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EDITORIAL AND ANNOUNCEMENTS 

GUEST EDITORIAL 

ACTUARIES PREPARE FOR 1993! 

The Member States of the European Community (EC) have set themselves a 
target of 1 January 1993 for completing the single market in insurance within 
the EC. Many still regard this as an unrealistic target, but substantial progress 
has been made, and continues to be made, in putting the various parts of the 
programme together. 

Efforts to bring about a more liberal European-wide insurance market began 
in 1956 when the Organization of European Economic Co-operation commis- 
sioned a report from Professor Campagne, Chairman of the Verzekerings- 
kamer, the insurance supervisory authority of the Netherlands, on whether it 
was possible to establish minimum standards of solvency for insurance firms. It 
was hoped to move towards an agreed standard of solvency, so that each 
country would be able to rely on supervision carried out in the other countries 
for the purposes of allowing insurance companies from those countries to carry 
on business. 

After the EC was established by the Treaty of Rome in 1957, the same issue 
was taken up by the insurance supervisory authorities of the Community. 
However, it took until 1973 before the Non-Life Establishment Directive was 
finally agreed. This introduced the current EC solvency margin regime for 
non-life insurers and opened the way for insurance companies to set up 
branches in other EC countries, with only the branch assets and liabilities being 
supervised in that country. Responsibility for checking the overall solvency 
of the company rested with the supervisory authority of the head office 
country. 

The Directive left unanswered the question of how the assets and the 
liabilities should be valued in arriving at the solvency margin. This continues to 
be a matter for debate. 

In June 1988 the Council of Ministers adopted the Second Non-Life 
Directive, which provides for freedom of services for "large risks". This took 
effect in July 1990, since when it has been possible for an insurer based in one 
country of the EC to write policies directly on commercial risks throughout the 
EC. Full extension of this concept to personal lines business as well as to 
commercial risks is intended under the proposals in the Non-Life Framework 
Directive, which were published in September 1990 and are currently under 
discussion in a Working Party of the Council of Ministers. This is based on the 
principle of a single licence, whereby each company would be supervised only 
by the supervisor in the member state where the head office is situated, but 
would receive a licence to operate throughout the EC, either through establish- 
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158 GUEST EDITORIAL 

ment of branches or directly on a services basis. There would be no further 
layers of prudential supervision in the host Member States. 

Much of the delay in agreeing on arrangements to provide full freedom of 
services has arisen because of concerns that additional protection was needed 
for policyholders, in the shape of minimum rules for technical reserves and for 
permissible assets. 

Discussions are still proceeding on the draft Non-Life Framework Directive, 
but the proposal includes certain limitations on the proportion of the technical 
provisions which can be backed by different types of assets, outlaws any 
requirement by Member States to require insurers to invest in particular types 
of asset and requires "sufficient" technical provisions to be established, along 
the lines set out in another Directive, relating to the accounts of insurance 
undertakings. 

The Accounts Directive, as agreed by the Council of Ministers in July 1991, 
although not yet ratified by the European Parliament under the co-operation 
procedure, sets out the types of technical provisions which should be estab- 
lished, in particular for unearned premiums, unexpired risks and outstanding 
claims. However, it is still not clear quite what is expected by the key sentence 
in Article 56; 

" the amount of technical provisions must at all times be such that an 
undertaking can meet any liabilities arising out of insurance contracts as far 
as can reasonably be foreseen". 

What can reasonably be foreseen? ls this a charter for really cautious 
reserves? I am sure that was not really the intention, given the context that this 
directive is about reporting to shareholders. This new wording adds a further 
twist to the development of the concept of the adequacy of technical reserves in 
the EC. 

Statistical methods are acceptable, although Member States may require 
prior approval to be given to the use of such methods. The provision must 
allow for claims IBNR and for claim settlement costs. Implicit discounting of 
provisions to take account of future investment income is not permitted (for 
example by not allowing for future inflation) but explicit discounting may be 
permitted by Member States for longer-tailed run-offs (where the average 
expected date for claim settlement is at least four years after the accounting 
date) and where the discounting is done on a recognized basis, using approved 
methodology and a prudent rate of interest. 

Although the requirements in relation to discounting do not specifically 
mention actuaries, the approach required is essentially an actuarial one and 
could increase the demand for actuarial involvement in establishing non-life 
technical provisions, although some Member States may decide not to allow 
any discounting at all. 

The Groupe Consultatif, which is the umbrella organization representing the 
fourteen associations of actuaries within the Member States of the EC, has 
lobbied actively for there to be more explicit mention of actuaries in the 
Accounts Directive and for the actuary to be defined as someone who is a 
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member of one of the national associations. Unfortunately, this has not yet 
been successful, even in respect of  the role of the actuary in life insurance. The 
position is even more unsatisfactory in relation to non-life insurance, where 
there is no explicit mention at all of  actuarial involvement. 

This does not mean, however, that the battle is lost. Recent developments in 
Canada and the United States to require actuarial certification of loss reserves 
should strengthen the hand of  the actuarial profession in Europe in seeking to 
establish its special role in this field. Italy has already led the way by requiring 
the auditors of a non-life insurance company to obtain a certificate from an 
actuary on the adequacy of the technical reserves. 

Of course, setting the technical reserves of a non-life insurer is not just a 
mathematical exercise. It requires a deep appreciation of the nature of the 
business, a thorough analysis of  the available data, including a realistic 
assessment of their shortcomings, and a proper appreciation of  the many 
uncertainties affecting the number, size and timing of future claim payments. 
The whole issue must be approached in a professional way and not just by the 
application of mechanical techniques or computer software packages. The 
Institute of Actuaries and the Faculty of  Actuaries in the United Kingdom 
have recently issued a revised version of GNI2,  a Guidance Note on the 
production of actuarial reports on general insurance business, which helps to 
set out the framework under which an actuary should operate. It would be 
useful if agreement could be reached on an international basis as to a minimum 
set of professional requirements for an actuary producing a report on non-life 
business or certifying or giving an opinion on the technical reserves. 

The business of  insurance is becoming increasingly complex and specialist 
skills are needed to face the challenges which this brings. Actuaries have a great 
deal to offer to the managements of general insurance companies, not only in 
the field of  loss reserving, but also in rating, experience analysis, profitability 
testing, designing and managing reinsurance programmes, assessing reinsurance 
security, investment strategy, asset/liability matching and overall financial 
control. Actuaries are beginning to devise models which will assist in corporate 
planning and in the overall financial management of the company. However, a 
key requirement in all of  these areas is to be able to communicate well with 
management and to have a good appreciation of  the underlying business 
environment. 

In 1871 Cornelius Walford (an actuary himself) wrote, in the section of  The 
Insurance Cyclopaedia discussing the term " a c t u a r y " "  

" . . .  it may seem superfluous to add that an actuary must be something more 
than a mathematician. That  the must be a mathematician admits of  no 
question; but with that qualification ever so largely developed, and nothing 
more than that, he never becomes an actuary in the sense here implied. The 
other qualifications are sound judgement and enlarged knowledge of  busi- 
ness affairs-sagacity.  The latter can only be obtained with and from 
experience; the judgement should be inherent ."  
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There is still a lot to play for in the development of a single market in 
insurance in the EC. 1993 will only be the beginning. The opportunity is there, 
however, for actuaries to make a vitally important, professional contribution to 
the sound growth of the non-life insurance market, in an increasingly European 
environment. 

CHRIS DAYKIN 



THE 2nd AFIR INTERNATIONAL COLLOQUIUM 

The 2nd AFIR International Colloquium was held in Brighton, England from 
April 16-19, 1991. The Colloquium was presented in much the same manner as 
the first one in Paris a year earlier, with some exceptions. The British 
organisers permitted the authors of papers more time to formally present their 
findings and thus needed to use concurrent sessions for topics judged to be 
away from the mainstream interest. The business meetings were organised with 
two invited lectures, six plenary sessions, and four sessions at which a total of 
nineteen concurrent meetings took place. 

The guest lectures were given by Brian Quinn, an Executive Director of the 
Bank of England, who has special responsibility for banking supervision, and 
whose name has been in the newspapers subsequently because of his responsi- 
bility for the affairs of the Bank of Credit and Commerce International. His 
talk on some of the problems of banking supervision was prophetic. 

The other guest lecture was given by Professor Michael Brennan of UCLA, 
who gave an extensive review of the economic fundamentals that underlie 
much of the work of modern financial economists, and hence of actuaries 
aspiring to contribute to AFIR. 

Since it was impossible to attend all the sessions at which papers were 
presented, I have chosen to review those that I personally found to be of 
greatest interest. By following this route, I am unable to do justice to many of 
the valuable contributions, but they can be found in the full set of papers 
published in the four volumes of Colloquium proceedings. At the beginning of 
the first volume is a 20-page introductory review by David Wilkie, Chairman 
of the Scientific Committee. 

Each session followed the same format. A designated "opener"  set the stage 
for the subject area, providing some necessary background, outlining signifi- 
cant issues and developments, and providing a brief overview of the various 
papers. Authors of the papers were then given an opportunity to highlight 
their work and offer comments and results not in their published material. 
After questions from the floor, a designated "closer"  summarised and opined 
on the various contributions from the authors and others. 

The first plenary session covered banking and credit and included papers on 
the French banking system where many actuaries are employed. Of particular 
interest to me was the paper "Credit Risk Research: Private Placement Bonds 
and Commercial Mortgage Loans" by Gery Barry, who heads a Society of 
Actuaries research group studying this topic. Their research group has struggled 
with the issue of how to define a credit risk event and how to measure credit 
risk loss for a private transaction that tends to be renegotiated when the 
borrower experiences financial difficulty. European institutional investors have 
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generally avoided credit risk, but US institutional investors seem prone to take 
it on and then live or die by managing it successfully or mismanaging it. The 
recent difficulties and failures of  many US life insurance companies underscore 
the importance of  understanding this subject better. A related risk for these 
types of investments, not addressed by the Society of  Actuaries research group 
but highly topical in the US, is "illiquidity r isk" that threatens the solvency of 
a financial institution suffering from a public crisis of  confidence and thus 
exposed to a severe cash flow drain. 

The second and third plenary sessions covered the topic of  interest rate and 
yield curve models. Two papers caught my attention. Robert Reitano delivered 
a very understandable lecture on the risk of  non-parallel shifts in the yield 
curve. He introduced the concept of "part ial  durat ions"  that measure an 
asset's or liability's market value sensitivity to a shift in a single segment of  the 
yield curve. Summing all partial durations gives the familiar " t o t a l "  duration 
measure. Boulier and Sikorav tested whether the yield curve for French 
government bonds obeys the Ho and Lee model of  interest rate dynamics. 
Although the Ho and Lee model performs reasonably well, the authors 
emphasise the need to go beyond in two areas: in the real world, short-term 
yields are more volatile than long-term yields and yield curve dynamics depend 
on more than what happens to the short-term interest rate. Also, for the 
originally-published form of  the Ho and Lee model, there is the problem of 
negative interest rates occurring with significant probability. 

One of the interesting concurrent sessions featured papers on non-linear 
models and chaos theory. Chaos theory has captured the imagination of many 
actuaries and indeed might have intrigued Albert Einstein by offering an 
alternative theoretical foundation for quantum mechanical phenomena. Many 
philosophical questions arise when the relationships between stochastic systems 
and non-linear deterministic systems are considered. For example: what errors, 
if any, will occur when a system that is actually non-linear, deterministic, and 
chaotic is modelled as if it were purely stochastic? The standard tests for 
detecting the presence of non-linear deterministic behaviour assume a very long 
data series. Maddocks, Nisbet, Nisbet and Blythe used such a test, based on 
the concept of  "correlat ion dimension",  and found evidence of  deterministic 
behaviour in weekly data for the Financial Times All Share Index (1965-1989), 
the Dow Jones Index (1969-1986), the Standard and Poor Composite Index 
(1965-1986), and the Nikkei Index (1966-1989). There remains a question, 
however, as to whether their data transformations introduced spurious corre- 
lations, and a question as to whether the observed behaviour is chaotic (with a 
strange attractor present), not merely deterministic. We await their further 
results. 

In my opinion, the real highlight of  the Colloquium was the presentation of 
two invited papers by Andrew Smith: one on option pricing formulas and 
another on the use of  martingales in actuarial work. In his presentation at the 
Colloquium, Dr Smith treated the audience to simple examples illustrating a 
few of  the points raised in his papers. His second paper demonstrated how 
easily a number of  key results found in actuarial science can be derived from 
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basic properties of martingales. That paper should be studied carefully by all 
actuaries aspiring to be of "the third kind," according to Professor Bfihl- 
mann's taxonomy. Professor Neave's carefully prepared and thoughtfully 
presented introduction to the session on theoretical developments also deserves 
special mention. It set the stage perfectly for Smith's martingale paper and for 
the related paper "Generalised Arrow Pricing to Understanding Financial 
Markets" by Ami, Kast and Lapied. 

Brighton does not have the same attractions to the visitor as Paris, but 
nevertheless the organisers had arranged a wide programme of visits and 
entertainments for accompanying persons during the day and for participants 
too in the evenings. These included visits to the attractive towns and villages of 
Sussex, two castles steeped in English history, a vineyard (yes, there is English 
wine of quite respectable quality), theatrical performances, and even, for those 
who prefer gambling to insurance, greyhound racing, at which the bookies 
seemed to be confounded by a large number of punters, under instructions 
from Hans Bfihlmann, who all chose to put their money on the same dog; 
I cannot say whether their performance in this field was better or worse than 
that of investment managers. 

There will not be an AFIR Colloquium in 1992 because the 24th Interna- 
tional Congress of Actuaries in Montreal is accorded the spotlight for the year. 
The 3rd AFIR Colloquium will be held in Rome in 1993, an event we eagerly 
await after the outstanding achievements turned in at Paris and Brighton. 

JAMES A. TILLEY 





XXIII ASTIN COLLOQUIUM, STOCKHOLM, 1991 

The 23rd ASTIN Colloquium was held from 30th June to 4th July 1991 in 
Stockholm ("beauty on water"). Over 200 actuaries from more than 20 
countries attended. The Colloquium began on Sunday, 30th June, with the 
reception in Berns Congress Centre. The working sessions were started off on 
Monday morning with a presentation by Prof. Ragnar Norberg (University of 
Copenhagen) on " A  Continuous Time Approach to the Prediction of the Total 
Outstanding Claims of a Non-Life Insurance Business - -  a Strategy for 
Solvency Control Based on the Break-Up Point of View". The rest of the 
morning and the afternoon were devoted to working sessions on topic 
number 3 "Modern Statistical Techniques". Bengt von Bahr and Arne 
Sandstr6m opened these sessions by a brief survey of the papers on this topic. 
Then each author had 10 minutes to present his paper in greater detail. The 
remaining time was open for discussion, which was very animated. In the 
evening, the Colloquium participants were invited to a buffet dinner and a tour 
of the Stockholm City Hall, in which the annual Nobel Prize awards banquet is 
held. 

An all-day excursion to the Gripsholm Castle was on the program for 
Tuesday, the very day on which midsummer weather set in Sweden. In two 
ships, the participants were taken directly from the centre of Stockholm to the 
outlet of Lake M~laren. After having passed through Stockholm the journey 
continued through a majestic forest and lake countryside to the Gripsholm 
Castle, situated directly on the lake some 60 km inland. Lunch had been served 
on the ships, so that the afternoon was left open for a tour of the numerous 
rooms of the 16th Century Castle with its impressive portrait gallery of 
important figures from Swedish history. The lovely location of the Castle was 
also an invitation to linger on, which only made it all the more difficult to get 
onto the waiting busses for the trip back. 

Wednesday was again devoted exclusively to working sessions. These were 
introduced with a presentation by Karl-Olof Hammarkvist, Managing Director 
of a large Swedish direct insurance and reinsurance company, concerning a 
"Professional View on Reinsurance". The subsequent working sessions dealt 
with Colloquium topics number 2 ("High Tech Reinsurance") and 1 (" The 
Use of Financial Theory in Insurance"). The "rapporteurs" were Bj6rn Ajne, 
Malcolm Campbell and Bj6rn Palmgren. The afternoon was concluded with the 
General Meeting, for which a special election to the ASTIN Committee was 
scheduled in addition to regular items on the agenda. Thomas Mack (Ger- 
many) and Ermanno Pitacco (Italy) were elected to the ASTIN Committee 
which now consists of 13 members. In the evening, the traditional Colloquium 
dinner was served on the "Operaterrassen" with a wonderful view of the old 
part of the town and the Royal Castle of Stockholm. 
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The topic of the last working session on Thursday morning was "Speakers' 
Corner". Here papers were presented and discussed which had only been 
submitted shortly before the beginning of the Colloquium and could therefore 
not be included in the Colloquium publication, as it had already been sent to 
the participants in advance. 

So much for the formal "contours" of the Colloquium, which had been 
extremely well organized by the Swedish Society of Actuaries, headed by Alf 
Guldberg. The members of the organizing committee (Sven Astrand, Hans 
Ekhult, Bengt Langhed, Peter Lindstr6m, Gunilla Lis6n, Harry Wide) and the 
scientific committee (Bj6rn Ajne, Bengt von Bahr, Anders Blomm6, Malcolm 
Campbell, Bj6rn Palmgren, Arne Sandstr6m) deserve special thanks. 

The following is a brief summary of the contents of all papers presented. 
These summaries are of course influenced by the capabilities of the authors of 
this report and may therefore be somewhat biased. The order of the summaries 
is also the order in which they were presented at the Colloquium. 

THOMAS MACK, KLAUS-PETER MANGOLD 

LIST AND SUMMARY OF PAPERS 

Topic 3: Modern Statistical Techniques 

Bj6rn AJNE and Arne SANDSTROM: New Standard Regulations Regarding 
Allocation of  the Safety Reserve in Sweden. 

The authors explain in detail how the current Swedish safety reserve 
regulation came into being. For every line of business, there is a maximum 
tax-free value admitted for the safety reserve which consists of a percentage of 
premium income and a percentage of the claims reserve (due to the settlement 
risk), each of these being for own account. The percentages had been fixed in 
such a way that these total approximately 4.5 times the standard deviation of 
the loss ratio. This value was established on the basis of confidence interval 
considerations (99% security) calculated from statistics. Allowance was also 
made for the positive correlation of loss ratios for two consecutive years 
observed. The paper contains many illustrative graphical displays. 

John BORREGAARD, Chresten DENGSOE, Joakim HERTIG, Niels JESPERSEN and 
Christian Roholte LARSEN: Equalization Reserves." Reflections by a Danish 
Working Party. 

Since there is no fixed regulation in Denmark governing the level of 
equalization reserves, the Danish Association of Actuaries formed a relevant 
working party to deal with this question. In the present paper, members of this 
party outline the method of balanced limits for setting up an upper limit u and 
a lower limit 1 for the equalization reserve. If the annual claims amount x is 
less than l, the difference l - x  is transferred to the equalization reserve. If x is 
greater than u, then x - u  is transferred from the reserve. On the basis of three 
sample calculations for Windstorm, Fire and Motor insurance, the authors 
demonstrate this method on the basis of theoretical distributions with realistic 
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parameters. Furthermore, they propose setting the reserve at a level at which 
the probability of the reserve being completely exhausted within 5 or 10 years is 
below a given value (for example 15%). The levels which result from this for 
the examples cited are also shown. 

Arne SANDSTROM: On Moment Corrections when Data are Grouped into 
Non-Equidistanced Intervals. 

For equidistantly grouped data Sheppard's correction for calculating the 
moments can be applied. The author proposes formulae for the non- 
equidistant case, which use only group frequencies and lengths and mid-points 
of intervals. For equidistantly grouped data, these formulae lead to higher 
values than Sheppard's formula. If the mean value per interval is also known, 
upper and lower limits can also be given for the higher moments. The author 
indicates that it is thus possible to demonstrate a superiority of this formula 
over Sheppard's correction. 

Rolf LARSSON and Erik HEVRENG: On the Estimation of the Time Development 
of the Risk Premium in Non-Life Insurance. 

The authors fit mathematical distribution models to empirical claims data 
(number of policies, amount of every individual claim for I1 years and 4 
different lines of Property business). For the inflation-adjusted claim amount, 
they assume a lognormal distribution with a scale parameter depending linearly 
on the year of observation. A Poisson distribution is assumed for the claims 
number per year, whose mean value is modelled as a product of the number of 
policies and a logarithmic linear yearly trend. In numerous tables, the authors 
give a year-by-year comparison between the observed value and the fitted value 
(for claims number, claims amount and risk premium per policy) and place 
special emphasis on the examination of the significance of modelled trends. 
Since the authors originally only had access to the amounts of the individual 
claims grouped by classes of claims amount, they originally estimated the 
parameters by means of the EM-algorithm briefly described in an appendix. 
The resulting estimators are also included in the tables. The authors therefore 
regard the comparison of the results of both methods as being one of the main 
issues of their paper. 

Erik ELVERS: A Note on the Generalized Poisson Distribution. 
The author fits the Generalized Poisson Distribution introduced by Consul 

to the data observed in an Automobile Third Party Liability insurance 
portfolio. These data do not represent the number of accidents, but the number 
of casualties (injuries or deaths) per accident (over a period of several years and 
for several classes of motor vehicles). In almost every case, the chi-square test 
rejects the distribution hypothesis. 

Jean LEMAIRE: Negative Binomial or Poisson-lnverse Gaussian ? 
On the basis of six data sets not related to insurance, the author compares 

the fit of the Poisson, the Negative Binomial and the mixed Poisson-Inverse 
Gaussian distributions. The parameters are estimated with both the maximum 
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likelihood method and the method of  moments. The best fits were obtained 
with the Negative Binomial distribution. 

Ermanno PITACCO: An Inference Model for Risks with Variable Claim Fre- 
quency Rate. 

The author  generalizes the classical Poisson-Gamma model for the purpose 
of  experience rating in Sickness insurance. For an insured life aged y and 
a policy term of  several years, for the conditional claims number variable 
X ( y + h )  a Poisson distribution with parameter Ot(y+h)  is assumed, where 
t ( y )  < t ( y + l )  < t ( y + 2 )  < ... If the risk parameter 0 follows a Gamma 
distribution, one can procede with a calculation analogous to the classical case. 
From this, the author analyses the properties of  an experience rating system on 
the assumption that the individual claims amounts are independent of  both the 
claims number and the parameter 0. 

Lourdes CENTENO and Jo~.o Manuel ANDRADE E SILVA: Generalized Linear 
Models under Constraints. 

After giving a brief description of  the generalized linear models and the 
relevant estimation algorithm, the authors address the problem that in some 
applications the coefficients of  the independent variables should satisfy certain 
linear constraints. In the authors '  example which is based on Portuguese 
Automobile Third Party Liability insurance statistics, for example, this always 
occurs where no distinction is to be made between two variables or if one 
wishes to establish a certain fixed linear relationship. The authors offer two 
possible solutions: either reformulating the model or changing the algorithm. 
In the authors '  opinion, the latter is easier as long as there are several 
step-by-step changes in the constraints, as is often the case in practice. 

Pierre PETAUTON: Une Estimation Naturelle des Param~tres Structuraux dans 
les ModUles de Crbdibilitb. 

The credibility estimator 

f(i = ziXi+ + ( 1 - z i ) m  

in the models of  Bfihlmann or Biihlmann and Straub includes the unknown 
parameters zi and m, which must be estimated from the data Xo.. To this end, 
the author  proposes a new approach. For  a fixed year j, he eliminates the 
relevant observations Xo. , i = I, 2 . . . . .  and applies the above credibility 
formula to the remaining data, which means, 

"~'i(J) = z i X i + ( J ) + ( 1 - z i )  m 

where Xi÷ (J)  is the mean of  the data without year j. This can be applied to 
each y e a r j  of  every risk i. The new approach is then to choose the parameters 
z~ and m in such a way that they minimize the weighted quadratic deviation 

E go(Xij - -e~i ( j))2 
i,j 
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• where the weights go should be in inverse proportion to Var (X~). This idea can 
be easily carried out in the simple Biihlmann model and, with a small 
exception, produces the usual estimators. In the Bfihlmann-Straub model, the 
author must alter the expression to be minimized in order to arrive at explicit 
solutions. 

Erhard KREMER: Large Claims in Credibility. 
The author implements ideas from robust statistics in the credibility theory 

in order to cope with the disturbing influence of outliers (large claims or risks) 
which disrupt the homogeneity assumption. To this end he proposes replacing 
the individual loss experience contained in the credibility formula with robust 
estimators. This is done by applying so-called M- or L-estimators. For three 
examples, the so-called Huber credibility M-estimator, the trimmed and the 
winsorized credibility L-estimators he demonstrates robustness, which is not a 
property of the classical credibility estimator. The author does not directly 
truncate individual claims, but gives large claims less weight in the estimation 
or does not even take them into consideration at all. In the same manner, for 
estimating the structural parameters, he does not use the observations them- 
selves, but rather robust statistics of the observations in order to obtain a kind 
of robust empirical credibility estimator. In the last chapter the author extends 
his approach to the regression credibility model as well. 

Arne EYLAND: Classification of  Passenger Cars in a Multiplicative Rating 
Model using Reeursive Credibility Estimation. 

The author develops an evolutionary regression credibility model, whose 
basic features are derived from a paper of SUNDT (1987). In this model, the 
non-observable parameter which characterizes each single risk may vary over 
time (time-heterogeneous model) and its risk premium is regressively dependent 
on observable technical variables. The multiplicative tariff used by a Norwe- 
gian insurance company, in which the tariff variable "car  model"  is deter- 
mined by the technical parameters engine power, price and weight, serves as an 
example. The problem of having to invert the covariance matrix of the 
observations for determining the credibility estimator is reduced in its dimen- 
sion by using linear sufficient statistics. Furthermore, the selection of a special 
recursive covariance structure in the model makes it possible to calculate the 
credibility estimator recursively. The author also treats the special case of risk 
parameters that are constant in time (time-homogeneous model) which he 
believes to be less realistic. In a third, so-called time-heterogeneous model for 
two portfolios, the author describes the situation in which the overall portfolio 
can be broken down into two sub-portfolios, each of these being time- 
heterogeneous and transition from one sub-portfolio to the other being 
possible. This would be useful in a case in which a technical variable (" price") 
is " sudden ly"  no longer observable (e.g. because a car model is no longer sold) 
and thus has to be subsumed under the unobservable risk parameter. The 
author purposely excludes the problem of estimating the (numerous) structural 
parameters and indicates that this will be investigated in a later publication. 
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Topic 2: High Tech Reinsurance 

William S. JEWELL: The Value of Information in Forecasting Excess Losses. 
The author analyses parameter estimation for rating an excess-of-loss treaty. 

Usually, the reinsurer has at his disposal only information on losses exceeding 
a certain limit. The author  explains the problem resulting from this limited 
knowledge for the case of a Poisson distributed number of losses with shifted 
Pareto distributed loss amounts. By means of  many impressive graphs he 
shows that the likelihood function of  the two distribution parameters (the 
Poisson parameter and the Pareto shift parameter - -  the shape parameter 
being treated as known) has a ridge which allows only a very uncertain 
parameter estimation, if any at all. This situation can only be improved if at 
least the number of  all losses from the ground up is available. The paper also 
addresses questions like the direct estimation of  the excess-of-loss fair pre- 
mium. 

Erhard KREMER: .4 (New) Nonparametric Method for XL-Rating. 
The author  premises the fact that claims expectancy under an excess-of-loss 

reinsurance treaty can be represented as the product of  the total claims 
expectancy of  the insured portfolio and a tail probability 

I ~ g(x)  dx 
P 

above the priority P. In view of the infinite integration range, he proposes 
using the approximate procedure of  GRAY and LEWIS (1971) for calculating 
this tail probability. This procedure uses the quotient of two determinants of  
the first k derivatives of  g at the priority P. In order to avoid parametrically 
estimating the density g with all its derivatives from the data, the author 
recommends using the kernel estimator. For  this, it is necessary to choose a 
specific kernel function, for which the author gives a concrete recommenda- 
tion. 

Erhard KREMER: `4 Note on XL-Rating in Earthquake Insurance. 
Referring to a paper by MAKJANIC (1980), the author proposes use of the 

generalized exponential distribution for the magnitude frequency instead of the 
traditional exponential distribution. The author also offers a modification of  
Makjanic's parameter estimation procedure. 

Patrik DAHL: Some Reflexions on Contingent Premium Payment Plans. 
The author investigates reinstatement agreements in non-proportional rein- 

surance on the assumption that no partial claims in respect of the reinsurer's 
liability are possible and that both parties evaluate the treaty with an 
exponential utility function. Furthermore, the author makes allowance for the 
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possibility that insurer and reinsurer may calculate with differing claims 
probabilities. Allowance is also to be made for the resulting cash flow as the 
premium of the reinstatement agreement depends on claims experience. In 
another part of  the paper, the author argues quite generally for use of  the 
Polya process as a model for the claims number. 

