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EDITORIAL AND ANNOUNCEMENTS
EDITORIAL

Whither AFIR?

In an editonal in ASTIN Bulletin 17.2 in November 1987, Hans Biihimann
introduced Actuaries of the Third Kind. In ASTIN Bulletin 19.1 in April 1989,
Frangois Delavenne, Chairman of the newly formed AFIR section, described
the formation and objectives of that section These editorials, together with
articles by Miiller, Schweizer & Follmer and Dhaene appeared in a special 1ssue
of ASTIN Bulletin (19S) in November 1989.

Since then the Ist AFIR International Colloquium has taken place 1n Paris
in April 1990, and by the time this editorial 1s being read, the 2nd AFIR
International Colloquium will have taken place in Brighton 1in Apnl 1991.
Sixty-four different papers were presented to the Paris Colloquium, and 82 will
have been presented in Brighton. Some of these, and other articles, may make
their way into the pages of ASTIN Bulletin,

What can we say so far about the way AFIR has developed? Most of the
papers are derived from the general field of modern financial economics. They
are based on statistical and mathematical approaches to the investment of
institutional assets, and can clearly be differentiated from the many articles
that are of interest to investment analysts around the world, dealing with the
fortunes of particular companies, industries or national economies, and with
the inmediate prospects for share prices, interest rates or exchange rates

Although many of the AFIR papers are of interest to financial economists
generally, many also are of particular relevance to those actuaries concerned
with insurance companies, pension funds and similar institutions that have
non-tradable liabihities. It is in this area that AFIR can make 1ts own special
contribution.

Many of the papers have been primarily descriptive — what sort of model
best describes a particular market, or does a particular market behave in line
with some theoretically derived hypothesis? Others are prescriptive — how can
theoretical ideas contribute to designing an optimal asset allocation strategy, or
to appropriate methods for the calculation of premiums or the valuation of
liabilities?

One can also classify the papers in a different way: do they relate to a
general investment topic; to the asset side of a financial institution (asset-
liability matching); or to the liability side of a financial institution? For
actuaries in general, this last theme is perhaps the most interesting. The paper
by Cummins in ASTIN Bulletin 20.2 describes some uses of the theoretical
models of financial economics to justify particular methods of setting prem-
ums, in a context 1in which premium rates need to be justified to a State
Insurance Commissioner.

ASTIN BULLETIN, Vol 21, No 1



2 EDITORIAL

A similar application 1s the use of option pricing theory to calculate the
values of pensions or annuities which increase in line with a consumer price
index, subject to some upper limit, another 1s in the pnicing of the guarantees
inherent in a with profits life assurance as compared with a unit linked
policy.

The two main themes for papers for the 2nd AFIR International Colloquium
are: asset-liability matching; and interest rate models. A third theme that runs
through a number of papers is the application of a stochastic model for
investments other than the pure random walk model, in particular what has
become known in Britain as the ‘ Wilkie investment model’.

I should like to suggest a number of areas towards which those interested 1n
AFIR could apply their ingenuity. The first 1s asset-liability matching models,
approached either through fixed interest matching, which requires an analysis
of interest rate models and ‘ duration’ measures, or through application of the
portfolio sclection approach. Although much has been done 1n this area, there
remain many unsolved problems. What are appropnate asset allocation models
which take account of habilities emerging over the very many years that
insurance companies and pension funds work 1n? What are the optimisation
objectives of such an institution? Tt is not simply a matter of maximsing
terminal wealth or surplus at the end of a long period, since varying bonus
rates on life policies or varying contribution rates for pension funds during the
course of the period come into consideration. How does one allow for dynamic
decision-making with such a long time horizon?

Further problems are: how does one allow for the existing assets held, and
the potential costs of changing them? And how does one allow for the
uncertainty that must exist in one’s estimates of the probability distributions of
returns on particular assets? One possible optimum portfolio 1s usually 100%
in the asset that seems to promise the highest expected return, regardless of
variability; but if there is uncertainty about one’s estimate of that expected
return, it is not advantageous to incur expense in pursutt of an uncertain
marginal benefit, even for the risk-neutral investor.

In order to implement any asset allocation method, one must have some sort
of model of the distribution of returns on the classes of investment under
consideration. The statistical investigation of historic investment series seems to
me to be the next major undertaking for members of AFIR. Very many
investigations by financial economists have concentrated on the short term,
gathering data at daily or weekly intervals for a small number of years. They
have generally found that a random walk model of some kind fits the data
reasonably well Few investigations have considered the behaviour of such a
series over long numbers of years, but those that have done so have generally
discovered that the random walk model is an unsatisfactory description over
the long run, and that a model that includes some sort of reversion of interest
rates to a mean level or of share dividend yields or Price/Earnings ratios to a
mean level 1s more satisfactory.

More gathering of long runs of data from a variety of different countries,
and more statistical investigation of such data needs to be done. In an



EDITORIAL 3

international field, one would also like to see how exchange rates have
behaved: randomly in the short run, and according to purchasing power parity
in some way in the long run seems a plausible first hypothesis.

Consequential on these first two themes 1s what sort of equilibrium model
results from an international economy, with multiple currencies, in whtch
investors from different countries have different types of lhabilities and different
possible objectives. The classical Capital Asset Pricing Model (CAPM) assumes
that all investors work in one currency (such as US dollars) and measure their
utility as functions of wealth 1n that currency. But many international investors
measure their wealth in Swiss francs, German marks or British pounds, and
others measure n real terms (after allowing for price inflation) rather than in
currency at all 'What consequences does such a more elaborate structure have
for the CAPM?

The final field of research I should like to propose to AFIR members relates
to the hability side, building on the work of Cummins and others 1n relation to
premium-rating, on the use of option pricing methods for valuing habilities
with mherent options included—anything of the form which pays the greater of
A and B, or the lesser of A and B, includes an impled option—and the
application of the methods of financial economists, whether through the
CAPM or otherwise, to the question of the appropnate rate of return for
discounting nsky liabilities This 1s of importance in the valuation of an
insurance company where a realistic rather than a prudent valuation 1s
required, for example for profit testing, estimating the value of a company for
purchase or sale, or the consolidation of the accounts of insurance subsidiaries
1n a parent company which 1s not an insurance company.

All this sounds like plenty of work for the future. It is almost too late to
produce a new paper for the 1992 International Congress of Actuaries, but 1t 1s
hoped that there will be an AFIR International Colloquium in 1993 (location
still to be decided), and the pages of the ASTIN Bulletin are available for those
who would ke a widespread and thoughtful international readership Your
offerings addressed to me or to one of the other editors please.

DAviD WILKIE






XXII ASTIN COLLOQUIUM
MONTREUX, SWITZERLAND, 9th to 13th SEPTEMBER 1990

The Swiss organisers of the 22nd ASTIN Colloquium, mindful of the need to
bring theory and practice closer together, arranged for the meetings to be held
in the Casino in Montreux. Judging by the number of actuaries who at the end
of the Colloquium departed for Geneva in second-class carriages, there is scope
for further progress to be made.

With such an attractive setting as Montreux it was scarcely surprising that
the attendance reached a new record level, with 256 actuaries from 23 countries
and all five continents represented. The traditional ASTIN conviviality was
well under way by the end of the reception with which we were welcomed on
the Sunday evening, and anyone who did not make new friends during the days
that followed can scarcely have been trying.

The business meetings began, naturally enough, with the opening ceremony,
the highlight of which was an invited lecture by Peter Gmeiner, the First
Secretary of the Swiss Insurance Association, on “The future European
insurance market and the Swiss insurance industry”. Part way through the
Colloquium there was a second invited lecture by James W MacGinnitie on
““ Actuarial ethics and integrity . In view of the wide general interest of these
lectures, which were not available in printed form, summaries of the lectures
are appended to these notes.

Topic 1: Models of Finance

Uncertainties abound 1n the world of investment, and most actuarics need to
be concerned with financial risk whatever their field of work. Not surprising
indeed, that ASTIN now has a sister group, AFIR, formed to consider
financial risk. There 1s clearly an overlap between the two groups, as regards
areas of interest. It was remarked by Philippe Maeder who, with Jean-Pierre
Melchner, had prepared the summary of the papers under Topic 1, that there
was scope for co-ordination between the two groups regarding topics for
papers.

The four papers presented on Topic 1 confirmed the scope for applying
models of finance to diverse areas of actuarial work. Philippe ARTZNER and
Freddy DELBAEN consider credit insurance, and discuss the optimal time at
which a borrower with default risk should prepay a risky fixed rate loan.
Werner HURLIMANN considers the concept of a premium to cover the
investment risk 1n life insurance. David SANDERS discusses a possible use for
option pricing in the premium rating of stop loss and excess of loss reinsurance.
Patrick BROCKETT and Yehuda KAHANE consider how a rational investor may
choose between two investment opportunities.

ASTIN BULLETIN. Vol 21, No 1



6 XXII ASTIN COLLOQUIUM
Topic 2: Experience rating

Twelve papers were presented on this topic, including one paper transferred
from Topic 3, and Alois Gisler presented a summary of them which he and
René Schnieper had prepared.

The first group of papers 1s related to the determination of the pure risk
premium and to the assessment of claims reserves Alois GISLER and Peter
REINHARD suggest that the problem of outhers in rating 1s best dealt with by a
combination of credibility and robust statistics GABRY et al. are also faced
with outliers in a large volume of Dutch industnal fire insurance data which
they are using to derive a set of risk premium rates. They use a pragmatic
approach, applying a combination of top-slicing and credibility techniques.
Erhard KREMER shows how to determine the necessary coefficients to make
practical use of the exponential smoothing credibility estimator which he puts
forward as an alternative to the credibility estimator with geometric weights.
Ragnar NORBERG considers linear predictors and credibility estimators based
on a continuous time model rather than a finite set of observations.

The final paper i the first group, by Thomas MACK, 1s alone 1n being
unconnected with credibility theory. MACK reveals that the estimation of
IBNR claims reserves is a special case of the analysis of cross classified data.
He shows that, for example, the method of marginal totals for cross classified
data leads to the chain ladder method for assessing reserves. The author
advocates the use of an alternative model for the total claim amount, for both
rating and reserving, based on the Gamma distribution

The second group of papers relates to bonus-malus systems Jean-Luc
BessoN and Christian PARTRAT advocate the use of the Poisson-Gamma model
for claim frequencies in motor insurance. They use a goodness-of-fit test to
illustrate the superiority of this model, although Chresten Dengsoe suggested in
the discussion that the test statistics put undue emphasis on the small number of
policies with four or five claims. Hans GERBER explains the recent change in
the bonus-malus system used in Switzerland. The new system imposes an
increased penalty following a claim and is thereby an improved discriminator
between low and high risks. Tormod Sande pointed out in the discussion that,
even under the new system, high risk policies continue to pay on average
substantially less than their share of premiums in the long term This feature 1s
common to all bonus-malus systems.

The third group of papers 1s devoted to the pricing of non-proportional
reinsurance covers. Gunnar BENKTANDER advocates the use of a simple model
to determine the extent to which the reinsurance risk premium for excess of loss
cover in fire insurance 1s affected by varying the retention.

There are clearly immense practical difficuities in rating stop loss reinsurance
cover. There 1s always the potential for over-generous claim settlement by the
cedant at the expense of the remsurer, especially if hability claims are covered.
Reinsurers need all the help they can get if they are to make this form of cover
available at affordable rates. In this regard, the two papers on stop loss cover
are to be welcomed Jozef TEUGELS and Bjorn SUNDT describe a scheme of
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stop loss rating for motor fleets which takes account of the claims experience of
the individual fleet Lionel MOREAU also considers the rating of stop loss cover
for motor fleets He uses data from a large company over a five year pertod
and, despite some shortcomings of the data, obtains a set of numerical
results.

Reinstatement premiums are a common feature of non-proportional reinsur-
ance cover, but there 1s little 1n the actuanal literature on the mathematical
treatment of such premiums. Bjorn SUNDT discusses the pure premium and the
loading needed for excess of loss cover with remstatements. Remnstatement
premium 1s a form of claims-dependent premium, and Stefan BERNEGGER
considers the variance loading for cxcess of loss cover taking into account the
influence of claims-dependent premiums Since this paper addresses very much
the same problems as that by SUNDT, 1t was presented under Topic 2 even
though 1t was ongmally allocated to Topic 3.

Topic 3: Numerical methods

Fifteen papers were presented on this topic and Erwin Straub presented a
summary of them which he and André Dubey had prepared.

The first group of papers considers ruin probability and applications.
Marc-Henr1i AMSLER uses the probability of ruin, the severity of ruin and the
time of ruin in assessing the riskiness of an mnsurance portfolio. Examples are
given relating to hfe assurance, and the results show the influence of different
reinsurance programmes on the financial stability of the portfolio Frangois
DurFRESNE, Hans GERBER and Elias SHIU show how classical risk theory, and
in particular ruin theory, can be adapted when the gamma model 1s used to
represent the aggregate claims process Lourdes CENTENO provides an algo-
rithm to calculate an optimum excess of loss retention, given certain assump-
tions regarding the calculation of the reinsurance premium. David DICKSON
and Howard WATERS give an algonthm for approximating the finite time
non-ruin probabilities for the classical nsk model. The authors show that the
algonthm can also be used to calculate infinite ttime non-ruin probabilities, and
they address certain problems of numerical instability. Hans SCHMITTER
derives an explicit expression for the ultimate ruin probability when the claim
amount distribution 1s discrcte with a finite number of steps.

The second group of papers considers the aggregate claims distribution
Marc GoovaiRTS and Robert Kaas give a recursive algorithm, using Panjer’s
formula, to compute the distribution function of a compound sum of claim
numbers, when the number of summands follows a generalised Poisson
distribution. Werner HURLIMANN proposes an approximation of the aggregate
claims distribution by approximating the claim size distribution using the
algebraic moment method. Thomas MULLER treats compound Poisson proc-
esses, their Panjer recursion and the effect of merging two or more portfolios.
Some properties of compound Poisson processes are shown to be basic
properties of the exponential power series. Bob ALTING VON GEUSAU proposes
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a method to test the possibility of a trend over time in given data. In the
Poisson case the distribution function of the proposed staustic can be
calculated by means of the shovelboard approach, 1.e. by making usc of the
fact that Poisson distributed variables, given their sum, are multinominally
distributed. To aid our understanding, the author’s presentation at the meeting
included the display of a picture of a shovelboard, which 1s the basis of a
well-known family pastime in the Netherlands. Erhard KREMER uses Fourier
analysis to deal with the computation of the distribution function of total
claims amounts where the ordered claims have been multipled by given
coefficients

The third group of papers relates to claims reserves. Teivo PENTIKAINEN and
Jukka RANTALA analyse the three basic types of inaccuracies inherent in the
estimation of claims reserves, model errors, parameter errors and stochastic
errors The authors simulate a claims process and analyse various estimation
methods with regard to their sensitivity in respect of the three basic types of
errors. Erwin KuMMERLI applies two formulae proposed by De Vylder and
Kahane to run-off triangles for each of several classes of non-life business 1n a
medium-sized company, and comments on the results. Hans EKHULT presents a
program to calculate claims reserves in disability insurance as expected present
values of future annuity payments,

The two remaining papers could not be allocated to any of the above three
groups. Bruno KOLLER discusses spreadsheet programming languages and then
shows how to use a spreadsheet to carry out Bayesian graduation, using an
example from health insurance Erhard KREMER applies the Cauchy-Schwarz
inequality and derives an upper bound for the variance of the claims amount
covered by stop-loss reinsurance.

During one of the working sessions on Topic 3 there was an impromptu
debate on whether models or, alternatively, the observed data would normally
provide the better indicator of future experience. Conflicting—and entertain-
ing—views were expressed The issue was finally clarified by Hans Buihlmann’s
comments that neither models nor data of the past will normally be 1n accord
with the future experience, but that a model 15 constructed to try to reflect
one’s perception of what the future will hold.

Speakers’ Corner

Speakers’ Corner 1s a well-established feature of ASTIN Colloquia, and
provides an opportunity for members to make a contribution on the topic of
their choice without the constraint of submitting a paper several months before
the time of the colloquium.

Three of the papers in Speakers’ Corner considered the probability of ruin
and made the assumption of an underlying compound Poisson process. Richard
VERRALL derives a sample re-use esumate of the probabuility of ruin, making
use of the full bootstrap distribution and a saddlepoint approximation. Angela
van HEERWAARDEN and Robert KAAs consider the concept of stop-loss order
and develop a proof from which can be shown that the risk with higher
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stop-loss premiums generates a higher ruin probability. Anna STEENACKERS
and Marc GOOVAERTS obtain upper and lower bounds for stop-loss premiums
and for ruin probabilities where certain features of the claim severity function
are known.

Menachem BERG develops procedures for detecting possible trends 1n time
non-homogeneous claim occurrence processes Use 1s made of Bayesian
revision procedures, and results for claim occurrence and claim size processes
are combined to predict the total claim process. Udi MAKOvV presents a
sampling-resampling technique to assess the posterior distribution of a Baye-
sian credibibty model for arbitrary likelihood function and prior distribution.
It is explained that thereby the computational difficulties of evaluating
integrals are overcome. Benedetto ConTl and Felix LAucHLI consider two
classes of distribution functions which are regarded as important in non-
proportional reinsurance work. Properties of these classes are set out and
results are given following an analysis of the maximum likelihood estimator

Bill JEWELL presents the third act of what has been described as a three-act
play. The author advocates the formulation of the IBNR problem 1n continuous
time and using a Bayesian approach. The paper points to the possibility of the
working actuary of the future being able to predict distributions of numbers
and amounts of IBNR claims

Arthur RENSHAW shows how the existing range of actuarnial graduation
techniques can be considerably extended using generalised linear models There
15 detailed discussion of how such models can be used to graduate the
probabilities of death and the force of mortality.

Georg HarBITZ summarises the discussions which have taken place recently
in Norway leading to the making of government regulations requiring
appointed actuaries in general insurance companies as well as in hife insurance
companies. The detailed regulations are given by way of Appendix These
developments 1in Norway will be of interest in other countries where some
statutory role for non-life actuaries is being considered.

Other Colloquium Events

The ASTIN General Assembly took place after the coffee break on Wednesday
morning. Alf Guldberg, President of the Swedish Actuarial Society, announced
that the next Colloquium will be held in Stockholm in the summer of 1991, and
welcomed members to complete a provisional registration form.

For the last few years there has been debate, sometimes heated, at ASTIN
business meetings on the topic of the composition and system of election of the
Committee. The Committee put forward some proposals at Montreux for
changing the ASTIN rules and some alternative proposals were put forward by
an ASTIN member. An interesting debate took place in which several members
took part. Although contrary views were expressed, the discussion took place
in a friendly atmosphere, as we would expect within a group such as ASTIN,
The Commuttee’s proposed changes to the rules were accepted by a majority
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decision and will be implemented It 1s pleasing to note that the matter has
finally been resolved.

Following the rule changes, the Committee will remain responsible for
making nominations for Committee membership, and also 1t will still be
possible for members to make further nominations at a General Assembly.
However, the Commuttee, in making their nominations, are now charged with
the responsibility of seeking a good balance of Committee membership as
regards geographical spread, type of employment and research versus applied
ortentation. The Committee will give particular consideration to proposals
through national actuarial organisations, but will reserve the right to make
other nominations.

On Tuesday afternoon we boarded coaches for an enjoyable excursion into
the Swiss countryside and mountains, including a visit to Gruyéres.

We were privileged to meet on Wednesday evening for aperitifs inside the
Chateau de Chillon, not normally available for private functions. This lakeside
castle dates back to the [3th century, and narratives by well-known writers
have contributed to 1ts fame, Byron wrote “ The Prisoner of Chillon”, but we
were not persuaded by the assertion of one eminent actuary that Byron had
himself been imprisoned 1n the castle!

On this occasion the after-dinner speeches were delivered before the dinner
began. Heralded by a fanfare of trumpets, the speakers included the retiring
Chairman, Jean Lemaire, and his successor, Bjorn Ajne, who elegantly,
entertainingly and appropnately referred to Jean’s ability to make clegant,
entertaining and appropriate speeches.

After the speeches we boarded the boat “La Suisse™ for a cruise on Lake
Geneva, with banquet and dancing. Needless to remark, the whole evening was
superbly organised by our Swiss hosts and thoroughly enjoyed by the
participants and accompanying persons

After the final working session on Thursday morning, the brief closing
ceremony took place. Bjorn Ajne announced the topics for papers for the 1991
Colloquium in Stockholm The emphasis seemed to be very much on meeting
modern challenges, the topics being The Use of Financial Theory in Insurance,
High Tech Reinsurance and Modern Statistical Techniques

It was no surprise that the Swiss organising commuttee, under the chairman-
ship of Robert Baumann and with Hans Gerber as head of the Scientific
Commuttee, had done a most efficient job in orgamising all the aspects of the
Colloquium Our lack of surprise in no way dimmnished our gratitude to them.
After making our farewells and leaving the Casino there was a final opportun-
ity to take photographs of the flower-decked pathway by the lakeside, which
had provided such pleasant morning and evening strolls in the sunshine each
day. We look forward to meeting agamn in Sweden.

MARTYN BENNETT
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APPENDIX: INVITED LECTURES

Lecture: “The future European insurance market and the Swiss insurance
industry >’ by Pecter Gmeiner

The speaker began by drawing attention to the insurance-mindedness of the
Swiss, whose 1nsurance premiums (hfe and non-life combined) in 1988
amounted to US$ 2,324 per head of the population, about 60 per cent of this
was life In addition to the group life assurance provided by many employers
for their staff, hife assurance 1s widely used by individuals as a means of
saving.

The Swiss approach to cartels is to allow them in prninciple but to seek to
outlaw abuse; a fire insurance cartel had recently been prohibited. Agreements
between insurers were seen as a means of avoiding the nisk of insolvency. The
market 1s closely regulated and msurance tariffs are in principle subject to
approval. There are very few brokers operating in Switzerland, almost all the
business being obtained through tied agents of the compantes. Such brokers as
there are have been active for only a few years, and 1n the major centres of
population — mostly for industrial risks.

A feature of the Swiss insurance companies 1s their high capitahsation. The
increase in the level of the stock market has enabled insurance companies to
expand their capital in favourable conditions. Swiss companies transact a large
amount of business outside their country, some Swiss companies started
transacting foreign business when they were formed 1n the 19th century, and
out of the total premium income of SF 70bn of the Swiss companies in 1988,
SF 46bn related to foreign business.

The speaker then turned to the developments currently taking place in the
EC and the influence they were likely to have on the conduct of insurance 1n
Switzerland He referred 1n particular to the intention within the EC to drop
the examination and approval of insurance tariffs, perhaps with an exception
with regard to compulsory insurance, and to the ending of msurance monopol-
1es where they still exist — for example 1n some German states.

Mr Gmeiner then summansed the Swiss political aims and the options open
to them. They would like to see European unity, of a kind which operated on
the so-called principle of subsidiarity, with decision-making from bottom to
top They want to sce a democratic Europe, with decisions taking account of
local traditions. Switzerland would Iike to develop its policy of neutrality, in
conjunction with the other neutral states: Austria, Sweden and Finland
Switzerland had already concluded a bilateral agreement with the EC on
non-life insurance.

