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ABSTRACT

The objective of this paper s to make allowance for cost of claims in experience ra-
ung. We design here a bonus-malus system for the pure premium of insurance con-
tracts, from a rating based on their individual characternistics Empirical results are
presented, that are drawn from a French data base of automobule insurance contracts.
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INTRODUCTION

Bayesian models lead to a posteriort ratemaking of insurance contracts (Buhlmann
(1967)) Suppose that the number of claims follows a Poisson distribution. A bonus-
malus system for the frequency of claims i1s obtained if we constder that the parameter
follows a gamma distribution (see Lemaire (1985, 1995)) This model may include a
ratemaking of policyholders on an individual basis, the parameter of the Poisson dis-
tribution depending then on rating factors (see Dionne et al (1989, 1992)).

The allowance for severity of claims 1n expenence rating can be achieved by consi-
dering the dichotomy between claims with material damage only, and claims including
bodily injury (see Lemaire (1995)) 1n this model, the number of claims that caused
bodily injury follows a binomial distribution, the parameter of which follows a beta
distribution.

In this paper, the seventy of claims will be taken into account by using their cost.
The analysis of cost of claims makes clearly appear a positive correlation between the
average cost per claim and the frequency risk (see Renshaw (1994), Pinquet et ai
(1992)) An a prion1 ratemaking will therefore be influenced by the allowance for
costs Concernming the third party hability guaranty, it can be noted that.
¢ The settlement of claims with matenal damage 1s performed partly through fixed

amount compensations from an nsurance company to the third party
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* The amount of compensations related to claims including bodily injury depends on
the social position of the victim

Hence, 1t 1s difficult to explain the cost of these claims by the rating factors, and we
shall investigate the damage guaranty in the empirical part of the paper

Allowing for cost of claims 1n bonus-malus systems can be achieved 1n the follo-
wing way. starting from a rating model based on the analysis of number and cost of
claims, two heterogeneity companents are added They represent unobserved factors,
that are relevant for the explanation of the severity variables Later on, we shall refer
to any variable explained by a rating model (number, cost of claim, total cost of
claims, and so on) as a “severity variable”. These unobserved factors are, for instance,
annual mileage for number distnbutions, and speed (and the driver’s behaviour n
general) for number and cost distributions. A bonus-malus coefficient can be related to
the credibility estimation of a heterogenerty component

In this paper, costs of claims are supposed to follow gamma or log-normal distribu-
tions The rating factors, as well as the heterogeneity component, are included in the
scale parameter of the distribution Considering that the heterogeneity component also
follows a gamma or log-normal distribution, a credibility expression 1s obtained,
which provides a predictor of the average cost per claim for the following period. For
instance, a cost-bonus will appear after the first clarm if its cost 1s infenor to the esti-
mation made by the rating model

Experience rating with a bayesian model 1s possible only if there 1s enough hetero-
geneity tn the data For instance, n the negative binomial model without covariates,
the estimated variance of the heterogeneity component 1s equal to zero if the vanance
of the number of claims 1s inferior to their mean (see Pinquet et al (1992)) In that
case, a priori and a posterion tariff structures are the same, and the bayesian model
fauls.

A sufficient condition for the existence of a bonus-malus system derived from a
bayesian model 1s provided 1n section 2 3 The existence 1s equivalent to an overdis-
persion of residuals related to the seventy vanable. This approach allows one to test
for the presence of a hidden information, that 1s relevant for the explanation of the
severity varables.

The heterogeneity on distributions for severity variables, that 1s not explained by
the rating factors, 1S revealed through experience on policyholders The paper investi-
gates the rate of this revelation, which 1s found to be lower for average cost per claim
than for the frequency

For the sample considered here, the unexplatned heterogeneity related to costs 1s
stronger for gamma than for log-normal distributions Besides, the latter family gives a
better fit to the data.

If the heterogeneity components on number and cost distributions are independent,
the bonus-malus coefficient for pure premium 1s the product of the coefficients related
to frequency and expected cost per claim. But one may think that the behavior of the
policyholder influences the two heterogeneity components n a simtlar way, and so
that they are positively correlated

Lastly, this paper proposes a bonus-malus system for the pure premium of nsu-
rance contracts, that admuts a correlation between the two components Although the
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likelihood of a model based on number and costs of claims is not analytically tractable
n the presence of such a correlation, consistent estimators for the parameters exist.
The correlation between the number and cost heterogenerty components appears to be
very low for the sample investigated here

I A PRIORIRATEMAKING

Let us suppose a sample of policyholders indexed by 1, the policyholder 1 being obser-
ved during T, periods The analysis of the correlation between the number and cost
heterogeneity components shows the necessity of considering a non constant number
of periods for each policyholder. The working sample 1s presented in 1 3

1.1 Frequency of claims
We write

Nu - P(An) /-{n = exp(w,, a)

=1, ,7,°
to represent the Poisson model where n,,, the outcome of N,, is the number of claims
reported by the policyholder ¢ in period t The parameter A, is a multiphcative function
of the explanatory variables, the line-vector w, rcpresents their values, and o 1s the
column-vector of the related parameters.

The frequency-premium (estimation of the expectation of N,) 1s denoted as

~

A, =exp(w,, &). and nres, =n —j.,, 1s the number-residual for the policyholder ¢

i

and period ¢. The maximum likelihood estimator of o 1s the solution to the equation:
anes” w, =0,

nr

which 1s an orthogonality relation between the explanatory variables and the residuals
The rating factors have 1n general a finite number of levels, and the explanatory vana-
bles are then indicators of these levels The preceding equation means that, for every
sub-sample associated to a given level, the sum of the frequency premiums 1s equal to
the total number of claims This property means that the preceding model provides the
muluplicative tanff structure that does not mutuahize the frequency-risk.

One may think of replacing n,, by tc,, the total cost of claims (pure premium rate-
making) 1in the hikelihood equation. When applied to the working sample, this non
probabilistic model shows that the elasticity of the pure premium risk with respect to
the frequency risk 1s greater than one (see section 1.4.1).

1.2 Models for average cost per claim and pure premium

1.2.1 Gamma distributions

Let ¢, be the cost of the ;) claim reported by the policyholder 1 n period 1 (1 < y< n,,
if n,21). We shall suppose 1n the paper that the costs are strictly positive. This as-
suniption gives another reason to discard the third party Lability guaranty: owing to
fixed amount compensations, a policyholder involved in a claim caused by the third
party can make his insurance company earn money.



36 JEAN PINQUET

Considering gamma distributions, we write
C’J - ’y((l’bﬂ)’bll = exp(zl[ﬂ)’

or b,C, ~y(d). The coeffictent b, 1s a scale parameter, a multiplicative
funcuon of the covanates, that are represented by the line-vector z,,.