Marc-Henri AMSLER: Rbassurance du Risque de Ruine. 
The author proposes for pension funds, for example, that a reinsurance 

treaty with a term of  several years be applied, under which the reinsurer is only 
obliged to pay in the event of ruin and only for the amount  of  the deficit. Here 
the reinsurer's payment needs only to be a loan, since, in view of  the positive 
security loading, the reinsured's contingency reserve will tend to become higher 
and higher. At expiry of the treaty, the reinsurer is obliged to pay if the 
reinsured's contingency reserve is lower than at the outset. The author 
calculates the resulting reinsurance premiums in two examples. 

Thomas MACK : Claims Reserving : The Direct Method and its Refinement by a 
Lag-Distribution. 

The author describes a simple procedure for claims reserving, which has 
some similarity to the chain ladder method. It is however also possible to show 
that the procedure represents the maximum likelihood estimator if a gamma 
distribution is assumed. The procedure can be used in a more realistic manner 
if it is only applied for the average claims amount  per cell. In this case, the 
triangle of  the number of payments must also be completed to make a square. 
To this end the author proposes to fit a (truncated) lag-distribution to the 
observed numbers of payments per year of occurrence. This proved to be more 
suitable than the chain ladder method in the practical example given by the 
author. 

Gunnar  BENKTANDER: A Special Case of Variable Rates in Excess of Loss. 
In order to make a variable premium with a minimum of m and maximum of  

M produce the same average result as a constant premium E, m and M must be 
fixed in a specific way. The author investigates this question for excess of  loss 
reinsurance, basing his investigation on a Poisson-Pareto distribution model. 
On the basis of  the simulations conducted by Christer M611er, he demonstrates 
that the "accordion rule"  m M =  E 2 closely approximates the simulated 
results. The author also raises the question as to whether there are distributions 
for which this rule applies exactly. A paper partially responding to this 
question was distributed by Bj6rn Sundt. 

Mette RYTGAARD: Variations on Typical Excess of Loss Covers. 
The author initially investigates an excess of loss cover which provides a 

reinstatement of  the cover for an additional premium only. In this case, the 
calculation of  the reinsurance premium becomes simpler if one directly 
examines the reinsurer's net payment after deduction of the claims-related 
additional premiums. This is also shown to be true for other agreements, such 
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as, for the variable premium. Especially in the case of  the variable premium 
however the net payment of  the reinsurer might also be negative due to the 
multiplicative premium loading, for which reason the author proposes a form 
of  the variable premium which avoids this disadvantage. 

Topic 1: The Use of Financial Theory in Insurance 

David SANDERS: Risk Theory and Capital Allocation. 
The author  uses the formulae of the classical ruin theory to derive a link 

between the premium loading, the variance of  the total claims amount, the 
capital allocated to support the business and the probability of ruin under the 
assumption that the total claims amount  has a normal distribution. Using the 
required rate of  return on capital as a part of  the premium loading he obtains a 
functional relationship between premium and capital which has a minimum 
point. The author  analyses the minimum condition from the standpoint of  its 
practical implications and gives some numerical examples. 

Speaker's Corner 

Siegfried KUON, Michael RADTKE and Axel REICH: The Right Way to Switch 
from the Individual Risk Model to the Collective One. 

The overall loss Sin  d = .,'~t I + . . .  - [ - Y  n in the individual model of  n indepen- 
dent and not necessarily identically distributed risks Xi >~ 0 is usually approxi- 
mated by a collective model Scoll = Z i +  ... +ZN with a claims number 
variable N and i.i.d, claims amounts Zj > 0. Here the distribution of  the Zj 
is 

p(Zj  ~< x)  = qip(Xi ~< xlXi > O) qi 
i=1 

with qi = p ( X i >  0). If one chooses a Poisson distribution for N so that 
E(Scoll) = E(Sind) applies, it is known that Var (Scoll) > Var (Sind). The authors 
show that this is also the case if one chooses the negative binomial distribution 
or the binomial distribution for N (at least if not all E(X~) are equal). 

Furthermore,  it is shown that in the case of  a growing portfolio, i.e. n ~ ~ ,  
Var (S¢ou)/Var (Sind) does not converge toward I and that, in like manner, 
neither distribution functions nor percentile premiums converge toward one 
another either. Finally, it is shown that, on the one hand, by passing from Zj to 
aZj with a < 1, the variances can be made equal, but, on the other hand, that 
the relevant stop-loss net premiums will still differ from one another signifi- 
cantly. 

Bj6rn PALMGREN: Financial Risk in Insurance. 
The author  gives a brief survey of a number of questions on the financial risk 

of  an insurance company, particularly from the standpoint of  the supervisory 
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authority, e.g., "W hen  is a mix of  assets efficient or at least acceptable?",  
" H o w  great is the influence of transaction costs?" ,  etc. The author sees it as 
an important task of  the supervisory authority to investigate the efficiency of  
capital investments and conduct sensitivity tests on company solvency. 

Ermanno PITACCO: Selection and Experience Rating in Health Insurance. 
This paper is a sequel to the paper by the same author discussed earlier 

under topic 3. The age-related parameters t ( y + h )  mentioned in the earlier 
paper are lower under the influence of  medical selection than without selection. 
This also influences the a posteriori expected value. The author gives a 
numerical example and also shows how a given selection assumption affects 
different experience rating system concepts. 

Erhard KREMER: The Total Claims Amount of Largest Claims Reinsurance 
Treaties Revisited. 

The author takes up the total claims amount  of the reinsurer under the 
generalized largest claims reinsurance which he himself introduced in an earlier 
paper. The purpose of this paper is to provide a formula for the distribution 
density of the total claim where the individual claims are either exponentially 
or uniformly distributed. To this end, the author first investigates the special 
case'in which exactly n claims are incurred. The resulting expressions are not 
simple and must still be mixed with the occurrence probabilities. 

R o b  KAAS, Marleen VANNESTE and Marc GOOVAERTS : Maximizing Compound 
Poisson Stop-Loss Premiums Numerically with Given Mean and Variance. 

In contrast to earlier papers, the authors limit themselves here to total claims 
amounts with a compound Poisson distribution. Furthermore, they assume 
that the single claim amount  is limited and arithmetic. They provide a 
numerical solution which is arrived at by means of  the gradient m~thod, which 
however shows that there are many local maxima. In addition to this, the 
maximum frequently deviates only very slightly from the value that is produced 
with a two-point distribution approximation for the single claim amount. The 
authors therefore feel that one should be satisfied with the procedure outlined 
in another paper by KAAS (1991) which uses two-point distributions. 

Bj6rn SUNDT: On Some Extensions of Panjer's Class of Counting Distributions. 
The author generalizes the class R~ of  the claims number distributions 

with 

p, = (a+b/n)pn-i  

to class Rk with the recursion property 

k 

Pn = ~ (a~+bi/n)p,_i. 

Distributions from R k are a result of convoluting distributions from RI. The 
author shows that the Panjer algorithm can also be translated to distributions 
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of class Rk. A formula for convoluting any two distributions of class R j, which 
is known to include the binomial, Poisson and negative binomial distributions, 
is a by-product of this. 

Bj6rn AJNE: ,4 Note on the Additivity of Chain-Ladder Projections. 
The author investigates the problem of when the separate application of the 

chain ladder method to 2 run-off triangles produces the same projections as the 
single application to the sum of both triangles and he outlines a necessary and 
sufficient condition for this. He also conjectures as to when separate applica- 
tion produces lower reserves. 

Jon HOLTAN: Bonus Made Easy. 
To begin with, the author points out a few weaknesses of the traditional 

bonus-malus systems, for example, that the amount of a claim has no 
influence. In order to get around these weaknesses, he proposes introduction of 
a relatively high deductible as a substitute for the bonus-malus system. With a 
high deductible, a claim would have to be financed in advance by the insurer. 
In order to find the optimum deductible amount and mode of loan repayment, 
he applies a special loss function. The author sees a potential practical 
difficulty in the fact that, with this solution, the credit risk of the insured might 
be a factor to be considered. 

Heikki BONSDORFF: On the Convergence Rate of Markovian Bonus-Malus 
Systems. 

Under certain conditions, transition probabilities of a Markovian bonus- 
malus system converge toward stable transition probabilities. For such conver- 
gent Markov chains, the expression "convergence rate" is well-defined and can 
be calculated with the help of the eigenvalues of the transition matrix. The 
author calculates this convergence rate for the Dutch, Swiss and Finnish 
bonus-malus system, the results of which show that the latter converges most 
quickly. 
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ABSTRACT 

The aggregate claims process is modelled by a process with independent, 
stationary and nonnegative increments. Such a process is either compound 
Poisson or else a process with an infinite number of claims in each time 
interval, for example a gamma process. It is shown how classical risk theory, 
and in particular ruin theory, can be adapted to this model. A detailed analysis 
is given for the gamma process, for which tabulated values of the probability of 
ruin are provided. 

KEYWORDS 
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bility; risk theory; ruin probability; simulation; stable distributions; inverse 
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| .  INTRODUCTION 

In classical collective risk theory, the aggregate claims process is assumed to be 
compound Poisson (PANJER and WILLMOT, 1984). Here we shall examine a 
more general model for the aggregate claims process: processes with indepen- 
dent, stationary and nonnegative increments. Such a process is either com- 
pound Poisson or else a process with an infinite number of claims in any time 
interval. The most prominent process with this intriguing property is the 
gamma process. 

Since the process under consideration is either a compound Poisson process 
or a limit of compound Poisson processes, its properties can be derived from 
the basic properties of the compound Poisson process. The general results are 
derived in Section 2 (for the aggregate claims process) and Section 6 (for the 
probability of ruin). The gamma process is examined in detail in Sections 3, 4 
and 5 (for the aggregate claims process) and Sections 7 and 8 (for the 
probability of ruin). 

ASTIN BULLETIN, Vol. 21, No. 2 
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2. PROCESSES WITH INDEPENDENT, 

STATIONARY AND NONNEGATIVE INCREMENTS 

Let Q ( x )  be a nonnegative and nonincreasing function of x, x > 0, with the 
properties : 

Q ( x )  ~ 0 as  x --. 

and 

i 
oo 

(2.1) Q ( x )  dx < oz. 
o 

Condition (2.1) can also be written as 

i o~ x [ - d Q ( x ) ]  < oo, 

0 

which, if q(x )  = - Q ' ( x )  exists, becomes 

i oo x q ( x ) d x  < oo. 

0 

Such a function Q ( x )  defines an aggregate claims process {S(t)}~0 in the 
following way. For  each x > 0, let N(t;  x)  denote the number  of  claims with 
an amount  greater than x that occur before time t; let S(t;  x )  be the sum of  
these claims. We assume that {N(t; x)}t>_0 is a Poisson process with parameter  
Q ( x )  and that {S(x; t)}tz0 is a compound Poisson process with Poisson 
parameter  Q ( x )  and individual claim amount  distribution 

0 y_<x 

(2.2) P ( y ;  x)  = Q ( x ) - Q ( y )  
y > x .  

Q(x) 

The process {S(t)} is defined as the limit of  the compound Poisson processes 
{S(t; x)} as x tends to 0. 

We write 

Q ( 0 )  = l im Q ( x ) .  
x~0 

We need to distinguish two cases: Q(0) < ~ ,  and Q(0) = oo. In the first case, 
{S(t)} is a compound Poisson process with Poisson parameter  Q(0) and 
individual claim amount  distribution 

Q ( y )  
(2.3) P ( y )  = 1 - - - ,  y>_ o. 

Q (0) 
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This is the classical model for collective risk theory. Conversely, every 
compound Poisson process, given by Poisson parameter 2 and individual claim 
amount  distribution P(y), is of  this type if we set 

(2.4) Q(y) = 2 [ l - P ( y ) ] ,  y >_ 0. 

In the second case, {S(t)} is the limit of compound Poisson processes, but is 
not a compound Poisson process itself, because the expected number of  claims 
per unit time, Q(0), is infinite. Indeed, with probability one, the number of  
claims in any time interval is infinite. Nevertheless, S(t) is finite, as the 
majority of  the claims are very small in some sense. In both cases, Q(y) is the 
expected number of  claims per unit time with an amount  exceeding y. 

Since {S(t)} is the limit of  {S(t; x)} as x tends to 0, we can use well-known 
results for the compound Poisson process to obtain results for the process 
{S(t)}. For  example, it follows from 

S 
~ 

E[S(t; x)] = tQ(x) [ l - P ( y ;  x)] dy 
0 

= txQ(x)+t Q(y)dy 
X 

that 

(2.5) E[S(t)] = t Q(y) dy = t 
0 0 

To get the Laplace transform, we start with 

{ EI E[e-~S(';x) 1= exp tQ(x) 
x 

= exp 

y[-dQ(y)].  

e - Z Y d P ( y ; x ) - l l }  

[e -~y-  1] [-dO(y)] }. 

Letting x ~ 0 ,  we obtain 

(2.6) E[e -zs(°] = exp t 
0 

[e -~y- 1] [ -  dQ (y)] }.  

The process {S(t)}, defined by the function Q(x) ,  has independent, stationary 
and nonnegative increments, and E[S(t)] < oo. The converse is true in the 
following sense. Every process {X(t)} with these properties is of  the form 

X(t) = S(t)+bt, 

where {S(t)} is a process of  the type presented above and b is a nonnegative 
constant. This is a consequence of the connection between processes with 
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independent and stationary increments and infinitely divisible distributions, 
and the characterization of  infinitely divisible distributions with nonnegative 
support (FELLER, 1971, p. 450, Theorem 2; p. 571, formula (4.7)). 

3. THE GAM M A PROCESS 

Assume that the function Q (x) is differentiable and that - Q ' ( x )  is 

a 
(3.1) q ( x )  = - e -hx, x >  O, 

x 

where a and b are positive constants. Let {S(t)} be the associated aggregate 
claims process. In a time interval of  length t, the expected number of  claims 
with an amount  exceeding x is 

i 
oo e -  by 

t Q ( x )  = at - -  dy .  
x Y 

Since Q (0) = ~ ,  there is an infinite number of claims in each time interval. By 
(2.5) the expected aggregate claims in a time interval of  length t are 

I °° I °° at 
(3.2) E[S( t ) ]  = t y q ( y )  dy = at e -by dy - 

o o b 

To obtain the distribution of  S ( t ) ,  we compute its Laplace transform by 
(2.6): 

(3.3) E[e-zS( ' ) l  = exp t [e - z y -  I1 q ( y )  dy 
0 

= exp at dy 
o Y :(£)o 

To verify the last step, consider the function 

(p(Z) = I °° e - (Z+b)Y- -e -bY  dy; 

o Y 

observe that ~(0) = 0 and ~ ' (z)  = - ( z +  b) - i .  Formula (3.3) shows that the 
distribution of  S ( t )  is gamma, with shape parameter ~, = at and scale 
parameter fl, = b. Hence the process {S(t)} is called a gamma process. 

A gamma process with a = b = 1 is called a standardized gamma process. 
For  an arbitrary gamma process with parameters a and b, we may set t* = at 
and S * ( t * )  = bS ( t ) .  It follows from (3.3) that 
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(3.4) 

Thus  the t r ans formed  process {S* (t*)} is a s tandardized  g a m m a  process.  
The  g a m m a  process,  given by (3.1), can be imbedded  in a larger family o f  

processes given by 

(3.5) q ( x )  = ax  ~ - '  

with - 1  < ~ < oo. We note that  

(3.6) y q ( y )  dy = a 
o o 

is indeed finite. 
Fo r  ~ > 0, 

e - b x ,  x > O ,  

y~ e -by dy - a b ~+l F(0~+ 1) 

I a (3.7) Q(0)  = q ( y )  dy = b ~ F (o0 
o 

is finite. Hence  {S(t)} is a c o m p o u n d  Poisson process, with Poisson p a r a m e t e r  
2 given by (3.7) and claim a m o u n t  density 

(3.8) p ( x )  q ( x )  b ~ = --  X ~ - I  e - b x ,  x > O ,  
2 r ( ~ )  

which is a g a m m a  density. 
F o r  - 1 < ct < 0, Q (0) = oo. When  ct -- 0, we have the g a m m a  process.  To  

determine the probabi l i ty  density f u n c t i o n f ( x ,  t) o f  S ( t )  for  - 1 < ~t < 0, we 
apply  fo rmula  (2.6), 

(3.9) 

with 

(3.1 O) 

E[e-~S(')]  = etOq,(~), 

s 
o o  

~o(z) = (e - :Y- -  l) y ~ - I  e-bY dy .  

o 

F r o m  ~o(0) = 0 and 

(3.11) ~o' (z)  = - i oo yet e-(z+b)y dy = - F(o~-F 1) 

o ( z + b )  ~+1 

we obtain  

(3.12) ~ 0 ( z ) - r ( ~ + l ) [  ! - ~ 1  (~7-b) ~ 

= r(~) [(z + b ) - ' -  b-']. 
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(Note that (3.12) is also valid for ~ > 0; in this case it can derived by first 
expressing (3.10) as the difference of  two convergent integrals.) For simplicity, 
assume a = - I /F(~)  and b = 1. Write ,6' = - ~ .  Then (3.9) becomes 

(3.13) E[e -~s(')] = exp { t [ l - ( 1  +z)P]}. 

Recall the stable distribution of  order fl that is concentrated on the positive axis 
(FELLER, 1971, Sections XIII.6 and XI|I.7). Let gp(x)  denote its probability 
density function. Its Laplace transform is 

i 
O0 

e -  ~" gp (x)  dx = e -  :' 
o 

Hence the Laplace transform of  the function 

t - l / a g B ( t - t / P x  ), x > 0, 

is exp(- - tza) .  Finally, it follows from (3.13) that the probability density 
function of S ( t )  is 

(3.14) f ( x ,  t) = e t -Xt- t l t~g~( t -UBx) ,  x > O. 

For ,8 = 1/2, a closed form expression for the stable density is available, 

' ( ' ) (3.15) gt/2(x) - exp - - -  , x > O, 
2 ~ x 3/2 4x  

and (3.14) becomes 

t [ ( 2 x - - t )  2 
(3.16) f ( x ,  t) - exp - ] x > 0, 

2 x/n x 3/2 4 x _J ' 

which is the probability density of  the inverse Gaussian distribution. A review 
on the inverse Gaussian distribution can be found in FOLKS and CHm- 
KARA (1978); WILLMOT (1987) has applied the inverse Gaussian distribution in 
modelling the claim number distribution, and GENDRON and CR~PEAU (1989) 
and WILLMOT (1990) have modelled the individual claim amount  distribution 
with the inverse Gaussian distribution. 

4. PARAMETER ESTIMATION FOR THE GAMMA PROCESS 

Let {S(t)} be a gamma process with (at time t = 0) unknown parameters a and 
b. We claim that, if we can observe the process for a time interval of 
(arbitrarily short) length h, h > 0, the value of  a can be obtained as a limit: 
For  0 < x < l, we define the random variable 

N(h;  x )  
(4.1) A ( x )  = - ; 

h In (x) 
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then 

(4.2) lim A(x)  = a.  
x~O 

(We remark that a similar situation exists for the diffusion process with a priori 
unknown but constant infinitesmal drift p and variance O "2 ; I f  the sample path 
for an arbitrarily small time interval is known, O "2 c a n  be calculated.) 

To prove (4.2), we write (4.1) as 

i 
oo e - b Y  d y  

x y g ( h  ; x )  
A ( x )  = . a .  

I '  dY ah I°° 

x Y x Y 

Applying L 'H6pi ta l ' s  rule, we see that the first ratio tends to 1 as x tends to 0. 
The second ratio is N(h; x)/[hQ(x)]; by the strong law of  large numbers it 
converges to l (with probabili ty one) as x tends to 0. 

In the following we assume that the value of  a is known, but that b is 
unknown. I f  the aggregate claims process has been observed to time t, S( t )  is a 
sufficient statistic, i.e., any additional information about  the sample path is 
irrelevant for the estimation of  b (DE GROOT, 1975, p. 304, #5). To illustrate 
this, let us treat the unknown b as a random variable O with prior probabili ty 
density function u(O), O > 0. Then the posterior density of  O at time t, given 
the value of S(t) ,  is 

u(O; t)  = 
0 a' e -°s(') u(O) 

i oo r ~' e - 's( ' )  u(r)  dr 

o 

Let us now assume that u(O) is gamma,  say, 

u (0) - 04- l e-P°, 0 > 0, 

with fl > 0 and a > I. Then the posterior density is also gamma,  with 
parameters 

O~ t = o f + a t  

and 

fit = fl+ S ( t ) .  
At time t = O, the expected aggregate claims per unit time are 

E = a  d O = a  
o 0 o t - I  
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Hence, with S ( t )  known, the conditional expectation of the aggregate claims 
per unit time is 

l~, l~+ s(t) 
(4.3) a -  - a 

ot t -  l o r + a t -  I 

fl S (t)  
= ( l - Z , ) a  + Z , - -  

a - I  t 

where Zt = a t / ( a t + c t -  1). Formula  (4.3) corresponds to the well-known result 
for exact credibility in the g a m m a / g a m m a  model. 

5. SIMULATION OF THE GAMMA PROCESS 

We can simulate a compound Poisson process by simulating the times and 
amounts  of  the claims. This straightforward approach is not applicable to the 
gamma  process, since there are infinitely many claims in each time interval. We 
now present a method for simulating the gamma process. 

Let {S(t)} be the gamma process with parameters a and b. To simulate a 
sample path, we use the following result. For  time r > 0, the conditional 
distribution of  the ratio S( r /2 ) /S ( r ) ,  given S(Q,  is symmetric beta with 

s (t) 

12 
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parameter az/2 (DE GROOT, 1975, p. 244, #5). Thus, if we want to simulate a 
sample path for S(t), 0 <_ t _< T, we can proceed as follows. First we simulate 
a value for S(T) ,  whose distribution is gamma with shape parameter aT and 
scale parameter b. Then we obtain S(T/2) by simulating a value for 
S(T/2)/S(T),  which has a symmetric beta distribution with parameter aT/2. 
Next, we obtain S(T/4) and S(3 T/4) by simulating the values of  S(T/4)/S(T/2) 
and [S(3 T/4)-S(T/2)]  / [S (T) -S(T /2)] ,  respectively, each of  which has a 
symmetric beta distribution with parameter aT/4. Similarly, we can generate 
the values of S(T/8), S(3 T/8), S(5 T/8), S(7 T/8), and so on. 

We have simulated the standardized gamma process for various T. A sample 
path for T = l0 is shown in Figure I. 

6. RUIN THEORY 

Let {S(t)} be the aggregate claims process introduced in Section 2. In this 
section we present some ruin probability results for this process. In the next 
section, we specialize to the case that {S(t)} is a gamma process. 

Let the surplus of  an insurance company at time t, t > 0, be 

(6.1) U(t)  = u + c t - S ( t ) .  

Here u is a nonnegative number denoting the initial surplus and c is the rate at 
which the premiums are received. The relative security loading 0 is defined by 
the equation 

(6.2) c = (I +O) E[S(1)] = (1+0)  Q(x )dx .  
0 

We assume that 0 > 0. Let ~ (u) denote the probability of  ultimate ruin, i.e., 
the probability that the surplus becomes negative at some future time. 

In view of formula (2.4), results for this model can be obtained via those for 
the compound Poisson model with the following recipe. We start with a 
formula for the case of  the compound Poisson process with Poisson parameter 
2 and individual claim amount  distribution P(y).  Then we substitute Q(y)  
for 211 - P ( y ) ]  (or q(y)  for 2p (y )  if the derivatives exist) to obtain the corre- 
sponding formula for the more general model. 

For  example, in the compound Poisson model the probability of  ruin 
satisfies the following defective renewal equation [e.g., BOWERS et al. (1986, 
p. 373, #12.11)]: 

cgt(u) = 2 t u ( u - y ) [ l - P ( y ) ] d y + 2  [ l - P ( y ) ] d y ,  u >_ O. 
0 v 

Substituting Q(y)  for 2 1 1 - P ( y ) ] ,  we get 

I ° I (6.3) c~u(u) = ~ ( u - y )  Q(y)  dy + Q(y)  dy, u > O. 
0 u 
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For  u = 0, this gives 

(6.4) ~(0)  = - Q ( y )  dy = ~ .  
c 0 1 + 0  

Let us now consider the maximal loss random variable 

(6.5) L = max { S ( t ) - c t } .  
t~O 

It is of  interest since 1 - ~ ( u )  is its distribution function. In the compound 
Poisson model, it is well known (BOWERS et al., 1986, Section 12.6) that L has 
a compound geometric distribution: 

(6.6) L = L i + L 2  + ... + L  N. 

Here N, L~, L2, ...  are independent random variables, the Li's are identically 
distributed with the probabili ty density 

1 - P ( x )  
(6.7) h(x )  = , x > O, 

i o~ [ l - e ( y ) ]  dy 

0 

and N has a geometric distribution defined by 

(6.8) Pr(N  = n) - 0 ( 1 - ~  ) +O n = 0 , 1 , 2 , . . . .  

I f  we multiply both numerator  and denominator  of  (6.7) by 2, we see that (6.6) 
is valid for the general model, with 

Q(x)  
(6.9) h(x )  - , x > O. 

i oo Q ( Y )  dy 

o 

These formulas can be used to determine numerical lower and upper bounds 
for the ruin probabili ty;  see Method 1 in DUFRESNE and GERBER (1989). 

For  the next result we assume that p ( x )  = P' (x)  and q(x )  = - Q '  (x) exist. 
Let Tdeno te  the time of  ruin. Put X = U ( T - ) ,  the surplus immediately before 
ruin, and Y = IU(T)I,  the deficit at the time of  ruin. We assume that u = 0. 
Given that ruin occurs, the joint probabili ty density of  X and Y in the 
compound  Poisson case is 

p(x+y) 
(6.10) h ( x , y )  = , x > O,y > 0 

I ~ [1 - P ( s ) ]  as 
0 
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(DUFRESNE and GERBER, 1988). Thus, in the general model, the joint density 
of  X and Y is 

q ( x + y )  
(6.11) h ( x , y )  - , x > O , y  > O. 

i oo Q ( s )  ds 

o 

We note that both (6.10) and (6.11) are symmetric in x and y. The probability 
density of  Z = X+  Y (the amount  of the claim that cases ruin) is 

(6.12) g ( z )  = h ( x ,  z - x )  dx  - z q ( z )  , z >  O. 

o I ~ Q(s )  ds 
o 

The conditional probability density of X given Z = z (and u = 0) is 

h ( x ,  z - x )  1 
- -  , 0 < X < Z .  

g(z )  z 

This is the somewhat surprising result that the conditional distribution of  X 
(given Z = z) is uniform between 0 and z. 

We wish to remark that, if Q(0) = oo, the notion of  an individual claim 
amount  distribution of  the process {S(t)} per  se does not make sense. However, 
the conditional claim amount  distribution, given certain information, may still 
exist. For  example, (2.2) is the distribution of an individual claim amount  given 
that it exceeds x. Likewise, g ( z )  is the probability density function of the 
amount  of  the claim that causes ruin. 

We now turn to Lundberg's asymptotic formula. The adjustment coefficient 
R is defined as the positive solution r = R of  the equation 

(6.13) (e ' y -  1) [ - d Q ( y ) ]  = cr.  
0 

(Note that some regularity conditions have to be imposed on Q ( y )  to 
guarantee the existence of R.) It follows from (2.6) that, for all t, 

(6.14) E[e Rts(')-c'l] = 1. 

Lundberg's famous asymptotic formula states that 

(6.15) yJ(u) ~ Ce -gu for u ~ oo. 

In the compound Poisson case, 
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(6.16) C = 
S 

oo 

02 y d P  ( y ) 
o 

S 
oo  

2 ye  ny d P ( y )  - c 

o 

(SEAL, formula (4.64)), which is translated as 

(6.17) C = 
i 

oo 

- 0  y d Q ( y )  
o 

i 
oo 

- y e R Y d Q ( y ) - - c  

o 

7. RUIN THEORY FOR THE GAMMA PROCESS 

We now consider the special case that { S ( t ) }  is a gamma process. As we 
pointed out in Section 3, any gamma process can be transformed into a 
standardized gamma process. Thus we assume that, for x > 0, 

e - x  

(7.1) q ( x )  - 
x 

o r  

i 
oo e - y  

(7.2) Q ( x )  = - -  d y .  

x Y 

In ABRAMOWlTZ and STEGUN (1964, p. 227), the exponential integral (7.2) is 
denoted as El (x). 

Since 

i i i Q ( x )  dx  = x q  ( x )  dx  = e - "~ dx  = 1, 
o o o 

formula (6.2) becomes 

(7.3) 1 + 0 =  c. 