He ended by reviewing the reasons why, in his opinion, the Swiss 1nsurers
could face the future with confidence they had a traditionally heavy commit-
ment to foreign business and hence a long experience 1n handling 1t; the Swiss
insurance companies are willing and able to adapt to new circumstances; they
have great financial strength; and they are firmly rooted 1n the economically
sound Swiss structure.
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Lecture: “ Actuarial ethics and integrity”” by James W. MacGinnitie

The speaker began by referring to recent and current developments in North
America, where the Society of Actuaries has mtroduced an admission course
for new fellows, mainly on ethics, the Casualty Actuanal Society 1s developing
a professionalism course for new associates and the Canadian Institute of

Actuaries 1s also running courses on similar topics. He mentioned also the

current discussions 1n Europe regarding the acceptability of actuanal reports

and opinions across borders within the EC.

He next went on to summanse the features commonly associated with
membership of a learned profession:

1. The members possessed expert knowledge not easily obtainable by the rest
of the community or by clients

2. The members owned a technical language not easily understood by
others.

3. It was difficult for outsiders to evaluate the quality of the advice they
received, this being a matter essentially to be controlled by the profession

4. The member was in a position to be independent in a way that the client
generally was not.

5. The members belonged to an élite group, had been subjected to a rigorous
programme of study and were rewarded by such features as prestige,
financial gain and camaraderie.

This all tended to lead to an unequal relationship between the professional
and his or her client. It was fundamentally important that the member’s special
skills should be used in the best interests of the client, and that the client’s
interests should be placed ahead of the professional’s interests.

The speaker listed a number of ethical 1ssues facing actuaries, namely

The potential for abuse by the actuary of his or her position, and the need

for the primacy of the interests of the client.

The actuary’s responstbility to the public, especially in view of the increasing

role of actuaries in the public arena

The development of codes of conduct.

The need for continuing education, to maintain the actuary’s special

knowledge and skills in current conditions.

He suggested that the testing of actuaries could be considered in three parts:

1. Knowledge of actuarial principles.

2. The abihty to apply that knowledge 1n specific situations, such as to specific
types of insurance.

3. Knowledge of specific legal and regulatory matters

There was increasingly a need to evaluate qualifications across national
boundaries

Guidelines were required regarding the relationship between actuary and
client (including business relationships). Most of the guidelines used 1n practice
specified prohibitions, 1.e. they set out what ought not to be done rather than
what ought to be done, since the latter carried a much greater danger of
leading to litigation.
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He mentioned three key factors for a satisfactory relationship with the client:
truth, confidence and consent.

The speaker then gave examples of the types of situations to be used as
llustrations of potential ethical problems in the admission courses in the
USA.

The danger of encouraging a client to agree to a liberal interpretation of

regulations and hence lead him into an unsound course of action.

The dangers associated with inadequate data, inadequate time, or an

mnadequate budget

The difficulty of dealing with an unsavoury chlient, who wishes to do

something that would be against the public interest, or even illegal.

The difficulty of deciding when to blow the whistle — at what point does the

actuary have a liability to report illegal or unprofessional activity.

The need to see that errors that have been identified are corrected — one’s

own, or errors on the part of another actuary.

The decision as to who 1s the client — e.g the actuary’s employer, or the

person paying the fee, may not be the real client; for some purposes it may

be considered appropriate to regard the members of a pension plan as the
clients.
The speaker concluded with some comments about integrity He remarked that
the actuanal profession had acquired a reputation for integrity, despite the fact
that it had not specifically set out to select its members by reference to
integrity, nor had 1t specifically trained for it. As examples of circumstances
where there might be an especial need for integrity, he referred to pressures
which might be placed on the actuary to:
I. reduce perceived margins in technical reserves;
2. increase the credibility adjustment following a good claims experience;
and
3 replace advance funding by pay-as-you-go.
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ABSTRACT

This survey paper presents the basic concepts of cooperative game theory, at an
elementary level. Five examples, including three insurance applications, are
progressively developed throughout the paper The characteristic function, the
core, the stable sets, the Shapley value, the Nash and Kalai-Smorodinsky
solutions are defined and computed for the different examples.

1. INTRODUCTION

Game theory is a collection of mathematical models to study situations of
conflict and/or cooperation. It attempts to abstract out those elements that are
common to many conflicing and/or cooperative encounters and to analyse
these mathematically. Its goal 1s to explain, or to provide a normative guide
for, rational behaviour of mdividuals confronted with strategic decisions or
involved in social interaction. The theory is concerned with optimal strategic
behaviour, equilibrium situations, stable outcomes, bargaining, coalition for-
mation, equitable allocations, and similar concepts related to resolving group
differences The prevalence of competition 1n many human activities has made
game theory a fundamental modeling approach in such diversified areas as
economics, political science, operations research, and military planning

In this survey paper, we will review the basic concepts of multiperson
cooperative game theory, with insurance applications in mind. The reader 1s
first invited to ponder the five following basic examples. Those examples will
progressively be developed throughout the paper, to introduce and illustrate
basic notions.

Example 1. United Nations Security Council

Fifteen nations belong to the United Nations Security Council five permanent
members (China, France, the United Kingdom, the Soviet Union, and the
United States), and 10 nonpermanent members, on a rotating basis (in
November 1990 Canada, Colombia, Cuba, Ethiopia, Finland, the Ivory
Coast, Malaysia, Romania, Yemen, and Zaire). On substantive matters,
including the investigation of a dispute and the application of sanctions,

ASTIN BULLETIN, Vol 21, No 1
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decisions require an affirmative vote from at least nine members, including al/
five permanent members. If one permanent member votes against, a resolution
does not pass. This 1s the famous ‘“‘veto night” of the ““big five,” used
hundreds of times since 1945. This veto right obviously gives each permanent
member a much larger power than the nonpermanent members. But how much
larger? O

Example 2. Electoral representation in Nassau County [1in Lucas (1981)]

Nassau County, 1n the state of New York, has six municipalities, very unequal
in population. The County Government 1s headed by a Board of six Super-
visors, one from each municipality In an effort to equalize citizen representa-
tion, Supervisors are given different numbers of votes The following table
shows the situation in 1964.

District Population % No of Votes %
Hempstead | 31 270
Hempstead 2 } 778,625 571 31 270
Opyster Bay 285,545 224 28 243
North Hempstead 213,335 167 21 183
Long Beach 25,654 20 2 17
Glen Cove 22,752 18 2 17
1,275,801 tis

A simple majority of 58 out of 115 1s needed to pass a measure Do the citizens
of North Hempstead and Oyster Bay have the same political power 1n their
Government? O

Example 3. Management of ASTIN money [LEMAIRE (1983)]

The Treasurer of ASTIN (player 1) wishes to invest the amount of 1,800,000
Belgian Francs on a short term (3 months) basis. In Belgium, the annual
interest rate 1s a function of the sum invested.

Deposit Annual Interest Rate
0-1,000,000 775%
1,000,000-3,000,000 1025%
3,000,000-5,000,000 12%

The ASTIN Treasurer contacts the Treasurers of the International Actuanal
Association (I.LA.A — player 2) and of the Brussels Association of Actuaries
(A.A.Br. — player 3). .LA.A. agrees to deposit 900,000 francs in the common
fund, A.A.Br. 300,000 francs Hence the 3-million mark is reached and the
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interest rate will be 12% How should the interests be split among the three
assoctations? The common practice in such situations is to award each
participant in the fund the same percentage (12 %). Shouldn’t ASTIN however
be entitled to a higher rate, on the grounds that it can achieve a yicld of
10 25% on 1ts own, and the others only 7.75%7? 0

Example 4. Managing retention groups [BORCH (1962)]

[For simplicity, several figures are rounded 1n this example]. Consider a group
of n; = 100 individuals. Each of them 1s exposed to a possible loss of 1, with a
probability g, = 0.1. Assume these persons decide to form a risk retention
group, a small insurance company, to cover themselves against that risk. The
premium charged will be such that the ruin probability of the group 1s less than
0.001. Assuming that the risks are independent, and using the normal
approximation of the binomial distribution, the group must have total funds
equal to

Pl = rl](ll+ 3 nlql(l_ql) = IO+9 = 19

Hence each person will pay, in addition to the net premium of 0.10, a safety
loading of 0.09

Another group consists of n, = 100 persons exposed to a loss of 1 with a
probabihty ¢, = 0.2. If they form their own retention group under the same
conditions, the total premium will be

P2 = n2q2+ 3\(”2(]2(1'—(]2) =20+12 = 32,

Assume now that the two groups decide to join and form one single
company In order to ensure that the ruin probability shall be less than 0.001,
this new company must have funds amounting to

Py

gy T nyq+ 3\/"1‘]1(] —q1)+tnag:(1—q,)
10+20+15
= 45,

Since Py, = 45 < P+ P, = 51, the merger results in a decrease of 6 of the
total safety loading. How should those savings be divided between the two
groups? A traditional actuanal approach would probably consist in dividing
the safety loading in proportion to the net premiums. This leads to premiums
of 15 and 30, respectively. The fairness of this rule 1s certainly open to
question, since it awards group | most of the gain accruing from the formation
of a single company In any case the rule 1s completely arbitrary (|

Example 5. Risk exchange between two insurers

Insurance company C, owns a portfolio of risks, with a mean claim amount of
5 and a vanance of 4. Company C,’s portfolio has a mean of 10 and a variance
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of 8. The two companies decide to explore the possibility to conclude a risk
exchange agreement. Assume only linear risk exchanges are considered Denote
by x; and x, the claim amounts before the exchange, and by y, and y, the
claim amounts after the exchange. Then the most general form of a linear risk
exchange is

n=0-a)yx+ B x;+K

0<afp<l
Y2 = o x+(1—-p)x,~K

where K is a fixed (positive or negative) monetary amount. If K = 5a—10p,
then E(y)) = E(x;) = 5 and E(y,) = E(x,) = 10. So the exchange docs not
modify expected claims, and we only need to analyse variances. Assuming
independence,

Var (y,) = 4(1 —a)?+8 2
Var (y,) = 4a*+8(1 - f)*

If, for nstance, o« =02 and pf=03, Var(y)=328<4 and
Var (y,) = 4.08 < 8. Hence 1t 1s possible to improve the situation of both
partners (if we assume, 1n this simple example, that companies evaluate their
situation by means of the retained variance). Can we define * optimal” values
of a and §? O

Those examples have several elements 1n common :

— Participants have some benefits to share (poliical power, savings, or
money).

— This opportunity to divide benefits results from cooperation of all partici-
pants or a sub-group of participants.

— Individuals are free to engage in negotiations, barganing, coalition formation,

— Participants have conflicting objectives; each wants to secure the largest
part of the benefits for himself.

Cooperative game theory analyses those situations where participants’
objectives are partially cooperative and partially conflicting. It 1s 1n the
participants’ interest to cooperate, in order to achieve the greatest possible total
benefits., When it comes to sharing the benefits of cooperation, however,
individuals have conflicting goals. Such situations are usually modeled as
n-person cooperative games in characteristic function form, defined and
illustrated in Section 2 Section 3 presents and discusses natural conditions, the
individual and collective rationality conditions, that narrow the set of possible
outcomes. Two concepts of solution are defined: the von Neumann-Morgen-
stern stable sets and the core. Section 4 is devoted to axiomatic approaches that
aim at selecting a unique outcome. The main solution concept is here the
Shapley value. Section 5 deals with two-person cooperative games without
transferable utilities. The Nash and Kalai-Smorodinsky solution concepts are
presented and applied to Example 5. A survey of some other solutions and
concluding remarks are to be found 1n Sections 6 and 7.
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2. CHARACTERISTIC FUNCTIONS

First, let us specify which situations will be considered 1n this paper, and some
implicit assumptions.

— Participants are authorized to freely cooperate, negotiate, bargain, collude,
make binding contracts with one another, form groups or subgroups, make
threats, or even withdraw from the group

— All participants are fully informed about the rules of the game, the payoffs
under each posstble situation, all strategies available, ...

— Participants are negotiating about sharing a given commodity (such as
money or political power) which is fully transferable between players and
evaluated in the same way by everyone. This excludes for instance games
where participants evaluate their position by means of a concave utility
function; risk aversion is not considered. (In other words, it 1s assumed that
all individuals have linear utility functions). For this reason, the class of
games defined here 1s called *“Cooperative games with transferable utili-
ties.” This major assumption will be relaxed 1n Section 3.

Definution 1- An n-person game In characteristic function form I 1s a pair
[N, v], where N ={1,2,...,n} 1s a set of n players. v 1s a real valued
characteristic function on 2", the set of all subsets S of N. v assigns a real
number v(S) to each subset S of N, and v(®) = 0.

Subsets S of N are called coalitions. The full set of players N is the grand
coalhition. Intuitively, v(S) measures the worth or power that coalition S can
achieve when 1ts members act together. Since cooperation creates savings, 1t is
assumed that v is superadditive, 1.e., that

vSUT) 2 v(S)+v(T) forall T, S <« N suchthat SN7T =@

Definiion 2 Two n-person games I” and I, of respective characteristic
functions v and v’, are said to be strategically equivalent if there exists numbers
k>0,c¢,. .,c, such that

Vi(S)=kv(S)+ ), ¢, forall ScN.

1S

The switch from v to v’ only amounts to changing the monetary units and
awarding a subsidy c, to each player. Fundamentally, this operation doesn’t
change anything. Hence we only need to study one game in each class of
strategically equivalent games. Therefore games are often normalized by
assuming that the worth of each player 1s zero, and that the worth of the grand
coalition is 1 [In the sequel expressions such as v({1,3}) will be abbreviated as

v(13)].
v()=0 =1, . ,n v(N) =1
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Example 1. (UN Security Council). Since a motion either passes or doesn’t, we
can assign a worth of | to all winning coalitions, and 0 to all losing coalitions.
The game can thus be described by the characteristic function

v(S) =1 for all S contaiming all five permanent members and at least 4
nonpermanent members

v(S)=0 for all other S. ]

Games such that v(S) can only be 0 or 1 are called simple games One
interesting class of simple games is the class of weighted majority games.

Definition 3 A weighted majority game
F=1{M;w,...,w)],

where w,, ..., w, are nonnegative real numbers and

M>%,Z‘, W,

1s the n-person cooperative game with characteristic function

v(s) =1 if Z w=M

v(§)=0 if Z w, < M,

1ES

for all S € N. w, 1s the power of player 1 (such as the number of shares held in
a corporation) M is the required majorty.

Example 1. It 1s easily verified that the UN Security Council’s voting rule can
be modelled as a weighted majority game. Each permanent member 1s awarded
seven votes, cach nonpermanent member one vote. The majority required to
pass a motion 1s 39 votes A motion can only pass if all five permanent
members (35 votes) and at least four nonpermanent members (4 votes) are in
favor Without the adhesion of all permanent members, the majority of
39 votes cannot be reached.

I =1[39; 7,7,7,7,7,1,1,1,1,1,1,1,1,1,1]

Does this mean that the power of each permanent member 1s seven times the
power of nonpermanent members? a

Example 2. Nassau County’s voting procedures form the weighted majority
game [58, 31,31,28,21,2,2] Tt clearly shows that numerical voting weights do
not translate into political power. An 1nspection of all numerical possibilities
reveals that the three least-populated municipalities have no voting power at
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all, Their combined total of 25 votes 1s never enough to tip the scales. To pass a
motion simply requires the adhesion of two of the three largest districts So the
assigned voting weights might just as well be (31,31,28,0,0,0), or (1,1,1,0,0,0).
We need a better tool than the number of votes to evaluate participants’
strengths. O

Example 3. (ASTIN money). Straightforward calculations lead to the total
interest each coalition can secure

v(l) = 46,125

v(2) = 174375
v(3) = 58125
v(12) = 69,187.5

v(13) = 53,812.5
v(23) = 30,750
v(123) = 90,000 0

Example 4. (Retention groups) This example differs from the others in the
sense that figures here represent costs (to minimise) and not earnings (to
maximise). Instead of a superadditive characteristic function v(S), a cost

function ¢(S) 1s introduced. Scale economies make ¢(S) a subadditive func-
tton

c(SUT) £c(S)+ce(T) forall S, T < N suchthat SN7T = @
A ““cost” game is equivalent to a *‘savings” game, of characteristic function
vS) = ). e~c(S).
€8

In the case of the example, ¢(S) is the premium paid by each coalition

c(l) =19
c(2) =32
c(12)=45 O

3. vVON NEUMANN-MORGENSTERN STABLE SETS AND THE CORE

Example 3. (ASTIN money) If they agree on a way to subdivide the profits of
cooperation, the three Treasurers will have a total of 90,000 francs to share
Denote o = («;, &5, &3) the outcome (or payoff, or allocation) player 1 will
receive the amount «, Obviously, the ASTIN Treasurer will only accept an
allocation that awards him at least 46,125 francs, the amount he can secure by
himself This 1s the individual rationality condition. O

Defininion 4 A payoff a = (a,, a5, ..., a,) 1s individually rational if o, = v(i)
=1, ..,n
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Definmition 5 An imputation for a game I” = (N, v) 1s a payoff o = (o, ..., &%,)
such that

a, = v(1) i=1,...,n
Y o= v(N)
1=1

An imputation is an individually rational payoff that allocates the maximum
amount (This condition is also called *‘efficiency™ or * Pareto-optimality ).

Example 3. (ASTIN money) An imputation is any allocation such that

a, +a,+ay; = 90,000
o, > 46,125

o, = 17,437.5

o3 > 5,812.5 O

Example 4. (Retention groups). In this cost example, an imputation 1s any set
of premiums (a;, ;) such that

al+a2 = 45
ay < 19
Ay < 32

Let us now add a third group of n; = 120 individual to this example, all
subject to a loss of 1 with a probability g; = 0.3. A risk retention group with a
ruin probability of .001 would require a total premium of

n3q3+3 \/”3q3(] _q3) = 36+15 = 51

If all three groups decide to merge to achieve a maximum reduction of the
safety loading, the total premium will be

ngi+ nyg;thsgst 3 \/”141(] =gt nyq (1 —q) +nyg5(1 —g3)
= 10+20+36+2!
= 87

In this case an imputation is a payoff (o, a5, a3) such that

a,+a2+a3 = 87
a <19
azs 32
e %} < 5l
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Are all those imputations acceptable to everybody? Consider the allocation
(17, 31, 39). It 1s an imputation. It will however never be accepted by the first
two groups Indeed they are better off withdrawing from the grand coalition,
forming coalition (12), and agreeing for instance on a payoff (155, 29.5).
Player 3, the third group, cannot object to this secession since, left alone, he
will be stuck to a premium of 51 He will be forced to make a concession
during negotiations and accept a higher o;. a3 needs to be at least 42 to
prevent players 1 and 2 to secede This is the collective rationality condition:
no coalition should have an incentive to quit the grand coalition. d

Definition 6. A payoff (o, a,, ..,a,) 1s collectively rational 1f

Za,ZV(S) forall ScN.
1e§

Definition 7 The core of the game 1s the set of all collectively rational
payoffs.

The core of a game can be empty. When 1t 1s not, 1t usually consists of several,
or an infimity, of points. It can also be defined using the notion of
dominance.

Definition 8. Imputation g = (#,0,,...,,) dominates imputation
a = (o, ®,,...,d,) with respect to coalition § if

(i) S+
) B, > «a, forall ie S
) v(S) = ) B

€S

So there exists a non-void set of players .S, that all prefer § to a, and that has
the power to enforce this allocation.

Definirion 9 Imputation ff dominates imputation « if there exists a coalition S
such that f dominates o with respect to S

Definition 7' The core is the set of all the undominated imputations.

Definitions 7 and 7’ are equivalent.

Example 4. (Retention groups). The core 1s the set of all payoffs that allocate
the total premium of 87, while satisfying the 3 individual and 3 collective
rationality conditions.
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o, +oyt+oy = 87
a, <19
o, =< 32
o3 < 3l
o+ o, < 45
oy +a3 <635

o, +oy <753
So the core enables us to find upper and lower bounds for the premiums

O(,+<x2+a3 = 87
17 <a, <19
235 < ay < 32
42 S(X}SS]

An allocation that violates any inequality leads to the secession of one or two
groups. O

Example 3. (ASTIN money). The core consists of all payoffs such that

oy +a,+ay = 90,000
46,125 < o; < 59,250
17,437.5 < o, < 36,187.5
5,812.5 < a3 < 20,812.5 O

Despite 1ts intuitive appeal, the core was historically not the first concept
that attempted to reduce thc set of acceptable payoffs with rationality
conditions. In their path-breaking work, voN NEUMANN and MORGEN-
STERN (1945) introduced the notion of stable sets

Defimition 10 A von Neumann-Morgenstern stable set of a game "= (N, v) 1s
a set L of imputations that satisfy the two following conditions

(1) (External stability) To each imputation a ¢ L corresponds an imputation
f e L that dominates a

(ii) (Internal stability) No imputation of L dominates another imputation of L.

Stable sets are however usually very difficult to compute

The main drawback of the core and the stable sets seecms to be that, in most
cases, they contain an nfinity of allocations For instance, the core and the
stable set of all 2-person games simply consist of all imputations It would be
preferable to be able to single out a unique, **fair” payoff for each game This
1s what the Shapley value achieves
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4 THE SHAPLEY VALUE

Example 3. (ASTIN money). Assume the ASTIN Treasurer decides to initiate
the coalition formation process. Playing alone, he would make v(1) = 46,125.
If player 2 decides to join, coalition (12) will make v(12) = 69,187.5. Assume
player | agrees to award player 2 the entire benefits of cooperation; player 2
receives his entire admussion value v(12)—v (1) = 23,062.5. Player 3 joins 1n a
second stage, and increases the total gain to 90,000. If he is allowed to keep his
entire admission value v(123)—v(12) = 20,812.5, we obtain the payoff

[46,125; 23,062.5; 20,812.5]

This allocation of course depends on the order of formation of the grand
coalition. If player 1 joins first, then player 3, and finally player 2, and if
everyone keeps his entire admission value, the following payoff results

[46,125,  36,187.5, 7,687.5]

The four other player permutations [(213), (231), (312), (321)] lead to the
respective payoffs

[51,750; 17,437.5; 20,812.5]
[59,250; 17,437.5; 13,312.5]
[48,000; 36,187.5; 5,812.5]
(59,250, 24,9375, 5,812.5}

Assume we now decide to take the average of those six payoffs, to obtain the
final allocation

[51,750; 25,875 12,375 ]

We have in fact computed the Shapley value of the game, the expected
admussion value when all player permutations are equiprobable Od

The Shapley value 1s the only outcome that satisfies the following set of three
axioms [SHAPLEY, 1953)]

Axiom | (Symmetry). For all permutations /I of players such that
v{I1(S)] = v(S) for all S, ap(y = «,.

A symmetric problem has a symmetric solution. If there arc two players that
cannot be distinguished by the characteristic function, that contribute the same
amount to each coalition, they should be awarded the same payoff. This axiom
1s sometimes also called anonymuty, 1t implies that the selected allocation only
depends on the characteristic function, and not, for instance, on the numbering
of the players

Axiom 2 (Dummy players). If, for a player 1, v(S) = v(S\1)+v (1) for each
coalition to which he can belong, then a, = v(i).
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A dummy player does not contribute any scale economy to any coaliion. The
worth of any coalition only increases by v(i) when he joins. Such an inessential
player cannot claim to receive any share of the benefits of cooperation.