Let ¢, = d/b = d/exp(z,,ﬁ) be the estimation of the average cost for each claim
reported by the policyholder 1 1n period 1. If we suppose that the costs are independent,

the maximum Iikehihood estimator of § 1s the solution of the following equation.

Z("rl ~(c, 16, )z, = ZCres” z, =0
L [N

The term n,, —(tc, /¢,) 15 the sum, for the claims reported by the policyholder ¢ 1n
period ¢, of their cost residual 1—(c,, /¢,). 1wt 1s written cres,, The likelthood equa-
tion in B can hence be interpreted as an orthogonality relation between the explanato-
ry vartables and cost-residuals.

The average cost per claim increases with the frequency nisk (see 1 4.2), which con-
firms the previous conclusions about the risks related to frequency and pure premium

1.2.2 Log-normal distributions
The other distribution famuly considered in this paper is the normal distribution family
for the logarithms of costs

log C,, ~ N(z,B,0° )@logC =z,B+¢,, €, ~ NO,o .

e
The hkelithood equation giving ﬁ 1s
Z[Z (lOg Ciy _ZIIB)J e = Z lcres:r = 0.
i\ y Lt

This equation 1s also an orthogonality relation between explanatory variables and
residuals.

1.2.3 Pure premium model
The total cost of claims reported by the policyholder 1 1n period r may be written as'

Nll
7C, =Y C,
1=

It1s a sum of N, 1.1d outcomes from a variable that we denote as C,,. The pure pre-
muum 1s- E(TC,) = E(N,) E(C,)).
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1.3 Presentation of the working sample

The sample investigated 1n the paper 1s part of the automobile policyholders portfolio
of a French insurance company It 1s composed of more than a hundred thousand poli-
cyholders The damage guaranty being considered here, only the contracts with that
kind of guaranty were kept Policyholders can be observed over two years, and each
anniversary date, changing of vehicle or coveiage level entails a new penod. Only
claims concerning the damage guaranty and closed at the date of obtention of the data
base were kept Reserved costs were thus avoided The rating factors retained for the
estimation of number and cost distributions are
» The characlenstics of the vehicle. group, class, age
« The characteristics of the insurance contract' type of use, level of the deductible,

geographic zone

Other rating factors are the policyholder’s occupation, as well as the year when the
period began (1n order to allow for a generation effect) These eight rating factors have
a finite number of levels, the total number of which 1s 44 The explanatory variables
are binary, and indicate the levels for the policyholders- in order to avoid collinearity,
one level 1s suppressed for each rating factor, the intercept being kept anyway. There-
fore, we shall consider (44-8)+1=37 covariates. With the notations of the paper, we
obtain: a,ﬁeR”;w 2. €{0,1}°.

H a1

The estumated coefficients derived from the rating model depend on the level sup-
pressed for each rating factor. Results that are independent from the suppressions are
obtained by dividing the coefficients by their mean in the multiphcative model. These
standardized coefficients can be compared with the relative severnity of the levels

The periods having not the same duration, the parameter of the Poisson distribution
must be proportional to the duration. The results given on the frequencies remain
unchanged if, 4, being the duration of period r for the policyholder i, we write:

A, =d, exp(w, @), and A, =d, exp(w, &)
The working sample includes 38772 policyholders and 71126 policyholders-

pertods These policyholders reported 3493 claims The average duration of the
periods 1s nine months, and the annual frequency of the claims 1 6 7%.

1.4 Empirical results

1.4.1 A priori rating for frequency and pure premium
When applied to the number of claims or their total cost, the Poisson models provide
standardized coefficients, that can be compared with the relative seventy of the levels
For almost each rating factor, the variance of the coefficients related to the levels is
infertor to the variance of the relative severil, For instance, for the “type of use”
rating factor, one gets
frequency relative severity standardized coefficient
professional use 1.623 1278
standard use 0982 0992
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pure premium relative severity standardized coefficient
professional use 1747 1.177
standard use 0.979 0995

The distributions of the policyholders among the levels of the different rating fac-
tors are not independent from one another Policyholders with a professional use have,
for the other rating factors, more risky levels than the other policyholders The Poisson
model does not mutualize the nsk: hence these policyholders have, with respect to
other rating factors, a level of relative severity equal to (1.747/1 177) -1 = 48 4%
more than the average, 1n term of pure premium,

The elasticity of the pure premium with respect to the frequency risk 1s equal to
1 52 on the sample, and the difference from 1 1s significant (the related Student statis-
tic 1s equal to 5.93) Hence, if the frequency risk 1s multiphed by two, the average cost
per claim increases by 2°%2 — | = 43.5%, and the pure premium increases by 187%.

This positive correlation between the risks on frequency and average cost per ¢laim
1s observed on each rating factor, except for the geographical zone

1.4.2 A priori rating for average cost per claim
On the sample of claims, the gamma model leads to the following results (rating fac-
tor: type of use)

average cost relative seventy standardized coefficient
professional use 1.076 0933
standard use 0996 1 003

The estimated elasticity of the average cost per claim with respect to the frequency 15
equal to 0 51, which confirms the results obtained 1n the preceding section.

2 EXPERIENCE RATING FOR FREQUENCY AND AVERAGE COST PER CLAIM

2.1 Heterogeneous models

In a bayesian framework, the allowance for a hidden information, relevant for the

rating of risks, can be performed in the following way

» the starting point is an a prior rating model If v represents the severity variable(s),
the hikehhood of y will be wnitten f,(v/8,,x), where x 1s the vector of explanatory
variables. and 6, the vector of parameters related to them

* A heterogeneity component (scalar, or vector) 1s added to the model, which measu-
res the influence that unobserved variables have on the severity distribution. If u 15
this component, a distribution of y conditional on « and the explanatory vanables 1s
defined, and we denote 1ts ikelthood as f.(v/6,,x,u) In practice, the a priori dis-

tribution 1s equal to the distribution defined conditionally on u, for some value u°
of u f-(y/Ol,.r,uO)= Jo¥/6,,x)¥8,,x,y If us ascalar, u®=0orl, according
to the fact that « 1s included additively or multiplicauvely in the conditional distri-
bution
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¢ The credibility esttmation of u«,, the heterogeneity component for the policyholder
1, leads to a bonus-malus system. It rests on a heterogeneous model, in which u, is
the outcome of a random variable U,, the (U,),o, , being 11d. and their distnbu-
tion being parameterized by 6,. The likelithood of y, n the model with heteroge-
neity 1s obtained by integrating the conditional likelihood over U, , that 1s to say

f(-vl /9’ xl) = Eez [j;‘(yl /GI’XI’UI)J’

with 6 =(6,,0,). The heterogeneity component vector on number and cost distribu-
tions will be denoted, for the policyholder