By (6.9) the common probability density function of  the random variables {Li} 
is 

(7.4) h ( x )  = O ( x )  = El (x ) ,  x > O, 

and their distribution function is 

S 
x 

(7.5) H ( x )  = h ( y )  dy = l - e - ~ + x E l ( x ) ,  x > O. 
o 
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From (6.11) and (6.12) we obtain 

(7.6) h (x, y)  - - -  

and 

e - ( X + y )  

x + y  

(7.7) g(z)  = e -~, 

respectively. Formula (7.7) is especially interesting, as it says that (if u = 0) the 
amount  of  the claim that causes ruin is exponentially distributed. 

Substituting (3.4) and (7.3) in (6.14) yields the equation 

1 (7.8) - e r(l+O) 

l - r  

The adjustment coefficient R is the positive root of  (7.8). It follows from (6.17) 
and (7.3) that the asymptotic constant C in Lundberg's formula is 

(7.9) C = 
0 0 ( 1  - g )  

1 
- -  - ( l + 0 )  
1 - R  

R - O ( l  - R )  

Remark: As pointed out in Section 3, the gamma process is the limit of  a 
certain family of compound Poisson processes, each with a gamma claim 
amount  distribution. For these WILLMOT (1988) has given an elegant method 
to evaluate the probability of  ruin. 

8. THE PROBABILITY OF RUIN FOR THE GAMMA PROCESS 

As in the last section we assume that the aggregate claims process is the 
standardized gamma process. Since (7.5) gives an explicit expression for H(x) ,  
we can apply the method of  lower and upper bounds to calculate the 
probability of  ruin (DUFRESNE and GERBER, 1989). We have calculated lower 
and upper bounds for ~ (u )  for different values of the initial surplus u 
(0, I, 2, . . . ,  20) and the relative security loading 0 (0.1, 0.2, 0.3 . . . . .  1.0), for 
intervals of  discretisation with length 0.01 and 0.001. For  0 = 0.5 these bounds 
are displayed in Table 1. Thus the exact value of  the probability of  ruin is 
known with sufficient accuracy (4 decimals). Table 2 shows these values. 

Illustration: Assume that the annual aggregate claims have an expectation 
/z = 100,000 and a standard deviation a = 20,000. The initial reserve is 48,000 
and the annual premium (net of  expenses) is 120,000. What is the probability of  
ultimate ruin? 
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TABLE 1 

LOWER AND UPPER BOUNDS FOR THE PROBABILITY OF RUIN 

0 =  0.5 

u Lower bounds Upper bounds 

0 0.666667 0.666667 0.666667 0.666667 
1 0.321352 0.322741 0.323055 0.324488 
2 0.175016 0.176268 0.176550 0.177839 
3 0.096653 0.097604 0.097819 0.098798 
4 0.053619 0.054288 0.054439 0.055129 
5 0.029801 0.030250 0.030352 0.030817 

6 0.016577 0.016870 0.016936 0.017240 
7 0.009225 0.009412 0.009454 0.009649 
8 0.005135 0.005252 0.005279 0.005401 
9 0.002858 0.002931 0.002948 0.003024 

10 0.001591 0.001636 0.001646 0.001693 

11 0.000886 0.000913 0.000919 0.000948 
12 0.000493 0.000510 0.000513 0.000531 
13 0.000275 0.000284 0.000287 0.000297 
14 0.000153 0.000159 0.000160 0.000166 
15 0.000085 0.000089 0.000089 0.000093 

16 0.000047 0.000049 0.000050 0.000052 
17 0.000026 0.000028 0.000028 0.000029 
18 0.000015 0.000015 0.000016 0.000016 
19 0.000008 0.000009 0.000009 0.000009 
20 0.000005 0.000005 0.000005 0.000005 

I 0.001 _ _ 1  

0.01 

length of the interval of discretisation 

Solution: We assume that the premiums are received continuously and the 
aggregate claims process can be modelled by a gamma process with parameters 
a and b. Then a/b = / z  = 100,000 and a/b 2 = a 2 = (20,000) 2. It follows that 
b = ~fir 2 = 1/4,000. In order to use Table 2 (which is for the standardized 
gamma process), we have to transform the initial reserve to 
u = 48,000x b = 12. The relative security loading 0 = 0.2 does not change. 
Looking up Table 2, we obtain the probability of  ruin ~(12) = 0.018. 
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TABLE 2 

THE PROBABILITY OF RUIN FOR TIlE STANDARDIZED GAMMA PROCESS 

Relative security loading 0 

u 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 

0 0.9091 0.8333 0.7692 0.7143 0.6667 0.6250 
1 0.7395 0.5736 0.4613 0.3816 0.3229 0.2782 
2 0.6184 0.4165 0.2990 0.2253 0.1764 0.1424 
3 0.5182 0.3038 0.1952 0.1344 0.0977 0.0741 
4 0.4345 0.2219 0.1277 0.0805 0.0544 0.0388 
5 0.3643 0.1621 0.0836 0.0482 0.0303 0.0204 

6 0.3054 0.1185 0.0548 0.0289 0.0169 0.0107 
7 0.2561 0.0866 0.0359 0.0173 0.0094 0.0056 
8 0.2148 0.0632 0.0235 0.0104 0.0053 0.0030 
9 0.1801 0.0462 0.0154 0.0062 0.0029 0.0016 

10 0.1510 0.0338 0.0101 0.0037 0.0016 0.0008 

11 0.1266 0.0247 0.0066 0.0022 0.0009 0.0004 
12 0.1062 0.0180 0.0043 0.0013 0.0005 0.0002 
13 0.0890 0.0132 0.0028 0.0008 0.0003 0.0001 
14 0.0746 0.0096 0.0019 0.0005 0.0002 0.0001 
15 0.0626 0.0070 0.0012 0.0003 0.0001 

16 0.0525 0.0051 0.0008 0.0002 
17 0.0440 0.0038 0.0005 0.0001 
18 0.0369 0.0027 0.0003 0.0001 
19 0.0309 0.0020 0.0002 
20 0.0259 0.0015 0.0001 

0.5882 0.5556 0.5263 0.5000 
0.2434 0.2155 0.1929 0.1743 
0.1178 0.0994 0.0854 0.0743 
0.0582 0.0470 0.0388 0.0327 
0.0289 0.0224 0.0178 0.0145 
0.0144 0.0107 0.0082 0.0065 

0.0072 0.0051' 0.0038 0.0029 
0.0036 0.0025 0.0018 0.0013 
0.0018 0.0012 0.0008 0.0006 
0.0009 0.0006 0.0004 0.0003 
0.0005 0.0003 0.0002 0.0001 

0.0002 0.0001 0.0001 0.0001 
0.0001 0.0001 
0.0001 
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E V A L U A T I N G  C O M P O U N D  G E N E R A L I Z E D  POISSON 
DISTRIBUTIONS RECURSIVELY 

By M.J.  GOOVAERTS AND R. KAAS 

Amsterdam/ Leuven 

A B S T R A C T  

In this paper we give a recursive scheme, involving Panjer's recursion, to 
compute the distribution of  a compound sum of  integer claims, when the 
number of  summands follows a Generalized Poisson distribution. Also, an 
elegant derivation is given for some basic properties of  this counting distribu- 
tion. 

l .  THE G E N E R A L I Z E D  POISSON DISTRIBUTION 

The Generalized Poisson distribution, see CONSUL (1989), is an integer-valued, 
non-negative distribution with two parameters 0 and 2. A random variable N 
having this distribution with parameters 0 and 2 is also denoted as a GP (0, 2) 
random variable. In the first section we repeat the mathematical properties of  
this distribution, giving a short and elegant derivation. The second section 
contains a recursive algorithm to compute the probabilities of a compound 
Generalized Poisson distribution. This algorithm is obtained by the well- 
known technique of  differentiating the generating function and comparing 
coefficients of  resulting power series. This function, however, is known only in 
an implicit form, so the process is not as trivial as usual. 

An actuarial application of  the Generalized Poisson distribution, linking it to 
the ruin model, can be found in GERBER (1990). Other chance mechanisms 
generating this distribution are described in CONSUL (1989). One of  these is the 
Galton-Watson branching process, which is a model with many conceivable 
actuarial applications. In this process, the spreading of  a certain disease is 
modeled as follows. Suppose M individuals are originally infected. Each of  
these infects Li other individuals, i = 1 , . . . ,  M. These in turn infect L o. new 
victims, j = 1 . . . . .  Li, and so on. Now i f M  is a Poisson (0) distributed random 
variable, and the Li,  Lij . . . .  are independent Poisson (2) random variables, the 
total number N of people infected has a Generalized Poisson distribution with 
parameters 0 and 2. 

The parameters 0 and 2 are non-negative; the Poisson distribution is the 
special case with 2 = 0. Assume 2 < 1 to ensure that N remains finite with 
probability one. 

Consider the total number of individuals Bi infected by the ith person, 
including this person himself, and define B u analogously for the j th person 

ASTIN BULLETIN, Vol. 21, No. 2 
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infected by i , j  = 1, . . . ,  Li. Obviously B; and B o are random variables with the 
same distribution. We can write Bi as: 

L, 

(1) B~= 1 + 2 BO" 
j=l 

Let B be distributed as B~ and Bo.. From relation (1), and using some 
well-known properties of compound Poisson (2) distributions, we can directly 
derive expressions for the mean, variance and generating function of  B. The 
mean can be computed as follows: 

1 
(2) E[B] = 1 + 2 E [ B ]  =~ E[B] - 

1 - 2  

The variance and the second moment can be computed from: 

1 
(3) Var [B] = 2E[B 2] ~ E[B z] - 

(1 - - 2 )  3 

If Gs(u)  = E[u B] is the generating function of  the Bi and B,j random variables, 
it must satisfy the following relation: 

(4) G s ( u )  = UGL~(GB (u))  = u e ~(cB(")-I) 

Writing t = t (u)  = GB(u), we obtain from (4): 
- 2 ( t -  1) 

( 5 )  u = t e 

The probabilities P [ B  = i] are the coefficients of the power series representa- 
tion of  t (u) .  To determine them from relation (4), we use a slightly simplified 
form of Relation 3.6.7 in ABRAMOWXTZ and STEGUN (1965; Lagrange's 
expansion): if u = f ( t ) , f ( O )  = 0, f ' ( 0 )  4= 0, and g is any function infinitely 
differentiable, then 

(6) g( , )  = g(0) + ,= ,E LJ-' so,)* J,=0 
The distribution of B is found by taking g ( t )  = t and using u = f ( t )  as in (5), 
resulting in the Borel distribution: 

(i2)i-i e-e~ 
(7) P [ B  = i ] -  , i =  i , 2  . . . . .  

i! 

Since a GP (0, 2) random variable is a compound Poisson (0) sum of Borei (2) 
random variables, its generating function equals e O(Gn(u)- I), SO the density of  a 
GP(0 ,  2) random variable N is found by taking g ( t )  = e °(t-l) in (6), leading 
t o :  

O(O+n2)" - l  e-O-,,;. 
(8) P [ N =  n] = , n = 0 , 1 , . . . .  

n! 
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To compute mean and variance of N directly from (8) involves rather tricky 
mathematics. Using (2) and (3), however, it is trivial exercise; note that for 
2 > 0 the mean exceeds the variance: 

0 0 
(9) E[N] - ; Var [N] - - -  

I - 2  ( 1 - 2 )  3 

Being a compound Poisson (0) sum (of Borel (2) distributions), a GP  (0, 2) 
random variable is easily seen to be infinitely divisible, as for any n = 1, 2 . . . .  (0) 
it can be written as the convolution of  n GP  - ,  2 variables. 

n 

2. A RECURSIVE ALGORITHM FOR THE PROBABILITIES 

OF A COMPOUND GP DISTRIBUTION 

To actuaries the total of  the incurred claims is more relevant than their 
number. I f  the costs associated with occurrence i, i = 1, . . . ,  N, are given by a 
random variable Z,., then the total costs are given by the following compound 
Generalized Poisson (0, 2) random variable: 

N 

(10) S-- E Zi" 
i=1 

Here the GP (0, 2) distributed counting variable N is assumed to be indepen- 
dent of  all Zi,  and the sequence Z l ,  Z2 . . . .  is i.i.d. We assume the Zi to be 
integer-valued and positive. (By excluding zero-claims, we avoid problems later 
on, when we have to compute P[S = 0] to start a recursion.) 

Actuaries prefer to use counting distributions that are suitable for computa-  
tions of  quantities like probabilities of  ruin and stop-loss premiums. Since 
PANJER (1981) actuaries are aware that there is a very efficient recursive 
algorithm to compute probabilities of  S as in (10) if N is Binomial, Negative 
Binomial or Poisson. SUNDT and JEWELL (1981) derive similar recursions for a 
wider class of  counting distributions. In this section we will derive recursion 
formulae expressing P[S = s] in P[S = j ] , j  = 0, I . . . . .  s -  I for the case of  a 
Borel and a GP counting variable, too. 

To this end, we will derive recursion relations for the coefficients of  the 
generating function Gs(u ). Using the fact that a GP (0, 2) distribution can be 
viewed as a compound Poisson (0) sum of  Borel (2) distributions, we can 
rewrite S as follows: 

M Bi 

(l l) S =  E Y/ where Yi = E ZO" 
i= l  j = l  
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Here M is a Poisson (0) random variable, Bi is a Borel (2) random variable and 
Z u is an i.i.d, sequence of  claim amounts. Each term Yi has a compound Borel 
distribution. 

If  N has a GP (0, 2) distribution, and S is as in (10), by (4) and (5) we 
have 

(12) G s ( u )  = e °(GB<Gz~u))-I) = e °~'-~) with t such that t e  -:'<'-I) = G z ( u ) .  

This implicit description of  the generating function of  a compound Generalized 
Poisson distribution will enable us to derive relations between its probabilities. 
We do so in two steps. The first and most important step is to compute the 
coefficients of  G B ( G z ( u ) ) ,  which amounts to computing the probability 
function of  the compound Borel distributed Y,. random variables. The second 
step uses these coefficients to compute the coefficients of  Gs(u) ,  simply by 
invoking Panjer's recursion formula. 

Taking the derivative with respect to u of  the logarithm of  the second part of  
(12) provides us with the following relation: 

d t ' ( u )  d G~(u )  
(13) - -  log ( t ( u )  e -:'~'~u)-l)) = _ _  _ 2 t ' (u )  = - -  log G z ( u )  - 

du t (u )  du Gz(U)  

Rearranging leads to the following equality: 

(14) t ' ( u )  - 
t (u )  G~(u )  

I - 2 t  (u) G z ( u )  

We introduce the following notation for the coefficients of  the power series 
representations for the three factors appearing in (14)" 

(15) t ( u )  = o~,u"; - u f l ,  u"; - r, . 
,=l 1 - 2 t ( u )  ,,=0 G z ( u )  u ,=0 

Since the coefficients of u" in (14) must be equal on both sides, we obtain the 
following relation" 

(16) ~ . + l ( n + l )  = ~ f l j rn-: .  
j=0 

The coefficients r,  depend on the known probability function of Z. We write 
p .  = P [ Z i  = n], n = 1, 2 . . . .  ; assume Pt > O. So we have 

(17) Gz(u)  = Z PnU~" 
n = l  

Using (17), rearranging the last equation of  (15) and comparing coefficients of  
u" leads to 
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~" (n+ l)p.+tu" 

( 1 8 )  = _1 u ° F n ~ 
~ n=0  

U 2 Pn+lUn 
n=O 

( n + l ) p . + l  = ~ rjp.+l-j ,  
j = 0  

Then the rn can be determined as follows: 

n - I  '( z ) (19) r n = - -  (n+ l )p .+j  - rjpn+l_ j 
Pi j=0 

n = 0 , 1  . . . . .  

n = 0 , 1  . . . . .  

The coefficients % are the probabilities of  Y~ to be determined. The auxiliary 
coefficients 8.  can be expressed in cq . . . .  , %+1, using the same technique 
leading to (18). Indeed the middle equation of (15) gives the result 

oo 

12 ~ OCk+l uk 
k=0  

(20) = u flk u~ 

1 - 2  ~ O~k uk k=O 

k=l 

ft. = ~ f l . - k2%+~ , ,+ t ,  n = 0,1 . . . . .  
k = l  

Using (20) and the fact that r 0 = 1, see (19), we may write (16) as follows: 

(21) %+l(n+l)= 2 rn-j f lJ  "1- fln-k'~'O~k-'l-O~n+l" 
j = 0  k = l  

The following expression for %+1 is found 

- ) '(z (22) ~+1 = - r._;flj + 2 fl.-kOCk , n = 1, 2 . . . . .  
n j=0 k=l 

The probabilities % can now be computed successively. Indeed, if the 
probabilities ~1 . . . . .  % and the auxiliary quantities ,80 . . . . .  fin-2 are known, 
one computes f l , - i  using (20), and next %+1 using (22). Since P[Zi = 0] = 0, 
the starting value ~l can be computed as follows: 

(23) ~1 = P I  ~'~,=1 Z ; =  I1 = P [ B =  I]P[Z ,  = 1 ] = p , e  -~. 

Note that by the requirement p~ > 0 we have 0q > 0. 
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Having computed the coefficients ~ ,  ~2 . . . . .  which are the probabilities of 
the random variables Y~, we can compute the probabilities of S simply by using 
Panjer's recursion formula for the Poisson (0) case, starting from P[S = 0] = 
P [ N =  0] = e - ° '  

(24) P [ S  = s] = - jo~jP[S = s - j ] ,  s = I, 2 . . . . .  
S j = I  

Remark 

Taking Pl = 1, pj = 0 otherwise, one gets rj = 0 f o r j  4: 0. Then (22) and (20) 
lead to a recursion for the Borel (4) distribution (7); combining it with (23) 
gives a recursion for the GP (0, 2) distribution (8). 

3. CONCLUSIONS 

The Generalized Poisson distribution may be a useful model when the chance 
mechanism used in the first section is appropriate, or any of the other models 
in CONSUL (1989). It can be used as an alternative to the Negative Binomial 
distribution when the tails of the counting distribution are thicker than those of 
the Poisson. It is mathematically a more complex distribution than the 
counting distributions usually assumed by actuaries (Binomial, Poisson or 
Negative Binomial), but we think that using the lines of thought given in the 
first section, actuaries will be able to use this distribution in their practical 
work. 

The possible objection that this counting distribution is not suitable for 
actuarial calculations, which mostly involve compound sums, is removed by the 
recursive algorithm given in Section 2. 
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ABSTRACT 

In this paper we present an algorithm for the approximate calculation of finite 
time survival probabilities for the classical risk model. We also show how this 
algorithm can be applied to the calculation of infinite time survival probabili- 
ties. Numerical examples are given and the stability of the algorithms is 
discussed. 

KEYWORDS 
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stability. 

I. INTRODUCTION 

The primary aim of this paper is the approximate calculation of the probablity 
of survival in continuous and finite time for a general classical risk process. We 
assume, without loss of generality, that the expected number of claims per unit 
time for this process is 1 and that the expected amount of a single claim is also 
1. This process can be characterized as follows: 

- -  the number of claims occurring up to time t, denoted oN,, has a 
Poisson distribution with parameter t, 

_ _  y oo the amount of the i-th claim is 0Yi, where {0 i}i=l is a sequence of 
(1.1) i.i.d, non-negative random variables which are also independent of 

the claim number process, and whose first two moments exist, 

- -  the premium income per unit time is I + 0, where 0 is the premium 
loading factor. (We shall assume 0_> 0, but some of our later 
results require only that (1 + 0) > 0.) 

(We use the subscript " 0 "  where appropriate to indicate that we are dealing 
with our initial process.) For a given initial reserve u(>_ 0) we denote by 
06(u, t) the probability of survival in continuous time up to time t, so that 

oNe 1 
o6(U, t) = Pr FLU+( 1 +0)z  - i=iE 0 Y/ >- 0 for all r, 0 < r _< t 

ASTIN BULLETIN, Vol. 21, No. 2 
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Our approach to the calculation of  0,~(u, t) is to show that 0fi(u, t) can be 
approximated by the probabili ty of  survival in discrete and finite time for a 
particular risk process, and then to discuss the calculation of  this latter 
probability. The particular risk process we use is a classical risk process 
characterized as follows: 

(1.2) 

: - -  the number  of  claims occurring up to time t, denoted N,, has a 
Poisson distribution with parameter  2t, 

- -  the amount  of  the i-th claim is Y~ where { Y~}~°~ L is a sequence of  
i.i.d, random variables which are independent of  the claim number 
process, 

- -  the Y:s are distributed on the non-negative integers, 

• - -  the premium income per unit time is 1. 

We introduce the following notation for this particular risk process: 

bk = Pr[Y/ = k] for k = 0, 1, 2 , . . .  

~(u, t )  = Pr u + r -  Yi -> 0 for r = 1 , 2 , . . . , t  
i=l  

so that ~(u, t) denotes the probabili ty of  survival in discrete time up to time t 
for this particular risk process, given initial reserve u, which we always assume 
to be non-negative. With suitable choices for 2 and the bfls we can then argue 
that 

(1.3) o6(u, t) -~ 6(up, (1 +o)l~t) 

for some positive constant  ft. 
Formula  (1.3) can be justified by using a discretizing and re-scaling argument 

as follows : 

STEP 1 

Let 

Let 

Let 

Discretize the initial process: 

{i Yi}i°~l be a sequence of i.i.d, random variables distributed on the 
discrete points 0, 1/fl, 2/fl, . . . ,  for some fl > 0, in such a way that the 
distribution of  ~ Y/approximates  to that of  0Yi. 

bk = Pr [iYi = k/fl] for k = 0, 1, 2 . . . .  

1 6 ( u , t ) = P r  u + ( l + O ) z -  iI'~- _> O f o r a l l r ,  O < r _ < t  
i ~ l  

so that 16(u, t) is the probabili ty of  survival in continuous time 
before time t, given initial reserve u(_> 0), for the initial process but 
with 01q- replaced by the discrete random variable tiC. 
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Then, if ~Y~ is a " g o o d "  approximation to 0Yi, 

~,~(u, t) -~ 0,~(u, t ) .  

STEP 2 Change the monetary unit: 

Define 2Y/to be equal to fl Y/, so that 

P r [2Yi=  k] = bk for k = 0 , 1 , 2  . . . .  

Denoting by 2~5(w, t) the probability 

Pr w + ( l + O ) f l r  - 2Yi -> 0 for all r , O < ~ _ < t  

it can be seen that 

,~5(u, t) = 2~5(ufl, t) 
and hence 

oO(U, t) '~ 26(ufl, t). 

201 

STEP 3 Change the time unit: 

Let 3N, be a Poisson process with parameter 2 = 1/[(1 +0),6]. 

Let 36(w,t)= Prlw+z-  i~12Yi >_ Oforallz, O<r_<t 1 . . =  

Then it can be seen that 

26(w, t) = 36(w, (1 +O)l~t) 

and hence that 

o6(u, t) -~ 36(ufl, (1 + o ) p t ) .  

Finally in our argument to justify (1.3), note that the risk process emerging 
from STEP 3 is the risk process characterized by (1.2) and that 6(u, t) is the 
discrete time probability of  survival corresponding to 3d~(u, t). Intuitively, ~(u, t) 
should be a good approximation to 36(u, t) if, for a given t, the number of  
re-scaled time units, (1 +O)flt, is large, so that there are frequent checks for 
survival in the discrete case. 

For  the remainder of  this paper our theoretical work will be based on the 
risk process characterized by (1.2). We introduce the following notation for this 
process : 

X, denotes the aggregate claims from time n - 1  to time n, so that 
N. 

X, = 2 Yi for n = 1,2 . . . .  (=  0 i f N , _ l  = N,) 
i=N._l+l 
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gk is the probability that X, takes the value k, for k = 0, l, 2... 

mk is the k-th moment about zero of  an individual claim amount  

Z ,  is the accumulated surplus up to time n, given initial surplus u > 0, so 
that 

Z,  = u + n - ~ Xi for n = 1 ,2 , . . .  
i=1 

Note that since Yi is distributed on the non-negative integers we can evaluate 
the gk's using the recursive method of  PANJER (1981). We shall assume for the 
remainder of  this paper that the gk's are known and that u is a non-negative 
integer. Note also that Z,+t  can take only the values 

Z , + 1  (if X,+ ~ = O) 

Z,  (if X,+t = 1) 

Z , - I  (if X,+i = 2) etc. 

2. THE METHOD OF D E  V Y L D E R  AND G O O V A E R T S  

DE VYLDER and GOOVAERTS (1988) present a very neat recursive algorithm for 
the approximate calculation of  06(u, t). Their method involves discretizing the 
risk process and then re-scaling it, in almost exactly the same way as we have 
described in our Section I. In terms of  the process characterized by (!.2), their 
algorithm is as follows: 

w+|  

(2.1) 6(w, 1) = Z gJ for w = 0 , 1 , 2 , . . .  
j =0  

w+l 

(2.2) 6(w, m) = ~_, 6(w+ 1 - j ,  m -  1)gj for w = 0, 1 . . . .  
j =0  

and m = 2, 3 . . . .  

The rationale behind this algorithm is as follows: 

- -  6(w, 1) can be calculated directly from (2.1) since the gk's are known, 

- -  for m _> 2, O(w, m) can be calculated by conditioning on the surplus after 
1 unit of  time; with probability gj this surplus is ( w + l - j )  and the 
probability of  survival over a further ( m - l )  units of time is 
6 ( w+  l - j ,  m -  1). 

In terms of  the calculations involved, formula (2.2) can perhaps be most 
easily appreciated by considering Figure 1. We suppose that we wish to 
calculate 6(u, t) for some given u and (positive integer) t ( >  1). We first 
calculate 3(w, 1) for w = 0, 1 . . . . .  u + t - I  using (2.1). We then use (2.2) to 
calculate 6(w, 2) for w = 0, 1, 2 . . . .  , u + t - 2 .  In general, we calculate 6(w,r) 
for w = 0, 1, 2 , . . . ,  u + t - r  having first calculated 6(w, r - l )  for 
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w = u+t-I 

w = u+t-2 

w = u+t-r+l 

w = u+t-~ 

W = u+l 

Q 

FIGURE I. Combinations of  w and r for which values of/~(w, r)  are required to calculate di(u, t) 
using the method of De Vylder and Goovaerts. 

w = 0, 1, 2, . . . ,  u + t - z +  1. It can be seen that to calculate 6(u, t) we have, at 
least in principle, to calculate 6(w, z) for all values of  (w, z) in the trapezoidal 
area given by 1 < r _ < t - I  and 0 _ < w _ < u + t - r .  

There is one respect in which the above description represents a refinement 
of the algorithm presented by DE VYLDER and GOOVAERTS (1988). In their 
Section 7 they state that, " W e  can adopt any unit of money and any unit of  
t ime." However, re-scaling of the time unit results in a premium income per 
unit time which can be greater than 1; our re-scaling of the time unit, as 
described in our Section 1, results in a premium income per unit time which is 
equal to 1. 

There are two respects in which the above description is a simplification of 
De Vylder and Goovaerts 's algorithm. These are: 

1. Truncation: DE VYLDER and GOOVAERTS (1988, Sections 4 and 5) point 
out that the algorithm as described above requires a lot of  calculations to 
be carried out and hence requires a considerable amount  of  computer time. 
They propose, and use, a method for reducing the number of calculations 
required in such a way that the error resulting from this approximation can 
be bounded. 

2. Averaging: DE VYLDER and GOOVAERTS (1988, formula (1)) point out that, 
in the notation of  our Section l, 

6 ( u -  1, t) _< 36(u, t) < 6(u, t) 
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a n d ,  in the i r  n u m e r i c a l  e x a m p l e ,  t hey  p r o p o s e  a p p r o x i m a t i n g  3,~(u, t )  n o t  
b y  J ( u ,  t )  b u t  by  ~(u ,  t )  w h e r e  

(2.3)  ~(u ,  t )  = ½ { d i ( u - 1 ,  t)+6(u, t)} 

w i t h  6 ( u -  1, t )  t a k e n  to  be  ze ro  i f  u is zero .  

A numer i ca l  e x a m p l e :  T a b l e  1 s h o w s  va lues  o f  0fi(u, t )  fo r  v a r i o u s  c o m b i n a -  
t i o n s  o f  u a n d  t fo r  the  r isk  p r o c e s s  wi th  e x p o n e n t i a l l y  d i s t r i b u t e d  i n d i v i d u a l  
c l a i m s  a n d  w i th  t w o  va lues  fo r  the  p r e m i u m  l o a d i n g  f a c t o r  0, viz. 0.1 a n d  0.2. 
T h e  key  to  T a b l e  1 is as  f o l l o w s :  

(1) d e n o t e s  the  exac t  v a l u e  o f  0di(u, t )  as  g iven  b y  WIKSTAD (1971) ;  

(2) d e n o t e s  the  a p p r o x i m a t i o n  to  0c~(u, t )  g iven  by  DE VYLDER a n d  GOO- 
VAERTS 0 9 8 8 ,  T a b l e  l ) ;  

(3) d e n o t e s  the  a p p r o x i m a t i o n  to  06(u ,  t )  g iven  by  (2.1) a n d  (2.2) a b o v e .  