Axiom 3 (Additivity). Let I" = (N, v) and I"" = (N, v") be two games, and a (v)
and a'(v) their respective payoffs. Then a(v+v') = a(v)+a(v’) for all

players.

a, = v(1l)

INDIVIDUAL RATIONALITY
FOR PLAYER 1

a, + a, = v(12)
CHARACTERISTIC FUNCTION

SHAPLEY VALUE

STABLE SET

a, = v(2)

DISAGREEMENT
POINT

INDIVIDUAL RATIONALITY ;\
FOR PLAYER 2

a,

FIGURE 1 Two-person cooperative game with transferable utilities
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Payoffs resulting from two distinct games should be added. While the first two
axioms seem quite justified, the latter has been criticized [t rules out all
interactions between the two games, for instance.

Shapley has shown that one and only one allocation satisfies the three
axioms

o = (1/n)Y =D =) ES)=v(S\D]  i=1,. .,n
S

where s 1s the number of members of a coalition S

The Shapley value can be mterpreted as the mathematical expectation of the
admission value, when all orders of formation of the grand coalition are
equiprobable. In computing the value, one can assume, for convenience, that
all players enter the grand coalition one by one, each of them receiving the
entire benefits he brings to the coalition formed just before him. All orders of
formation of N are considered and intervene with the same weight 1/n! 1n the
computation. The combinatonal coefficient results from the fact that there are
(s— 1! (n—=s)! ways for a player to be the last to enter coalition S the s—1
other players of S and the n—s players of N\ S can be permuted without
affecting ’s position

In a two-player game, the Shapley value is

o = (1/2)[p(1)+v(1)—v(2)]
% = (1/2)[v(12)+v(2)—v(1)]

It 1s the middle of the segment o) +ay = v(12), oy = v(1), a2 = v(2). This 1s
illustrated in Figure 1.

Example 1. (UN Security Council). In a weighted majority game, the admission
value of a player is either 0 or 1. One simply has to compute the probability
that a player clinches victory for a motion. In the UN Security Council game,
the power of a nonpermanent member ¢ 1s the probability that he enters ninth
in any coalition that already includes the five permanent members It 1s

8
a, = (3 ) 55/15) (4/14) (3/13) (2/12) (l/llz (\9/10) (8/9) (7/8}) (l'/17)
all five perm:nenl before ¢ 3 o:lhc 1 then
nonpermanent enters
before

= 0.1865%
By symmetry, the power for each permanent member is
o, = 19.62 %

So permanent nations are 100 tumes more powerful than nonpermanent
nations. [Note: 1n practice a permanent member may abstain without impair-
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ing the validity of an affirmative vote. While this rule complicates the analys:s
of the game, it only changes the second decimal of the Shapley value]. O

Example 2. (Nassau County) The Shapley value of the districts is (1/3, 1/3, 1/3,
0, 0, 0). This analysis led the County authorities to change the voting rules by
increasing the required majority from 58 to 63 There are now no more dummy
players, and the new power indices are [0 283, 0.283, 0217, 0 117, 0.050, 0.050].
Thus 15 certainly much closer to the original intention. g

Example 4. (Retention groups). In the two-company version of this game, the
Shapley value is [16,29]. In the three-company version, the value 1s [14.5, 26.9,
45.6]. The traditional pro rata approach leads to [13.2, 26.4, 47.4]. 1t does not
take into account the savings each member brings to the grand coalition, or its
threat possibilities. It 1s unfair to the third group, because it fails to give proper
credit to the important reduction (10) of the total safety loading it brings to the
grand coalition ]

The Shapley value may lie outside the core In the important subclass of
convex games, however, it will always be in the core.

Definitron 11. A game 1s convex if, for all S € T < N, for all 1¢ T,
v(TUD=v(T) = v(SU)—v(S).

A game is convex when it produces large economies of scale, a *“snow-balling”
effect makes 1t increasingly interesting to enter a coalition as 1ts number of
members increases. In particular, 1t 1s always preferable to be the last to enter
the grand coalition N. The core of convex games i1s always non-void.
Furthermore, 1t coincides with the unique von Neumann-Morgenstern stable
set. It is a compact convex polyhedron, of dimension at most n—1 The
Shapley value lies in the center of the core, in the sense that it is the center of
gravity of the core’s external points.

5. TWO-PERSON GAMES WITHOUT TRANSFERABLE UTILITIES

Example 5. (Risk exchange). As shown in the presentation of the example,
selecting & = 0.2 and § = 0.3 results in a decrease of Var (y;) of 0.72, and a
decrease of Var (y,) of 3.92. This risk exchange treaty is rcpresented as point 1
in Figure 2.

In this figure the axes measure the respective variance reductions, p, and p,.
Point 2 corresponds to & = f = 0 4. It dominates point 1, since 1t leads to a
greater variance reduction for both companies. Point 31s o = 0.53, 8 = 0.47, 1t
dominates points 1 and 2. It can be shown that no point can dominate point 3,
and that all treaties such that a+f = 1 neither dominate nor are dominated by
point 3. For instance, point 4 (o = 0.7, § = 0.3) will be preferred to point 3 by



COOPERATIVE GAME THEORY AND ITS INSURANCE APPLICATIONS 31

Py =
VARIANCE
REDUCTION

FOR C,
8

IDEAL POINT b

v(12) = PARETO
PTIMAL CURVE

3
2

4 KALAI-SMORODINSKY SOLUTION

[ ]

1 NASH SOLUTION
3

4
2
GAME
1 SPACE M
0
0 1 2 3 4 p, = VARIANCE
DISAGREEMENT REDUCTION
POINT FOR C,

FIGURE 2 Two-person cooperative game without transferable utilities

C, However C, will prefer point 3 to point 4 Hence neither point dominates
the other The set of all treaties such that a+f = 1 forms curve v(12), the
Pareto-optimal surface. Points to the north-east of v(12) cannot be attained.
All points to the south-west of v(12) correspond to a given selection of o and £.
The convex set of all attainable points, including the boundary v(12), 1s called
the game space M. That space 1s limited by the Pareto-optimal curve and the
two axes. The axcs represent the two individual rationality conditions: no
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company will accept a treaty that results in a variance increase For instance
point 5 (@ = 0.35, f = 0.65) will not be accepted by C, While each point in
the game space 1s attainable, 1t 1s 1n both companies’ nterest to cooperate to
reach the Pareto-optimal curve. Any point that does not lie on the north-east
boundary is dominated by a Pareto-optimal point. Once the curve is reached,
however, the players’ interests become conflicting. C, will negotiate to reach a
point as far east as possible, while C, will attempt to move the final treaty
north. If the players cannot reach an agreement, no risk exchange will take
place. The disagreement point results 1n no variance reduction.

Hence all the elements of a two-player game are present in this simplified
risk exchange example. In fact, Figure 2 closely resembles Figure 1, with an
important difference: the Pareto-optimal set of treaties v(12) is a curve in
Figure 2, while the characteristic function v(12) in Figure 1 1s a straight line
This 1s due to the non-transferability of utilities in the risk exchange example.
The players are ** trading ” variances, but an increase of 1 of Var (y,) results in
a decrease of Var(y,) that 1s not equal to 1. Example 5 is a two-person
cooperative game without transferable utility. O

Definition 12. A two-person cooperative game without transferable utilities 1s a
couple (M, d), where d = (d,, d,) is the disagreement point (the initial utilities
of the players). M, the game space, 1s a convex compact set in the two-
dimensional space E? of the players’ utilities; 1t represents all the payoffs that
can be achieved.

Such a game is often called a two-person bargaining game Let B be the set
of all pairs (M, d). Since no player will accept a final payoff that does not
satisfy the individual rationality condition, M can be limited to the set of
points (p,, p,) such that p, > d, and p, > d5. Our goal is to select a unique
payoff in M.

Definition 13 A solution (or a value) 1s a rule that associates to each bargaining
game a payoff in M It is thus a mapping f : B —» E* such that f (M, d) is a
point =(p,p) of M for all (M,d)eB; f,(M,d)=p and

(M, d) = p,.

The first solution concept for bargaining games was developed in 1950 by
Nash. The Nash solution satisfies the four following axioms

Axiom 1. Independence of linear transformations

The solution cannot be affected by linear transformations performed on the
players’ utilities. For all (M, d) and all real numbers @, > O and b,, let (M ', d")
be the game defined by d/ = a,d,+b,(t = 1,2) and M' = {ge E}3pe M such
that ¢, = a,p,+b,}. Then (M, d") = a f,(M,d)+b, i=1,2.

This axiom is hard to argue with. It only reflects the information contained
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in utility functions. Since utilities are only defined up to hnear transformations,
1t should be the same for solutions.

Axiom 2. Symmetry

All symmetric games have a symmetric solution. A game 1s symmetric 1f
d, = d,and (p,,p,) € M = (p,, p)) € M The axiom requires that, in this case,
SiM, d) = f,(M, d).

Like axiom 1, axtom 2 requircs that the solution only depends on the
information contained in the model A permutation of the two players should
not modify the solution, if they cannot be differentiated by the rules of the
game. Two players with the same utility function and the same initial wealth
should receive the same payoff if the game space 1s symmetric.

Axiom 3. Pareto-optimality

The solution should be on the Pareto-optimal curve For all (M,d)e B, if p
and ge M are such that ¢, > p, (1 = 1,2), then p cannot be the solution:
SM, d) # p.

Axiom 4. Independence of irrelevant alternatives

The solution does not change if we remove from the game space any point
other than the disagreement point and the solution itself. Let (M, d) and
(M’, d) be two games such that M’ contains M and f(M', d) 1s an element of
M. Then f(M,d) = f(M', d).

This axiom formalizes the negotiation procedure. It requires that the
solution, which by axiom 3 must lie on the upper boundary of the game space,
depends on the shape of this boundary only in 1ts neighbourhood, and not on
distant points. It expresses the fact that, during negotiations, the set of the
alternatives likely to be selected 1s progressively reduced. At the end, the
solution only competes with very close points, and not with proposals already
eliminated during the first phases of the discussion. Nash’s axioms thus model
a bargaining procedure that proceeds by narrowing down the set of acceptable
points. Each player makes concessions until the final point 1s selected.

NasH (1950) has shown that one and only one point satisfies the four
axioms. It is the point that maximizes the product of the two players’ utility
gains. Nash’s solution is the function f, defined by f(M, d) = p, such that
pzdand (p,—d)(pr—d)) = (qi—d)(q2—dy), for all g #+ pe M.

Example 5. (Risk exchange). In this example, the players’ objective is to reduce
the vanance of their claims Hence ¢ = (0, 0): if the companies cannot agree
on a nisk exchange treaty, they will keep their ongmal portfolio, with no
improvement The players’ variance reductions are
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pL=4—4( —a)*—8p?
p, = 8—4a’—8(1-f)°

Maximising the product p, p,, under the condition & +§ = |, leads to the Nash
solution

a =0.613
B = 0387
P = 2.203
Py = 3.491 0

Nash’s axiom 4 has been criticised by KaLA1 and SMORODINSKY (1975), who
proved that Nash’s solution does not satisfy a monotonicity condition.
Consider the two games represented in Figure 3. The space of game 1 1s the
four-sided figure whose vertices are at d, A, B, D. The Nash solution 1s B. The
space of game 2 is the figure whose vertices are at d, 4, C, D From the second
player’s point of view, game 2 seems more attractive, since he stands to gain
more if the first player’s payoff is between £ and D. So one would expect the
second player’s payoff to be larger in game 2. This 1s not the case, since the
Nash solution of game 2 is C.

Pa

M fm———mm——————— o

P
FIGURE 3 Non-monotonicity of Nash’s solution
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Axiom 5. Monotonicity Let b(M) = (b,, by) the “1deal” point formed by the
maximum possible payoffs (see Figure 2): b, = max{pl(p,,p) € M}
(1=1,2). If (M, d) and (M ', d) are two games such that M contains M’ and
b(M) =b(M"), then f(M,d) = f(M', d).

KaLAl and SMORODINSKY have shown that one and only one point satisfies
axioms |, 2, 3, and 5. It 1s situated at the intersection of the Pareto-optimal
curve and the straight line linking the disagrcement poimnt and the ideal
point.

Example 5. Tt is easily verified that the equation of the Pareto-optimal curve 1s

J8—p, +4—p, = 12 Since the ideal point 1s (4,8), the line joining 4 and b
hasequation p, = 2 p, . Kalai-Smorodinsky’s solution point, at the intersection, 18

o = 0.5858
p = 04142
P = 3.8821
It 1s slightly more favourable to player 2 than Nash’s solution. O

6. OTHER SOLUTION CONCEPTS — OVERVIEW OF LITERATURE

Stable sets and the core are the most important solution concepts of game
theory that attempt to reduce the number of acceptable allocations by
mtroducing intuitive conditions. Both notions however can be criticized.

Stable sets are difficult to compute. Some games have no stable sets. Some
others have several. Moreover, the dominance relation is neither antisymmetric
nor transitive It 1s for instance possible that an imputation § dominates an
imputation a with respect to one coalition, while « dominates ff with respect to
another coalition Therefore an imputation nside a stable set may be domi-
nated by an imputation outside,

The concept of core is appealing, because 1t satisfies very intuitive rationality
conditions. However, there exists vast classes of games that have an empty
core: the rationahty conditions are conflicting. Moreover, several examples
have been built for which the core provides a counter-intuitive payoff, as
shown 1n Example 6.

Example 6. A pair of shoes

Player 1 owns a left shoe. Players 2 and 3 each own a right shoe. A pair can be
sold for $ 100. How much should 1 receive if the pair 1s sold? Surprisingly, the
core totally fails to catch the threat possibilitics of coalition (23) and selects the
paradoxical allotment (100, 0, 0). Any payoff that awards a positive amount to
2 or 3 15 dominated, for instance (99,1, 0) 1s dominated by (99.5, 0,0.5).
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Moreover, the paradox remains 1f we assume that there are 999 left shoes and
1000 right shoes. The game is now nearly symmetrical, but the owners of right
shoes still receive nothing. The Shapley value 1s (66%, 16%, 16%), defimtely a
much better representation of the power of each player than the core. a

Many researchers feel that the core is too static a concept, that it does not
take into account the real dynamics of the bargaining process. In addition,
laboratory experiments consistently produce payoffs that lie outside the core.
This led AUMANN and MASCHLER (1964) to define the bargaining set. This set
explcitly recognizes the fact that a negotiation process 1s a multi-criteria
situation. Players definitely attempt to maximise their payoff, but also try to
enter into a “safe” or “stable” coalition. Very often, 1t 1s observed that
players willingly give up some of their profits to join a coalition that they think
has fewer chances to fall apart. This behaviour 1s modelled through a dynamic
process of “ threats” and “ counter-threats.” A payoff s then considered stable
if all objections against it can be answered by counter-objections

Example 7. Consider the three-person game

v(l) =v@) =v(3) =0
v(12) = v(13) = 100
v(23) = 50

The core of this game is empty. For instance, the players will not agree on an
allocation like [75, 25, 0], because it 1s dominated by [76, 0, 24]. Bargaiming set
theory, on the other hand, claims that such a payoff is stable. If player 1
threatens 2 of a payoff [76,0, 24], this objection can be met with the
counter-objection [0, 25, 25]. Player 2 shows that, without the help of player 1,
he can protect his payoff of 25, while player 3 receives more in the
counter-objection than in the objection. Similarly, objection [0, 27,23] of
player 2 against [75, 25,0] can be counter-objected by [75,0, 25]. So, if a
proposal [75, 25, 0] arises during the bargaining process, it is probable that it
will be selected as final payoff. Any objection, by either player 1 or player 2,
can be countered by the other. On the other hand, a proposal hike [80, 20, 0] 1s
unstable. Player 2 can object that he and player 3 will get more in [0, 21, 29].
Player 1 has no counter-objection, because he cannot keep his 80 while offering
player 3 at least 29

Thus, in addition to all undominated payoffs (the core), the bargaining set
also contains all payoffs against which there exists objections, providing they
can be met by counter-objections The bargaining set for this example consists
of the four points

[0, 0, 0]
[75, 0, 29]
[75, 25, 0]

[0,25 25 O
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The bargaining set i1s never empty. It always contans the core. For more
details, consult OWEN (1968, 1982) or AUMANN and MASCHLER (1964).

In 1965, DAvIs and MascHLER defined the kernel of a game, a subset of the
bargaining set. In 1969, ScHMEIDLER introduced the nucleolus, a unique
payoff, included in the kernel. It i1s defined as the allocation that minimises
successively the largest coalitional excesses

e, S)=v(S)— ) «

teS

The excess 15 the difference between a payoff a coalition can achieve and the
proposed allocation. Hence it measures the amount (“the size of the com-
plaint™’) by which coalition S as a group falls short of its potential v(S) in
allocation o If the excess 1s positive, the payoff 1s outside the core (and so the
nucleolus exists even when the core 1s empty). If the excess is negative, the
proposed allocation 1s acceptable, but the coalition nevertheless has interest 1n
obtaining the smallest possible e(x, S) The nucleolus is the imputation that
minimises (lexicographically) the maximal excess. Since it is as far away as
possible of the rationality conditions, it lies in the middle of the core. It is
computed by solving a finite sequence of linear programs. Variants of the
nucleolus, like the proportional and the disruptive nucleolus, are surveyed
among others 1in LEMAIRE (1983). The proportional nucleolus, for instance,
results when the excesses are defined as

e(@, §) = [V(S)— > a,:|/v(S)

teS

Since it consists of a single point, the nucleolus (also called the lexicographic
center) provides an alternative to the Shapley value. The Shapley value has
been subjected to some criticisms, mainly focussing on the additivity axiom and
the fact that people joining a coalition receive their full admission value.

Example 3. (ASTIN money). The Shapley value, computed in Section 4, 1s
[51,750; 25,875; 12,375]

It awards an interest of 11.5% to ASTIN and I1.A.A., and 16.5% to A.A.Br.
This allocation is much too generous towards A.A.Br.’s Treasurer, who takes a
great advantage from the fact that he 1s essential to reach the 3-million mark.
His admission value is extremely high (in proportion to the funds supplied)
when he comes in last. The nucleolus is

[52,687.5;  24,937.5;  12,375]
or, In percentages

[11.71;  11.08;  16.5]
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It recognises the better bargaining position of ASTIN versus 1 A.A., but still
favours A.A.Br. Both the Shapley value and the nucleolus, defined in an
additive way, fail in this multiphcative problem. The proportional nucleolus
suggests

[54,000; 27,000, 9,000]
or, In percentages,
[12: 12; 12],
thereby justifying common practice. O

Only the case of the two-person games without transferable utilities has been
reviewed in Section 5. A book by RoTH (1980) is devoted entirely to this case.
It provides a thorough analysis of Nash’s and Kalai-Smorodinsky’s solutions.
The generalisation of those models to the n-person case has proved to be very
difficult. In the two-person case, the disagreement point 1s well defined : if the
players don’t agree, they are left alone. In the n-person case, if a general
agreement 1n the grand coalition cannot be reached, sub-coalitions may form
Also, some players may wish to explore other avenues, like possible business
partners outside the closed circle of the n players. This 1s an objection against
modeling market situations as non-transferable n-person games. Such games
ignore external opportunities, such as competitive outside elements See
SHAPLEY (1964) and LEMAIRE (1974, 1979) for definitions of values in the
n-player case.

Though somewhat dated by now, the book by Luce and RaiFra (1957) is
still an excellent introduction to game theory and utility theory. It provides an
insightful critical analysis of the most important concepts An excellent book
that surveys recent developments is OWEN (1968, 1982, especially the second
edition). A booklet edited by Lucas (1981) provides an interesting, simple,
abundantly illustrated analysis of the basics of cooperative and non-coopera-
tive game theory. Finally, the proceedings of a conference on applied game
theory [BRAMS, SCHOTTER, SCHWODIAUER (1979)] provide a fascinating over-
view (from a strategic analysis of the Bible to the mating of crabs) of
applications of the theory.

7 CONCLUSIONS

Game theory solutions have been effectively implemented in numerous situa-
tions. A few of those applications are

— allocating taxes among the divisions of McDonnell-Douglas Corporation

— subdividing renting costs of WATS telephone lines at Cornell University

— allocating tree logs after transportation between the Finnish pulp and paper
companies

— sharing maintenance costs of the Houston medical library

— financing large water resource development projects in Tennessee

— sharing construction costs of multipurpose reservoirs in the United States
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— subdividing costs of building an 80-kilometer water supply tunnel i
Sweden

— setting landing fees at Birmingham Airport

— allotting water among agricultural communities 1n Japan

— subsidising public transportation in Bogota

Cooperative game theory deals with competition, cooperation, conflicts,
negotiations, coalition formation, allocation of profits. Consequently one
would expect numerous applications of the theory in msurance, where compe-
titive and conflicting situations abound. It has definitely not been the case. The
first article mentiomng game theory in the ASTIN Bulletin was authored by
BorcH (1960a). In subsequent papers, BorcH (1960b, 1963) progressively
developed his celebrated risk exchange model, which in fact 1s an n-person
cooperative game without transferable utilities. This model has further been
developed by in the 1970s by Lemaire and several of his students {BATON and
LEMAIRE (1981a, 1981b), BRIEGLEB and LEMAIRE (1982), LEMAIRE (1977,
1979)]. The ASTIN Bulletin has yet to find a third author attracted by game
theory! It is hoped that this survey paper will contribute to disseminate some
knowledge about the situations game theory models, so that the risk exchange
model will not stand for a long time as 1ts lone actuanal application.
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COMBINING QUOTA-SHARE AND EXCESS
OF LOSS TREATIES ON THE REINSURANCE
OF n INDEPENDENT RISKS

By LourDES CENTENO and ONOFRE SIMOES
ISEG, Umwversidade Técnica de Lisboa, Portugal

ABSTRACT

In this paper, we seek to find the optimal retentions for an msurance company
which intends to reinsure each of n risks belonging to its portfolio, by means of
a pure quota-share treaty, a pure excess of loss treaty or any combination of
the two. The criterion chosen to the selection of the optimal programme is the
maximization of the adjustment coefficient, attending to the relationship
existing between this coefficient and Lundberg’s upper bound of the ruin

probability.

]. INTRODUCTION

Suppose that an insurance company seeks reinsurance for n independent risks
(by a risk we mean a single policy or a group of policies—so we could speak of
n independent lines of insurance), and has a choice between a pure quota-share
treaty, an excess of loss treaty or any combination of the two, for any of the
risks. The way this combination operates 1s as follows: first the quota share
contract will apply, so that the insurer shall remain responsible for no more
than its share—established by the contract—of any claim that may occur for
that nisk; afterwards, the excess of loss contract applys, so that, by no means,
shall the insurer (of course considering only that part for which 1t remains
reponsible after the quota-share contract) pay more than a certain fixed
amount of any claim that takes place.

