm = WVim )= m?,¢= Lo, =a, (3.5b)
Hiarn

The data compnse the ordered pairs of numbers of deaths and central exposures (a,, r,)
over a range of ages x All of the s are non-zero by implication, but 1t is conceivable
that certain of the a,s are zero. This 1s most likely to occur at the extremities of the age
range were the data are sometimes sparse Note that while such data cells are retained
in any analysis of the data based on distributional assumptions (3.4a & b), they are
weighted out of any analysis based on distributional assumptions (3.5a & b)

3.2 Discussion

The optimisation of expression (3 3) under the former interpretation (based on the
Poisson distribution) 1s central to the current graduation practice of the Continuous
Mortality Investigation (CMI) Bureau in the UK, e g. Forfar er a/ (1988), while the
optimisation of expression (3.3) under the alternative terpretation (based on the
gamma distribution) would appear not to have been investigated previously in an
actuanal graduation setting.

It 1s possible to derive the first set of assumptions, 1n which the number of actual
deaths A, form the response variables, by taking expectations and variances under the
identity

A\ :HZ‘,IU
=1

where 1, 15 the zero-one indicator random variable, introduced previously, in Section
3.1. It has the property

"y

E(I)=E(U3)=P(,=1)=1-cxp- Jymds
0
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and 1s assumed to be independent for all individuals ;. The results then follow under
the assumption that L, 1s piecewise constant within cells, so that

E(1,)=(E(3) == exp(~H 120, (36)

and on neglecting second and higher order therms in the power series expansion of
exp(_:urH/ZWrr)’ so that
Var(l\,) = E(In) =M1Wy

Under the second set of assumptions, for which the responses satisfy
n,
RX = Z Wll ?
=1

the individual exposures W, are modelled as random variables. Under the additional
assumption that the individual exposures are independent and 1dentically distnbuted, 1t
follows trivially from the reproductive property of the gamma distribution that they
have the gamma distribution

a
W, ~gam(—*, 1 1 y/2)
n
X
Again based on the reproductive property of the gamma distnbution, note that 1t 1s also
posstble to construct the identical GLM by defining

H, a,
R\ = ZWU =2T\J
=1 =1

in which the T, s are assumed to be independent and 1dentically distributed gamma
random vanables such that

Trj ~ gam(lwuwll?.)’

and where at least one death is recorded n every cell Here 1t is possible to interpret T,
as the sum of randomly selected censored exposures W,, the last of which is associated
with a death

The target of the graduation process is the force of mortaliry y. under distribution
assumptions (3.4a & b) and the force of virality 1/u, under distribution assumptions
(3.4a & b). In using the latter description, we follow the terminology of Lambert
(1772) see, e g Daw (1980)

The value of the scaled deviance, (expression 2.3, with & = x) 1s 1dentical under
both sets of modelling assumptions (3 4a & b) and (3.5a & b) and 15 equal to

S, f)= 22{0 log Py ”2—(ar—r\ﬁ‘+”2)} (37)
a4

where i, denotes the graduated values of u, provided deaths are recorded for all ages
(1e. a, >0V x) so that none of the terms are wcighted out of the expression on the
right hand side (RHS) of equation (3 7) under the dual modelling assumptions (3.5a &
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b) This 1s perhaps a surpnsing result on the surface It reflects the fact that the same
objective function, expression (3 3), which 1s embedded in the construction of the
scaled deviance as the quasi log-likelihood function, (expression 2 2, with # =x) 1s
optimised when fitting the model structure (or graduation formula).

Subject to the weighting out of any data cells containing zero a s in the one case,
the two sets of distribution assumptions lead to 1dentical graduations for g, Thus,
assumption (3 4a) with responses {a,} 1n combination with log-link based graduation
formulae of the type

p
log:u\+l/2=2h\jﬂj (3 8)
=0

so that

p
logmr = ’7‘ =lng‘ +loglu\+l/2 = logr‘ +zh\jﬂj’

=0

gives 1dentical graduations to those obtained under assumption (3 5b) with responses
{r, } sothat

P
lOnglr = 77\ = logax _log.ux+l/2 = logax + Zh\jﬁj'
=0

Typically the parameterised structure of the RHS of the graduation equation (3.8) 1s a
polynomial 1n x with either the log r, or log a, terms declared as offsets, as the case
may be The estimated values of the parameters f, are 1dentical 1n magnitude but op-
posite 1n sign 1n the two cases Simularly assumption (3.4b) with responses {a,/r,}
combunation with the power link graduation formulae of the type

r
Y -
Hiii2 = Zh\jﬂj
1=0

gives identical graduations to those obtained under assumption (3 5b) with responses
{r/a.} sothat

P
-Y —
Hivi2 = Zhljﬁj
=0

This ime the estimated values of the parameters f8 are 1dentical in both magnitude and
sign 1n the two cases. Thus the general conclusions of this paper extend to non-linear
parameterised graduation formulae via the 1dentity link under the ‘conventional’ ap-
proach and the reciprocal link under the dual approach.

Let e, =1 pt,,,,, denote the expected number of deaths predicted at age x, under
the conventional graduation methodology encapsulated by equations (3.4a &b). and
define the statistics
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dev‘=a‘—er,x/{/‘_=\/2,z\"=ﬁ, IOO%. 3.9

JVe :

It is common practice for these to be tabulated (subject to possible cell grouping in the
tails of the age range) as part of the diagnostic checking procedure of a graduation.
Note in particular that the statistic z, 15 the Pearson residual of the corresponding
GLM, (expression 2.3, with u = x). Thus typicaily the value of the approximate chi-
square slatistic Zz? 1s quoted as one of the many test statistics of a graduation. The
X
equivalent statistics under the dual graduation methodology encapsulated by equations
(3.5a or b) involving definition &, =a,/fI,,,,, or expected exposure predicted at age

X, are

Y -
~ S e; . _dev r
dév, =r, —é.,V, =\/—‘,z‘=—~—‘, 100 . (3 10)
a, \/v‘ e,
Agan note that these statistics are defined in such a way that 7, denotes the Pearson
residual of the associated GLLM (3.5a or b). The relationship between the values of the
deviation under the dual and ‘convenuional’ graduation methodologies, namely
- —dev
dev, =— L
Hivir2

implies that the residuals under the two methodologies have opposite signs. Although
only stnctly exact provided all the a,s are positive, this relationship provides a very
close approximation when the a,s take zero values at the extremities of the age range
concerned. Detailed examination of the respective formulae defining the Pearson resi-
duals z, and Z, reveals that they differ in magnitude (and have opposite signs) On the
other hand, because of the equality of the deviance components under the two metho-
dologies established above, the deviance residuals defined by either

sign (dev, )\/Eit or sign (dévr)\/(z

as the case may be, where d, 15 the general term in the summation on the RHS of ex-
presston (3 7), are 1dentical in magnitude (and opposite 1n sign) under the dual metho-
dologies. Tt 1s also of interest to note that the final statistics quoted 1n expressions (3 9)
and (3 10), corresponding to the respective dual modelling scenarios, are the recipro-
cals of one another prior to scaling by 100 Again both of these features are exact
when all the a s are positive and represent a very close approximation when any of the
a.s are zero at the extremities of the age range
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4 POLICY COUNTS WITH DUPLICATES: CLAIM NUMBER RESPONSE MODELS

4.1 Preliminaries

The data used 1n the construction of actuanal life tables are generally based on policy
rather than head counts Consequently, the death of a policyholder with more than one
pohicy will appear as more than one death in the raw data The resulting graduation
needs to account for this overdispersion. for a review of the issues involved, readers
should consult Forfar ez al. (1988) and Renshaw (1992).

Let

D,, = the number of policies held by pohicyholder £, age x
C., = the number of policies held by policyholder s, age x, resulting 1n a claim.

Assume that the random vanables D,, are 1.1.d Vi and let D, denote the generic type.
Foreach i, the events (C,=k11,=1) and (D,, = k) are such that

(Cu=kll,=N)eO,=k,k=1,2,3, ..

and thus have identical probabilities. Define

(k) k=1
P(D, =ky=P(C, =kII, =1)={"" 2,3....
0 otherwise
where
7 20, Zﬂi“ =1
k=1

Denote

E(D)=EC,II,=1)= zkn.((l.) =7,

k=1

and

E(DH=E(ChII, =ly= Y k7" =7
k=1

T

It also follows by definition that
P(C,=011,=0)=1
so that
E(C, I, =0y=EC%1l,=0)=0

Hence the unconditional distnibution of C,, 1s given by
I—E(,), k=0

P(C, =k =
( Y] ) {E(I'“)TC(\“, k=l,2,3,
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for which
E(C )= 7 E(1,), E(C}) =7 E(1,)
These equations, in combination with expression (3 6) for E(I,), on neglecting second
and higher order terms in the power series expansion of exp(=t,,,; w,), imply that
E(C,)) =\ 1,3, and Var(C )= 7T U, 12, 4.1)
We also have an interest in the first two moments of the product random vanable

D, 1, Under the mild assumption that the number of policies, D,,, held by pohcyhol-
der 1. aged x, 1s staustically independent of the mode of censorship, I, 1t follows that

E(D,1,)=E(D)E(l,), Var(D, 1)) = E(D})EI%)~{E(D,)E(I )}

us v usu L1

These equations in combination with expressions (3 6), on neglecting second and
higher order terms in the power series expansion of exp(—{,.,» w,), then imply that

E(D 1,)= 7T U ryjaw,, and Var(D 1) = o7 Jls1/2We (4.2)

o utar

4.2 Distribution Assumptions
Let

A= the number of policies giving rise to a claim through deaths
r; = the cental exposure to the risk of death based on policies.

n‘
Note that I‘: = Zduw.\l
=1

where d,, (2 1) denotes the number of polictes held by policyholder 1, reducing to r, 1f
and only if 4, = 1 V¥ i. Throughout this Section the A;s are modelled as random van-
ables condrtional on /. It follows on taking expectations and variances under any one
of the following 1dentities

A, n, n,
AL=Y D, (withA, >0),A] =3 C, A,=3D,1, 43)
1=} 1=] 1=l

that the detail of the distributional requirements to set up the appropriate GLM
(equation (2.1), with u = x) s either

responses {A}, with m, = r/i 1,2, Vim)=m ,¢p=1w, =07, (4 4a)

or equivalently

responses (AL /r/}, withm, =t 1,0, V(m)=m 0=, 0, =r'¢;", (44b)

where ¢, =2
1 n.x
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4.3 Discussion

The result (4.4a) follows from the first of the identities (4.3) which, under the assump-
tion that A, 1s independent of the {D_} implies, in combination with equations (3.4a)

E(ALY=E(D)YE(A))= 7, r 1,112

and

2
Var(A!) = Var(D,)E(A,) +{E(D,)}*Var(A,) = EDY) EAl) =25 Ear)
E(D,) T

x

Under the independence of the terms in the respective summations, the same result
follows trivially from either the second of the identities (4.3) in combination with
equations (4 1), or the third of the 1dentities (4.3) 1n combination with equations (4.2).
In all three cases, the product term \7,r, 1n the expression for E(A!) involving the
unobserved central exposure based on lives has been replaced by r;, the observed
central exposure based on policies The result (4.4b) follows trivially from result
(4 4a)

The justification for (4.4a) based on the second of the 1dentities {4.3) and equations
(4.1) 15 a generahsation of the method described 1n Renshaw (1992) for initial exposu-
res and the binomial response model. This work establishes a link with much earlier
work on the modelling of duplicate policies using an empirical approach, e.g. Beard &
Perks (1949).

A knowledge of the reciprocals of the overdispersion parameters ¢, is needed to
form the weights, 1f the distributional assumptions (4 4) are to be fully implemented
Insight nto the potential variation of ¢, with x 1s provided by studies of the properties
of so-called vartance ratios, the empincal equivalent of ¢,, e.g Forfar et al. (1988).
These are defined as

20

vr, = ————

DY

1

where f"’ denotes the proportion, at age x, of policyholders who have 1 policies and

where

fOzovi=123 ., Y =1 21

!

There are a number of alternative practical possibihities When available, vanance
rattos can be used as estimates for the dispersion parameters ¢, and graduation can
proceed 1n accordance with assumptions (4 4) On the other hand, Forfar et al. (1988)
acting for the CMI Bureau in the UK, elect to transform the data by dividing both the
policy counts a; and exposures r; by the matching variance rati0s prior to graduation
with assumptions (3 4) displacing assumptions (4 4) When a detailed knowledge of
the relevant variance ratios 1s not available for analysts a possible method of genera-
ting estimates for the dispersion parameters 1s described in Renshaw (1992). Alterna-
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tively, under the assumption that the underlying modelling distribution of the number
of duplicate policies 1s 1dentical across all ages x 1n the absence of any further detailed
knowledge about this distribution, the dispersion parameters ¢, may be replaced by a
constant scale (or dispersion) parameter ¢ in assumptions (4 4), e.g. Renshaw (1992)
It 1s estimated as

unscaled deviance

b= degrees - of - freedom

and 1s root q; used to scale the Pearson residuals z, of expressions (3 9) or z, of
expressions (3 10), by muluplying etther V, or \7‘ by ¢A) as the case may be. Here the
unscaled deviance 1s calculated using the expression on the RHS of equation (3.7).
(Recall that ¢ was set to one when deriving this expression, so that the scaled deviance
S(c, f) 15 also the unscaled deviance 1n this instance.) This latter approach 1s closest 1n
spint to that adopted by Forfar ef al. (1988) involving the transformation of the data
prior to graduation in-so-far as 1t produces identical graduations, while allowing the
presence of duplicate pohcies to impact solely on the second moment properties of the
graduation process

5. POLICY COUNTS WITH DUPLICATES: EXPOSURE RESPONSE MODELS

5.1 Preliminaries

As before, let

D,, = the number of policies held by policyholder i, age x
W, = the contribution to the exposure by policyholder 1, age x

Recall that D,, D, are assumed to be 1.1 d. V 1 with
E(D)=n,, E(D})=,7,.

Recall also the duality property of Section 3 2, namely that the central exposure to risk
of death based on head counts, at age x

”,
R, =D W, ~gam(a,.t,.\;2).

1=1
so that

a a(l+a
A ,E(R?)zg

M2 iy

E(R)=
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Consider the 1dentity
Il‘
R, =3 D,W, (5.1)
1=1

which defines the central exposure to risk of death based on policy counts, at age x
Assuming that the number of policies held by an individual policyholder 1s indepen-
dent of the corresponding contribution to the exposure to nsk from that individual and
that the individual exposures are independent, 1t follows fiom the idenuty (5 1) that

E(R) = E(D,)Y E(W,) = E(D)E(R, ) = 2% (5:2)
1=1 Hitir
and
E(R?) = E(DOECY. W,)? = E(DYE(RY) = 241 a0 (53)

=y Hisir2

after simplification.

5.2 Distribution Assumptions
Let

R} = the central exposure to the nsk of death based on policies
a;, = the number of policies giving rise 10 a claim through deaths

Throughout this section the R] s are modelled as random vaniables conditional on aj, .

It follows from equations (5.1). (5.2) and (5.3) that the detail of the distributional
requirements to set up the appropriate GLM (equation (2 1), with 1 = x)1s either

responses {R!}, with m, = ' Vi) =ml ¢=1o, =y, (54a)

v+1/2

or equivalently

i 2 -
responses {R, /a}, with m = V) =mi ¢=1lo =y, (54b)
[1\+|/2

where this time

w‘=[2—”2‘-1]+£ﬁ L (55)
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5.3 Discussion

In parallel with the previous case, this time the product term |7, a, 1n the expression for
E(R;)mvolving the unobserved number of deaths a, based on head counts has been
replaced by a?, the observed number of deaths base on policy counts. Again result
(5 4b) follows trivially from result (5§ 4a)

A knowledge of the reciprocals of the dispersion parameters y, 18 required to form
the weights 1f the distribution assumptions (5.4a or b) are to be fully implemented In
the event that the results of a study into the vanance ratios for the policies 1n question
are available, this will furnish estimates for the first two moments 7, and ,7, of the
number of duplicate policies so that modelling can proceed. Alternatively 1f 1t is assu-
med that the square of the coefficient of variation of the number of duplicate policies
held by an individual 1s sufficiently small so as to make the first term on the RHS of
expression (5.5) for y, is negligible in comparison with the second term,

V.= -

a,

and the sttuation is analogous to that discussed in Section 4.3.

6. ILLUSTRATION

The dual methodologies are illustrated using the Pensioners’ widows 1979-1982 expe-
rience reported in Table 15.5 of Forfar et al (1988). The data (a,, r,), comprising the
numbers of deaths a, and matching central exposures r,, are reported in the age range
17 to 108 years inclusive. There are 2 + 5 = 7 completely empty cells in the extremi-
ties of the age range and 28 + 12 = 40 cells contain no reported deaths The detail of
the graduation contained in the above Table 1s bascd on Gompertz’s formula fitted by
the ‘conventional’ approach, in which the numbers of deaths are modelled as Poisson
random variables The data have been regraduated using both the ‘conventonal’ ap-
proach based on assumptions (3.4a) with predictor-link formulation

logm, =logr, +log i, .y, =logr, + +ﬂ|(x;070),
and the dual approach based on assumptions (3 5a) with equivalent predictor-link
formulation

logm\ = loga\ _Iog:u\+l/2 = loga\ +ﬁ0 +ﬂl(—x_507_0-)’
where m, denotes the respective mean responses The associated graduation formula,
implied by these formulae, 1s taken from Forfar er al (1988). Some details of the res-
pective fits including the parameter estimates are recorded 1n Table 6.1 The corres-
ponding parameter estimates have opposite signs as expected, but differ shightly 1n
absolute value because the data entries involving zero deaths feature only 1n the
‘conventional’ analysis Similarly the corresponding values of both the deviances and
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the degrees-of-freedom differ for the same reason. These differences are found to
disappear when the ‘conventional’ analysis is applied to the reduced data set and 1den-
tical graduations result as a consequence (subject to very minor differences induced by
the numerical fitting algorithm operating under the two different approaches ) An
extract of both graduations based on the detail of Table 6 1 1s reproduced 1n Table
6 2(a&b), along with detail of the associated statistics of expressions (3 9) and (3.10),
as the case may be The detail of Table 6.2a 15 in complete agreement with that to be
found 1n Table 15.5 of Forfar et al (1988), while the relatively minor effects of the
excluded data under the dual modelling approach are demonstrated. The basic diffe-
rences 1n the accompanying statistics used to monitor the effectiveness of a graduation
under the two different approaches, as described n Section 3.2, can be vertfied

7 CONCLUSIONS

The ‘conventional’ actuanal approach to the construction of u,-graduations based on
the fitting of a wide class of parameterised mathematical formulae by optimising the
likelhhood, 1n which the death counts are modelled as Poisson random vanables con-
ditional on the central exposures, 1s effectively equivalent to a dual approach in which
the central exposuies are modelled as gamma random varnables conditional on the
death counts The dual approaches lead to 1dentical graduations provided deaths are
recorded 1n all data cells, otherwise small differences occur in practice as a conse-
quence of the loss of information from any data cells in which no deaths are recorded
under the one approach Key differences occur 1n the diagnostic statistics of a gradua-
tion, with residuals being accorded opposite signs under the two different approaches
In practice, a detailed knowledge of the specific nature of the empirical distributions
on duplicate policies has only a mintmal effect on the first moment of a graduation
under the two formulations described here In the absence of this knowledge, these
first moment properties may be neglected and a free standing constant scale (or disper-
sion) parameter introduced, under erther formulation, to represent the second moment
properties of a graduation in the presence of duplicate policies.

The dual approach to p,-graduation would appear to have distinct advantages over
the ‘conventional’ approach to graduation, when 1t 1s adapted and applied to the con-
struction of select mortahity tables. This 1s discussed further in Renshaw & Haberman
(1996), who successfully use the dual approach to model the log crude mortality ratios
for individual select durations relative to the ultimate experience
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TABLE6 1
PARAMETERS I-'STIMATES WITH (STANDARD ERRORS)

‘conventional’ approach dual approach
deviance 1s 60 98 with 83 d deviance 15 45 99 with 50d
scale parameter =1 scale parameter ¢=1
[30= -3 553 (0 03923) [30=3 543 (0 03925)

ﬁ0=4317(0 1966) /30=-4332 (01979)

TABLE 6 2(a)
GRADUATION EXTRACT, 'CONVFNTIONAL' METHOD

100a /e,

X r, Hevin a, e, dev, \/_ Ve z,
17 05 000029 0 000 000 - -
30 360 000091 0 003 -0 03 - -
40 1155 000215 0 025 -025 - -
50 3785 000509 3 193 107 - -
60 1029 0 001208 14 1243 157 353 045
65 10290 001860 21 19 14 1 86 437 043
70 9410 002864 21 2695 -595 519 -1 14
75 6070 004410 33 2677 623 517 120
80 3235 006790 25 2197 303 469 065
85 1325 0 10455 11 1385 11 60 372 -077
95 40 024790 2 099 101 - -

108 20 076154 0 152 -152 - -
TABLE 6.2(b)
GRADUATION EXTRACT, DUAL METHOD

X a, Hyvirz £ é_r dév,\- \/V; i;

17 0 000029 05 !

30 0 0 00090 360 .

40 0 000215 1150 *

50 3 000511 3785 5867 -208 2 3387 -0 6!
60 14 00I1216 1029 0 11511 -1221 3076 -040
65 21 001876 10290 11196 90 6 244 3 -037
70 21 002893 941 0 7259 2151 158 4 136
75 33 004461 6070 7397 -1327 128 8 -103
80 25 006880 3235 3634 -399 727 -055
85 11 010611 1325 1037 28 8 313 092
95 2 025237 40 79 -39 56 -070

108 0 077841 20



ON THE BIVARIATE GENERALIZED POISSON DISTRIBUTION

RALUCA VERNIC

Untversity “Owvidius” Constanta, Romania
ABSTRACT

This paper deals with the bivanate generalized Poisson distribution. The distribution 1s
fitted to the aggregate amount of claims for a compound class of policies submitted to
claims of two kinds whose yearly frequencies are a priort dependent. A comparative
study with the bivanate Poisson distnbution and with two bivariate mixed Poisson
distributions has been carried out, based on data concerming natural events insurance
in the USA and third party hability automobile insurance in France

KEYWORDS

Bivariate generalized Poisson distribution, generalized Poisson distribution, bivariate
mixed Poisson distributions

1. INTRODUCTION

Whereas numerous bivariate discrete distributions are used 1n the statistic field
(KOCHERLAKOTA and KOCHERLAKOTA, 1992), only a few of them, apart from the
bivariate Poisson distribution, have been applied in the insurance field. It 1s worth
noting the studys by PICARD (1976), LEMAIRE (1985) and PARTRAT (1993)

In this paper, we discuss the bivariate generalized Poisson distribution (BGPD) n
detail. The distribution is derived from the generalized Poisson distribution (CONSUL,
1989; AMBAGASPITIYA and BALAKRISHNAN, 1994) using the trivanate reduction me-
thod. In section 2 we present some properties of the BGPD The method of moments 1s
used in section 3 for estimation of the parameters We 1llustrate the usage of this me-
thod through two examples 1n section 4

2. BIVARIATE GENERALIZED POISSON DISTRIBUTION (BGPD)

2.1 Development of the distribution

We use the trivariate reduction method to construct the distribution (KOCHERLAKOTA
and KOCHERLAKOTA, 1992). Let N, N, and N, be independent generalized Poisson

ASTIN BULLETIN Vol 27 No | 1997, pp 23-31
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random variables (GPD), N, ~GPD (A, 6), i=1,2, 3. Let X =N, + N, and
Y =N, + N, We get the joint probability function (p.t') of (X, Y) as

minir,s)

PX=rY=s)= Y A(r—Kkf(s=k)fk), @2.1)

A=0

where f(n) 1s the p.f. of the random variable N,

Since N ~ GPD(A, 0).1f its p f 1s given by (CONSUL and SHOUKRI, 1985)

A(A+n6)"" exp(—A - n8) _
f(n)=P(N=n)= oy forn=0,1,2,... ’ @2
0 , otherwise

where A > 0, max(-1, -A/m) < 0 <1 and m 2 4 1s the largest positive integer for
which A 4+ 8m >0 when 8<0, from (2 1) we have

P(X =rY =5)=p(r.s)= LA, A, exp{—(ll +A, +A)—r6 — 992}

min(r.y) ]
o (r=Rs—k)'K!
exp{k(G, +8, - 63)}, rLsen.

(A +0 =008, (4 + (- 0)8,) ™ (A, +k8,)' ™ 23)

2.2 Properties of the distribution
Remark All the formulas that follows for the GPD are taken from AMBAGASPITIYA
and BALAKRISHNAN (1994) and the general equations for a bidimensional distribution
are from KOCHERLAKOTA and KOCHERLAKOTA (1992)
Probability generating function (pgf)
The pgf of a random variable N 1s defined by HN(r) = E(rN) and the pgf of the pair
of random vanables (X, Y)is [ (#.2) =E(z,"{12")

Let the pgf’s of the random variables under consideration be H’ ,1=1,2,3
Then the joint pgf of (X, Y)1s

[T =TT, en[ eI 1@ (24)

For simplicity, we assume the parameters 6, > 0, 1 = 1, 2, 3 AMBAGASPITIYA and
BALAKRISHNAN (1994) has expressed the pgf of the GPD in terms of Lambert’s W
function when 8> 0, as follows

HN n= exp{—%[W(—Hz exp(-6)) + e]}, (2.5)
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where the Lambert’s W function 1s defined as W(x) exp{W(x)) = x. For more details
about this function see CORLESS et al. (1994)

From (2 4) and (2 5), the pgf of (X, Y) 1s

A
[Tw.)= exp{— 5 W6t exp(=6) - gl W(=6,1, exp(~6,)) ~
1 2

(2.6)
A
— 22 W(-651,1, exp(-6,)) - l},
6,
withA =X, + 4, + A,
Moment generating function (mgf)
If the mgf of N, 1s M, (1),1 =1, 2, 3 then the mgf of (X, Y) 18
M1y, 1) = M ()M ()M (1) + 1) 2.7
The mgf of the GPD, when 8> 0, is given by
My = exp{—%[W(—9exp(—6+t))+9]} (2.8)
Using (2.8) 1n (2.7) we get
A e
M(t,.t;) = exp e W(-6, exp(=6, +1,)) - o W(-6, exp(=8, +1,)) -
. 1 2 29)
-—9—3 W(—G3 exp(—6; +1, +1, )) - /1}
3
Moments
The expressions for the first four central moments of the GPD are as follows
ENY=pu, =M
V(N) =y = AM°
210

Uy = A3M -2)m*
p, =32M® + A(1SM? ~20M +6)M°,  where M =(1-8)”".
Since X =N, + N, and N,, N, independent, we have E(X) = E(N,) + E(N,) and
V(X) = V(N,) + V(N,), so that
E(X)= LM, + .M,
V(X)= MM} + A M3
E(Y) =AM, + A3M,
V(Y) = L,M3 +AM3

(2.11)
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Let u,, = E[(X—ux)r()’—yy)s] be the (r, s)"" central moment of (X, Y). The

equation for u, given ,u{') the k* central moment of N, 1 = 1,2, 3.1s
ZZ[ ]( J Ty T
1=0 ;=0
Hence
=AM
Hyy 3V ) 2.12)
Hy =l = /13(3M3 - 2)M3

This 1s enough to apply the method of moments.

Recurrence relations

The terms 1n the first row and column can be computed using the univariate generali-
zed Poisson distribution, as is seen from

p(0,0) = exp{-A}
s—1

A4, +re)
rl

p(r,0) = exp{-2-r8 } = (A )exp{-(L + 4)}.  r>0

Given the probabilities 1n the first row and column, the probabilities forr > 1, s 2 |
can be computed recursively as

min{r,s}

1 -
p(r,s) = A5 exp{A} ,g:') F[)(r —k,0)p(0,5 = k)(Ay +k63)" ! exp{—k6;}

Independence
Using (2 12) we have cov(X,Y)= /13M;, hence
LM,
(M} + Aym3 )23 + 2yM3)|

Px.rz[ 77

Stnce A; 2 0 and M, > 0, it follows that for this model pyy2= 0. This shows that the
condition of zero correlation 1s a necessary and sufficient condition for the indepen-
dence of the random variables X and Y
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Marginal distributions

The marginal distributions are.

4 (ll +16, )‘_1(13 +(r— i)03)r_l_]
i'(r=1)! '

P(X=r)=4A exp{—(l, +A;)- r03}

exp{—:(@, —63)}
PY=s)=2 lee\(p{ (A + A4 —703}2 (A2 +10,) " (43 + (s-)6) .

"(s—-n)!

=0

exp{—z(92 -0, )}

In particular, 1if 8, = 8, = 0; = 0, this reduces to X ~ GP(A, +4,,8) and ¥ ~
GP(A; + A3, 6).

3 ESTIMATION OF THE PARAMETERS : METHOD OF MOMENTS

Let (x, y),i=1,2, .., n be a random sample of size n from the population. We will
assume that the frequency of the pair (r, s)i1sn, forr=0,1,2, .,s=0,1,2,.. We
recall that an =n. Also

r.s

LI 52 2 L5 o5y
n Z" ;r LOT. O-X n;(r .X) n,,
= — ) = ~2=l — 2
—”Z) % » Oy =~ mo(s y) i
< ’ @G
1 —
“ll_—z y—y)—; rsong,—-Xxy
ro=0
— 1
:u2l=;2 X, —X [ )=; Z(r—x)z(s_y)nrs
r.s=0

The classical method of moments consists of equating the sample moments to their
populations equivalents, expressed 1n terms of the parameters The number of mo-
ments required is six, equal to the number of parameters. Using (3 1), (2.11) and
(2 12) we have
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1++1+3a
e
v iy
X =AM, + A M, T oM}
y =AM, + M, 62 - iy,
. M, =[x Fu
6L =M} + A M} & 'R - AaM, 52)
. SR , .
0-)2/=12M23+A3M::: A _X_AGM:;
! T
Hyy = A M3 !
fiay = A3(3M5 —2)M3 | M, = }5')2/‘[111
V=AM,
y =AM,
A,Zz
M,
where a=@
Hyy

1
We use the fact that 6 < 1, so M =——>0, when chosen the solution for M,

r=1,2,3.