UI”
v=l "

where n stands for the numbers and ¢ for the costs The link between heterogeneous
and bayesian models is made clear in the example that follows

2.2 Examples of heterogeneous models

2.2.1 Number of claims
With the notations of 1 1, the distributions defined conditionally on u,, are

N, ~ P(d,u,,), with U, ~y(a,a)

in the heterogeneous model The expectation of U, 1s equal to one, and its variance 1s
I/a On a period, the number of claims distribution s negative binonual 1n the hetero-
geneous model

The negative binomial model can be considered as a Poisson model with a random

component, if we write 4,U,, = A, If the intercept 1s the first of & explanatory varia-

n

bles, and 1f ¢, 1s the first vector of the canonical base of [R‘, we have

Ay =exp(w, o +log(U,,)) = exp(w, (o + log(U,,)e|)) =exp(w, &,)

In the last expression of A,. the parameter @, = ot +log(U,,)e, 1s random, and the
formulation 1s bayesian But 1t 13 less tractable than that of the heterogencous model,
as well for bonus-malus computations as for statistical inference.

2.2.2 Gamma distributions for costs of claims
The heterogeneous models that follow, which allow us to design bonus-malus systems
for average cost per claim, suppose the independence of heterogeneity components on
the number and costs distributions The empirical results presented later will make this
assumption plausible.

For the gamma model and with the notations of 1.2 1, the distributions conditional
on u, are

C, ~v(d.bu.,), with U, ~ y(6,6)

0=

in the heterogeneous model The heterogeneity component 1s included, as the rating
factors, 1n the scale parameter of the distribution
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In the heterogeneous model, one can write: C, =D, /(b,U,). with
D, ~v(d), U, ~v(,0),D, and U, being independent The vanable C,, follows a
GB2 dlstnbutlon (see Cummuns et al (1990)), and D,, represents the relative severity

of the claim.

2.2.3 Log-normal distributions for costs of claims
With the notations of 1.2 2, the heterogeneous model 1s

logC,, =z,8+¢€, +U,, U, ~ N(0,07),

u/
where the €, and U, are independent. The variable g,, represents the relative se-
venty of the claim

The heterogeneous model used to design a bonus-malus system for pure premium
will be presented after the empirical results related to the preceding models.

2.3 A sufficient condition for the existence of a bonus-malus system derived
from a bayesian model

Experience rating with a bayesian model 1s possible only if there exists enough hete-
rogeneity on the data Considering for instance the negative binomial model without
covariates, the estimated variance of the heterogeneity component 1s equal to zero 1f
the variance of the number of claims 1s lower than their mean (see Pinquet et al.
(1992)). In that case, a priori and a posteriori tariff structures do not differ, and the
bayesian model fails.

A sufficient condition for the existence of a bonus-malus system derived from a
bayesian model 1s provided here: 1t will be applied later on to the models for number
and cost of claims

Let us start from a heterogeneous model, as defined in 2 1 The heterogeneity com-
ponent is supposed to be scalar, and 1ts distribution 15 parameterized by the vanance
o? The parameters of the model are 6 = (9,,02) and we shall write 8° = (éO,O), é,o
being the maximum hkelithood estimator of 8, 1n the a prior rating model.

If the right-derivative, with respect to o?, of the log-likelihood 1s positive 1n
60, 6% will be positive 1n the heterogeneous model. The existence of a bonus-malus
system 1s hence related to the sign of a lagrangian, which 1s part of the score test for

nulhty of o’ (see Rao (1948), Silvey (1959)). With the notations of 2 1, and denoting
the lagrangian as £, one can prove:

ZIng(} /9| ,O' x,)- Zlogfo(y /9,,,\ )= Lot +0(0' ), with
=—2(res

res, = [(—fu— logf.(y,/élo, x,,u)l’:“o iS5, = —(% log f. (3, /é,o x,,u)]

ll=ll0
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See Pinquet (1996b) for a proof, and references to a recent literature. The term res, is

a residual, which 1s related to those encountered 1n the likelihood equations for num-
bers and costs. The condition for existence of a bonus-malus system is

(>0 Z‘res,2 > Zs,

. 1 r
It can be interpreted as an overdispersion condition on residuals.

2.4 Prediction with heterogeneous models and bonus-malus systems

Let us suppose a policyholder observed on T periods® Y =(y,, ,yy) 1s the sequence
of severity variables, and X =(x,, ..,x;) that of the covariates The sequences X
and Y3 take the place of x, and y, n the preceding sections The date of forecast T

must be explicited here. and the individual index can be suppressed, since the policy-
holder can be considered separately Besides, belonging to the working sample 1s not
mandatory for this policyholder

We want to predict a nisk for the period 7+/, by means of a heterogeneous model
For the period 1, this risk R, 1s the expectation of a function of ¥, (y, 1s the outcome
of ¥,) For instance, Y, 1s the sequence of both number and costs of claims 1n period ¢,
and R, the pure premium, 1s the expectation of the total cost.

We now include a heterogencity component «, as defined in 2 ! The distrnibution of
Y, conditional on « depends on 8,,x, and u. This applies to R,, and we can write
K, =hg (x,) glu), for the three types of nisk dealt with later (frequency of claims,
average cost per claim, pure premium), g being a real-valued function

A A T4

A predictor for the risk in period T+/ can be written as h9| (X,H)g(T;)I, with g(Tu)l a

credibility estimator of g(u), defined from:

AT+1

8(w) = arg min £, [(g(U)—a)? £(7% /61,470,

T
£ 0,5, 0 =] £ 6%, 0).
t=1
The expectation 1s taken with respect to U, and one obtains

ATl Eg, [8(U) £:(rr/6,, X7, U)]
2 (1) = Eglg(U)/ X7 Yy 1= —2
gy = Eglg(U)/ X7.Y; Ep | fo(¥r /6.4, U)]

the expectation of g(U) for the posterior distribution of U. Replacing 6, and 0, by
their estimations 1n the heterogeneous model, we obtain the a posterior: premium

Rpf) = hy () Eglg) 5. e,

computed for pertod T+/ Tt can be written as
E;[g(U)/x)s s Xpi¥1ae 0 ¥7]
E; [8(U)]

(1 Cxra)E; s x
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The first term 1s an a prior1 premium, based on the rating factors of the current period.
The second one 15 & bonus-malus coefficient it appears as the ratio of two expecta-
tions of the same variable, computed for prior and posterior distributions Owing to the
equality Egl E4(g(U)/ X7, Y7r) = Eglg(U)] = Eq [g(U)], the rating 1s balanced.