The problem consists of determining the optimal retention limits for each
risk, in each of the two forms of reinsurance. *“Optimal” in the sense those
limits maximize the adjustment coefficient and, therefore, minimize the upper
bound to the ruin probability, supplied by Lundberg’s inequality This same
criterion was also adopted by WATERS (1979) and CENTENO (1986) and, in a
certain way, this work may be considered as a generalization of their results
Although this criterion does not by any means have to minimize the (analyti-
cally uncalculable) ruin probabulity, it is a good criterion if one wishes to give
analytical results.

Surplus and stop loss treaties are not considered in this paper WATERS
(1983), derives sufficient conditions for the adjustment coefficient to be
uni-model, for stop loss reinsurance.

ASTIN BULLETIN, Vol 2], No 1
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For each 1 = 1,2,...,n, let a,, be the decision variable representing the
quota-share retention on risk /; M,, the decision vanable representing the

N,
excess of loss retention limit on risk i; Y, = Z X,, with X, =0, the
=0

msurer’s aggregate gross (of reinsurance) claims on risk 1, 1n some fixed time
interval, where N, 1s the number of claims and {X,},_, |, are the individual
claims; P, the insurer’s gross (of expenses and reinsurance) premium income
with respect to risk i and e, P, the amount used to cover the insurer’s expenses
with respect to the same risk.

After a combination of a quota-share with an excess of loss treaty the insurer
N,

will retain, from risk 1, ¥,(a,, M) = Y min{a,X,, M}, (i =1,...,n).

=1

The choice of uniform a; = ... = a,and M, = ... = M,, which is generally
made in practice, has been dealt with in CeENTENO (1986). In this paper,
therefore, retention limits which can, for instance, be set differently for
portfolios of different classes of business are also dealt with

Let P,(a,, M) be the total reinsurance premium paid by the insurer, in
respect to risk i (it 1s, naturally, the summation of the quota-share and excess
of loss reinsuance premiums).

The problem which 1s to be solved 1s, then,

Maximize R(a, M)

sub. to: 0<a <1
M >0
(i=12, ..,n),

where R(a, M), is the adjustment coefficient, defined, as it is known, as the
unique positive root of

M E[‘”‘P{R Y, Y@, M)-R Y [P,(l—e,)—P,,(a,,M,)]}} =1.
=1

=1

Note that R(a, M) is the adjustment coefficient (see BEARD, PENTIKAINEN
and PESONEN (1984), p. 363) after taking account of the reinsurance arrange-
ment.

2. ASSUMPTIONS AND PREMIMINARIES
Ay: Y, (1= 1,2,...,n) are independent random variables;
Foreachi (¢ = 1,2,...,n):

Ay: N,(t=1,2, ..,n)is a Poisson random variable with parameter 4,;



A4:

A7:

A,
Ag:

REINSURANCE OF n INDEPENDENT RISKS 43

{X,},=1.2, ,n are iid. non-negative random variables, independent of
N,, and with common distribution function F, such that

{ Fl(x)=01 X < Xy
0< F(x)<1, x> X,

for some x,y > 0,

— F,(x) exists and 1t 1s continuous everywhere;
dx

The m.g.f. of the random variables X, , exists in the (— oo, @,] interval,
for0 < Q, < +o0 and

hm E[e"*] = + o0;
—Q,
The quota-share reinsurance premium is
(I1-a)P—c(l-a)P, = (1-c)(1-a)P,

where ¢,(1—a)P,, 0 < ¢, < 1, is the habitual commission paid by the
quota-share reinsurer;

The excess of loss reinsurance premium, which we denote P,(a,, M), is
calculated according to the expected value principle, 1.e.,

Puan, M) = (1+a) A, j " (ax— M) dF,(x)

M, [
with o, > 0.
e > ¢

(I—=c)P,— A E[X,] > 0, where E[X,] denotes the expected value of X
J=1,2..,N;

iy

AIO: (l_el)Pl < (1+CZ,)/‘{,E[X,],

Finally, we assume that

A”:

Z [(1—e)P,—AE[X]] > 0.

=1

From A, and 4; it follows that Y, and Y,(a,, M) have compound Poisson
distributions. From A4 and A, we can say that

+ 0

@ P,,(a,,M.)=(1—c.)(1—a,)P,+(1+a,)z.j‘ (a,x— M) dF,(x).

M, fa,
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Assumption Ag is somewhat restrictive, but without it the insurer could
reinsure the whole nisk through a quota-share arrangement with a certain
profit. The same apphes to Ay, but with respect to the excess of loss
reinsurance treaty A4, implies that the loading on the quota-share reinsurance
premium is positive At last, 4, assures the existence of a margin, necessary to
cover eventual deviations from the expected losses, and also to pay the
reinsurance costs.

Under assumptions 4,, 4, and 4,, R(a, M) is the only positive root of
3) G(R;a,M)=0,

where

n M, /a,
@ G(Ria.M)= ), AH "™ dF,(x)+e®M: [l—F‘(M./al)]—l} -

=1 0

- RY [(1-e)P,—P,(a,, M)]
=1

(See BeArD, PENTIKAINEN and PESONEN (1984), p. 363, for the equivalence of
(4) and (1).) Let E[W(a, M )] denote the insurer’s expected net profit, after
reinsurance and expenses, 1.¢.,

n

(S) E[W(fb M) = Z [(cl_el)Pl+al [(]—Cl)Pl—'{lE[Xl]] -

=1
+o

- e, j (ax— M) dF,(x)]
M, [a,

and let us define
T={a,M):0<a <1, M, >0 and E[W(a,M)]> 0},
and

I'={a.0<a,<1,1=12,...,n and there exists at least one M such that
E[W(a,M)] > 0}.

Since

0
- E[W(Q_’M)] = A’lal(l_Fl(Ml/al))
oM,

I

is non-negative, we can say that for fixed @, the expected net profit will be
maximum when M, = +o0 (¢t = 1,2,..., n). Hence 1t 1s possible to specify I
as being

(6) r= {_a_ Z [(cl_el)Pl+al[(1_CI)PI_AIE [XI]]] > 0}
=1
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0
Let us denote —672 G(R;a,M) by D(R,a, M) so that

n

ifa,
(N D(R;a,M)=} 4 [jM a.xeR""dF.(X)+M,eRM‘(1—F:(M,/a,))} -

=1 0

1=

[(] _el)Pl_Pu(al:Mr)]’
1

il

t

with G(R; a, M) defined by (4).
The following lemma discusses the existence of the adjustment coefficient.

Lemma 1:
(1) R(a, M) exists, 1if and only if (a,M)eT,
() Forany(a,M)eT, D(R;a, M) is positive at R = R(a, M).

Proof:

(i) By As, it 1s clear that for fixed (a, M), G 1s defined for all
Re (-, Q)

where

@ = mn {{}

and
+o0, If Mja < +©

(=
£ M=+
al
i=12,..,n).

The first aspect to be considered, is that R = 0 is a trivial solution of
equation (3);
Secondly, we have that

GR,aM)=Y z“
=1

1t 1s non-negative, ¥V (a¢, M), which means that G(R;a,M) 1s a convex
function of R,

2 M [a

(a,x)* ™ dF, (x)+ M2 e* (1~ F,(M, /a,))}

oR? 0



46 LOURDES CENTENO and ONOFRE SIMOES

Third,
n M, |a,
Im G(R; a,M)= lim {4, [e***—R(1+a)a,x] dF,(x) +
R-Q o oR-0 0

+ iz[eRM'—R(] +al)Ml] (l _Fl(Mt/al))—'ll -

- Rl(c,—e) P +al(1=c)P-(1+a) i,E[X,]]]}

= +w’

by assumptions Ag and A,.

Hence, as G(R; a, M) equals zero when R 1s null, G(R;a, M) 1s a convex
function of R, and G(R;a, M) tends to infinity when R tends to Q, then, 1t
will only exist such an R = R(a, M) > 0 which turns G(R,a, M) to be null
again, if and only If]

<0.

R=0

G
— G(R;a, M)
3R

To finish the prof, we only have to notice that

iG(Ii’;g,M)
3R

<0< E[W(a, M)] > 0.
R=0

(1) Immediate, given the proof of (1). <

The following lemma will be useful to the solution to our problem.

Lemma 2: For any g € I there exists a unique (g, M )€Y, let 1t be (a, _M_),
such that

- In(1+a
R(Q,M)=——(——'—),

=1,2,..,n.

~

M,

Proof: Let us consider the set of points M such that
In(l1+a) In(l+ay) In(l+a,)

1 -
—, M >0

and let us define

~ ~ 1 ~ -
Ha, My=MG|—=;a,MIn(l+a),....MIn(1+a,) |,
M
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which 1s to say

Mln(l+a,)

n 1
Ha,M) =} {A, j Y MeW AR, (x) +
0

~ In(l+a)

+ LM (1+a) [I—F,(M

a,

J—M&—

- [(l_el)Pl_(l_Cl) (l_al)PI] +

+ (1+a)4, jm’: e (a,x—Mln(l+a,))dF,(x)}.
YR +a,

a,

Then
n

10 m H(a,M)=) —[1-e)P,~(1-c)(I1-a)P, -
M -0+

=1
- (I+a)d,a E[X]] >0,

using Az and 4,

2) Ml—l.m+oo H(a M)_ - Z {[(C 1) Pl+al[(l_cl)Pl_

_'LE[XI]]} < 0;

3) Daifferentiating H(g_,}V!) twice with respect to M we obtain (see, for
example, COURANT and Joun (1974), p 77)

. Mln(l+a)

al
_ Z i‘j‘
1=1 0

Hence, for each a € I' there exists a unique positive M = M(a) such that
H(a, M) =0 and it 1s clear from the definition of H(a, M) that

dF,(x) =2 0.

ﬂx(l)
M3

1 -
G '—Tagaﬁ =01
M

where
M=M ,My,... ., M)=(MIn(1+a,)), M In(I+ay),. ,MIn(l+ay)) ©
This lemma implies that if we define

) G(R;a)=GR;a,R 'In(1+a), R™"In(1+ay), ., R 'In(l+a,),
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then G (R; a) has a unique positive root for each a € I". Let us denote 1t R (a).
It can be proved, using the Implicit Function Theorem (see for example
CourANT and JouN (1974), pp. 221-223), Part (2) of Lemma 1 and A4,, that
R(a,M), for (a,M)€eT, and R (a), for a € I', are twice differentiable.

3. THE SOLUTION TO THE PROBLEM

The following result provides the solution to our problem.

Result 1:

(i) For a fixed value ael, with a, #0, Vi=1,2,...,n, R(a, M) is a
unimodal function of M, and for any g €/ 1its maximum value is
R (a)

@) R (a) is a unimodal function of a, for g € I' and, at the point where it
attains 1ts maximum:

a

a) a,= 11f and only 1fa—R(g)(a,= 1) > 0,
a,

or

0 .
b) a, is such that — R (a) = 0, if and only if
al

—a—R(g)(a, =1)<0,1=1,2,...,n
a,
Proof:
(1) The equation defining R(a, M) for all (a,M)e I 1s
© G(R;a, M) =0,
with G(R; a, M) given by (4). Differentiating (9) with respect to M, 1t can be

6)
seen that —— R(a, M) =0 if and only 1if (using the Implicit Function
M,
Theorem)
Re™(1—F,(M,[a)) = R(1+a) (1= F,(M,[a)).

So, using Lemma 2 we can say that for a fixed value of a € I, with a, # 0,
Yi=1,2,.. ,n, the only turning point of R(a, M) 1s such that

(10) M, =R 'In(l+a), :=12,.. ,n.
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Differentiating (9) twice with respect to M, (using again the Implicit Function
Theorem and (10)) we get
o? AR [1=F,(M, [a)]
(1) —— Ra, M) = -
oM, M=R"In(l+a) D(R;a, M) M,=R"In(1+a)

with D(R; a, M) given by (7). We can see that each side of equation (11) 1s
negative since D(R; a, M) is positive by Lemma 1 (1).
On the other hand,

52
— R(a,M) , =0, J;#..
OM oM, V=R in(1 o)
Hence we can conclude that for a fixed value ael” with a # 0,
Vi=1,2,...,n, R(a, M) 1s a ummodal function of M .

If aerl and aq, = 0 for some k = 1,2,. ., n, then of course any value for
the excess of loss retention limit of risk &, including M, = R~ 'In (1 +ay), will
provide the same value for the adjustment coefficient.

Then the maximum of R(a, M) 1s attained at the point (a, M) which 1s
the umique point satisfying G(R;a,M)=0 and M,= R 'In(1+ua),
1=1,2,...,n, 1e, for a fixed g € [, the maximum of R(a, M) is R where
R=R (a) 1s the only positive root of G(R; a) =0, with G(R ; a) given by (8).

(1) Differentiating

(12) G(R;a)=0
with respect to g, we obtain
3 R o
— R(a)= —+— | —c)P, — (1 +0a)2, _‘I' xdF,(x) —
Oa, D(R;a 2T (}::"')

In(i+a)

- A J. ka, xeRar dF,(x):|,
0

where
D@R;a)=D(R;a,R ' In(t+a), R 'In(I+ay),..., R "In(1+a,)).
So,

(13) % K(a)=0
a‘ a

if and only if

In(l+a)

+oo
Ra,

(14) (1—¢)P, = A, xe’*'"'XdF,(x)+(1+a,)/1,J' x dF, (x)

In(1+a)
Ra,
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Dufferentiating (13) with respect to a,, and using (14), we obtain

In(l+a) .
A,j ko, R?x%eRa~ dF (x)
0

3 - 5 (R % R@=o0
T (a)=0 D(R,Q) 0 (a) =

' i

and

2
[ ° ﬁ(g)}(iﬁu)w,ié@w) =0,1fi 4.
0 Oa

0a,q, a, :

This implies that there exists at most a point ¢ € I” such that (14) holds for
i=12,..,n
Noticing that

a . R
Im —- R (ﬂ_) = [(l _CI)PI—'{:E[XI]] Iim T X7 s
a0+ da, a~0+ D(R,a)

with g € I, is positive by Ag and Lemma | (n), the proof is fimished. <&

To summarize, we can now conclude that the optimum programme of
reinsurance, when a company 1s to reinsure n independent risks by a combina-
tion of the quota share an excess of loss forms of reinsurance, is the point
(a, M) which fulfils the following set of conditions:

In(l1+a
(— M,=—i——'), (i=12,...,n)
R
In(1+a) o
- q,: (l _CI)P, = ,{’ j Ra, xekall dF,(x)+(l+a,)A, jln(l+a) xdF,(x),
0 “R—al"
OR
f | —| <0 when q,=1
{ da,
OR
—or aq=1, f |—[>0 when a =1
Oa,
Gi=12,....,n)

L~ G(R;a, M) =0

Corollary 1: If (1—c) P, 2 A,(1+a) E[X,] forsomei(: = 1, 2, ..., n), then the
optimal arrangement is such that a, = 1.
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Proof: We only have to notice that in this case

R 'In(l+a) w©

xe® dF,(x) - (1+a)2, j x dF,(x) =
R™"In(l+a,)

u—m&—&j

0

R™'In(t+a,)
>4, j x(1+a,—e® > 0. O
0

Note that we can regard the quota-share reinsurance premium for risk
(see Ag) as being calculated using the expected value principle with loading
factor &,, where

& = [(1—c)— 4 E[X]4 E[X]].

Then, Corollary 1 implies that if & > «,, 1.e if quota-share is, in the obvious
sence more expensive than excess of loss reinsurance, then excess of loss
remnsurance 1s optimal. Excess of loss reinsurance was already proved to be the
optimal form of reinsurance (see GERBER 1979), p 129), in the sence that it
maximizes the adjustment coefficient, under the assumption that the loading
coefficient is the same for the insurer and the reinsurer (which is not the case in
our paper).

When the number of nisks, n, 1s greater than one, the solution found for the
problem, may not be the solution that we would obtain if the risks were
considered separately In other words, if we regard as optimal a set of retention
limits that maximizes the adjustment coefficient, then what is optimal when
each risk is considered individually may not be optimal when the risks are
considered together, as we will see next

In the result that follows, R(a,, M) (i = 1,2, .. ,n)1s, for fixed (a,, M), the
adjustment coefficient associated to risk ¢, when this 1s considered on its own,
defined as the unique positive root of

(15) G,(R;a,M)=0,
where

M, [a,
(16) G, (R,;a,,M)= 4, [I ef M dF, (x)+e* M 1 = F, (M, [a)]—~ 1} -
0
- Rl[(l _el)Pl—Pll(aHMl)]
if such a root exists, or zero otherwise !

Result 2: For fixed (¢, M)e T we have

min  {R,(a,, M)} < R(a,M) < max ({(R/(a,, M)}.
= , =1, .n

=1,

! The need to redefine R,(a,, M;) comes from the fact that E[W(a, M )] > 0 does not imply that
E{W,(a,,M)] > 0, forall 1= 1,2, ,n



52 LOURDES CENTENO and ONOFRE SIMOES

Proof:

Let

(17 _min{R,(a,, M)} = Ry(ay, My)
and

(18) ‘=max ) {R(a,,M) = Ri(a;,, M).

Then, considering the definition of R,(a,, M), Vi = 1,2, ..., n, we have that
0 < Ry(ax, M) < Ri(a, M),

and, on the other hand, having in mind the proof of Lemma 1, we know that
(19) { G (R;a,M)<0 f 0<R <R(a,M)
G(Rja,M)>0 f R, > R/(a,, M)

for1=1,2,...,n.
From (19) and attending to (17) and (18) we have that

n

(20) Y. G.(Ri(ar, Mi);a,, M) <0,

=1

being zero 1f and only if R, (ay, M) = R,(a;, M})). Similiary
2 > Gu(Ri(a, Mp);a, M) 20,

=1
being zero if and only if R, (a,, M,) = R;(a;, M)).

Then the result follows immediately, since R(a, M) for (a,M)e T 1s the
unique positive root of

(22) Y G(Ria,M)=0 0
=1

Corollary 2: If R, (a,, M,) achieves 1ts maximum value at (a,, M,) = (4,, M),
i=12,...,n, , and if R(a,M) achieves 1ts maximum value at
(a,M)= (4, M), then

min  {R,(4,, M)} < RG,M) < max {R(d, M)}
- =], .n

=1, ,n i
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Proof: Attending to Result 2, to the defimtion of (é, M:) and to the definition
of (a,,M),i=1,2,...,n, then

min (R (a, M)} < R@,M)<R@G,M),

=1, . n

and
RG,M) < max (R4, M)} < max {R(, M)
=1, . n 1=1, ,n
which finishes the proof. <

4. EXAMPLE
Let n = 2 and
0, if x<0

G (x) = 1
I — - e™ ¥ (x+4), if x>0,
4

1
which corresponds to a y (2,?1 ) , and

0 , i x<l
Gz(x)={

1—e 367D x> 1,

which is an exponencial.

Let 4, =2, A,=10, P, =27, P, =235, e =e,=.35 U =30 and
U, = 15 The expected profit, before any reinsurance arrangement takes place,
15 3.491(6) (1.55 from risk 1 and 1.941(6) from risk 2), R is .02849 and,
therefore, the upper bound given by Lundberg’s inequality for the ruin
probability, 1s 0.2774. Considering the two risks separately the adjustment
coefficients are R, = 001487 and R, = 0 1864, giving then upper bounds for
the ruin probabilities of 0.6401 and 0.0610, for risks 1 and 2 respectively.

The optimal reinsurance programme was calculated assuming different
values for a, and setting o, = .3, ¢, = ¢, = .25. The results can be seen on
Table 1. Analysing Table 1, the main aspect that seems evident is that, as long
as o, ncreases, a sitmilar evolution is presented by ratio M, /a,, that 1s to say,
the excess of loss form of reinsurance becomes less and less attractive.

Table 2 gives the same kind of information as Table 1, when treating the two
risks separately. Note that R < R < R,. One way of explaming this occur-
rence may be the following when the reinsurance problem 1s solved taking the
risks together, there 1s a sort of a transfer of part of the income produced for
the ““less dangerous” (and, therefore ‘‘less needed™ of reinsurance) risks, to
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TABLE |
) Upper Bound
Optimal Expected Adjustment .
% Retentions Net Profit CocfTicient by Lundberg's
Incquality
a, = 0077
a; = 0100
03 1 4986 004300 0 1444
M, = 0610
M, = 0610
a, = 0057
ay = 01 00
04 1 4177 003919 01714
M, = 08 59
M, = 0669
a; = 0053
a, = 01 00
05 1 3946 003827 01787
M, = 1059
M, = 06 86
a, = 0052
a, = 0100
06 1 3846 003794 01814
M, = 1239
My = 0692
TABLE 2
" Optimal Expected Adjustment Lundberg’s
! Retentions Net Profit CoelTicient Inequality
a, = 0100
a; = 0100 E[W] = 13317 R, = 01552 w,1(30) < 6278
03 E[W,] = 1 5803
M, = 1690 E[W] =209120 R, = 1959 w,(15) < 0529
M, = 0134
a, = 0100
a; = 0100 E[W|] = 1 4583 R, = .01508 w,(30) < 6361
04 E[W;] = 15803
M, = 2231 E[(w] =30387 Ry = 1959 w,(15) < 0529
M, = 0134
a, = 0100
a, = 0100 E[W} = 15101 R, = 01495 v, (30) < 6386
05 E[W,] = 15803
M, =2712 E[W] = 30904 Ry = 1959 wo(15) < 0529
M, = 01 34
a = 0100
a, = 01 00 E[w)] = 15322 R, = 01490 w(30) < 6395
06 E[W;] = | 5803
M, =315 E[(W] =31125 R, = 1959 w,(15) < 0529
M, = 0134
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subsidize the payment of the reinsurance of those potentially more risky. In this
example such interaction implied a decrease in the joint expected net profit, but
there are substantial benefits in the company’s security, as a whole. Nothing of
this can be achieved, if one nsists on treating each risk separately
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ABSTRACT

This paper discusses distribution of surplus in life insurance within a general
Markov chain framework. A conservative interest rate and a conservative set
of transition intensities are used for reserving purposes whereas more realistic
assumptions are used for the purpose of distributing surplus. The paper
examines various actuarial aspects of distributing surplus through either cash
bonuses, terminal bonuses or increased benefits. The results are illustrated by
some examples.

KEYWORDS

Distribution of surplus; bonus; with profits annuity policy; with profits
disability policy.

l. INTRODUCTION

The traditional life policy is a participating policy with margins of safety built
into the valuation elements to allow for protection for adverse dewviations.
Surplus or profit can, therefore, in most cases be expected to emerge over the
life of a portfolio of business. A large proportion of the surplus is usually
distributed to the policyholders as bonuses or dividends. This distribution of
surplus may be carried out in varnous ways. One method provides cash
payments or reduction of premiums as the surplus arises, or the accumulated
value of the cash bonuses may be paid when the policy becomes a claim or
expires. By this method, a separate savings account is attached to the policy
and the surplus is credited to the account as it emerges. Another way of
distributing surplus is through terminal bonuses paid only when the policy
expires. By this method, only survivors get a share of the accumulated surplus
The third method, and perhaps the most widely used, is one 1n which the profit
is distnbuted to the policyholders by means of increasing the insurance
benefits. This method provides a gradual increase in the benefits granted under
the policy.