4, NUMERICAL EXAMPLES

Example 1: The North atlantic coastal states 1n the USA (from Texas to Maine) can
be affected by tropical cyclones. We divided these states into three geographical

zones:
Zone 1. Texas, Louisiane, The Mississip1, Alabama;

Zone 2: Florida;
Zone 3: Other states

We were 1nterested in studying the joint distribution of the pair (X, Y), where X and

Y are the yearly frequency of hurricanes affecting respectively zone 1 and zone 3. To
do that we used the data 1n table 1, first row in each cell, giving the realizations of

(X, Y) observed during the 93 years from 1899 to 1991 (PARTRAT, 1993)

For these data we compute
074194, 6% =0.62158, [i,, =002532,

=
y=047312, 52 -052885 f[iy =0.128341.

Under the hypothesis (X, Y) bivaniate Poisson distributed P,(4,.A,, 1), we have
from PARTRAT (1993), method of maximum likelthood, the mle /ll =0.71876,
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A, = 0.44994, 1 =0.02317. The theoretical frequencies for Pz(i,,/iz,/l) are given 1n

table 1, middle row 1n each cell

TABLE 1

COMPARISON OF OBSERVED AND THEORETICAL YEARLY FREQUENCIES OF HURRICANES
(1899-1991) HAVING AFFECTED ZONE | AND ZONE 3

Zone 3
Zone 1 0 1 2 3 z
27 9 3 2 4]
0 28 24 1271 2 86 048 4429
2629 1126 284 065 41 04
24 13 1 0 38
i 2030 979 235 042 3286
23 81 1029 262 061 3733
8 2 1 0 11
2 729 375 096 019 1219
790 347 092 020 12 49
t 0 2 0 3
3 212 116 032 006 366
124 056 028 006 214
60 24 7 2
z 5795 2741 649 115 93
. 5924 2558 666 152

first row . observed frequeng:y
middle row : theoretical frequency for P,
last row . theoretical frequency for BGPD

The xz goodness-of-fit test, after grouping in 7 categories (0, 0, (0, 1), (0, 2 and
above), (1, 0), (1, 1), (2, 0), (other cases) to fulfill the Cochran criterium, lead us to
Xops = 2:(017.v—th)2 /th=596 and a significance value ¢& verifying 020 < @ <

054.

We consider now the case of (X, Y) BGPD-distributed Then from the method of
moments we have

A, = 081257, 6, =-0.10868
A, = 0.44555, 6, =0.03995
A; = 000538, 6, =0.40306

The theoretical frequencies in this case are given in table 1, last row in each cell,
and y2,. = 2.66 for the same categories: 0 < & < 0.85.
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Example 2: Automobile third party liability insurance.

The claims experience of a large automobile portfolio in France including 181038
liability policies was observed during the year 1989. The corresponding yearly claim
frequencies, collected 1n table 2 (first row in each cell), have been divided into mate-

nal damage only (type 1) and bodily injury (type 2) claims We obtain
¥ =0.05100, &y =0.05388, g, =0.00019,
y=000553, G2 =0.00552, fly =0.00023.

TABLE 2

COMPARISON OF OBSERVED AND THEORETICAL YEARLY FREQUENCIES

Type 2
Type 1 0 1 2 and above z
171345 918 2 172265 00
171348 7 8971 47 172250 50
0 171348 7 8975 46 172250 80
171351 30 923 08 002 172274 40
8273 73 0 8346 00
82755 863 07 8362 50
1 8279 5 849 08 8365 20
8248 39 7101 014 8319 54
389 5 0 394 00
398 2 62 0 404 40
2 3915 70 01 398 60
41541 352 137 42030
31 | 0 3200
191 04 0 1950
3 213 06 0 2190
2218 019 006 2243
1 0 0 100
4 10 0l 0 110
and above 14 01 0 150
132 001 0 133
180039 997 2
180042 5 990 | 54
z 180042 4 990 1 55 181038.00
o . 180038 60 997 81 159
first row observed frequency
second row - theoretical frequency for P-G,
third row  : theoretical frequency for P-/G,
lastrow . theoretical frequency for BGPD
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For the comparative study we have, from PARTRAT (1993)

a=0.10840
* Buvariate Poisson Gamma P-G, (a; r, B) the m.l.e. <F =1.00772
B =1975693
The theoretical frequencies are provided n table 2, second row 1n each cell.
a =0 10840
* Buvariate Poisson Inverse Gaussian P_IG, (a, 1. ¥) the m le. {{i=005101}.
7=005155

The theoretical frequencies are provided 1n table 2, third row

Under the hypothesis (X, Y) BGPD, we have, using (3 1)
A, =004945, 6, =0 02701
i/_)_ =0.00537, éz =-000266;, the theoretical frequencies are given 1n table 2, last
A, =0.00016, 6, =0.04976

row

The )(2 goodness-of-fit test 1s applied on the 9 following categories: (0, 0), (0, 1),

(0, 2 and above); (I, 0), (1, | and above): (2, 0); (3, 0); (4 and above, 0); (other cases)
For this grouping we obtain
* Inthe P-G, case )(3,,\ =11.94 and a significance value 0.03< & <0 15;

* Inthe P-I G,case. y2,. = 8.8 and a sigmificance value 0.12 < & < 0.36

In the BGPD case we used 7 categories (0, 0), (0, 1), (1, 0); (1, 1), (2, 0), (3, 0);
(other cases), and we have xf,,‘ =636 with a significance value 0 00 < & < 0.4,
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ALLOWANCE FOR COST OF CLAIMS IN
BONUS-MALUS SYSTEMS
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ABSTRACT

The objective of this paper s to make allowance for cost of claims in experience ra-
ung. We design here a bonus-malus system for the pure premium of insurance con-
tracts, from a rating based on their individual characternistics Empirical results are
presented, that are drawn from a French data base of automobule insurance contracts.

KEYWORDS

Bayesian and heterogenecus models Number and cost residuals. Bonus-malus for
frequency of claims, average cost per claim, and pure premium.

INTRODUCTION

Bayesian models lead to a posteriort ratemaking of insurance contracts (Buhlmann
(1967)) Suppose that the number of claims follows a Poisson distribution. A bonus-
malus system for the frequency of claims i1s obtained if we constder that the parameter
follows a gamma distribution (see Lemaire (1985, 1995)) This model may include a
ratemaking of policyholders on an individual basis, the parameter of the Poisson dis-
tribution depending then on rating factors (see Dionne et al (1989, 1992)).

The allowance for severity of claims 1n expenence rating can be achieved by consi-
dering the dichotomy between claims with material damage only, and claims including
bodily injury (see Lemaire (1995)) 1n this model, the number of claims that caused
bodily injury follows a binomial distribution, the parameter of which follows a beta
distribution.

In this paper, the seventy of claims will be taken into account by using their cost.
The analysis of cost of claims makes clearly appear a positive correlation between the
average cost per claim and the frequency risk (see Renshaw (1994), Pinquet et ai
(1992)) An a prion1 ratemaking will therefore be influenced by the allowance for
costs Concernming the third party hability guaranty, it can be noted that.
¢ The settlement of claims with matenal damage 1s performed partly through fixed

amount compensations from an nsurance company to the third party

' Thanks to Georges Dionne for motivating this work, as well as Christian Gouriéroux, Eric Renshaw and
two anonymous referees for comments This rescarch receved financial support from the Fédération
Frungaise des Sociéiés d’ Assurance

ASTIN BULLETIN Vol 27,No 1, 1997, pp 33-57
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* The amount of compensations related to claims including bodily injury depends on
the social position of the victim

Hence, 1t 1s difficult to explain the cost of these claims by the rating factors, and we
shall investigate the damage guaranty in the empirical part of the paper

Allowing for cost of claims 1n bonus-malus systems can be achieved 1n the follo-
wing way. starting from a rating model based on the analysis of number and cost of
claims, two heterogeneity companents are added They represent unobserved factors,
that are relevant for the explanation of the severity variables Later on, we shall refer
to any variable explained by a rating model (number, cost of claim, total cost of
claims, and so on) as a “severity variable”. These unobserved factors are, for instance,
annual mileage for number distnbutions, and speed (and the driver’s behaviour n
general) for number and cost distributions. A bonus-malus coefficient can be related to
the credibility estimation of a heterogenerty component

In this paper, costs of claims are supposed to follow gamma or log-normal distribu-
tions The rating factors, as well as the heterogeneity component, are included in the
scale parameter of the distribution Considering that the heterogeneity component also
follows a gamma or log-normal distribution, a credibility expression 1s obtained,
which provides a predictor of the average cost per claim for the following period. For
instance, a cost-bonus will appear after the first clarm if its cost 1s infenor to the esti-
mation made by the rating model

Experience rating with a bayesian model 1s possible only if there 1s enough hetero-
geneity tn the data For instance, n the negative binomial model without covariates,
the estimated variance of the heterogeneity component 1s equal to zero if the vanance
of the number of claims 1s inferior to their mean (see Pinquet et al (1992)) In that
case, a priori and a posterion tariff structures are the same, and the bayesian model
fauls.

A sufficient condition for the existence of a bonus-malus system derived from a
bayesian model 1s provided 1n section 2 3 The existence 1s equivalent to an overdis-
persion of residuals related to the seventy vanable. This approach allows one to test
for the presence of a hidden information, that 1s relevant for the explanation of the
severity varables.

The heterogeneity on distributions for severity variables, that 1s not explained by
the rating factors, 1S revealed through experience on policyholders The paper investi-
gates the rate of this revelation, which 1s found to be lower for average cost per claim
than for the frequency

For the sample considered here, the unexplatned heterogeneity related to costs 1s
stronger for gamma than for log-normal distributions Besides, the latter family gives a
better fit to the data.

If the heterogeneity components on number and cost distributions are independent,
the bonus-malus coefficient for pure premium 1s the product of the coefficients related
to frequency and expected cost per claim. But one may think that the behavior of the
policyholder influences the two heterogeneity components n a simtlar way, and so
that they are positively correlated

Lastly, this paper proposes a bonus-malus system for the pure premium of nsu-
rance contracts, that admuts a correlation between the two components Although the
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likelihood of a model based on number and costs of claims is not analytically tractable
n the presence of such a correlation, consistent estimators for the parameters exist.
The correlation between the number and cost heterogenerty components appears to be
very low for the sample investigated here

I A PRIORIRATEMAKING

Let us suppose a sample of policyholders indexed by 1, the policyholder 1 being obser-
ved during T, periods The analysis of the correlation between the number and cost
heterogeneity components shows the necessity of considering a non constant number
of periods for each policyholder. The working sample 1s presented in 1 3

1.1 Frequency of claims
We write

Nu - P(An) /-{n = exp(w,, a)

=1, ,7,°
to represent the Poisson model where n,,, the outcome of N,, is the number of claims
reported by the policyholder ¢ in period t The parameter A, is a multiphcative function
of the explanatory variables, the line-vector w, rcpresents their values, and o 1s the
column-vector of the related parameters.

The frequency-premium (estimation of the expectation of N,) 1s denoted as

~

A, =exp(w,, &). and nres, =n —j.,, 1s the number-residual for the policyholder ¢

i

and period ¢. The maximum likelihood estimator of o 1s the solution to the equation:
anes” w, =0,

nr

which 1s an orthogonality relation between the explanatory variables and the residuals
The rating factors have 1n general a finite number of levels, and the explanatory vana-
bles are then indicators of these levels The preceding equation means that, for every
sub-sample associated to a given level, the sum of the frequency premiums 1s equal to
the total number of claims This property means that the preceding model provides the
muluplicative tanff structure that does not mutuahize the frequency-risk.

One may think of replacing n,, by tc,, the total cost of claims (pure premium rate-
making) 1in the hikelihood equation. When applied to the working sample, this non
probabilistic model shows that the elasticity of the pure premium risk with respect to
the frequency risk 1s greater than one (see section 1.4.1).

1.2 Models for average cost per claim and pure premium

1.2.1 Gamma distributions

Let ¢, be the cost of the ;) claim reported by the policyholder 1 n period 1 (1 < y< n,,
if n,21). We shall suppose 1n the paper that the costs are strictly positive. This as-
suniption gives another reason to discard the third party Lability guaranty: owing to
fixed amount compensations, a policyholder involved in a claim caused by the third
party can make his insurance company earn money.
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Considering gamma distributions, we write
C’J - ’y((l’bﬂ)’bll = exp(zl[ﬂ)’

or b,C, ~y(d). The coeffictent b, 1s a scale parameter, a multiplicative
funcuon of the covanates, that are represented by the line-vector z,,.

Let ¢, = d/b = d/exp(z,,ﬁ) be the estimation of the average cost for each claim
reported by the policyholder 1 1n period 1. If we suppose that the costs are independent,

the maximum Iikehihood estimator of § 1s the solution of the following equation.

Z("rl ~(c, 16, )z, = ZCres” z, =0
L [N

The term n,, —(tc, /¢,) 15 the sum, for the claims reported by the policyholder ¢ 1n
period ¢, of their cost residual 1—(c,, /¢,). 1wt 1s written cres,, The likelthood equa-
tion in B can hence be interpreted as an orthogonality relation between the explanato-
ry vartables and cost-residuals.

The average cost per claim increases with the frequency nisk (see 1 4.2), which con-
firms the previous conclusions about the risks related to frequency and pure premium

1.2.2 Log-normal distributions
The other distribution famuly considered in this paper is the normal distribution family
for the logarithms of costs

log C,, ~ N(z,B,0° )@logC =z,B+¢,, €, ~ NO,o .

e
The hkelithood equation giving ﬁ 1s
Z[Z (lOg Ciy _ZIIB)J e = Z lcres:r = 0.
i\ y Lt

This equation 1s also an orthogonality relation between explanatory variables and
residuals.

1.2.3 Pure premium model
The total cost of claims reported by the policyholder 1 1n period r may be written as'

Nll
7C, =Y C,
1=

It1s a sum of N, 1.1d outcomes from a variable that we denote as C,,. The pure pre-
muum 1s- E(TC,) = E(N,) E(C,)).
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1.3 Presentation of the working sample

The sample investigated 1n the paper 1s part of the automobile policyholders portfolio
of a French insurance company It 1s composed of more than a hundred thousand poli-
cyholders The damage guaranty being considered here, only the contracts with that
kind of guaranty were kept Policyholders can be observed over two years, and each
anniversary date, changing of vehicle or coveiage level entails a new penod. Only
claims concerning the damage guaranty and closed at the date of obtention of the data
base were kept Reserved costs were thus avoided The rating factors retained for the
estimation of number and cost distributions are
» The characlenstics of the vehicle. group, class, age
« The characteristics of the insurance contract' type of use, level of the deductible,

geographic zone

Other rating factors are the policyholder’s occupation, as well as the year when the
period began (1n order to allow for a generation effect) These eight rating factors have
a finite number of levels, the total number of which 1s 44 The explanatory variables
are binary, and indicate the levels for the policyholders- in order to avoid collinearity,
one level 1s suppressed for each rating factor, the intercept being kept anyway. There-
fore, we shall consider (44-8)+1=37 covariates. With the notations of the paper, we
obtain: a,ﬁeR”;w 2. €{0,1}°.

H a1

The estumated coefficients derived from the rating model depend on the level sup-
pressed for each rating factor. Results that are independent from the suppressions are
obtained by dividing the coefficients by their mean in the multiphcative model. These
standardized coefficients can be compared with the relative severnity of the levels

The periods having not the same duration, the parameter of the Poisson distribution
must be proportional to the duration. The results given on the frequencies remain
unchanged if, 4, being the duration of period r for the policyholder i, we write:

A, =d, exp(w, @), and A, =d, exp(w, &)
The working sample includes 38772 policyholders and 71126 policyholders-

pertods These policyholders reported 3493 claims The average duration of the
periods 1s nine months, and the annual frequency of the claims 1 6 7%.

1.4 Empirical results

1.4.1 A priori rating for frequency and pure premium
When applied to the number of claims or their total cost, the Poisson models provide
standardized coefficients, that can be compared with the relative seventy of the levels
For almost each rating factor, the variance of the coefficients related to the levels is
infertor to the variance of the relative severil, For instance, for the “type of use”
rating factor, one gets
frequency relative severity standardized coefficient
professional use 1.623 1278
standard use 0982 0992
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pure premium relative severity standardized coefficient
professional use 1747 1.177
standard use 0.979 0995

The distributions of the policyholders among the levels of the different rating fac-
tors are not independent from one another Policyholders with a professional use have,
for the other rating factors, more risky levels than the other policyholders The Poisson
model does not mutualize the nsk: hence these policyholders have, with respect to
other rating factors, a level of relative severity equal to (1.747/1 177) -1 = 48 4%
more than the average, 1n term of pure premium,

The elasticity of the pure premium with respect to the frequency risk 1s equal to
1 52 on the sample, and the difference from 1 1s significant (the related Student statis-
tic 1s equal to 5.93) Hence, if the frequency risk 1s multiphed by two, the average cost
per claim increases by 2°%2 — | = 43.5%, and the pure premium increases by 187%.

This positive correlation between the risks on frequency and average cost per ¢laim
1s observed on each rating factor, except for the geographical zone

1.4.2 A priori rating for average cost per claim
On the sample of claims, the gamma model leads to the following results (rating fac-
tor: type of use)

average cost relative seventy standardized coefficient
professional use 1.076 0933
standard use 0996 1 003

The estimated elasticity of the average cost per claim with respect to the frequency 15
equal to 0 51, which confirms the results obtained 1n the preceding section.

2 EXPERIENCE RATING FOR FREQUENCY AND AVERAGE COST PER CLAIM

2.1 Heterogeneous models

In a bayesian framework, the allowance for a hidden information, relevant for the

rating of risks, can be performed in the following way

» the starting point is an a prior rating model If v represents the severity variable(s),
the hikehhood of y will be wnitten f,(v/8,,x), where x 1s the vector of explanatory
variables. and 6, the vector of parameters related to them

* A heterogeneity component (scalar, or vector) 1s added to the model, which measu-
res the influence that unobserved variables have on the severity distribution. If u 15
this component, a distribution of y conditional on « and the explanatory vanables 1s
defined, and we denote 1ts ikelthood as f.(v/6,,x,u) In practice, the a priori dis-

tribution 1s equal to the distribution defined conditionally on u, for some value u°
of u f-(y/Ol,.r,uO)= Jo¥/6,,x)¥8,,x,y If us ascalar, u®=0orl, according
to the fact that « 1s included additively or multiplicauvely in the conditional distri-
bution
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¢ The credibility esttmation of u«,, the heterogeneity component for the policyholder
1, leads to a bonus-malus system. It rests on a heterogeneous model, in which u, is
the outcome of a random variable U,, the (U,),o, , being 11d. and their distnbu-
tion being parameterized by 6,. The likelithood of y, n the model with heteroge-
neity 1s obtained by integrating the conditional likelihood over U, , that 1s to say

f(-vl /9’ xl) = Eez [j;‘(yl /GI’XI’UI)J’

with 6 =(6,,0,). The heterogeneity component vector on number and cost distribu-
tions will be denoted, for the policyholder

UI”
v=l "

where n stands for the numbers and ¢ for the costs The link between heterogeneous
and bayesian models is made clear in the example that follows

2.2 Examples of heterogeneous models

2.2.1 Number of claims
With the notations of 1 1, the distributions defined conditionally on u,, are

N, ~ P(d,u,,), with U, ~y(a,a)

in the heterogeneous model The expectation of U, 1s equal to one, and its variance 1s
I/a On a period, the number of claims distribution s negative binonual 1n the hetero-
geneous model

The negative binomial model can be considered as a Poisson model with a random

component, if we write 4,U,, = A, If the intercept 1s the first of & explanatory varia-

n

bles, and 1f ¢, 1s the first vector of the canonical base of [R‘, we have

Ay =exp(w, o +log(U,,)) = exp(w, (o + log(U,,)e|)) =exp(w, &,)

In the last expression of A,. the parameter @, = ot +log(U,,)e, 1s random, and the
formulation 1s bayesian But 1t 13 less tractable than that of the heterogencous model,
as well for bonus-malus computations as for statistical inference.

2.2.2 Gamma distributions for costs of claims
The heterogeneous models that follow, which allow us to design bonus-malus systems
for average cost per claim, suppose the independence of heterogeneity components on
the number and costs distributions The empirical results presented later will make this
assumption plausible.

For the gamma model and with the notations of 1.2 1, the distributions conditional
on u, are

C, ~v(d.bu.,), with U, ~ y(6,6)

0=

in the heterogeneous model The heterogeneity component 1s included, as the rating
factors, 1n the scale parameter of the distribution
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In the heterogeneous model, one can write: C, =D, /(b,U,). with
D, ~v(d), U, ~v(,0),D, and U, being independent The vanable C,, follows a
GB2 dlstnbutlon (see Cummuns et al (1990)), and D,, represents the relative severity

of the claim.

2.2.3 Log-normal distributions for costs of claims
With the notations of 1.2 2, the heterogeneous model 1s

logC,, =z,8+¢€, +U,, U, ~ N(0,07),

u/
where the €, and U, are independent. The variable g,, represents the relative se-
venty of the claim

The heterogeneous model used to design a bonus-malus system for pure premium
will be presented after the empirical results related to the preceding models.

2.3 A sufficient condition for the existence of a bonus-malus system derived
from a bayesian model

Experience rating with a bayesian model 1s possible only if there exists enough hete-
rogeneity on the data Considering for instance the negative binomial model without
covariates, the estimated variance of the heterogeneity component 1s equal to zero 1f
the variance of the number of claims 1s lower than their mean (see Pinquet et al.
(1992)). In that case, a priori and a posteriori tariff structures do not differ, and the
bayesian model fails.

A sufficient condition for the existence of a bonus-malus system derived from a
bayesian model 1s provided here: 1t will be applied later on to the models for number
and cost of claims

Let us start from a heterogeneous model, as defined in 2 1 The heterogeneity com-
ponent is supposed to be scalar, and 1ts distribution 15 parameterized by the vanance
o? The parameters of the model are 6 = (9,,02) and we shall write 8° = (éO,O), é,o
being the maximum hkelithood estimator of 8, 1n the a prior rating model.

If the right-derivative, with respect to o?, of the log-likelihood 1s positive 1n
60, 6% will be positive 1n the heterogeneous model. The existence of a bonus-malus
system 1s hence related to the sign of a lagrangian, which 1s part of the score test for

nulhty of o’ (see Rao (1948), Silvey (1959)). With the notations of 2 1, and denoting
the lagrangian as £, one can prove:

ZIng(} /9| ,O' x,)- Zlogfo(y /9,,,\ )= Lot +0(0' ), with
=—2(res

res, = [(—fu— logf.(y,/élo, x,,u)l’:“o iS5, = —(% log f. (3, /é,o x,,u)]

ll=ll0
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See Pinquet (1996b) for a proof, and references to a recent literature. The term res, is

a residual, which 1s related to those encountered 1n the likelihood equations for num-
bers and costs. The condition for existence of a bonus-malus system is

(>0 Z‘res,2 > Zs,

. 1 r
It can be interpreted as an overdispersion condition on residuals.

2.4 Prediction with heterogeneous models and bonus-malus systems

Let us suppose a policyholder observed on T periods® Y =(y,, ,yy) 1s the sequence
of severity variables, and X =(x,, ..,x;) that of the covariates The sequences X
and Y3 take the place of x, and y, n the preceding sections The date of forecast T

must be explicited here. and the individual index can be suppressed, since the policy-
holder can be considered separately Besides, belonging to the working sample 1s not
mandatory for this policyholder

We want to predict a nisk for the period 7+/, by means of a heterogeneous model
For the period 1, this risk R, 1s the expectation of a function of ¥, (y, 1s the outcome
of ¥,) For instance, Y, 1s the sequence of both number and costs of claims 1n period ¢,
and R, the pure premium, 1s the expectation of the total cost.

We now include a heterogencity component «, as defined in 2 ! The distrnibution of
Y, conditional on « depends on 8,,x, and u. This applies to R,, and we can write
K, =hg (x,) glu), for the three types of nisk dealt with later (frequency of claims,
average cost per claim, pure premium), g being a real-valued function

A A T4

A predictor for the risk in period T+/ can be written as h9| (X,H)g(T;)I, with g(Tu)l a

credibility estimator of g(u), defined from:

AT+1

8(w) = arg min £, [(g(U)—a)? £(7% /61,470,

T
£ 0,5, 0 =] £ 6%, 0).
t=1
The expectation 1s taken with respect to U, and one obtains

ATl Eg, [8(U) £:(rr/6,, X7, U)]
2 (1) = Eglg(U)/ X7 Yy 1= —2
gy = Eglg(U)/ X7.Y; Ep | fo(¥r /6.4, U)]

the expectation of g(U) for the posterior distribution of U. Replacing 6, and 0, by
their estimations 1n the heterogeneous model, we obtain the a posterior: premium

Rpf) = hy () Eglg) 5. e,

computed for pertod T+/ Tt can be written as
E;[g(U)/x)s s Xpi¥1ae 0 ¥7]
E; [8(U)]

(1 Cxra)E; s x
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The first term 1s an a prior1 premium, based on the rating factors of the current period.
The second one 15 & bonus-malus coefficient it appears as the ratio of two expecta-
tions of the same variable, computed for prior and posterior distributions Owing to the
equality Egl E4(g(U)/ X7, Y7r) = Eglg(U)] = Eq [g(U)], the rating 1s balanced.

2.5 Bonus-malus for frequency of claims

2.5.1 Theoretical results
With the notations of 2 2.1 and 2.4, we wiite y,=n, x,=w, 6, =a;

R =EN)=Au, hy (x)= A, gwy=u; Xp=0w, wp),Yp=(n,. ,np). The pos-
terior distribution of U 15 a y(a+zl n,,a+2’/1,) (see Dionne et al (1989, 1992))

Hence:

2

+
4~
=

Eg[U/Wl,..,wT,Ill,...,nT]=l‘lT+( = 0

a+ )y A

4

M~

Replacing A, by i, =exp(w,&) and @ by a in equation (1) leads to the bonus-malus

coefficient. There will be a frequency-bonus 1f the estimator of a1 negative, or

if the number-residual z[(n, - i,) 1S negative

Considering in equation (1) that N, follows a Poisson distribution, with a parame-
ter A,u, &’"' converges towards u when T goes to +oo The heterogeneity on number
distributions, which 1s not explained by the rating factors, 1s hence revealed comple-
tely with time. It may be interesting to investigate the distribution of bonus-malus
coefficients on a portfolio of policyholders, as well as 1ts time evolution (see section
2 5.2 for empurical results)

We explicit now the condition for existence of a bonus-malus system for frequen-
ctes On the working sample, and with the notations 1n 2 2.1, one can wnte

log /- (¥, /é,o,x,,u) = Z[n”(log /i” +logu)— i,,u —log(n,, ')],
{

with 4, = exp(w,,do), &° being the estimator of & 1n the a prion rating model With

the notations of 2 3, and with «® = 1, we obtain

by 2
res, =Z(n”—/l”),.s, =2n”‘/,>0® E nres; > E n,
r f i i

where nres, = z/(”" - /:t,,) 15 the number-residual for policyholder 1, and n, = Z,n”

1s the number of claims reported by this policyholder on all periods This condition
means that, considering the total number of claims, 1ts variance 1s superior to i1ts mean,
the variance being calculated conditionally on the explanatory variables. This empiri-
cal overdisperston condition can be related to the theoretical overdispersion of the
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negative binomial model- if N, ~ P(AU,), U, ~ y(a,a)(with a=1/c?), one gets.
V(N,)= A, + 20 > A, = E(N,)

A score test for nullity of o? can be peiformed from the Lagrange muluplier
L= /Z)El(nrex,2 —n,) The previous remarks allow us to reject the nuihty of o’ f

L 1s large enough If the number of policyholders goes to infinity, §L =L/\/§(L)
converges towards a N(0,/) distnibution. One can prove that V(L): I/ZZ, /i,z with
i, = Z,’i" If u,_, 1s the quantle at the level 1—¢€ of a N(0,1) distribution, the null

hypothesis 2 =0 will be rejected at the level € 1f E" > u_,.
Besides. the lagrangian provides an estimator of the parameters. Starting from a

~~0
and ¢2? = 0 1n the algorithm of the likelihood maximisation, one gets at the following

step
z;1re.s',2 -n, 2[(", - i,)2 - ”:]
a'=a’; == = = &

v YR Y 2

R o~
The estimators &' and 62 can be shown to be consistent for the negative binomal
model (see Pinquet (1996b) for demonstrations)

2.5.2 Empirical results
From the sample described 1n 1.3, we obtain

> nres? = (n, = 4,)° =3709.24; ) n, =n =3493,

i

and expertence rating 1s possible for frequencies Without explanatory variables (apart

from total duration of observation tor each policyholder), one obtains:

Z nre.\‘,2 =374625 The sum of square of residuals decreases when explanatory
t

vanables are added, and the condition for existence of a bonus-malus system 1s more

restricuve when they are present. This 1s logical because they are a cause of heteroge-
neity on a prion distributions

Besides, Zi,z =389 48 . and the estimator of &> given in (2) 1s

{
E 2 §
nres; — H,

s L 4 ~ ' 216.24
V(L) zif 389 48

=0.555.

As a comparison, the maximum likelihood estimation for the negative binomial model
is 62 =0 576. The score test for nullity of o? 1s based on the statistic
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/ ZI‘I"@S? —ZH, 216.24

L= = = =77
g o Jzz 7 J778.96

»

and the null hypothesis 1s rejected Examples of bonus-malus coefficients derived
from the credibility formula are developped in actuanal and econometric hterature
(see Lemaire (1985), Dionne et al (1989,1992))

Evolution throughout ime of bonus-malus coefficients, as well as a posterion pre-
miums related to them, will be investigated for the risks related to frequency and
average cost per claim We consider here a simulated portfolio, derived from the wor-
king sample In this portfolio, the characteristics of each policyholder in the sample
are those of the first period, and we suppose that they remain unchanged If this as-
sumption does not hold individually, it 1s however plausible on the whole population
Investigating the distribution of bonus-malus coefficients 1n the heterogeneous model,
one can measure their dispersion on the portfolio by estimating their coefficient of
variation after 7 years (see Pinquet (1996a)) Considering the frequencies, with the
tariff structure obtaned 1n 1.4 1 and % = 0576, we obtain:

TABLE 1
REVEL ATION THROUGHOU ] TIME OF HETEROGENEITY RELATED TO NUMBER DISTRIBUIIONS

Cocfficients of variation (fiequency of claims)
a priori premium 0 372

T=1 T=5 T=10 T=20 T=+00
bonus-malus coefficient 0144 0300 0392 0494 0759

a posteriort premium 0411 0515 0590 0673 0891

The coefficient of variation is a measure of the relative dispersion of bonus-malus
coefficients and premiums Apart from the a priont premium, the elements of the pre-
ceding table are an estimation of the expectation in the heterogeneous model. After
nine years, the relattve dispersion of the bonus-malus coefficients exceeds that of the a
priort premium. This means that, after nine years, the heterogeneity revealed by the
observation of policyholders becomes more important than that explained by the rating
factors.