TABLE I (See Section 2 for details) 
(a) Premium loading factor 0 = 0.1 

t = I t = 10 t = 100 

u = 0 (I) 0.5366 0.2146 0.1100 
(2) 0.3401 0.1562 0.0814 
(3) 0.5515 0.2239 0.1150 

u = I (I) 0.7619 0.3874 0.2052 
(2) 0.4159 0.2322 0.1252 
(3) 0.7699 0.3953 0.2098 

u = 10 (1) 0.9997 0.9681 0.7395 
(2) 0.9996 0.9663 0.7366 
(3) 0.9997 0.9687 0.7413 

(b) Premium loading factor 0 = 0.2 

t = 1 t = 10 t = I00 

u = 0 (1) 0.5490 0.2523 0.1717 
(2) 0.3498 0.1829 0.1262 
(3) 0.5636 0.2624 0.1789 

u = l (I) 0.7695 0.4356 0.3040 
(2) 0.4212 0.2602 0.1847 
(3) 0.7772 0.4437 0.3094 

u = 10 (1) 0.9997 0.9759 0.8601 
(2) 0.9996 0.9743 0.8573 
(3) 0.9997 0.9764 0.8615 
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The following points should be noted concerning Table 1 : 

(i) The same discretization has been used to calculate (2) and (3). This is the 
discretization given by DE VYLDER and GOOVAERTS (1988, Section 8); in 
particular the parameter fl has been taken to be 20. 

(ii) Both (2) and (3) have been calculated using the truncation proposed by DE 
VYLDER and GOOVAERTS (1988, Sections 4 and 5) with the same trunca- 
tion parameter in each case. 

(iii) The figures shown for (2) have been calculated using formula (2.3), i.e. by 
"averaging".  The figures for (3) have not been calculated using (2.3). If 
(2.3) had been used to calculate the figures for (3) the effects would have 
been an improvement in the approximation to 0~(u, t) for u > 0 (e.g. the 
approximation to 0~(10, 10) with 8 = 0.1 would have been 0.9684) but a 
much worse approximation to 0c~(0, t) (e.g. for 8 = 0.2 the approximation 
to 0~(0, 10) would have been 0.1312). 

(iv) The important difference in the calculation of the values for (2) and (3) is 
the difference in the re-scaling of the time unit, as explained above. 

(v) For all combinations of 8, u and t shown in Table 1, the approximation 
given by (3) is much closer to the exact value than is the approximatoin 
given by (2). We consider this to be a consequence of point (iv) above. 

3. A NEW APPROACH TO THE CALCULATION OF c~(u, t )  

In this section we present an approach to the calculation of 8(u, t) different to 
that of Section 2. The starting point for this approach is formula (2.2). For 

w 

H 

u-I 

u-2 

t • 

m 

m 

- - ~  t+l . . . . . . . . . . . .  t+u 

FIGURE 2. Combinat ions of  w and r for which values of  di(w, 3) are required to apply 
formula (3.2). 
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u > 1 and t > 0, we can rewrite (2.2) as 

(3.1) 6 ( u - l ,  t + l )  = ~ gi6(u-i, t) 
i = 0  

To apply this approach,  we do not need a formula corresponding to (2.1), but 
we have to consider the situation when u = I. This is considered in detail in 
Section 4. On rearranging (3.1), we see that 

(3.2) ~(u, t) = go-' [6(u- l ,  t+l) - i= ~t g'6(u-i '  t) 1 

Figure 2 illustrates the survival probabilities required in order to calculate 
6(u, t) from (3.2). By repeated application of  this approach,  we see that all 
values of  6 ( w , z )  for w = 0 , 1 , . . . , u - I  and z = t , t + l  . . . .  , t + u - w  are 
required to calculate 6(u, t). Note that all values of  6(0, r), 

= t, t + !  . . . .  , t+u, are required, but these cannot  be calculated from (3.2). 
These values are central to our algorithm and, for the moment ,  we assume that 
these values are known. A method for finding these values is considered in 
Section 4. 

Figure 3 illustrates the combinations of  w and r for which values of  6(w, z) 
are required in order to calculate 6(u, t). The algorithm starts by calculating 
6(1, t + u -  1) from 6(0, t+u) and 6(0, t+u-  1). Survival probabilities at time 
t+u-2  are then calculated, firstly 6 ( I ,  t + u - 2 ) ,  then 6(2, t + u - 2 ) .  We next 
calculate survival probabilities at time t + u - 3  and continue in this manner 
until we finally calculate survival probabilities at time t. 

Calculation of  6(u, t) by this method requires that a total of  0 . 5 u ( u + 3 )  
survival probabilities must first be calculated. What  is remarkable about  this 
number  is that it is independent of  t. This contrasts with the algorithm 
discussed in Section 2, where the number  of 6 values required to calculate 

u 

u-I 

u-2 

W 

m 

m ~ I1.. 

~'~I 1"~"." . . . . . . . .  t + u - ' l  t ; u  

FIGURE 3. Combinations of w and r for which values of ~(w, ~) are required to calculate 6 (u, t) by 
repeated application of formula (3.2). 
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6(u, t) is ( t -  1) (u+0.5  t +  I), which clearly depends on t. However, as we shall 
show in Section 4, the number of  calculations required to produce a value for 
6(0, t) does depend on t. 

A further difference between this algorithm and that of  Section 2 is that, 
using the approach of  De Vylder and Goovaerts,  the survival probabilities 
required to calculate ~(u, t) are all for time periods less than t. The new 
algorithm uses survival probabilities for time periods of  at least t. This 
difference is not important if we are only interested in calculating the survival 
probability for one particular combination of u and t. De Vylder and 
Goovaerts '  approach to calculting 6(u, t) also produces values of 6(u,j), for 
j =  1 , 2 , . . . , t - I .  Our new algorithm produces values of 6(j , t ) ,  for 
j = 0, I, . . . ,  u -  I (and the method of  De Vy[der and Goovaerts  produces all 
the figures required to calculate these survival probabilities). 

4. A FORMULA FOR 6 ( 0 ,  l )  

Let us first consider a survival probability that is slightly different to 6(u, t). 
Define 

6*(u,t) = Pr u + r -  Y~ >_ I for r = 1 , 2 , . . . , t  
i=1 

so that survival occurs only if the reserve level is strictly positive at each 
duration from 1 through to t, but the initial reserve level could be zero. When t 
is infinite, we shall write 6" (u) rather than 6* (u, oo). 

Let us consider 6* (0, t + 1), where t > 0. Since the initial reserve level is zero, 
survival under the definition of 6* can occur only if there are no claims in the 
first unit of  time. Hence 

6*(0, t+  1) = g06*(l ,  t) 
N, 

= g 0 6 ( 0 ,  t)  

We can use results given in GERaER (1980, pp. 19-22) for stochastic processes 
with exchangeable increments to find a formula for 6* (0, t), and hence 6(0, t). 
We have that 

! 

6*(0, t) = ~ P r [ Z n > 0 ,  for n = 1 , 2 , . . . , t - 1  and Z, = j l  
j= l  
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where Z ,  is as in Section 1 (with u = 0). Using the duality principle, 

P r [ Z , > 0 ,  for n = 1,2 . . . . .  t - I  and Zt =j]  

= P r [ Z , < Z t  for n = 1,2 . . . . .  t - I  and 
Zt = j] 

and since the process {Z~} is skipfree upwards, we have that 

P r [ Z n < Z ,  for n = 1,2 . . . .  , t - 1  and Z, =j]  = -  j P r [ Z t  =j]  
t 

t t + l  

Thus, 6*(0, t) = 2 'J-Pr[Zt = j ]  and 6(0, t) = g0-' E j P r [ Z t + , = j ] .  
j=l t j=l t+ 1 

I 

Define St to be aggregate claims up to time t, so that St = Z ~ , '  Let F(j,  
n = l  

= Pr [S, _< j]  and l e t f ( j ,  t) = Pr [St = j ] ,  f o r j  = 0, 1, 2 . . . . .  Since the initial 
surplus is zero, Z~+l = j ~ St+l = t+ l - j ,  so that 

t + l  

(4.1) 6(0, t) = g~-t Z J f ( t + l - j ,  t+ l )  
j = l  l - l -  1 

t 1 
(4.2) = g~l  2 F(j,  t+ 1) 

j=o l+l  

Note that since S, has a compound Poisson distribution with individual claims 
distributed on the non-negative integers, F(j,  t) can be calculated using 
PANJER'S (1981) recursion formula. 

It is interesting to note that the formula for 6" (0, t) can also be expressed in 
terms of F(j,  t) as 

(4.3) 8*(0, t) = -- F(j,  t) 
/ j = 0  

This expression is clearly analogous to the well known formula for 08(0, t) for 
the general risk process specified by (1.1), as given in, e.g., SEAL (1978, 
p. 48). 

5. SOME N U M E R I C A L  E X A M P L E S  A N D  SOME C O M M E N T S  

ON N U M E R I C A L  STABILITY 

5.1. Numerical examples using the algorithm in Sections 3 and 4 

Table 2 shows values of, and approximations to, 08(u, t) for a risk process 
with exponentially distributed individual claims and premium loading factor, 
0, equal to 0.1. The key to Table 2 is as follows: 

(1) denotes the exact value of 08(u, l), as given by SEAL (1978, Table 2.4), 
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(2) denotes  the app rox ima t ion  to 08(u, t)  calculated using the a lgor i thm 
discussed in Sections 3 and 4, i.e. using (4.2) and (3.2), with the p a r a m e t e r  
,o= 20, 

(3) denotes  the rat io of  the value in (2) to the value in (1), 

(4) as in (2) but  with fl = 10, 

(5) denotes  the ratio o f  the value in (4) to the value in (1). 

The  two sets o f  app rox ima t ions  to 0~ (u, t)  shown in Table  2, i.e. (2) and  (4), 
have been calculated using the me thod  for  discretizing the individual  c laim 
a m o u n t  dis tr ibut ion given by DE VVLDER and GOOVAERTS (1988, Section 8). 
In the fo rmer  case it is exactly the same discretization,  in the lat ter  case only 
the pa rame te r  fl is different.  

We make  the following c o m m e n t s  abou t  Table  2: 

(i) The  app rox ima t ions  to 08(u, t) are a lways larger than the correct  values. 
This  is not  surprising since we are using discrete t ime survival probabi l i t ies  
as app rox ima t ions  to cont inuous  time survival probabil i t ies.  This is the 
p rob lem that  DE VYLDER and GOOVAERTS (1988) were trying to alleviate 
by " a v e r a g i n g " .  See Section 2. 

(ii) The  relative error  in the app rox ima t ion  to 0~(u, t) for fl = 10 is consis- 
tently abou t  twice the relative er ror  for  fl = 20. We would  expect  the 
relative error  for  fl = l0 to be larger since it involves a " c o a r s e r "  
discret izat ion o f  the individual claim a m o u n t  dis t r ibut ion and also 
involves " check ing  for  su rv iva l "  less frequently.  

(iii) Where  values o f  (u, t) are given in bo th  Tab le  1 and Table  2, the 
app rox ima t ions  to 0~(u, t) given by formulae  (2.1) and  (2.2) (i.e. values (3) 
in Table  l) can be c o m p a r e d  with the app rox ima t ions  given by fo rmu-  
lae (4.2) and (3.2) with fl = 20, (i.e. values (2) in Table  2). (These values 
can reasonably  be compa red  since they use precisely the same discretiza- 
tion of  the individual claim a m o u n t  distr ibution.)  It  can be seen that  the 

TABLE 2 (See Section 5 for details) 

t = I t = 5 t = 10 t = 20 t = 40 

U = 0  

u = l  

(1) 0.5366 0.2804 0.2146 0.1682 0.1362 
(2) 0.5515 0.2921 0.2239 0.1757 0.1423 
(3) 1.0278 1.0417 1.0433 1.0446 1.0455 
(4) 0.5660 0.3036 0.2332 0.1831 0.1485 
(5) 1.0548 1.0827 1.0867 1.0886 1.0903 

(1) 0.7619 0.4881 0.3874 0.3094 0.2529 
(2) 0.7699 0.4971 0.3953 0.3160 0.2584 
(3) 1.0105 1.0184 1.0204 1.0213 1.0217 
(4) 0.7775 0.5059 0.4030 0.3224 0.2638 
(5) 1.0205 1.0365 1.0403 1.0420 1.0431 



2 1 0  DAVID C.M. DICKSON AND HOWARD R. WATERS 

TABLE 2 (Sec Section 5 for details) 

t = 1 t = 5 t = 10 t = 20 t = 40 

u = 2 (1) 0.8803 0.6456 0.5309 0.4327 0.3574 
(2) 0.8844 0.6522 0.5373 0.4383 0.3623 
(3) 1.0047 1.0102 1.0121 1.0129 1.0137 
(4) 0.8883 0.6587 0.5435 0.4439 0.3670 
(5) 1.0091 1.0203 1.0237 1.0259 1.0269 

u = 3 (1) 0.9409 0.7605 0.6469 0.5388 0.4503 
(2) 0.9429 0.7652 0.6520 0.5436 0.4546 
(3) 1.0021 1.0062 1.0079 1.0089 1.0095 
(4) 0.9449 0.7698 0.6569 0.5483 0.4588 
(5) 1.0043 1.0122 1.0155 1.0176 1.0189 

u = 4 (1) 0.9712 0.8416 0.7386 0.6289 0.5325 
(2) 0.9722 0.8449 0.7425 0.6329 0.5363 
(3) 1.0010 1.0039 1.0053 1.0064 1.0071 
(4) 0.9732 0.8481 0.7464 0.6369 0.5399 
(5) 1.0021 1.0077 1.0106 1.0127 1.0139 

u = 5 (1) 0.9862 0.8973 0.8094 0.7044 0.6046 
(2) 0.9867 0.8996 0.8125 0.7078 0.6079 
(3) 1.0005 1.0026 1.0038 1.0048 1.0055 
(4) 0.9871 0.9017 0.8154 0.7110 0.6111 
(5) 1.0009 1.0049 1.0074 1.0094 1.0108 

u = 6 (1) 0.9934 0.9346 0.8631 0.7668 0.6674 
(2) 0.9937 0.9361 0.8654 0.7696 0.6703 
(3) 1.0003 1.0016 1.0027 1.0037 1.0043 
(4) 0.9939 0.9375 0.8675 0.7722 0.6730 
(5) 1.0005 1.0031 1.0051 1.0070 1.0084 

u = 7 (1) 0.9969 0.9591 0.9031 0.8179 0.7219 
(2) 0.9970 0.9600 0.9047 0.8201 0.7243 
(3) 1.0001 1.0009 1.0018 1.0027 1.0033 
(4) 0.9971 0.9609 0.9063 0.8222 0.7267 
(5) 1.0002 1.0019 1.0035 1.0053 1.0066 

u = 8 (1) 0.9986 0.9747 0.9322 0.8590 0.7687 
(2) 0.9986 0.9753 0.9334 0.8608 0.7708 
(3) 1.0000 1.0006 1.0013 1.0021 1.0027 
(4) 0.9987 0.9759 0.9346 0.8625 0.7728 
(5) 1.0001 1.0012 1.0026 1.0041 1.0053 

u = 9 (I) 0.9993 0.9846 0.9532 0.8919 0.8087 
(2) 0.9994 0.9850 0.9541 0.8933 0.8105 
(3) 1.0001 1.0004 1.0009 1.0016 1.0022 
(4) 0.9994 0.9854 0.9549 0.8947 0.8122 
(5) 1.0001 1.0008 1.0018 1.0031 1.0043 

u = 10 (I) 0.9997 0.9908 0.9681 0.9179 0.8427 
(2) 0.9997 0.9910 0.9687 0.9190 0.8442 
(3) 1.0000 1.0002 1.0006 1.0012 1.0018 
(4) 0.9997 0.9912 0.9693 0.9200 0.8456 
(5) 1.0000 1.0004 1.0012 1.0023 1.0034 
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two sets of values are identical up to the fourth significant figure and 
hence it appears as though the two algorithms are "as  accurate as each 
o ther" .  

5.2. Some comments on numerical stability 

The algorithms specified by formulae (2.1) and (2.2) and by formulae (4.2) and 
(3.2) involve a considerable number of numerical operations. In such situations 
the numerical stability of  an algorithm must be of  concern. (An algorithm is 
numerically unstable if small errors in individual numerical operations, as a 
result of  machine rounding for example, can combine to give uncontrollably 
large errors in the final results. See, for example, CONTE and DE BOOR 
(1980)). 

DE VYLDER and GOOVAERTS (1988, Section 5) demonstrate that the 
algorithm specified by formulae (2.1) and (2.2) is numerically stable. However, 
the algorithm specified by formulae (4.2) and (3.2) does not appear to be 
stable. The authors have experienced difficulties (e.g. calculated f values 
outside the range zero to one) when using formulae (4.2) and (3.2) to 
approximate off(u, t) for values of  u greater than about 30 with individual 
claim amounts having an exponential distribution (with mean 1). These 
difficulties seem to occur: 

(i) independently of the value of  t, and, 

(ii) independently of  the value of ft. 

This last observation may be a little surprising since reducing the value of  fl 
reduces the number of numerical operations required to approximate off(u, t) 
for given values of u and t. 

We can prove the following result concerning the error in the calculation of 
6(u, t) using formulae (4.2) and (3.2). Instead of 6(u, t), let us assume that 
f (u ,  t) has been calculated, due to rounding errors, and that c~(u, t) satisfies 
(3.2). We define e(u, t) to be the error in the calculation of  6(u, t), so that 

c(u, t) = f (u,  t ) - 3 ( u ,  t) 

and, for given u and t, e to be the modulus of the maximum error in the 
calculation of ,5(0, r)  for z = t, t+  1, . . . ,  t+u ,  so that 

Then we can show that 

(5.1) 
le(w, r)l _< e(2g~-I) '' 

max le(0, r)[ 
I ~ r ~ t + U  

for r = t, t+ l, . . . ,  t + u ,  
and w = 0, l, 2 . . . . .  t + u - r .  
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Proof :  The  p r o o f  is by induct ion,  work ing  back f rom t = t + u to r = t. Note  
first that  (5.1) holds for  t = t+u since the only possible value for w in this case 
is 0 and 

le(0, t + u ) l  _< e = e(2g~-t)  ° 

by definit ion o f  e. N o w  assume (5.1) holds for t = t * +  1, for some t*,  so 
tha t  

(5.2) l e ( w , r * + l ) l  _< e(2g0-t )  " for w = 0 , 1 , . . . , t + u - r * - I  

We have to show that  

(5.3) le(w, z*)l _< e(2g0-1) w for w = 0, I, . . . ,  t + u - t *  

to comple te  the induction.  We shall prove  (5.3) by induction on w. Note  that  
(5.3) holds for  w = 0 by definit ion o f  e. Suppose  (5.3) holds for w < w* for  
some w*, where  0 _< w* < t + u - t * .  F r o m  (3.2) the basic equat ion  satisfied by 
e ( w * +  1, t* )  is 

e(w*+ 1, t*)  = g ~ - I / e ( w * ,  v * +  1) - 
t 

f rom which we have  

l e (w*+  1, v*)l ~ g~-i ( l e (w* ,  r * +  !)1 - 

w ° +  I 

2 gie(w*-F I--i, t*)} 
i=l 

w * +  I 

L gi]e(w*+l-i, r*) l}  
i=1 

w * +  1 

_< gd -I {e(2g~-I)~*+e(2gd-I) 'v'} 

= e (2g0- I) w°+l 

using (5.2) and (5.3). Hence,  by induction,  (5.3) holds for w = w * + l  and 
hence, also by induct ion,  (5.1) holds for  r = t*. 

This  result is somewha t  unsat is fac tory  since it gives only an upper  bound for 
le(u, t)l ra ther  than more  detailed in format ion  abou t  how this error  behaves,  
and also because for  large values of  u it may  very well be greater  than I. Note  
that  for values o f  fl used in this paper  go is close to !. For  example,  in Table  2 
with fl = 20 the value o f  go is 0.95663, but the m a x i m u m  value o f  w is 200 so 
that  e will need to be very small indeed for the upper  bound  in (5.1) to be less 
than 1 ! 

However ,  the result does have some interesting features:  

(a) The  upper  bound  for le(u, t)l is explicitly a funct ion o f  u, not  o f  t 
(a l though e itself will be a funct ion o f  t). See r emark  (i) earlier in this 
section. 
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(b) Suppose we wish to approximate 0,~(u, t) for some given u and t using 
formulae (4.2) and (3.2). Suppose further that we do this twice using 
different values for ,8, one twice the value of the other, say ,8 and fl = 2,8. 
Then, in an obvious notation, 

go = e-:/O+°)B; g,o = e-~/20+°)B 

The value of o6(u, t) is approximated by 6(u,8, (1 +0),st)  and 
6(2u,8, 2(I +O),st) in each case and the upper bounds given by (5.1) for 
the errors will be 

le(u/3, ( l+0) ,s t ) l  _< E(2el/(l+O)B) uB 

= e 2UPe "/(t+°) 

[e(2u,8, 2(1+0),801 -< g(2e'/Z('+°)a) z"a 
= ,~ 22u~ eu/(l +o) 

so that one component of the upper bound is independent of ,8. See 
remark (ii) earlier in this section. 

5.3. A pragmatic solution to the problem of instability 

We can deal with the problem of numerical instability resulting from the use 
of formulae (4.2) and (3.2), at least superficially, by constraining the results to 
behave properly. Consider formula (4.2) first. We know that 

0 < d~(0, t+  I) _< ~(0, t) _< I 

for any t _> 0. Let 3(0, t) be the value calculated using (4.2). Rather than use 
this value in formula (3.2) we can use 6' (0, t) where 

(5.4) 6'(0, t) = min {1, max (0, min (~(0, t), d~'(0, t -  i)))} for t >_ 1 

In our numerical examples, we did not experience stability problems in the 
calculation of 6(0, t). 

We can adjust (3.2) in a similar fashion. For u >_ 1 the constraints on 6(u, t) 
are 

0 < max {~(u, t +  1), di(u-  1, t)}_< ~(u, t) < 1 

Let 6'(,) denote the (constrained) value of 6(,) actually used and, for given u 
and t, let 6(u , t )  be the "va lue"  of 6(u, t) calculated using (3.2) with 
6 ' ( u -  1, t+ 1) and 6 ' ( u -  I, t) appearing on the right hand side. Then 

(5.5) 6'(u, t )  = min {1, max (d](u, t), 6 ' (u , t+ l ) ,  6 ' ( u -  1, t))} 

(At this stage the reader could be forgiven for thinking that we are treating the 
symptoms of instability rather than the disease itself!) 

Table 3 shows values of, and approximations to, 06(u, t) for larger values of  
u and t than those in Table 2. The premium loading factor 0 is 0.1 and, as in 
our previous Tables, individual claim amounts are exponentially distributed. 



214 DAVID C.M. DICKSON AND HOWARD R. WATERS 

TABLE 3 (See Section 5 for details) 

t = 50 t = 100 t = 150 

u = 0 (I) 0.1284 0.1100 0.1028 
(2) 0.1399 0.1200 0.1121 
(3) 1.0896 1.0909 1.0905 

u = I 1 (I) 0.8467 0.7724 0.7361 
(2) 0.8493 0.7753 0.7390 
(3) 1.0031 1.0038 1.0039 

u = 22 (I) 0.9844 0.9562 0.9352 
(2) 0.9847 0.9568 0.9359 
(3) 1.0003 1.0006 1.0007 

u = 33 (1) 0.9990 0.9937 0.9870 
(2) 0.9993 0.9940 0.9875 
(3) 1.0003 1.0003 1.0005 

u = 44 (I) 1.0000 0.9993 0.9979 
(2) 1.0000 1.0000 1.0000 
(3) 1.0000 1.0007 1.002 I 

u = 55 (I) 1.0000 0.9999 0.9997 
(2) 1.0000 1.0000 1.0000 
(3) 1.0000 1.0001 1.0003 

The key to Table 3 is as follows: 

(1) denotes the exact value of 0J(u, t) given by SEAL (1978, Table 2.4), 

(2) denotes the approximation 0J(u, t) calculated using formulae (4.2) and 
(3.2) together with the adjustments given by (5.4) and (5.5), 

(3) denotes the ratio (2)/(1). 

The values in (2) have been calculated using fl = 10 and the same discreti- 
zation of the individual claim amount distribution as in our previous exam- 
ples. 

We make the following comments about Table 3: 

(i) The relative errors follow the same general pattern as those in Table 2, i.e. 
increasing with t and decreasing with u, although the pattern is somewhat 
less regular than it was in Table 2. 

(ii) The magnitudes of the relative errors are consistent with those for ,8 = 10 
in Table 2; in particular, introducing the constraints given by (5.4) and 
(5.5) has not made our approximations to 0J(u, t) noticeably less accu- 
rate. 

6. A T R UNC AT ION PROCEDURE 

I n  t h e i r  p a p e r  D E  V Y L D E R  a n d  G O O V A E R T S  ( 1 9 8 8 ,  S e c t i o n  5) s h o w  h o w  t h e  

n u m b e r  o f  c a l c u l a t i o n s ,  a n d  h e n c e  t h e  a m o u n t  o f  c o m p u t e r  t i m e ,  i n v o l v e d  in  
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the calculation of 6 (u, t) using formulae (2. I) and (2.2) can be reduced in such 
a way that the resulting error is bounded. This truncation procedure requires 
the specification of a parameter which, in their numerical example, De Vylder 
and Goovaerts  take to be ½ × 10 -6. (We have used this truncation procedure 
with the same parameter value for the calculation of the values of  6(u, t) in 
Table I.) Even with the help of this truncation procedure, we have found that, 
typically for very small values of u, the algorithm specified by formulae (2.1) 
and (2.2) can sometimes take more computer time to calculate J(u, t) than the 
algorithm specified by (4.2) and (3.2). Even so, the calculation of  J(u,  t) using 
(4.2) and (3.2), and in particular the calculation of values of  6 (0, t) using (4.2), 
can require a considerable amount  of computer time. However, it is possible to 
limit the number of calculations involved in the calculation of  6 (0, t) in such a 
way that the resulting error is bounded, as we show below. 

Recall that Y,. denotes the amount of  the i-th individual claim and that bk 
denotes P[Y,. = k] for k = 0, l, 2, . . . .  We introduce the following notation: 

B(k)  = P[Yi_<k] for k = O, 1, ... 

B * " ( k ) = P [ Y t + Y 2 + . . . + Y , _ < k ]  for k = O , l  . . . .  

Suppose e, 0 < e < 1, is given. We define k0 to be the smallest integer such 
that 

B ( k 0 )  > 1 - 

y ~o The random variables { i,~}i=, are defined as follows: 

Y~,~ = Y/ if Yi_<ko 
= oo  i f  Y, > k0 

We define 

be(k) = P[Yi,~ = k] = b~ 

= 0  
oo 

: E bj for 
j = k 0 +  I 

B~.(k) = P[Yi,~ -< k] 

B~*"(k) = P[Y,,~+ Y~,~+ ... + Y,,,~. _< k] 

for 0_<k_<k0 

for k 0 < k <  oo 

k = a z  

It is an elementary exercise to show that 

(6.1) B*"(k ) -ne  < B~*"(k) < B*"(k) for k = 0, 1, 2, ... 

and n = 0, 1, 2 , . . .  

Recall that F(j ,  t) is the probability that the aggregate claims up to time t do 
not exceed j. Define F~(j, t) to be the corresponding distribution function with 
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individual claim sizes given by Y/,~, rather than Yi, and ~(0 ,  t) to be the 
appropriate survival probability for this process. Then 

(6.2) F(j, t ) -2te _< F~(j, t) < F(j, t) 

(6.3) 6(0, t ) - 2 ( t +  l)eg~ -I _< 6~(0, t) ~ 6(0, t) 

for t = 1, 2 . . . . .  a n d j  = 0, 1, 2 . . . . .  Formula (6.2) follows from (6.1) and from 
noting that 

F(j, t) ~ e -~' 
(At)" 

= - -  B * "  ( j )  

n=0 n! 

with a corresponding formula for F , ( j ,  t). Formula (6.3) follows from (6.2) 
and (4.2). 

The calculation of 6(0, t) and 6~(0, t) require the calculation of F(j, t+ I) 
and F,(j, t+ 1) respectively, f o r j  = 0, I, 2 , . . . ,  t, and these latter calculations 
are carried out using PANJER'S (1981) recursion formula. There can be a 
considerable saving of computer time in using 6~.(0, t) as an approximation to 
6(0, t) since F,(j, t+ 1) may be based on a risk process with considerably fewer 
possible values for an individual claim. 