It 1s believed that these three different ways of distributing surplus cover
many of the methods used 1n practice. We shall in this paper discuss various
actuarial aspects of the mentioned distribution methods. The 1dea is that the
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surplus should be distributed to those policyholders who contributed to the
profit. Moreover, the distnibution should be equitable, and the actuarnal
present value of the surplus generated by a policy should equal the actuanal
present value of the bonuses paid to that same policy.

The results are discussed within a general Markov chain framework where
an insurance policy is modelled as a time-inhomogeneous Markov chain, see
e.g2 HoeM (1969, 1988). The paper 1s motivated by BERGER (1939), SVER-
DRUP (1969) and SiMONSEN (1970), who discussed some aspects of accumula-
tion and distribution of surplus. Moreover, RaMLAU-HANSEN (1988) analysed
the emergence of surplus using a general Markov chain and counting process
framework.

2. THE MARKOV CHAIN MODEL

We shall in the following consider life insurance policies which can be modelled
by time-inhomogeneous Markov chains with finite state spaces Hence, let S(-)
denote the right-continuous sample path function of a time-tnhomogeneous
Markov chain with finite state space /, and assume that the process starts in a
state el at time 0. The transition probabilites are denoted by
Pl(s,t) = P(S(t) =J|S(s) =1), 1, jel, s < t, and the forces of transition
i, (+) are defined by

u ()= hm P)(t,t+h)h, nyel, 1#.
h—0*

The intensities are assumed to be integrable on compact intervals.

Consider an n-year insurance policy characterized by the following condi-
tions:

1. While the policy stays in state /, premiums are paid continuously to the
company at the rate =#,(.), i.e. n,(¢t) dt 1s paid during [¢, t+dt). Annuity
benefits received by the insured while in state i are denoted by b,(.).

2. If the policy moves from state : to state y at time ¢, a lump sum benefit
B, (1) is paid to the mnsured immediately after time ¢.

3. When the policy expires at time n, the insured receives an amount B, (n) 1f
the policy is in state ¢ at the maturity date.

The quantities n,(¢), b,(¢), B,(t), and B,(n) are all assumed to be non-
random. It should also be noted that we have restricted ourselves to continuous
payment of premiums and annuities, benefits tied to transitions between
different states and to maturity benefits. However, single premiums and other
types of non-random payments can be incorporated casily. Note also that we
have introduced different notation for premiums paid and annuity benefits
received because the two types of payments are affected differently by surplus
distribution. Moreover, we shall refer to the ““ standard ™ benefits (b, (1), B, (¢),
B,(n), ,jel, 1 #j) as one unit of benefits, because one of the distribution
methods operates by increasing all benefits proportionally. Finally, expenses
are not included explicitly but can be regarded as separate benefits.
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It is assumed that the company is making its valuations on the basis of a
constant force of interest 6 and a set of transition intensities z, (-). The basis (d,
iy, ,je 1, i # ) is often called the valuation basis of the first order, and we
shall assume that the company 1s required to use this set of (conservative)
assumptions 1n determining reserves and premiums. However, we shall assume
that the actual force of interest 1s 6° (6° > 6) and that the actual behaviour of
the Markov chain 1s governed by the intensities ,ug(-). The elements (6°, ,ug,
1,j€l, 1 # j) are often called the second order basis, and we shall assume that
surplus 1s distributed according to this set of (realistic) assumptions.

Given that the policy 1s 1n state / at time 1, let V,(¢) denote the prospective
premium reserve corresponding to the valuation basis of the first order.
Moreover, let SP,{t) be the single premium or the actuarial present value of
one unit of future benefits, provided that the policy 1s 1n state : at time 1. We
shall also assume that the equivalence principle 1s followed, 1.e V1 (0) = 0. The
reserve V(1) is given by

@1 =% Y j VPt u) e () By () dl
] k¥ !

+ j v P (6 u) [b, ()~ 7, (u)) du
J t

+ Y VTP, n) B (n),
J

where the P,(s, t)’s are the transition probabilities corresponding to the
intensities ¢, (+). A similar expression holds for SP,(¢); just substitute 0 for
7, (u) in (2.1). It is well known, see eg. HoEm (1969), that V,(r) satisfies
Thiele’s differential equation

d
22) V(1) = V() +m () =b,(1) = Y w1, () R (D),

dt E
where R, (¢) = V,(¢1)+ B, (1) — V,(¢) denotes the amount at risk associated with
a transition from state ¢ to state y at ume /. Sumlarly, SP,(r) satisfies

d
2.3) I.S‘P,(t) =0SP,(1)-b,(t) — Z #y () [SP,(1)+ B, (1)~ SP,(1)].
J#1

3. ACCUMULATION OF SURPLUS

Assume 1n this section that no bonuses are paid and that the company just pays
the promised benefits b,(¢), B,(¢), and B,(n) in return for the premiums 7, (¢)
The average surplus or profit realized over the term of the policy may then be
derived 1n the following way. Assume that the policy 1s 1n state [ at time t and
that the amount V,(+) has been reserved Then during [¢, t+dt) the actual
interest earned is 6°dr V,(¢), the premiums and the annuity benefits are 7, (1) dr
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and b,(¢) dt, respectively, and the expected net loss due to transitions out of

state i is Z u% (#) dt R, (t). However, the reserve needed at time ¢+dt,
J#i

assuming the policy is still 1n state i, 1s V,(t+dr), and hence the net profit
becomes

y,(tydt = (1+8%d) V,(1)+m,(1)dt—bt) dt — Z p‘,’J(t)dt R, (1)—V,(t+di).
J#
This leads to
0 0 d
y, () =6 V() +m (1)=b,(1) - Z uy (1) Ry (1) ~ ” V(1)
1#1

and using (2.2) we get

3.1 7(0) = @ =) V() + ), (, ()= (1)) R, (1)

I#1

= A6 V,(1) + ), dAu, (1) R, (1),
11

introducing 46 = §°— 6 and Ap, (1) = y,](t)—u‘,’J(t) Thus, assuming that the
policy 1s 1n state : at time ¢, surplus accumulates at the rate y,(¢), which,
according to (3.1), is the sum of the excess interest earnings and the profit or
loss associated with transitions out of state i The actuanal present value at
time 0 of the total surplus accumulated over [0, ¢] during stays in the state i 1s
given by

!

3.2) o = j e P, (0, 5) 7,(5) ds,
0
and the present value of the total surplus accumulated over [0, r] is

(3.3) re) =y re.

It should also be noted that

CONNIOEDY j’ e PY(0,5) [m,(5) — b,(s)] ds
0

t

-2 2 j e PYL(0, 5) 1) (s) B, (s) ds

(L 0

=Y e Py 0,0 Vi),

{
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and

(3.5) r(=>, j e PO, 5) 1 (5) V,(s) ds
k#1 0

¥ j e™5 P10, 5) [, ()~ by ()] s
0

-3 j =5 PY.(0, 5) 10 (5) [B, (5)+ V()]
0

1#1
— e " P30, 1) V,(1),

see e g. RAMLAU-HANSEN (1988) formulas (4.1) and (4 10). Hence, (1) may be
interpreted as the actuarial present value of the difference between the
premiums received and the benefits and reserves that have to be provided. The
gain I',(t) may be interpreted similarly.

For a broader discussion of surplus accumulation and in particular various
stochastic aspects, see RAMLAU-HANSEN (1988). However, note that in RAM-
LaU-HAaNSEN (1988) 7(¢) and I,(¢) are random variables and not actuanal
values.

4 DISTRIBUTION OF SURPLUS

4.1. Cash bonuses

It was shown 1n the previous section that the surplus accumulates at the rate
y,(¢) 1n state i at time ¢. Hence, the surplus may be distributed by simply paying
the policyholder an annwity y,(¢) while the policy 1s 1n state ;. These dividend
payments may then supplement annuity benefits or partly offset premiums
paid under the terms of the policy. The present value at time 0 of the total
bonuses paid during [0, 1] is

(4.1) JOEDY j e " Y, (s) v, (5) ds,

0

i

where Y,(s) = 1 if S(s) =1 and 0 otherwise. Note that the amount C(¢) 1s
random, but EC(t) = I'(2). In practice, compames that pay cash bonuses do
not pay the continuous annuities y,(z), but they may distribute the surplus
through annual instalments or by other means, cf. Section 5.1.

The amount C(¢) may also be interpreted as the present value of the amount
1n a savings account attached to the insurance policy. During stays in state 1,
the account 1s then credited continuously at the rate y,(¢). Some companies do
follow this procedure by deferring the payment of the cash bonus until the
policy becomes a claim or expires. If the policy becomes a claim or expires at,
say time ¢, then the amount exp (6°¢) C(¢) is paid in addition to the policy
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benefits. If two or more lump sum payments are possible under the policy, the
surplus may be distributed through a series of payments.

It should be noted that the distribution of surplus through periodic payments
allows all policyholders to share in the profit.

4.2. Terminal bonuses

In this subsection we discuss a distribution method according to which the
surplus 1s distributed to the policyholders only when the policies expire. No
additional benefits are paid during the term of the policy, except at the
maturity date. Hence, terminal bonuses may be used to enhance the maturity
value of the policy.

It was shown in Section 3 that the actuarnal present value of the total surplus
accumulated during stays in a state /15 I, (n) given by (3.2). Hence, if this profit
is to be distributed as a payment to those policyholders who are 1n state 1 at
time n, each should receive

(42) T, (n) = I',(n)fle™*" P3,(0, n)).

One might also limit the payment of bonuses to those survivors who are 1n the
mitial state at ime n. Depending on the design of the policy, this practice may
favour those policyholders who have not made any claims under the policy In
this situation, each of the survivors 1n state 1 should receive

(4.3) T(n) = F'(n)fle™"" P}, (0, n)].

at time n

However, 1t should be noted that by applying terminal bonuses only
survivors are rewarded, and those who have died do not get a share of the
profit, although they may actually have contributed to 1t Hence, the method
resembles 1n a way a tontine scheme, and this may explain why termnal
bonuses are only used in connection with policies with a strong savings
element,.

4.3. Increased benefits

In this section we assume that the surplus is used to increase the policy benefits
This 1s one of the most common ways of distributing surplus 1n practice. We
shall assume that all benefits are increased proportionally so that the original
relationship between the benefits is preserved. Hence, the surplus is used as a
single premium to purchase additional units of benefits, cf. Section 2.

At issue, the net premium reserve 1s V,(0) = 0 and the policy provides the
benefits b,(s), B,(s), for s = 0, and B,(n). Let us now assume that the policy 1s in
state 1 at time ¢ and that the policy entered this state at some time ¢,. Moreover,
assume that past surplus has been used to buy D (r) units of additional benefits
so that they are now promised to be b*(s) = b,(s)(1+D(1)), Bi(s) =
By (s)(1+D(1)), fors = ¢, and B} (n) = B,(n) (1+ D(r)). The rate of increase
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!

of benefits at time u 1s denoted by d(u), 1.e. D(t) = j d(u)du. 1t should
0
be noted that D (.) 1s actually a stochastic process since it 1s a function of the
sample path of the Markov chain. At time 0, D (1) 1s unknown because the
future course of the policy 1s unknown
Taking the increased benefits into account, the policy reserve 1s now

(44) V* () = V()+D (@) SP,(1),

where both V,(r) and SP,(¢) are calculated using the first order valuation basts,
cf. (2.2)-(2.3). Hence, using arguments similar to the ones in Section 3, the
average surplus that emerges at time ¢ 1s given by the rate

yE() = A5 V(1) + Y. A, (1) [V (1) + BE()— V*(1)]
J#1

=46 V,(1) + D Ap, () [V,(1)+ B, ()= Vi (1)]
J#

+ D(r){A(S SP.(t) + D Ap, (1) [SP,(1)+ B, (1)~ SP,(¢)]

I+

using (4 4). Thus,

4.5) yr() = y,)+ D) Kk, (1)
if we introduce x,(t) = 46 SP,(r) + Y. Au, (1) [SP,(t)+ B, (1)~ SP,(1)}.
I

The surplus y*(¢) 1s used to buy d(r) umts of additional benefits at a cost of
SP,(t) per unit. Thus, we must have that

d(t) SP,(1) = y. (1) + D (1) k,(1),
or
(46) D(t) =d(t) = q.()+ D) r(r),

where ¢,(¢) = y,(¢)/SP,(t) and r, (1) = x,(¢t)/SP,(t). Equation (4.6) 1s a linear
differential equation with solution

4.7 D) = jl q,(s) exp ( j’ r,(u)du) ds

+D(l,)exp(§ r,(s)ds), t>1,,

f

which yields, in a closed form, an expression for the total increase of the
benefits due to the emerging surplus.
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It should be noted that (4.7) holds only during the stay in state i. If the
policy at some later time £, moves to state j then a similar formula holds with ¢,
and j substituted for ¢, and i, respectively Thus, the rate of increase of benefits
depends on the current state of the policy, but the policyholder should not
expect any sudden changes in the benefits because D(.) is a continuous
function.

It should also be noted that in this section additional benefits are granted as
the surplus is earned. In order to make this a prudent distribution method, it
requires that at any time the future safety margins are sufficient to safeguard
the company against any adverse experience. Moreover, since companies
normally cannot reduce bonuses once they have been declared, 1t also requires
surplus always to be positive, 1.e. ¥ (1) has to be positive. If this 1s not the case,
distribution of surplus will have to be deferred, and the method above will have
to be modified.

If the onginal policy is a single premium policy, then V,(r) = SP.(1),
K, (t) = v,(t), and q,(¢t) = r,(1). In this case, it follows from (4 7) that

(4.8) I+D (1) = (1+D(1)) exp ( Jd r.(u)du) -

’l

Finally, we shall see that V;*(¢) satisfies a second order differential equation
although it was defined as a first order premwum reserve, cf. (4.4). The reason is
that the benefits are adjusted continuously. According to (4.4),

d d d
— V@)= —V.@)+D' () SP,(t)+D(t1)— SP.(1),
dt dt dt

and using (2.2)-(2.3) and (4.6) we get after some simple arithmetic the
equation

d
” VEE) = 8 VO +r,(1)=bX(t) = Y, iy(t) (K* () + B = V*(1)).

J#

5. EXAMPLES

To illustrate some of the results, we shall consider two examples: A single-
premium annuity policy and a disability policy The first example focuses on
ways of distributing interest surplus, whereas the other example 1s a discussion
of surplus distribution 1n a three-state model. We have not included an example
of a typical endowment policy, because we feel that the two other examples are
more 1nteresting.

5.1. An annuity pelicy

Let us consider a single-premium annuity policy where a benefit b is paid
continuously throughout the life of an individual (x). The first order premium
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reserve is
Vviny=»ba,,,, t=0,

using standard actuarial notation. We assume that the actual force of interest 1s
a constant 8° > & and that the interest earnings are the only source of surplus,
Le. () = u(-).

Then, according to (3.1), surplus 1s accumulated at the rate y (1) = 40 V (1),
and we may, therefore, pay the insured the adjusted benefit

1) bi(t) = b+45 V(1).

Alternatively, (4.8) shows that the surplus may also be distributed by means of
the increased benefits

(52) by(1) = exp [(6°— ) 1] A.

It is interesting to note that (5.1) is typically a decreasing function of time/age,
whereas (5 2) is increasing exponentially. Thus, the two formulas represent two
completely different ways of distributing the same surplus.

In practice, however, it 1s not possible to adjust the benefits continuously as
1t 1s assumed 1n (5.1) and (5.2). In Denmark, for instance, penstons are adjusted
only annually. Therefore, there 1s a need for more practical versions of (5.1)
and (5.2). If, for example, the total surplus accumulated during year 1,
t=20,1,. ., has to be distributed through a level benefit b;(s) payable
continuously during year ¢, then b;(t) has to be determined by

(5.3) V) = bs(1) @y e n+vpes VE+1),  1=0,1,...,

where the superscript “0” indicates that the values are based on ¢°. Hence,
b5(0) 1s the level benefit that is paid continuously during year 0, b;(1) is paid
during year 1 etc. It follows from (5.3) that the series of benefits b;(0),
b5(1), ... serves the same purpose as the function b, (.).

Similarly, the function b,(-) may be replaced by level annual benefits 1n the
following way. Assume that the benefit 1s a level amount b, (¢t) during year ¢.
Then b,(r+1) 1s determined by the equation

+1
b4(’) j e_6 =0 s=tPx+r Aé 5,\+sd5+ vop\+rb4(t) ax+l+|

¢t
= vop‘+,b4(l+l)5\+,+, .

Thus, we see that the surplus accumulated over the year 1s used to grant an
increase of the benefit from b,(1) to by(t+1).

Table 1 gives examples for an annuity of 10,000 issued to a male aged 60.
The valuation rate of interest is 4 5%, d = log (1.045), whereas the actual
interest rate is assumed to be 8%, 1.e. 8° = log (1.08) Moreover, the mortality
is u(t) = 0.0005+10°98C*07412 which 15 the standard assumption used by
Danish life companies
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TABLE 1

COMPARISON OF VARIOUS WAYS OF DISTRIBUTING SURPLUS FOR AN ANNUITY OF
10,000 1SSUED TO A MALE AGED 60

Age

x+1 by (1) by (1) b3 (1) by(1)
60 13,885 10,000 13,835 10,000
61 13,784 10,335 13,734 10,350
62 13,682 10,681 13,632 10,713
63 13,580 11,039 13.529 11,089
64 13,477 11,409 13,426 11,479
65 13,373 11.791 13,322 11,884
70 12,853 13,902 12,803 14,141
75 12,345 16,391 12,297 16,861
80 11,869 19,326 11,825 20,161

The table highlights the difference between the payment schemes b;(¢) and
b4(1). The calculations show that b;(r) is larger than b,(r) during the first
8 years after which b, (¢) exceeds b;(¢). The distribution method that leads to
b4 (1) 1s widely used in Denmark, primarily because it provides some protection
against inflation However, one might also argue that in years with low
inflation, many retirees are presumably prepared to forfeit inflation protection
in return for higher benefits while they are healthy and the quality of life 1s
higher Thus, b;(¢) should perhaps be recommended more widely than it has
been until now.

5.2. A disability policy

We shall in this section consider an n-year disability policy issued on an able
male aged x. The policy may be described by the three-state Markov model
depicted in Figure 1. It 1s assumed that the policy provides a continuous

Able o) Disabled

G 00(1)

Dead

FIGURE | The disabiity model
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annuity of 1 as long as the insured 1s disabled Premiums are waived during
disability, and 1t 1s assumed that the premium payments cease after m = n—35
years in order to avoid negative reserves close to maturity.

Danish companies assume 1n their valuations that the transition intensities
are given by

u(t) = v(r) = 00005+ 100 038(x+1=4 12
and
0'([) = 00004+ 100060(r+’)_546.

The rate of interest 1s still assumed to be 4.5%, i.e. § = log (1.045). We shall
study surplus distribution under the somewhat more realistic assumptions that
the actual behaviour of the policy is governed by

#o(1) = 0y (1),
6’ (1) = 6,0(),

and
vo(1) = 6;v(1),

where 0 = (0,, 0,, 0;) 1s given below. Moreover, the actual rate of interest is
also 1n this example 8%, 1.e 8° = log (1.08).
The premium 7 and the first order reserves are given by

— el pad (111
=4, m/a\' mls
_ = —aa
V,(e) = als sma—mals, m=ns

_ -u
l/l(’) = Qg n=1s
H n n
~ai — § ar —aa_ _ s aa =11 —_ — K]
where aym _j‘ VosPy (IS, ay _j Vo ey dS, dyqm =4,y _‘[ v sprdsy

0 0

5 S

and where p¥ = exp ( - j wu)+o(u) du), Py = exp ( - j u(u)du),

0 0

and p¥ = p.—.p¥. The corresponding amounts at risk are R,(f) =
V(1)—=V, (1), Rey(t) = — V (1), and R, (t) = — V,(1). Here a denotes the state
able, i the state disabled (invalid), and d the state dead.

According to (3.1), surplus accumulates at the rates

Ya(t) = 46 V(1) +da (1) Ry (1) + dp(t) Ryy(2)
(46— A1) = Ao (1) V,(1)+ 4o (1) V. (1),

and

y (1) = 40 V() +dv(t) Ry(1)
= (46— av() V,(1)
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during stays in the states able and disabled, respectively. Here 46 = 6°—¢,
Au(t) = u(t)—p° @), do(t) = a(t)—c°(t), and 4v(r) = v(t)—v°(1). Hence,
the present values at time 0 of the total accumulated surpluses are

(53) Ii(n) = j exp (= 8°5) 2 7,(5) ds,
0

(5.4) rin) = j exp (= 8%5) ,p% y,(s) ds,
0

and

(5.5) r() = Fu(my+ I,

cf. (32). Here, ;p% and ,p" are second order values of ,p and ,p,
respectively. The corresponding possible terminal bonuses 7,(n), T,(n), and
T (n) are given by (4.2) and (4.3).

We have in Table 2 shown examples of (5.3)-(5.5) for policies with
x+n= 65 and x+m = 60. Moreover, it 1s assumed 1n these examples that
#, =07, 0, =028, and 8, = 1 which are close to what currently is used by
many Danish companies. The figures illustrate clearly the size of the surplus
inherent 1n the policies. Take as an example the policy issued at age 30. Here
the actuarial present value of the total surplus 1s 0.144 compared wtth the total
value of the premium payments 7 a5°;; which equals 0.423. The surplus might
be distributed through the terminal dividends given in Table 2. However, it 1s
hard to argue that only paying 2 13 and 512 to the lives that are able and
disabled at age 65 1s an equitable way of distributing the profit. It 1s also
difficult to justify that large amounts should be paid to the disabled lives who
have already collected benefits under the terms of the policy

Table 3 shows for the example x = 30 the possible benefits if the surplus 1s
used to continuously increase the benefits. We have shown the rates of surplus
accumulation y¥ (1) and y* (1), cf. (4.5), together with | +D,(¢) and 1+ D,(¢t),
respectively. Here 1 + D,(r) 1s the basic disability annuity that becomes payable
if disability occurs at time ¢ This quanuty and y¥(¢) have been calculated
assuming that the policy has remained 1n the state able during [0, ¢). Similarly,

TABLE 2

EXAMPLES OF PRLSENT VALULS O' ACCUMULATED SURPLUSES AND POSSIBLE TERMINAL BONUSES FOR
VARIOUS DISABILITY POLICILS WITH 0 = (07,0 8, 1)

';Z‘;C 1000 7 ) ) rm T T.(n) T(n)
20 (90 0 086 0037 0123 397 929 565
30 26 8 0101 0043 0144 213 512 303
40 408 0110 0049 0159 105 277 I 51

50 655 0103 0040 0143 043 113 060
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TABLE 3

RATES OF SURPLUS ACCUMULATION AND SIZE OF INCREASED BENEFITS
AGE ATISSUE x = 30 anND 8 = (07,08, 1)

Ase 70 ot0) 14D, (1) 1+ D,(1)
30 0002 0 560 1 00 100
40 0012 0654 114 139
50 0029 0 655 151 193
60 0045 0381 2 68 269
61 0044 0324 297 278
62 0041 0258 338 2.87
63 0036 0183 402 297
64 0027 0098 538 307
645 0019 0050 717 312
65 0 0 ) 317

1+ D, () 1s the annuity payable at time 7 and y* () measures the rate of surptus
accumulation, provided that the insured became disabled just after time 0. It 1s
interesting to note that (4.7) leads to

D,() = j‘l q,(s)exp ( j.’ r(u) du) ds = exp( jl r,(u)du) =1

0 s 0

with g,(s) = y,(s)/SP,(s) = 46—4v(t), SP,(t) = V,(t), and r (u) = g,(u).
Hence, D, (1) 1s in general easy to compute, and 1n the example in Table 3
Av(t) =0, s0 1+ D,(t) = exp (4d 1), cf. (5.2).