2.6 Bonus-malus for average cost per claim (gamma distributions)

2.6.1 Theoretical results
With the notations n 2.22 and 2.4, we can wnte: y, =(¢,) o ,.% =%}

R = E(C,)=d/(bu); 6, =(3vd);"e, (x,)=4d/b,; g(e)=1/u. The bonus-malus coeffi-

cient on average cost per claim for period 7+/ 1s derived from the credibility estimator
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of 1/u Since the a prior distribution of U 1s a y(d,8), with a density proportional to
f5(u) = exp(—5ll)u5"', one gets:
d(En )+8-1
fs @)X fuo( Y /6, Xy, 1) = exp((§+ D bc, Y ,
1
times a coefficient independent of u The posterior distribution of U 1s therefore a

y(6+ (I(Zn, ), 0+ Zb,cu ), and:

[}

5+Zb,c”
l/ ] ¥
=E XYy | = ———=—
9[U T 5—l+d(2n,)

We have Eg (1/U)= 6/(6 —1) (we suppose & > 1, a necessary condition for /U 1o

I//:TH

have a finite expectation) Onutting the period index, and writing Sy for the set of
claims reported by the policyholder during the first T periods, the bonus-malus coeff1-

cient 18
E.[ I /X,Y,} A+ Y (¢, /E5(C)))
6 U JES,

]
= = , (3)
E. I:i] ’7+'ST{
9, U

where we wrote: 77:(5—])/(1.EB(CJ)=Egz(d/(bjU))z(d/bj)(ﬁ/((‘)‘—l)). The

rating structure derived from (3) 1s obviously balanced. Writing Eé(Cj)zéj, and

cresy = Z;es,(l —(cj /Ej }) the cost-residual for the policyholder, there will be a

cost-bonus 1f the cost-residual 1s positive The bonus 1s then equal to

+ ch/éj

€5, cres;

ﬁ+|57’, - ﬁ+,ST}

| —

The time evolution of the distribution of bonus-malus coefficients s investigated 1n
262 Considering the simulated portfolio defined in 2 5.2, the heterogeneity unex-
plained by the rating factors 1s revealed more slowly for cost than for number distri-
butions This 1s not surprising, as far as no clasm means no information on the cost
distribution — if there 1s no correlation between the two heterogeneity components —
whereas no claim generates frequency-bonus.

Let us apply to this model the condition allowing cxperience rating. For the wor-
king sample, we denote S, as the set of claims reported by the policyholder over the
T, periods. Onc can write

logﬂ(_y,/é,0 Yy X ) = 2(30 logu —I;,?cuu)+ 2,

J€S,

where z, does not depend on i With the notations of 2 3 and with ¥° = I, we obtain:



46 JEAN PINQUET

0 7 - 1 |
res, = zl(d0 - b,?cu ); s, = n,do; L>0& - z:cres,2 > -62—0
i

JES,

The total number of claims over the sample s n, and cres, 1s the cost-residual for
the policyholder 1 This residual 1s equal to O without claims, and otherwise.
- _ 20\ — ~0 _ 30,70 .
cres, = Zjes, (1 (Cu /c,j N= 2155’ cres,, , where ¢, =d /b,/ 1s the estimator for the

expectation of C, Now, we have: E(1-(C,/E(C,))* = V(C, ) ENC,))=
CVZ(CU)= 1/d, f Cu ~y(d, bu) The condition for existence of a bonus-malus sys-

tem 1s hence related to the square of coefficients of varation

2.6.2 Empirical results
Considenng the working sample, one obtains-

| 2 ]
— ) cres; =1.092;— =082,

and experience rating for average cost of claims 1s possible For the sample of policy-
holders that reported claims, the maximum likelithood estimators for the GB2 model
are.

5=3.620,d=1807,7=(5—-1)/d=145.

The bonus (negative 1n case of malus) related to average cost per claim 1s equal to
cres,/(f]+ 'Sr|) It remains equal to zero as long as there are no claims. After the first

claim, if we consider the cases where the ratio actual cost-predicted cost 1s equal,
either to 0.5 or to 2, the related cost-residuals are equal to 0 5 and -1 respectively The
multiphicative coefficient 1/(1+17) being equal 10 0.408, we obtain a cost-bonus of
20.4% 1n the first case, and a cost-malus of 40.8% 1n the second case This coefficient
1s independent of the period during which the claim occurs

The distnibutions of bonus-malus coefficients and a posteriort premiums can be n-
vestgated on the simulated portfolio defined in 252 With the tantf structures obtai-

nedin 14 }and]1 4.2 and 5 =3 62, we obtain (see Pinquet (1996a))

TABLE 2
Rt VELATION THROUGHOUT TIME OF HETEROGENEI LY REL ATED TO COS [ DISIRIBU LIONS

Coefficients of vanation (expected cost per claim)
a priort premium 0 401

T=1 T=5 T=10 T=20 =+oo0
bonus-malus coefficient 0128 0268 0 356 0453 0 786
4 posteriort premium 0427 0504 0 568 0 648 0937

The relative dispersion of the bonus-malus coefficients exceeds the dispersion of the a
priort premium after fourteen years Unexplaned heterogeneity on cost distributions 1s
revealed more slowly than 1t was for numbers
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2.7 Bonus-malus for average cost per claim (log-normal distributions)

2.7.1 Theoretical results
With the notations 1n 2.2.2 and 2.4, we wnte y =(ogc,), ., :% =2,

logC, ~ N(z,B+u,0%)= R, = E(C,) =exp(z, B+u+(c/2)), 6, = (B,ch),
h@. (x,)=exp(z,[5+(0'2/2));g(u)=exp(u). The bonus-malus coefficient 1s derived
from the credibility estimator of exp(«). Now

2
{1 m tley — Eg (TLCy)
X fu(Ye )8, X ) =cxp| - —| —+—L - 1
fa’i(tl) SO0 P 2[0’6 azj[u m; +(c>10d)

!

tumes a coefficient independent from u We wrote =ZI=|"“ tep =Z,e5, logc,,

E9| (TLCp) = Z,es Ee, (log Cj):S7 is the set of claims reported by the policyholder
I

during the 7 periods (|ST| = mT), and the period index is omitted Hence, the posterior

distribution of U 18

tley — Eg (TLCy) |

m, +(c*10d) (/o) +(npic?)

U/(XT,)’7)~N(

The bonus-malus coefficient for period 7+1 1s equal to

Eélexp(U)/XT, Y7l —ex lcresy - (tnTOA'a /2)
- ~2 a2
E; lexp(U)] (6216%)+mn;

)

writng lcresy = 21651 leres,, lcres, =logc, - Eél (logC)).

The condition for existence of a bonus-malus sytem 1s easily interpretable with the
log-normal model We have

A (leres, —-u)2
log ﬁ:(_\', /GIO,,\‘”L[) =_Z+U

€S, 2 ol

plus terms that do not depend on u, with lcres, =log(c, ) — ZUBO- with «” =0 (see

2 3), the existence condition 1s°

bl
(Zlcresu)“ 2
J€S, n i /\20
Z —o3 <0 =02 lcrexu -n g |>0

I
. (o) o2 (o2) | 7T e,

0 2 10
Now, 1n the a prion rating model. no? = E lcres, . with o? the maximum likeli-
1)

hood estimator of ¢. Experience rating 1s possible 1f
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2
2. .. .
z,(zjes, lcresu) - zw [cres, is positive, that is to say 1f

2 ZIcresU lcres, >0

1/n,22 J,heS,  2A

This condition means that, for claims related to policyholders having reported several
of them, cost-residuals have rather the same sign. If the first claim has a cost greater
than 1ts prediction, 1t will be the same on average for the following ones.

One can prove that, if £ 1s the lagrangian with respect to 0'6, we have

Zn, (n,—1 o z Zlcresu leres,
2

~ L 1/n,22 JhES, j2k
V([_.)= i - J J

=i, = 0l=x =
2 TR0 Y -n

!

P
and that 0'(2J 1S an consistent estimator of 0'6 (see Pinquet (1996a)). It appears to be

the average, for the policyholders having reported several claims, of the product of
residuals associated to couples of different claims

2.7.2 Empirical results

From the working sample, we obtain Zl/" - Z lcres, Icres, =100 80, and

JheS, =k
experience rating is possible Hence
2 2 fcres, lcres,
|
O'LZJ _ 122 keS, J2k _ 100 80

=0.171.
> nn, 1) 590

The nullity of o} 1s tested for with &b = L/\F/(L)z 2.86 The critical value for a
one-sided test at a level of 5% is 1.645, and the null hypothesis 1s rejected The maxi-
mum likelihood estimators of of and o? n the heterogeneous model are:
65,=0172, 6% =0.855.

Bonus-malus coefficients can be computed from the examples considered with the
gamma distributions (one claim, and a ratio actual cost-expected cost equal to 0 5 or

2) The residual associated to a claim s the logarithm of the latter ratio In the first
case, the bonus-malus coefficient 1s equal to

exp

— o 2 - -
leresy — (765 12) | exp log2-0.086 | ¢sg
(0855/0.172)+ 1

(6°160)+ms

and 1s assocrated Lo a cost-bonus of 12 2% In the second case, the bonus-malus coef-
ficient 1s equal to 1 107, and implies a cost-malus of 10 7% These results can be com-
pared with 20 4% and 40.8%, the boni and mali derived from the gamma distnbutions,
although the ratios actual cost-expected cost are different in the two models. They
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must be different. since the cost-residuals 1n the gamma and log-normal models are
equal to 1~(c, /¢,5™™") and log(c, /6,I'°g"'”””"’) respectively, whereas they fulfill

the same orthogonality relations with respect to the covarates.

Considering the simulated portfolio defined in 2.5.2, the heterogeneity on cost
distributions that 1s unexplained by the a priori rating model 1s more important for
gamma than for log-normal distributions This can be seen by comparing the linmits of
the coefficients of variation for the bonus-malus coefficients, as we did n sections
252 and 262 For the GB2 model. this limit 1s the coefficient of variation
of 1/UU~y(8.5) (see Pinquet (1996a)) With §=362, it 1s equal to

~

1/ 6 -2 =0786 Considering the log-normal model, the limut is the coefficient of
vanation of exp (U), U ~ N(O,é’&,)

With 63 =0.172. 1t 1s equal to \Jexp(62)—1 =0 433.

This result can be related to a comparison between the two a priori rating models
If Fg . 1s the continuous distiibution function of Y, (here equal to the cost of
.y

the claim j, or its logarithm) g = Fgl.‘l()/]) 1s uniformly distributed on [0,1]

Computing the residuals e,,¢, = F.

1=, (Y)), and rearranging e, n the increasing
T

order, by ¢, £. 2¢,, we derive the Komolgorov-Smirnov statistic
KS = «/;maxlsjs" I(y/n)—e; )l We obtain K§=2 83 (resp KS=1.04) for the gamma

(resp log-normal) distribution family. The latter family seems to fit the data better
than the gamma family, and will be retained for the bonus-malus system on pure
premium

The two last results can be related to each other. there 1s more unexplained hetero-
geneity for gamma than for log-normal distributions, and the latter provide a better fit
to the data This fact raises a question: 1S apparent heterogeneity only explained by
hidden information. or can 1t be also explained by the fact that the model does not
make the best use of observable information?

3 BONUS-MALUS FOR PURE PREMIUM

3.1 The heterogeneous model

From the preceding results, we shall retain log-normal rather than gamma distributions
for costs Besides, they are better integrated 1n a heterogeneous model with a joint
distribution for the two hetcrogeneity components related to the number and cost dis-
tnbutions We retain here a bivanate normal distribution The parameters of the rela-
ted heterogeneous model can be estimated consistently, although the likelihood 1s not
analytically tractable

A way to derive consistent estimators for heterogeneous models 1s proposed in Pin-
quet (1996b) It 1s based on the properties of extremal estumators, the maximum likeli-
hood estimator being of this type. The estimators of the parameters of the a priorn
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rating model have a limit 1f the actual distributions include heterogeneity, and this
limuit 18 tractable in the model investigated here Consistent estimators are then obtai-
ned from a method of moments using the scores with respect to the variances and the
covariances of the heterogeneity components

The heterogeneous model 1s hence composed of Poisson distributions on numbers,
log-normal distributions on costs, and of bivariate normal distributions for the two
heterogeneity components. The notations are the following.
* The distributions conditional on «,, and u, ,, the heterogeneity components for

ni (¥

number and cost distributions of the policyholder «, are

N, ~ P(4, expu,,)),log C,, =z, B +¢€, +u,, with

nr

A, =exp(w,a), €, ~ NO,6%),1=1,..,T:y=1, .n

*t

* In the heterogeneous model, U,, and U, follow a bivariate normal distribution

ni

with a null expectation and a vanance equal to
v _ (\/"” ‘/H( J
v{‘ﬂ V(‘(

The parameters of the model are

a ‘/l”l
01 = ,B » 92 = th
o? v

cc

Bonus-malus coefficients are computed 1n the heterogeneous model from the ex-
pression given in section 2.4

EleW) %) B [«s (7 /8.2, 0)]
E 18U E; [qW)IE [sW)f (7 /6.%.0)]

“)

We can write.

o glu,,u.)=-exp(u,) for frequency

e g(u,.u.)=-exp(u, ) for average cost per claim

e glu,.u )=exp(u, +u, ) for pure premium,

because the expectations of N,,C, and TC, are respectively proportional to exp(u, ),
exp(u, ) and exp(u, +u, ), if computed conditionally on «, and u, The mathematical

expectations that lead to the bonus-malus coefficients (see equation (4)) can be esti-
mated 1f we can write U = f; (§), where the distnibution of § 1s independent from 6,

1t 1s enough to simulate outcomes of § Such an expression can be obtained by writing
the Choleski decomposition of the variances-covanances matrix, 1 e.

v, V 0 2
V = ( nn He ] = TwT‘;; T‘p - ((pllll J => v = ((pllll (pl‘l,ll (IDFII 2 j
‘/( " ‘/(( gD( n (p( € (pIHl (P{‘H (p;;ll + (p( C
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One can wnite for the policyholder

U Un TSS S S, ~ N(0,/
I—U“ 1 S“~1~ (sz),

and we have U, = 102(51)’ ¢ being related to V, hence to 6,. The hkelihood used 1n

the bonus-malus expression (see equation (4)) 1s obtaned as the product of the hkehi-
hoods related to numbers and costs With the notations of 2 4, we have

log f.(¥7 /6, .4,U) =

loge, —z,8-U,)*
_[Z/L]exp(U,,H[En,jU”—Z(OgC” 7:;? A , with

! 1
Xy =0, oxp) X, =0z ) Y =0 yp) v =m0 (c)) 2y 0

plus terms that do not depend on the heterogeneity components Replacing 8, bv 6, .
we obtain

fa( YT/é| , X, U) = exp(Vy) xterms independent from U, with

2 -
-3 4, exp(U, )+ npu, - MrUe Z2U.lcresy 5)
; 20°

A bonus-malus coefficient for a policyholder and for the period T+1 depends then on:
Z A, . which 1s proportional to the {requency premium of the policyholder on all
f

periods This premium 1s equal to
E(TNT) = Zl E[CXP(UH) [ZA ]exp (pnn - [ZA ]exp -

* iy, the number of claims reported by the policyholder during the T periods
» lcres,, the sum of residuals on the logarithm of costs of claims reported by the
policyholder 1t represents their 1elative severity.
From equation (4), bonus-malus coeffictents on frequency, expected cost per claim,
and pure premium are respectively equal to

Elexp(U, +V,)] Elexp(U, +V,)] Elexp(U, +U, + V)]
Elexp(U,)] Elexp(Vp)] Elexp(U )1 Elexp(Vy)] Elexp(U,, +U, )] Elexp(Vi)l

The coefficients are estimated by simulations of outcomes of S, and S. For instance,
we nfer that the estimated covanance

C/o\v( exp(U,) exp(V) ]
Elexp(U )1 Elexp(V))]
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is a frequency-malus The existence of bom and mali for the different risks can be
interpreted through the sign of estimated covariances
The a posteriort premtum is obtained by the expression given 1n section 2 4

Eé[g(U)/XT»YTJ

)

The first term 1s the a priort premium [t 1s an estimation of

((Pll” +(p(‘ll)2 +(p(2( J

Ars exp(zr,, B)ElexpU, +U )] = exP[WTHa +27 B8+ )

because U, +U, =(¢,, +0,)S,+ .S, -
Besides. (g, +(p“,)2 + (0(2r =V, +2V, +V_ .

We should have consistent estimators for the parameters, in order to derive bonus-
malus coefficients. A method to obtain such estimators was quoted in the introduction.
When applied to the preceding model, it leads to the following results

N a0
We write &°, ﬁ”. o2 the estimators of the parameters in the a prion rating model, and

A = Zlcxp(w,,do),tlc, = ZU log(c,, ). £ (TLC)) = 21 n,,:,,ﬁ,!ic', = Eé:,(TLC,)= 2"1,,2,,l§0

The variances and covariances of the two heterogeneity components are consts-
tently estimated by:

2()1, - i, — n, Z(n, - /i, Wile, —I‘iC')

A

vnn = log(l+ vnln)’ Vn]n = v, = )

2 (Zi?]aﬂ?,,‘,,)

~ .0
2[({[(‘, —tl¢,)* —n, o2 :’
"2

vr( =— —V&,
[ZA?](HVJ,,)
1

Consistent estimators of ¢,,. ¢, and @, are given by the solutions of the equation

(6)

LI, =V

The estimators of ¢ are used 1n the computation of bonus-malus coefficients. remem-
ber that U, =TS, (S, ~ N(0,1;)), and that the coefficients are esumated through si-

mulations of outcomes of S,. As for the parameters of the a prion rating model, they

are consistently estimated by

G=6"-2e, B=p'-V, e.,.6" =02 -V, (7
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The intercepts are supposed to be the first of the &, and k. explanatory variables for
the number and cost distributions, and e, (resp ¢, ) are the first vectors of the ca-

nonical base of R* (resp Rl‘f)

3.2 Empirical results
The numerical results z’(n, —i,)z -n,=21624, z’ i,z =389 48, already used for
bonus-malus on frequencies, lead to.

Z(n, - }:,)2 —n,

pl o= =0.555,V,

nn 2 iz * T nn
1
1

In this paper, two distribution families are considered for the heterogeneity component
related to numbers We first took 1nto account the gamma, and now the log-normal
family (writing the heterogeneity component 1n a multiplicative way)

Considering an insurance contract without claims, we can compare the bont denived

=log(1+V!)=0442 = ¢,, =V, =0665

nH

from the two models The sum A, bemg the cumulated frequency premium 1n the
M g q yp

negative binomial model, the bonus for the policyholder 18 equal to
4. z’iﬁ = b @G=1/V
YRS WANE TS Wil
For the log-normal tamuly, the bonus can be written as

_ C/O\V ( CXp(U") exP( VT)
Elexp(U,)1" Elexp(V;)]

).

j’ Ull = (pHHSH 3 VT = —Zl il exp( UII )’

with S, ~ N(0,1) With the valucs of V), and @,, computed precendently. one ob-

nn

tains for example

TABLE 3
COMPARISON OF FREQUENCY-BONUS COEFFICICNTS FOR 1WO DISIRIBUTIONS ON THE
HETEROGLNEITY COMPONENT ( CONTRACTS WITHOUT CLAIMS RLPOR T ED)

frequency premium 0.05 0.1 0.2 0.5 1 2
bonus (%, gamma distributions) 27 53 10 217 357 526

bonus (%, log-normal distributions) 2 6 51 94 193 3013 436

The boni derived from log-normal distributions on the heterogeneity component are
lower than those derived from the gamma distributions. The difference 1s all the more
important since the frequency premium 1s high
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Let us estimate the covariance between the two heterogeneity components:
3 (n, = A,)le, e,
> (n, = A,) (tle, —tic,) =7.96 = V,, =~ =0013.
! YA+
!

One can think of relating a positive or negative sign of the covariance to the fact that
the average cost per claim increases or decreases with the number of claims reported
by the policyholder To see this, suppose that the duration of observation 1s the same
for all the policyholders, and that the intercept 1s the only explanatory variable for
number and cost distributions We would then have

~

A =n, ric, =n,logc = Z(n, - i, )ile, —Ii(',) = Z(H, —i)n, (log ¢’ —Toge) =

Z(n, - 1)n,(logc' —logc), because z",(logcl —loge) =0.

t/n, =2 !

We wrote logc' for the logarithms of costs of claims reported by the policyholder ,

computed on average. The estimator of the covariance would be positive if the average
of the logarithms of costs of claims related to the policyholders that reported several of
them was superior to the global mean

On the working sample, the number of claims reported by the policyholder had lit-
tle influence on the average cost

The preceding results justify the allowance for a non constant number of periods
related to the observation of policyholders To sce this, we remark that the more seve-
re 15 a claim, the greater 1s the piobability to change the vehicule afterwards. Hence,
there 1s less severity on average for several claims reported on the same car If policy-
holders were not kept 1n the sample after changing cars, a negative bias would appear
in the estimation of the correlation coefficient between the heterogeneity components.
Now, keeping the policyholder in the sample as long as possible leads us to consider a
non constant number of periods.

When computing bonus-malus coefficients for average cost per claim, we used (see

2772)
A 0
2 IEIILI -, -n, (/)'\2 ]: Z Zlcrev,j/vres,,\ =100 80

' 1,22 j heS,.j#A

A bonus-malus system for average cost per claim can be considered 1f the observation
of the ratio actual cost-expected cost for a claim brings information for the following
claims. If the last expression 1s positive, the cost residuals of claims related to policy-
holders having reported several of them have rather the same sign The relative se-
verity of a claim 1s associated to the sign of the restdual, and 1t may be interesting to
compare the sign of residuals for claims related to policyholders having reported two
of them.
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Considering the working sample, we obtain

number of pohicyholders negative residual positive residual
having reported two claims (second clarm) (second claim)
negative restdual

(first claim) 74 46

positive residual

(first claim) 36 70

The sign of the residual does not change for 64% of policyholders having reported two
claims
From equation (6), we infer

Z (e, —r[c )“—n O'- -
V.= -V2=0166,and £, = ——%—= 0048

LZAZ (l+ \/‘A/Lc vnn

The correlation coefficient between the heterogeneity components 1s positive, but
close to zero Hence

5 Ao - Y ~2 A2 -
Vcn ZO0unPeon = Pen = 0.020, vu- =0, TQ0. =0, = 0407
The bon for average cost per claim and pure premium for the contracts wathout claims

can be computed, and results can be compared to those obtained for frequency. From
the expressions

_C/O\v[ exp(U,)  exp(Vy) ] ‘C/O\v( exp(U, +U,)  exp(Vy) ]
Elexp(U,)] Elexp(V;)| )’ Elexp(U, +U)]" Elexp(Vy)]

we obtain

TABLE 4
BONI FOR AVERAGE COST PR CLAIM AND PURL PREMIUM (CONTRAC 18 WITHOUT CLAIM REPORTED)

frequency premium 0.05 0.1 0.2 0.5 1 2
average cost per clanm bonus (%) 01 [\B] 02 05 09 15

pure premium bonus (%) 27 53 97 199 312 447

Because of the positive correlation between the two heterogeneity components, a cost-
bonus appcars n the absence of claims, but 1t 15 very low.

We now compute bonus-malus coefficients for policyholders that reported one
claim They are a function of the cost-residual lcres; = log(c,) - :lﬁ (¢, 15 the cost of
the claim, and z; represents the policyholder’s characteristics when the claim occu-
red), and of the frequency premium From equations (5) and (7), we have
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- U?-2U.1
v, =—2/’l, exp(U,)+U, _ e T T
t

267 ’
Zlcress
R o s .
52 =G\2 -V.. =2 v, :ﬁ—0.166=0.861
n 3493

We recall that the bonus-malus coefficients on frequency, expected cost per claim and
pure premium are respectively equal to

ElexpU, +Vp)l  ElexpU, +V;)1  Elexp(U, +U, +V;)]
Elexp(U,)] Elexp(Vy)] Elexp(U.)] Elexp(Vy)] Elexp(U, +U.)] E[exp(Vy)]

We obtain for example (the bonus-malus coefficients are given 1n percentage)

TABLE 5
BONUS-MALUS COEFFICIENTS (POLICYHOLDERS HAVING REPORTED ONE CLAIM)

frequency coefficient frequency premium

lcresq 0.05 0.1 0.2 0.5 1 2

-1 1474 142 1 133 1 1139 945 734
-05 148 4 143 133 8 114 5 95 731
0 1493 143 7 134 6 115 953 74
05 1501 144 6 1353 1156 957 743
1 151 1456 136 116 1 962 746
average cost per claim coefficient frequency premium

icresy 0.05 0.1 0.2 0.5 1 2

-1 84 8 84 7 846 843 84 835
-05 92 919 917 9l 4 91 905
0 997 996 995 991 987 98 1
05 108 1 108 107 8 107 5 107 106 4
| 1171 117 116 9 1165 116 1154
pure premium coefficient frequency premium

[cresy 0.05 0.1 0.2 0.5 1 2

-1 1246 120 1122 956 789 609
05 136 1 131 1223 104 2 86 663
0 148 4 1427 1333 1135 935 722
05 161 8 1557 145 4 1237 VIRY 785

1 176 6 170 158 4 1347 It 854

Because of the positive correlation between the two heterogeneity components, the
frequency coefficients increase with the cost-residual, which 1s related to the seventy
of the claim In the same way, the coefficients related to average cost per clarm decre-
ase with the frequency premium, but these variations are very low Because of the
correlation, the coefficients related to pure premium are not equal to the product of the
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coefficients for frequency and expected cost per claim. Here also, differences are very
low

4, CONCLUDING REMARKS

We recall the main results obtained n this paper

e The unexplammed heterogeneity with respect to the cost distributions depends
strongly on the choice of the distribution family.

* Besides, it 1s revealed more slowly throughout time than for number distributions

* On the working sample, the correlation between the heterogeneity components on
the number and cost distributions 1s very low.

In the long run, it would be desirable to relax the assumption of invariance of the hete-

rogeneity components with respect to time Because of this invariance, the age of

claims has no influence on the bonus-malus coefficients Now, the fact that an ancient

claim has the same nfluence on the coefficients that a recent one 1s questionable. The

allowance for an innovation at each period for the heterogeneity components would

raise new problems, and would make 1t necessary to observe policyholders on many

periods.
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ABSTRACT

The upper bound provided by Lundberg’s inequality can be improved for the probabi-
lity of ruin 1n finite horizon, as Gerber (1979) has shown This paper studies this upper
bound as a function of the retention limut, for an excess of loss arrangement, and com-
pares 1t with the probabulity of ruin

KEYWORDS

Excess of loss, reinsurance; fimte time ruin probability

| INTRODUCTION

Several studies about the effect of reinsurance on the ultimate probability of ruin (for
example Gerber (1979), Waters (1979), Bowers, Gerber, Hickman, Jones and Nesbutt
(1987), Centeno (1986) and Hesselager (1990)) have concentrated their attention on
the effect of reinsurance on the adjustment coetficient.

Centeno (1986) has used an algorithm suggested by Panjer (1986) to calculate the
probability of ulumate ruin, mcorporating reinsurance, to show with some examples
that the behaviour of this probability and Lundberg’s inequality are very similar, both
consideted as functions of the retention level, provided that the initial reserve 1s not
too small This is consistent with the figures obtainded more recently by Dickson and
Waters (1994) for some othcr examples and using a different algorithm for the proba-
bility of ultimate ruin In this paper, Dickson and Waters have also calculated finite
horizon ruin probabilities, after retnsurance, by adapting the algorithm of De Vylder
and Goovaerts (1988) and by an approximation provided by the translated Gamma
process Through an example they show that in continuous time for an excess of loss
arrangement, the optimal retention limit 1n finite horizon can be quite far from the
optimum value n mfimite horizon. Of course, the sequence of optimal retention levels

! Rescarch performed under contract n® SPES-CT91-0063

ASTIN BULLETIN, Vol 27,No t 1997 pp 59-70
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converges to the (nfinite horizon optimal level as the time increases But, for a finite
horizon, Lundberg’s inequality can be improved The purpose of this paper 1s to show
how we can use this improvement to redefine the “optimal” retention hmit for an
excess of loss arrangement, and to compare this inequality with the ruin probability 1n
finite horizon and continuous time for some examples Of course, the same method-
ology can be apphed to proportional reinsurance provided that, the moment generating
function of the individual claim amounts distribution exists

2 ASSUMPTIONS AND PRELIMINARIES

In the classical risk process, the insurer’s surplus at time 7 1s denoted U(t), with
U)y=u+ct—S(1),

where u 1s the titial surplus, ¢ 1s the premium mcome per unit of ime, assumed to be
received continuously, and S(¢) 1s the aggregate claims occurred up to time 1. {S(1)},5,
1s assumed to be a compound Poisson process and without loss of generality the Pois-
son parameter 1s assumed to be 1, which means that “time r” 1s the interval during
which t claims are expected Let G(x) denote the individual claim amount distribution
function and again without loss of generality, let us assume that this distribution has
mean |, which means that the monetary unit chosen 1s the expected amount of a claim
We further assume that G{0) = 0. with 0 < G{(x) < 1 for x > 0 and also that G 1s such
that 1its moment generating function exists for .x < T for some 0 < T < oo, and that

hm E[e”‘]zoo. (1)

r—1
We assume that ¢ is greater than 1, 1.e. 1t 15 greater than the expected aggregate claims
in each period. Let 8be such thatc=1+ 8

The ruin probability before time 715
wu,t)=Pr{U(s) <0 for some 5,0 < s < 1}.