7. CALCULATION OF INFINITE TIME SURVIVAL PROBABILITIES 

7.1. A recursive formula for the infinite time survival probability 

In this section we shall assume that the mean of an individual claim amount, 
denoted ml ,  is equal to fl, i.e. that the discretisation of the initial individual 
claim amount in Section I has been done in such a way as to preserve the value 
of  the mean claim amount. This condition is satisfied by the discretisation used 
in all the numerical examples in this paper. See DE VYLDER and GOOVAERTS 
(1988, Section 7). 

The rationale underlying (2.2) can also be applied to infinite time giving 

(7.1) 6 ( u - l )  = ~ gig(u-i) ,  where 6 ( u ) =  lim ~(u,t) 
i=0 t~o0 

This is simply the infinite time version of (3.1), which can be rearranged to 
give 

(7.2) O ( u ) = g ° ' I 6 ( u - l ) - ~ g i 6 ( u - i )  

We could apply formula (3.2) if we could calculate values of 3(0, t). We can 
apply (7.2) if we can calculate the value of 6(0). To do this, we consider the 
limit as t --* oo of  formula (4.2), using ideas given in GERBER (1979, p. 113). 
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We have that 

go6(0, t) - 

I 

1 E F(j, e+ 1) 
t + l  j=0 

1 

1 E [1 - (1  - F(y, t+ 1))] 
t + l  j=o 

- ~  l m - -  

t 

1 E [ I - F ( j ,  t+ 1)] 
t + l  j=o 

(7.3) = 1 - - -  [ 1 - F ( j , t + l ) ]  + - -  [ 1 - F ( j , t + l ) ]  
l "~"  [ j = 0  l " { -  | j = t + l  

The summation in the second term on the right hand side of  (7.3) is just the 
mean of the distribution of St+ 1 • As St÷ 1 has a compound Poisson distribution 
with Poisson parameter ( t+  1)/[(1 +0 )ml ] ,  this term reduces to 1/(1 +0).  

Hence, 

0 
(7.4) g0d~(0, t) - + -  [ 1 - F ( j ,  t+  1)] 

1 + 0  t + l  j=t+l 

Finally, consider l - F ( j , t + l )  = Pr[St+t  > _ j + l ] .  Now St+l has mean 
( t+  1)/(1+0) and variance ( t+  I)m2/[(l +0)ml ] .  We can apply Chebychev's 
inequality as follows: 

[ - ;+-;l t + l  > j + l -  
Pr (St+, > _ j + l )  = Pr St+ l l~b l"l-OJ 

< Pr II '+'l t+'l $i+ I - - -  > _ j + l  - 
1+0  l;?J 

V(S ,  + t) 

t+  1 )2 
j + l  - - -  

i + 0  

,+,)2 
Then, [ 1 - F ( j ,  t +  l)] < V(St+1) j +  1 - - -  

j f t+l  j=l+t 1 + 0  
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Consider the sum 

I 1 
S -  + 

(t + 2 - 00 z 

1 
< 

( t + 2 - 0 0  ( t+  1 - 0 0  

( l , 
t + l - 0 c  t + 2 - 0 c  

1 I + 0  

1 + 

Hence, - -  

(t + 3 - 0~) 2 (l + 4 -- 002 

I 
+ 

(t + 3-~x) (t + 2 - ~ )  

t + 2 - c ~  t + 3 - ~  

t+ 1 - ~  O(t+ 1) 

[I - F ( j ,  t+ I)] _ < - -  
1 

v ( S , + O  - -  

t + l  t+ 1 j=t+l 

+ ... where0~ = ( t + l ) / ( l + 0 )  

+ ... provided that 0 > 0 

- - ) + . - .  

1 + 0  1 m 2 

O(t+ 1) t +  1 0 m l  

so that god(O, t) <_ - -  
0 l m 2 + 

1 + 0  t +  I Om~ 

Finally, as god(0, t) >_ - -  
0 

l + 0  
by (7.4), we see that by letting t ~ c~ we have 

0 
(7.5) 6(0) - 

go(I +0)  

Again it is interesting to compare  results for our discrete time process with 
those for the general risk process as specified by (I . I ) .  We note that 
6*(0) = 0/(1 +0),  which is the same as the ultimate survival probability in 
continuous time from initial reserve 0 in the general risk process. 

Formulae (7.1) and (7.5) correspond to equations (33) and (37) in a paper by 
DUFRESNE (1988), but he does not consider their numerical application. An 
earlier reference, also given by Dufresne, is GIEZENDANNER, STRAUB and 
WETTENSCHWILER (1972). An alternative method of  finding 6(0) which does 
not require equation (4.2) is given in his paper. 

We can now apply (7.1) in a recursive manner  to calculate survival 
probabilities starting from 

6(1) = g o ~ ( l - g 0  6(0) 

We can use calculated values of  d(flu) to approximate  to 

od(U) = lim od(U, t). 
I ~ O 0  
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7.2. A numerical illustration 

Table 4 shows values of, and approximations to, 0~(u). As in Tables 2 and 3, 
individual claims are exponentially distributed and the loading factor, 0, equals 
0.1. The discretization of the exponential distribution is as before. The key to 
Table 4 is as follows: 

(1) denotes the exact value of 06(u) (see, e.g., SEAL (1978, p. 60)), 

(2) denotes the approximation to o6(U) calculated using formulae (7.2) and 
(7.5), with fl = 20, 

(3) denotes the ratio of the value in (2) to the value in (1), 

(4) is as (2), but with fl = 40, 

(5) denotes the ratio of the value in (4) to the value in (1), 

(6) is as (2), but with fl = 100, 

(7) denotes the ratio of the value in (6) to the value in (I). 

We make the following comments about Table 4: 

(i) The pattern of results is similar to that in Table 2. The approximate values 
are always greater than the exact values, and as the value of,fl increases, 
the relative error in the approximation decreases. 

(ii) The authors experienced problems in calculating values of ~(u, t) for 
values of u greater than about 30. There were no such problems in 
calculating values of 6 (40) and 6 (80). However, for larger values of u, the 
same numerical problems as in Section 5.2 exist. 

7.3. Numerical stability 

As in Section 5.3, we can adopt a pragmatic approach and constrain the 
calculated values of 6(u) to behave properly. The calculation of 3(0) does not 
pose any problems. For u>_ 1, we constrain the function 6(u) to be such 
that 

0 _< ,~(u- l) _< ei(u) < I 

TABLE 4 (See Section 7 for details) 

u (I) (2) (3) (4) (5) (6) (7) 

0 0.0909 0.0950 1.0451 0.0930 1.0231 0.0917 1.0088 
2 0.2420 0.2454 1.0140 0.2438 1.0074 0.2427 1.0029 
4 0.3681 0.3709 1.0076 0.3695 1.0038 0.3686 1.0014 
6 0.4731 0.4754 1.0049 0.4743 1.0025 0.4736 1.0010 
8 0.5607 0.5626 1.0034 0.5617 1.0018 0.5611 1.0007 

10 0.6337 0.6353 1.0025 0.6346 1.0014 0.6341 1.0006 
20 0.8524 0.8531 1.0008 0.8528 1.0005 0.8526 1.0002 
40 0.9760 0.9761 1.0001 0.9761 1.0001 0.9761 1.0001 
80 0.9994 0.9994 1.0000 0.9994 1.0000 0.9994 1.0000 
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Letf l ' (u )  denote the constrained value of 6(u) actually used and, for given u, 
let 6(u) be the " v a l u e "  of 6(u) calculated using (7.2) with 6' appearing on the 
right hand side. Then 

(7.6) 6'(u) -- min {1, max (6 ' (u - l ) ,  6(u))} 

We can calculate approximate values of o6(U) using formulae (7.2) and (7.5), 
together with the adjustment given by (7.6). We have not produced a table of 
results because the exact and approximate values (with fl = 20 and with 
fl = 40) are both l to four decimal places for u >_ II0. 

8. SOME COMMENTS ON THE DEFINITION OF SURVIVAL 

Our aim in this paper has been to show how to approximate the continuous 
time probability of survival 06(u, t) by the discrete time probability of survival 
6(ufl,(l+O)flt). Formulae (4.2) and (3.2) are exact for 6(ufl,(l+O)flt). 
However, if we regard the latter as an approximation to 06(u, t) we find that, 
being a discrete time approximation to a continuous time probability of 
survival, it will tend to overstate 06(u, t), as noted in comment (i) in Section 
5.1. 

If, in addition, the claim amounts have a continuous distribution, as is the 
case in all the numerical examples considered in this paper, there is a further 
reason why 6 (ufl, (1 +O)flt) may overstate the value of 06 (u, t). This is that for 
survival to occur according to the former, the surplus need only stay above the 
value - 1  (but could be zero at any time), whereas for survival to occur 
according to the latter, the surplus must never go below zero, no matter by 
how little. 

For the risk process characterized by (1.2) we defined in Section 4 the 
survival probability 6* (u, t) for u _> 0 and 1 _< t _< oo as follows: 

6*(u, t) = Pr u + z -  Yi >- 1 for z = 1,2 . . . .  , t  
i=l 

This differs from 6(u, t) in that for survival it requires the surplus to be strictly 
greater than zero after time zero. For finite t, 6* (0, t) can be calculated from 
formula (4.3). For t equal to infinity, 6" (0) is equal to 0/(1 +0), as explained in 
Section 7. For u greater than zero it is clear that: 

fi*(u, t) = 6 ( u -  1, t) 

It could be argued, for the reason given in the second paragraph in this section, 
that 6* (ufl, (1 +O)flt) is a more logical approximation than 6(ufl, (1 +O)flt) to 
06 (u, t), although, depending to some extent on the discretization of the claim 
amount distribution, it may tend to understate o6(U, t). 

Table 5 shows the results of approximating 06 (u, t) by 6* (ufl, (I +O)flt) for 
the risk process with exponentially distributed individual claims, premium 
loading factor equal to 0.1 and parameter fl equal to 20. The key to Table 5 is 
as follows : 
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TABLE 5 (See Section 8 for details) 

221 

t = 10 t = 20 t = 40 t = oo 

u = 0 (1) 0.2146 0.1682 0.1362 0.0909 
(2) 0.2146 0.1682 0.1362 0.0909 
(3) 1.0000 1.0000 . 1.0000 1.0000 

u = 5 (1) 0.8094 0.7044 0.6046 0.4230 
(2) 0.8094 0.7043 0.6045 0.4229 
(3) 1.0000 0.9999 0.9998 0.9998 

u = 10 (1) 0.9681 0.9179 0.8427 0.6337 
(2) 0.9681 0.9178 0.8426 0.6337 
(3) 1.0000 0.9999 0.9999 1.0000 

(1) denotes  the exact  value  o f  0~(u, t)  as given by SEAL (1978); 

(2) deno tes  the value o f  ~*(ufl, ( l + O ) f l t )  ca lcu la ted  using the me thods  o f  
Sect ion 4 (u = 0 and t < ~ ) ,  o f  Sect ions 3 and  4 (u > 0 and t < ~ )  o r  o f  
Sect ion 7 (t -- or)  as a p p r o p r i a t e ;  

(3) denotes  the ra t io  (2)/(1). 

The  a p p r o x i m a t i o n s  to 0 ~ ( u , t )  in Table  5 can be c o m p a r e d  with the 
a p p r o x i m a t i o n s  (for fl = 20) in Tables  2 and 4. It can be seen tha t  the 
a p p r o x i m a t i o n s  in Table  5 are  very much bet ter  than those in Tab les  2 and 4. 
One exp lana t ion  for this m a y  be that  two " e r r o r s "  in the a p p r o x i m a t i o n  o f  

0di(u, t )  by ~*(ufl, (l +O)f l t ) ,  i.e. 

(a) unders ta t ing  0~(u, t )  by redef in ing surv iva l / ru in ,  and  

(b) overs ta t ing  0~(u, t)  by using a discrete  t ime a p p r o x i m a t i o n  to a cont in-  
uous  t ime survival  p robab l i ty ,  

are work ing  in oppos i t e  d i rec t ions  and cancel l ing each o the r  out.  

/ 
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PREMIUM CALCULATION IMPLICATIONS OF 
REINSURANCE WITHOUT ARBITRAGE 
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ABSTRACT 

Constraints imposed on premium calculation principles are studied under one 
aspect of competitive market theory : the impossibility of systematic arbitrage. 
Principles based on second moments or utility theory are shown to lead to 
arbitrage possibilities, while some other principles do not. 

KEYWORDS 

Premium calculation; arbitrage; utility theory; capital asset pricing model. 

l .  INTRODUCTION 

Insurers are in business to make a profit, and risk theory has shown that a 
profit margin is in fact required by prudent insurers. How to build into 
different insureds' premiums margins which rightly reflect relative riskiness is 
the topic of Premium Calculation Principles. For instance, the expected value 
principle adds a constant percentage load to each contract, while the standard 
deviation and variance principles incorporate loads proportional to the second 
central moment, or its square root. 

In this paper it is hypothesized that at any one time there is a market 
premium calculation principle operant, and that market forces require its use 
by all insurers and reinsurers, wittingly or not. It is further assumed that a 
market is available for any risk priced according to this principle. One aspect of 
competitive market theory, namely that arbitrage profit possibilities are quickly 
extinguished by market competition, will then be used to place constraints on 
what this market premium calculation principle could be. Essentially, principles 
will be ruled out by showing how a portfolio of direct, assumed, and ceded 
policies could be assembled to create an arbitrage profit if that principle were 
the market principle. A class of premium principles consistent with no 
arbitrage will be identified. 

Results using the theory of arbitrage free markets to price financial assets 
were given by HARRISON and KREPS (1979). MERTON (1973) showed how 
options can be priced through this approach. Generally the theory is carried 
out assuming that transaction costs will have minimal effects. This will also be 
assumed below, and so the results are strictly applicable only under this 
assumption. However, some consideration as to the possible impacts of 
non-negligible transactions costs are addressed. 

ASTIN BULLETIN, Vol. 21, No. 2 
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2. CONSTRAINTS ON PREMIUM PRINCIPLES 

2.1. Empirical constraint 

First, an empirical observed constraint will be employed: a premium calcula- 
tion principle should produce a higher load, relative to expected losses, for an 
excess of loss cover than for a primary cover on the same risks. This constraint 
thus automatically rules out an expected value load. Further observational 
evidence on relative premiums for excess of loss covers by layer will be 
proposed below as tests of remaining principles. 

2.2. Arbitrage constraints 

The first constraint imposed by arbitrage considerations is additivity for 
independent risks. This is illustrated by an example. Loss experience for a 
group of 100 truck drivers who band together to buy insurance will be 
relatively more predictable than for one of the truckers alone, i.e., probable 
deviations from expected results will be smaller. Because of the greater 
uncertainty, an insurer may want to give a single trucker a proportionally 
larger load than the 100 together. 

If this happens as a general market practice, however, a reinsurance 
arbitrage possibility is created. Reinsurers could assume the liability on the 
single truckers for lower risk premium than the insurers charged, guaranteeing 
those insurers a risk free profit, and then cede groups of truckers for a still 
lower premium that is nonetheless higher than the market would charge for 
such a group, thereby achieving a risk free profit themselves and an above 
market premium for their retrocessional markets. 

In general, the possibility of such packaging of exposures shows that a 
market without arbitrage must charge additive premiums for independent risks. 
This constraint rules out the standard deviation load as a market pricing 
principle. The standard deviation of risk experience would be l0 times as great 
for the 100 truckers than for one alone, giving them one-tenth the proportional 
load of a single trucker. Thus 90 % of the load for individual truckers in this 
example would be available for arbitrage profits. 

The profit available from any such reinsurance arbitrage would be reduced 
by transaction costs. However, given the automatic facilities available in the 
reinsurance market, such costs are likely to be small compared to the 90% of 
profit available to the cedents at no risk. The market could in fact sustain a 
charge to the small risk equal to their share of these transaction costs, in 
addition to a load proportional by risk size to the large risks' load. It is 
doubtful, however, that this could produce a standard deviation based load. 

The second constraint is additivity for non-independent risks. Again reason- 
ing by example, consider a retired couple who own two mobile homes in the 
same trailer park in Oklahoma and who want to purchase homeowners 
insurance. When the wind comes sweeping down the plain, both homes stand a 
chance of being damaged. An insurer may thus feel exposed to more than twice 
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the dollar variability in results insuring both than insuring just one, and may 
thus want more than twice the single home premium for the two. 

But the market cannot charge a two trailer surcharge, because the couple 
could just buy separate policies. Alternatively, the insurer could cede them 
separately to two reinsurers. Either alternative illustrates the requirement that 
market premiums be additive for non-independent risks, and thus rules out the 
variance principle. Otherwise, de-packaging of exposures could create arbitrage 
profits. The de-packaging transaction cost to the original insured could be 
quite small, in that two policies could probably be obtained in one visit to a 
broker. 

The additivity requirement can also be illustrated in the realm of excess 
reinsurance. Layering a risk reduces the variance, as the sum of  the variances 
of the layers is less than the variance of the whole. The covariances are positive 
and they disappear in the layering process. If there is a price benefit to this 
layering, it must be passed on to the original insureds. Otherwise, if the total 
price is greater than the sum of the layer prices, arbitrage possibilities are 
created. For instance, since we are assuming that markets exist, the insureds 
could buy primary and excess coverage separately, and get the price benefit for 
minimal transaction costs. 

3. UTILITY PRINCIPLES 

The above constraints together also rule out premiums calculated as the 
certainty equivalent from a utility function, as will be shown next. 

If  u(s) is the utility of the current surplus, the certainty equivalent of a 
portfolio of risks with uncertain losses X is that p which gives 
u(s) = E[u(s+p-X)].  That is, it is the constant amount which makes one 
with utility function u indifferent between taking both the premium and the 
portfolio of risk or taking neither. 

A popular example is exponential utility, e.g., u(s) = l - e x p  (-s/a).  It is 
not difficult to show that p = a In E[exp (X/a)]. It follows readily from this 
that the certainty equivalent of a portfolio of independent risks is the sum of 
the certainty equivalents of the risks in the portfolio. BORCH (1968) showed 
that additivity for independent risks holds only for the linear and exponential 
utility functions. Thus additivity for independent risks rules out any others. 

For correlated risks X and Y, however, E[exp (X/a)exp (Y/a)] is not the 
same as E[exp (X/a)] E[exp (Y/a)], due to covariance, and so additivity will 
fail. Thus additivity for non-independent risks rules out exponential utility. 
Linear utility is a special case of the expected value principle, and so ruled out 
by empirical constraints. 

4. POSSIBLE PREMIUM PRINCIPLES 

4.1. Introduction 

Two principles that can sometimes meet the above constraints are: 1) expected 
value principle applied to an adjusted probability distribution and 2) a load 
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proportional to the covariance of  the risk with a selected " t a r g e t "  variable. 
Since both operations are additive regardless of  independence, the additivity 
constraints are always satisfied. That  higher percentage loads for higher layers 
can sometimes hold as well is shown below. 

4.2. Adjusted distribution principles 

Consider for example a line of  business with the (shifted) Pareto severity 
distribution 1 - ( l + x / b )  -2. (For  the sake of  argument, assume that this 
distribution incorporates both process and parameter risk, if that distinction is 
of  concern.) The expected claim size is given by b, and the claim size limited to 
x is b ( 1 - ( 1  +x/b)- l ) .  The premium calculation principle to be used is to 
replace b by 1.1 b in the distribution function, and then compute the expected 
value of  a loss under the adjusted distribution. This will be done for two 
covers: primary coverage up to the limit 10b, and excess coverage above this 
limit. 

Note  that the original severity gives an expected loss of 10b/l I and b/l I for 
these layers, respectively. Under the adjusted distribution, these become 
l l 0 b / l l l  and 12 .1b/ I l l ,  respectively, for a total of  122.1b/111, which is a 
10% load overall. This breaks down as a 9 %  load for the primary layer and a 
20% load for the excess. Although in this example, the charge was the mean 
from the adjusted distribution, a constant times this mean could be used as 
well. 

This is an example of  a scale transformation of  a distribution. In general, if 
f ( x )  is a density function and a > 0, g(x)  = af(ax)  is a scale transformation. 
It (g) is also a distribution function, i.e., positive and integrates to unity, which 
can be seen by the change of  variable y = ax. The distribution functions are 
related by G ( x ) =  F(ax). A scale transformation is particularly easy to 
implement if the distribution has a scale parameter, like b in the example 
above. Transforming the scale of  the severity distribution produces the same 
scale change on aggregate losses, and this is essentially the only way to do 
SO. 

Replacing the distribution by any other distribution will satisfy the additivity 
constraints. A scale transformation is probably the most elementary approach 
to finding a revised distribution. The above example shows that this can 
result in higher loads for excess layers, which is the empirical constraint. 
A more intricate transformation is the combined scale-power transformation 
g(x)  = ac(ax) c-l f ((ax)c) ,  i.e., G(x)  = F((ax)C). This transformation 
changes an exponential distribution into a Weibull, for example, or a Pareto 
into a Burr. 

4.3. Covariance principles 

For the covariance case, let G, the price of gold, be the target variable, and let 
the premium for a loss variable X be aE(X )+ b  Cov (X, G). Because the 
covariance of  two variables X and Y with a fixed auxiliary variable is additive 
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whether or not X and Y are independent, this satisfies the additivity 
constraints. Does it satisfy the empirical constraint? Presumedly G is highly 
correlated with the inflation rate, as are the excess losses, while the primary 
losses are probably less so. Thus the loading factor for excess could exceed that 
for primary under this principle. 

The price of  gold may not be a reasonable target variable. CAPM theory 
suggests using the gains on the stock market. A more general approach is given 
by ANG and LAI (1987), who argue from capital market and insurance market 
considerations that a reasonable target variable might be the difference 
between total market insured losses and total investment gains on all publicly 
traded instruments in the economy. As they show, this overcomes some of  the 
problems insurance practitioners have had with CAPM, and it quite possibly 
could give a higher percentage load to excesss losses, but this would have to be 
verified. However, both this and CAPM theory assume either a quadratic 
utility function or that risk preferences can be captured with just two moments, 
both which are questionable. 

If by some chance the target variable turned out to be the losses on a 
particular insurance portfolio, then the covariance pricing principle applied to 
that portfolio would be the variance principle. Changing the target variable for 
every contract so that the variance principle would always be applied would 
not satisfy the arbitrage constraints, however. 

4.4. Covariance principle results from an adjusted distribution 

Another method of adjusting a distribution is to multiply the d e n s i t y f ( x )  by a 
non-negative function h(x)  such that f ( x ) h ( x )  integrates to unity. Quite a 
range of  such functions could be used, for as long as the integral is finite, it can 
be made to be unity by applying a factor to h. 

As an example, let h(x)  = 1 + b ( E ( Y ~ x ) - E ( Y ) )  for some target variable Y, 
where b is small enough for h to be positive. Then E(h(X))  = 
1 + b ( E E ( Y I X ) - E ( Y ) )  = 1, which shows t h a t f ( x )  h(x)  is a density function, 
andaE(Xh(X))  = a E ( X ) + a b ( E ( X Y ) - E ( X )  E(Y))  = aE(x)+ab Cov (X, Y), 
which shows that the adjusted distribution principle for this h is the covariance 
principle with target Y. 

4.5. Other principles 

Can every principle which satisfies additivity be expressed as an adjusted 
distribution principle? That  is, does an additive premium principle induce a 
distribution function on loss random variables so that the price for any 
coverage can be expressed as the expected value of  the losses for that coverage 
under that distribution? 

It would seem that this could be approximated to any desired degree of 
accuracy, according to the following reasoning. For  any m > 0, consider the 
coverage Cm which pays a small amount  d just in the event that losses are at 
least m. First, it would seem that any coverage could be approximated by a 
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linear combination of these coverages, i.e., as EaiCi. For instance, full 
M/d 

coverage up to some limit M would be approximately E Cid. This pays d 
i=1 

if losses are at least d, another d if they are at least 2 d, etc. This approximation 
gets better with smaller d. If there is no upper limit, the sum can go to infinity. 
If  there are only partial payments, the coefficients ai would be less than 1. 

The price of the coverage Cm will be seen to induce a probability distribution 
that by additivity will in turn generate the prices for all coverages. The price of 
Cm given a distribution F would be d(1-F(m)). Thus the price function 
induces the distribution F(m) = 1-Pr ice  (Cm)/d. 

By additivity, the price of any layer of full coverage, i.e., ai's all equal I, 
would be the sum of these terms d(1-F(i)), which would be the expected 
value under the induced distribution F. If  the coverage is not 100% in the 
layer, i.e., a /s  < l, the price would have to reduce by the same percentage as 
the coverage, because by additivity the full coverage price would have to be the 
sum of the prices of the reduced coverage layer and its complementary layer. 
Thus the price would again be computed as the expected value under the 
induced distribution. 

The result is that the only premium calculation principles that preserve 
additivity are those generated by transformed distributions. This is similar to 
the results of HARRISON and KREPS (1979), and later HARRISON and 
PLISKA (1981), who showed that in an arbitrage free market, pricing of 
financial instruments should take place according to the expectation under a 
risk adjusted probability distribution. It is also closely related to the results of 
DELBAEN and HAEZENDONCK (1989). They however apparently allow the 
random variable being priced to enter into the probability adjustment, so that a 
variance load can result, which contrasts to the arbitrage free considerations 
above. 

5. APPLICATION 

5.1. Minimum rates on line 

An empirical reinsurance market phenomenon is minimum rate on line. The 
rate on line is the premium divided by the coverage limit, and most reinsurers 
establish a minimum they will accept for this ratio. Although there are various 
ad hoc explanations for this practice, it would be interesting to see to what 
extent it could be explained as a form of risk load. The example below shows 
that this can be partially accomplished by an adjusted distribution risk load. 

The above shifted Pareto distribution is similar in form but less heavy tailed 
than severity distributions commonly used in US casualty insurance. The 
adjustment below can be done with more heavy distributions with similar 
effect. For this distribution, the expected loss in the layer (u, v) is 
b2(v-u)/(b+u) (b+v). For pricing excess coverage above 1000b, assume use 
of a charge of  1.25 10 -6 times the expected value from a distribution with 



PREMIUM CALCULATION IMPLICATIONS OF REINSURANCE WITHOUT ARBITRAGE 229 

1 - F ( x )  = (1 +x/b) -'l for x > 1000b. For  this distribution, the layer expected 
value is (b/.9) [(I + v / b ) 9 - ( l  +u/b)9]. Take the case where b = 1000, which 
has severity mean = 1000. The expected loss per first dollar claim and the 
corresponding charge from this rule are shown for various $1 million excess 
layers : 

Retention Layer Expected Layer Charge 

1,000,000 .499251 .602821 
II,000,000 .007574 .490740 
21,000,000 .002164 .460965 
31,000,000 .001008 .443690 
41,000,000 .000581 .431624 
51,000,000 .000377 .422405 

Although an absolute flat charge per million of  coverage is never reached, it 
is closely approximated by this rule. The charges are certainly dropping off  
much more slowly than the expected losses. This example shows that the kind 
of  leveling of charges seen in minimum rates on line can be produced by 
adjusting distributions. The key is to have a low absolute value for the negative 
exponent in the pricing distribution function. The layer charges and the point 
at which leveling off occurs can be adjusted through the b parameter and the 
constant multiplier, here 1.25 10 -6.  

This approach to minimum rates on line will approximate such a minimum 
for risks of  a given size, but larger or smaller risks will have larger or smaller 
rates. A true minimum rate on line applicable to all risks or treaties would 
seem to generate arbitrage possibilities. A reinsurer could retrocede two 
minimum rated risks for the price of one. In a competitive market, competition 
would reduce the minimums for smaller treaties to gain this retrocessional 
opportunity. 

In a quasi-monopolistic market where these savings are not passed on to the 
original cedent or insured, spirals of retrocession could be generated, where A 
retrocedes to B who retrocedes to C who retrocedes to A, etc., with an 
arbitrage profit being taken at each step. 

6. SUMMARY 

A general advantage of changing the distribution is that it is easy to calculate 
charges, at least after the adjusted distribution has been established. A 
particular advantage of  a covariance load is that in the form of CAPM it has 
somewhat of  an economic justification. It is not clear that arbitrage theory 
itself could further specify the adjustments to the distribution, however. The 
best test is probably empirical, i.e., what sells; life actuaries have been at this 
enterprise for years, adjusting mortality tables in different ways depending on 
whether an annuity or insurance is being marketed. The time honored practice 
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of fudging the table thus has stronger justification than might have been 
anticipated. 
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ABSTRACT 

The model introduced may be treated as a mixed two-way analysis of variance 
with fixed company effects and random time effects. Further, the risk volumes 
are integrated into the model in such a way that the unexplained variance is 
inversely proportional to the risk volume of each company. The proposed 
model is used to analyze loss ratio data from the general insurance market in 
Kuwait. The maximum likelihood estimates of the structural parameters are 
obtained. These estimates are then used to compute the loss ratios and solvency 
margins for the four domestic insurance companies. 