It 1s interesting to note that 1+D,(¢) and 1+D,(¢) increase at different
rates In particular, the sharp increase in 1+ D, (¢) close to maturity should be
noted. Actually, it 1s easily seen that 1+D,(t) > o0 as (- n. It may be
explained by the fact that close to maturity, the surplus is of the size O (h),
h=n—t, whereas the price of providing additional benefits |is
a®,, == = O(h?. In praclice, these excessive benefits should, of course, be
avoided, and it may be achieved by shifting to a system with cash or deferred
bonuses when the policy approaches maturity.

In Table 3, 14 D,(¢) yields the annuity at time ¢ if the disability occurred at
time 0. However, if disability occurs at some later time, say ¢,, then it follows
from (4.7) that the benefit at time ¢ > ¢, 1s given by

1+D5,(t) = (1+D,(t)) exp ( j’ r,(u)du)

1‘

= (1+D,(1)) 1+ D,(0))/(1 + D, (1))
Thus, if for example disability occurs at age 40, then the initial annuity 1s 1 14,
which after 10 years of disability will have risen to (1.14)(1.93)/1.39 = 1.58. It
illustrates that the benefits while disabled depend on the duration of the
disability.
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TABLE 4

EXAMPLES OF DISABILITY ANNUITIES | + D (1) IN THE SITUATIONS WHERE 0; = 1,2 AND §
AGE AT ISSUE x = 30 AND (#,,8,) = (07,0 8)

A
iy 6y =1 0, =2 0,=5
30 100 100 100
40 139 42 152
50 193 207 253
60 269 318 527
65 317 411 901
TABLE §

PRESENT VALUES OF ACCUMULATED SURPLUSES FOR DIFFERENT VALUES OF )
AGE AT ISSUE A = 30

0 =(0,,0,,0y) () I\(n) I (n)
07,08, 1) 0101 0043 0144
07,1,1) 0051 0 054 0104
07,1,2) 0051 0 062 0113
©1,1,5) 0051 0085 0136
07,1, 10) 0051 0112 0163

We have also shown 1n Table 4 the kind of disability annuities that can be
offered 1f it is further taken into account that disabled lives often have a much
higher mortality than able lives. We have shown examples of |+ D,(¢) in the
situations where ¢, = 1,2, and 5 Otherwise, the assumptions are the same as
in Table 3. It is clear that substantial mortality gains on the disabled lives
might be used to increase the disability benefits further

However, in some cases mortality gains on disabled lives would rather be
used to offset unsatisfactory disability experience among able lives. In this way
all get a share of the * favourable” mortality among disabled lives. To give an
impression of to what extent an unfavourable value of 6, can be offset by a
favourable value of #;, we have shown in Table S some examples where
6,=08 and 1, and where 6;=1,2,5 and 10. Hence, taking
0 =(0,,0,,0;) = (0.7,0.8, 1) as our basis, it is seen that even {; = 5 is not
sufficient to eliminate the overall effect of #, = 1, whereas 6; = 10 more than
compensates for the effect of §, = 1
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CREDIBILITY MODELS WITH TIME-VARYING
TREND COMPONENTS

By JOHANNES LEDOLTER, STUART KLUGMAN, CHANG-S00 LEE

ABSTRACT

Traditional credibility models have treated the process generating the losses as
stable over time, perhaps with a deterministic trend imposed. However, there is
ample evidence that these processes are not stable over time. What is required
is a method that allows for time-varying parameters in the process, yet still
provides the shrinkage needed for sound ratemaking. In this paper we use an
automobile nsurance example to illustrate how this can be accomplished

KEYWORDS

Credibility ; Kalman filter; shrinkage esttimation; time series; trend components.

1. INTRODUCTION

The goal of any ratemaking process 1s to estimate future claims on the basis of
prior experience. The experience will be available for many groups over several
time periods. It has been long known (MOwWBRAY, 1914) that both statistical
and business optimality 1s achieved by first estimating a rate for each group
and then reducing the large values and increasing the small ones. Traditionally
(e.g., BUHLMANN and STrAuUB, 1972) the initial estimates are sample means.
Others (e.g. HACHEMEISTER, 1975) have recommended deterministic trend
factors. Most all approaches that are currently used assume that the time series
observations from a single group vary independently around a stable mean or
trend.

Most time series, however, exhibit time-varying levels as well as autocorre-
lations among adjacent observations. The optimal forecasts for such series do
not assign equal weights to all past observations, but discount the information
according to their age; older observations get less weight. See Box and
JENKINS (1976) or ABRAHAM and LEDOLTER (1983) for a thorough discussion.
Evidence for time-varying parameters was presented for automobile losses by
BAILEY and SiMmonN (1959). A problem with most standard time series
approaches, however, 1s that they are designed for making forecasts based on
single series of relatively long lengths. Typical insurance problems contain
many (sometimes hundreds) series of short (3-7 years) duration. Because these
short series are occurring in a common external environment (e.g., of rising
health care costs, automobile safety improvements, etc.) many of the features
will be common to all of the series. The importance of both time serics and

ASTIN BULLETIN, Vol 21, No 1
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cross-sectional effects has also been noted in two recent econometrics papers by
GARCIA-FERRER et al. (1987) and ZELLNER and HoONG (1989) who use
shrinkage methods to predict the economic growth rates of several countries

The purpose of this paper is to bring together a dynamic model for the
time-varying aspects of the problem and a shrinkage technique that takes
account of the multiple group aspect. In Section 2 we review the credibility
model with time-invariant parameters. In Section 3 we discuss univariate
structural time-series models with time-varying trend and seasonal coefficients
and we apply the shrinkage approach of Section 2 to the coefficients 1n the
structural time series models. The final section 1llustrates this approach on
actuarial data.

2. THE STANDARD CREDIBILITY MODEL

In all of the situations discussed in this paper the data consists of observations
Y®, i=1,...,k, t=1,...,n where k is the number of groups under
consideration and n 1s the number of periods of observation. Typically, each
value represents the amount paid in claims, divided by some measure of the
size of the group, P{". The objective is to forecast the value for a future period,
Y{",, for each group.

A hinear data generating model for the observations specifies

(2.1) YO = x U4+l e'~N(0,0°P")

where ef”, fortr=1,...,nand 1 = 1, ..., k, are independent and x, are px 1
known design vectors, usually functions of 7. Two well-known models take (1)
p=1land x, = l and (2) p = 2 and x,, = (1, ¢)". The data generating model in
(1) 1s part of a special case of the Biihlmann-Straub model (BUHLMANN and
STrRAUB, 1972); the linear trend in (2) 1s part of the Hachemeister model
(HACHEMEISTER, 1975). The factor P{*) in (2 1) 1s a measure of the amount of
data that produces the observation Y?, which in most actuarial situations 1s
an average of many observations. The forecast of Y, the observation
at a future time peniod, i1s provided by the estimate of the mean
E(YS.) = x! 1.

The standard credibility model also assumes that the coefficients ), for

i=1,...,k, are independent realizations from a common distribution. That
is,
(2.2) BY =b+g?  where g“~N(0,0?B).

Treating this second level distribution as a prior distnibution, the Bayes
shrinkage estimate of B is given by

(2.3) fO=Zf0+1-2)b
where

=1
4 8= (T rons] X ponre
t

!
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is the weighted least squares estimate in group ¢,
2.5) Z,=BB+V)7,

and
(2.6) V,= (Z P,“’zc,,zc.’,)
t

A problem with this solution 1s that estimates of the quantities B and b must
be obtained A commonly accepted approach is to use the method of moments
estimates that have been developed in variance components analysis (see
SwaMy, 1971). However, there are a number of drawbacks with this approach.
The estimates of B and Z, are biased and, furthermore, the moment estimate of
the scaled covariance matrix B need not be non-negative definite. These
drawbacks can be overcome, in part, by either using the iterative estimation
approach of DEVYLDER (1981, 1984), or a true Bayes approach instead of an
empirical Bayes approach. The details of the Bayes analysis can be found in
KrLuGgmaN (1987). DeVylder proposes estimators B and b of B and b which
depend via Z, = B(B+ V)~ on the parameter B to be estimated. He suggests
an iterative procedure where

-1
Q7 b = (Z z,) Y z,p9,

H=Y Z,@"-pB-by/k-1),

-1

B = (H+H")]285?

and

ZDIDINAUCAEE T RELICEDT
!

H

The iterative procedure starts from an imitial arbitrary non-negative definite
symmetric matrix B . It stops if, from one iteration to the next, the elements
in B do not change by more than a specified small quantity.

Remark. We can think of credibility models as consisiting of two components.
The first one 1n equation (2.1) models, for each group separately, the
generation of the observations for given values of the coefficients ?; we refer
to this as the data generating model. The second component 1n equation (2.2)
relates the parameters 8 in the data generating model across the k groups; we
refer to this as the shrinkage component As mentioned above, a shoricoming of
the traditional credibility model in equations (2.1) and (2 2) 1s that it does not
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allow for time-varying coefficients. As a consequence the age of the observa-
tion does not enter into the analysis.

3. SHRINKAGE ESTIMATION IN MODELS WITH TIME-VARYING COEFFICIENTS

3.1. Analysis of a single series

The following discussion concentrates on a single series (group) and, 1n order
to simplify the presentation, we have omitted the group index i. In this paper
we use structural time series models to incorporate time-varying coefficients
into the data generating model. These models (see HARVEY and TobpD, 1983;
HARVEY, 1984) are of the form

(3.1 Y, = -chlgt'*'en e,~N(0, UZ/PI)

[~}1= Tﬂl-l+2{’ YINN(9902A)'

As the notation indicates, the ¢,’s are normal and independent with mean zero
and variance ¢%/P,, and the y’s are independent and multivariate normal with
mean vector zero and covariance matrix o2A. Furthermore e, and y, are
mutually independent. Actuaries have used models of this type before. DE
JoNG and ZEHNWIRTH (1983), for example, use these models in the credibility
context and show that the data generating equation of traditional credibility
models can be formulated in this form. NEuHAuUS (1987) applied this type of
model to the prediction of number of policies, claim frequency and mean
severity, and he discussed how to select the appropriate model and how to
estimate its parameters. A recent application of these models in an insurance
context 1s described by HARVEY and FERNANDEZ (1989) who combine a
structural time series model for the size of claims with a model for the number
of claims.

The simplest special case of the model in (3.1) assumes that p = 1, x, = 1
and 7 = 1. This model allows the mean level 8, of the series to change over
time according to a random walk, f, = f,_,+v,. The exponentially weighted
moving average forecasts that anse from this model (see ABRAHAM and
LEDOLTER (1986), for example) are a special case of the recursive credibility
model discusssed by GeErBER and JoNEs (1975) and its generalization by
SunpTt (1981). If Var(v) = 0, implying that the coefficients f, = f are
time-invarnant, then this model simplifies to the data generating equation of the
Biihlmann-Straub model.

Another special case of interest is the model with a time-varying hnear trend
component where

(3.2) §,=|:1J, ﬂ,={ﬂ°’}, T={l 1}, and A=[A' 0]
0 ~ .Bl/ 0 1 0 2,2



CREDIBILITY MODELS WITH TIME-VARYING TREND COMPONENTS 77

This model allows the slope f,,=f, ,-;+v,, and the ntercept
Bo: = Bo.i— 1+ B, -1+ vy, to change over time. With 4; = 4; = 0 the model in
(3.1) reduces to the data generating equation of the Hachemeister model.

If quarterly or monthly data are analyzed, it may be necessary to incorporate
a seasonal component. A model with

1] o | 11 0 ]
0 i 0 1
(3.3) =1 B=|» , T=]0 0 -1 -1 -1
Vi1 0 0 1 0
0 | V-2 ] 00 0 1 1
vy, ] 4, 0 0 0 07
vy, 0 4 0 0 O
v, =| vy, and A=(0 0 i 0 O
0 0 0 0 0 0
0 | 00 0 0 0]

can be used for quarterly data. The first two components in ff, correspond to
level and slope at time . The last three components of f, correspond to additive
seasonal factors. If the U’s are zero, the model reduces to the Hachemeister
linear trend model with seasonal indicators

The inference in structural time series models (3.1) 1s discussed in HARVEY
and Tobpp (1983). The standard Kalman filter updating equations (see, for
example, JAZWINSKI, 1970; MEINHOLD and SINGPURWALLA, 1983) are used to
obtain ,b‘,,,,,, the estimate of /)’,, that 1s based on the observations Y, , Yo, oo, Y.
Furthermore, one can obtain 1ts covanance matrix ¢ G,,l,,, predict
future coefficients f3,., from /i,,+,,, = T'B o, and future observations Y, .,
from Y (1) X,,+[T ,Bn\n

Starting values are needed to initialize the Kalman filter recursions

(34) /.}_m—l = Tﬁ‘.-m—l
Bue = Buortk(Yi=x Buu)
G-y = TG, - T'+ 4
Gy =Gk, X Gy
ki =G %@/ Guox +P7H7

For a single series in (3 1) we start these recursions with a p X 1 vector of zeros
for ﬂ0|0 and a diagonal matnx with very large diagonal elements for Gy ,. This
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non-informative initialization reflects our 1ignorance about starting values 1n the
absence of prior data. Other itialization approaches are possible (ANSLEY
and Koun, 1985; KoHN and ANSLEY, 1986, DEJoNG, 1988), and their
relationships are discussed in LEDOLTER, KLuGMAN and LEeg (1989). R

With a non-informative prior distribution the Kalman filter estimate f,,,
is an unbiased estimator of the coefficient at time n, f,. The estimate 1s a
weighted average of the n past observations. In general, older observations
receive less weight 1f there 1s evidence that the coefficients are time-changing.

The Kalman filter updating equations, and therefore the estimate /3,,|,1 and
the forecast ¥ ,(/), depend on the variance ratios A in equation (3 1). These
parameters are estimated by maximum likelihood. The likelihood function
of > and A is obtamed from the prediction error decomposition
(ScHWEPPE, 1965). Assuming a non-informative initialhization the log-likelthood
function can be written as

n

- 1
(3.5) (o, A;data) = ¢ — 1e logo? — - Z log /,
2 2 t=p+1
l - I n 2
- > (Y= x B
20 t—p+1
where Y,— X, ﬂ,|,_, 1s the one-step-ahead prediction error at time ¢, and o2/,

1s 1ts variance; ﬂ,,,_, and f, = P, '+x, Gr-1X, can be obtamned from the
Kalman filter recursions The maximization 1s simplified by the fact that one
can concentrate the log-likelihood function with respect to o2; the numerical
maximization of the concentrated log-likelihood /. (A, data) needs to be carried
out for elements 1n A only.

3.2. Analysis of multiple series and the introduction of shrinkage

So far we have discussed the analysis of a single series with time-varying
coefficients. In insurance applications we not only have a single series, but we
have n observations from k groups, and the estimation of A4 can be improved
by incorporating information from the other groups Here we assume that the
A 1n the k groups are the same. As the value of n 1s usually small relative to &,
1t 1s not possible to estimate separate variance ratios for each series. Assuming
independence across the & groups we can add the log-likelilhood functions in
(3.5) for the & groups and obtain estimates of a common 4 via numerical
optimization. An estimate of the vanance o2 is obtained from

1 k n

Y (YO—x B DU,

3.6 52
( ) ’ (n )k :ZI t=p+1

The estimate of A 1s used to carry out the Kalman filter recursions. This 1s
done for each group separdtely, using a non-mformative mmitialization The
resulting coefficient estimate ,B,,,,, provides us with an estimate of the parameter
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at ume n, /}(’), 1ts covariance matrix is given by ¢2G%), The estimate 1s a
weighted average of the n observations. The estimate of A determines the
weights 1n this average. Positive variance ratios in 4 imply that the importance
of each observation in determining the estimate depends on its age. If the
variance ratios are zero, then the Kalman filter estimates simplify to the usual
regression estimates ¢ 1n equation (2.4).

So far there has been no shrinkage, as we have ignored the cross-sectional
correlations. In order to effect shrinkage we introduce a second equation,

(3.7 B =b,+d"  where gP’~N(@©,0'B,).

This equation specnﬁes that at time n the coefficient vectors in the structural
time series model for the k& groups vary independently around a common value
b,. We combine this equation with the results from the k separate Kalman
filters,

(38) B = BPO+w?  where wi ~N(0,0*G))

are 1ndependent across groups These two equations yleld the standard
two-stage credibility model in Section 2. The shrinkage estimate based on (3.7)
and (3.8) 1s given by

(39) BY = Z .+ (U—2)b,,

where Z, = B,(B,+ V) 'and V, = G,‘,?,,. The results in Section 2 can be used
to estimate b, and B,. In our examples we have used deVylder's iterative
approach discussed in Section 2.

3.3. Discussion

Adding this second equation to induce shrinkage is somewhat heurstic, but is
needed as by itself the model 1n equation (3.1) does not incorporate cross-
sectional correlations.

In theory, a cross-correlation structure can be introduced by specifying a
certain covariance structure for the error terms 1n a multivariate version of the
model 1in (3 1) However, 1t 1s usually quite difficult to 1dentify the exact form
of the cross-correlation structure, especially for the short time series which are
typical with nsurance data. We have avoided these modelling 1ssues by
mtroducing a heuristic shrinkage equation at the last available observation
period

Model-based approaches to shrinkage are clearly possible. One alternative to
the above heuristic shrinkage approach is a model that introduces a shrinkage
equation for the coefﬁment vector at the nitial time period zero. That is, one
assumes that /3(’) b0+a , where the a{’, for 1 = 1,. ., k, are independent
realizations from a normal distribution with mean vector zero and covariance
matrix a2 B,. This implies that at the initial time period the standard actuarial
shrinkage model 15 vahd If the clements in A4 are zero, implying that the
coefficients in the data generating model are time-invariant, this model and the
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traditional credibility model are identical. For time-varying coefficient models
we start from the standard actuarial shrinkage model at time zero, but assume
that the coefficients for subsequent periods are subject to stochastic change.
For the inference in this model one initializes the Kalman filter in each group
by the same B{} = by and G§), = By, treats by and B, as unknown parameters,
and simultaneously obtains estimates of A, b, and B,. This results in shrinkage
of the Kalman filter estimates é’f,?,, at time n towards the common 1nitial mean
by . But even for modest positive values of A this shrinkage effect disappears
very quickly as » increases, and for moderate # there 1s hardly any shrinkage. It
1s for these reasons that we have rejected this alternative approach and have
concentrated our discussion on the former, somewhat heunstic procedure.

Another model that introduces cross-sectional correlations 1s one that
assumes that the k coefficients at time ¢, [3,(", for i =1,.. , k, vary indepen-
dently around a common trend component b, which itself follows a structural
time series model. LEE (1991) studies these common-trend type models n
detail, and we hope to report on this work in a future paper.

The advantage of our admittedly heuristic method is that 1t 1s more general
than the traditional credibility approach. It recognmzes the fact that most time
series exhibit changing levels, trends and seasonality, and it discounts previous
observations when 1t determines their estimates The difference between the two
approaches 1s shown best in the case of the Biihlmann-Straub model The
traditional approach shrinks the sample means towards a common average,
whereas our new approach shrinks exponentially weighted averages. Further-
more, it can be shown that for 4 = 0 our approach coincides with the solution
in Section 2.

4. EXAMPLES

In this section two examples are given, with the second one being analyzed in
detail. These examples provide illustrations of situations in which models that
combine time-varying and shrinkage aspects are likely to improve the
results

4.1. Worker’s compensation

MEYERS (1984) studies yearly loss ratios under Worker’s compensation 1nsur-
ance for 319 classes (occupation groups) and three years A model without
trend component 1s appropriate since these data are already adjusted for
inflation Meyers uses the Biuhlmann-Straub model 1in his analysis However.
MEYERS and SCHENKER (1983) provide evidence that the loss ratios are not
constant, but vary independently from year to year around a common mean In
the notation of our present paper

410 ,3‘,=[1:,, 'B’=[?BOI] TS[O lil’ and A=|:'l' 0},
0 - ﬂlr 0 1 () O
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where £, 1s an unchanging long-term average and f,, 1s the level in year ¢. An
approach that combines this state-space model with shrinkage can be expected
to improve the forecasts for future losses, as many of the 319 classes have very
small sample sizes.

4.2. Automobile bodily injury

The data for the second example are taken from the automobile insurance
industry Quarterly data on the amount (not adjusted for inflation) paid under
the bodily injury component of automobile insurance policies (LOSS) and the
number of cars covered by these policies (EXPOSURE) were obtained from
31 states. Only states without no-fault laws were included, as under no-fault
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FiGURe | Multiple time series plot of the ratio R = LOSS/EXPOSURE
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laws many claims that would otherwise be covered by the lhability portion of
the nsurance are paid under the bodily injury component. Data from the first
quarter of 1983 to the second quarter of 1988 (n = 22) are used 1in our

analysis.
The ratio R = LOSS"/EXPOSURE!), where ¢ = 1, .., 22 (quarters) and
i=1, ..,31 (states) 1s our dependent variable that needs to be predicted The

multiple tme series plot of the ratios R in Figure | shows presence of
seasonality and a need for a logarithmic transformation. The presence of
seasonahty is seen more clearly in Figure 2 where we have plotted estimates of
the multiplicative seasonal indices for the 31 states. We use the following
procedure to obtain the seasonal indices. For each univariate series we
calculate centered yearly moving averages to estimate the trend component; we
then obtain, for each time penod ¢, an estimate of the seasonal factor from the
ratio of the observation and the corresponding centered moving average, next,
we average the seasonal factors for each quarter to obtain seasonal indices for
the four quarters; finally, we normalize these indices so that they sum to four.
The dot plot of these normalized seasonal indices 1n Figure 2 shows a seasonal
pattern; in the fourth quarter the ratios R{" tend to be highest

mHmmm Fommmmm o tmm e Fo o mm Fommmmmm +o---- Quarter 1
R R cERErae L o osarter 2
_;_____l:__;Lliléllflililll_i__+: ________ e R Quarter 3
b e ;______::_+;E:_iiii:i_i_::_:__+:____Quarte, .
0.80 0.88 0.96 1.04 1.12 1.20

FiGure 2 Dot plot of the scasonal indices for the 31 states

A multiple time series plot of the transformed observations, ¥ = log R,
is given 1in Figure 3. This plot indicates that a linear trend model with additive
seasonal components provides a good description of the transformed observa-
tions.