Of course (i, t) 1s not greater than the ultimate probability of ruin, denoted as ¥ (u).
Therefore the upper bound given by Lundberg’s inequality 1s valid for finite horizon.
Gerber (1979), pp 139, has shown that this bound can be improved in finite horizon
He proved that foru 20 and 1 > 0

w(u,r) < mln{e_’"ﬂw*m—‘_" ]}, (2)
r2R

where M, (r) 1s the moment generating function of the individual claim amounts and R
denotes the adjustment coefficient, defined as the unique positive root of

My(r)—l=cr (3)

In the following we refer to expression (2) as Gerber’s inequality After an integration
by parts, inequality (2) can be written as

—rutri| me"(l—G(())(l.L—c]
W(u,l)Sle,lel{e e, } 4)
r
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and the equation defining the adjustment coefficient as

J:e”(l—G(,\))ch p (5)

Now suppose that the nsurer has an excess of loss arrangement such that when a
claim X occurs he 15 responsible for min {X, M}, paying in return per unit of time a
remsurance premium ¢(M), which we assume to be calculated according to the expec-
ted value principle with loading coetficient &, 1.e.

c(M)=(1+O " (1-G(x)dx 6

Assuming that the reinsurance premiums are patd continuously, the insurer’s surplus
attime f1s
N(1)
UM:t)=u+(c—c(M)r— 3 min{X,, M),

k=1
where N(r) denotes the number of claims up to ime t. The ruin probability before time
tis
w(M,u,t)=Pr{U(M,s) <0 for some 5,0 < s <1},

After this arragement Gerber’s inequality becomes

M

- (=G Ndr=(c—c(M

WM< min {e ™ T UmOO(mcdmn | (7)
r2R(M)

where R(M) denotes the adjustment coefficient after reinsurance, 1 e the unique posi-
uve root of

j(:"e“ (1= G(x)) dx = ¢ — (M), (8)

when 1t exists or zero otherwise. Such a root exists if and only 1f the expected profit
after reinsurance is positive

We know that the value of M that maximises the adjustment coefficient, when the
excess of loss reinsurance premium 1s calculated according to the expected value prin-
ciple with £> 6, 1s such that

M=—]§ln(]+§), (9)

(see for example Waters (1979)), minimising then the upper bound provided by Lund-
berg’s inequality.

In the next section we will study the problem that consists 1n choosing M 1n such a
way that the upper bound provided by (7) 1s minimised
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3. THE PROBLEM AND ITS SOLUTION

We define as “optimal” retention the value of M that minimises the upper bound of the
probability of ruin given by (7). We can write (7) as

w(Mu,t) < cxp(rglle:z)f(r, M.u,f)). (10)
where
f(rvauv,) = —ru+r1|:J.Ol”en(l _G(X))dx_(c—C(M)):| (1 ])

In the next result we will study the condition under which (11), as a function of r,
possesses a minimum

Resuit 1

(t) Foreach M >0, f(r, M: u, 1), defined by (11), for r > 0, has a local minimum and 1t
1s unique if and only 1f the expected surplus at £ 1s positive

(i) Suppose that the expected surplus at time 7 1s positive and let 7(M) be the value of
r at which the local mmimum of f{ir, M; u, 1) occurs. Then r(M)2 R(M), where
R(M) 1s the unique positive root of (8) if 1t exists or zero otherwise, 1f and only if

%z R(M)joMxeRW"(l — G(2))dx. (12)

Proof:
(1) Ttis clear that for M >0

lim f(r.M,u,t)=0
r—0

and, by assumption (1), that also for any M >0
hm f(r, M;u,t) = +oo.

r—eo

On the other hand
a f —_ M n " N M _ . .
ﬁ-——u+rj0 e (1 —G(x))dx —t(c—c(M))+rtJ.O xe™ (1= G(x))dx (13)

and

d
d

2
/ . 2rjM xe™ (1= Geodx + 1 x2e™ (1 Gl (14)
r 0 0

As (14) 1s strictly positive for any M > 0, then f (5, M; u, 1} will have a minimum 1f
and only 1f the limit of (13) 1s negative as r = 0 But

mm 2L =t z““fl — G(x))dx — (¢ — C(M)):l,
r—0 ()r 0

which s negative if and only if the expected surplus at time 7 1s positive
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(1) (M) 15 the solution of

2

or (15)

with df1d r given by (13) 1t1s clear that 7(M)will be greater than or equal to R(M)
if and only 1f df/d r1s non positive at the point r= R(M), 1 ¢ 1f and only 1f condi-
tion (12) holds

Let M, be the mimmum of the values for which the expected surplus at time 7 1s non
negative, 1 e.

My = mm{M M =20and u +I|:C—L(M)—-[OAZI - G(x))d,\:l 2 O} (16)

Note that M, will be zero if and only if 1/t = £ — 0 Then the following corollary fol-
lows from the previous proof

Corolary 1.1 For each M > M,,

. M
/It ¢ L RO [ xe M5 (1 - G
wu, M) < ! 0 (17)

/(R wn by ¢ B o R(M)J.OM xe®MN L — Glx)ydx
!

where R(M) 1s the unique positive solution of (8) if 1t exists or zero otherwise and
F(M)1s the unique positve solution of
M M u
jo e™ (1 — Gy — (¢ —c(M))+rj0 xe" (1= Gla)dx == (18)

Hence we can conclude that for some values of M it will be possible to improve the
upper bound given by Lundberg’s inequality. which implies that in some cases the
value of M that mimimuses the upper bound provided by Gerber’s inequality 1s diffe-
rent from the valuc of M that maximises the adjustment coefficient As this maximum
1s attained at the unique solution of (8) satisfying (9) we can conclude that this value 1s
different from the minimiser of Gerber’s inequality 1f and only if

]
— In(1+&) "
E>R*IR* 5 e® (1= G, (19)
P 0

where R* 15 the unique solution of
Ling+g) !
Jo’ et =G(xX))dr =c— c(— In(1+&) 20
r

Let us study the behaviour of Gerber’s bound as a function of the retention limut
Notice that
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min y(u, ;M) < exp( min  min f(r,M;u,t))
M2M, M2My r2R(M) @l
= exp[ min min f(r,M;u,t)].
r2R(M) M2 M,
Differentiating f(r, M, u, t) with respect to M and considering (6) we get
af M
Y r7h ri(1- GM)e™ -1+ &)), (22)
and differentiating twice
9" f —n[r ’M(l—G(M))+((1+§)— RM) M 23
YV 4 e |g(M)). (23)

which implies that the first derivative 1s zero 1f and only 1f

M=Ling +6), 24)
r

and that the second derivative 1s positive whenever (24) holds This means that for
fixed r, wand t, f(r, M, u, 1) has a local minimum, which 1s unique and attained at the

point M = lln(l +&).
r

Let ny = MLln(l + &ywith M, given by (16). (Note that r, will be finite if and only
0
fult<£-6)
So, minimising f(r, M, u, 1) for r 2 R(M) and M 2 M, 1s equivalent to minimusing

f(r,l In(1+ &),u,1) for R* € r<r,, where R* 1s the unique solution to (20)
r

1
Differentuaung f(r,—In(1+ &),u,t) with respect to r we get
r

1
—In(1+¢&)
—u+ t_[of B (1 = G

—I(c—c(iln(l +§))) (25)
r

1
—In(l )
+rljo’ s xe" (1= G(x))dx,

if(r,lln(l +Exut)
ar r

and differentiating twice we get
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& 1 G
S I+ 8 ) 2zj0r xe™ (1= G(x)dx

lIn |
+rrjof ( +§)x2e“(l — G(x))dx 26)

— L1+ &)@ +é)(1 ~G(E g +§)>j
r r
|
= tfo;In(Hé)xze”dG(,r),

!
which 1s posittve, implying that f(r,—In(1 +&),u,1) 1s a convex function of r That the
r

three terms sum to the right hand side of (26), can be easily checked, by integrating by
parts this last expression Hence we can conclude that there 1s at most one solution to

%f[r,%]n(Hﬁ);u,tj:O (27)

1
and that when 1t exists 1t 1s the global minimum of f(r,~In(t+ &),u,1).
r
But on one hand
Irm f(r,l In(l + §),u,l) =0
r-—-0 r
and

him ;——f(r,—l-ln(l +§),u,1j =-u-61<0.
i N

r—0 14

On the other hand, if w/t < £ — 6, then ry, will be finue and

lim f[rn—lln(l +§>,u,z) =] (€ = 1)1 - G(x))dr 20
r

r—n

and if u/t 2 £— @ then

lim f(”l'n(“ré),u,t] = lim f[r,lln(l+.§)j
r—r r ror, r
= i (=r(u = 1§ - 8))) = =,

r—e,

so we can state the following result

Result 2
If u/t 2 € — @ then the upper bound to the ruin probability before time ¢, given by (10),
attains its mmimum at M =0

If u/t < £ — 6 then the upper bound, considered as a function of M has an absolute

1
mi-nimum  which 1s attained at the point M=—*]n(l+§)w1thr*=
r

max (7, R*) where 7 is the solution to
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1 1
—In(1+&) = In(1+&)
J’ * e (1 - G(x))dx —(c—c(lln(l +(§))j+r.[’ (14 xe' (1 - G(x))dx =£(28)
0 r 0 t
and R* 1s the umque solution to

|
- In(1+&) oo
j" ¢ et (1=-GxNde=(1+0)—(1+ é)J, (1-G(x))dx, 29)
0 ;In(l+§)
if such a root exists or zero otherwise.

4. EXAMPLES

In this section we give some examples for the problem studied in the previous section
and compare the values obtained for the upper bound given by Gerber’s inequality
with the values of Lundberg’s bound and the values of ruin probability in finite hori-
zon.

Example 1: Let us consider first the case of exponential individual claim amounts, 1€
G(x)=1-¢" for x > 0. Then the excess of loss reinsurance premium is ¢(M) =

(1+)e*and
M, =_ln[u+rej
1§

Equation (8) defining the adjustment coefficient R(M) 1s, in this case, equivalent to

(l—e—“_'w)/(l—r)=(l+9)—(l+§)e_M, (30)

and equation (18) defining #(M) 1s equivalent to

! r -(1-rM r ~(1=1)M -M|_U
[l—r+(l-—r)z](l_e )—:Me -[0+6)-(+&e ]_7(31)

F(M) will be greater than R(M) if and only 1f

u R(M) [ 1 (l_e—(l—R(M))M)_Me—(l—R(M))M:I (32)
t 1=RM)|1-RM)

Equations (30) and (31) can be solved for each M by standard numerical techmques
given values of fand &
If w/t < & — B the upper bound to y (M; i, 1) given by (10) s attained at the point

|
M=—In(1+&) (33)
r *
with r¥ = max ( 7, R*) where 7 1s the solution to equation (31) with M substituted by

the right-hand side of (33) and R* is the solution to equation (30) again with M sub-
stituted by the right-hand side of (33)
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Let 8 =02 and £ = 0.4. In this case the value of M that nininuses the upper bound
provided by Lundberg’s inequality is M = 1.486, which gives a value for the adjust-
ment coefficient of R* = (0 226466 When we minimise the upper bound provided by
Gerber’s mequality we get a different solution for the excess of loss retention limit 1f
u /1> 0.12075, the solution being M =01f u /1 2 0.2, Table | gives the optimal M for
different values of u / ¢

TABLE |

‘OPTIMAL' RETENTION AS A FUNCHION OF 1¢/t, WITH CLAIM AMOUNTS EXPONENTIALLY DISTRIBUTED

ult 0125 013 014 015 016 017 018 019 02
M 1427 1 357 1219 1078 0932 0779 061t 0412 0
w TE+Q0 = -
B FIReIiIiiboiIIiizs —
m'z} f O SO Lundberg's Bound [12::
'5,' 15'01 =3 —
o : Gerber's Bound
£ sqjzizoozpoosiiiis _—
- i 1 et Wittt Probability of Ruin |-~
£ 1E-02 {isfhesszsshisrin: TN
> HHE
4 I NI LI
[y+]
S 1E-03
I + £ CEEEH R
£ b NG
S DN
€ qpql
0 1 2 3 4 5
Retantion Level

FIGURE ! CLAIM AMOUNTS EXPONENTIALLY DISTRIBUTED

Figure 1 shows calculated values of ¥ (M, u, 1), Gerber’s upper bound and Lundberg’s
upper bound for 1 = 30 and r = 200

Table 2 gives the values attained by these functions at the minimum of each of them
(rounded to two decimal places)
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TABLE 2
‘OP1IMAL" VALUES WITH C1 AIM AMOUNTS EXPONENTIALLY DISTRIBUTED

Gerber’s bound Lundberg’s bound

M y(M;30,200)
0.83 0218x 107 0101 x102 0252x 10!
1.08 0257x 107 0896x 10?3 0219x 102

1.49 0442x 10° 0104x 102 0112x10?

The efficiency measure defined by Dickson and Waters (1994) goes from 49% (=
w (0 83;30. 200)/w (1 49, 30, 200)) for the minimiser of Lundberg’s bound to 85% (=
w (0.83,30, 200)/y (1.08, 30, 200)) for the minimiser of Gerber's bound.

The probabilities, in all the examples, were calculated using the algorithm of De
Vylder and Goovaerts (1988) as re-scaled by Dickson and Waters (1991) and adjusted
to take 1nto account reinsurance

We started by discretizing the individual claim amounts (before reinsurance) on
1/B, 2/B, ..., using the method suggested by De Vylder and Goovaerts (1988) Then,
for each value of M we have calculated the net premium (after reinsurance) in the new
monetary unit, after which we have calculated the distribution function F of the aggre-
gate claim amounts after reinsurance 1n a period of ttme with the rescaled Poisson
parameter (in this case - with 1 = 1 - the mnverse of the net premium). In this way the
rescaling parameter depends on the value of the retention.’

Then we have used the recursion formula

viw,)=1-Fw+1), wSw+(m-1),
w+l
Gow,n)=1=Fow+1)+ D fylw+l=jn=1),wSw+(T-n)n=2, 7,
=0
where w =ufj and i = {tP} where P denotes the net premium 1n the new monetary

untt and {x} denotes the least integer greater than or equal to x
We have used the approximation

_ 1, A
y(w,n)= E(W(W -Ln)+ l;/(w,n))

with w(w—1,n) to be zero If w is zero, as suggested by De Vylder and Goovaerts
(1988), for probabilities 1n continuous ime

TABLE 3
*OPTIMAL” VALUES WITH CLAIM AMOUNTS PARETO DISTRIBUTED

M wM;30,200) Gerber's bound Lundberg’s bound

0.83 0102x10? 0549x 102 1 000
1.03 0109x 10? 0523x10? 0 644
2.33 0356x 10? 0977x 102 0013

2 Note that with this rescaling we are restricted to evaluate the ruin probabilities for a positive net
premium



EXCESS OF LOSS REINSURANCE AND THE PROBABILITY OF RUIN IN FINITE HORIZON 69

As tP may be not an integer we have used the following interpolation to calculate the
probabilities of the original process

WM u, 1) = WP, Py = ({tP) — tPY (uB, (1P} — 1)+ (¢tP — ({tPY— 1) (uf, {tP})

In the calculations of Table 2 we have taken 8= 100 and the control parameter, €, was
set at 3 x 10™ This parameter 1s used for the calculations in the De Vylder and Goo-
vaerts algornithm (see De Vylder and Goovaerts (1988), p 7) For the calculations of
the ruin probabilities necessary to perform Figure | we have used § = 20.

Example 2: Consider now the case where G(x) = | — (1 +x)7, 1 e. individual claims
follow a Pareto (2,1) distribution. Let 8=02 and £ =0 4 as in the previous example

In this case the equations defining R(M) and F(M) require numenical calculations of
integrals of the kind

M
jo e™ (1 = G(x))dx

Instead of using standard numenical techniques to calculate them, we have calculated
R(M) and (M) based on the discretized distribution, Figure 2 shows the ruin proba-
bihty before tme ¢ = 200, for u = 30, and both Gerber’s and Lundberg’s bounds

......................

Lundberg’s Bound

i Gerber's Bound

Probability of Ruin

Ruln Probabllity and Upper Bounds

Retentior Level

FIGURE2Z CLAIM AMOUNTS PARETO DISTRIBUTED

Table 3 equivalent to Table 2, but for the Pareto distribution The figures are even
more indicative.
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5. CONCLUDING REMARKS

As we have already mentioned, the optimal retention limit, when the probability of
rumn in continuous time with a finite horizon s minimised, can be quite far from the
optimal value when the probability of ruin in continuous time with an infinite horizon
1s considered However, the calculations of the ruin probabilities 1n finite horizon are
very time consuming, making this criterion less appealing.

Gerber’s bound 1s computationally much easier to deal with than the ruin proba-
bility and in the examples considered it provides a solution that i1s very close to the
solution obtained when the probability of ruin 1s used. The disadvantage of using
Gerber’s bound 1s that this bound 1s not always an improvement on Lundberg’s bound
- 1t depends on the value of the ratio of u to + Our advice would be to use Gerber’s
bound, 1f 1t provides an improvement to Lundberg’s bound, and use an approximation
such as that provided by the translated Gamma process otherwise

We have shown that when the reinsurance premium calculation principle 1s the ex-
pected value principle, Gerber’s bound has a umque mimimum. However, this 1s not
true 1n general. When this 1s not the case, 1n all the examples considered, the proba-
bility of ruin had a similar behaviour Some care should be taken 1n these cases.
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CREDIBILITY THEORY AND GENERALIZED LINEAR MODELS

J A NELDER 'and RJ VERRALL ?
ABSTRACT

This paper shows how credibility theory can be encompassed within the theory of
Hierarchical Generalized Linear Models. It 1s shown that credibility estimates are
obtained by including random effects in the model. The framework of Hierarchical
Generalized Linear Models allows a more extensive range of models to be used than
straightforward credibility theory. The model fitting and testing procedures can be
carried out using a standard staustical package Thus, the paper contributes a further
range of models which may be useful in a wide range of actuanal applications, inclu-
ding premium rating and claims reserving

KEYWORDS

Credibihty Theory, Hierarchical Generalized Linear Models; Generalized Linear Mo-
dels; Premium Raung Random-Effect Models

I INTRODUCTION

Credibility theory began with the papers by Mowbray (1914) and Whitney (1918). In
those papers, the emphasis was on deriving a premium which was a balance between
the experience of an individual risk and of a class of risks Buhlmann (1967) showed
how a credibility formula can be derived in a distnbution-free way, using a least-
squares cniterton. Since then. a number of papers have shown how this approach can
be extended- see particularly Buhlmann and Straub (1970), Hachemeister (1975), de
Vylder (1976, 1986). The survey by Goovaerts and Hoogstad (1987) provides an ex-
cellent introductton to these papers.
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The underlying assumption of credibility theory which sets it apart from formulae
based on the individual nisk alone 1s that the risk parameter 1s regarded as a random
vanable This naturally leads to a Bayesian model, and there have been a large number
of papers which adopt the Bayesian approach to credibility theory: for example Jewell
(1974, 1975), Klugman (1987), Zehnwirth (1977) Klugman (1992) gives an introduc-
tion to the use of Bayesian methods, covering particularly aspects of credibility theo-
ry. A recent review of Bayesian methods in actuanal science and credibility theory 1s
given by Makov et al (1996)

It can be shown that, under suitable assumptions, a credibility formula can be deri-
ved as the best linear approximation to the Bayesian estimate, using a quadratic loss
function Jewell (1974) showed that for an exponential family of distnbutions, the
credibility formula 1s the same as the exact formula, so long as the conjugate prior
distribution and a natural parametrisation 1s used This result will be derived in a diffe-
rent way 1n section 3, 1n order to place the basic model of credibiity within a wider
framework. The choice of structure for the collective and the parameterisation will be
discussed 1n more detail. Since exponential families form the basis of Generalized
Linear Models (GLMs) - see McCullagh and Nelder (1989) - it 1s natural to seek an
extension of credibility theory encompassing the full range of models which can be
formulated as GLMs. This s particularly apposite as GLMs have many very natural
applications in the actuarial field- see, for example Renshaw (1991), Renshaw and
Verrall (1994) This will also make possible more applications of credibility theory.

The main purpose of this paper 1s to show how credibility theory can be incorpora-
ted into the general framework of GLMs and implemented in the statistical package
Genstat Although the formulation of the credibility model is similar in many ways to
the Bayesian approach, our approach 1s hkelihood-based rather than Bayesian. The
dispersion parameters will be estimated directly from the data without specifying prior
distributions No prior estimates for the parameters need to be supplied. All assump-
tions used in the model can be checked using, for example, appropriate restdual analy-
ses Recent advances 1n the statistical literature on GLMs allow unobserved random
effects to be estimated along with the parameter vector in the linear predictor A useful
recent paper 1s Breslow and Clayton (1993) which covers the theory of generahized
linear mixed models (GLMMs) GLMMs allow the inclusion of normally distributed
random effects and have been applied to a wide vaniety of statistical problems We use
the theory of Lee and Nelder (1996), which develops hierarchical generalized linear
models (HGLMs). HGLMs also allow the inclusion of random effects, but these are
not restricted to be normatly distributed Pure random-effect models, 1in which no fixed
effects are included in the hinear predictor, are known n the actuarial hiterature as
credibility models. They form one part of a much wider class of models which have
many potential applications to actuarial data

Thus, the purpose of this paper is further to umify the actuarial theory; to show how
modern statistical methods can be used to enable credibility theory to be applied in a
standard statistical package, to allow extensions of basic credibility theory and to
show how the assumptions made can be checked Thus last point 1s important, since we
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regard many aspects of actuanal work as exercises 1s statishical modehing, rather than a
dogmuatic application of risk theory models

Tt should be noted that the theory can be applied to models that specify only the
mean and vartance functions, using quasi-likelihood (Wedderburn, 1974, Nelder and
Pregibon, 1987) - see section 5

The paper 1s set out as follows. Section 2 contains a brief introduction to GLMs and
derives some results which will be used elsewhere. Section 3 shows how credibility
theory can be treated within the context of HGLMs Section 4 outlines more general
HGLMs. and how they are likely to be used for actuarial data Section 5 outlines some
extensions to the models 1n sections 3 and 4

2 INTRODUCTION TO GLMS

This section contains a brief introduction to GLMs, and derives some of the key re-
sults which will be used later in the paper. A complete treatment of the theory and
apphication of GL.Ms can be found 1n McCullagh and Nelder (1989).

The basis of GLMs 1s the assumption that the data are sampled from a one-
parameter exponential famtly of distributions We first describe these and some of
their fundamental properties

Consider a single observation y A one-parameter exponential famuly of distribu-
tions has a log-hikelthood of the form

29250) , iy @n

where 8 1s the canonical parameter
and ¢ 1s the dispersion parameter, assumed known

Haberman and Renshaw (1996) review the application of Generalized Linear Models
tn actuanial science, and include a section on loss distributions. In actuarial apphca-
tions, many distributions belonging to one-parameter exponential families are useful
However, Haberman and Renshaw (1996) show how 1t 15 also possible to fit certain
heavy-tailed distributions using Generalized Linear Models

Some examples of such families are given below It 1s straightforward to show that

db(6)

=EY)= 22
H=E(Y) 70 (22)
d*b()
and Var(Y) = 2.3
) 102 (2.3)
d*h(8)
Note that Var(Y) 1s the product of two quantitics >— 15 called the variance func-

tion and depends on the canonical parameter (and hence on the mean) We can write
this as V(u), since equation (2 2) shows that 0 1s a function of
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d*b(6)
d6*

Thus V()= 24
In actuanal applications, it is posstble to include deterministic volume measures 1n the
defimition of Var(Y). A GLM may be defined by specifying a distribution, as above,
together with a link function and a linear predictor. The link function defines the rela-
tionship between the linear predictor and the mean. The linear predictor takes the form

n=Xp (25)

where  f1s parameter vector
and X 1s defined by the design.

For a single observation, X 1s a row vector, and for a set of observations, X 1s the de-
sign matrix

The linear predictor 1s related to the mean by i = g(u) The function g 1s called the
link function, and the special case g(u) = @is called the canonical link function

By way of illustration, the log-likelihoods for some common distributions are given
below
(1) Normal

1
v — 5“2 v )
The log-likelihood 18 ——5F— — —— - —log(2no
& o? 202 2 Bl )
Thus, 8 = y and the canonical link function 1s the identity function.

b(0)—ﬁand c(y.6) = — v’ — L log2ne?)
- 2 )7 - 9 2 2 g

V(u)=1 and @ = 62

(ii) Poisson
The log-likelihood 1s y logu — 1t — log y/
6 = log u and the canonical hink s the log function
b(8) = ¢® and c(y, @) = - log y!
V(iu) = and =1

(1)) Binomal

Suppose R ~ Binonual (m, ). Define Y = ﬁ Then the log-likelithood 1s

n
ylog{*——bg(l—ﬂ) "
H + Iog[ )
my

1

m

u

Hence 6 = log l . and the canonical link function 1s the logit function

b(8) = log(l +e%)and cv,o)= log[ " j

my
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I
V(y=pu(l—p) andp=—.

m
Note that this parameterisation may be unfamiliar because of the defimition of Y
However, 1t enables us to give a coherent theory in the following section
2
(1v) Gamma (with mean u and variance L2l .
Vv

: |
AN log —
u
The log-likelihood 15 —= —£ 4 viogy+vlogy - log ()
v
0= L and the canonical link 1s the reciprocal function.

u
b(8) = —log(-8) and ¢(y.¢)=vlog y+viogv—logI'(v).
Vu)= ;12 and o =v~".

This section has given a brief introduction to GLMs The following section shows how
standard credibility theory can be applied 1n this context Section 4 will show how
more general models can be formulated

3. THE BUHLMAN MODEL FOR EXPONENTIAL FAMILIES

In this section, we derive the credibility formulae for exponential families of distribu-
tions, under the assumptions made by Buhlmann (1967) It1s possible to extend this to
other models for example the assumptions of Buhlmann and Straub (1970) can be
incorporated using weight functions This section derives just the credibility formulae
A brief discussion of the estimation of the dispersion parameters is given n section 4,
where the appropriate references are cited.

Denote the data by y, forr = 1,2, ,1ny=1,2, ,n, Assume for the moment, as 1s
common in credibility applications, that 1, = k, V 1, but note that this restriction 1s not
nccessary for the derivation of HGLMs

Thus, ¢ indexes the risks within the collective In credibility theory, 1t 1s assumed
that each risk has a risk parameter, which we denote by & for risk
The assumpuons of the model of Buhlmann (1967) are

(1) The risks, and hence & , are independently, identically distributed.
(1) "u| &, are independently, 1dentically distributed.

We assume that y,j|§, 15 distributed according to an exponential family Define

m(€,)= E[yu| 5,] Note that under the assumptions of the model, E[_v,,| 5,] does not
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depend on J. Hence the canonical parameter for observation y, does not depend on J,
and we assume that 1t can be written as follows

6] = 0(m(&,)) = 6(u,) 31

where @ 1s the canonical link function and y, 1s a random effect for group 1. Thus, for
the standard credibility model, m(&) = 1, Define v, = 8 (u,); then, n this case,

0,=v,. (32)

Again, note that there 1s no y dependence here Note also that this also implies that
Var(y, |&,) does not depend on

This has defined the distribution of the random variable within each risk, conditio-
nal on the risk parameter. It ts also necessary to define the structure of the collective -
the distribution of {& =1, ,r}. This s often done by defining a Bayesian prior
distribution; here we use the same form of distribution for the random effects, but do
not perform a Bayesian analysis Instead. we define a “hierarchical likelihood”, A,
which we maximize.

We define the conjugate hierarchical generalized linear model (HGLM) by defi-
ning the kernel of the log-likelihood for &u,) as

a,6! — a,p(6)) (3.3)

In the actuanal literature, this distribution (the distribution of the random effects) 1s
known as the structure of the collective Note that we define the log-likelthood of &
implicitly through that of &/m(&,)). We have conditioned on &, through m(&) = u,, since
it 1s the latter that we wish to estimate.

From (3.3) and the distribution of yulé,, we may define a herarchical log-
likelithood as

h="3 K8y, v)+ D 1, 34
[N {

yljel' - b(el')
=z T [+ (3, @)+ @8] — ayb(6)) (35)
¢
y

When the distribution of both the data and the random effects 1s normal, this 1s Hen-
derson’s joint log-likelihood (Henderson 1975). In other cases, 1t 1s an obvious exten-
sion of the joint log-likelihood. called the hierarchical log-likelihood We have now
defined a hierarchical generalized linear model (HGLM), in this case the conjugate
HGLM In the particular case described 1n this secuon, the linear predictor for y, con-
sists solely of a random effects term which 1s modelled in the second stage of the
likelihood, (3 2) It s possible to incorporate more structure into the model by inclu-
ding fixed effects and generalizing the form of the random effects model However, in
this section we are concerned solely with showing that the estimates obtained under
the basic model described above are the usual credibility estimates Thus, we require
an esnmate of m(£ ) = u, The mean random effects {u, - 1 = 1, .., 1} are esimated by
maximizing the hierarchical likelihood, (3 4), as follows.
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Using (2 2)
ab(O(u,)) y
o, v
H oh i[.\)u — Y, ]
ence - = +a| _(12“,
Nk G
Equaung i o 0 gives
N,
Yie — kil + Qu; — @ayi, =0 (3.6)
A
where y,, =y,
J=I
. Yt
Hence a, = __J‘.ﬂ.
k+ ga,
=Zy, +(1-Z)m
-1
where ¥, =—y,, Z= and m=1,
k k + @a, sy

Thus, we have shown that, with the choice of distribution for the random effects defi-

ned in (3.3), and using the canonical ink function, the estimate of «, is in the form of a

credibility estimate provided E(m(¢)) = a This 1s straightforward to show, and was
@

also proved by Jewell (1974). The density of «, 1s proportional to

eu,O,’—u;b(G,’)

8, —a, b6, ’
aem [ —a,b(6)) N ab(gl) ell,@,’—azb(e,')
Now 96’ REPTY

1
= (a, —aym(E, ))etr bt

a8 —ayb(8])

Integrating over the natural range of 6/, and assuming e is zero at the end

points, we have
a, —a, Elm(€)]=0.