KEYWORDS 

General insurance; lognormal distribution; restricted maximum likelihood 
estimators; risk volume; solvency margins. 

I. INTRODUCTION 

Loss ratios play a very important role in risk theory. For one thing, they are 
used in credibility analysis to predict future losses, which is pertinent to 
ratemaking, and for another, they are used to compute solvency margins. 

The traditional approach is to assume that the loss ratios follow a beta 
distribution, whose two parameters are then estimated by the method of 
moments, e.g., see DE WIT and KASTELIJN (1980). This approach was criticized 
by RAMLAU-HANSEN (1982) who assumed the loss ratios to follow a Iognormal 
distribution. The shape of the lognormal curve is appealing in this context and 
it has been applied before to model loss ratio data, see HUNTER (1980). The 
model introduced by RAMLAU-HANSEN may be treated as a two-way analysis 
of variance with random company and time effects. It may also be viewed as a 
parametric credibility model with seasonal random factor, see SUNDT (1979). 

The assumption of random-effects for the companies under study is appro- 
priate when they are considered to be a random sample of the companies in the 
population. However, if they constitute the whole population or if they are 
considered to represent themselves, they should be assumed to have fixed- 
effects. To deal with such a situation, we propose here a mixed two-way 
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analysis of variance model with fixed company effects and random time 
effects. 

RAMLAU-HANSEN also assumed that the unexplained variance is constant 
and independent of the risk volume of each company. However, since a small 
portfolio would usually mean large fluctuations in loss ratios, and therefore a 
large company would need a lower solvency margin than a small company, we 
adopt here the more realistic assumption that the unexplained variance is 
inversely proportional to the risk volume, e.g., earned premiums, of each 
company. 

The mixed model is introduced in Section 2, while the maximum likelihood 
estimators of the parameters are developed in Section 3. Then, in Section 4, the 
proposed model is used to estimate the loss ratios and solvency margins for the 
four national insurance companies in Kuwait using data from the general 
insurance market. 

Regarding notation, we use I m to denote the m x m identity matrix, H '  and 
tr (H) to denote the transpose and trace, respectively, of a matrix H, and 
Nm(,u, ~ to denote the m-dimensional multivariate normal distribution with 
mean vector u and covariance matrix £'. 

2. THE MODEL 

Let X;j and p;j denote the loss ratio and the earned premiums, respectively, for 
company i in year j. Set Y0 = In X u and assume that 

Yij = o~i+flj+eij ,  i = 1 . . . . .  a, j = I, . . . , b ,  

where the ~z are unknown fixed constants, while the fli and ezj are mutually 
independent normal random variables having zero means and variances 02 and 
O~/Pa, respectively. Thus, the parameter space is given by 

61 = {c~l . . . .  , ~ , ,  01,02: ~ i e g ,  i = l , . . . , a ,  01 > 0,02 >_ 0}. 

Now, for company i in year j, the loss ratio is given by 

(1) Lij = exp {~i +.5(02+01/Pij)}. 

Further, the upper limit of the loss ratio, at the probability level (1 - e), is given 
by 

(2) Uij = exp {~i+ q~-' (I - e )  x/02 + 0,/Pij}, 

where q~ denotes the cumulative standard normal distribution function. Hence, 
the solvency margin is obtained from 

(3) Sij = max {0, ( U o + E  ~-  100)}, 

where E~ denote the expense ratio for company i, 
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3. THE MAXIMUM LIKELIHOOD ESTIMATORS 

Let n = ab and write the model  in matrix form as 

Y =  A~+ Bf l+e ,  

where Y, A, . . . ,  e are defined in the obvious  manner .  In particular,  

0 I b .. .  

0 0 . . .  

and 

8 = ( I s ,  . . . ,  I D ' .  

Then,  define the diagonal  matrix 

P = diag (Pi i ,  ...,P,~b). 

Therefore,  under  the model assumptions,  we have that  

Y ,~ N,, (Ao~, Ot P -  i + Oz BB') .  

To simplify the discussion in the sequel we consider the t ransformat ion  pl/2 y. 
Thus,  

pU2 y ,~, N~ (pt/Z AO~, £'), 

where 

Z" = Oi I~ + 02 pU2 BB' pI/2. 

We now give an explicit expression for Z'-1  Let 

P + j =  ~'~ Pij, j = l , . . . , b ,  
i = 1  

and define 

pj = 02/(Ol+Ozp+j), j = 1 . . . . .  b. 

It is easily verified that 

~.- i  = (i/01) [ I n -  pii2 BAB'  pi/2], 

where A = diag (Pl . . . .  , Pb). 
Fol lowing HARVlLLE (1977), the likelihood equat ion for ~ is given by 

A, pii2 x - i  pii2 Ao ~ = A, p l / Z x - t  pl/2 y .  (4) 
Now, let 

b 

Pi+ = Z Pij, 
j=l 

i = l , . . . , a ,  
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and define H to be the a x a matrix whose elements are given by 

b 

H r s  = P r +  - Z P J P ~ J '  r = s = 1 . . . . .  a,  
j =  I 

b 

= -- 2 PiPrjPsj, r ~ s.  
j = l  

Further,  define h to be the a x 1 vector whose elements are given by 

hr = )=lZ PrJ LYrJ-PJ i=, ' r =  l , . . . , a .  

It is easily shown that equation (4) reduces to 

(5) 0c = H - ' h .  

Since the maximum likelihood estimators of  0t and 02 take no account of  the 
loss in degrees of  freedom resulting from estimating a, the vector of  fixed 
company effects, we consider the restricted maximum likelihood approach of 
PATTERSON and THOMPSON (1971) to estimate the variance components,  see 
HARVmLE (1977) for more details. To this end, let Z = Y - B f l * ,  where 

8" = 02 B' p,/2 X -  1 p,/2 ( y _  A~x) , 

= ( 0 2 / 0 1 ) [ I h - B ' P B A ] B ' P ( Y - A o O .  

Consequently, Zij = Y,7-flT, where 

87 =/'j 
i = l  

Furthermore,  define 

j = l  . . . . .  b. 

S = I , , - P ~ / 2 A ( A ' P A )  -~ A ' P  ~/2. 

Thus, the restricted likelihood equation for 0~ is given by 

01 = Y '  pl/2 SpI/2 Z / ( n -  a ) ,  

= [ Y '  P Z -  Y '  PA (A' PA ) -  ' A' PZ]/(n - a) ,  

= ~ - Y i j  Z i j  - Yij X 

L. i = 1 "= i = I "= 

b 

On the other hand, let 

T = [I b + (02/00 B' pI/2 SpI/2 B] -  l, 
= (0~ [02) A [ Ib+B'  P A H  - j  A' P B A ] .  
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Then, 

t r ( T )  = (01/~92) [ ~j=l P j + t r ( H - I G ) ?  ' 

where G is the a x a matrix whose elements are given by 

b 

Grs = E Pf PrJPsJ, r , s  = 1 . . . . .  a. 
j = l  

It can be shown that the restricted likelihood equation for 02 is given by 
b 

(7) 02 = E tiff 2 / [b - t r  (T)]. 
j = l  

The likelihood equations (5)-(7) must be solved simultaneously for ~, 01, and 
02. However, except in some special cases, e.g., Pij = P, or Pij = Pi, say, explicit 
solutions of the above likelihood equations do not exist. Nevertheless, the form 
of the equations suggests the following iterative procedure, due to HENDER- 
SON (1973). Set 0 = (01,02)' and let O(k),k = 1,2 . . . . .  denote the value 
produced by the procedure on its k th iteration. Furthermore, for any q u a n t i t y f  
which is a function of 0, we u s e f  (k) to denote the value of f a t  0 = 0 (k). Hence, 
we start the iteration by substituting an initial guess 0 (°) into 

= F _ Y " 7 ' ( ' k ) -  (8) O~ l¢ + 1) P i j  " q - - q  P i j  × 

L i=l  j = l  i=l  "= 

b 

and 
b 

(9) Ot2 k+ ') = Z [fit (k)]2/[ b -  tr (T(k))], 
j = !  

and continue the iteration until 0 (k+l) is sufficiently close to 0 (k) in some 
n o r m .  

HARVILLE (1977) showed that, if the above iterative procedure is started with 
strictly positive values for the variance components, then at no point can the 
values for the variance components ever become negative. It should also be 
noticed that this procedure must not be started with a zero value for any 
variance component, since the value for that component would then continue 
to be zero throughout the iterative procedure. 

If we happen to have any prior information about 0, then we could use it to 
formulate an initial guess for 0. Otherwise, we could use the usual ANOVA 
estimators, obtained from (6) and (7) assuming that P = I , ,  as initial 
guesses. 
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To this end, let Y/+ = E Yo, r+J = Yij, and Y+ + = Y/j. 
j = l  i=1 i=1 j = l  

Now, define 

and 

R2 = ( l /a )  E 
]=l 

y2+ _ y~. +/n,  

b 

R, = ~ E Yi~-(l[b) ~ Y2,.-R2. 
i=1 j = l  i=1 

Hence, the initial estimates are given by 

O} o) = R 1 / [ ( b -  1) ( a -  1)1, 

O~ °) = R 2 / ( b -  i ) -  Ol°)]/a. 

(lO) 

and 

(11) 

However, equation (I 1) may produce negative estimates which do not belong 
in the parameter space O. The usual practice of  fixing negative estimates of  
variance components at zero would not be useful here since, as indicated 
above, we should not start the iterative procedure with a zero value for 02. 
Instead, an initial guess in the interior of  O should be used to start the iterative 
procedure. 

Thus, the procedure of  computing the maximum likelihood estimates of the 
parameters starts by obtaining initial estimates of  the variance components, e.g. 
from (10) and (I I). These estimates are then substituted into (5) to estimates c~. 
This estimate of c~ along with the initial estimates of 0~ and 02 are then 
substituted into (8) and (9) to obtain 0 {l). This iterative process is to be 
continued until we achieve convergence after m iterations, say, at which time 
we get 0 = 0 (m) and ci = ~(') = ~ (o(m)). 

The estimated loss ratios and ~ lvency  margins, for company i in year j ,  are 
obtained by substituting &i, ~l, 02 and Pij into (1)-(3). 

4. AN APPLICATION 

Four  domestic companies are operating in the Kuwaiti general insurance 
market, namely, Kuwait, Ahlia, Gulf  and Warba. Since Warba started 
operating in 1978, we limited our data to the period 1978-1986. The incurred 
loss ratios during this period are given in Table 1, along with the associated 
data on earned premiums in millions of  Kuwaiti dinars. 

It must be more realistic to assume that the four domestic companies have 
fixed effects. Thus, the mixed model seems to be more suitable for the analysis 
of  this set of  data. 
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TABLE I 

INCURRED LOSS RATIOS (LR) AND EARNED PREMIUMS (EP) 
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Company Kuwait Ahlia Gulf Warba 

Year LR EP LR EP LR EP LR EP 

1978 63 12.5 65 8.6 68 5.0 48 2.7 
1979 67 12.1 68 9.6 66 5.7 84 5.6 
1980 63 13.6 73 10.3 63 7.2 55 6.5 
1981 58 15.8 78 11.9 67 8.5 56 7.2 
1982 63 18.3 73 12.4 72 9.1 62 7.6 
1983 67 20.2 54 12.8 89 9.2 53 7.9 
1984 71 21.4 73 13.8 68 10.0 59 8.9 
1985 68 18.6 74 12.6 72 10.0 58 8.3 
1986 69 16.3 67 11.2 76 10.1 77 8.7 

The initial estimates, computed from (10) and (11), were ~0) = 0.01505 and 
0(2 °) = -0.00059.  Since ~0) is negative, several initial guesses, all of  which are 
in the interior of  O, were used to start the iterative procedure and, in all cases, 
the procedure converged to the following estimates: 01 = 0.12146 and 82 = 0. 
These estimates were computed from (8) and (9) so that they are correct to 5 
decimals. Then, they were substituted into (5) to get 

= (4.184, 4.237, 4.271,4.114). 

The loss ratios and solvency margins were computed from (I)-(3) using the 
above estimates along with the earned premiums of  1986. Further, it was 
assumed that e = 0.001 and Ei = 30%. The results appear in Table 2. 

TABLE 2 

ESTIMATED LOSS RATIOS AND SOLVENCY MARGINS 

Company Loss Ratio Solvency Margin 

Kuwait 65.9 15. I 
Ahlia 69.6 24.7 
Gulf 72.0 29.6 
Warba 61.6 17.3 
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ABSTRACT 

Instead of  determining for a fire insurance portfolio the loss distribution purely 
based on the claims experience, we try to determine it based on the sums 
insured. 

KEYWORDS 

Loss distribution based on sums insured; Pareto distribution. 

INTRODUCTION 

Au lieu d'estimer, sur la base unique des sinistres, leur loi de distribution, on va 
essayer de le faire sur la base du profil du portefeuille qui les g6n6re. 

En Assurances Di~c6s, s'il n'y a pas de relation entre le capital garanti en cas 
de d6c6s et I'~.ge de I'assur6, les sinistres sont distribu6s comme le sont tes 
capitaux assur+s. 

En Assurance Dommages, ce n'est g~n&alement pas le cas. 
Par exemple, si les risques assur6s d'une compagnie sont distribu/~s sur une 

loi de Pareto tronqu6e au plein de souscription, que la distribution des taux de 
dommages vi~rifie certaines propri6t6s acceptables, alors les sinitres ne sont pas 
issus d 'une distribution tronqu6e de Pareto. 

CADRE DE NOTRE ~TUDE 

Les hypothSses utilis6es sont celles implictement admises pas les ri~assureurs: 

- -  Le portefeuille assur6 comprend N risques ( R i ) i =  l . . . .  N de valeurs assur6es 

( g i ) i =  I . . .  N .  
- -  Le portefeuille est stable dans le temps sur les m derni6res ann6es (nombre 

de polices par tranche de capitaux assur/~s) et pour i'ann6e m + 1. 
- -  Pendant chacune de ces derni6res ann+es, et pour l'ann6e m +  | ,  pour 

chacun des N risques: 

• Si ( s i j ) j =  1 . . . .  i d6signent les n~ sinistres sur le risque i, p (n  i = o ) =  
exp ( -  Pi) = exp ( -  p) 

• Vt dans [0, 1], Vi, Vj, p[(si j /Ki)  _< t] = T ( t )  ne d6pend pas de i et d e j .  

ASTIN BULLETIN, Vol. 21, No. 2 
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• T e s t  une fonction continue sur [0, I], d6rivable sur [0, 1] strictement 
croissante sur [0, 1] 

• ni suit une Ioi de Poisson de param6tre p. 
• Les sinitres survenant sont ind6pendants les uns des autres. 

N.B.." Les hypoth6ses sur la fonction de distribution T de taux de dommages.et 
sur la fr6quence p sont assez restrictives. 

On pourrait,  sans trop de difficult6s, les rendre moins contraignantes en 
6crivant que les risques i souscrits se caract6risent ainsi: ils sont issus d'une 
communaut6 M de risques I pour lesquels nous avons: 

1. Vi, n I suit une loi de Poisson de param~tre Pl. 
2. Vi, Vj, Vt, p([siJKt] _< t) = Ti( t)  ne d~pend que de I. 
3. II n'y a pas de correlation entre Pl et Kt, d'une part, entre T t et Ki d'autre 

part, ou encore: 

V(a,b) a < b, 

EM(pl/[Kt E [a, b]]) = p ne d~pend pas de [a, b] 

EM(Tt(t)/[Ki ~ [a, b]]) = T(t )  ne depend pas de [a, b] 

Alors, toutes les espbrances ~crites par la suite subsistent; elles sont des 
esp6rances d'esp6rances conditionnelles. 

Les contraintes ainsi expos6es n'alt~rent en rien la latitude d'acceptation de 
l 'assureur ni son niveau d'acceptation, notamment Iorsqu'il y a beaucoup de 
coassurance. 

PROBL~ME 

On cherche fi d6terminer la loi Lx du nombre de sinistres sup(~rieurs fi x. 
Montrons,  dans un premier temps, que L x est une loi de Poisson dont il 

suffira de connakre la moyenne Lx (E. STRAUB, 1971). 

• Pour un risque i, 

Lix suit une Ioi de Poisson de param6tre p 

- -  C'est 6vident s i x  > Ki. 

- -  S i x  <_ Ki, alors: 

p[L,x = n)] = () ,' (x)- E +~ J e x p ( - p ) J !  T Ki I - T  
j = n  ~ll 

= exp ( - p )  
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= e x p ( - p ) e x p l p T ( ~ i l ] I P I I - T ( - ~ ) ] ] n ~ .  t 

:exo[ ?(1 ~(~1 )13[,[, ~(~)Jl'~ 
Pour chaque risque i, 

[ E ( x)ll Lix suit une Ioi de Poisson de param~tre p 1 -  T rain l , -~i  

Lx = E La" Les Li~ &ant ind~pendantes, 

Lx suit une loi de Poisson de param~tre 

zl [ (~)11 p 1 - T  rain 1, = L.~= L ( x )  
I 
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L'APPROCHE DES RI~ASSUREURS 

Pour  ~valuer le coat  d ' une  couver ture  en exc~dent de sinistres, l ' assureur  et le 
r6assureur ont besoin de connaitre L(x ) ,  I'esp6rance math6matique du nombre 
de sinistres sup6rieurs fi x. Pour cela, on va passer du cas discret 6voqu6 
pr6c6demment au cas continu. 

Ainsi, la prime pure requise pour une couverture A xs B est-elle: 

• A+B alL(x) 
e = A L ( A + B )  - ( x - B )  dx 

,JB dx 

• Distribution des capitaux assures: 

• On supposera que les risques sont distribu6s en montant,  sur une loi de 
Pareto de param6tre a pour K > c, c ~tant fix6. On montrera,  sur un 
exemple en annexe, que cette hypoth~se est acceptable. 

De la connaissance de la valeur certaine No, nombre de risques sup6rieurs fi 
c, on estime Nx: 

~x:~c(C) ~x 
Si, lors de I'estimation, ci est non blaise, alors ~ r  surestime en moyenne Nx. 

En effet, Arx = N~ avec E(e) = O. 
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E I ( ~ ) ~ t  = E ( e x p  ( e l n ~ . ) )  > - e x p I E ( e l n ( ~  ) ) ]  = 11 

Calcul de L(x)"  

L ( x )  = p I - T  
du 

du 

~x c~ p l l  

(x) 
Nc ~ pxt  - u du 

apr6s int6gration par partie. 

Par ailleurs L' (x)  = -c~ N c -~- i -  p[I  - T(I)] - p~ Nc - ~ - t  
A" 

du 

soit L' (x ) = - -- L (x ) ou encore L (x ) = x -~  a" L (a), V a > c 
X 

(t d6signe la d6riv6e de T). 

On rappelle ici que, si F(x)  = f ( x ,  u) du, et que la diff6rentielle d f d e f  
¢ 

existe, alors F '  existe et F' (x )  = f ( x ,  x) + fx  ~ f ( x ,  u)du. 
J c ~ X  ' 

InfarCt d'une telle formule : 
T et p existent mais sont inconnus. On va revenir fi I'exp~rience du pass~ et 
estimer : 

L(a) par /_] (a)= 
nombre de sinistres survenus sup6rieurs fi a en rn ann6es 

m 

m t l  

m 

pour  tout a >_ c. 

On choisit a ie plus faible possible pour minimiser 
tT[L(y)] l 

L ( y )  x / L ( y )  
On prend donc a = c. 
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En effet, l 'erreur relative sur L(x) est d ' au tan t  plus faible qu 'es t  faible 
l 'erreur relative sur L(a) .  

(a[L(y)] d6signe l '6cart type de Ly). 

Tarification : 

- -  Fr6quence de sinistres sup+rieurs 5. B: 

- -  Cofit moyen d ' u n  sinistre d'xs. 

Cofit moyen d 'un  sinistre sup(~rieur fi B:  pour  ~ > I 

i 
+ o o  

cm(B) = (x-  B) dF~(x)/[l -F~ (B)] 
B 

i 
+oo 

= [ I -  F, (x)] dx/[l- F, (S)] 
B 

i 
+oo X - ~  

- -  d x / [ 1 - F ~ ( B ) ]  - 

B a - a  

B 

c t - i  

- -  Cofit moyen d 'un  sinistre d'xs: 

c,. (a,  B) = c., (B) - 
1 - F ~ ( . 4 + B )  

l - F, (g) 
c.,(A + B) 

_ ,  
o~-1 o~-1 ~ 

- -  Est imation de la prime pure requise:  

1~ = mc (~)~ B II - ( B )~-1 --o~-1 

Cette formule reste vraie pour  0 < ~ < 1. 

I1 suffit d'6crire 

A + B  

[1-F~(B)ICm(A'B) = I (x-B)  dF'(x)+A[1-F~(A+B)] 
B 

Pour  ct = l 
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P - m c  c B lim B ~-o --a - ( B ) ~ + B =--clnmCm (-~-~-~-) 

Le grand avantage de cette formulation r6side dans la disparition de p e t  
de T. 

Le r6assureur ne peut estimer p car il ne connak que les sinistres 
sup6rieurs 5. un certain seuil s, qu'on a suppos6 ici inf/~rieur 5. c. Pour ies 
m6mes raisons, il ne peut estimer T. 

Afort ior i ,  dans l'hypoth6se d'h6t6rog6n6it6, on ne peut estimer Pi et T, 
pour chaque i, d 'autant  plus qu'on ne connait pas les fonctions de 
structures de (p) et (T). 

CRITIQUE DE LA MfETHODE 

On a suppos6 que T existait, mais &ait inconnue (si T 6tait connu, L(x) le 
serait imm~diatement. 

Des fonctions T circulent chez les r6assureurs, sans qu'ils sachent bien 
lesquelles utiliser. 

La m6thode pr6c6demment d6crite a l'6norme avantage de ne pas requ6rir la 
connaissance de T. 

Malheureusement, elle pr6sente un 6norme d6faut. L(x) est calcul/~ en 

6crivant N x = N c pour tout x et m6me s i x  est sup6rieur fir F, le plein 

de souscription. 
Or N~ = o pour y > F. I1 nous faut donc, au mieux, utiliser une Ioi de 

Pareto tronqu6e au point F. On supposera donc que toute la densit6 de risques 
sup6rieurs 5. F, suivant I'hypoth~se paretienne, est concentr6e en F, apr6s 
d6gagement par exemple en Facultatives proportionnelles. 

Ainsi, L ( y )  IF -dNu I ( Y ) ?  (~)c~ I ( ~ ) ]  = --  p 1 - T  - du+ N c p I - T  
y du u 

= L ~ ( y )  + L 2 ( y )  

En int6grant par partie, 

L](y) = dN~(y)p I - T  + - t(y/u) du 
du y y du u 

S = -or p - - t  du 
y u 2 
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soit --Yot L'l(y) = -L , (y ) -N~  ~ p I - T  -~ 

En posant  Ll(y) = O(y)y-~Nc p 

O'(Y) L](y) - - - - L l ( y )  -- - L,(y) 
O(Y) Y 

E soit O(Y) -- O(F)+~ I u~-I l -  
y 

(u)] T ~  du 

La condi t ion O(F) = 0 [car L(F) = 0 puisque T(u) = I =~ u = 1] nous indi- 
que que:  

L,(Y)= ~II~iuC'- '[1-T(F)]du]y-C'Nc(F}c 'P 

et 

L(y) = [ I I i u  ~- '  [ , -T (~)]du]o~y-~+ [ I - T ( - ~ ) ] ]  N c ( - ~ ) a  

Exemple:  Prenons  
- -  at = 2 p o u r x >  I M F R F .  
- -  t(u)= 1 sur [0, 1] 
- -  p = 1%o; 10.000 risques de valeurs assur6es > 1 M FRF.  
- -  F =  1 0 M F R F .  .[ ((,0)°)]( 

L ~ ( y )  = - p - -  10.000 - -  1 - du 
y du u 

= 10 ,3 [  1 1__ + 2 y ]  
3y  2 F 2 3 F  3 

On a suppose 10.000 risques > I M FRF.  Or, on n'en d imombre  ici que 
9.900 = 10.000 x F~ (10 M FRF) .  

Supposons,  au pire, que ies 100 risques ~ manquants~) se situent en F comme 
on l'a fait pr6c~demment.  
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Aiors L (y ) ,  esp6rance du nombre de sinistres sup6rieurs 5. y ,  s'6crit" 

L(y) = Li(y)+[I-F=(F)]Ncp[I-T(~)] 

Pour notreexemple, L(y)=Ll(y)+O,l[I-~] 

TABLEAU RECAPITULATIF 

L(x) L~ (x) t(x) (2)/(I) 
x (1) avec troncation (2) 

1.000.000 3,3 3,2 3,3 -~ 100 % 
2.000.000 0,83 0,74 0,82 98,7 % 
3.000.000 0,37 0,29 0,36 97,3 % 
4.000.000 0,21 0,14 0,20 95,2% 
5.000.000 0,13 0,06 0,11 85 % 
6.000.000 0,093 0,033 0,073 78 % 
7.000.000 0,068 0,015 0,045 66 % 
8.000.000 0,052 0,006 0,026 50 % 
9.000.000 0,041 0,001 0,011 27 % 

10.000.000 0,033 0 0 0 % 

La prise en compte de la troncation (2) modifie donc la loi de Pareto des 
sinistres (1). Les sinistres ne sont alors plus distribu6s sur une loi de Pareto. 

Intuitivement, cela s'explique par le fait qu'il n'y a pas de g6n6rations de 
risques sup6rieurs fi F pour remplacer ceux qui disparaissent (ceux < x). Cette 
modification peut ~tre d6terminante. 

CONCLUSION 

A travers cet exemple, force est de constater que la connaissance d'un profil de 
portefeuille, d'une esp6rance de sinistres en nombre ft. un seuil suffisamment bas 
pour que I'expi~rience nous en donne un bon indicateur ne suffisent par 
d&erminer une esp6rance (en nombre de sinistres) de sinistres importants qui 
pourraient affecter lourdement le compte d'exploitation d 'un assureur. 

La connaissance de la loi de distribution des taux de dommages des riques en 
portefeuiile s'av+re n+cessaire. 

ANNEXE I 

Est imat ion  de a 

I er COS 

Les valeurs assur6es des J risques K i ,  K 2 . . . .  Kj des risques sup6rieurs 5. c sont 
connues. 
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La vraisemblance V ( K i ,  K2,  . . .  Kj, e) de notre (~chantillon s'(~crit : 

iH] c x 1 V = (X ~ = O~Jc ~tJ K i 

.= L i = l  

nous obtenons: & - 

F- 
En maximisant le logarithme de V, l- ~ [In V ( ( K i )  , ~)] = 

J 

- - O n  peut montrer que & est asymptotiquement 
RYTGAARD, 1989). 

- -  & est une fonction continue de (Ki . . . .  K j). 

0] 

non biais6 (METRE 

2 e cas 

On ne conna~t, en g~n6rai, que le nombre de polices par tranche de capital 
assur6, pour les risques sup+rieurs ~. c. 

Num6ro Nombre 
Tranche de tranche de risques 

A o -  A i  I n 1 

A i -  Ai+t i +  I hi+ I 

A m - 1 - + oo m nm 

E N 

On va proc6der par 6tapes pour estimer & en utilisant la continuit6 de ¢: 
( K  t . . . .  K:) ~ & ( K  1 . . . .  Kj)  = O ( K n , . . . K j )  en utilisant I'estimateur du 
Khi-deux minimum, par l 'algorithme de NEWTON-RAPHSON. 

Premibre btape 

On r~partit dans chacune des tranches les risques uniform+ment. 

Pour i < m, les ni risques valent B~ = A i_l + j ( A i - A i - O .  
ni 

Pour i = rn, les nm risques valent A m _  I .  

Pour j = 1 ... nj.  

On en d6duit &n, puisqu'on s'est ramen6 au premier cas. 
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Deuxi~me btape 

On calcule, sous l 'hypoth~se,  ~ = fit, les fr6quences th+oriques de chacune des 
m tranches de capital a s su re  

P o u r j  = 1 . . . m ,  P,h,(~l) = F~,(Ai)-F~,(Ai-t) avec A m = + o o  

Troisi~me btape 

On ~crit ~2 = ~l +e .  
&2 dol t  ~tre un meilleur est imateur  que &t. e dolt  &re (< petit >> compte  tenu de 

la continuit6 de O. 

On 6crit alors Pth,(&2) = Pth,(&t)+e OP°'' (~l), au premier ordre. 