In the standard actuarial model 1t 1s usually assumed that the varance of the
error component 1s related to the exposure P; that 1s, Var (e!”) = ¢¥/P" We
now want to check whether this 1s a reasonable assumption. Since the
exposures P! do not change much over time, we calculate an average exposure
P for each state Due to size differences among the states, these averages are
quite different. Next, we adjust each time series Y for trend and seasonahty
and calculate an estimate of 1ts variance. The residuals from a regression of ¥
on time ¢ and additive seasonal indicators are used to calculate the vanance
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FIGURE 3 Muluple time serics plot of ¥ = log (LOSS/EXPOSURE)

estimate. In Figure 4 we plot the resulting mean square errors against the
reciprocal of the average exposures. The linear relationship confirms that
Var () = ¢%/PY is a reasonable assumption

Based on this preliminary analysis we are led to consider the structural time
series model with a linear trend and additive seasonal components,

4.2) Y\ = x/ B+ el eM~N(0, 0%/ P
g = TBL + v~ N, o’4)

where x,, T and A are given in equation (3.3). Our model allows for
time-varying coefficients and reduces to a linear trend regression model with
quarterly indicators 1if 4; = 1, = 4, = 0.
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FIGURE 4 Plot of the mean square crror from the hnear trend regression with seasonal indicators
against the reciprocal of average exposure, k& = 31 states
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The maximum hkelihood estimation approach in Section 3 is applied and,
assuming independent groups, estimates of ¢* and the three variance ratios are
obtained Tt is found that 6% = 3.8089* 1072 4, = 0.0495, 1, = 0.0044 and
13 = 0.00008. The qstlmatek;lg, is close to zero and the log-likelthood deficiency
(rat), I.(4,, 4y, 43)—1.(4y, 43,0), 1s quite small. This implies that the
seasonal coefficients do not change much over time. Contours of the log-
likehihood function of 4, and 4,, for 4; = 0.00008, are plotted in Figure 5
This plot, as well as the large log-hikelihood deficiency Z.(4;, 45, 0)—1.(0, 0, 0)
= 19.16, shows that a standard least squares approach which assumes time
constant intercept and slope coefficients would be tmappropriate

In order to check the adequacy of the structural time series model In
equation (4.2) we calculated the standardized one-step-ahead forecast errors for
periods 6 through 22. Standardization of the forecast error by its standard
error 6f,'? assures that its variance does not depend on time. We found that
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Ficure 5 Contour plot of the concentrated log-likclihood function The variance ratio that
determines the vanability i the seasonal component 1s set at 1ts estimate A; = 0 00008 Probability
coverage of the contours 1s obtained from the Chi-square approximation

the standardized one-step-ahead forecast errors were serially uncorrelated for
essentially all 31 groups

The estimates of :ll, 5.2 and ;13 are used to calculate the estimates ﬁf,’,’,,,for
n = 22 (the last available ttme period) and ¢ = 1, ..., 31 (states). Dot dfagrams
of the k = 31 estimates of intercept, slope and seasonal coefficients (only the
first one is shown), together with their standard errors, are given in Figure 6.
The standard errors are obtained from the diagonal elements in 6>GY),.

We notice considerable varniability among thc & = 31 intercept estimates.
Furthermore, we find that the between group variability is much larger than
the uncertainty that is assoctated with each estimate (that 1s, the within group
variability as measured by the standard error of the estimate). This result

indicates that there should be no or lttle benefit to shrink the intercept



86 JOHANNES LEDOLTER, STUART KLUGMAN, CHANG-SOO LEE

Intercept:

R e e Estimate
3.60 3.90 4.20 4.50 4.80 5.10
POy S P U U Standard
0 0.02 0.04 0.06 0.08 0.10 Deviation
slope
Lyl RRERRRE L SO U S e -Estimate
0.01 0.02 0.03 0.04 0.05
e UL S0 ——- Standard
0 0.005 0.010 0.018 0.020 Deviation

Seasonal:

PRSI Il b Estimate
-0.10 -0.05 0.00 0.05 0.10

JU SO S S Standard

0 0.03 0.06 0.09 Deviation

FiGURE 6 Dot plots of the estimates and their standard errors for the intercept, slope, and scasonal
coefficients 1n model (4 2), k = 31 states

estimates. The dot plots of the slope estimates and their standard errors show a
different picture; the within group vanability 1s quite large when compared
with the variability between the slope estimates. These pictures suggest that
shrinkage procedures should pool the slope estimates towards a common value.
The same conclusion is reached for the seasonal factors (the third, fourth and
fifth component of the beta vector). They, too, should be shrunk towards
common means.

Next, we apply shrinkage and calculate the shrinkage estimate discussed in
equation (3.9) of Section 3. That 1s, we compule

(4.3) B = Z [0 +U-2)b,
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where Z, = B,(B,+ V)" and ¥, = GY,. DeVylder’s modification in (2.7) is
used to estimate b, and B,. The only minor difference is that we are using the
maximum likelihood estimate 6% = 3.8089 % 10~2 from the Kalman filter as the
estimate of ¢? In Figure 7 we compare the estimates before and after
shrinkage. The graphs confirm what we had anticipated from the results in
Figure 6. The slopes and seasonal components are shrunk towards therr
respective means, whereas the intercepts are essentially unchanged.

INTERCEPT SLOPE SEASONAL
53 005 012
b
008
49 | 0044
004
45 ] 003 IR
000§
41 002 8

—004

371 001§

-008;
334 000{__ ' -0124 .
BEFORE AFTER BEFORE AFTER BEFORE AFTER

Figure 7 Intercept, slope and first seasonal coefficient estimate in model (4 2) before and after
shrinkage, k = 31 states

Forecast comparisons

The prediction of future values 1s a major reason for fitting models to data. We
must now 1nvestigate whether the proposed new approach leads to forecast
improvements In particular, we address the following two questions*

(1) Has shrinkage of the coefficients improved the forecasting performance of
our time-varymg trend component model? To address this issue we
compare forecasts that are calculated from the shrinkage estimates £ in
(4.3) [method 1] and forecasts that are calculated from the standard
Kalman filter esimates ,Q,(,’f,, [method 2].
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(2) Has our generalization of incorporating time-varying trend components
helped the forecasting? To investigate this question we compare the
forecasts that use the shrinkage estmates B n (4.3) [method 1] with
forecasts that are calculated from the shrinkage estimates in the standard
regression model with constant linear trend and seasonal indicators [Hache-
meister, method 3].

A true test of the forecast performance of a model is obtained by an
out-of-sample comparison of forecasts and actual observations. Here we use
the last four observations R{) through RY), for : = 1, . , 31, as our hold-out
sample. This is a reasonable choice as actuanal practice bases predictions of
future premiums on about four to five years of past data. For each state we
calculate four one-step-ahead forecast errors R,—R,_,(1), t=19,...,22,
where R, (1) = exp [¥,(1)] 1s obtained by applying the inverse transformation
to the forecast of the logarithmically transformed data For each state
separately, we then compute the mean square error MSE, the mean absolute
deviation (error) MAD, and the mean absolute percent error MAPE For each
measure (MSE, MAD, MAPE) and for each method (methods | through 3) we
calculate a weighted average that combines the information from the 31 states
The average exposures P 1 = 1,..., 31, are used as weights. The results are
given wmn Table 1. Table 1 also shows the results of a further refinement of
method 1 (Kalman filter with shrinkage). In method IR we shrink the last
4 components of the 5-dimensional coefficient vectors, but leave the first
components (intercepts) unchanged

TABLE 1|

WEIGHTED AVERAGES OF ACCURACY MEASURES AVERAGE EXPOSURES ARE USED TO COMBINE
THE INFORMATION FROM k = 3| STATES

Method 1 Method 3
Kalman filter model Method 2 Hachemeister

(4 2) with shnnkage Kalman filter model constant hnear trend

(4 2) without shrinkage & seasonal indicator

1 IR mode!l with shrinkage
MSE 3228 3188 3924 3802
MAD 375 370 420 432
MAPE 512 499 535 540

In addition to the comparison of the aggregate measures, we compare the
measures for each state separately. We assign a score of 1 if in state 1 the first
method leads to a lower MSE (MAD, MAPE) than the second. The proportion
of states where method 1 outperforms method 2 (method 3) is given in
Table 2.
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TABLE 2

PROPORTION OF STATES WHERE ONE METHOD OUTPERFORMS THE OTHER

Companson MSE MAD MAPE
Method 1 vs Method 2 58 55 58
Method | R vs Method 2 71 65 61
Method 1| vs Mecthod 3 61 S8 61
Method | R vs Method 3 65 55 55
Method 2 vs Method 3 55 52 55
Method | R vs Method 1 52 48 52

Comments. (i) For shrinkage methods we calculate the forecasts ¥,(/) after
shrinking the estimates that are obtained at tuime ¢. We carry out a new
shrinkage if we go to another forecast origin. (ii) The Kalman filter methods 1
and 2 require estimates of the variance ratios 4, 4, and 4,. In order to avoid
the numencal maximization of the log-likelihood for each forecast origin ¢, we
use the estimates that are obtamned from the complete data set (n = 22).
(m) The transformation R,(/) = exp [¥,(/)] results in the median of the
predictive distribution of R, ;. The mean of the predictive distribution can be
obtained by incorporating the variance of the predictive distribution into the
inverse transformation (see GRANGER and NEWBOLD, 1976). Because differ-
ences are usually relatively minor and because it is not obvious whether the
mean of the posterior distribution 1s preferable to the median we have not
pursued this adjustment.

Interpretation of results

Table 1 shows that we can improve the one-step-ahead forecast performance if
we allow the trend and the seasonal components to change over time.
Comparing the results of the two shrinkage methods (methods 1 and 3) we find
that the structural time series model in (4 2) leads to a 15.1. (16.1), 13 2 (14.4),
and 5.2 (7.6) percent reduction in MSE, MAD, and MAPE, when it is
compared to the Hachemeister model with fixed trend and seasonal compo-
nents. The numbers in parentheses reflect the improvements if shrinkage 1s not
applied to the intercepts in the structural time series model. Table 2 leads to a
similar conclusion. The one-step-ahead forecasts from the structural time series
model with shrinkage outperform the forecasts from the Hachemeister model
in roughly 60 percent of the states (the proportion varies from 55 to 65 percent,
depending on the accuracy measure that is used 1n the comparison).

Tables 1 and 2 also show that shrinkage of the coefficients improves the
forecasts in the structural time series model (4 2) The size of the improvements
that are due to shrinkage (method 1 vs method 2) 1s roughly the same as the
one we obtain by allowing the trend and seasonal coefficients in the two
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shrinkage methods to change over ime (method 1 vs method 3) There 1s very
little difference between the forecasts from the structural time series model
without shrinkage and the Hachemeister shrinkage model with fixed trend and
seasonal coefficients (method 2 vs method 3).

This example shows the feasibility of an approach that applies shrinkage to
the coefficient estimates in structural time series models and illustrates its
potential for forecast improvements GARCIA-FERRER et al. (1987) and
ZeLLNER and HonG (1989) reach a similar conclusion in their analysis of
macroeconomic data. They find that individual country growth rate forecasts
are improved by shrinking the forecasts to a common average However, their
shrinkage methods are somewhat different from the ones considered in this
paper. Furthermore, they apply shrinkage primarnly to forecasts and not to
estimates in time-varying coefficient models.
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A SIMPLE PARAMETRIC MODEL FOR RATING AUTOMOBILE
INSURANCE OR ESTIMATING IBNR CLAIMS RESERVES
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ABSTRACT

It is shown that there 1s a connection between rating in automobile insurance
and the estimation of IBNR claims amounts because automobile insurance
tariffs are mostly cross-classified by at least two variables (e.g. territory and
driver class) and IBNR claims run-off triangles are always cross-classified by
the two variables accident year and development year. Therefore, by translat-
ing the most well-known automobile rating methods into the claims reserving
situation, some known and some unknown claims reserving methods are
obtained For instance, the automobile rating method of BAILEY and SiMON
produces a new claims reserving method, whereas the model leading to the
rating method called * marginal totals’’ produces the well-known IBNR claims
estimation method called ““ chain ladder”. A drawback of this model is the fact
that it 1s designed for the number of claims and not for the total claims amount
for which it 1s usually apphed.

As an alternative for both, rating and claims reserving, we describe a simple
but realistic parametric model for the total claims amount which 1s based on
the Gamma distribution and has the advantage of providing the possibility of
assessing the goodness-of-fit and calculating the estimation error. This method
is not very well known in automobile insurance—although a satisfactory
application is reported—and seems to be completely unknown 1n the field of
claims reserving, although its execution is nearly as simple as that of the chain
ladder method.

KEYWORDS

Cross-classified data; (automobile & property) ratemaking; IBNR claims;
Gamma model; maximum likelihood method.
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[. A SHORT OVERVIEW OF SOME AUTOMOBILE RATING METHODS

In the automobile insurance tariffs of many countries several tariff variables
are used, e.g the horse-power class of the car, the bonus/malus (or no claims
discount) class of the driver or the class of the territory where the car is
principially garaged. In this way the portfolio of automobile insurance policies
is cross-classified into a number of cells which are each supposed to be
homogeneous, so that all policies of the same cell pay the same premium. For
the sake of simplicity we will consider in the following only two tariff variables,
which are subdivided into m and n classes respectively. When then have mn
cells labelled (i, ), 1= 1,...,m,y = 1, ..., n. Now let n, be the known number
of isureds (policy years) of cell (1, /) and s, their observed total claims amount
as realization of the random variable S, . For some of the cells, n, may be so
small that it 1s not advisable to use s, as the only basis for the calculation of
the net premium E(S,)/n, of that cell. Therefore one searches for marginal
parameters x,,i = 1,.. ,m, and y,,j = 1,...,n, with

either x,y, = E(S,)/n, (multiplicative approach),
or x,+y, = E(S,)/n, (additive approach).

This also reduces the number of figures needed to describe the tariff premiums
from mn to m—+n In the following we only consider the multiplicative
approach, but the methods described can easily be translated to the additive
approach, too.

The problem of finding appropriate marginal parameters x, and y, 1s one of
the classical problems of insurance mathematics Tt has been known for a long
time that the simple marginal averages

X, = 8,./n4
Yy, = (5+J/n+,,)/(s++/"++)

(where a “+’ indicates summation over the corresponding index) give a
satisfactory approximation of E(S,)/n, only if the tanff vanables are indepen-
dent. But generally this 1s not the case. Therefore, in the last 30 years several
different methods have been proposed. We will now shortly review three of the
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most  well-known mainly following the description given by VAN
EeGHEN/GREUP/NUSSEN (1983) For a more comprehensive and more recent
comparative analysis see JEE (1989)

The first breakthrough was achieved by BAILEY/SIMON (1960), who esti-
mated x,, y, by mimmizing

||[\/]=

0= Z =y X )0, X, y)

= Z Z (8, In, = .35, 3),

but their underlying assumption of Q having (up to a factor) the distribution of
a chi-square will normally not be true (see VAN EEGHEN/GREUP/NUISSEN 1983)
Moreover, 1t can be shown (VAN EEGHEN/NUSSEN/RUYGT 1982) that for the
minimizing parameters x,, y, the mequalities

n

n
Z nyXx,y, 2 Z Sy 1=1,...,m,
=1

=1
m
Z Ry X, ¥, = Z Sy J=1..,n,
=1

hold, 1e. there results an overestimation of all marginal loss amounts (in the
multiplicative case only).

Therefore BAILEY (1963) and later JUNG (1968) proposed estimating x,, y,
directly from the intuitively appealing conditions

n

h
(1a) Z n, Xy, = Z Sy, i=1,. ,m,
=1

J=1

and
(1b) Z n,x,y, = Z Sys J=1,...,n,
=1 =1

which can be solved iteratively: starting with, for example, y, = 1, (1a) results
in x, = 5,5 /n,., which is inserted in (Ib) giving new y, etc The procedure
converges quickly. This method has been called ““marginal totals” If the
random variables S, denote the number of claims instead of the total claims
amount, then this method can be shown to be maximum likclihood under the
assumption that all S, are independent and Poisson distributed with parameter
n,x,y, (sec VAN EEGHEN/GREUP/NuUSSEN 1983, p. 93). But for the more
important case where S, is the total claams amount one has no model from
which the equations above derive and thus, for example, a statistical test of the
goodness-of-fit cannot be designed either
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SANT (1980) proposed estimating x,, y, by the method of weighted least
squares, i.e. by minimizing

m n m n
Z Z (s,~nyx,y)’In, = Z Z ny (s, /ny—x,y)’

=1 =1 =1 =i

But the powerful tools of regression analysis like the R?—statistic, the analysis
of residuals and the estimation of the prediction error can only be applied
ngorously 1f all S, are normally distributed with Var (§,) proportional to n,,.
Both assumptions are not very realistic.

Using the additive approach, the weighted least squares method leads to the
same equations for the marginal parameters x,,y, as the marginal totals
method, which in this case is no longer the maximum hkelihood estimator for
Poisson distributed numbers of claims.

Altogether, in the case of S, being claims totals all three methods described
above are only of a heuristic nature without an underlying realistic model.

2. SOME METHODS OF ESTIMATING IBNR CLAIMS RESERVES
AND THEIR CONNECTION TO AUTOMOBILE RATING METHODS

We now turn to the problem of estimating IBNR claims reserves. For an overview
see VAN EEGHEN (1981) or TAayLOR (1986). Here s, and S, respectively—we
intentionally use the same symbols as before—denote the inflation-adjusted
total amount of payments made in development year j,j=1,...,n for
accidents occurred in accident year 1,i = 1, ..., m If one works with incurred
amounts, s, and S, denote the total amount of changes in valuation made 1n
development year j on behalf of claims of accident year i Working with
incremental amounts we may assume that all S, are independent Typically,
one has n = m and s, is known for all i+j < m+1 (run-off triangle), and one
is interested 1n esumating E£(S,) for :+; > m+1. The known measure of
exposure n, here normally only depends on the accident year 4, 1.e. n, = n,
{(number of policies or number of claims reported 1n the first development year)
or is even ignored (1.e. n, = 1 for all i, j).

One of the most important ways of treating the IBNR problem 1s to assume
a multiplicative structure of the type

E(S,) = x,y,

and to estimate the parameters x,, y, from the triangle of known data. This
way was used, for example, by DE VYLDER (1978), who estimated x,, y, by
minimizing

Z (sy_ xlyj)2
L

(where the summation is for all , j where s, is known). This is exactly the same
method as was used by SANT (1980) in the context of automobile insurance if



SIMPLE PARAMETRIC MODEL FOR RATING AUTOMOBILE INSURANCE 97

one puts all n, =1 there. Analogously each method which estimates the
marginal parameters x,, y, for cross-classified automobile insurance data can
also be translated into a method for estimating the IBNR claims reserve. One
only must take the different pattern of known data (triangle instead of
rectangle) into account

Let us consider as further example the method of marginal totals.

Again working with » = m and n, = 1, we get the conditions

(H) D oxy=2 s, i
J

J

—

—_—

V) Zx,yj=25u, J N

where the summation 1s for those indices where the corresponding s, are
known (i.e. in the case of a full triangle ; runs from 1 to m+1—: and i from
1 to m+1—). The same equations are also obtained if one derives the
maximum likelihood equations in the Poisson case.

Because of the triangular structure, the above equations can here be solved
recursively : We start with the general observation that the solution of this type
of problem 1s only unique up to a multiplicative constant ¢ # 0 because if x,, y,
is a solution, x, ¢, y,/c 1s a solution as well. Therefore, without loss of generality
we can put y,+ .. +y, = 1. Then using equation (H,) we have x; = s, .
From equation (V,) we get y,, = sy,,/x,. Then (H,) yields x,, (V,,-,) yields
Ym—1 €tC.

But it 15 also possible to derive a direct formula for the unknown mean
claims amount £(S,) = x,y,. For A > m+ 1 —1 it can be shown (see KREMER
1985, p 133-136, or Appendix A where a shorter proof 1s given) that

m+1=
X Yn = ( Z Sl_[) '.fm+2—l'fm+3—-l “fh—l'(fh_l)

=1

m+1—y ] m+i—-y j—1
where j;'_-( Z Z skl)/( Z Z Skl)a _]=2,...,m.
= I=1 =1

k=1 A-1

J
If one realizes that Z s 15 the accumulated claims amount of accident
=

year k known at the end of development year ;, one sees that we have just
obtained the well-known chain ladder method which is thus shown to be the
same as the marginal totals method for n, =1 Furthermore, from the
marginal totals conditions (H), (V) one easilly sees that an incorporation
(analogously to (1a) and (I1b)) of the known exposure n, into the esumation of
the IBNR claims rescrve can be dispenscd with, as 1, can be amalgamated with
the marginal parameter x, (in the multiplicative approach only), whereas thc
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application of the chain ladder method to the claims rauos s,/n, assumes a
different model.

It 1s interesting to note that the analogue of the BAILEY-SiMON method
seems to have never been published as a method for estimating the IBNR
claims reserve.

Another interesting point 1s the fact that in the context of IBNR claims
cstimation only the multiplicative approach seems to have been used, although
several applications to automobile rating indicate that there the additive
approach might give a better fit (see e.g. CHANG/FAIRLEY 1979). A special
feature of the additive approach 1s that it may lead to ncgative values
E(S,) = x,+y,. This would make no sense in the ratemaking situation but n
the case of claims reserving it can be very realistic (settlement gains)

Clearly, also 1n the context of claims reserving the least squares method and
the marginal totals method (and, of course, the BAlLEY-SiMON method) could
be carried through with the additive approach, too, both producing an
identical set of equations for x,, y, as has already been mentioned in the section
on automobile rating

There is a natural connection between the multiplicative and the additive
approaches because, through the log-transformation,

syin, = Xy,
becomes
log (s, /n,) = log (x)tlog(y).

This means that an esumate for E(S,/n,) can be established by applying an
additive approach to the log-transformed data log (s, /n,) and by transforming
back the obtained solution log (x,), log (y,) using the exponential function. This
was done by CHANG/FAIRLEY (1979) for automobile rating and by KREMER
(1982) (see also ZEHNWIRTH 1989) for claims reserving (with n, = 1). For the
solution of the transformed (additive) problem, both used the mcthod of
(weighted) least squares (here giving the same result as the marginal totals
method) 1n order to esumate the marginal parameters log(x,), log ().

As ZEUNWIRTH (1989) points out, this procedure contains an implicit
distributional assumption: In order to fulfill the conditions of normality and
homoscedasticity for the least squares estimation of the parameters log (x,) and
log (y,), it has to be assumed that log (S,/n,) has a normal distribution with
mean value log (x,) +log (y,) and a vaniance which 1s proportional to 1/, This
implhes that S, /n, is dssumed to have a lognormal distribution. CHANG/FAIR-
LEY and KREMER did not take this imphcit distnbutional assumption nto
account Therefore, they systematically underesumated E(S,/n,) as they used
x,y, = exp (log (x,)+log (y)), which 1s the median of the lognormal distnbu-
tion whereas the expected value 1s x,y, exp (au/2) with au = Var (log (SU /).
As stated above, we have homosceddstlcny if we assume that o, = a’/n,,
where o2 can be estimated by

Y. ny(log (s, /n,)—log (x,y))/c=m—n+1),

Ly



SIMPLE PARAMETRIC MODEL FOR RATING AUTOMOBILE INSURANCE 99

which 18 just the expression to be minimized by the least squares method. Here
¢ denotes the number of cells where s, is known.