2.5 Bonus-malus for frequency of claims

2.5.1 Theoretical results
With the notations of 2 2.1 and 2.4, we wiite y,=n, x,=w, 6, =a;

R =EN)=Au, hy (x)= A, gwy=u; Xp=0w, wp),Yp=(n,. ,np). The pos-
terior distribution of U 15 a y(a+zl n,,a+2’/1,) (see Dionne et al (1989, 1992))

Hence:

2

+
4~
=

Eg[U/Wl,..,wT,Ill,...,nT]=l‘lT+( = 0

a+ )y A

4

M~

Replacing A, by i, =exp(w,&) and @ by a in equation (1) leads to the bonus-malus

coefficient. There will be a frequency-bonus 1f the estimator of a1 negative, or

if the number-residual z[(n, - i,) 1S negative

Considering in equation (1) that N, follows a Poisson distribution, with a parame-
ter A,u, &’"' converges towards u when T goes to +oo The heterogeneity on number
distributions, which 1s not explained by the rating factors, 1s hence revealed comple-
tely with time. It may be interesting to investigate the distribution of bonus-malus
coefficients on a portfolio of policyholders, as well as 1ts time evolution (see section
2 5.2 for empurical results)

We explicit now the condition for existence of a bonus-malus system for frequen-
ctes On the working sample, and with the notations 1n 2 2.1, one can wnte

log /- (¥, /é,o,x,,u) = Z[n”(log /i” +logu)— i,,u —log(n,, ')],
{

with 4, = exp(w,,do), &° being the estimator of & 1n the a prion rating model With

the notations of 2 3, and with «® = 1, we obtain

by 2
res, =Z(n”—/l”),.s, =2n”‘/,>0® E nres; > E n,
r f i i

where nres, = z/(”" - /:t,,) 15 the number-residual for policyholder 1, and n, = Z,n”

1s the number of claims reported by this policyholder on all periods This condition
means that, considering the total number of claims, 1ts variance 1s superior to i1ts mean,
the variance being calculated conditionally on the explanatory variables. This empiri-
cal overdisperston condition can be related to the theoretical overdispersion of the
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negative binomial model- if N, ~ P(AU,), U, ~ y(a,a)(with a=1/c?), one gets.
V(N,)= A, + 20 > A, = E(N,)

A score test for nullity of o? can be peiformed from the Lagrange muluplier
L= /Z)El(nrex,2 —n,) The previous remarks allow us to reject the nuihty of o’ f

L 1s large enough If the number of policyholders goes to infinity, §L =L/\/§(L)
converges towards a N(0,/) distnibution. One can prove that V(L): I/ZZ, /i,z with
i, = Z,’i" If u,_, 1s the quantle at the level 1—¢€ of a N(0,1) distribution, the null

hypothesis 2 =0 will be rejected at the level € 1f E" > u_,.
Besides. the lagrangian provides an estimator of the parameters. Starting from a

~~0
and ¢2? = 0 1n the algorithm of the likelihood maximisation, one gets at the following

step
z;1re.s',2 -n, 2[(", - i,)2 - ”:]
a'=a’; == = = &

v YR Y 2

R o~
The estimators &' and 62 can be shown to be consistent for the negative binomal
model (see Pinquet (1996b) for demonstrations)

2.5.2 Empirical results
From the sample described 1n 1.3, we obtain

> nres? = (n, = 4,)° =3709.24; ) n, =n =3493,

i

and expertence rating 1s possible for frequencies Without explanatory variables (apart

from total duration of observation tor each policyholder), one obtains:

Z nre.\‘,2 =374625 The sum of square of residuals decreases when explanatory
t

vanables are added, and the condition for existence of a bonus-malus system 1s more

restricuve when they are present. This 1s logical because they are a cause of heteroge-
neity on a prion distributions

Besides, Zi,z =389 48 . and the estimator of &> given in (2) 1s

{
E 2 §
nres; — H,

s L 4 ~ ' 216.24
V(L) zif 389 48

=0.555.

As a comparison, the maximum likelihood estimation for the negative binomial model
is 62 =0 576. The score test for nullity of o? 1s based on the statistic
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/ ZI‘I"@S? —ZH, 216.24

L= = = =77
g o Jzz 7 J778.96

»

and the null hypothesis 1s rejected Examples of bonus-malus coefficients derived
from the credibility formula are developped in actuanal and econometric hterature
(see Lemaire (1985), Dionne et al (1989,1992))

Evolution throughout ime of bonus-malus coefficients, as well as a posterion pre-
miums related to them, will be investigated for the risks related to frequency and
average cost per claim We consider here a simulated portfolio, derived from the wor-
king sample In this portfolio, the characteristics of each policyholder in the sample
are those of the first period, and we suppose that they remain unchanged If this as-
sumption does not hold individually, it 1s however plausible on the whole population
Investigating the distribution of bonus-malus coefficients 1n the heterogeneous model,
one can measure their dispersion on the portfolio by estimating their coefficient of
variation after 7 years (see Pinquet (1996a)) Considering the frequencies, with the
tariff structure obtaned 1n 1.4 1 and % = 0576, we obtain:

TABLE 1
REVEL ATION THROUGHOU ] TIME OF HETEROGENEITY RELATED TO NUMBER DISTRIBUIIONS

Cocfficients of variation (fiequency of claims)
a priori premium 0 372

T=1 T=5 T=10 T=20 T=+00
bonus-malus coefficient 0144 0300 0392 0494 0759

a posteriort premium 0411 0515 0590 0673 0891

The coefficient of variation is a measure of the relative dispersion of bonus-malus
coefficients and premiums Apart from the a priont premium, the elements of the pre-
ceding table are an estimation of the expectation in the heterogeneous model. After
nine years, the relattve dispersion of the bonus-malus coefficients exceeds that of the a
priort premium. This means that, after nine years, the heterogeneity revealed by the
observation of policyholders becomes more important than that explained by the rating
factors.