Quatri~me btape 

On cherche d minimiser G(x), avec 

G(~i2) = P,~,(~2)_ __n~ P,h,(~2) 
i = l  N 

= A (&,)+EB(&,),  au premier ordre. 

A (a,) 
O n  e n  d 6 d u i t :  &2 = &l - - -  

B(al)  

Avec : 

A(a,) = G(a,) 

~ ~Pth B(aj) = __aG (~,) = _ ~ z  (~,) 
~ 0 ~  i = l  P,h,(&O Pth,(&l) 2 _J 

Ai-l ~ Ai ] 

et (e) = l n - -  x 
~cz Ai- i  

lnAO (Ao)  - -  - -  X 

A, 

On r6it6re 6ventuellement le proc6d6 en substi tuant  ~2 d czl et ainsi de 
suite. 
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Ce t  a l g o r i t h m e  a des  chances  de  c o n v e r g e r  sous  I ' h y p o t h 6 s e  d ' u n e  a d 6 q u a -  
t ion  pa r fa i t e  fi une  loi de  P a r e t o  de  p a r a m & r e  ~ .  

En  effe t  : 

G(0%) = o 

G '  (~Zc) = o 

G"(~z~) = 2 ~P,h, ( ~ )  x > o 
i= i 1_ °~c Pth(c~c) 

G (~.)  (~ .  - ~c) 2 [ G "  (~c) + o~ (~ .  - ~c)] 
0 ~ n +  I = 0C n - -  _ _  - -  0~ n - -  

6 '  (~.) 2 (~. - ~ )  [6"  (~) + 02 ( ~ . -  ~)] 

avec  O l ( X ) - - , o  et o 2 ( x ) ~ o  l o r s q u e  x ~ o  

N o u s  a v o n s  d o n c :  

I '  1 ~ . + i - c %  = ( ~ . - ~ )  1 - - -  + o 3 ( ~ . - ~ z c )  a v e c  o 3 ( x )  ~ o Io r sque  x ~ o .  
2 

1 I 3 
P u i s q u e  I - - , d a n s  un v o i s i n a g e  de  ~c, I ~ , , + l - ~ c l  < - [~n-¢zcl 

2 2 4 
on  

en d6du i t  q u e  ~ .  --* ~ ,  l o r s q u e  n ~ + oo, si ~ est s u f f i s a m m e n t  p r o c h e  de  ~ .  

A p p l i c a t i o n  n u m ~ r i q u e  

Elle se fera  sur  le po r t e f eu i l l e  l n c e n d i e  ( R i s q u e  S imples )  d ' u n e  c o m p a g n i e  
d ' a s s u r a n c e  a l l e m a n d e .  O n  ne c o n s i d 6 r e r a  ici q u e  les r i sques  sup6r ieurs  fi c = 5, 
I 'uni t6  m o n 6 t a i r e  & a n t  ici occul t6e .  

Tranche Nombre de risques 

I - 5 2.520 
5 - I0 700 

I0 - 20 514 
20 - 50 517 
50 - 100 284 

I00 - 200 200 
200 - 500 203 
500 - 1.000 I 15 

> 1.000 289 
Z 5.342 
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Nombre d'it~rations 

I 0,415 
2 0,392 
3 0,410 
4 0,350 
5 0,380 
6 0,399 
7 0,421 
8 0,403 
9 0,441 

10 0,420 
I 1 0,401 
|2 0,429 

Observons par  ailleurs G ( a ) N .  

G(0,38) N = 30,16 G(0,40) N = 10,07 G(0,42 ) N = 13,21 
G(0,39) N = 17,t5 G(0,41) N = 8,79 G(0,405) N = 8,71 

G(0,415) N = 10,29 

Si l 'on teste l 'hypoth~se d 'ad~quation de la distribution des capitaux assur6s 
une distribution de Pareto de param~tre a = 0,405 par la loi du Khi-deux, 

nous avons x~9_l_0(U)  = JcTZ(U) = 95% implique U = 14,1 
Or 8,71 < 14,1 ; on peut donc accepter l 'hypoth6se paretienne avec un seuil 

de tolerance de 5 %. Cette m6thode du Khi-deux minimum nous donne m~me 
le seuil critique, si on le souhaite. 

ANNEXE 2 

I1 n'est pas toujours ~vident de trouver un portefeuille, comme celui qu 'on vient 
de d6crire, qui se prate ~, un ajustement des capitaux assur6s sur une 
distribution de Pareto. 

La question, ici, est de savoir pourquoi ces lois sont souvent prises en 
r~f6rence. 

On part  d 'un principe bien simple: l 'esp~rance du nombre de sinistres 
charge dolt ~tre proportionnelle au nombre de risques exposes. 

Les lois de Pareto (malgr~ ia r~serve importante  qu 'on a 6mise pr6c6dem- 
ment) sont solution. 

L ' ( x )  N '  
On a vu, en effet, que - - -  - soit encore L ( x )  = k Nx .  

L ( x )  N x x 

Montrons  que ce sont les seules solutions de ce probl6me, pour toute loi 
T(t). 

L'(x) W.~ 
On a L ( x )  = d N,, soit 

L(x) Ux 
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C o m m e  c x, 

N~ ~-~ t - du 
X U 

- -  x -  t du ,  
L '  ( x )  = x du u 

n o u s  a v o n s  

0 = L ' ( x ) - L ( x ) ' "  ~ = t x -  N~ - -  N,, du 
Nx  x u u Nx_ j 

Cette 6galit6 est vraie pour  toute fonction t .  

N~' x N x k 
N o u s  avons  donc  - - 

N ,  u N x u 

N, suit donc  bien une distribution de Pareto de param~tre - k .  
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ABSTRACT 

A statistical analysis is performed on natural events which can produce 
important  damages to insurers. The analysis is based on hurricanes which have 
been observed in the United States between 1954 et 1986. 

At first, independence between the number and the amount  of  the losses is 
examined. Different distributions (Poisson and negative binomial for frequency 
and exponential, Pareto and lognormal for severity) are tested. Along classical 
tests as chi-square, Kolmogorov-Smirnov and non parametric tests, a test with 
weights on the upper tail of  the distribution is used: the Anderson - Darling 
test. 

Confidence intervals for the probability of  occurrence of  a claim and 
expected frequency for different potential levels of  claims are derived. 

The Poisson Log-normal model gives a very good fit to the data. 

KEYWORDS 

Catastrophe risk; fitting models; frequency; severity; XL treaties. 

1. INTRODUCTION 

The United States of America are regularly hit by different types of natural 
events. Hurricanes affect the east part of  the United States, tornadoes the 
middle one. Hailstorms and winter freeze may take place all over the United 
States. Earthquakes are observed in some specific zones as California (for 
example 1906 and 1989 San Francisco quakes). 

These events cause very important losses. On the average the insured losses 
represent 4 %  of  the premium income in classes as fire and multiperils for 
homeowners, farmowners and commercial risks. 

i Presented at the 21th Astin Colloquium, New-York, November 15-17, 1989. 
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A very important hurricane may induce a 8 billion US $ insured loss which 
would represent 20 % of  the premium income of  these classes for one year. This 
percentage is even higher for an insurance company located in hurricane prone 
zones (Texas, Florida, Georgia . . . .  ). 

Direct insurers and reinsurers (underwriting non proportional treaties) must 
estimate their exposure in order to define an adequate reinsurance coverage. 

The topic of  the study is to get some results on the loss amount  and 
frequency distributions of  these events. In order to do homogeneous analysis, 
the study has been realized on a sample of  hurricanes affecting the United 
States. 

ISO keeps in its data base all losses (natural events) since 1949 whose 
amount  exceeds 1 million US $ (5 millions US $ after 1982). Three factors 
explain the evolution of  the losses amount  from 1949 : inflation, the number of 

TABLE 1 

HURRICANES EXCEEDING 30 MILLIONS $ 

Year Frequency First loss Second loss Other losses 

1986 0 
1985 5 39,7 582,0 439,9 
1984 I 41,2 
1983 I 893,1 
1982 I 192,0 
1981 0 
1980 1 106,2 
1979 2 216,7 1243,4 
1978 0 
1977 0 
1976 I 52,8 
1975 1 351,6 
1974 I 36,2 
1973 0 
1972 1 431,5 
1971 1 57,3 
1970 I 1602,1 
1969 1 822,2 
1968 0 
1967 1 260,1 
1966 1 58,7 
1965 I 6299,9 
1964 3 814,9 137,2 203,8 
1963 0 
1962 0 
1961 2 1263,5 53,7 
1960 1 1313,0 
1959 2 118,4 167,8 
1958 1 70,1 
1957 I 503,7 
1956 I 64,8 
1955 2 529,9 87,8 
1954 3 2465,4 317,9 2753,9 

47,1 83,9 
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people having the coverage against hurricanes in their insurance policy, 
demographic evolution. 

These three factors have been taken into account in the trending of  the losses 
( F R I E D M A N ,  1987) in order to get an homogeneous data base in 1987 US $. 
Nevertheless as the indexation coefficients for the first years were close to 100 
and those for the years 1954 to 1982 were lower than 30, the observed period of  
time has been shortened to 33 years 0954 to 1986). During these years 
37 hurricanes have been observed (cost of  each hurricane in 1987 US $ 
exceeding 30 millions). 

2. HYPOTHESIS 

Consider N the random variable (r.v.) of  the yearly loss frequency N(xo) the 
r.v. of  the losses exceeding x0, with x0 fixed. Let Xi be the amount  of  the loss i 
and X = (X~, . . . ,  XN) the r.v. of  the yearly loss amounts;  the distribution of  
each X i is supposed continuous. 

K observations years (K = 33) are available. They produce a realization 
( n k ,  x _ ( k ) ) k  = 1 . . . . .  r of a K-sample (NI, X_0)), ..., (N r,  X (K)) of (N, X). 

Two hypothesis are made 

(HI)  N and (Xl,)(2 . . . .  ) are independent random variables 

(H2) Xi , ) (2  . . . .  are i.i.d, random variables. 

(HI)  may be partly checked looking at the 25 years for which at least one 
loss has been observed. The grouping of the first losses in three classes gives the 
following contingency table (into parenthesis theoretical frequencies in case of  
independence). 

Loss  
~< 200 200 < ~< 1000 > 1000 Tota l  

I 9 (7,92) 6 (6,48) 3 (3,60) 18 
2 I (1,76) 2 (1,44) 1 (0,80) 4 

3 and  over I (I,32) I (I,08) I (0,60) 3 

Tota l  11 9 5 25 

2 = 1,23 which for the Chi-square independence test gives an observed Xob s 
2 significance level (P-value) is ~ = P(x42 > Xobs) = 0,87. So (H1) is accepted. 

Remark: A grouping of yearly frequencies in two classes in order to follow the 

C°chran criteri°n [ n~'n'j >~ l V (i'j) --n~'n'J >~ 5 f°r at least 80% °f  

would lead to the same conclusion. 
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For  (H2) independence of  Xi and X2, and identical distribution of  Xl,  X2 
and X 3 are checked using three non parametric tests: Kendall, Spearman and 
Kruskal-Wallis (GIBBONS, 1974). 

- -  Independence of  Xz and X 2 

For  the 7 years during which at least 2 losses have been observed, the Kendall 
tau statistic can be written as follows: 

2 
T - - -  ~)  A~j with 

7 ( 7 -  1) I,<i<j,<x 
n,, nip>2 

1 

Aij = 0 if 

- 1  

(x~J)- x,% (xl j)- x~')) > o 

(x~)- x(i)) ( x ~ ) -  xf')) = o 

(x~J)- x,% (x~J)- x~ i>) < o 

The critical region for Kendall test at level c~ = 0,20 is W~ = {ITI > 0,4286}. 
The observed tau being T = -0 ,333,  independence between Xt et X2 can be 
assumed for any reasonable level. 

Let Rk be the rank of  X[ k) among the 7 observations (ordered increasingly) 
for which nk >/2 and Sk be the rank of  X~ k), the Spearman rho statistic is 

R = 
k 

The critical region for Spearman test with a level c~ of 0,20 is 
I.V~ = {IRI > 0,536}, observed rho is computed at -0 ,464  so the conclusion is 
the same as for Kendall test. 

- -  Identical distribution of  X I , X2 and X 3 

Let Fi (i = 1, 2, 3) be the cumulative distribution function (c.d.f.) of  Xi, only 
years when at least i losses have occured being selected: {X/~k) k with 
nk >~ i}. 

The null hypothesis F~ = F2 = F3 is tested against the alternative 
3i, j :  Fi :k Fj by the KruskaI-Wallis test. Under the assumption that loss 
amounts (X~k))i~3 are identically distributed, we have a ml-sample of 
Xi (ml = 25), a m2-sample of X2 (m2 = 7) and a m3-sample of  X 3 (m 3 = 5). 
These samples are assumed to be !ndependent. 

3 
Let M = Z rni, R~ the sum of  ranks of  the ith sample observations in 

i = l  
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the combined (increasingly) ordered configuration of  the M observations 

3 M ( M +  i) 
with ~ R; - : Rm = 482, R2 = 128, R 3 = 93. Under the null 

;=1 2 

mi(M + 1) 
hypothesis E(Ri) - Vi [E(R0  = 475, E(R2) = 133, E(R3) = 95], 

2 

the Kruskal-Wallis statistic 

I m i ( M +  1)12 12 _L R,-  
K W -  M ( M + I )  = rni L 2 

is free (its distribution is independent of  the common Fi distribution). 
Asymptotically (mi ~ + ~ V/) K W  is chi-squared distributed with 2 degrees of  
freedom. This asymptotic distribution is used in practice when mi >~ 5 Vi. Here 
the critical region for the Kruskal-Wallis test {KW > c} has a significance level 
& = P(x22> K W ) =  0,97 (the observed K W  statistic having a value of  
0,054). 

Remark: 

I. If the size of  the third sample m3(--  5) seems too small to use the 
asymptotic distribution of  KW, it is still possible to test Fz = F '  against 
Fl -~ F' [F' being the c.d.f, of  Xi (i >t 2)] with a ml-sample of  Fi (ml = 25) and 
a m'-sample of  F ' ( m ' =  12). In this case the Kruskal-Wallis test is the 
Mann-Whitney-Wilcoxon test and has a significance level ~ = 0,82. 
2. Under the assumption of the X;'s independence the Kruskal-Wallis test 
may be used to check the hypothesis (HI) :  no effect of  the yearly loss 
frequency upon their amount :  

Considering the yearly loss amounts (X(k) : k with nk = 1} for years when 
exactly one hurricane occurs, {X} k) = k with nk = 2; i = 1, 2} for years with 
two hurricanes and {X{k):k with nk >/3; i = 1, 2 , . . . ,  nk} for years with 
more than two hurricanes as independent samples with respective sizes 
ml = 18, rn 2 = 8, m3 = 11 of distributions GI, G 2, G3, the Kruskal-Wallis 
test of the null hypothesis G~ = G 2 = G3 gives a significance level & = 0,89 
(observed K W  = 0,25). 

Hereafter (HI)  and (H2) will be assumed to be true. X will be the random 
variable parent of  X; and Fx its c.d.f. (assumed to be continuous.) 

3. LOSS FREQUENCY 

The realization (nl, . . . ,  nK) of  the K-sample (Ni . . . . .  NK) from N is given in 

the following Table 2. Let ,q = - -  n k and tr, = (nk_ •)2. 
K k  
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Different distributions fitting the loss frequency are examined. 

- -  Poisson distribution g (2) (2 > 0) 

with P~ (N = n) = e-;" 2"/n! (n ~ hi), E ( N )  = V ( N )  = 2, )t = ri is the maxi- 
mum likelihood estimator (M.L.E.) of  2. A confidence interval at a level of at 
least (1 -cO for 2 is [2i, 2s] with 

) - i -  I x2 (~/2) and 2~= 1 x2 ( l-~x/2) 
2K  2 K  

In these expressions x2(cz/2) and x 2 ( 1 -  ~/2) are the ~/2 and ( 1 - ~ / 2 )  fractiles 
of  the chi-square distribution. 

- -  Negative binomial N 2  (r, p) (r > O, p ~ ]0,1 [) 

F ( r + n )  r(1 - p )  
with Pr.p (N = n) - - -  p" (1 - p ) "  (n ~ ~) ,  E ( N )  - and 

F ( r ) n !  p 

r(1 - p )  
V ( N )  - - -  > E (N) ;  the estimation of  (r ,p)  by the M.L.E. or by the 

p2 

moments requires that the condition 8",2 > ,q is fulfilled. 

From the frequencies by year of  hurricanes, we have if7 - 
37 

- 1,12121 
33 

and 6~ 2 = 1,0762. So a fit by a negative binomial distribution is impossible. 

TABLE 2 

YEARLY FREQUENCY OF HURRICANES EXCEEDING 30 MILLIONS 

Yearly frequency Observed freq. Theoretical freq. (or-K.6,) 2 
i or Kt~i Kp, 

0 8 10,75 0,703 
I 18 12,06 2,926 
2 4 6,76 1,127 
3 2 2,53 0, I I I 

4 i )  ) 5 I 0,90 0,011 
6 and over 

Total 33 33 4,878 = Zo2bs 
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The x 2 goodness-of-fit test to a Poisson distribution with 2 = if, 
Pi = P~ (N = i) and c = 5 classes gives (see Table 2) a significance level 
fulfilling condition 

2 2 p ( x 2 _  > Xobs) ,  P(x~-2  > Xobs) ~< ~ ~< l 

belonging to the interval [0,18; 0,30]. 
So the fit o f  N to a Poisson distribution .~(2)  is accepted with for 2: 

M.L.E. ). = 1,12121 

Confidence interval at a level at least 0,98 

[0,73736; 1,63005] 

R e m a r k  : 

1. The M.L.E. of  2 obtained from grouped data (5 classes) is 2 = 1,09866, 
so to state precisely the chi-square test gives a significance level 

= P(x~ > 4,866) = 0,18. 
2. The fit of  a Poisson distribution to that kind of  event frequency can be 
checked with the distribution (see Table 3) of  the frequency by year of  all the 
north atlantic hurricanes which approached the United States from 1899 to 
1986 (meteorogical data, US Department of  commerce): 

fiT= 1,7045, ~,~ = 1,8218, ~ [ 0 , 7 2 ;  0,84]. 

TABLE 3 

YEARLY FREQUENCY OF ALL NORTH ATLANTIC HURRICANES 

Yearly frequency Observed freq. Theoretical freq. (ol-Kl3i) 2 
i ol KPi KPi 

0 16 
I 28 
2 23 
3 14 
4 3 
5 2 
6 2 
7 and over 0 t 4 

16,00 0,000 
27,28 0,019 
23,25 0,003 
13,21 0,047 
5,63 1,229 

2,63 0,714 

Total 88 88 2,012 = 2 Zob~ 

4. LOSS AMOUNT 

Loss amounts are assumed to be i.i.d, random variables. Let 

K 

n = 2 nk ( =  37), a realization (xl ,  . . . ,  x,) of  a n-sample (AVI . . . .  , X,,) of  X 
k=l  

is obtained; all losses are over 30. 
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The  aim o f  the following lines is to es t imate  the probabi l i ty  
P(X~>xo) = l - F x ( x o )  that  a loss a m o u n t  exceeds x0 and to derive a 
conf idence interval at a level l - 0 t  ( =  0,98). 

1. Non parametric estimation 

Let XO) ~ . . . .  ~< X~.) be the ordered  sample  cor responding  to (XI . . . . .  X.) and 
( F *  (x))x • n÷ the empirical  c.d.f. 

Consider ing  X~0) = 30, X(.+ 1) = + 0% we have, for  k = 0, . . . ,  n, 

k 
F~*(x) = - -  if X(k)<X~<X(k+l ) .  

n 

The  statistic 1 - F.* (x0) 1 = - "0 [xo, + ~1 (Xi) is an unbiased consistent  esti- 
n i=l  

m a t o r  o f  1 - F x ( x o ) .  
F u r t h e r m o r e  if D . ( I  - ~ )  is the ( 1 - ~ )  fractile [D.(0,98)  = 0,244 for n = 37] 

o f  the K o l m o g o r o v - S m i r n o y  statistic D .  = Sup IF*(x ) -Fx(x ) l  associated 
X E ~  + 

to the sample ,  if  we let, for  x ~ ~ ÷ 

l . ( x )  = max  [ 1 - F * ( x ) - D . ( l - 0 t ) ,  0] 

S. (x)  = min  [ l - F * ( x ) + D . ( 1 - o t ) ,  1] 

the band  ( [ l . ( x ) ,  S.(x)])x• ~+ is a level ( I - ~ )  confidence band  for l -Fx (xo )  
meaning  tha t  

P[l.(x) <~ 1-rx(x)  ~ S.(x)Vx~ ~ + ]  = l - a .  

The  table with the values o f  1 - F * ( x ) ,  I . (x)  and S.(x)  for k = 0 . . . .  , n and 
X(k) < x ~ X(k + ~) is presented in Appendix  1. 

Joining with segments  the points  

x (k) ,min  - -  + D . ( l - ~ ) ,  1 
n k=0 . . . . .  n+l 

for  the super ior  envelope and 

( x(k), max  
n _ _  ° . . . . .  

n + l  

for  the inferior envelope,  a confidence band  (Bx) x• ~+ conta ining the first one 
( [ l . ( x ) ,  Sn(x)]x•~+ and graphical ly easier to d raw is derived. G r a p h  1 shows 
the plot  o f  1 - F . *  (x)  and Bx for 30 ~< x ~< 8000. 
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(x 1000) 
GRAPH 1. Plot of I-Fn*(x) and B.~. 

2. Parametric family of distributions 

A graphical approach  and the value o f  significance levels o f  goodness-of-f i t  
tests based on the empirical c.d.f. (D'AGOSTINO and STEPHENS, 1986) are used 
to test the fit o f  observat ions to a family Y = {F(x;  0) : 0 e O} of  parametr ic  
distributions (0 varying in on open subset O o f  Rq). 

For  the graphical procedure  ( Q - Q  plot) following results are appl ied:  for 
r = !, . . . , n  

r r ( n - - r +  1) 
E[Fx(X(r) )  ] - ; V[Fx(.¥(r)) ] = = 0 ( I / n ) .  

n +  1 (n+  l )2 (n+  2) 

For  n >~ 30 (a generally accepted level) a realization o f  Fx(X(r))  is very likely 

r r 
close to - - .  So it is possible to write Fx(x(r))  ~ for r = 1, . . . ,  n. 

n + l  n + l  
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By an adequate transformation, depending of the examined family, the 
procedure is equivalent to estimate whether n points are roughly on a straight 
line. 

Let 0 be the M.L.E. of  0 in the hypothesis Fx e J- ,  the goodness-of-fit test is 
based on Anderson-Darling statistic 

I + ~ [F* (x )  - F ( x ;  0)12 dF(x ,  O) 
= n 

o r ( x ;  O)[1 - F ( x ;  O)l 

1£ 
= - n - - ( 2 r - i ) { L o g F ( X ( ~ ; O )  + L o g [ l - F ( X ( . _ r ÷ , ~ ; b ) ] } .  

H r = l  

This statistic gives one of the globally most powerful tests (D'AGOSTINO and 
STEPHENS, 1986). Moreover it is an adequate statistic of the here studied ( 1) 
problem because of the weight factor given to the tail of the 

1 - F ( x ;  O) 

distribution. 
In order to compare with other tests, Kolmogorov-Smirnov statistic will be 

computed : 

b .  = Sup [ F . * ( x ) - F ( x ,  t~)[ = max ( b ~ ,  b £ )  with 
X ~  ÷ 

b + = max - F(X(r); and b ,  = max F(X(,~; - . 
r = l  . . . . .  n r = l , . . . , n  n 

Let 7'. be one of  these two test statistics and T~,x its value for the realization 
x = (xl . . . .  , x.) of ( X i , . . . ,  X.). The distribution of T. under the null hy- 
pothesis H o : F x E  ~"  depends generally only on n and the examined family. 
Thus a significance level &(x) = PH°[T. > T.,x] may be computed from the 
table of  this distribution. 

R e m a r k  : It is not advisable to compare the fit of two families of distributions 
to the observations by a simple comparison of their Tn,x- Indeed the same 
deviation has not the same likelihood to be reached under H 0. For example 
considering b n ,  for n = 37 and b . ~  =0 ,165:  p n o ( / ~ . > b . ~ )  = 0,24 if 
J -  = {F0} has only one distribution (fufiy specified), p'f0(D. > b '.ix) = 0,08 if 
S is the exponential distributions family, P n ° ( b .  > D..x) = 0,15 if g is the 
log-normal distributions family. 

The histogram of  the observations suggest to choose a dissymmetrical 
distribution. Successively exponential, Pareto and log-normal distributions will 
be tried: for these distributions there are statistical tables which give the 
goodness-of-fit significance levels &(x). 
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2a. Exponential distribution e(,8; 30) 

With ,8 > 0, this distribution has the following density and c.d.f. 

fp,30(x) = ,8 e -B(x-30) ,0130 ' +oo[(x) 

Ft, ao(X ) = 1 - - e  -#(x-30) (x ~ 30) so - Log [1 - Fp, 30(x)] = , 8 (x -  30). 

Let (YI , . . . ,  Y,) be a n-sample of {e(,8, 30):,8 > 0} and (Yl . . . .  , y,) its realiza- 
tion. ( ( r ) )  
* the n points y ( , ) -  30, - Log 1 - - -  r = I . . . . .  n are roughly on a 

n + l  

straight line going through (0, 0) with a positive slope (the slope of an 
adjusted line on these points gives if necessary a graphical estimation of ,8). 

* M . L . E .  o f  ,8 is/~ - n , M . L . E .  o f 1 - Fp, 30 ( x 0 )  is 

~ (Yi-  30) 
i=1 

1 -Fb,,30(Xo) = e -~(x°-30) for xo >/30. 

* a level ( 1 - ~ )  confidence interval with symmetric risks is 

for fl: [,8 "v22" (~/2)2n ' / j  x~"(l--- ~ /2)72n  ._] 

for l-FB.30(x0)" 

( { -]~ x22n(l - , / 2 )  } {-]~x~n(o~/2) }) 
exp (Xo-30) ; exp - (Xo-30)  

2n 2n 

2 n,8 
as is x22, distributed (d.f. 2n). 

The graphical procedure applied to the 37-sample (xl . . . .  , x,,) of X in 
graph 2 rejects in a first approach a fit to an exponential distribution' the tail 
of this distribution is too light to take into account the observed amounts of 
loss. 

1 
With/~ - - -  - 0,00157, the significance levels of the goodness-of-fit tests 

638,2 

corroborate the lack of fit of the exponential distribution to the data: 

A,~ = 5,98054 &(x) ~ 0,0025 

/Sn = 0,2599 &(x) .,~ 0.005. 
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4 

. . . . . . . . . . . . . . . .  q 
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(× 1000) 

GRAPH 2. Plot of  the points ( ( ' )  x( , ) -30 ,  - L o g  I - - -  r = l , . . . , n .  
n + l  

2b. Pareto distribution P (y; 30) 

With y > 0 this distribution has the following density and c.d.f. 

y 30 r 
gy ,3o(X)-  xr+l "ilDo,+~t(x), 

G~,3o(x) = l ( 3 0 )  y x - - -  so - L o g  [ l -Gy ,  3o(X)] = y L o g - -  (x >I 30). 
x 30 

Let ( Y I ,  " - ,  Yn) be a n-sample of {P(y; 3 0 ) ' y >  0} and (Yl, .--,Y,) its 
realization. 
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r=l,...,n are roughly on a 

straight line going through (0,O) with a positive slope (the slope of an 
adjusted line on these points gives if necessary a graphical estimation of y). 

n 
* M.L.E. of y is 1; = 

n 
, M.L.E. of 1 - GY,30(~,J is 

c 
i= I 

Log $ 

s 
for x0 > 30. 

* a level (1 - a) confidence interval with symmetric risks is 

for y: 

[ 

$ A&/2) ; g”L(‘-“12) 

2n 1 &(1-a/2) 
for I- G,, 3. (x0) : 

,[xl]y;_;; yg%F, 

2ny 
as n IS xi,, distributed. 

Y 

Graph 3 shows that the n points 
( 

Log 5 , -Lw( 1-s)) 

r = 1, . . . . n are not roughly on a straight line. Pareto distribution has a too 
heavy tail for the observed amounts of loss. 

With f = 0,465141 the test statistics can be computed as follows 

ai = 156365 with a significance level c?(x) = 0,025 

d n = 0,14586 with a significance level B(x) = 0,16 . 

Comparing the two significance levels demonstrates the interest of 2: 
relatively to L! n. The fit to a Pareto distribution is rejected by, 2: (tail of the 
distribution) though such a fit seems to be acceptable with D,, taking into 
account the small number of observations. 