Hence, using (2 2), Elm(E) = Elu, | = &L

ay

Thus, we have shown that the credibihity estimate 1s the same as the estimate obtained
using a conjugate HGLM with pure random cffects. This shows that credibility theory
15 closely connected to the statistical theory of random-effect models Of course, 1t 1s
possible to widen the scope of the models considerably. Fixed effects terms can also
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be included n the model, other link functions may be considered and the form of the
random-effect models can be generalized

It is possible to formulate the pure random-effect model in another way, by inclu-
ding a fixed effect which 1s constant for all the data This means that the overall mean
1s estimated as a fixed effect and the randomeffects model departures from this overall
mean There 1s no effect on the credibility estimates, but the above derivation 1s, 1n
some ways, closer to the actuarial theory

The results n this section are closely related to those of Jewell (1974). The present
approach differs 1n that 1t 1s not presented as a Bayesian procedure. and the emphasis
1s on the modelling aspects encapsulated within Generalized Linear Models

The estimation of the dispersion parameters 1s discussed 1 section 4. This includes
the estimation of ¢ and of a4, and «,. It should be noted that if a constant fixed effect 1s
included in the model, as outlined above, there 1s only one parameter to estimate n the
distribution of i, For this reason we adopt this approach henceforth

By way of illustration, we consider the four exponential families outlined 1n section
2 Note that we can derive the density of «, from the density of 6 (u,), defined in (3.3)
The density of u, is proportional to

6{119,'—(12[)(9,') ae(“,)
ot

a8 —a,h(8))

{

€
3.7
Viu,) (37

(11) Normal
The random effects have log-likelthood whose kernel 1s

1
au, —a, —2—
2 m | a
1e. u, ~N(m.og) a = —5. 0y =—and m= Elu,j=—
0 Oy ay

(11) Poisson
u, has a likehhood proportional to

" togu, —ayu,

u,

a
Hence u, ~ Gamma. parameters @, and a,, and m = Elu, | = —L
a,
(111) Bionual
u, has a hikehthood proportional to

u, 1
exp|:u, log(l—_“ )—az log[l_“ H

u,(l1—u,)
a

1e u, ~ Beta, parameters @, and a,- a,. and m = Elu,1=—
a,
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(iv) Gamma
u, has a likelthood proportional to

exp[;a—l +a, loguy, J

u,

2
u;

1€ u, ~ nverse gamma and m = E[u, | = 4
ay
Having shown that the estimates obtained using conjugate HGLMs for a simple ran-
dom-effect model are the usual credibility estimates, we now define a more general
framework which encompasses credibility models

4 HIERARCHICAL GENERALIZED LINEAR MODELS

Standard GLMs model differences between groups, parametric variation and other
effects as fixed effects in the linear predictor Random-effect models can be combined
with standard GLMs n order to formulate models with both fixed effects and the
random ettects of credibility models. To do this, we define an extended linear predic-
tor for a single observation as

n=n+v @hn
where 1 =XfB,as1n (25)
and v 15 a strictly monotonic function of w,v=v(u)

When v = 0, (4.1) reduces to the standard linear predictor for GLMs. When 7 = 0 and
v = B(u), we have the basis credibility model described in section 3.

The hierarchical log-likelihood, (3.4), becomes

= 1By, v)+ D 1)
1 !

where v, = v(u,)
The maximum hierarchical hkelihood extimates (MHLESs) of 8 andu are obtaimed

from the pair of equations
% =0 and % =0

which may be solved 1teratively using the procedures written by the second author for
the statistical package Genstat

We consider here the case when the canonical link function 1s used for the fixed ef-
fects and v = &u) In this case, equation (3 1) for observation y, becomes

6, =6, +0(u,) (42)

where 6, =X,
@ 1s the canonical hink function
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and X, 1s the row from the design matrix for the fixed effects which relates to y,

The same log-likehihood 1s used for &u,), as 1in (3 3) Then the kernel of 4 1s
(9,8 = b(8;))
1)

I(v,
p +Z v,)

Hence 4.3)
N o
(yl - ul’ )) + q’al
and oh ; - a (44)
= —au
av’ @ 2%,
where u) = E[y,,‘ u)= E[yu| &l
B 1s the kth parameter 1n the fixed effects
and X;, 18 the kth entry of the row vector X,
Note that in this case, unlike that 1n section 3, E[yul ﬁ, I# u, Instead,
O(u,)=n, +6(u,) (45)

which implies that u), =, when 1, =0.

We include the overall mean as a fixed effect and require that the random effects
then have the approprate mean (eg O for the identity link function).

The dispersion parameters given the fixed and random effects are estimated by
maximising the h-likelihood after a suitable adjustment. The adjustment. which results
in an adjusted profile h-likehhood, 1s necessary because the marginal maximum hkeh-
hood estimates may be biased. Further justifications for this adjustment can be found
in Cox and Reid (1987) and L:c .nd Nelder (1996) For the normal distribution,
unbiased estimates are obtained “lorc details on estimation theory for random-effect
GLMs can be found in McGulchrist (1994) and Schall (1991).

The joint estimates of the mean effects (fixed and random) and the dispersion pa-
rameters are obtained by iterating between the two sets of estimating equations. These
processes may be conveniently carned out 1in Genstat, for which a set of procedures 1s
available from the second author.

For the distributions 1llustrated in section 1, the likelihoods of the random effects
are agamn appropriate, but the esimate will be different because of the difference bet-
ween (3 1) and (4 2)
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5 DISCUSSION

It 1s possible to extend the class of models to which these methods may be applied by
specifying just the mean and vanance functions This 1s useful when greater flexibility
1s required in the modelling assumptions For example, Renshaw and Verrall (1994)
show that the chain-ladder technique 1n claims reserving 1s essentially equrvalent to
GLM with a Poisson likelihood and an appropriate hinear predictor. By specifying just
the mean and variance functiton, this model may be applied to a much wider class of
data than 1s 1implied by the Poisson assumption (which obviously requires the variance
to equal the nean). This involves the use of extended quasi-likelihood (Wedderburn
1974, Nelder and Pregibon 1987). For HGLMs, the equivalent extension 1s the exten-
ded quasi-h-likelithood, in which the extended quasi-likelithood is used in the hierar-
chical likelihood This extension makes 1t possible, for example, to include random
effects in the chain-ladder inear model to allow a connection between accident years.

HGLMs may also be of use when a particular factor 1s hard to model parametrical-
ly An example of this, which has been mentioned above, 15 claims reserving, when 1t
1s inappropriate to model the accident years as completely independent, but a parame-
tric relationship 1s also inappropriate. The same comment applies 1n motor premium
rating, when 1t 1s usual to group a factor such as the age of the polhicyholder. Such a
grouping may be mappropriate, as it may be crude or doubtful because 1t has been
decided before the analysis of the data (for example, according to the present rating
structure). However, 1t 1s often inappropriate, because of computational and theroreti-
cal considerations, to treat the ages as completely separate or to apply a parametric
model In this situation, HGLMs may be useful

Applications 1n hfe insurance include similar premium-rating situations as n ge-
neral insurance, and also graduation theory The use of HGLMs for graduation would
have some similarities to Whittaker graduation, which can be regarded as a GLM with
a stochastic lincar predictor (Verrall, 1993).
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CREDIBILITY IN THE REGRESSION CASE REVISITED
(A LATE TRIBUTE TO CHARLES A HACHEMEISTER)

H BUHLMANN
ETH Zurich

A GISLER

Winterhur-Versicherungen
ABSTRACT

Many authors have observed that Hachemeisters Regression Model for Credibility — if
apphied to simple linear regression - leads to unsatisfactory credibility matrices they
typically ‘mix up’ the regression parameters and in particular lead to regression lines
that seem ‘out of range’ compared with both individual and collective regression lines
We propose to amend these shortcomings by an appropnate definition of the regres-
sion parameters:
— intercept
—slope
Contrary to standard practice the intercept should however not be defined as the value
at ime zero but as the value of the regression line at the barycenter of time. With these
definitions regression parameters which are uncorrelated in the collective can be esti-
mated sepatately by standard one dimensional credibility techmiques

A similar convenient reparametrization can also be achieved in the general regres-
sion case The good choice for the regression parameters 1s such as to turn the design
matrix into an array with orthogonal columns

|. THE GENERAL MODEL

In his pioneering paper presented at the Berkeley Credibility Conference 1974, Charlic
Hachemeister introduced the following General Regression Case Credibility Model
a) Descuption of individual risk r.

risk quality 6,

observations (random vector)

ASTIN BULLETIN, Vol 27, No | 1997, pp 83-98
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with distribution dP(X,/6,) and where X,, = observation of nisk r at time ¢

b) Description of collective.
{6.,(r=1,2, .,N)}) are11d with structure function U(6)

We are interested n the (unknown)
individually correct pure premiums y,(6,) =E[X,/8,) (1=1,2, ., n)

ll'll(er)
U,(6,)

= u(6,) where p(6,) = individual pure premium at time

1, (8,)
and we suppose that these individual pure premiums follow a regression pattern
R) u(6,) =Y.B(6,),

where u(60,) ~ n-vector, B(6,) ~p-vector and Y, ~ n % p-matrix (= design matrix)

Remark:

The model 1s usually applied for p <n and maximal rank of Y,, 1n practice p 1S much
smaller than n (e g. p = 2).

The goal 1s to have credibility estimator ﬁ(Q,) for 3(6,)
which by linearity leads to the credibility estimator (1(6,) for u(6,).

2 THE ESTIMATION PROBLEM AND ITS RELEVANT PARAMETERS AND SOLUTION
(GENERAL CASE)

We look for
B(6,y=a+ AX,
a ~ p—vector

A ~ p*nmatrix

The following quanuties are the “relevant parameters” for finding this estimator

ElCov X,,. X ,/16,]1=®, P, ~n* nmainx (regular) )
Cov|B(6,),80,)I= A A~ p*pmatnix (regular) )
E|B®6,)I=b b~ p-vector 3)

We find the credibility formula
B©,)=(1-2Z,)b+Zb¥ ()
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where
Z,=(I-W'AHY T =W + AHTTW =AAa+ W (5)
~ credibihity matrix(p * p)
W, =Y.® 'Y, ~auxihary matrix (p*p) (6)
b¥ =w 'y ®'X, ~individual estimate (p*1) (M
Discussion:

The generality under which formula (4) can be proved 1s 1mpressiv, but this generality
1s also its weakness Only by speciahisation it 1s possible to understand how the for-
muia can be used for practical applications Following the route of Hachemeisters

original paper we hence use 1t now for the special case of sunple linear regression.

3 SIMPLE LINEAR REGRESSION

Let
11
1 2
YI =YY=
1 n
and
ﬁl)(er ))
6,)=
ﬁ (ﬁl(gr)
hence R) becomes
u((el)=ﬂ(](6:)+’ ﬁl(e,) (8)

which 1s one of the most frequently applied regression cases Assume further that @, 15
diagonal. .e. that observations X, X, given 8, are uncorrelated for: # ;

1ad

To simphfy notation, we drop in the following the index r, 1 e we write @ instead of
&, Wanstead of W, and Z instead of Z,

r

Hence

crl2 0

2

o

®= ? 9)
0 ol
2_0O “ "
eg O, = V, =*volume” of observation at time 1
{

)
T, T

Let A =( 0 "2'] Toi = Tjo
Tw 0
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We find
H 1 n k
24:1? 2L=IF
W=yo'y= ! 5
n k zn k*
Zk:l ol k:]o-_z

It 1s convenient to write

(which 1s always possible for diagonal @) Hence we have
Vi Vi
v| 2oy 2k

=7 v, » V
TSy ey

Vv,
Think of T/"— as samplhing weights, then we have

().
w=Y [ U EVIK
o’ \EMk] EWK)]

where £, Var* denote the moments with respect to the sampling distribution

One then also finds (see (7))
b =w'vyo'x,

" Vark)
V,
where  EM|kX, )= kakx‘,, EV X, )=

A A

Remark:

I EVKT] E'X, - ES k] EMkX, )
E'lkX,,1- EV k] EV X,

(10)

(n

(12)

It 1s instructive to verify by direct calculation that the values given by (12) to b(j\;, bl’f

are 1denucal with those obtained from

Y Vi (X, = bl = kbi§)? = mun
A=l

The calculations to obtain the credibthty matrix Z (see (5)) are as follows

2 2

-1 _ | Tt “Ta|_| Po
A= 2.2 20 2 |- "

Ty =T\~ Tt To Por
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Abbreviate
2
(o2
P; Vzho
2
2 O
Pi —V—'—hl (13)
2
ol
Po 7—”01
Hence
waento Y| T+h EVk]+ hy,
o \EV K1+ ko EWTK* 1+ hy
wa Aty = ! EX TR+ by ~(E [k]+ hop
Vo (R E D (K214 b)) = (E9 Lk T+ R, P { ~(E® K1+ ho)) | +Rg
N
Z=(W+AH' w (14)
st Var(‘)[k]+h, — g, EM k) ECNk1Ry - E[k? 1y,
N hoE k)= hg, Var®[k]+ ho EV [k | — hy E©| k]

Discussion:

The credibility matrix obtained 1s not satisfactory from a practical point of view
a) individual wclghts are not always between zero and one.

b) both intercept ﬁO(G ) of the credibhity hine and slope ﬁ (8,) of the credibility line
may not lie between tntercept and slope of individual line and collective line

Numerical examples:
n=5 V =1
collective regression line. by =100 b, =10

individual regression ine* by =70 b =7
Example ] 0=20 7,=10 7, =5 1,=0
resulting credibility line. ﬁo(e,) =88.8 B, 8,)=3.7
Example2 0=20 7,=100000 7,=5 7,=0
resulting credibility line: /30(9,) =645 B, (8,)=8.8
Example3 6=20 1,=10 1,=100000 7,,=0
resulting credibility line BO(G,) =947 [3, (8,)=03



88 H BUHLMANN - A GISLER

Comments:

In none of the 3 examples do both, intercept and slope of the credibility line, lie bet-
ween the collective and the individual values In example 2 there 1s a great prior
uncertainty about the mntercept (7, very big) One would expect that the credibility
estimator gives full weight to the intercept of the individual regression line and that
[}0(6,) nearly coincides with b . But BO(B,) 1s even smaller than b, and b In
example 3 there 1s a great prior uncertainty about the slope and one would expect, that
B,(6,)= b But B,(8,) 1s much smaller than b, and b*

For this reason many actuanies have either constdered Hachemeisters 1egression model
as not usable or have tried to impose artificially additional constraints (e g De Vylder
(1981) or De Vylder (1985)) Dannenburg (1996) discusses the effects of such con-
straints and shows that they have serious drawbacks This paper shows that by an
appropriate reparametrization the defects of the Hachemeister model can be made to
disappear and that hence no additional constraints are needed.

Example 1 Example 2
180 180

160 - 160
1490 140

(-]
-
~
w
n
th
-]

s collective _o-individual - Credibility

4 SIMPLE LINEAR REGRESSION WITH BARYCENTRIC INTERCEPT

The 1dea, that choosing the time scale 1n such a way as to have the ntercept at the
barycenter of time, 1s already mentioned 1n Hachemeisters paper, although 1t is then
not used to make the appropriate model assumptions. Choosing the intercept at the
barycenter of the time scale means formally that our design matrix 1s chosen as
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1 1= E®k]

_ 9
Y=% 2— E¥k)
1 n— EYk|

Remark:

1t 1s well known, that any linear transformation of the ume scale (or more generally of
the covariates) does not change the credibility estimates. But what we do in the follo-
wing changes the onginal model by assuming that the matrix A 1s now the covanance
matrix of the ‘new’ vector 5(8,), B,(6.) now being the intercept at the barycenter of
time 1nstead of the intercept at the time zero.

In our general formulae obtained in section 3 we have to replace

EMk) 0 EV[*) e Var k|

It 1s also important that sample variances and covariances are not changed by this shift
of time scale.

We immediately obtain

by, = EV[X,, ]
. _ Cov(k,X,,) (124,,)
"7 Var(s)lk)
and
7o [ : Var k1 +hy,  =Var®[klhy, (14,)
(L+ hy)(Var[k]1+ h) - hE, ~hoy Var O (k1(1 + hy)

These formulae are now becoming very well understandable, in particular the
crosseffect between the credibility formulae for intercept and slope 1s only due to their
correlation tn the collective (off diagonal elements 1n the matnix A) In case of no
correlation between regression parameters in the collective we have

1 Var'®[k]+ h, 0
Z= () () (14“”)
(1+ hyY(Var® k] + hy) 0 Var k11 + hy)

which separates our credibility matrix 1nto two separate one-dimensional credibility
formulae with credibility weights

Z, = l = l 2 - 2 =
I+ Ay o c
+—5— V+—
V. To
7o = Var®[k] _ Var'™ k) -_V Var1k]
22 — ry B : i
Var'[k]+ h, Var® k] + c; V.Var(s)[kl‘*"o_z

V. T,
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Remark:

Observe the classical form of the credibihty weights in (15) with volumes V. for Z,,
and V Var“'[k| for Z,,.

Numerical examples

The model assumptions of the following three examples numbered 4 - 6 are exactly
the same as 1n the examples numbered | — 3 of the previous section with the only
difference that the first element of the vector B(8,) now represents the intercept at the
barycenter Thus we have.

collective regression line. by, =130 b =10

individual regression line by =91 b} =7
The resulting credibility lines are:

Example 4. ﬁo(e y=1083 B,(O )=8.8
Example 5. [30(6)—910 ﬂ,(@)—88
Example 6: [30(0 })=1083 [3,(9) 70

Comments:

Intercept and slope of the credibiiity lines are always lying between the values of the
individual and of the collective regression line In example 5 (respectively i example
6) the intercept B,(8,) (respectively the slope f,(6,)) coincides with bg (resp. b,X).

It 15 also interesting to note that the credibility line of example 5 1s exactly the same as
the one of example 2.

Example 4 Example 5
180 180
160 160
140 | 140
120 120
100 [ 100
80 8ot
o) (-]
0 1 2 3 4 [ [ o 1 2 3 4 s 6
Example 6
180
160
140 +
2oL - collective .o Indmdual - Credibility
0 /
w -
60
0 1 2 3 4 5 8
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5 HOW TO CHOOSE THE BARYCENTER?

91

Unfortunately the barycenter for each risk 1s shifting depending on the individual
sampling distribution. There 1s usually no way to bring — simultaneously for all risks —
the matrices Y, W, Z into the convenient form as discussed 1n the last section. This
discussion however suggests thal the most reasonable parametrization 1s the one using
the intercept at the barycenter of the collective This has two advantages: 1t is the point
to which individual barycenters are (1n the sum of least square sense) closest and the

orthogonality property of parameters still holds for the collective.

In the following we work with this parametrization and assume that the regression

parameters 1n this parametrization are uncorrelated.

Hence we work from now on with the regression line
0o (0,)+ (k- K), (6,),
v,
where K 1s the barycenter of the collective 1.e K = z, 'y —.
We assume also that the collective parameters are uncorrelated, 1 e

A@ = 1'3 0
0 1

If we shift to the individual barycenter E¥'|k] we obtain the line:

AT,
7

Bo(6,)+ (k= E[k])B,(6,)
Hence
lBl(er)=al(0r)
A
(s)
Bo(0,) = 04(8,) + (6, XE”'[k] - K)
Ay =| T THEDKI= K VK= K)) (75 + A%
tH(EP[K]- K) 7 At}
For the B-linc we have further
2 _ | ®_ 0’ (@)
=—, h =,,—_h
Po T2 Y
2 2
p12=L2+A2-1—.,, WD = L 2T g AT
T T4 -V 5 V
2
pm:—Aiz, WP = A2 — = —Ans®
To To

/)

(16)
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has two orthogonal columns (using the weights of the sampling distribution) This is
the clue for the general regression case. The good choice of the regression parameters
1s such as to render the design matrix nto an array with orthogonal columns

6.2 The Barycentric Model

Yl 1 YIZ Ylp

Y. . .
Let Y= :21

Yul Yn2 y;rp

and assume volumes V|,V,, .V andletbe V = z:_l V.

We think of column ; 1in Y as a random vanable ¥, which assumes Y, with sampling
V, |7 -
weight 7" in short Pm[YJ =Y,1= 7" where P stands for the sampling distribution

Asin the case of simple hinear regression 1t turns out that also 1n the general case this
sampling distribution allows a concise and convenient notation.
We have from (9)

Y
1%
o' =L Y
c v
: v,
v
and from (10)
W=yoly=(w,)
where
1%
w, =—EVY, ¥)]
o0

Under the barycentric condition we find

y ECY?) 0
W=—5 E[v) (18)

¢ 0 EW[Y?)

i.e. a matrix of diagonal form.
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Assuming non-correlation for the corresponding parametrization we have

2 0 y h, 0
A= 13 AN == hy
o
0 T 0 h,
1 o
with hJ—T—Z 7
J
Hence
y EVY21+h 0
W+A")=— EVY 1+ by
g
0 ECY2 1+,
and finally
EVY]
(S)ry2 0
» ECY2]+h
Z=(W+A"W= v (19)
0 EVY2]
ECWY +h,

(19) shows that our credibility matrix is of diagonal form. Hence the muludimensional
credibility formula breaks down into p one dimensional formulae with credibility
weights.

v EP(y?
g _._.—1]2 20
2 o
VEVY ] +—
72
J
Observe the “volume” V. E(”[YIZ] for the j-th component
6.3 The Summary Statistics for the Barycentric Model
From (7) we have
b! =W 'y'o7'X, =CX,
where the elements of C are
Vv
l y - 21

('.U = E(‘)I’ylzl iy 7

J
hence b, E(”[Y Z 7
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or

6.4 How to find the Barycentric Reparametrization

We start with the design matrix
Y and its column vectors ¥, Vs, ..., Y,
and want to find the new design matrix

Y* with orthogonal column vectors Y, Y; s ¥
The construction of the vectors Y,\' is obtained recursively
1) Startwith " =,

1) If you have constructed ¥, Y;, LY youfind ¥, as follows

*

a) Solve ENV(Y, —a ¥ —ay¥s = . —a,_, Yi_)?]= mmn!
over all values of a,, a,, .., a,,
b) Define ¥, =Y, —ay Y, —ayYy —. —a;_, Y,
Remarks:

1) obviously this leads to ¥, such that
ECWY, ¥1=0 forall I<k

95

(22)

(23)

11) The procedure of orthogonalisation s called weighted Gram-Schmitt in Numerical

Analysis

i1i) The result of this procedure depends on the order of the colums of the original

matrix Hence there might be several feasible solutions.
With the new design matrix Y’ we can now also find the new parameters

,3;(9,) J =12, p The regression equation becomes
R) ue,)=y"p®,)

which reads componentwise

r
1,6,)=3 Y, B,(6,).
=1
» V,
Multiply both sides by ¥, 7’ and sum over !

n P on
Y Vin6) =Y Y r 80, -
=1 :

J=hi=l
leading to

EPWY 16,)1 = EPUY)] B 6,)

(24)
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where, on the night hand side, we have used the orthogonality of Y,: and Yf fory#k
Hence

I ARATCE)

(6,)= - k=12, .., (25)
A ECL(r)] P

which defines our new parameters 1n the barycentric model
You should observe that this transformation of the regression parameters S,(6,) may

lead to new parameters ﬁ;(ﬂ,) which are sometimes difficult to interprete In each

application one has therefore to decide whether the orthogonality property of the de-
sign matrix or the interpretability of the regression parameters 1s more important
Luckily — as we have seen — there 1s no problem with the interpretation n the case of
simple linear regression and interpretability is also not decisive if we are interested 1n
prediction only

6.5 An example

Suppose that we want to model y,(68,) as depending on time 1n a quadratic manner, ! e
1,(8,)=Bo(6,) + kB, (6,)+k* B, (6,)

Our design matrix 1s hence of the following form
| B

1 2 4
Y =
1k &2
lnn2

Let us construct the design matrix ¥~ with orthogonal columns.

Following the procedure as outlined in 6.4 we obviously have for the first two col-
umns those obtained in the case of simple linear regression (measuring time from 1ts
barycenter) and we only have to construct Y{’

Formally
I 1-EYK) ¥,
1 2-E9H%] vy,

B

Y' =

I n—EYk] Y,
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To find ¥; we must solve

1

* L] 2
Z(kz —q —az(k—E(')[k])) i:mm'
A=1 4

Using relation (23) we obtian

a; = EV(k?)
o EW (k= EV))
a, = G)
Var' 1k}

Hence we get
EVIK (k — E'1)]

Yy =k* - EVk?)-
43 Ly Var' k)

k—ENKD k=1,2,...n  (26)

and from
3 LIPNY
w®=3 Y B,) R)

we get both
~ the nterpretation of ﬂ;(@,) (use (25))

— the prediction f,(8)= Zj=| Y,jﬁ; 9,)

where BT(O,) 15 the credibihity estimator. Due to orthogonality of ¥* it can be obtamed

componentwise

7. FINAL REMARKS

Our whole discussion of the general case 1s based on a particular fixed sampling dis-
tribution. As this distribution typically vanes from risk to risk Y°, §” and Z" depend on
the risk r and we cannot achieve orthogonality of ¥” simultaneously for all risks r This
1s the problem which we have already discussed in section 5 The observations made
there apply also to the general case and the basic lesson 1 the same You should con-
struct the orthogonal Y™ for the sampling distribution of the whole collective which
then will often lead to “nearly orthogonal” design matrices for the individual risks
which again “nearly separates” the credibility formula 1nto componentwise procedu-
res

The question not addressed 1n this paper is the one of choice of the number of regres-
sion parameters In the case of simple linear regression this question would be. Should
you use a linear regression function, a quadratic or a higher order polynominal? Ge-
nerally the question is. How should one choose the design matrix to start with? We
hope to address this question in a forthcoming paper
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THE SWISS RE EXPOSURE CURVES AND
THE MBBEFD' DISTRIBUTION CLASS

STEFAN BERNEGGER

ABSTRACT

A new two-parameter family of analytical functions will be introduced for the model-
ling of loss distributions and exposure curves The curve family contains the Maxwell-
Boltzmann, the Bose-Einstein and the Fermi-Dirac distributions, which are well
known in statistical mechanics. The functions can be used for the modelling of loss
distributions on the finite interval [0, 1] as well as on the interval [0, e=]. The functions
defined on the interval [0, 1] are discussed 1n detail and related to several Swiss Re
exposure curves used in practice The curves can be fitted to the first two moments y
and o of a loss distribution or to the first moment ¢ and the total loss probability p.

| INTRODUCTION

Whenever possible, the rating of non proportional (NP) reinsurance treaties should not
only rely on the loss experience of the past, but also on actual exposure. For the case
of per risk covers, exposure rating is based on rnisk profiles All risks of similar size
(SI, MPL or EML) belonging to the same risk category are summarized 1n a risk band
For the purpose of rating, all the risks belonging to one specific band are assumed to
be homogeneous They can thus be modelled with the help of one single loss distribu-
tton function.

The problem of exposure rating 1s how to divide the total premiums of one band be-
tween the ceding company and the reinsurer The problem 1s solved 1n two steps First,
the overall rnisk premiums (per band) are estimated by applying an appropriate loss
ratio to the gross premiums. In a second step, these risk premiums are divided into risk
premiums for the retention and risk premiums for the cession Due to the nature of NP
retnsurance, this 1s possible only with the help of the loss distribution function.

However, the correct loss distribution function for an individual band of a risk profile
is hardly known 1n practice. This lack of information 1s overcome with the help of
distribution functions derived from large portfolios of similar risks. Such distribution
functions are available in the form of so-called exposure curves These curves directly
permit the extraction of the risk premium ratio required by the reinsurer as a function
of the deductible.

! Maxwell-Bohizmann, Bose-Enstein and Fermi-Dirac distribution

ASTIN BULLETIN Vol 27, No 1 1997.pp 99-111
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Often, underwriters have only a finite number of discrete exposure curves at their
disposal. These curves are available in graphical or tabulated form, and are also un-
plemented 1n computerized underwriting tools One of the curves must be selected for
each risk band, but 1t i1s not always clear which curve should be used In such cases,
the underwriter might also want to use a virtual curve lying between two of the dis-
crete curves avatlable to him.

This can be achieved by replacing the discrete curves with analytical exposure curves
Each set of parameters then defines another curve. If a continuous set of parameters 1s
available, the exposure curves can be varted smoothly within the whole range of avai-
lable curves However, the curves must fulfill certain conditions which restrict the
range of the parameters In addition, practical problems can arise 1f a curve family
with many (more than two) parameters is used. It mught then become very difficult to
find a set of parameters which can be associated with the information available for a
class of risks. This problem can be overcome 1f a curve family 1s restricted to a one- or
two-parameter subclass and 1f new parameters are introduced which can easily be
interpreted by the underwriters

In the following, the MBBEFD class of analytical exposure curves will be introduced
As will be seen, this class 15 very well suited for the modelling of exposure curves
used 1n practice. Before analysing the MBBEFD curves 1n detail, some general rela-
trons between a distribution function and its related exposure curve will be discussed
in section 2 These relations permit the dernvation of the conditions to be fulfilled by
exposure curves The new, two-parameter class of distribution functions will then be
introduced 1n section 3 Finally, several practical aspects, and the link to the well
known Swiss Re property exposure curves Y,, will be discussed tn section 4

Conventions

Following the notation used by Daykin et al in [1], we will denote stochastic variables
by bold letters, €.g. X or x. Monetary variables are denoted by capital letters, for in-
stance, X or M, while ratio variables are denoted by small letters, for nstance, x =
X/M.

2. DISTRIBUTION FUNCTION AND EXPOSURE CURVE

2.1. Definition of the exposure curve

In the following, the relation between the distribution function F(x) defined on the
interval [0, 1] and its Iimited expected value function L(d) = E[min(d, x)] will be dis-
cussed. Here, d = D/M and x = X/M represent the normalized deductible and the nor-
malized loss, respectively. M 1s the maximum possible loss (MPL) and X < M the
gross loss The deductible D 1s the cedent’s maximum retention under a non propor-
tional reinsurance treaty M L (d) 15 the expected value of the losses retained by the
cedent while M - (L(1) — L(d)) 1s the expected value of the losses paid by the reinsurer
Thus, the ratio of the pure risk premiums retained by the cedent 1s given by the relative
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limited expected value funcuion G(d) = L(d)/L(1) [1] The curve representing this
function 1s also called the exposure curve
d

(1= F)dy  [(1- F(»)dy
=2 @1
Elx
(1= F(y)dy !