2.6 Bonus-malus for average cost per claim (gamma distributions)

2.6.1 Theoretical results
With the notations n 2.22 and 2.4, we can wnte: y, =(¢,) o ,.% =%}

R = E(C,)=d/(bu); 6, =(3vd);"e, (x,)=4d/b,; g(e)=1/u. The bonus-malus coeffi-

cient on average cost per claim for period 7+/ 1s derived from the credibility estimator
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of 1/u Since the a prior distribution of U 1s a y(d,8), with a density proportional to
f5(u) = exp(—5ll)u5"', one gets:
d(En )+8-1
fs @)X fuo( Y /6, Xy, 1) = exp((§+ D bc, Y ,
1
times a coefficient independent of u The posterior distribution of U 1s therefore a

y(6+ (I(Zn, ), 0+ Zb,cu ), and:

[}

5+Zb,c”
l/ ] ¥
=E XYy | = ———=—
9[U T 5—l+d(2n,)

We have Eg (1/U)= 6/(6 —1) (we suppose & > 1, a necessary condition for /U 1o

I//:TH

have a finite expectation) Onutting the period index, and writing Sy for the set of
claims reported by the policyholder during the first T periods, the bonus-malus coeff1-

cient 18
E.[ I /X,Y,} A+ Y (¢, /E5(C)))
6 U JES,

]
= = , (3)
E. I:i] ’7+'ST{
9, U

where we wrote: 77:(5—])/(1.EB(CJ)=Egz(d/(bjU))z(d/bj)(ﬁ/((‘)‘—l)). The

rating structure derived from (3) 1s obviously balanced. Writing Eé(Cj)zéj, and

cresy = Z;es,(l —(cj /Ej }) the cost-residual for the policyholder, there will be a

cost-bonus 1f the cost-residual 1s positive The bonus 1s then equal to

+ ch/éj

€5, cres;

ﬁ+|57’, - ﬁ+,ST}

| —

The time evolution of the distribution of bonus-malus coefficients s investigated 1n
262 Considering the simulated portfolio defined in 2 5.2, the heterogeneity unex-
plained by the rating factors 1s revealed more slowly for cost than for number distri-
butions This 1s not surprising, as far as no clasm means no information on the cost
distribution — if there 1s no correlation between the two heterogeneity components —
whereas no claim generates frequency-bonus.

Let us apply to this model the condition allowing cxperience rating. For the wor-
king sample, we denote S, as the set of claims reported by the policyholder over the
T, periods. Onc can write

logﬂ(_y,/é,0 Yy X ) = 2(30 logu —I;,?cuu)+ 2,

J€S,

where z, does not depend on i With the notations of 2 3 and with ¥° = I, we obtain:
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0 7 - 1 |
res, = zl(d0 - b,?cu ); s, = n,do; L>0& - z:cres,2 > -62—0
i

JES,

The total number of claims over the sample s n, and cres, 1s the cost-residual for
the policyholder 1 This residual 1s equal to O without claims, and otherwise.
- _ 20\ — ~0 _ 30,70 .
cres, = Zjes, (1 (Cu /c,j N= 2155’ cres,, , where ¢, =d /b,/ 1s the estimator for the

expectation of C, Now, we have: E(1-(C,/E(C,))* = V(C, ) ENC,))=
CVZ(CU)= 1/d, f Cu ~y(d, bu) The condition for existence of a bonus-malus sys-

tem 1s hence related to the square of coefficients of varation

2.6.2 Empirical results
Considenng the working sample, one obtains-

| 2 ]
— ) cres; =1.092;— =082,

and experience rating for average cost of claims 1s possible For the sample of policy-
holders that reported claims, the maximum likelithood estimators for the GB2 model
are.

5=3.620,d=1807,7=(5—-1)/d=145.

The bonus (negative 1n case of malus) related to average cost per claim 1s equal to
cres,/(f]+ 'Sr|) It remains equal to zero as long as there are no claims. After the first

claim, if we consider the cases where the ratio actual cost-predicted cost 1s equal,
either to 0.5 or to 2, the related cost-residuals are equal to 0 5 and -1 respectively The
multiphicative coefficient 1/(1+17) being equal 10 0.408, we obtain a cost-bonus of
20.4% 1n the first case, and a cost-malus of 40.8% 1n the second case This coefficient
1s independent of the period during which the claim occurs

The distnibutions of bonus-malus coefficients and a posteriort premiums can be n-
vestgated on the simulated portfolio defined in 252 With the tantf structures obtai-

nedin 14 }and]1 4.2 and 5 =3 62, we obtain (see Pinquet (1996a))

TABLE 2
Rt VELATION THROUGHOUT TIME OF HETEROGENEI LY REL ATED TO COS [ DISIRIBU LIONS

Coefficients of vanation (expected cost per claim)
a priort premium 0 401

T=1 T=5 T=10 T=20 =+oo0
bonus-malus coefficient 0128 0268 0 356 0453 0 786
4 posteriort premium 0427 0504 0 568 0 648 0937

The relative dispersion of the bonus-malus coefficients exceeds the dispersion of the a
priort premium after fourteen years Unexplaned heterogeneity on cost distributions 1s
revealed more slowly than 1t was for numbers
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2.7 Bonus-malus for average cost per claim (log-normal distributions)

2.7.1 Theoretical results
With the notations 1n 2.2.2 and 2.4, we wnte y =(ogc,), ., :% =2,

logC, ~ N(z,B+u,0%)= R, = E(C,) =exp(z, B+u+(c/2)), 6, = (B,ch),
h@. (x,)=exp(z,[5+(0'2/2));g(u)=exp(u). The bonus-malus coefficient 1s derived
from the credibility estimator of exp(«). Now

2
{1 m tley — Eg (TLCy)
X fu(Ye )8, X ) =cxp| - —| —+—L - 1
fa’i(tl) SO0 P 2[0’6 azj[u m; +(c>10d)

!

tumes a coefficient independent from u We wrote =ZI=|"“ tep =Z,e5, logc,,

E9| (TLCp) = Z,es Ee, (log Cj):S7 is the set of claims reported by the policyholder
I

during the 7 periods (|ST| = mT), and the period index is omitted Hence, the posterior

distribution of U 18

tley — Eg (TLCy) |

m, +(c*10d) (/o) +(npic?)

U/(XT,)’7)~N(

The bonus-malus coefficient for period 7+1 1s equal to

Eélexp(U)/XT, Y7l —ex lcresy - (tnTOA'a /2)
- ~2 a2
E; lexp(U)] (6216%)+mn;

)

writng lcresy = 21651 leres,, lcres, =logc, - Eél (logC)).

The condition for existence of a bonus-malus sytem 1s easily interpretable with the
log-normal model We have

A (leres, —-u)2
log ﬁ:(_\', /GIO,,\‘”L[) =_Z+U

€S, 2 ol

plus terms that do not depend on u, with lcres, =log(c, ) — ZUBO- with «” =0 (see

2 3), the existence condition 1s°

bl
(Zlcresu)“ 2
J€S, n i /\20
Z —o3 <0 =02 lcrexu -n g |>0

I
. (o) o2 (o2) | 7T e,

0 2 10
Now, 1n the a prion rating model. no? = E lcres, . with o? the maximum likeli-
1)

hood estimator of ¢. Experience rating 1s possible 1f
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2
2. .. .
z,(zjes, lcresu) - zw [cres, is positive, that is to say 1f

2 ZIcresU lcres, >0

1/n,22 J,heS,  2A

This condition means that, for claims related to policyholders having reported several
of them, cost-residuals have rather the same sign. If the first claim has a cost greater
than 1ts prediction, 1t will be the same on average for the following ones.