The tit to a Pareto distribution being rejected, the lower and upper limits of 
the confidence interval are not computed. 
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~x 

' :il i i i i 
I f ' I ] I I ' ' | I I . . . . . . . .  ; ' ' I ' I 

0 1 2 3 4 5 6 

GRAPH 3. Plot o f  the points  ( ( ) )  L o g X ( ' ) ,  Log I - - -  r = l , . . . , n .  
30 n +  1 

2c. Log-normal distribution Log N(,u, e; 30) 

With /1 E R and tr > 0, a random variable Y is log-normally distributed if 
Log (Y-30)  is normally distributed N(,u, or). Its density is 

1 e x p { _  1 } 
h~'a'3°(x) = V / ~  a ( x -  30) ~ a  2 [Log ( x -  30)-p]2 ~ 130, + oo[(x). 

Let t/, be the c.d.f, of N(0, l), the c.d.f, of the log-normal distribution can be 
written (x >/30) 

Hu,~.3o(X)= ~IL°g (x-  30)-It ~ therefore ~-'[Hu,~,3o(X)] - L o g ( x - 3 0 ) - ~  
L _J o" o" 
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Let (Yi . . . . .  Y,) be a n-sample of {Log N(/..t, 0-, 30) • u • ~, 0- > 0} 

• Thenpoints ( L o g ( y ( , ) - 3 0 ) , ~ - ' ( ~ l ) ) r =  1 .... , n a r e r o u g h l y o n a  

straight line with a positive slope. 

• M.L.E. of (~, 0-)is/~ = - Log (Yi-30) 
n i=1 

~ -  ILog (Xo- 30) -~fi.l 
M.L.E. of l-H~,o.30(Xo) is I - H ;  .... 30(Xo) = 1 - ~  

0- 

* the way to derive a confidence interval for l-H~.a,30(x0) is explained 
later. 
Graph 4 shows a very good fit of the log-normal distribution to the 37 

observations. It is corroborated by the values of the test statistics computed 
with h = 5.19853 and 6" = 1.74297: 

,~2 = 0.26265 with a significance level 8(x) = 0.70 

Dn = 0.07939 with a significance level ~(x) >> 0.15. 

The values of 1 -Hu.o.3o(Xo) for x 0 varying from 100 to 8000 are presented in 
Appendix 2 (column 1) and plotted in Graph 5. 

2d" C°nfidence interval f°r l -cb IL°g (x°- 30) -It 1 

As the size of the sample (n = 37) is too small to use the confidence interval 
derived from the asymptotic normality of (;h, 8) and the J-method, the 
non-central Student distribution and its table (RESNIKOFF and LIEBER- 
MAN, 1957) are to be use.d. 

1 
Let Y;= Log(Xi-30)  for i =  1 . . . .  ,n, Y = - E  Yiand 

n i 

1 
S~, - E (Y/- y)2, (Yi, . . . ,  Y,) is a n-sample of N0.t, 0-). 

n - l i  

So - -  ~a  [L°g ( x ° - 3 0 ) - Y ]  is distributed as N I -  ~ -  {Log (x0-30)-~},  11 

and (n-1)S~, is x,,-t2 distributed. These two random variables being inde- 
0 -2 
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GRAPH 4. Plot of the points Log ( x ( o - 3 0 ) ,  ~ - ~  r = 1 . . . . .  n .  

pendent, the distribution of  x/~ [Log ( x 0 -  3 0 ) -  Y] . 
IS a I n_  i, ~ [Log (Xo-30)-l~]/a 

Sy 

non-central Student distribution with ( n -  1) degrees of freedom and centrality 
parameter x/~ [Log ( x 0 -  30)-l~]/a. 

In a more general way the y-fractile t~,6(y) of  a Student distribution t,,6 with 
v d.f. and centrality parameter 8 is, for fixed v and ~, a strictly increasing 
continuous function of  ~ noted C~,r with P[t , ,6  < C,, r(~)] = y V 8. 

Let C -n C - I  ,,r (t) be its reciprocical function" for fixed t e  ~, 8 = ~,y (t) is the 
only solution of  the equation, d being the unknown: P[t~, d < t] = y. From 
that it follows 
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Cn-l'l-at/2 Sv 

Log (x0-  3 0 ) - u  
is a level (I-~t)  confidence interval for with 

O" 
symmetric risks. 

For 1 - 

interval are 

Log ( x 0 - 3 0 ) - p l  the lower and upper limits of  the confidence 
O" 

C,-i.i-~/2 Sr 

From the fractiles of the Resnikoff-Lieberman table, it is possible to compute 
this interval for n = 37 and 1-c t  = 0,98 (by linear interpolation and with a 
limited accuracy) only for x0 >t 1500. So it seems to be preferable to use the 
following approximation of  fractile t,_ ~,a(7) (VAN EEDEN, 1961): 

(I) t ,- i ,a(7) -~ tn-l(T)+h(3) with 

h(3) = ~ + - -  (! + 2 q 2 + q 6 )  + [3(4q4+ 12q2+ 1) + 
4 ( n -  1) 9 6 ( n -  1) z 

+ 6(q3+4q)t~-4(q 2-1)~2-3q~ 3] 

and with 5,- i (7) and q being the 7-fractiles of  the (central) Student distribution 
and of  the normal distribution N(0, 1). 

Let to = - -  x/~ [Log ( x 0 - 3 0 ) - ~ ] ,  the approximation (1) provides C~'2 l,~(t0) 
Sy 

as solution of the equation (3 being the unknown): t , - 1 ( y ) - t 0 + h ( 6 ) =  0. 
This equation can be numerically solved using the Newton-Raphson algorithm 

a starting value could be 6o = t o - t , _  1(7), obtained by neglecting the terms 

1 and 1 in (1)3. 
n -  ! ( n -  1) 2 ] 
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Appendix 2 shows in columns 2 and 3 the lower and upper limits of the level 
0,98 confidence interval for I-H~,,~.3o(Xo). These limits are plotted in 
Graph 5. 
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GRAPH 5. Plot  o f  I -H~,.~.3o(Xo) (curve I), lower  l imit  (curve 2) and upper  l imit  (curve 3) o f  the 
conf idence in terval  fo r  I -H , .~ .3o (Xo) .  The log -norma l  case. 

5. FREQUENCY OF LOSSES WITH AN AMOUNT >/)f'0 

Let, for fixed x0 >/30, N(xo) the r.v. of the yearly frequency of losses exceeding 
x0. Using the same notations as before and considering that the r.v. N has a 
Poisson .2(2) distribution, under (HI) and (H2), the following results are 
obtained. 
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T h e o r e m  : 

a) N(xo) is Poisson distributed with parameter 2(x0) = 411-Fx(xo)  ]. 
b) If the distribution of X belongs to the family J -  = {F(x; 0) • 0 ~ O}, the 

M.L.E. of 2(x0)is 2(x0) = ~ . [ I -F(xo ;  0)]. 

c) If [2i, ~-s] and [l(x0), S(x0)] are confidence intervals for 2 and l - F x ( x o )  at 
a level of at least (1-~/2) ,  [~.jl(x0), 2sS(x0)] is a confidence interval for 
2(x0) at a level of  at least (l-c~). 

P r o o f :  

a) Direct calculation. 

b) Because of the independence hypothesis and invariance of the M.L.E. 

c) P[2il(xo) ~< 2(x0) ~< )~,S(x0)] >/ 

P[)~i ~< 2 ~< '~s, l(xo) ~< 1 - Fx(Xo) ~< S(x0)] 

and the result with the Bonferroni inequality P(AAB)~> I - P ( A C ) - P ( B  c) 
for any two events A and B. It is worthwhile to note that a direct use of the 

5 2 

independence frequency-amount would give a level >1 (1-or/2) 2=  l - c t  + -  
4 

very close to ( I - c t )  
These results applied to the frequency and amounts of hurricanes give in the 

same way as for l - F x ( x o  ) but at a level I - c t  = 0.96: 

* In the non parametric case (Appendix I) 

- -  an estimation of 2 (x0)')~ [I - F,,* (Xo)] (Column 4) 
- -  a confidence band ([~.il,,(x), 2sS,,(x)])x ~n* for 2(x0) such as 

P[2il,,(x) ~< 2(x) ~< )~sSn(x) Vx~ ~+] >/ ! - tx .  

The values ~.il,,(x) and ~.~S,,(x) are shown in Columns 5 and 6. 

* In the log normal case (Appendix 2) 

- -  the M.L.E. 2 (x0) of 2 (x0) (Column 4) 
- -  the upper and lower limits of a confidence interval for 2 (x0) (Columns 5 

and 6). 

Graph 6 shows a plot of these values. 

In conclusion Table 4 shows for the values of x0 for which observations are 
A 

available, in order to judge of the goodness-of-fit: the M.L.E. 2(x0) derived 
from the model, the empirical mean (if) and variance (d',~) of the yearly 
frequency of losses exceeding x0, the empirical distribution of the frequencies 
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GRAPH 6. Plot of ).(x0) (curve 4), lower limit (curve 5) and upper limit (curve 6) of the confidence 
interval for 2(x0). The log-normal case. 

(columns obs.), to compare with the theoretical distribution derived from the 
Poisson log-normal model (column theor.). 

Empirically the fit of the model seems very satisfactory. 

CONCLUDING REMARKS 

These results do not seem to be exclusive for hurricanes in the United States. 
So they could be used to modelize the frequency and amount distributions of 
natural events of any kind in the United States (for examples tornadoes) and 
even world wide. 
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C~ 

> 

-H 

Z 

% I ~  200 

[ (xu) 0,793 0,577 

i 0,758 0,606 

L z 0,729 0,602 

3roups obs. theor, i ObS. theor. 

) 15 15,47 18 18,53 
I 13 11,72 I1 10,69 
2 3 4 ,44  3 ' 3,08 

3 and over 2 1,37 I 0,70 

I 33 33 33 33 

300 400 500 750 I 10G) 1500 2000 2500 

0,459 0,382 0,327 0,240 0,188 O,129 0,096 0,075 

0,515 

0,492 

obs. thcor. 

19 20,85 
12 9,57 
I} 2,20 ~ 

2 ~ 2,58 
m 0,38j 

33 33 

0,454 

0,369 

obs. Iheor. 

20 22,52 
It 8,60 

2 2,88 
0 o,24j  

33 33 

0.394 

0,299 

obs. thcor. 

21 23,80 
I I 7,78 
i }  1,27) 

I ~. 1,42 
o 0 : s j  

33 33 

I 

0,212 

0.22.8 

theor, obs. the.or. 

25,96 27 27,34 

0,91 6 0,52 5.66 

33 33 33 

0.303 

0,272 

obs. 

24 
8 

1}1 

0 

33 

0,121 

0,167 

obs. Iheor. 

30 29,0i 

33 33 

0,091 

0,143 

obs. theor. 

31 29,98 

:0} :} 2 0,14 3,02 

33 33 

0,06 I 

0,057 

obs. theor. 

3 i 30,62 

}:} 2 238 

33 33 

&3 

O 

Z 
> 
,-] 
C 

m 
< 

Z ,.-] 
c~ 

H 

C 
Z 

> 

cs3 

I',O 
--,o 



274 CHARLES LEVI AND CHRISTIAN PARTRAT 

Values of :  

APPENDIX I 

1 -F~*(x)  
1,,(x) 
S.(x) 
~[l - F~ (x)] 
~.~/.(x) 
~., s,,(x) 

: Col.  1 

: Col.  2 

: Col.  3 

Col.  4 

Col.  5 

Col.  6 

k x(,) < x _< x~,+ I) (1) (2) (3) (4) (5) (6) 

0 30,0 36,2 1,000 0,756 1.000 1,121 0,557 1,630 
I 36,2 39,7 0,973 0,729 1,000 1,091 0,538 1,630 
2 39,7 41,2 0,946 0,702 1,000 1,061 0,518 1,630 
3 41,2 47,1 0,919 0,675 1,000 1,030 0,498 1,630 
4 47,1 52,8 0,892 0,648 1,000 1,000 0,478 1,630 
5 52,8 53,7 0,865 0,621 1,000 0,970 0,458 1,630 
6 53,7 57,3 0,838 0,594 1,000 0,940 0,438 1,630 
7 57,3 58,7 0,81 I 0,567 1,000 0,909 0,418 1,630 
8 58,7 64,8 0,784 0,540 1,000 0,879 0,398 1,630 
9 64,8 70, I 0,757 0,513 1,000 0,848 0,378 1,630 

10 70,1 83,9 0,730 0,486 0,974 0,818 0,358 1,587 
1 I 83,9 87,8 0,703 0,459 0,947 0,788 0,338 1,543 
12 87,8 106,2 0,676 0,432 0,920 0,758 0,318 1,499 
13 106,2 I 18,4 0,649 0,405 0,893 0,727 0,298 1,455 
14 118,4 137,2 0,622 0,378 0,866 0,697 0,278 1,411 
15 137,2 167.8 0,595 0,351 0,839 0,667 0,259 1,367 
16 167,8 192,0 0,568 0,324 0,812 0,636 0,239 1,323 
17 192,0 203,8 0,541 0,297 0,785 0,606 0,219 1,279 
18 203,8 216,7 0,514 0,270 0,758 0,576 0,199 1,235 
19 216,7 260.1 0,486 0,242 0,730 0,545 0,179 1,191 
20 260,1 317,9 0,459 0,215 0,703 0,515 0,159 1,147 
21 317,9 351,6 0,432 0,188 0,676 0,485 0,139 1,103 
22 351,6 431,5 0,405 0,161 0,649 0,454 0,119 1,056 
23 431,5 439,9 0,378 0,134 0,622 0,424 0,099 1,015 
24 439,9 503,7 0,351 0,107 0,595 0,394 0.079 0,970 
25 503,7 529,9 0,324 0,080 0,568 0,364 0,059 0,926 
26 529,9 582,0 0,297 0,053 0,541 0,333 0,039 0,882 
27 582,0 814,9 0,270 0,026 0,514 0,303 0,019 0,838 
28 814,9 822,2 0,243 0,000 0,487 0,273 0,000 0,794 
29 822,2 893,1 0,216 0,000 0,460 0,242 0.000 0,750 
30 893, I 1243,4 0,189 0,000 0,433 0,212 0,000 0,706 
31 1243,4 1263,5 0,162 0,000 0,406 0,182 0,000 0,662 
32 1263,5 1313,0 0,135 0,000 0,379 0,152 0,000 0,618 
33 1313.0 1602,1 0,108 0,000 0,352 0,121 0,000 0,574 
34 t602,1 2465,4 0,08l 0,000 0,325 0,091 0,000 0,530 
35 2465,4 2753,9 0,054 0,000 0,298 0,061 0,000 0,486 
36 2753,9 6299,9 0,027 0,000 0,271 0,030 0,000 0,442 
37 6299,9 + oo 0,000 0,000 0,244 0,000 0,000 0,398 
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APPENDIX 2 

LOG NORMAL CASE 

- -  Est imation o f  1-Fx(xo): Col. 1 
- -  Lower and upper limits o f  the conf idence  interval for 1 - Fx (x0) : Col.  2 and 3 
- -  Est imation o f  2(X0):  Col.  4 
- -  Lower and upper limits o f  the conf idence  interval for 2 (X0) : Col.  5 and 6. 

X0 (I) (2) (3) (4) (5) (6) 

100 0,707 0,55 0,83 0,793 0,41 1,35 
150 0,593 0,44 0,73 0,665 0,32 1,19 
200 0,514 0,36 0,66 0,577 0,27 1,08 
250 0,455 0,31 0,61 0,51 I 0,23 0,99 
300 0,409 0,27 0,565 0,459 0,20 0,92 
350 0,372 0,24 0,53 0,417 0,175 0,86 
400 0,341 0,21 0,50 0,382 0,16 0,81 
450 0,315 0,19 0,47 0,353 0,14 0,77 
500 0,292 0,17 0,45 0,327 0,13 0,73 
600 0,255 0,14 0,41 0,286 0,105 0,67 
700 0,226 0,12 0,38 0,254 0,09 0,62 
800 0,203 0,105 0,355 0,228 0,08 0,58 
900 0,184 0,09 0,33 0,206 0,07 0,54 

1000 0,168 0,08 0,31 0,188 0,06 0,51 
1250 0,137 0,06 0,28 0,153 0,045 0,45 
1500 0, I 15 0,045 0,25 0,129 0,035 0,4 I 
1750 0,098 0,04 0,23 0,110 0,03 0,375 
2000 0,085 0,03 0,21 0,096 0,02 0,34 
2500 0,067 0,02 0,18 0,075 0,015 0,295 
3000 0,054 0,015 0,16 0,061 0,01 0,26 
3500 0,045 0,01 0,14 0,051 0,01 0,23 
4000 0,038 0,01 0,13 0,043 0,005 0,2 I 
4500 0,033 0,01 0,12 0,037 0,005 0,195 
5000 0,029 0,005 0,11 0,032 0,0 0,18 
6000 0,022 0,005 0,095 0,025 0,0 0,155 
7000 0,018 0,0 0,085 0,020 0,0 0,14 
8000 0,015 0,0 0,075 0,017 0,0 0,12 
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BOOK REVIEW 

Foundations of Casualty Actuarial Science: Published by Casualty Actuarial 
Society, One Penn Plaza, 250 West 34th Street, New York, NY 10119. 
584 pages. $ 65. - -  (overseas $ 97.50). 

From the Preface of Foundations of Casualty Actuarial Science : 

This landmark book is the first published, complete text containing the 
fundamentals of casualty actuarial science as practiced in North America. It 
is intended as an introduction to casualty actuarial concepts and practices. Its 
target audiences are members and students of the Casualty Actuarial Society, 
university and college students, plus insurance and general business profes- 
sionals with a need for basic knowledge on these subjects. 

In designing the textbook, the Casualty Actuarial Society concluded that 
the readership would be best served by having each chapter written by an 
expert in the topic covered by the chapter. Therefore, each chapter is 
individually authored and the styles and organization vary somewhat. The 
chapters reflect the views of the individual authors and the content should 
not be considered as the official opinion of the Casualty Actuarial Society. 

Those two paragraphs in the preface make it clear why reviewing the book 
Foundations of Casualty Actuarial Science is a difficult task for the reviewer as 
well as the reader. The ambitious specification of its aim, the wideness of its 
target audience, and the distribution of tasks among nine individual authors, 
set the book apart from the more usual one-author, one-topic, one-audience 
textbooks. A separate review of each chapter will be given. 

Introduction, by Matthew RODERMUND 

In his introduction, the author recounts the history of the Casualty Actuarial 
Society from its beginnings in 1914. In his presentation, the history of CAS is 
inextricably interwoven with the development of Credibility Theory in North 
America. Thus the reader also finds a fascinating survey of the events leading 
to early applications of credibility theory, and its subsequent study and 
development. Special attention is given to the work of Albert H. Mowbray, 
Albert Whitney, Arthur Bailey, Laurence H. Longley-Cook, Allen L. Mayer- 
son, Charles C. Hewitt; the contributions of several others are also mentioned 
including, of course, the work of Hans Biihlmann. Surprisingly, the work of 
William S. JeweU and Charles A. Hachemeister is not mentioned. 

Matthew Rodermund takes a rather narrow view of casualty actuarial 
science, equating it, essentially, to the study of credibility theory. He is critical 
of risk theory which, in his words, still stands on the shoulders of credibility. 

ASTIN BULLETIN, Vol. 21, No. 2 
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He is also very critical of "classical statistical theory", as opposed to the 
Bayesian discipline of credibility. 

Ratemaking, by Charles L. MCCLENAHAN 

The author of this chapter shows how one can perform a review of manual 
premium rates within the constraints of a given rating structure. Basic 
terminology is introduced and explained. Different approaches to the deriva- 
tion of rates are presented, and special attention is given to the calculation o f  
on-level premium (the level of current premium which is equivalent to a certain 
amount of statistical exposure). The necessity of projecting ultimate losses of 
immature accident years, and "trending" those to reflect the expected ultimate 
losses of future periods, is emphasised, and a technique for doing so is 
illustrated with a simple example. The effect of limits on severity trends is 
illustrated. The inclusion of loadings for expenses, profits and contingencies is 
discussed. 

After overall rates have been determined, classification relativities must be 
found. A procedure for doing so is illustrated briefly with an example. Finally, 
any premium off-balance created by the classification relativities must be 
corrected for. 

A worked-through example of a rate review for a fictitious auto insurance 
company is given as an appendix. This chapter also has a few pages of 
questions for discussion. 

The author offers no model to explain the relationship between risk exposed 
and the generation of claims, or the difference in claim propensities between 
classes. Little guidance is given for the calculation of a class relativity, when the 
class exposure is small and data credibility is low. 

For ratemaking at the overall level, this chapter contains much useful advice 
for a novice. Especially the emphasis on projecting and trending the ultimate 
losses of immature years, is timely (unfortunately, there are still insurance 
companies who base their rate decisions mainly on the loss ratio in last year's 
income statement). 

Individual Risk Rating, by Margaret Wilkinson TILLER 

This chapter discusses individual premium rating for large entities, or entities 
of special character (e.g. a Roller Skating Rink Risk Retention Group). 
Methods of individual risk rating are classified into Schedule Rating (adjusting 
a manual rate with discounts or loadings for observed risk factors), Experience 
Rating (adjusting next year's premium on the basis of previous years' loss 
experience), composite rating (experience rating using a composite exposure 
base for large, complex risks), and retrospective rating. Of each rating method, 
an example from real life is provided. The considerations necessary in designing 
an individual risk rating scheme, are mentioned and discussed. 
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Loss Reserving, by Ronald F. WISER 

One of the major tasks of any practicing casualty actuary is the determination 
of  loss reserves. 

The author starts with giving an overview of accounting concepts and the 
place of  loss reserves in corporate accounting. The tasks of a claims depart- 
ment are described lucidly. An actuarial model for loss development is set 
forward (I found that model hard to comprehend, but it is not used in what 
follows). The author  then defines the necessary loss reserving terminology. 
Some questions of data availability and organisation are discussed; the 
estimation strategy must take the peculiarities of the data into account. 

The author then offers a variety of  angles from which to view loss 
development data in a preliminary, exploratory data analysis. Such an analysis 
is useful for detecting irregularities in respect of  certain accident years. As far 
as I could see, the possibility of irregularities for calendar years is not 
mentioned. I also missed a formalised analysis of  paid (or incurred) losses 
relative to the risk exposed; the amount  of  risk exposed is only verbally 
invoked as an explanatory variable. 

The basis of the loss reserving method discussed in the next section is the 
chain-ladder method. The author explains how the raw, chain-ladder estimates 
can be adjusted judgementally, to dampen the effect of  abnormal years. This 
method is applied both to paid loss development, and reserve development. 

The Bornhuetter-Ferguson method is offered as a way of  smoothing the 
estimated ultimate loss amounts, when data is sparse or very irregular. 

The author then discusses the estimation of  loss adjustment expenses, the 
incidence of  which can follow a different pattern from paid or incurred losses. 
The necessity of comparing actual and predicted claims development is 
mentioned and discussed. Reserve discounting is mentioned only very briefly. 

The author does not discuss the estimation of claims covered, but not 
incurred, or the idea of  a premium deficiency provision. No way of  assessing 
the uncertainty of the estimates is given. 

Risk Classification, by Robert J. FINGER 

Robert J. Finger discusses criteria for selecting rating variables, taking into 
account actuarial, operational, social and legal considerations and constraints. 
The need to classify risks, in order to prevent adverse selection, is thoroughly 
explained I . 

A detailed description of  Motor  Vehicle rating structures is given, while 
rating structures for other lines of business are only sketched. The author then 
presents a measure of  efficiency of  a rating structure, in a section which I found 
hard to comprehend. The estimation of  class relativities is briefly discussed. 
The choice between an additive and a multiplicative rating structure is men- 
tioned. 

J While lecturing on the same topic, the reviewer was recently asked by a student why insurance 
companies would want to charge anyone a lower premium.., weren't they interested in earning as 
much money as possible? 
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The discussion of credibility estimation for classes with small exposure is 
very general, emphasising the need to find a reliable and appropriate "credi- 
bility complement" (i.e., the term following the ( ! - z ) ) .  No model is given to 
help the actuary in finding a credibility complement. 

Reinsurance, by Gary S. PATRIK 

In his introduction, the author explains the nature of reinsurance, its objectives, 
different reinsurance forms, cost considerations to the cedant. A thorough 
treatment of reinsurance pricing is given. Pricing formulae are derived under 
the assumption of pareto or Iognormal claim size distributions (or their 
censored counterparts, for loss degrees). The peculiarities of all the common 
forms of reinsurance are discussed in detail. 

Gary Patrik has also included a section on reinsurance loss reserving. The 
problems encountered in estimating the outstanding losses of a reinsurer, are 
recounted and explained. A general procedure of attacking the estimation 
problem is sketched, which begins with partitioning the data into meaningful 
blocks of reasonably homogeneous contracts. The chain ladder and Bornhuet- 
ter-Ferguson methods are given as possible estimation tools. 

This chapter is the first one in this book which formally takes stochastic 
variation into account. The properties of the pareto and lognormal distribu- 
tions, and the aggregate loss model, are given in an appendix. 

In my opinion, Gary Patrik has written an excellent treatise on reinsurance, 
an area which is notoriously difficult to describe comprehensively, and 
comprehendibly. 

Credibility, by Gary G. VENTER 

Charles C. Hewitt has written the prologue and postlogue for Gary Venter's 
chapter on Credibility. Both are a defense of Bayesian estimation and its linear 
counterpart, credibility. 

Gary Venter, in his introduction, discusses alternative ways of viewing the 
prior distribution in credibility theory, mentioning both the frequentist and the 
formal view. He gives a short outline of the history of credibility theory. A 
review of the necessary probability theory is given, including: several lucid 
examples of the use of Bayesian inference outside insurance, a discussion of 
diffuse priors, the NP approximation to the aggregate claims distribution. The 
limited fluctuation approach to credibility is briefly outlined. 

The least squares approach to credibility is then introduced, using the 
Bfihlmann model. Estimation of the structural parameters is discussed within 
that framework, including the correction needed to make the estimated 
credibility factor unbiased, and Bayesian estimation of the credibility factor. 

The next section is on incorporating risk size, giving the Bfihlmann-Straub 
model. Empirical and Bayesian estimation of the credibility factor is dis- 
cussed. 
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The last section is on assessing the [inearisation error incurred when the 
unrestricted Bayes estimator is replaced by a credibility estimator. The author 
uses the example of a lognormal distribution with a Iognormal prior. 

A survey of further topics is given. In an appendix, the properties of a great 
number of distributions are tabulated, including an overview of less well- 
known pairs of conditional distribution/conjugate prior. 

Though this chapter does not pursue credibility theory to its utmost 
generality, it mentions a number of interesting aspects (e.g., linearisation error), 
which other textbooks do not address explicitly. 

Investment Issues in Property-Liability Insurance, by Stephen P. D'ARcY 

The author discusses the role of investment income. He begins with an 
overview of the common assets (bonds, equities, real estate, others) and their 
peculiarities. Investment and tax strategies are then discussed. The former are 
of general interest, while the latter will be of most interest to actuaries 
practicing in the U.S.A. Different measures of the rate of return of an 
insurance business are presented, including combined ratio, underwriting profit 
margin, operating ratio, return on equity, and the effect of discounting losses. 
The impact (practical and statutory) of investment income on pricing is 
discussed, including use of the CAPM. 

Special Issues, by Stephen P. D'ARCY 

The following topics are briefly discussed in this chapter: measurement, 
allocation and uses of surplus; insurer solvency issues, including NAIC Early 
Warning tests and other rating systems, and guarantee funds; the risk theory 
approach to insurer solvency; planning and forecasting; sources of industry 
data and forecasts. 

While not giving any detailed guidance for work in any of these areas, the 
chapter outlines the considerations which will have to be made. 

General Review 

For a long time, stochastic modelling was most prominent within casualty 
insurance. Only recently has the stochastic approach to life insurance been 
"officially" sanctioned by the publication of the Society of Actuaries' textbook 
Actuarial Mathematics. Even while it was being taught in a deterministic 
framework, the theory of life insurance offered techniques and equations of 
wide applicability, explanatory value and considerable elegance. 

Casualty actuarial "science", as described in Foundations of Casualty 
Actuarial Science, lags several evolutionary steps behind life actuarial science, 
as expounded in Actuarial Mathematics. Not only is a deterministic view taken 
throughout most of the book (all but two chapters); it also lacks the unifying 
theory, model framework and other paradigms, which are the hallmarks of a 
true science. 



284 BOOK REVIEW 

On the other hand, the book gives a comprehensive overview of the tasks 
which may be asked of a practicing casualty actuary, and how one may attack 
them. It has a great deal of useful advice for the novice. In particular, it 
explains most of the concepts and the terminology of casualty insurance, and 
discusses their application. As a source of practical inspiration, the book can be 
recommended. 

WALTHER NEUHAUS 
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