L(d) _
L(D)

G(d) =

O ey [ D ——y A,

Because of 1 — F(x) =2 0 and F’(x) = f(x) 2 0, G(d) 1s an increasing and concave func-
tion on the interval [0, 1] In addition, G(0) = 0 and G(1) = 1 by definition

2.2. Deriving the distribution function from the exposure curve

If the exposure curve G(x) 1s given, the corresponding distribution function F(x) can
be dertved from

[ - F(d)

G'(d)= 22
(d) Elxl (22)
With F(0) = 0 and G’(0) = 1/E|x] one obtains
1 x=1
FOO=1-G® el @3)
G(0)

Thus, F(x) and G(x) are equivalent repiesentations of the loss distribution

2.3. Total loss probability and expected value

The probabihity p for a total loss equals 1 — F(17) and the expected (or average) loss u
equals E|x]. These two functionals of the distribution function F(x) can be derived
directly from the denvanves of G(x)atx =0 and x = 1:

1

= F [ —
H=Elx] GO
G'() 2.4)
=1-F(1")=—=
p ) G'(0)

The fact that G(x) 1s a concave and increasing function on the interval [0 ,1] with
G(0) = 0and G(1) = 1 imphes

GOz1zG6’(hz20 2.5
This 1s also reflected 1n the relation:

0spsus<i (26)
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2.4. Unlimited distributions

If the distribution function F(X) 1s defined on the interval [0, <]. the above relations
have to be slightly modified. In this case there 15 no finite maximum loss M However,
the deductible D and the losses X can be normalized with respect to an arbitrary refe-
rence loss X, 1e X = X/X; and d = D/X; G(d) 1s sull a concave and increasing func-
tion with G(0) = 0 and G(eo) = I The expected value u = E[x] 1s also given by
1/G’(0), but there are no total losses, 1.€. G'(e0) =0

3 THE MBBEFD CLASS OF TWO-PARAMETER EXPOSURE CURVES

3.1. Definition of the curve

In this section we will investigate the exposure curves and the related distribution
functions defined by.
In(@+b")-In(a+1)

O = et b —nt@ D Gla

The distribution function belonging to this exposure curve 1s given by
1 x=1

F(x) = \ 3.1b
S TN CLIVEN 0O<x<l G5
a+b'

The denominator and the term -In(a + 1) in the nominator of (3.1 a) ensure that the
boundary conditions G(0) = 0 and G(1) = | are fulfilled As will be seen below, the
casesa= {-1, 0,00} orb= {0, [, o} have to be treated separately.

Dustribution functions of the type (3 1), defined on the interval [0, oo] or [-oo, oo, qre
very well known n statstical mechanics (Maxwell-Boltzmann, Bose-Einstein, Fermi-
Dirac and Planck distribution) The implementation of these functions 1n risk theory
does not mean that the distribution of insured losses can be derived from the theory of
stanstical mechanics However, the MBBEFD distribution class defined in (3.1) shows
ttself to be very appropriate for the modelling of empirical loss distributions on the

mterval [0, 1],

3.2. New parametrisation

The parameters {a, b} are restricted to those values, for which G, (x) 1s a real, increa-

sing and concave function on the interval |0, 1] It 1s easier to fulfill this condition by

using the inverse g = 1/p of the total loss probability p as a curve parameter and to
replace the parameter a in (3 1).

g= a+b Ca= (g—Db

(a+ Db 1—gb

(32
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On the one hand, the condition 0 < p < [ 1s fulfilled only for g > 1. On the other hand,
G(x) is a real function only for b > 0. It can be shown that no other restrictions regar-
ding the set of parameters are necessary

However, casesb=1(1.e a=-1),b=0org=1(te.a=0)andb g=1(ie.a=1c0)
must be treated as special cases. The casesb - g=1(1e a=o),b-g>1(1e.a<0)
and b g < | (1.e. a > 0) correspond to the MB. the BE and the FD distribution,

respectively (cf. figure 4.1). By considering special casesb=1,g=landb- g=1

separately, all real, increasing and concave functions G(x) on the interval [0, 1] with
G(0) = 0 and G(1) = 1 belonging to the MBBEFD class (3 1) can be represented as

follows:
X g:]vb:O
In(1+(g—Dx
——( (¢-1 ) b=1Ag>1
In(g)
-5
Gy (x)= ﬁ bg=lag>1 (33)
n (g~ Db+ (1—-gh)b'
1-b
b>0AbxlAbg#lng>1
In(gh)
10 10 —
3 3 oo -
o8- p 01 comstant DB—:
~ j ~
é 3 35 E p- 00O
s 2 ,"; 04
5 3 ]
024 02§ p 01 - constant
k! E \D ot
00— T T ';I‘ T T T T T oo 7 T T T T T Inasass

10
d - D

FIGURE3 1 a) Sct of MBBEFD exposure
curves with constant pammclcr

g=l/p=10and y=E[x]=011,

02,04.06,08,099

FIGUrE3 1 b) Set of MBBEFD exposure

curves with constant y = E[x] =0 I and

p=1/g=0099.0031,001,00031.0001
The dashed Iine with slope 1/ it represents

the tangent at d =0

Q
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p O consiant

(133

4 D1 consiam

FIGURE3 2 a) Distribution tunctions
belonging to exposure curves
of figure 3 1 a)

10

FIGURE 3 2 b) Distnibution functions
belonging to exposure curves
of figure 3 1 b)

Examples of MBBEFD exposure curves are shown 1n figure 3 1 A set of curves with
constant total loss probability p = 0 1 (1.e. g = 10) 1s represented n figure 3.1 a).
Figure 3.1 b) contains a set of curves with constant expected value 4 = 0.1 The cor-
responding distribution functions are shown 1n figures 3.2 a) and b)

3.3. Derivatives

The derivatives of the exposure curves are given by

1 g=1vb=0
g-1
s b=1ng>1
In(g)(1 + (g —1)x) &
G(x)=1 In(b)b" bg=lng>] (34)
b1 8
1"(")(';8”) b>0Ab#1Abg#Ing>]
In(gb)((g—1)b"* +(1 - gb))
with
1 g=1vb=0
g1 b=Ing>1
In(g)
CO=in®) _Intelg oy (34a)
b-1 g—1
In(b)l - £b) b>0Ab#lnbg#ling>1
In(gh)(1 - b)
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and
1
g—1
In(g)g
G'(H=<1In(h)b _In(g)
h—1 g-1

In(b)(1 - gb)
In(gb)g(l - b)

g=1vb=0
b=1ng>1
bg=1nrg>1

b>0Ab#1nbglng>1
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(34b)

The relation p = G’(1)/G’(0) = 1/g 15 obtained immediately from (3.4 a) and (34 b)

3.4. Expected value

According to (2 4) the expected value u 15 given by-

1 g=lVb=O
In(g) b=lng>1

| 8-

U= Ex]= =<b—1 g-1

G'(0 = bg:l/\g>l

O ) " nez
In(gb)(1 = b) b>O0nb#Inbg#lng>l
In(b)(1 — gh)

3.5)

The expected value u 1s represented as a function of the parameters b and g in figure

3 3 and discussed below 1n section 3.7.

paraeter b

p - 0.1

TTTT
a)
par

FIGURE3 3 Parameter b as a functio

50 : p 0.3 p-02

30

20 E

O|'§LLL'l‘]'l'l'l'l—-']‘l'f'l'
5 10

—_— .
LI B S B B I B e e e |
15

20 25
ameter g = 1 , p

nofg=l/pforu=E[x]=01,02, 09

The dashed hne at g = | and the horizontal line at b = 0 represent

the parameter s

ets {b, g} with u =1
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3.5. Distribution function

According to (2 3), the distribution function belonging to the exposure curve Gy (x) 1s
given by.

1 x=1
0 x<ln(g=1vb=0)
l—+ a<lab=lAag>1
F(x) =+ 1+(g—Nx (36)
1-b* x<labg=lng>1
I-b

x<IAb>0Ab#EIAbg#IAg>]

C(g- P +(1-gh)

The distribution functions belonging to the exposure curves of figure 3.1 are repre-
sented 1n figure 3 2 The set of distribution functions with constant total loss proba-
bility p = 0.1 (g = 10) 15 shown 1n figure 3 2 a). Figure 3 2 b) contains the set of
distribution functions with constant expected value g =0 |

3.6. Density function

Because of the finite probability p = l/g for a total loss, the density function f(x) =
F’(x) 1s defined only on the nterval [0, 1).

0 g=1lvb=0
g—1

S - S — b=1ag>1

(1+(g = 1)x)*

F =9 inbyb* bg=1ng>1 37

_ _ 1-1

(6= g = Din(b)b 3 b>0nAb#lnbg#lnang>1

((g=1p"* +(1 - gb))

3.7. Discussion

It 1s instructive to analyse the expected value p = u(b, g) as a function of the parame-
ters b and g (3.5). Figure 3.3. shows the range of permitted parameters in the {b, g}
plane and the curves with constant eapected value . One can see in figure 3 3 that
He(b) 15 a decreasing function of b (for g > | constant) and that y,(g) 1s a decreasing
function of g (for b > 0 constant)

d
51)—;12(/)) <0

_C <
Hplg _0
8’ h(f;)

¢>1Ab>0 (3 8)
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The expected value i 1s related as follows to the extreme values of the parameters b
and g

lim p,(b)=1; hm ug(b)zl/g=p
h—>0 bh—rea

39
lim g, (g) = 1 lim p,(g)=0 G
g—l R—ree

3.8. Unlimited distributions

So far, only distributions defined on the interval [0. 1] have been discussed However,
as the MB, the BE and the FD distributions are defined on the 1nterval [-oo, oo oOr
[0, o], the MBBEFD distribution class can also be used for the modelling of loss dis-
tributions on the nterval [0, o] If the losses X and the deducuble D are normalized
with respect to an arbitrary reference loss X, then x = X/X,, and d = D/X;, The above
formula can now be modified as follows:

1-b' bg=1rng>1
In| (8= Db+-gbb”

G, (x)= n 1—p (310)

l((g—l)b) O<bclabgxlng>l

n

1-b
—In(b)b* bg=lnrg>]

G'(x)= In(b)1 = ) O<b<inbgzlag>1 G.11)

(g—])b -2
ln(—j]((g —o'™ +(1-gh)

—In(b) bg=1nrg>1
G'(0) = {— )1~ 8b) O<h<lnbg#lng>l 311 a)
| ((g—l)b)
nj - (1=»b)
I-b
“In(b)b be=1ng>]
Gy = { b1~ gb) 0<b<lnbg#lng>l G 11b)
1n(§g_‘_')ﬁjq(| _b)
1-b J
G'(e2)=0 3 11c¢)
1-5" bg=lng>1
F(x)= | =) (3.12)

- = O<h<labg#lng>1
(g=hb"" +(-gh)
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The restriction 0 < b < | 1s obtained immediately from (3.12) and the condition
F(ee) = 1, while the restriction g > 1 1s obtained from (3 10), where the argument of the
logarithm 1n the denominator must be greater than 0 The same restriction 1s also ob-
tamned from the relation p = G (1)/G’(0) = 1/g, which 1s still vahd The parameter g 1s
thus the inverse of the probability p of having a loss X exceeding the reference loss
XO

4 CURVEFITTING

4.1. Expected value 1 and total loss probability p

Because of (3 8) and (3.9), there exists exactly one distribution function belonging to
the MBBEFD class for each given pair of functionals p and g (cf figure 3 3), provided
that p and u fulfill the conditions (2 6) The curve parameter g = 1/p 1s obtained di-
rectly The second curve parameter b can be calculated with the help of (3 5) Here,
the following cases must be distinguished:

a) p=l1 =b=0
by p= g1 =b=1/g
In(g)g
c) ﬂ=l:—(_gll =>bh=1 “n

d) pu=llg = b=w
e) else =20<b<ocnbzl/gab=zl

In the general case e), the parameter b has to be calculated iteratively by solving the
equation’
_ In(gb)( - b)

= 42
In(b)(1 - gb) “2

Becuuse p,(b) 1s a decreasing function of b (3 8). the 1teration causes no problems. An
upper and a lower limit for b can be denived directly from (4 1).

4.2, Expected value i and standard deviation o

It 15 also possible to find a MBBEFD distribution assuming the first two moments (e g.
U and ©) are known, provided the moments fulfill certain conditions The first two
moments of a distribution function with total loss probability p are given by:
[
u=Elx]=p+ I X (x)dx
0 3)

1
wr+ol=E)=p+ J.,\'zf(.\‘)(l,\ <u
4]
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According to (4.3) the first two moments of F(x) and p must fulfill the following con-
ditions

ur < Ex*<p

(44)
p< E[.\‘ZJ

Calculation of g and b

Basic idea: | Start with p° = E[x*] 2 p as a first esumate (upper hinut) for p, and
calculate b” and g° for the given functionals i and p* with the method
described 1n 4.1 above.

2 Compare the second moment E’[x?] with the given moment E[x?] and
find a new esuimate for p°.
3 Repeat until E'[x*] is close enough to E[x?]

If the first moment y 1s kept constant, then the second moment E’|x?] will be an in-
creasing function of p*. Thus the parameters g and b can be calculated without comph-
canions

Remark.  The second moment of the MBBEFD distribution has to be calculated
numerically This 1s best done by replacing F(x) with a discrete dis-
tibution function which has the same upper tail area L(x,,) — L(x) as
F(x) on each discreuized interval [x,, x,,,]

4.3. The MBBEFD distribution class and the Swiss Re Y, property exposure
curves

The Swiss Re Y, exposure curves (1=1 4} are very well known and widely used by
non proportional property underwniters As will be shown 1n this section, all these
curves can be approximated very well with the help of a subclass of the MBBEFD
exposure curves. In a first step, the parameters b, and g, have been evaluated for each
curve 1 By plotting the points belonging to these pairs of parameters in the {b, g}
plane, we found that the points were lying on a smooth curve 1n the plane In a next
step, this curve was modelled as a function of a single curve parameter ¢, Finally, the
parameters c, representing the curves Y, were evaluated

The subclass of the one-parameter MBBEFD exposure curves 1s defined as follows:
G.(x)= Gbc,g( (x) 4.5)

with

g — 3 1=0 151+ )
b.=b(c)=e

(07840 12¢ )

(4 6)
g =glcy=e
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FIGURF4 | Range of parameters of the exposure curves G, (x) The expected value y
1s shown as a function of p = 1/g for special casesb=0,b=p,b=Tandb=o
In addition, p and g are shown as 4 function of the curve parameter c forc =0 10
The dashed part of this curve has no empirical counterparts

The position of the curves c =0 . 10 1n the {p, u} plane 1s shown 1n figure 4 | Here,
the special cases b =0, p, 1.« and g = | are also shown

The curves defined by ¢ =00, ..., 50, which are shown 1n figure 4.2, are related as
follows to several exposure curves used n practice:

* The curve ¢ = 0 represents a distribution of total losses only because of g(0) =1

» The four curves defined by ¢ = {1 5, 2.0, 3 0 and 4 0} coincide very well with the
Swiss Re curves {Y,, Y,, Y,, Y, ).

» The curve defined by ¢ = 5 0 coincides very well with a Lloyd’s curve used for
the rating of industrial risks
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FIGURE4 2 One-parameter subclass of the MBBEFD exposure curves, shown for
¢=00.10,20,30,40and50

Thus, the exposure curves defined in (4.6) arc very well suited for practical purposes
The underwriter can use curve parameters which are very familiar to him In addition,
the class of exposure curves defined by (4 6) 1s continuous and the underwriter has at
his disposal all curves lying between the individual curves Y, too
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A SEMI-PARAMETRIC PREDICTOR
OF THE IBNR RESERVE
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ABSTRACT

We develop a semi-parametric predictor of the IBNR reserve in a macro-model when
the claim amount for a certain accident and development year can be expressed in a
loglinear form composed of a deterministic part and a random error We need to make
assumptions only on the first two moments of the error, without any specified para-
metric assumption on its distribution We give its properties, present its advantages
and compare the estimates obtamed with vacrious predictors of the IBNR reserve, pa-
rametric and non-parametric, using a data set.

KEYWORDS

Chain-ladder; regression, least-squares; smearing estimator.

1 INTRODUCTION

In a macro-model, claims are grouped by accident year (year in which the accident
giving nise to a claim occurrs) and development year (number of years elapsed since
the accident), and data are presented n a trapezoidal array Taylor (1986) presents a
comprehensive survey of varnious macro methods and models, both determimistic and
stochastic, developed to predict incurred but not reported (IBNR) reserves; 1t 1s usually
assumed that the pattern of cumulative claims incurred or paid 1s stable across the
development years, for each accident year. The problem of setting IBNR reserves
consists n predicting for each accident year. the ulumate amount of claims incurred
and subtracting the amount already paid by the insurer

To iltustrate the predictor proposed in this paper, we will use the cumulative claims
appearing 1n Doray (1996), which represent the liability claims in thousands of dollars
incurred by a Canadian insurance company over the ten-year period 1978-1987 We
will perform the analysis on the incremental claims (see Table 1), obtained by diffe-
rencing successive cumulative amounts, and assume that they are independent. Section
2 presents the loghnear model used, and section 3 the semi-parametric predictor of the
IBNR reserve, finally, we compare various predictors of the reserve with the claims of
Table |

' The author gratefully acknowledges the financial support of the Natural Sciences and Engineering Re-
search Council of Canada
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TABLE 1

INCREMENTAL CLAIMS INCURRED

Accident year ] 2 3 4 5 6
1978 8489 1296 924 580 246 126
1979 12970 1796 1435 859 654 265
1980 17522 2783 1469 1023 423 652
1981 21754 2584 1163 783 887 355
1982 19208 2341 1220 619 841 703
1983 19604 2469 1223 1247 612
1984 21922 2311 1141 1508
1985 25038 3363 2144
1986 32532 4474
1987 39862

2 A LOGLINEAR MODEL

We consider models of the form ¥, = exp(X,8 + 0€), or expressed as a loghnear re-
gression model.

Z,=InY,=Xf+0c, Y >0 Q2n

where Y, 1s the rth element of the data vector Y, of dimension », X 1s the regression
matrix of dimension » x p, whose ith row 1s the vector X,, element (i, y) 18 denoted X, ,
and where we assume that the unit vector is 1n the column space of X, §1s the vector
(of dimension p) of unknown parameters to be estimated, and ¢, are independent ran-
dom errors with mean O and variance |

For the regression parameters, various choices are possible, for example a, + f for
the stochastic chain ladder model, where ¢ 15 the accident year and ;, the development
year, or ¢+ BInj + y7 + t(t + - 2). as in Zehnwirth (1990).

This paper does not study models which rely on parametric assumptions for the
distribution of the error g, instead, we present a semi-parametric regression model
which does not assume any particular density for &, but uses its first two moments
only

3 A PREDICTOR IMPLIED BY THE SMEARING ESTIMATOR

Let us represent by ¥, a value to be predicted. corresponding to a cell in the lower
right unobserved triangle of Table 1 (1 =6, . 10andy=12-1, ., 6) Doray (1996)
analyzed the two types of errors involved in the prediction of the value Y, by 1ts ex-
pected value, the estimation error on the parameter [ from past values and the process

crror & for a future value, yielding XA,B + 0¢, , where X; 1s the vector of coefficients of
the parameters corresponding to Z,.
According to Gauss-Markov theory, the least-square estimator = (X' X)'x 7 s

the mmimum variance linear unbiased esttimator of 8, for any distribution of € such
that E(g)= 0 and Var(g)= 1. The variance o° 1s estimated by the mean-square erroi
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6= (Z- X[i)' (Z—X[})/(n— p) For a fixed vector X, X‘ﬁ 1s an unbiased and con-
sistent esimator of X, 3, but exp(X,fi) 1s not in general an unbiased or consistent
estmator of E(Y;) The assumption that £ 1s normal mfluences only the efficiency of
the estimator ,B, if the true error 15 not normal, the estimator ﬁ 1s still consistent and

minimum vanance linear unbiased. If £ 15 normal, exp(X,(,B+6'2 /2) 18 a consistent

estimator for E(Y,), however, the predictor for ¥; will not be consistent (f the assump-
tion that € 1s N(0, 1) 1s wrong.
Duan (1983) proposed the following smearing estimator for the expected value of

| " s ~~ ~ pt .
Y, ;Zl:lexp(xkﬁi-oe,), where € =Z - X, denotes the least-squares residual.

He shows that under certain regulanty conditions, the smearing estimator of E(Y,) 1s
weakly consistent and notes that for small ¢, its relative efficiency compared to the

simple estimator exp(X, 3+ G2/2) is very high when the error distribution 1s normal
(for 6@ < 1 00 and rank (X) = 3, 1t 1s at least 94%) Thus efficiency increases as &
decreases or rank (X) increases

Using the smearing estimator, we can define the following sem-parametric predic-
tor of the IBNR reserve,

- l n - . - 1 n -
85p = — D exp(X, B +GE,) = (Z exp(xkﬁ)Jx[7Zexp(oe, )],
A n =1 A ! 1=1
where 3, denotes a summation over all cells in the lower triangle to be predicted.

4 COMPARISON OF VARIOUS PREDICTORS

We can obtamn a simple approximation for 6, when ¢ is small by using the first
three terms of the Taylor’s series expansion for exp(G€,), and the facts that

z” £ Odndz GEX12=(n-p)6*i2.

és,, = é,\ = [Zexp(X,\ﬁ)J x[l +(n— p)é"l /2;1].
i

In Table 2. we compare the predlcled values of the IBNR reserve obtained with the
non-parametric predictors, 95,,, 0,\, the chain-ladder (GCL) and predictors obtained

when g’s 1n (2 1) are assumed to be 11.d N(0, 1), the umiformly mimimum variance
unbiased predictor of Doray (1996)

éuzoﬁ(”_p 3%5’2)23’“3(&3),
%

2

where (F\ (@, z) 1s the hypergeometric function defined as

oo

i o, )
0 I( h 1
._O_I (a)j

,wnh(a)j =a(a+l1) . (a+y-1), y21, and (a@)y =1,
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the predictor of Kremer (1982), é,( =ZA3XP(XAB% and the simple estimator
él = ZA exp(X,‘[%Loz2 /2) The model used was the stochastic chain ladder model

(a, + B), on the claims of Table . We notice that é,‘. éu and él are of the form

Cx éK . where C 15 a factor depending only on G2

In conclusion, the smearing estimator possesses four important properties It 1s
easily calculated. consistent, highly efficient if the error € has a normal distribution
and robust against departure from the assumed parametric distribution for £ It can also
be used with transformations other than exponential The semi-parametric predictor of
the IBNR reserve based on the smearing estimator will share those properties and
present a worthwhile alternative to predictors based on full parametric assumptions.

TABLE 2

PREDICTION OF 1HE IBNR RESERVE

Predictor Predicted value

O, 23,552
6, 23,589
Bct 23,919

U 24,403

6 K 23,549

6, 24,404
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ABSTRACT

Good estimates for the tatls of loss sevenity distributions are essential for pricing or
posiuoning high-excess loss layers in reinsurance We describe parametric curve-
fitting methods for modelling extreme historical losses These methods revolve around
the generalized Pareto distribution and are supported by extreme value theory. We
summarize relevant theoretical results and provide an extensive example of ther ap-
phcation to Damish data on targe fire insurance losses

KEYWORDS

Loss severity distributions, high excess layers; extieme value theory, excesses over
high thresholds; generalized Pareto distribution

| INTRODUCTION

Insurance products can be priced using our experience of losses in the past We can
use data on historical loss severities to predict the size of future losses One approach
15 to fit parametric distributions to these data to obtain a model for the underlying loss
severity distribution; a standard reference on this practice 1s Hogg & Klugman (1984).

In this paper we are specifically interested 1n modelling the tails of loss severity
distributions This 1s of particular relevance 1n reinsurance if we aie required to choose
or price a high-excess layer In this situation 1t 15 essential to find a good statistical
model for the largest observed historical losses It 1s less important that the model
explains smaller losses, 1f smaller losses were also of interest we could 1n any case use
a mixture distribution so that one model applied to the tail and another to the main
body of the data However, a single model chosen for 1ts overalt fit to all historical
losses may not provide a particularly good fit to the large losses and may not be suita-
ble for pricing a high-excess layer

Our modelling 1s based on extreme value theory (EVT), a theory which unul com-
parauvely recently has found more application in hydrology and climatology (de Haan

ASTIN BULLETIN, Vol 27, No 1 1997 pp 117-137
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1990, Smith 1989) than 1n insurance As its name suggests, this theory 1s concerned
with the modelling of extreme events and in the last few years various authors
(Berrlant & Teugels 1992, Embrechts & Kluppelberg 1993) have noted that the theory
1s as relevant to the modelling of extreme insurance losses as 1t 1s to the modelling of
high river levels or temperatures.

For our purposes, the key result in EVT 1s the Pickands-Balkema-de Haan theorem
(Balkema & de Haan 1974, Pickands 1975) which essentially says that, for a wide
class of distributions, losses which exceed high enough thresholds follow the generali-
zed Pareto distribution (GPD) In this paper we are concerned with fitting the GPD to
data on exceedances of lmgh thresholds This modelling approach was developed in
Davison (1984), Davison & Snuth (1990) and other papers by these authors

To illustrate the methods, we analyse Danish data on major fire insurance losses.
We provide an extended worked example where we try to point out the pitfalls and
limitations of the methods as well their considerable strengths

2 MODELLING LOSS SEVERITIES

2.1 The context

Suppose nsurance losses are denoted by the dependent. identically distributed ran-
dom variables X,. X;, . whose common distribution function 18 Fy (x) = P{X €4}
where x > 0 We assume that we are dealing with losses of the same general type and
that these loss amounts are adjusted for inflation so as to be comparable.

Now, suppose we are interested in a high-excess loss layer with lower and upper
attachment points r and R respectively, where 7 1s large and R >+ This means the
payout Y, on a loss X, 1s given by

0 fO0<X, <r,

Y,=¢X,—r ifr<X, <R,
R-r 1 RSX, <oo.

The process of losses becoming payouts is sketched in Figure 1. Of six losses, two
pierce the layer and generate a non-zero payout One of these losses overshoots the
layer entrirely and generates a capped payoult.

Two related actuarial problems concerning this layer are.

I. The pricing problem Given r and R what should this msurance layer cost a
customer?

2. The optimal attachment point problem. If we want payouts greater than a speci-
fied amount (0 occur with at most a specified frequency. how low can we set r?

To answer these questions we need to fix a period of insurance and know something
about the frequency of losses incurred by a customer n such a time period. Denote the
unknown number of losses 1n a period of insurance by ¥ so that the losses are X, . ,

N
Xy Thus the aggregate payout would be Z = 21:1 Y,
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FIGURE | Possible realizations of losses in future time period

A common way of pricing 1s to use the formula Price = E[Z] + k.var|Z], so that the
price is the expected payout plus a risk loading which 1s k times the variance of the
payout, for some & This i1s known as the variance pricing principle and it requires only
that we can calculate the first two moments of Z

The expected payout E|Z] 1s known as the pure premium and 1t can be shown to be
ETY 1E[N]. 1t 1s clear that if we wish to price the cover provided by the layer (#R)
using the variance principle we must be able to calculate E{Y|], the pure premium for a
single loss We will calculate E[Y,] as a sumple price indication tn later analyses in this
paper However, we note that the variance pricing principle 1s unsophisticated and
may have tts drawbacks in heavy tatled situations, since moments may not exist or
may be very large An insurance company generally wishes payouts to be rare events
so that one possible way of formulating the attachment point problem might be choo-
s¢ r such that P{Z > 0} < p for some stipulated small probability p That 1s to say, r 1
determined so that in the period of tnsurance a non-zero aggregate payout occurs with
probability at most p

The attachment point problem essentially boils down to the estimation of a high
quantile of the loss severity distribution F,(x) In both of these problems we need a
good estimate of the loss severity distribution for x large, that 1s to say, 1n the tail area
We must also have a good estimate of the loss frequency distribution of N, but this
will not be a topic of this paper

2.2 Data Analysis

Typically we will have historical data on losses which exceed a certain amount known
as a displacement It 1s practically impossible to collect data on all losses and data on
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small losses are of less importance anyway Insurance 1s generally provided against
significant losses and insured parties deal with small losses themselves and may not
report them
Thus the data should be thought of as being realizations of random variables trun-
cated at a displacement §, where 6 << r This displacement 1s shown n Figure 1; we
only observe realizations of the losses which exceed o.
The distribution function (d f ) of the truncated losses can be defined as in Hogg &
Klugman (1984) by
0 if x<6,
Fs()=PX<xIX>8)=s MW-FKG) . > 5.
1— F(8)

and 115, 1n fact, this d f that we shall attempt to estimate

With adjusted historical loss data. which we assume to be realizations of indepen-
dent, 1dentically distributed, truncated random variables, we attempt to find an esti-
mate of the truncated severity distribution F,°(x) One way of doing this 1s by fiting
parametric models to data and obtaining parameter estimates which optimize some
fiting criterion — such as maximum lkelthood But problems arise when we have data
as in Figure 2 and we are nterested 1n a very high-excess layer

(=]
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Figure 2 shows the empirical distribution function of the Danish fire loss data evalua-
ted at each of the data points. The empirical d f. for a sample of size n 1s defined by

F(x)=n"" Z:’ZI Iix <i}» €. the number of observations less than or equal to x divi-

ded by n. The empirical d f. forms an approximation to the true d.f which may be
quite good 1n the body of the distribution; however, 1t 1s not an esttmate which can be
successfully extrapolated beyond the data.

The full Danish data comprise 2492 losses and can be considered as being essenti-
ally all Danish fire losses over one million Danish Krone (DKK) from 1980 to 1990
plus a number of smaller losses below one million DKK We restrict our attention to
the 2156 losses exceeding one nulhion so that the effective displacement & 1s one We
work 1n units of one million and show the x-axis on a log scale to indicate the great
range of the data

Suppose we are 1equired to price a high-excess layer running from 50 to 200 In this
interval we have only six observed losses. If we fit some overall parametric severity
distnibution to the whole dataset it may not be a particularly good fit in this tail area
where the data are sparse

There are basically two options open to an isurance company Either 1t may choo-
se not to insure such a layer, because of too little experience of possible losses. Or, i1f 1t
wishes to insure the layer, it must obtain a good estimate of the severity distribution 1n
the tail

To solve this problem we use the extreme value methods explained in the next sec-
tion. Such methods do not predict the future with certainty, but they do offer good
models for explaining the extreme events we have seen in the past. These models are
not arbitrary but based on rigorous mathematical theory concerning the behaviour of
extrema

3 EXTREME VALUE THEORY

In the following we summarize the results from EVT which underlie our modelling
General texts on the subject of extreme values include Falk, Husler & Reiss (1994),
Embrechts, Kluppelberg & Mikosch (1997) and Reiss & Thomas (1996)

3.1 The generalized extreme value distribution

Just as the normal distribution proves to be the important limiting distribution for
sample sums or averages, as 1s made explicit in the central limit theorem, another
family of distributions proves important in the study of the limiting behaviour of sam-
ple extrema. This 1s the family of extreme value distributions

This family can be subsumed under a single parametrization known as the generali-
zed extreme value distnbution (GEV). We define the d f of the standard GEV by

_ \-1/E
Hé(x)z{exp( (1+£0715) ar g0,
exp(—e~ ') if £=0,
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where x 1s such that 1 + & > 0 and & 1s known as the shape parameter. Three well
known distributions are special cases. if £ > 0 we have the Fréchet distribution, if £ <
0 we have the Weibull distnbution; & = 0 gives the Gumbel distribution

If we introduce location and scale parameters g and o > 0 respectively we can ex-
tend the family of distributions We define the GEV H; ), o(x) 10 be H:((x — 1)/0) and
we say that Hy, ;15 of the type H;.