One can prove that, if £ 1s the lagrangian with respect to 0'6, we have

Zn, (n,—1 o z Zlcresu leres,
2

~ L 1/n,22 JhES, j2k
V([_.)= i - J J

=i, = 0l=x =
2 TR0 Y -n

!

P
and that 0'(2J 1S an consistent estimator of 0'6 (see Pinquet (1996a)). It appears to be

the average, for the policyholders having reported several claims, of the product of
residuals associated to couples of different claims

2.7.2 Empirical results

From the working sample, we obtain Zl/" - Z lcres, Icres, =100 80, and

JheS, =k
experience rating is possible Hence
2 2 fcres, lcres,
|
O'LZJ _ 122 keS, J2k _ 100 80

=0.171.
> nn, 1) 590

The nullity of o} 1s tested for with &b = L/\F/(L)z 2.86 The critical value for a
one-sided test at a level of 5% is 1.645, and the null hypothesis 1s rejected The maxi-
mum likelihood estimators of of and o? n the heterogeneous model are:
65,=0172, 6% =0.855.

Bonus-malus coefficients can be computed from the examples considered with the
gamma distributions (one claim, and a ratio actual cost-expected cost equal to 0 5 or

2) The residual associated to a claim s the logarithm of the latter ratio In the first
case, the bonus-malus coefficient 1s equal to

exp

— o 2 - -
leresy — (765 12) | exp log2-0.086 | ¢sg
(0855/0.172)+ 1

(6°160)+ms

and 1s assocrated Lo a cost-bonus of 12 2% In the second case, the bonus-malus coef-
ficient 1s equal to 1 107, and implies a cost-malus of 10 7% These results can be com-
pared with 20 4% and 40.8%, the boni and mali derived from the gamma distnbutions,
although the ratios actual cost-expected cost are different in the two models. They
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must be different. since the cost-residuals 1n the gamma and log-normal models are
equal to 1~(c, /¢,5™™") and log(c, /6,I'°g"'”””"’) respectively, whereas they fulfill

the same orthogonality relations with respect to the covarates.

Considering the simulated portfolio defined in 2.5.2, the heterogeneity on cost
distributions that 1s unexplained by the a priori rating model 1s more important for
gamma than for log-normal distributions This can be seen by comparing the linmits of
the coefficients of variation for the bonus-malus coefficients, as we did n sections
252 and 262 For the GB2 model. this limit 1s the coefficient of variation
of 1/UU~y(8.5) (see Pinquet (1996a)) With §=362, it 1s equal to

~

1/ 6 -2 =0786 Considering the log-normal model, the limut is the coefficient of
vanation of exp (U), U ~ N(O,é’&,)

With 63 =0.172. 1t 1s equal to \Jexp(62)—1 =0 433.

This result can be related to a comparison between the two a priori rating models
If Fg . 1s the continuous distiibution function of Y, (here equal to the cost of
.y

the claim j, or its logarithm) g = Fgl.‘l()/]) 1s uniformly distributed on [0,1]

Computing the residuals e,,¢, = F.

1=, (Y)), and rearranging e, n the increasing
T

order, by ¢, £. 2¢,, we derive the Komolgorov-Smirnov statistic
KS = «/;maxlsjs" I(y/n)—e; )l We obtain K§=2 83 (resp KS=1.04) for the gamma

(resp log-normal) distribution family. The latter family seems to fit the data better
than the gamma family, and will be retained for the bonus-malus system on pure
premium

The two last results can be related to each other. there 1s more unexplained hetero-
geneity for gamma than for log-normal distributions, and the latter provide a better fit
to the data This fact raises a question: 1S apparent heterogeneity only explained by
hidden information. or can 1t be also explained by the fact that the model does not
make the best use of observable information?

3 BONUS-MALUS FOR PURE PREMIUM

3.1 The heterogeneous model

From the preceding results, we shall retain log-normal rather than gamma distributions
for costs Besides, they are better integrated 1n a heterogeneous model with a joint
distribution for the two hetcrogeneity components related to the number and cost dis-
tnbutions We retain here a bivanate normal distribution The parameters of the rela-
ted heterogeneous model can be estimated consistently, although the likelihood 1s not
analytically tractable

A way to derive consistent estimators for heterogeneous models 1s proposed in Pin-
quet (1996b) It 1s based on the properties of extremal estumators, the maximum likeli-
hood estimator being of this type. The estimators of the parameters of the a priorn
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rating model have a limit 1f the actual distributions include heterogeneity, and this
limuit 18 tractable in the model investigated here Consistent estimators are then obtai-
ned from a method of moments using the scores with respect to the variances and the
covariances of the heterogeneity components

The heterogeneous model 1s hence composed of Poisson distributions on numbers,
log-normal distributions on costs, and of bivariate normal distributions for the two
heterogeneity components. The notations are the following.
* The distributions conditional on «,, and u, ,, the heterogeneity components for

ni (¥

number and cost distributions of the policyholder «, are

N, ~ P(4, expu,,)),log C,, =z, B +¢€, +u,, with

nr

A, =exp(w,a), €, ~ NO,6%),1=1,..,T:y=1, .n

*t

* In the heterogeneous model, U,, and U, follow a bivariate normal distribution

ni

with a null expectation and a vanance equal to
v _ (\/"” ‘/H( J
v{‘ﬂ V(‘(

The parameters of the model are

a ‘/l”l
01 = ,B » 92 = th
o? v

cc

Bonus-malus coefficients are computed 1n the heterogeneous model from the ex-
pression given in section 2.4

EleW) %) B [«s (7 /8.2, 0)]
E 18U E; [qW)IE [sW)f (7 /6.%.0)]

“)

We can write.

o glu,,u.)=-exp(u,) for frequency

e g(u,.u.)=-exp(u, ) for average cost per claim

e glu,.u )=exp(u, +u, ) for pure premium,

because the expectations of N,,C, and TC, are respectively proportional to exp(u, ),
exp(u, ) and exp(u, +u, ), if computed conditionally on «, and u, The mathematical

expectations that lead to the bonus-malus coefficients (see equation (4)) can be esti-
mated 1f we can write U = f; (§), where the distnibution of § 1s independent from 6,

1t 1s enough to simulate outcomes of § Such an expression can be obtained by writing
the Choleski decomposition of the variances-covanances matrix, 1 e.

v, V 0 2
V = ( nn He ] = TwT‘;; T‘p - ((pllll J => v = ((pllll (pl‘l,ll (IDFII 2 j
‘/( " ‘/(( gD( n (p( € (pIHl (P{‘H (p;;ll + (p( C
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One can wnite for the policyholder

U Un TSS S S, ~ N(0,/
I—U“ 1 S“~1~ (sz),

and we have U, = 102(51)’ ¢ being related to V, hence to 6,. The hkelihood used 1n

the bonus-malus expression (see equation (4)) 1s obtaned as the product of the hkehi-
hoods related to numbers and costs With the notations of 2 4, we have

log f.(¥7 /6, .4,U) =

loge, —z,8-U,)*
_[Z/L]exp(U,,H[En,jU”—Z(OgC” 7:;? A , with

! 1
Xy =0, oxp) X, =0z ) Y =0 yp) v =m0 (c)) 2y 0

plus terms that do not depend on the heterogeneity components Replacing 8, bv 6, .
we obtain

fa( YT/é| , X, U) = exp(Vy) xterms independent from U, with

2 -
-3 4, exp(U, )+ npu, - MrUe Z2U.lcresy 5)
; 20°

A bonus-malus coefficient for a policyholder and for the period T+1 depends then on:
Z A, . which 1s proportional to the {requency premium of the policyholder on all
f

periods This premium 1s equal to
E(TNT) = Zl E[CXP(UH) [ZA ]exp (pnn - [ZA ]exp -

* iy, the number of claims reported by the policyholder during the T periods
» lcres,, the sum of residuals on the logarithm of costs of claims reported by the
policyholder 1t represents their 1elative severity.
From equation (4), bonus-malus coeffictents on frequency, expected cost per claim,
and pure premium are respectively equal to

Elexp(U, +V,)] Elexp(U, +V,)] Elexp(U, +U, + V)]
Elexp(U,)] Elexp(Vp)] Elexp(U )1 Elexp(Vy)] Elexp(U,, +U, )] Elexp(Vi)l

The coefficients are estimated by simulations of outcomes of S, and S. For instance,
we nfer that the estimated covanance

C/o\v( exp(U,) exp(V) ]
Elexp(U )1 Elexp(V))]
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is a frequency-malus The existence of bom and mali for the different risks can be
interpreted through the sign of estimated covariances
The a posteriort premtum is obtained by the expression given 1n section 2 4

Eé[g(U)/XT»YTJ

)

The first term 1s the a priort premium [t 1s an estimation of

((Pll” +(p(‘ll)2 +(p(2( J

Ars exp(zr,, B)ElexpU, +U )] = exP[WTHa +27 B8+ )

because U, +U, =(¢,, +0,)S,+ .S, -
Besides. (g, +(p“,)2 + (0(2r =V, +2V, +V_ .

We should have consistent estimators for the parameters, in order to derive bonus-
malus coefficients. A method to obtain such estimators was quoted in the introduction.
When applied to the preceding model, it leads to the following results

N a0
We write &°, ﬁ”. o2 the estimators of the parameters in the a prion rating model, and

A = Zlcxp(w,,do),tlc, = ZU log(c,, ). £ (TLC)) = 21 n,,:,,ﬁ,!ic', = Eé:,(TLC,)= 2"1,,2,,l§0

The variances and covariances of the two heterogeneity components are consts-
tently estimated by:

2()1, - i, — n, Z(n, - /i, Wile, —I‘iC')

A

vnn = log(l+ vnln)’ Vn]n = v, = )

2 (Zi?]aﬂ?,,‘,,)

~ .0
2[({[(‘, —tl¢,)* —n, o2 :’
"2

vr( =— —V&,
[ZA?](HVJ,,)
1

Consistent estimators of ¢,,. ¢, and @, are given by the solutions of the equation

(6)

LI, =V

The estimators of ¢ are used 1n the computation of bonus-malus coefficients. remem-
ber that U, =TS, (S, ~ N(0,1;)), and that the coefficients are esumated through si-

mulations of outcomes of S,. As for the parameters of the a prion rating model, they

are consistently estimated by

G=6"-2e, B=p'-V, e.,.6" =02 -V, (7
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The intercepts are supposed to be the first of the &, and k. explanatory variables for
the number and cost distributions, and e, (resp ¢, ) are the first vectors of the ca-

nonical base of R* (resp Rl‘f)

3.2 Empirical results
The numerical results z’(n, —i,)z -n,=21624, z’ i,z =389 48, already used for
bonus-malus on frequencies, lead to.

Z(n, - }:,)2 —n,

pl o= =0.555,V,

nn 2 iz * T nn
1
1

In this paper, two distribution families are considered for the heterogeneity component
related to numbers We first took 1nto account the gamma, and now the log-normal
family (writing the heterogeneity component 1n a multiplicative way)

Considering an insurance contract without claims, we can compare the bont denived

=log(1+V!)=0442 = ¢,, =V, =0665

nH

from the two models The sum A, bemg the cumulated frequency premium 1n the
M g q yp

negative binomial model, the bonus for the policyholder 18 equal to
4. z’iﬁ = b @G=1/V
YRS WANE TS Wil
For the log-normal tamuly, the bonus can be written as

_ C/O\V ( CXp(U") exP( VT)
Elexp(U,)1" Elexp(V;)]

).

j’ Ull = (pHHSH 3 VT = —Zl il exp( UII )’

with S, ~ N(0,1) With the valucs of V), and @,, computed precendently. one ob-

nn

tains for example

TABLE 3
COMPARISON OF FREQUENCY-BONUS COEFFICICNTS FOR 1WO DISIRIBUTIONS ON THE
HETEROGLNEITY COMPONENT ( CONTRACTS WITHOUT CLAIMS RLPOR T ED)

frequency premium 0.05 0.1 0.2 0.5 1 2
bonus (%, gamma distributions) 27 53 10 217 357 526

bonus (%, log-normal distributions) 2 6 51 94 193 3013 436

The boni derived from log-normal distributions on the heterogeneity component are
lower than those derived from the gamma distributions. The difference 1s all the more
important since the frequency premium 1s high
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Let us estimate the covariance between the two heterogeneity components:
3 (n, = A,)le, e,
> (n, = A,) (tle, —tic,) =7.96 = V,, =~ =0013.
! YA+
!