3.2 The Fisher-Tippett Theorem

The Fisher-Tippett theorem 1s the fundamental result in EVT and can be considered to
have the same status in EVT as the central limit theorem has in the study of sums The
theorem describes the limiting behaviour of appropriately normalized sample maxima.

Suppose we have a sequence of 11.d random vanables X,, X,,  from an unknown
distnbution F — perhaps a loss seventy distribution. We denote the maximum of the
first n observations by M, = max(X,. , X,) Suppose further that we can find sequen-
ces of real numbers a, > 0 and b, such that (M, — b,)a,, the sequence of normalized
maxima, converges in distribution

That 15

P{M,, —b)a,<x} =F'(anx + b,)— H(x), as n — oo, @8]

for some non-degenerate d f H(x) If this condition holds we say that F 1s in the
maximum domain of attraction of A and we write F € MDA (H)
[t was shown by Fisher & Tippett (1928) that

F € MDA (H) = H 1s of the type H, for some &.

Thus, if we know that suitably normalized maxima converge 1n distnbution. then
the limit distribution must be an extreme value distribution for some value of the pa-
rameters &, i and ©

The class of distributions F for which the condition (1) holds 1s large A variety of
equivalent conditions may be derived (see Falk et al. (1994)) One such result 1s a
condition for F to be 1n the domain of attraction of the heavy tailed Fréchet distribu-
tion (Hg where £> 0). Thus 1s of interest to us because insurance loss data are generally
heavy tailed

Gnedenko (1943) showed that for £> 0, F € MDA (Hy) if and only if 1 — F(x) =
x'% L(x), for some slowly varying function L(x) This result essenually says that if the
tail of the d f. F(x) decays like a power function, then the distribution 1s 1n the domain
of attracuion of the Fréchet The class of distribuions where the tail decays hike a po-
wer function is quite large and includes the Pareto, Burr, loggamma, Cauchy and t-
distributions as well as various mixture models. We call distributions in this class
heavy tailed distributions, these are the distributions which will be of most use in
modelling loss severity data

Distributions 1n the maximum domain of attraction of the Gumbel MDA (H,) inclu-
de the normal. exponential, gamma and lognormal distributions. We call these distri-
butions medium tailed distributions and they are of some nterest in insurance Some
insurance datasets may be best modelled by a medium tailed distribution and even
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when we have heavy tailed data we often compare them with a medium tailed refe-
rence distribution such as the exponential 1n explorative analyses

Parucular mention should be made of the lognormal distribution which has a much
heaver tail than the normal distribution. The lognormal has historically been a popular
model for loss seventy distributions; however, since it 1s not a member of MDA (H )
for &> 01t 15 not technically a heavy tailed distribution

Distributions 1n the domain of attraction of the Weibull (H, for £ < 0) are short
tarled distributions such as the uniform and beta distributions. This class 1s generally
of lesser interest 1n insurance applicauons although 1t 1s possible to 1magine situatnions
where losses of a certain type have an upper bound which may never be exceeded so
that the support of the loss severity distribution 1s finite Under these circumstances
the tail might be modelled with a short tailed distribution

The Fisher-Tippett theorem suggests the fitting of the GEV to data on sample
maxima, when such data can be collected There 1s much literature on this topic (see
Embrechts et al , 1997), parucularly in hydrology where the so-called annual maxima
method has a long history A well-known reference 1s Gumbel (1958)

3.3 The generalized Pareto distribution

An equivalent set of results in EVT describe the behaviour of luarge observations which
exceed high thresholds, and this 1s the thearetical formulation which lends itself most
readily to the modelling of insurance losses This theory addresses the question given
an observation 1s extreme, how extreme might 1t be? The distribution which comes to
the fore in these results is the generalized Pareto distribution (GPD)

The GPD 1s usually expressed as a two parameter distribution with d f

—lE
Gg,g(-")={]_(]+§”o) if E=0,

[ —exp(—x/0) if £=0,
where ¢ > 0, and the support 15 x 20 when £2 0 and 0 £ 1 £ -0/ when £ <0 The
GPD again subsumes other distributions under 1ts parametrization When £ > 0 we
have a reparametrized version of the usual Pareto distribution, if £ < O we have a type
I Pareto distnibution, & =0 gives the exponential distribution
Agamm we can extend the family by adding a location parameter 4 The GPD
G, o(x) 15 defined to be Gy 5(x — u).

(2

3.4 The Pickands-Balkema-de Haan Theorem

Consider a certain high threshold « which might, for instance, be the lower attachment
point of a high-excess loss layer u will certainly be greater than any possible displa-
cement § associated with the data We are interested in excesses above this threshold.
that 1s, the amount by which observations overshoot this level

Let x, be the finite or infinite right endpoint of the distribution F. That 1s to say. x, =
sup {x € R . F(x) < 1} £ We define the distribution function of the excesses over
the mgh threshold u by
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Fx)= PIX—u< x| X>u= 2H0=F)
1— F(u)
forO0<x<xy-u

The theorem (Balkema & de Haan 1974, Pickands 1975) shows that under MDA
conditions (1) the generalized Pareto distribution (2) 1s the limiting distribution for the
distribution of the excesses, as the threshold tends to the right endpoint. That 1s, we
can find a positive measurable function o(«) such that

hm  sup IE,(.\‘) - GE.UUI)(X)I =0,

U 0< xS g -1
1f and only 1f ¥ € MDA (Hg) In this formulauion we are mainly following the quoted
references to Balkema & de Haan and Pickands, but we should stress the important
contribution to results of this type by Gnedenko (1943)

This theorem suggests that, for sufficiently high thresholds «, the distnbution func-
tion of the excesses may be approximated by G (x) for some values of £and o Equi-
valently, for x — u 2 0, the distribution function of the ground-up exceedances F, (x — i)
(the excesses plus 1) may be approximated by G (x — u) = Gg, o(x)

The statistical relevance of the result 1s that we may attempt to fit the GPD to data
which exceed high thresholds. The theorem gives us theoretical grounds to expect that
1If we choose a high enough threshold, the data above will show generalized Pareto
behaviour. This has been the approach developed 1n Davison (1984) and Davison &
Smith (1990) The principal practical difficulty involves choosing an appropriate
threshold The theory gives no guidance on this matter and the data analyst must make
a decision, as will be explained shortly.

3.5 Tail fitting

If we can fit the GPD to the conditional distribution of the excesses above some high

threshold iz, we may also fit it to the tail of the original distribution above the high

threshold (Reiss & Thomas 1996). For x 2 u, 1.e points 1n the tail of the distribution,
F)=P(X<sx)=(1=-P{XSup)F,(x—u)+P{X <u}

We now know that we can estimate F,(x — u) by G; ,(x —u) for u large We can also
estimate P{X < u) from the data by F,(u), the empirical distribution function evaluated
at u

This means that for x 2 u we can use the tail estimate

F(x)= (1= F, )Gy , o (xX)+ F, (1)

to approximate the distribution function F(x) It is easy to show that l:"(.r) 1s also a
generalized Pareto distribution, with the same shape parameter & but with scale para-
meter 6 = o(1- F,,(u))é and location parameter fi = gt —&((1 - F,,(u))‘g -N/E&.

3.6 Statistical Aspects

The theory makes explicit which models we should attempt to fit to historical data.
However, as a first step before model fitting 1s undertaken, a number of exploratory
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graphical methods provide useful preliminary information about the data and in parti-
cular therr tail. We explain these methods in the next section 1n the context of an ana-
lysis of the Danish data

The generalized Pareto distribution can be fitted to data on excesses of high thres-
holds by a variety of methods mcluding the maximum likelihood method (ML) and the
mcthod of probability weighted moments (PWM) We choose to use the ML-method
For a comparison of the relative merts of the methods we refer the reader to Hosking
& Wallis (1987) and Rootzén & Tajvidi (1996).

For £> — 05 (all heavy tailed applications) 1t can be shown that maximum likel1-
hood regularity conditions are fulfilled and that maximum likelihood estimates

(éNu,c}N“) based on a sample of N, excesses of a threshold u are asymptotically nor-

mally distributed (Hosking & Wallis 1987)
Spectifically for a fixed threshold u we have

vzl S |_a (8 [a+d? e(+8)
Y o/lo(1+&) 26°(1+&)
as N, — oo. This result enables us to calculate approximate standard errors for our
maximum likelihood estimates.
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4 ANALYSIS OF DANISH FIRE LOSS DATA

The Danish data consist of 2156 losses over one million Damish Krone (DKK) from
the years 1980 to 1990 inclusive (plus a few smaller losses which we 1gnore 1n our
analyses) The loss figure 1s a total loss figure for the event concerned and includes
damage to buildings. damage to furniture and personal property as well as loss of
profits. For these analyses the data have been adjusted for inflation to reflect 1985
values

4.1 Exploratory data analysis

The tume series plot (Figure 3, top) allows us to identify the most extreme losses and
their approximate times of occurrence We can also see whether there 1s evidence of
clustering of large losses, which might cast doubt on our assumption of 1.1.d data This
does not appear to be the case with the Danish data

The histogram on the log scale (Figure 3. bottom) shows the wide range of the data
It also allows us to see whether the data may perhaps have a lognormal right tail,
which would be indicated by a familiar bell-shape 1n the log plot.

We have fitted a truncated lognormal distributton to the dataset using the maximum
likelihood method and superimposed the resulting probability density function on the
histogram. The scale of the y-axis is such that the total area under the curve and the
total area of the histogram are both one The truncated lognormal appears to provide a
reasonable fit but 1t 1s difficult to tell from this picture whether 1t 1s a good fit to the
largest losses 1n the high-excess area in which we are interested

The QQ-plot against the exponential distribution (Figure 4) 1s a very useful guide to
heavy tails It examines visually the hypothesis that the losses come from an exponen-
tial distribution, 1.e from a distribution with a medium sized tail. The quantiles of the
empirical distribution function on the x-axis are plotted against the quanules of the
exponential distribution function on the y-axis The plot is

—k+1
X, G A k=1, }
{( ©nrGoi( 1 ) n

where X, , denotes the kth order statistic, and Gg'l 1s the inverse of the d f. of the ex-

ponential distribution (a spectal case of the GPD) The points should hie approximately
along a straight line 1f the data are an 1.1.d. sample from an exponential distribution

A concave departure from the 1deal shape (as in our example) indicates a heavier
tatled distribution whereas convexity indicates a shorter tailed distribution. We would
expect insurance losses to show heavy tailed behaviour.

The usual caveats about the QQ-plot should be mentioned. Even data generated
from an exponential distribution may sometimes show departures from typical expo-
nential behaviour In general, the more data we have. the clearer the message of the
QQ-plot. With over 2000 data points n this analysis it seems safe to conclude that the
tail of the data 1s heavier than exponential.
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FIGURE4 QQ-plot and sample mean excess function

A further useful graphical tool 1s the plot of the sample mean excess function (see
again Figure 4) which 1s the plot.

{(u,e,()), X, , <u< X ,}

where X, , and X, , are the first and nth order statistics and e,(«) is the sample mean
excess function defined by
n
Z,:l (X’ ~ u)+
n

e (u)= S22,

hI IR

1 e. the sum of the excesses over the threshold u divided by the number of data points
which exceed the threshold u

The sample mean excess function e () 1s an empirical estimate of the mean excess
function which 1s defined as e(u) = E[X —u | X > «] The mean excess function descn-
bes the expected overshoot of a threshold given that exceedance occurs.

In plotting the sample mean excess function we choose to end the plot at the fourth
order statistic and thus omit a possible three further points, these points, being the
averages of at most three observations, may be erratic.
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The interpretation of the mean excess plot 1s explained in Beirlant, Teugels &
Vynckier (1996), Embrechts et al. (1997) and Hogg & Klugman (1984). If the points
show an upward trend, then this 1s a sign of heavy tailed behaviour. Exponentially
distributed data would give an approximately horizontal line and data from a short
tailed distribution would show a downward trend.

In particular, if the empirical plot seems to follow a reasonably straight hine with
posittve gradient above a certain value of u, then this 1s an indication that the data
follow a generalized Pareto distribution with positive shape parameter n the tail area
above u

This 1s precisely the kind of behaviour we observe in the Damsh data (Figure 4)
There 15 evidence of a straightening out of the plot above a threshold of ten. and per-
haps again above a threshold of 20. In fact the whole piot 15 sufficiently straight to
suggest that the GPD might provide a reasonable fit to the enture dataset.

4.2 Overall fits

In this section we look at standard choices of curve fitted to the whole dataset We use

two frequently used severity models - the truncated lognormal and the ordinary Pareto
— as well as the GPD

o
[=]
o s ‘.-.‘_.___-________:_'_.
- SR e
- - ——
.'/./ //”
e -7
e g
e Pid
2 | e e
g </ P
[y s’
1 -
% n‘/ //
E i
- .
i 3 -'/: /
< /- /
S ,
/o y
/‘ . / bo normal
.' / -- éﬁlo
/. // . Empmcal
L]
o /
R /
=) . /
L] //
50 100

x (on log scale)

FIGURE 5 Performance of overall fits 1n the tail area
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By ordinary Pareto we mean the distribution with d f F(x) = | — (ak)® for unknown
positive parameters a and o and with support x >« This distribution can be rewritten
as F(x) =1 = (1 + (x —a)/a) “so that it 1s seen to be a GPD with shape & = /e, scale
o = a/o and location i = a. That 1s to say 1t 1s a GPD where the scale parameter 1s
constrained to be the shape multiphed by the location It 1s thus a little less flexible
than a GPD without this constraint where the scale can be freely chosen.

As discussed earlier, the lognormal distribution 1s not strictly speaking a heavy
tailed distnbution However 1t 1s moderately heavy tailed and in many applications 1t
15 quite a good loss severity model.

In Figure 5 we see the fit of these models 1n the tail area above a threshold of 20.
The lognormal 1s a reasonable fit, although 1ts tail 1s just a little too thin to capture the
behaviour of the very highest observed losses. The Pareto, on the other hand, seems to
overestimate the probabilities of large losses. Ths, at first sight, may seem a desirable.
conservative modelling feature But it may be the case, that this d f is so conservative,
that 1f we use 1t to answer our attachment point and premium calculation problems, we
will arrive at answers that are unrealistically high

GPD Fit (u=10) GPD Fit (u =20)

10
10

Est df

04 06 08
Est df

04 0.6 08

02
02

00
00

10 50 100 50 100
X (on log scale) X (on log scale)

FiIGurE6 In left plot GPD 1s fitted to 109 exceedances of the threshold 10 The parumeter estimates are
E=0497, 1t =10and 6 =698 In nght plot GPD 1s fitted to 36 exceedances of the threshold 20 The
parameter estimates are £ = 0 684, 4 =20 and 6 =9 63



130 ALEXANDER J MC NEIL

GPD Fit to Tail (u =10)
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FIGURE7 Fitting the GPD 10 tail of severity distribution above threshold 10
The parameter estimates are £ =0497, u =-0845and 6 = 1 59

The GPD 1s somewhere between the lognormal and Pareto in the tail area and actu-
ally seems to be quite a good explanatory model for the highest losses The data are of
course truncated at | M DKK, and 1t seems that, even above this low threshold, the
GPD 1s not a bad fit to the data By raising the threshold we can, however, find models
which are even better fits to the larger losses

Estimates of high quantiles and layer prices based on these three fitted curves are
given in table 1

4.3 Fitting to data on exceedances of high thresholds

The sample mean excess function for the Danish data suggests we may have success
fitting the GPD to those data points which exceed high thresholds of ten or 20. in
Figure 6 we do precisely this. We use the three parameter form of the GPD with the
location parameter set to the threshold value We obtain maximum likelihood estima-
tes for the shape and scale parameters and plot the corresponding GPD curve superim-
posed on the empirical distribution function of the exceedances The resulting fits
seem reasonable to the naked eye
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FIGURES Estuimates of shape by increasing threshold on the upper x-axis and
decrcasing number of exceedances on the lower x-axis, in total 30 models are fitted

The esumates we obtain are estimates of the conditional distribution of the losses,
given that they exceed the threshold Quanule estimates derived from these curves are
conditional quantile estimates which indicate the scale of losses which could be expe-
rienced 1if the threshold were to be exceeded.

As described 1n section 3 5, we can transform scale and location parameters to ob-
tain a GPD model which fits the seventy distnibution itself 1n the tail area above the
threshold. Since our data are truncated at the displacement of one million we actually
obtain a fit for the tail of the truncated severity distribution £,°(x) This 1s shown for a
threshold of ten 1in Figure 7 Quantile estimates dertved from this curve are quantile
estimates conditional on exceedance of the displacement of one mullion.

So far we have considered two arbitrary thresholds. In the next sections we consider
the question of optimizing the choice of threshold by investigating the different esti-
mates we get for model parameters, high quantiles and prices of high-excess layers.

4.4 Shape and quantile estimates

As far as pricing of layers or estimation of high quantiles using a GPD model 1s con-
cerned, the crucial parameter is &, the tail index. Roughly speaking, the higher the
value of & the heavier the tail and the higher the prices and quantile estimates we de-
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FIGURED 999 quanuile esumates (upper picture) and price indications for a (50.200) layer (lower picture) tor
increasing thresholds and decreasing numbers of exceedances

rive. For a three-parameter GPD model G; , , the pth quantile can be calculated to be y
+0lE((1-p)*-1)

In Figure 8 we fit GPD models with different thresholds to obtain maximum hkeh-
hood estimates of & as well as asymptotic confidence intervals for the parameter
estimates. On the lower x-axis the number of data points exceeding the threshold 1s
plotted; on the upper x-axis the threshold 1tself The shape estimate 1s plotted on the
y-axis. A vertical line marks the location of our first model with a threshold at ten

In using this picture to choose an optimal threshold we are confronted with a bias-
variance tradeoff Since our modelling approach 1s based on a limit theorem which
applies above high thresholds, 1If we choose too low a threshold we may get biased
estimates because the theorem does not apply On the other hand, if we set too high a
threshold we will have few data points and our estimates will be prone to high
standard errors. So a sensible choice will lie somewhere in the centre of the plot, per-
haps a threshold between four and ten 1n our example

The ideal situation would be that shape estimates 1n this central range were stable.
In our experience with several loss severity datasets this 1s sometimes the case so that
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the data conform very well to a particular generalized Pareto distribution n the tail
and inference 1s not too sensitive to choice of threshold. In our present example the
shape esumates vary somewhat and to choose a threshold we should conduct further
mvestigations.

TABLE |
COMPARISON OF SHAPE AND QUANTILE ESTIMATES FOR VARIOUS MODELS

Model u Excesses £ s.e. .995 .999 .9999 P

GPD 3 532 067 007 440 129 603 021
GPD 4 362 072 009 463 147 770 024
GPD 5 254 063 010 434 122 524 019
GPD 10 109 050 014 404 95 306 013
GPD 20 36 068 028 384 103 477 015

MODELS FITTED TO WHOLE DATASET
GPD all data 060 004 380 101 410 015
Pareto all data 66 0 235 1453 010
Lognormal all data 356 82 239 041
SCENARIO MODELS

GPD 10 109 -1 039 013 371 77 201 009
GPD 10 109 + 1 060 015 442 118 469 019

Figure 9 (upper panel) 1s a sinular plot showing how quantile esumates depend on the
choice of threshold We have chosen to plot estimates of the .999™ quanule. Roughly
speaking, 1f the model is a good one, one 1n every thousand losses which exceed one
millhon DKK might be expected to exceed this quantle; such losses are rare but thre-
atening to the surer In a dataset of 2156 losses the chances are we have only seen
two or three losses of this magnitude so that this 1s a difficult quantule esttmation pro-
blem involving model-based interpolation in the tail

We have tabulated quantile estimates for some selected thresholds 1n table 1 and
give the corresponding estimates of the shape parameter. Using the model with a
threshold at ten the 999" quantile 1s estimated to be 95. But 1s we push the threshold
back to four the quantile estimate goes up to 147. There 1s clearly a considerabie diffe-
rence these two estimates and 1f we attempt to estimate higher quantiles such as the
9999" this difference becomes more pronounced Estimating the .9999'" quantile 15
equivalent to estimating the size of a one in 10000 loss event In our dataset 1t 15 likely
that we have not yet seen a loss of this magnitude so that this 1s an extremely difficult
problem entaihing extrapolation of the model beyond the data.

Estimating the .995" quantle 1s a shghtly eusier tail estmation problem. We have
perhaps already seen around ten or 11 losses of this magnitude For thresholds at ten
and four the esimates are 40.4 and 46 3 respectively, so that the discrepancy 1s not so
large.

Thus the sensitivity of quanule estimation may not be too severe at moderately high
quantiles within the range of the data but increases at more distant quantiles. This 1s
not surprising since estimation of quantiles at the margins of the data or beyond the
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data 1s an inherently difficult problem which represents a challenge for any method. It
should be noted that although the estimates obtained by the GPD method often span a
wide range, the estimates obtained by the naive method of fitting ordinary Pareto or
lognormal to the whole dataset are even more extreme (see table) To our knowledge
the GPD esuimates are as good as we can get using parametric models

4.5 Calculating price indications

In considering the issue of the best choice of threshold we can also investigate how
price of a layer varies with threshold To give an indication of the prices we get from
our model we calculate P = E[Y, 1 X, > 8] for a layer running from 50 to 200 million (as
in Figure 2) lt1s easily seen that, for a general layer (r. R), P 1s given by

R
P = [(x=r)fys (dr+ (R= )1 = Fys (R), 3

where f,%(x) = dF ,%(x)/dx denotes the density function for the losses truncated at &
Picking a hagh threshold # (< r) and fiting a GPD model to the excesses, we cuan esti-
mate F,%(x) forx > u using the tail esumation procedure We have the estimate

Fos ()=~ F,G)G;, (x)+F,(w).

where £ and & are maximum-likelihood parameter estimates and F,{(x) 15 an esimate

of P{X°< u} based on the empirical distribution function of the data We can esttmate
the density function of the &-truncated losses using the derivatuve of the above expres-
sion and the integral in (3) has an easy closed form

In Figure 9 (lower picture) we show the dependence of P on the choice of threshold
The plot seems to show very similar behaviour to that of the 999™ percentile estimate,
with low thresholds leading to higher prices The question of which threshold 1s ulti-
mately best depends on the use to which the results are to be put If we are trying to
answer the optimal attachment point problem or to price a high layer we may want to
err on the side of conservatism and arrive at answers which are too high rather than
too low. In the case of the Danish data we might set a threshold lower than ten, per-
haps at four The GPD model may not fit the data quite so well above this lower thres-
hold as 1t does above the high threshold of ten, but it might be safer to use the low
threshold to make calculations

On the other hand there may be business reasons for trying to keep the attachment
point or premum low. There may be competition to sell high excess policies and this
may mean that basing calculations only on the highest observed losses 1s favoured,
since this will lead to more attractive products (as well as a better fitting model)

In other nsurance datasets the effect of varying the threshold may be different In-
ference about quantiles might be quite robust to changes 1n threshold or elevation of
the threshold might result 1n higher quantile estimates Every dataset 1s unique and the
data analyst must consider what the data mean at every step The process cannot and
should not be fully automated
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4.6 Sensitivity of Results to the Data

We have seen that inference about the tail of the severity distribution may be sensitive
to the choice of threshold It 1s also sensitive to the largest losses we have n our data-
set. We show this by considering two scenarnos in Table 1.

In the first scenarnio we remove the largest observation from the dataset. If we return
to our first model with a threshold at ten we now have only 108 exceedances and the
esumate of the .999™ quantile 1s reduced from 95 to 77 whilst the shape parameter falls
from 0.50 to 0 39 Thus omission of this data point has a profound effect on the esti-
mated quantiles. The estimates of the 999" and 9999" quantiles are now smatler than
any previous estimates

In the second scenario we mtroduce a new largest loss of 350 to the dataset (the
previous largest being 263) The shape estimate goes up to 0.60 and the estimate of the
999" quanule increases to 118 This 1s also a large change, although m this case 1t 1s
not as severe as the change caused by leaving the dataset unchanged and reducing the
threshold from ten to five or four

The message of these two scenarios 1s that we should be careful to check the ac-
curacy of the largest data points in a dataset and we should be careful that no large
data points are deemed to be outliers and omitted 1f we wish to make inference about
the tail of a distribution. Adding or deleung losses of lower magnitude from the data-
set has much less effect

5. DISCUSSION

We hope to have shown that fitting the generalized Pareto distribution to insurance
losses which exceed high thresholds 1s a useful method for esumating the tails of loss
severity distributions In our expenence with several insurance datasets we have found
consistently that the generalized Pareto distribution 1s a good approximation in the tail

This 1s not altogether surprising As we have explained, the method has solid foun-
dations in the mathematical theory of the behaviour of extremes; 1t 1s not simply a
quesiion of ad hoc curve fitting 1t may well be that, by trial and error, some other
distribution can be found which fits the available data even better 1n the tail But such
a distribution would be an arbitrary choice. and we would have less confidence 1n
extrapolating 1t beyond the data

It 1s our belief that any practitioner who routinely fits curves to loss severity data
shouid know about extreme value methods There are, however, an number of caveats
to our endoisement of these methods We should be aware of various layers of uncer-
tainty which are present in any data analysis, but which are perhaps magnified n an
extreme value analysis

On one level, there 1s parameter uncertainty. Even when we have abundant, good-
quality data to work with and a good model, our parameter estimates are still subject
to a standard error We obtain a range of parameter estimates which are compatible
with our assumptions As we have already noted, inference 1s sensitive to small chan-
ges in the parameters, particularly the shape parameter
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Mode! uncertainty 1s also present — we may have good data but a poor model. Using
extreme value methods we are at least working with a good class of models, but they
are applicable over high thresholds and we must decide where to set the threshold If
we set the threshold too high we have few data and we introduce more parameter
uncertainty If we set the threshold too low we lose our theorettcal justification for the
model. In the analysis presented 1n this paper inference was very sensitive to the thres-
hold choice (although this 1s not always the case).

Equally as senous as parameter and model uncertainty may be data uncertainty. In a
sense, 1t 13 never possible to have enough data 1n an extreme value analysis Whilst a
sample of 1000 data points may be ample to make inference about the mean of a dis-
tribution using the central linnt theorem, our inference about the tail of the distribution
18 less certan, since only a few points enter the tail region. As we have seen, inference
1s very sensitive to the largest observed losses and the introduction of new extreme
losses to the dataset may have a substantial impact For this reason, there may still be a
role for stress scenarios 1n loss severity analyses, whereby historical loss data are
enriched by hypothetical losses to investigate the consequences of unobserved, adver-
se events

Another aspect of data uncertainly 1s that of dependent data. In this paper we have
made the familiar assumption of independent, 1dentically distributed data In practice
we may be confronted with clustering, trends, seasonal effects and other kinds of de-
pendencies. When we consider fire losses in Denmark 1t may seem a plausible first
assumption that individual losses are independent of one another, however, 1t is also
possible to imagine that circumstances conducive or mhibiuve to fire outbreaks gene-
rate dependencies 1n observed losses. Destructive fires may be greatly more common
in the summer months, buildings of a particular vintage and building standard may
succumb easily to fires and cause high losses Even after ajustment for inflation there
may be a general trend of increasing or decreasing losses over time, due to an increa-
sing number of increasingly large and expensive buildings, or due to increasingly good
safety measures

These 1ssues lead to a number of interesting statistical questions in what 1s very
much an active research area. Papers by Davison (1984) and Davison & Smith (1990)
discuss clustering and seasonality problems in environmental data and make suggesti-
ons concerning the modelling of trends using regression models built into the extreme
value modelling framework The modelling of trends 1s also discussed 1n Rootzén &
Tayvadi (1996).

We have developed software to fit the generalized Pareto distribution to exceedan-
ces of high thresholds and to produce the kinds of graphical output presented 1n this
paper It 1s writen 1n Splus and 1s available over the World Wide Web at
http://www math ethz ch/~mcneil
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ON LARGE FIRE INSURANCE LOSSES

SIDNEY |. RESNICK

Cornell University
ABSTRACT

Alexander McNetl's (1996) study of the Danish data on large fire insurance losses
provides an excellent example of the use of extreme value theory in an important
application context. We point out how several alternate staustical techniques and plot-
ting devices can buttress McNeil’s conclusions and provide flexible tools for other
studies
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| INTRODUCTION

McNeil’s (1996) interesting study of large fire insurance losses provides an excellent
case history 1llustrating a variety of extreme value techniques The goal of my remarks
1s to show additional techmiques and plotting strategies which can be employed for
similar data.

Our remarks concentrate on the following:
* Diagnostics for assessing the appropriateness of heavy tailed models
* Diagnostics for testing for independence.

It 1s customary in many nsurance studies involving heavy tailled phenomena to as-
sume ndependence without actually statistically checking this important fact so some
attention 1s given to this issue

2 APPROPRIATENESS OF HEAVY TAILED MODELS

Given a particular data set, there are various methods of checking that a heavy tailed
model 1s appropriate. The methods given below (these are also reviewed 1n Resnick
1995, 1996, Feigin and Resnick, 1996) supplement the techniques discussed by
McNeil such as mean excess plots and QQ-plots against exponenual quantiles. Unlike
the mean excess plot, the following methods do not depend on existence of a finite
mean for the marginal distribution of the stationary time series This is important since
1t 1s becoming clear that 1t 1s not difficult to find examples of heavy tailed data which

ASTIN BULLETIN, Vol 27, No L. 1997 pp 139-151



140 SIDNEY I RESNICK

require infinite mean models for adequate fits (See for example the teletraffic exam-
ples in Resnick (1995, 1996)).