One can think of relating a positive or negative sign of the covariance to the fact that
the average cost per claim increases or decreases with the number of claims reported
by the policyholder To see this, suppose that the duration of observation 1s the same
for all the policyholders, and that the intercept 1s the only explanatory variable for
number and cost distributions We would then have

~

A =n, ric, =n,logc = Z(n, - i, )ile, —Ii(',) = Z(H, —i)n, (log ¢’ —Toge) =

Z(n, - 1)n,(logc' —logc), because z",(logcl —loge) =0.

t/n, =2 !

We wrote logc' for the logarithms of costs of claims reported by the policyholder ,

computed on average. The estimator of the covariance would be positive if the average
of the logarithms of costs of claims related to the policyholders that reported several of
them was superior to the global mean

On the working sample, the number of claims reported by the policyholder had lit-
tle influence on the average cost

The preceding results justify the allowance for a non constant number of periods
related to the observation of policyholders To sce this, we remark that the more seve-
re 15 a claim, the greater 1s the piobability to change the vehicule afterwards. Hence,
there 1s less severity on average for several claims reported on the same car If policy-
holders were not kept 1n the sample after changing cars, a negative bias would appear
in the estimation of the correlation coefficient between the heterogeneity components.
Now, keeping the policyholder in the sample as long as possible leads us to consider a
non constant number of periods.

When computing bonus-malus coefficients for average cost per claim, we used (see

2772)
A 0
2 IEIILI -, -n, (/)'\2 ]: Z Zlcrev,j/vres,,\ =100 80

' 1,22 j heS,.j#A

A bonus-malus system for average cost per claim can be considered 1f the observation
of the ratio actual cost-expected cost for a claim brings information for the following
claims. If the last expression 1s positive, the cost residuals of claims related to policy-
holders having reported several of them have rather the same sign The relative se-
verity of a claim 1s associated to the sign of the restdual, and 1t may be interesting to
compare the sign of residuals for claims related to policyholders having reported two
of them.
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Considering the working sample, we obtain

number of pohicyholders negative residual positive residual
having reported two claims (second clarm) (second claim)
negative restdual

(first claim) 74 46

positive residual

(first claim) 36 70

The sign of the residual does not change for 64% of policyholders having reported two
claims
From equation (6), we infer

Z (e, —r[c )“—n O'- -
V.= -V2=0166,and £, = ——%—= 0048

LZAZ (l+ \/‘A/Lc vnn

The correlation coefficient between the heterogeneity components 1s positive, but
close to zero Hence

5 Ao - Y ~2 A2 -
Vcn ZO0unPeon = Pen = 0.020, vu- =0, TQ0. =0, = 0407
The bon for average cost per claim and pure premium for the contracts wathout claims

can be computed, and results can be compared to those obtained for frequency. From
the expressions

_C/O\v[ exp(U,)  exp(Vy) ] ‘C/O\v( exp(U, +U,)  exp(Vy) ]
Elexp(U,)] Elexp(V;)| )’ Elexp(U, +U)]" Elexp(Vy)]

we obtain

TABLE 4
BONI FOR AVERAGE COST PR CLAIM AND PURL PREMIUM (CONTRAC 18 WITHOUT CLAIM REPORTED)

frequency premium 0.05 0.1 0.2 0.5 1 2
average cost per clanm bonus (%) 01 [\B] 02 05 09 15

pure premium bonus (%) 27 53 97 199 312 447

Because of the positive correlation between the two heterogeneity components, a cost-
bonus appcars n the absence of claims, but 1t 15 very low.

We now compute bonus-malus coefficients for policyholders that reported one
claim They are a function of the cost-residual lcres; = log(c,) - :lﬁ (¢, 15 the cost of
the claim, and z; represents the policyholder’s characteristics when the claim occu-
red), and of the frequency premium From equations (5) and (7), we have
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- U?-2U.1
v, =—2/’l, exp(U,)+U, _ e T T
t

267 ’
Zlcress
R o s .
52 =G\2 -V.. =2 v, :ﬁ—0.166=0.861
n 3493

We recall that the bonus-malus coefficients on frequency, expected cost per claim and
pure premium are respectively equal to

ElexpU, +Vp)l  ElexpU, +V;)1  Elexp(U, +U, +V;)]
Elexp(U,)] Elexp(Vy)] Elexp(U.)] Elexp(Vy)] Elexp(U, +U.)] E[exp(Vy)]

We obtain for example (the bonus-malus coefficients are given 1n percentage)

TABLE 5
BONUS-MALUS COEFFICIENTS (POLICYHOLDERS HAVING REPORTED ONE CLAIM)

frequency coefficient frequency premium

lcresq 0.05 0.1 0.2 0.5 1 2

-1 1474 142 1 133 1 1139 945 734
-05 148 4 143 133 8 114 5 95 731
0 1493 143 7 134 6 115 953 74
05 1501 144 6 1353 1156 957 743
1 151 1456 136 116 1 962 746
average cost per claim coefficient frequency premium

icresy 0.05 0.1 0.2 0.5 1 2

-1 84 8 84 7 846 843 84 835
-05 92 919 917 9l 4 91 905
0 997 996 995 991 987 98 1
05 108 1 108 107 8 107 5 107 106 4
| 1171 117 116 9 1165 116 1154
pure premium coefficient frequency premium

[cresy 0.05 0.1 0.2 0.5 1 2

-1 1246 120 1122 956 789 609
05 136 1 131 1223 104 2 86 663
0 148 4 1427 1333 1135 935 722
05 161 8 1557 145 4 1237 VIRY 785

1 176 6 170 158 4 1347 It 854

Because of the positive correlation between the two heterogeneity components, the
frequency coefficients increase with the cost-residual, which 1s related to the seventy
of the claim In the same way, the coefficients related to average cost per clarm decre-
ase with the frequency premium, but these variations are very low Because of the
correlation, the coefficients related to pure premium are not equal to the product of the
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coefficients for frequency and expected cost per claim. Here also, differences are very
low

4, CONCLUDING REMARKS

We recall the main results obtained n this paper

e The unexplammed heterogeneity with respect to the cost distributions depends
strongly on the choice of the distribution family.

* Besides, it 1s revealed more slowly throughout time than for number distributions

* On the working sample, the correlation between the heterogeneity components on
the number and cost distributions 1s very low.

In the long run, it would be desirable to relax the assumption of invariance of the hete-

rogeneity components with respect to time Because of this invariance, the age of

claims has no influence on the bonus-malus coefficients Now, the fact that an ancient

claim has the same nfluence on the coefficients that a recent one 1s questionable. The

allowance for an innovation at each period for the heterogeneity components would

raise new problems, and would make 1t necessary to observe policyholders on many

periods.
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