For the discussion that follows, we suppose {X,, n 2 1} 1s a stationary sequence and
that

PIX, >x]=x%L(x), x oo @n

where L 1s slowly varying and a >0 Consider the following techniques
(1) The Hill plot. Let
Xiy>Xg>. >X,

be the order statistics of the sample X, . , X, We pick & <n and define the Hill esti-
mator (Hill, 1975) to be
S
H ,=—) log—
' k =1 X(I\'H)

Note & 1s the number of upper order stauisuics used 1n the esumation The Hhill plot 1s
the plot of

((kH ) < k<)

and 1f the {X,} process 1s nd or a linear moving average or satisfies certain mixing

conditions then since H, , —L a7 as n = oo, k/n — O the Hill plot should have a

stable regime sitting at height roughly oo See Mason (1982), Hsing (1991), Resnick
and Starica (1995, 1996a), Rootzen et al (1990), Rootzen (1996). In the ud case, under
a second order regular vanation condition, H, , 1s asymptotically normal with asymp-
totic variance I/a® (See de Haan and Resnick, 1996)

(2) The smooHul Plor The Hill Plot often exhibits extreme volatility which makes
finding a stable regime 1n the plot more guesswork than science and to counteract this,
Resnick and Starica (1996a) developed a smoothing technique yielding the smooHill
plot Pick an integer « (usually 2 or 3) and define

1 th

smooH, , =

— 2. H,.
(u—=1)k Py

In the ud case when a second order regular variation condition holds, the asymptotic
variance of smooH, , is less than that of the Hill estimator, namely.

The sensitivity of the Hill estimate to the choice of k corresponds in McNeil's work to
the sensiivity of the fit of the generalized Pareto to the data to the choice of threshold
Perhaps some comparable smoothing technique would help in GPD fitting.

(3) Alt ploning, Changing the scale. As an alternative to the Hill plot, 1t 15 someti-
mes useful to display the infrormation provided by the Hill or smooHill estimation as

1. Hf‘"‘gl”),o o<
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and simularly for the smooHill plot where we write rﬂ for the smallest integer greater
or equal to y 2 0 We call such plots the alternarve Hill plot abbreviated AltHill and
the alternative smoothed Huill plot abbreviated AltsmooHill The alternative display 1s
sometimes revcaling since the mitial order statistics get shown more clearly and cover
a bigger portion of the displayed space. However, when the data 1s Pareto or nearly
Pareto, this alternate plotuing device is less useful since in the Pareto case, the Hill
estimator apphed to the full data set 1s the maximum hkelthood estimator and hence
the correct answer 1s usually found at the nght end of the Hill plot

(4) Dynamic and stanc QQ-plots As we did for the Hill plots, pick £ upper order

statistics
Xy > Xy > - > Xy,

and neglect the rest Piot

((~log(1 =) log X)), 1 S y < k). (2.2)

If the data are approximately Pareto or even 1f the marginal tail 1s only regularly va-
rying, this should be approximately a straight line with slope [/c. The slope of the
least squares line through the points 1s an estimator called the QQ-estimator (Kratz and
Resnick. 1996) Computing the slope we ﬁnd that the QQ-estimator 1s given by

LS logt ! plog() - 1—2‘_1(— log(- - DA, ,
/?l U\+|) k = k +]
X L (2 3)

I 4 NI & (- 1
¢ Drer (108C (k 2o (logl )

There are two different plots one can make based on the QQ-esumator There 1s the

dynamic QQ-plot obtained from plotung {k,1/ 0~ oV 1 Sk <nf which 1s similar to the
Hill plot. Another plot, the static QQ-plot, s obtained by choosing and fixing &, plot-
ting the points in (3 2) and putting the lcast squares line through the points while com-
puting the slope as the esumate of o'

The QQ-estimator 1s consistent for the nd mode! 1f k = o0 and &/n — 0 and under a
second order regular variation condition and further restriction on k(n), 1t 1s asymptoti-
cally normal with asymptotic varance 2/¢¢ This 1s larger than the asymptolic variance
of the Hill esumator but the volatility of the QQ-plot always seems to be less than that
of the Hill esumator.

(5) De Haan's moment estimator McNell discusses the exticme value distributions
(see also Resnick, 1987; de Haan, 1970, Leadbetter et al, 1983, Castillo, 1988, Em-
brechts et al 1997) which can be parameterized as a one parameter fanuly

Ge()=expl—(1+&07 "), EeRT+&>0

When & = 0, we mterpret G, as the Gumbe! distribution

Go(x)=expl-¢™'}. xeR.
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A distribution whose sample maxima when properly centered and scaled converges
in distribution to G 1s said to be in the doman of atiraction of G, which in McNeil’s
notation 1s written Fe MDA(Gy 1If E>0and Fe MDA(G;) then 1 — Fe RV_; De
Haan’s moment esumator f,m (Dekker’s, Einmahl, de Haan, 1989, de Haan. 1991,
Dekkers and de Haan, 1991; Resnick and Starica, 1996b) 1s designed to estimate & =
1/a Note that &_”, like the Hill estimator, 1s based on the k-largest order statistics
Since most common densities such as the exponenual, normal. gamma and Weibull

densities and many others are in the MDA(G,), the domain of attraction of the Gumbel
distribution, this provides another method of deciding when a distribution 1s heavy
tailed or not If f,\.” 1s negative or very close to zero, there 1s considerable doubt that
heavy tailed analysis should be applied and the moment estimator 1s usually much
more reliable in these circumstances than the Hill esiimator In particular, when £ =0,
the Hill estimator 1s not usually informative and the moment estimator does a much
better job of identifying exponentially bounded tails Smoothed versions of the mo-
ment estimator can also be devised (Resnick and Starica, 1996b) which overcome

volatihty in the plot of {k.&, ,.1< k <n)
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Figure 2 2 QQ plot of Danish all data and parameter estimate
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Hill and Dynamic QQ
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FIGURE2 3 Hill and QQ-plot of Damsh data

Figure 2 1 gives a time series plot of the 2156 Danish data consisting of losses over
one milhon Danish Krone (DKK) and the right hand plot 1s the QQ-plot (2 2) of this
data yielding a remarkebly straight plot Figure 2.2 gives the QQ-plot of all of the
2492 losses recorded 1n the data set labeled damish.all and shows why McNeil was
statistically wise to drop losses below one million DKK (In the left hand plot the data
1s scaled to have a range of (0.3134041, 263 2503660) and the dots below height 0
represent the 325 values which are less than 1 n the scaled data.) The nght hand plot
in Figure 2 2 puts a hine through the QQ-plot of the losses above one million and
yields an esumate of o= 1 386 Using only the largest 1500 order statistics and then
estimaung ¢ from the slope of the LS line produces an estimate of =14

We next attempted to estimate o by means of the Hill plot Figure 2 3 shows a Hill
plot side by side with the dynamic QQ-plot. Because the plot in the nght side of
Figure 2 | 1s so straight. we tend to trust the Hill plot near the nght end of the plot
This 1s because the straight plot (n Figure 2 1 indicates the underlying distribution 1s
close 1o Pareto and for the Pareto distribution the maximum hikelithood esumator of the
shape parameter 1s the Hill esuimator calculated using all the data This analysis 1s
confirmed by the excellent fit achieved by McNeil using a GPD with £ = 0684 or
a = 1.46 corresponding to losses exceeding a threshold of 20 million DKK. Such a
GPD 1s a shifted Pareto

On the other hand, examining the altHill and altsmooHill plots 1n Figure 2 4 makes
it seem unhkely that o could be as large as 2 01 which 15 what 1s given in McNeil’s
Figure 7. This corresponds to a £ = 0 497. Our methods indicate a likely value of o =
145 R

In Figure 2 5 we present four views of the moment estmator &, , ol &= 1/a. The

upper right graph and the lower two graphs are 1n alt scale where k, | < k< n 13
replaced by [nflos o< Interestingly, we see here and in the four views of the Hill
plot, that when the data are very close to Pareto, the alt scale 1s not advantageous
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When the data 1s close to Pareto, the reliable part of the graph 1s toward the end and
this 1s the part of the graph under emphasized by the alt scale The situation 1s very
different for something like stable data (Resnick, 1995) where the traditional Hill plot
1s incapable of identifying the correct value of & but the alt plot does a superior job.

Based on an amalgam of the QQ, Hill and moment plots, we settle on an estmate of
a=14o0ré= 71
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FIGURE2 4 Hill and smooHill plots for Danish data

3 TESTING FOR INDEPENDENCE

We outline several tests for independence which can help reassure the analyst that an
ud model 1s adequate and that 1t 1s not necessary to try to fit a stationary time series
with dependencies to the data. Some of our tests are motivated by our experience
trying to fit autoregressive processes (o heavy tailed data

Here 1s a survey of several methods which can be used to test independence Some
of these are based on asymptotic methods using heavy tatled analysis and the rest are
standard time series tests of homogeneity

(1) Method based on sample acf. An exploratory, informal method for testing for
independence can be based on the sample autocorrelation function p(h) where for h
any positive integer

zn—h(xl _ X/—)(Xl+h _ Y)

1=t

ZLI(XI - X)*

plh) =
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In many studies of heavy tailed data, the centering by the sample mean 1s omitted
since 1f mathemaucal expectation does not exist, there 1s no advantage or sense to
centering by the sample mean However, since our chosen value of a =14 imphes
EIX|| < e, we have decided to include the centering From Davis and Resnick (1985a),
if {X,} are nd with regularly varying tail probabilities, then

| 50 = 1, ifh=0,
P =0 e h o,

Thus, if upon graphing p(h), h =0, .,n—-h we get only small values for & # 0 there
1s no evidence against independence The limit distribution of p(h), h =1, . , g 1s
known (Davis and Resnick, 1985b, 1986 Corollary 1) but 1t 1s somewhat difficult to
work with and the percentiles must be calculated by simulation It 1s 1mportant to
1ealize that the 95% confidence bands drawn by a typical staustics package like Splus
are drawn usmg Bartlett’s formula (Brockwell and Dawvis, 1991) on the assumption
that the data 1s Gaussian or at least has fimte fourth moment This assumption 1s to-
tally inappropnate for heavy tailed data and the confidence band must be drawn taking
into account the heavy tailled limit distribution for p(h), h=1,. ,!

moment estimator Alt plot
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FIGuRE2 5 Moment esimator plots for Damsh data

We discuss implementation of the acf based procedure when 1 < o < 2 since n the
case of the Danish loss data we have scttled on an esiimate of o = 1.4 Suppose {Y,,
, Y,} are nd non-negative random variables satisfying

PLY, >x]~x"%L(x), x> l<a<?
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where L 1s slowly varying From Corollary |, page 553 of Davis and Resnick (1986),

if we set P, (1) to be the lag & sample acf for ¥,, . .Y, then we have
Iim Pb;'b2py (MY < x] = PlU, 1V, £ x]

where U, 1s a one sided stable random variable with index o= 1 4 and V,, 15 a positive
stable random variable with index o/2 = 0.7 and b, is the solution to

PlY,>x|=1/n

and I;” 1s the solution to
PIYY, >x]=1/n

Thus an approximate symmetric 95% confidence window for the sample correlations
of the ¥’s would be placed at +/b, / b? where / satisfies

PllU, 1ol <] = 95.

We estimate the 95%-quanule of 1U,/U,| by stmulation and if we assume the distribu-
tion of ¥,’s 1s Pareto from some point on, we find

n ~la
Ib—’; _ /( n )
b, logn

The assumption of a Pareto distribution scems mild in view of Figure 2 2 and the good
fit found by McNeil of the GPD with positive shape parameter

Figure 3 | presents this technique applied to the Danish loss data. No spike is
protruding from the band and hence this acf based technique does not provide any
evidence aganst the assumption of independence.

95% Confidence Band
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5 10 1S 20
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FIGURE3 | 95% confidence band for the acf of the Danish loss data
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(2) Tests based on asymptotic theory Estimators of autoregressive coefficients for
heavy tailled ume series can be used to fashion tests for independence agamst autore-
gressive alternatives If the autoregression 1s described as

I
XI =2¢1X1—1 +Z,, {=0,1,...
1=]

where {Z,} are nd heavy tailed residuals, then we test 1f
(bl = .= ¢p =0,

that 1s independence, by rejecting when the maximal estimated coefficient
p ~
v I3 ()]
1=

18 too large This procedure has been mmplementied by Feigin, Resnick and Starica
(1996) based on linear programmung (LP) estimators under the assumption that the nd
heavy tailed residuals {Z,} are non-negative. See also Feigin and Resnick (1993)

It would not be possible to fix the size of the LP test if the limit distribution of the
LP estimator did not considerably simplify Fortunately 1t does under the null hypothe-
sis of independence and we then have

by($.(n), ()= L=V, V")
where fora,20,:=1, , p we have that
P -
PV, sx,.a=1 ,pl=exp{- oy )emmw[/\-"""'] F(dy,) . F(dy,)} (32)

=1

This means that if we want a 005 level rejection region, we should reject when
VP, 18,(n)1 > K( 05) where K( 05) 1s defined by

P
P[\/lqﬁ,(n)l > K( 05)} = 05
=1
and to find an approximate value of K(.05) we write
P p - a
P{v |.(m)| > K¢ 05)} ~ P[\/ L, > b,K( 05)j| < pP[Ly > b,K(05)] = pe KO (33
=1 1=1

where ¢ = E(Z;%) This yields

[—Eg<-05’ﬁ>)”“ (_'Lwﬂm)”“
K(05) = "b = <

n

b

n

We need to estimate o, ¢ and b, One way to do this 1s to use the QQ-plot (Feigin.
Resnick and Starica, 1996; Kratz and Resnick. 1996) which yields both b, (as the
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intercept of the fitted line) and & (as the reciprocal of the slope of the fitted line) and

then we can get
n
e=n"'Y X7
1=1

The asymptotic test ts implemented and shown in Figure 3 2 None of the estimated
coefficient values extend above the bar representing K( 05) so this method provides no
evidence against the hypothesis of independence

Asymptotic Test

004

phi

Lot

2 4 8 8 10
number ot coetficients

FIGURE3 2 Asymptouc test for independence for the Danish loss data

(3) Standard tests of randomness. There are several standard time series tests of
randomness (Brockwell and Davis, 1991, Section 9 4) which are non-parametric and
can be employed in the present context. We give some examples below We use the
notation

ln ~ AN(,U",O',;:)

as shorthand to mean that
(xn _#11)/011 = N(Ov I)

(1) Turning poiwnt test If 7 1s the number of turning points among X,, . , X, then
under the null hypothesis that the random variables are 11d we have
T ~ANQR2n=2)/3.(16n-29)/90)
and this can be used as the basis of a test
(2) Dnfference-sign test Let S be the number of 1 =2, , nsuch that X, - X, , 1s po-

sitive Under the null hypothesis that the random variables X, .. . X,, are nd we
have

S~ AN(%(n-l),(rH- 1)/12).
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(3) Rank test Let P be the number of pairs (1, j) such that X, > X, tory>and:= 1,
, n— 1 Under the null hypothesis that the random variables X, , X, are iid
we have

P~ AN(%n(n —1),n(n=1(2n+5)/8).

Wc would reject the nd hypothesis at the 0 05 level if any of these standardized vana-
bles had an absolute value greather than 1 96. All of these tests are implemented 1n the
Brockwell and Davis (1991) package ITSM. Data can easily be imported into thesr
program and tested within the package for randomness.
We cariied out these tests on the Danish loss data using I'TSM and achieved the

following results

Turning points 1409 AN (1436 00, 19 57%)

Difference-sign 1079 AN (1077.50, 13.41%)

Rank test 1055894 AN (1161545, 50071 90%)

The rank test rejects the hypothesis of independence at the 5% level The turning
points and difference-sign tests fail to reject.

(4) Stabiluy testing on subsets of the data An informal but useful techmique 1s to

take a statistic, such as the sample acf, and compute 1t relative to different subsets of
the sample If the data 1s nd, the values of the statistic should be sinular across diffe-
rent subsets.
For the sample acf, if the graphs of p, (1), h =1, ..., g look different for different
subsets, then one should be skeptical of the correctness ot the 11d assumption Often 1t
1s enough to sphit the sample nto halves or thirds to generate some skepticism One
could make acf subset plots for the Danish data but since the acf values are not signifi-
cantly different from O, there seems little point to pursuing this diagnostic 1n this case

(5) Permutaiton test for independence. Another approach to testing for indepen-
dence 1n ume series analysis 1s based on permutation tests. Here we can use any desi-
red stauistic that ts designed to measure some form of dependence between successive
data This statistic might be a maximum autocorrelation or partial autocorrelation, or 1t
may be a maximal autoregressive cocfficient estimated by the linear programming
paradigm

The permutation test 1s based on comparing the observed value of the statistic with
the permutation distribution of that statistic — that 15 with the distribution of values of
the statisuc under all the possible permutations of the time senes data 1f therc 1s no
dependence structure in the data, then the observed value should be a typical value for
this refcrence permutation distribution. If there 1s some dependence of the type to
which the statistic 1s sensitive, then the observed value should be extreme with respect
to this reference distribution

This approach allows one to perform tests without relying on the asymptotic theory
for the particular staustic. As we have seen earher, the asymptotic distrtbution for
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P .
vld’,(n)’
1=
involves vattous parameters that have to be estimated Moreover, the fact that we are
not sure of the rate of convergence to the asymptotic distribution, also suggests the
precautionary tactic of using a permutation test
In the implementation we use below, we approximate the p-value of the actually
observed statistic This 1s achieved by generating 99 permutations of the time series,
computing the statistic for each one, and counting the number (C) of these that are
greater than or equal to the actually observed staustic The p-value 1s approximated by
(1+C)%. The statnistics considered are the maximum absolute autocorrelation (macf),
the maximum absolute partial autocorrelation (mpacf), and the maximum absolute
linear programming coefficient estimate (mphi) In each case, one must specify the
value of p, the order over which the maximum 1s taken
For the Danish loss data, we took the order to be 10 and ran the tests yielding the
tollowing p-values

maximum autocorrelation 0.52
maximum partial autocorrelation  0.51
maximum LP coefficient 022

and thus at a reasonable level, none of these tests would reject independence
4 CONCLUDING REMARKS

There is very little evidence arguing against the hypothesis of independence and it
seems McNeil’s presumption that the data were independent was a safe assumption to
make for this data set Independence 1s not that common among teletraffic of finance
data 1n my experience and thus should be treasured 1n the present insurance context
Fitting dependent data with a heavy tailled stationary time series model can be a frus-
trating business (see Resnick, 1996b, Feigin and Resnick. 1996) so when one conclu-
des the data can be modelled as 11d. a loud sigh of relief 1s heard

The sensitivity of the estimation and fitung methods to the choice of threshold or
the choice of the number of order statistics used 1n estimation 1s a persistent and
troubling theme 1n McNeil's and my remarks. This seems inherent 1n the heavy tail
and extreme value methods It 1s not clear at this point how much the techmques can
be improved to reduce sensitivity to choice of & or threshold Smoothing techniques
and alternate plotting help but are not a universal panacea.

It 1s encouraging to see the accumulating mass of theoretical and software tools
which can be used to analyze such data sets
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BOOK REVIEW

JAN BEIRLANT, JozeF L. TEUGELS and PETRA VYNCKIER (1996) Practical Analysis
of Extreme Values. Leuven University Press ISBN 90 6181 768 1

This short book aims to introduce the reader to some of the practical methods of
handling extreme value statistics, with a particular leaning towards actuanal
applications The emphasis 1s on graphical methods of fitting and comparing
different types of distnbution, and the estimation of extreme value index parame-
ters.

The first chapter begins with elementary introductions to such concepts as density
and distribution functions, and lists some of the numerous patametric distributions
applied to non-life insurance data. In general this 15 accurate and informative,
though the reader should be cautioned that the authors’ definition of the ™ general-
1zed Pareto” distribution 1s not the same as the one adopted by other writers on
extreme value theory The latter part of the chapter describes a number of graphical
methods for choosing among distributional famihes

The next three chapters concentrate on methods of estimating three different
definitions of the extreme value index the Pareto index (chapter 2), the index of the
general extreme value distribunion (chapter 3) and Weibull indices (chapter 4) The
main method of chapter 2 is the so-called Hill estimator, applied to the largest order
stauistics of a sample The most important practical 1ssue with this estimator 1s how
many of the largest order statistics to include, and the authors provide a good
discussion of the mathematical principles underlining this choice | am less
convinced of their proposed practical solution to the problem- 1t 1s based on a
method only recently introduced by the authors themselves, and it seems to me that
more experience 1s needed before recommending 1t to practising actuaries Chapt-
ers 3 and 4 are written in simular style, though I really feel that the authors should
have made 1t clear that the general form of extreme value distribution 1s due,
modulo changes of notation, to the onginal foundational papers of Fisher and
Tippett (1928) and Gendenko (1943), and not, as the text imphes, to a 1995 paper
by two of the present three authors!

The final chapter 5 15 a nice survey of the actuanial apphcations of extreme value
theory There are also a number of data sets reproduced 1n an Appendix.

| feel that this book provides a useful survey of statistical techniques which will
be accessible to readers without much background in statistics The desirable
background 1n mathematics 1s somewhat greater, though the reader who does not
feel at home 1n the language of regularly varying functions or Tauberian theorems
can skip over those sections without [osing much of the statistical thread. The
book’s maimn weakness 1s that it hardly gives any hint of the vast array of
probabilistic and stauistical extreme value theory which lies outside the rather
narrow boundaries to which the authors have confined themselves here.

RICHARD SMITH






THE 6th AFIR INTERNATIONAL COLLOQUIUM
Nurnberg, Germany, 1996

The 6th AFIR International Colloguium was held at the Hotel Maritim 1in Nurnberg,
Germany from | to 3 October, 1996 with about 190 participants from 17 different
countries. Although most participants were from European countries therc were a
significant number from other countries including Austraha, Israel, Japan, Taiwan,
and USA. The organisation of the Colloquium was superb and the quahty of the
presented papers very high. There were almost 70 contributed papers. The Scientific
Commuttee, chatred by Peter Albrecht, and the Organization Committee, chaired by
Peter Burghard, are to be congratulated for an excellent meeting Invited lectures 1n
Plenary sessions began both the morning and afternoon program Parallel sessions
were then used to allow the authors of the contributed papers a reasonable time to
present the main 1deas n their papers. This meeung format worked well allowing
participants to attend sessions 1n their area of 1nterest

The social program for accompanying persons included bus tours to Bamberg,
Rothenberg, a walk through “Romantic Nurnberg” and a guided tour of the court
room of the “Nurnberg Trials”. All of this looked enticing but most of us were
there for the business side of the meeting

On completion of the Opening formalities on Tuesday 1 October the first invited
lecture was by Hans Foellmer from Humboldi-University of Berlin on “ Recent
Developments in Option Pricing Theory” Option Pricing has been a theme of past
AFIR Colloquia and this presentation was most appropriate It covered develop-
ments 1n stochastic mathematics and 1ssues of incomplete markets. There followed
parallel sessions with contrnibuted papers on Option Pnicing and on Asset Liability
Management The area of asset-hability management has also been a common
theme of previous colloquia.

After lunch, which provided the opportunity for further discussion and network-
ing, the invited lecture was by Paul Embrechts of ETH Zurich with an advertised
opic of “Methodological Issues Underlying Value at Risk Estimation”. Paul’s
lecture emphasised modeliing extreme values and the use of the generahised extreme
value distributions including the Wiebul, Fréchet (Pareto related) and Gumbel
(double exponential) cases Moreover, the generalised Pareto distributions are useful
models for excess distributions. He mentioned that software for extreme value
modelling was available from the World-Wide-Web site http//www.math.ethz.ch/
~mcneil/software htm! and Paul also referred to a forthcoming book by Embrechits,
Kluppelberg and Mikosh on *“Modelling Extremal Events for Insurance and
Finance™ to be published by Springer in 1997.

One of the afternoon parallel sessions was on the topic of Risk Measurement and
Risk Control and the other was on Asset-Liability Management. The Risk
Measurement and Risk Control papers covered the areas of Value at Risk,
Denvatives and reporting and supervision. The asset-hability session covered papers
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on pension fund and hife insurance asset hiability modelling and asset allocation
including optimal asset allocation strategies In the evening the participants and
accompanying persons adjourned to the Germanisches Nationalmuseum for a
performance of the opera “The Abduction from the Seraglio™ by Wolfgang
Amadeus Mozart followed by a stand up reception. This excellent performance was
especially presented for the AFIR Colloquium and the evening was most enjoya-
ble.

Wednesday 2 October commenced with an invited lecture by Wolfgang Buehler
from the Umniversity of Mannheim on “An Empirical Companson of Valuation
Models for Interest Rate Dernivatives ”. The area of term structure models and their
use 1n finance and actuarial apphcations has been an area of rapid theoretical
development and understanding the different models and when they are most
appropriate is an important topic. I am sure there will be more contributions to this
area as actuaries increase their use of term structure models

The two parallel sessions following included one on Applications of Options 1n
Investment Management and Insurance and one on Bond Valuation and Bond
Management, The options session covered a wide range of topics including shortfall
risks and the pricing of the new forms of guaranteed index-linked life insurance
policies These policies have been recently introduced in Germany and are also
popular now 1n North America They demonstrate the potential of exotic options for
product destgn 1n Iife insurance and will be an area of much future interest as these
products become more popular tnternationally The bond valuation session looked
interesting but I chose to attend the options session.

The afternoon of Wednesday was free and participants had the choice of a tour of
the city or a special guided tour of the Germanisches Nationalmuseum In the
evening the social activities were “ Frolics at the Impenal Castle” Europe 1s rich in
history and, as these events testified, Nummberg 1s no exception

The final day of the Colloquium was a holiday in Germany (German Unity Day)
It opened with an invited lecture by David Wilkie on The European Single
Currency. For both European and overseas participants this was a most interesting
lecture. The ntricacies involved in moving to a common currency range from
deciding on a name for the currency to adjusting computer programs The following
parallel sessions covered Applications of Numencal and Econometrical Methods 1n
Finance and Portfolio-Capital Market Theory and Investment Management The
Numerical and Econometric presentations included topics on Neural Networks,
Genetic algorithms, and error correction models.

The final invited lecture was by Gerhard Rupprecht of Allianz Lebensversiche-
rungs-AG who spoke on “The European Monetary Union from the Perspective of a
German Life Insurer” providing another perspective on this topic to that given by
David Wilkie 1 the morning lecture The following paralle! sessions were on
Current Problems in Insurance and Finance and covered a wide range of interesting
topics.
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The scientific program finished with a closing session summing up the Collo-
quium and with Catherine Prime from Australia inviting everyone to the 7th
International AFIR Colloquium to be held in Cairns Austrahia from [3-15 August
1997 with a jownt day with the ASTIN Colloquium on 13 August. We are all
looking forward to next year and we have been inspired by the organisation of the
Nurnberg Colloquium and intend adopting a stmular structure with invited lectures
and parallel sessions. Already arrangements are well in hand and those who wish to
submit a paper should notify the Chair of the Scientific Commuittee (Mike Sherns)
by email (msherris@efs mq.edu.au) or by Fax (+61 29850 8572) as soon as
posstble. Final papers are due by 1| March 1997. The call for papers can be viewed
at http://www.ocs.mq edu.au/~msherris/afir97.html which includes instructions for
authors.

For those who did not attend the Colloquium | can recommend that you obtain
the Proceedings There were many topics covered and you will no doubt find some
new ideas

The Colloquium concluded with a Gala night at the Hotel Maritim with
entertainment, fine food and, most of all, fine company.

MIKE SHERRIS

School of Economic and Financial Studies
Macquarie University

Sydney NSW

Australia 2109
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The Call for papers made some months ago requested submissions by 1 March
1997. Many were received but the flow has now ebbed considerably.

This may reflect a behef on the part of prospective authors that further
submissions are now too late to be accepted. This not the case.

Printing arrangements have now been re-negotiated to allow submissions
received up to the end of May 1997 to be included in the volume of preprints
circulated prior to the Colloquium Indeed, the Scientific Commuttee remain willing
to receive papers up to the commencement of the Colloquium Those recerved after
May will remain eligible for inclusion n the Colloquium program but will not be
circulated 1n the preprint volume

Any further papers should be forwarded (3 copies + | electronic copy) to

Greg Taylor

Tillinghast-Towers Perrin

GPO Box 3279

Sydney NSW 2001

Australia

ASTIN Scienttfic Committee, April 1997



FACULTY APPOINTMENTS IN ACTUARIAL SCIENCE & INSURANCE

Nanyang Technological University, Singapore,
School of Accountancy and Business

Applications are wmnvited for faculty positions in Actuanal Science 1n the School of
Accountancy and Business. The School offers undergraduate degrees in Accoun-
tancy and Business, MBA degrees, and Master’s and Doctoral degrees by research,
and the latter by research and coursework.

Applicants should be experienced and quahfied actuarial professionals with a
strong interest 1n education, scholarship and research Besides a professional
actuanial qualification, they should also hold a postgraduate degree In addition,
they should be able to demonstrate academic and research achievement and
potential

The person appointed would be expected to teach in the B Bus (Actuarial
Science) programme as well as actuarial subjects at a postgraduate level In
particular, he/she should be able to teach the following subjects probability and
staustics, life contingencies, mathematics of finance, apphed actuanal statistcs,
mortality investigations, social security and penston funds, actuarial management,
and actuanal aspects of general insurance.

The person appointed would also be expected to contribute actively to the
School’s research programme, to supervise research students and to take the lead on
research projects.

Gross annual emoluments (for 12 months) range as follows

Professor : S$ 150,000 -S$ 202,110 Senior Lecturer: S$ 67,940 - S$ 138,000
Associate Professor: S$$ 122,460 - S$ 170,000 Lecturer: S$ 58,390 - S$ 74,300

The commencing salary will depend on the candidate’s qualifications, experience
and the level of appointment offered

In addition to the above, the Umversity may decide to pay an annual variable
component/allowance which has, in the past years ranged fiom | month’ to
3 months’ salary

Leave and medical benefits will be provided. Other benefits, depending on the
type of contract offered, include provident fund benefits or an end-of-contract
gratuity, settling-in allowance, subsidised housing, children’s education allowance,
passage assistance and baggage allowance for transportation of personal cffects to
Singapore Staff members may undertake consultation work subject to the approval
of the Umversity, and retain consultation fees up to a maximum of 60% of their
gross annual emoluments 1n a calendar year

Applicants should send their detailed curriculum vitae, including their areas of
research interest, publications list and the names and addresses (internet and fax, if
any) of three referees to

Director of personnel, Nanyang Technological University

Nanyang Avenue, Singapore 639798

Telefax (65) 791340 — Internet: CCLIM@ntu cdu sg
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