Unfortunately, we have lost thc muluplicative structure, as generally
E(S,/n,) = x,y,exp (05/2) cannot be cast into the form E(S,/n,) = ¥, 7,
anymore.

Whereas all the models discussed before have been shown to be only of a
heuristic nature both in automobile rating and in claims reserving, the
lognormal model relies on a parametric assumption for S, and the instruments
of regression analysis can be used to check this assumption against the data. In
the next section another method i1s given which rehes on a reasonable
distributional model and therefore also allows the application of various
important and useful statistical tools. This model has two advantages over the
lognormal model First, it 1s not just any model for §, but can be traced back
to a micro-model for the total claims amount of each single insured unmit and
can therefore be expected to be realistic. Second, we can choose either the
multiphcative or the additive structure for E(S,/n,), whereas the lognormal
model yields neither of these structures.

3. A PARAMETRIC MODEL FOR RATING AUTOMOBILE INSURANCE OR
ESTIMATING IBNR CLAIMS RESERVES

We use the same notations as before, 1 e. we have mn cells labelled (i, ), each
with known measure of exposure n, (possibly independent of j in the case of
claims reserving) and with total claims amount variable S, (realization s,). In
the case of claims reserving we know the realizations s, in the run-off tniangle
only. We now assume, following TER BERG (1980), that the total claims
amount R, of each umit k = 1,...,n, of cell (1,7) has a Gamma distribution
with mean value m, (independent of k) and shape parameter « (independent of
I, j, k), 1.e. with probability density function

fy(@) = exp (—oz/m,) """ (af/m,)*|I ()

(here the usual representation of the Gamma density has been reparametrized
in order to implement the mean value m, directly as a parameter). Because in
practice many units k will have a realization ry = 0 of R, the shape
parameter « has to be conceived of as smaller than | 1n order to attribute a
high probability to the neighbourhood of z = 0 (for instance, we have
prob (R, < m,/10) = 0.79 for a = 0.05) Assuming that all n, umts of cell
(1,y) are independent, our distnbutional assumption 1mphes that
S, = R, + R+ ... also has a Gamma distribution but with mean value n,m,
and shape parameter #, o And this 1s the distribution we shall work with 1n the
following, because we usually know only the realizations s, of S, and not those
of R, . The assumption that the shape parameter « 1s the same for the units of
all cells may seem questionable 1n some cases But this should be detected by
testing the goodness-of-fit (see next Section).
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In the multiplicative approach we assume furthcrmore that m, can be
displayed n the form m, = x,y, with unknown parameters x,, y,, which we
shall estimate with the maximum likelihood method.

Assuming that all S, are independent, the likelihood function on the basis of
the realizations 5, > 0 1s given by

L= nexp ( ~ %%
L

xly_/

sy )""“/<s,,r(n,,a) ).

Xy,

Therefore the loglikelihood function is
log (L) = Z {—as,/(x,y)+n,alog (as,) — n,0log (x,y,)—log (s, I (n,«))}

(where the summation 1s for all 1,7 where s, is known). The maximum
likelihood estimator are those values X,,¥,, & which maximize L or equiva-
lently log (L) They are given by the equations

—

0=20log(L)ax, =y, (s,/(x}p)—ny/x), i
I

—_—
-
-

B

0 =23log (L)ay, = ay, (s,/(xyD—n,ly) 7

which show that the last condition ©log (L)/3x = 0 1s not needed for the
calculation of the likelithood estimator for x,, y,, which can immediately be
seen to be given by

1 Sy
x,=—z»7, =1, ..,m,

n y]
(2
1 Sy .
y, = — -, j=1,.. ,n
71.;.1 X,

These equations have a high intuitive appeal. For, considering the goal of
approxmmating s, by n,x,y,, we see that this amounts to approximaling
s,/(n,y) by x, and therefore the n -weighted mean of s,/(n,y), j =1, ,n,
should be a reasonable estimator for x,

Also, equations (2) are not new. They have already been used by VAN
EEGHEN/NUSSEN/RUYGT (1982). They call them the “direct method” and
write (on page 111)-

“This set of equations are a direct translation of the intuitive calculations
presented ... by F. K. GrREGoRrius. In fact, a solution 1s found when iteratively
calculating the values x, and y, by means of the formulae given in (2) by letting
y, =1 =1,. .,n) be the starting valuc The procedurc converges rapidly
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We may rewrite (2) as

Z hyx, = ZS,,/)’,, [ =
7 7

Z nyy, = Zsu/x,, J
i 1

which is similar but not equivalent to (1a) and (1b).

As yet, we have not been able to find an argument why a ‘satisfactory’
solution should (approximately) satisfy (2)...

The method was more or less developed as a first try and we were surprised to
see, that, once formalized, it produced practically the same results as the
method of marginal totals.”

|
E

I
=

So much for the quotation from vAN EEGHEN/NISSEN/RUYGT (1982).

One year later the Dutch actuanes found an argument for their method
because the booklet of vAN EEGHEN, GREUP and NUSSEN (1983) contains on
page 109 a small hint saying that the assumption of a Gamma distribution for
R, would lead to the *“direct method ”. But there, as in TER BERG (1980), a
much more general regression model 1s considered, of which our simple
cross-classified situation 1s just a special case. Moreover, these authors have
concentrated on ratemaking, whereas we want to emphasize the applicability to
claims reserving, too.

Finally, 1t s interesting to note that the likelihoood equations for the
additive approach

l
E

Y Gy +y) —ny (x,+y) =0,

J

I
=

Y syl +y) —n, e+ y) =0,

must be solved with the help of, for example, the NEWTON-RAPHSON numerical
method. Moreover, these equations are different from those suggested by the
“direct method ™ :

]
3

X,=) (,mngy)ng,
J

Il
—_
=

Y= Z (s,—n,x)/n.,,

4. STATISTICAL ANALYSIS OF THE MODEL

This parametric approach with a realistic distributional assumption enables us
to use many tools for the statistical analysis, as has been clearly set out by
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ALBRECHT (1983), who describes the case a = | in considerable detail but
again as a general regression model. Besides the consistent and (asymptotically)
efficient estimation of the model parameters, we have the possibility of testing
the significance of the tariff variables with the likelihood ratio test (see
ALBRECHT (1983) for details), we can calculate the error variances of the
parameter estimators and we can check the goodness-of-fit We first consider
the goodness-of-fit* According to our model, S, has a Gamma distribution
with E(S,) = n,m, and Var (§)) = n,jm%j/a. The higher the shape parameter
n, o of this distribution, the closer it is to the normal distnbution If all S, are
approximately normally distributed the statistic

(Sy=ES)° _ 5 (S,/0a0)—m)
: :

Ly Var (SU) n,

y

az n, (—S" - 1)2
hi

n,x,y,

15, under the hypothesis of our model, approximately at chi-square with
c—m—n degrees of freedom, where c 1s the number of cells where s, is
known

The special form of this statistic allows its application without having
estimated «. For this purpose we fix a in such a way that the value of the
statistic 1s just below the (say) 0.95-fractile of the chi-square distribution. If
using this value of o a normality condition like *‘n,& > 10 is fulfilied for
nearly all cells, we may be satisfied with the goodness-of-fit of the model. But
we have to realize that this goodness-of-fit test only checks the fit of aggregated
figures and cannot test the distributional assumptions within the cells

Applying this procedure to SANT's (1980) collision data (126 cells) we get
(<) = 0.021 and the three lowest values of n, o turn out to be 6.8, 9.4 and
115, so we may accept the multiplicative Gamma model. Using CHANG/FAIR-
LEY's (1979) combined compulsory data (105 cells), we get a (<) = 0.0094 and
have 9 cells were the resulting value of n,a 1s lower than 10, the lowest being
4.5, so the fit 1s less satisfactory.

A simple formula for an estimator of a 1s given by the method of moments,
1e. by equating the variances

Y (sy=nyxp)t =Y 0 p) e
L

Ly

This yields o = 0.014 for Sant’s data and a« = 0.0093 for Chang/Fairley's
data.

Strictly speaking we should use the likehhood estimator for « We then must
solve the likelihood equation

0 =0log(L)/0x = Z n,{log (as,) —log (x,y) — v (n, )}

L
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Here equations (2) have been used to obtain Znu = Zs,j/(x,yj). w(z) =
I'"(z)/T (z) denotes the digamma function, for which the asymptotic approxi-
mation

w(z) ~ log(z)—(z) '—z7%12
exists which even for arguments as low as z > 4 1s exact to 4 decimal places.
This approximation yields as the solution of the likelihood equation

a = (c+iJc* +ab)la

a = 42 nu log (”U—\',yj/sy) > 0’

Iy

b=Y (3n)""
L]

with

c = Z 1 = number of cells where s, is known
)

Applied to Sant’s data this yields a & 0.0202. For Chang/Fairley’s data we get
o = 0 0097. If we have some small exposures n, such that n,o < 4, we should
refine the approximation of the digamma function by using the recursion
w(z) = wy(z+1)—1/z and by including more terms of the approximation
series. Then a direct formula for a cannot be given anymore We must
therefore solve the likelihood equation iteratively with the NEwTON-RAPHSON
method.

Having estimated «, we are also in the position to calculate the estimation
error of the estimators for x, and y,. This 1s done in Appendix B.

According to the experience of the Dutch actuaries, the results of applying
the ““direct method” to automobile insurance data are rather close to the
results obtained by the marginal totals method. Translated to the IBNR claims
reserving problem this means that the *“direct method ” results will be similar
to the chain ladder results. But with the * direct method” we can additionally
make use of the aforementioned advantages. Moreover, the formulae provide
the possibility of taking the exposure n, of accident year { into account (which
1s different from the situation with the chain ladder). And perhaps the
goodness-of-fit statistic or the size of the likelihood function gives an indication
to answering the question “additive or multiplicative?”” Because of these
advantages of the parametric method we believe that before using a rather
heuristic method hke BAILEY/SIMON or chain ladder one should examine
whether the parametric method fits the data.

5. IMPROVEMENT OF THE MODEL IN THE CASE OF
KNOWN CLAIMS NUMBERS

Especially in the claims reserving situation we will often have difficulties in
finding an adequate measure n, of exposure
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Therefore mostly n, = n, or even n, = 1 1s taken. However, this 1s not
satisfactory because the exposure to further payments or changes in valuation
varies 1n fact rather strongly over the development years. Therefore, a more
meaningful measure of exposure will be the number ¢, of those claims of
accident year 1 where there 1s a change in amount during development year ;.
These data ¢,,1+j < m+1, are often available in practice.

Rating in property insurance presents a similar problem. There, even the
risks of the same cell vary greatly with respect to their size, which 1s usually
measured by the sum insured. Therefore, the number of risks 1s not a good
measure for the exposure of a cell (z,7), and the sum insured 1s taken instead.
But then an assumption of cur micro-model is not fulfilled anymore because
the “units” of sum insured are not independent, as a single risk consists of
several such units. We therefore must abandon our micro-model and try
directly whether the Gamma model for S, with mean value E(S,) = n,x,y,
and shape parameter 7, « fits the data if n, 1s the sum insured. The parameter a
then does not have a specific interpretation anymore But 1f we know
additionally the total number ¢, of claims of cell (1, /) we can apply the
following stepwise approach which assumes a Gamma distribution (with shape
parameter x) not for the total claims amount per risk unit but for the amount
of each single claim. Of course, this procedure can also be applied 1n
automobile ratemaking 1f the number ¢, of claims is available.

In these situations we should use ¢,—the corresponding random vanable is
denoted by T,—as an additional measure of exposure and adopt the following
three-steps-approach, which follows the 1deas of ALBRECHT (1983): In the first
step we take the observed number ¢, of claims of cell (7,7) as the measure of
exposure and assume that the size of each corresponding amount has a Gamma
distribution with mean value m, = x,y, and shape parameter «. Then we are 1n
our original model (with n, replaced with ¢,) leading to the direct method This
yields smoothed average claims amounts x,y,. In the second step we smooth
the ¢, by assuming that all 7, are independent of each other and that each T,
has a Poisson distribution with parameter n, v, w, (here using the ‘old’ measure
of exposure). Then the maximum likelithood estimator of v,, w, on basis of the
realizations ¢, 1s given by the equations (la) and (1b) with x,, y,, s, replaced
with v,, w,, ¢, respectively. This yields smoothed numbers n,v,w, of claims. In
the last step, E(S,) 1s estimated by n,v,w, x,y, implying that in each cell the
number of claims 1s independent of the average claims amount.

6 FINAL REMARK

In the context of this paper we should point out the following further
connection between rating methods and claims reserving methods. Another
important rating method which smoothes the claims experience of several tariff
classes 1s the Biihimann-Straub credibility model. It also uses a cross-classifying
approach by the two dimensions ‘tariff classes’ and *observation years’.
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Therefore, one will presume that 1t could also be translated into a method
for estimating IBNR claims reserves. But there 1s a difficulty because the
Biihimann-Straub model assumes that the average claims amount §,/n, of
tariff class : has the same expected value over all years j, whereas in the run-off
triangle the expected value of the average claims amount S, /n, of accident year
1 and development year ; varies 1n a certain but unknown pattern over the
development years. However, this difficulty can be overcome in such a way
that the Bithimann-Straub model can directly be used for claims reserving, too
(see Mack 1990).

APPENDIX A
PROOF THAT THE CHAIN LADDER METHOD CAN BE DERIVED FROM THE
MARGINAL TOTALS CONDITIONS (AND THEREFORE IS MAXIMUM LIKELIHOOD
IN THE POISSON CASE)

We show that the chain ladder method

m=+1—1

X, yn = ( z su) Smr2=iSmes= Somo (S 1), h>m+i-1,

=1

with

m+1-

E 5[ E R ) s

k=1

can be deduced from the marginal conditions

m+t—1 m+1—y

(H) Z Xy, = Z Sy» i=1,...,m,
=1 =1
m+1—y mt1-—y

7) Z Xy, = Z Sy J=1,...,m.

1=1 =1
J

J
Letc, = Z x,y;and b, = z sy (i+7 < m+1) denote the expected and

i1=1 =1

the observed accumulated claims amount of accident year : at the end of
development year ; respectively. Then conditions (H,) can be written shortly as
Comi1—1 = b m+1—,- For h > m+1-i we have

Cl,nl+2—l Cin

Cn = ct,m+l—1 '
c:,m+l—r Cl,h-'l

Therefore
X Ve = Clh_cl,h—l
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. C:,m+2—: Cz.h—l Cin _ l
== c|_m+]—1 _— s .
C!,m+l—1 Cl,h—2 Ct,h—l
m+1-1
Cr.m+2-1 Ci k=1 Cin
= E RSPk -1
J=1 Crom+1— Ch-2 Crh-1t
and we have only to show that ¢, /¢, ,_, = f,. Because of
mt+1—y J m+1—y
)R IOV A DI Y
¢y =1 k=1 =1 k=1
N -1 - m+1—, J-1 m+1-y
Cl,j—l
Vi Xk Yi Cey-1
=1 k=1 =1 k=1

and of . -
PR

1t 1s enough to show that

m 1~y m+1-y
(A_[) Z Sy = z bk/
k=1 k=1
and
m+ 1~y m+l—y
(BJ) kzl k-1 = kz bk,J—l
= -1

hold for j = 2, ..,m We show this by recursion from j=mtoy= 2"
(4,), 1e ¢, = b,,,, holds because of (H,).
(B)) follows from (4)) and (V) as

m+l=y m+1—y m+1—y m+1—y
Chy-t = Z (Ck_[_'xl(y_]) = Z Cy — Z Xk
k=1 k=1 k=1 k=1
m+1—y m+1-—y m+1l—y m+l—y

Z by — Z Siy = Z (byy=s4) = Z b, ;-
k=1 k=1 k=1

k=1
Finally, (4,_,) follows from (B) and (H,.,_)) as

m+2—y m+1—y

Z Choy=1 = Z Choy=1 T Cmt2—y 1
k=1 k=1
mti1—y m+2—y

Z bk,_/—l+bm+2—],_/—l = Z bk,_[—l
k=1 k=1

This completes the proof.
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APPENDIX B
ESTIMATION OF THE (ASYMPTOTIC) ERROR VARIANCES
We have estimated the marginal parameters x,, y, with
either x,y, = E(S,/n,) (multiplicative approach)
E(S,/n;) (additive approach).

or x,+y,

by the maximum hkelihood method and now want to know how precise these
estimates are, 1.e. we want to calculate Var (X)), Var(Y), Var(X,Y) or
Var (X,+ Y)) where X, and Y, denote the random variables corresponding to the
estimators for x, and y, respectively. A standard result of maximum hkelihood
theory states that under certain regularity conditions which are fulfilled here,
the following holds true: If a parameter vector @ = (@), .., &,) 1s estimated
by the maximum likelihood method, the obtained estimator @ has asymptoti-
cally a normal distribution with mean value @ and with a covariance matrix
which is equal to the inverse of the information matrix

2
16) = E( _ 0%log(L) )
80,00, |,,
where L = L(@) 1s the likelihood function.
In our case we have & = (x,, ..., x,, V(. ..., ¥,) where we have omitted x,
without loss of generality in order to obtain a unique solution of the likelihood
equations and have considered o as being known (For the case of a being

included 1in @, TER BERG (1980) has shown that this does not change the
calculation of Var (X)), Var (¥)) and Cov (X,, ¥))). We now have

Cov(Xy, ..o X, Vis oo Y YR T (Xy, s Xy V1 ees ¥, =T
A A(Ey, oy R Py P = T

where %,, ..., §, denote the estimated values of the true parameters x,, ..., y,
From /' we directly obtain asymptotic approximative values for Var (X)),
Var (Y)) and Cov (X,, Y). This also gives immediately an approximation for

Var (X,+Y) = Var (X)) +2 Cov (X,, Y))+ Var (V)

which we want to know in the additive approach. In order to obtain Var (X, )
for the multiplicative approach, we make usc of a general theorem on the
higher moments of normally distributed variables (see e.g RICHTER 1966,
p 369) to get

Var (X, Y) = Var (X)) Var (Y;)+(Cov (X,, ¥)))*+ Var (X)) (E (Y))* +
+ 2E(X) Cov (X,, ¥)) E(Y)+(E(X,))* Var (V)

(which holds exactly if X, and Y, are normally distributed) This can be

calculated from /™' and from E(X) = %,, E(Y) = j,.
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Therefore, the only thing left to do is the calculation of  and I~' Con-
centrating again on the multiplicative approach, the loglikelihood function is

lOg (L) = - z (aSy/(xly/)+any log (xly])+g(a! ny, Su))

Ly

and yields (using £(S,) = n, x,y, and the Kronecker symbol , with §, = 1 for

i =j, 6, =0 otherwise)

d%log (L an,

A,k =E| - g( ) = +61k5 251,k5m,
Ox, 0x, x?
d%log (L an,

B, =E|- g (L) =__Y 2<i1<m 1 <j<n,
Ox, Oy, Xy,
0% log (L an

C[',. =E _ g( ) = ;Iélj, IS[,jSH,
aylayj y_;

(where n., includes n;,). With the matrices 4 = (4,), B = (B,), C = (C)) the
information matrix / can be represented as partitioned matrix

o ol

Bl
where 4 and C are diagnoal matrices.

Unfortunately, an explicit formula for the inverse matrix /™! is not available.
One therefore must apply a numerical inversion method. But the dimension of
the inversion problem can be reduced with the help of the following result for
the inve:se of a partitioned matrix (which can be verified by calculating 7~/
and I17'):

. D! -D7'BC™!
-Cc~'B'D”! c'+c'Bp7'BCT!
_[AT'+A4T'BFT'B 47! —A"'BF™!
- _F-lpgt 4! Fol
with
D=A-BC'HB,
F=C-BA"'B.

A straightforward calculation yields for the elements of D and F

Dzk = a(élan- —plk)/(x:xk), 2 < lak <m,

Fy, =a@yn.,—q)/(»y), L </ly<n,
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with

~ n,n = ngn
— y "tk _ d %y
P;k—E —, qu—z .

J=t Ny, 1=2 N4

Therefore, only the smaller matrices D and F must be inverted in order to
obtain /™! and also 7",
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SEPARATING TRUE IBNR AND IBNER CLAIMS!

BY R. SCHNIEPER
Winterthur, Switzerland

ABSTRACT

A simple model for IBNR claims 1s presented Estimates for the loss reserves
and for the ulumate claims rate are derived. Approximations to the mean
square error of the estimators are produced. A more specific parametric model
1s suggested for the case that we deal with claim numbers instead of claim
amounts. The general method 1s illustrated by a practical application to the
pricing of a casualty excess of loss cover.

I. INTRODUCTION

The IBNR Method which we present in this paper has been developed in
connection with the pricing of casualty excess of loss covers. The method can
also be applied to loss reserving problems for long tail business, however it is
best understood 1n connection with the practical problem which motivated its
derivation.

A remsurer has to quote a price for an excess of loss cover. The statistical
information at hand are the revalued individual excess claims from different
accident years as well as a revalued measure of the exposure pertaining to each
accident year (e.g. the revalued premium income) The problems connected
with the revaluation of the claims and of the measure of exposure are by no
means trivial. We shall however assume that this revaluation can be performed
in a satisfactory way and that our data have been corrected for premium and
claims inflation We shall call this revalued statistics the ‘as 1f” statistics.

To price the cover we have to estimate the ultimate claims amount in the
layer, 1.e. to perform the IBNR correction. In this paper we present a simple
method which requires only about twice the amount of computation of the
chain-ladder method and which has the advantage of being practcally
unbiased. An additional advantage of the estimator defined below 1s that one
can assess its precision. It 1s felt that these two properties are of special
importance when pricing layers with high deductibles where data are scarce

In the next section we present the general model. In the third section we
restrict ourselves to claim numbers. In both these sections we illustrate the

! The Paper has been presented at the XXIth ASTIN Colloquium 1n New York under the title
‘A Pragmatic IBNR Method’

ASTIN BULLETIN, Vol 21, No |
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theory with an extremely simple example. In the last section we apply our
method to a practical problem.

2. THE GENERAL MODEL

2.1. Summary statistics

Most IBNR methods require only one summary statistics: the IBNR triangle.
If we have the excess claims from n accident years, the IBNR triangle contains
the following information:

dvpt
year 1 2 n Exposure
acc
year
1 X X2 Xin E,
2 X2 X22 Xy 01 E,
n Xn,l En
Where X, is the total amount of excess claims from accident year ¢ in

development year .

For our purposes we need a more detailed summary statistics which we now
define Let N, , denote the total claims amount pertaining to new excess claims,
1.e. to claims which were not yet recorded as excess claims in development year
J— L. This is the true IBNR component. Let D, be the decrease in total claims
amount between development year j— 1 and development year ; with respect to
claims already known as excess claims in development year j—1 This 1s the
IBNER component (incurred bu not enough reported claims). D, may take
negative values but cannot by definition be larger than X, ,_,.

The following relations hold true between the X’s, N’s and D’s*

(211) X,1=NI| [ = l,...n
(2.12) X, =X,.—-D,*N, i=1,.n =2 .n

y

Of course we only observe the variables for which 1+; <rn+1. We shall not as
1s usually done reduce the data to one IBNR triangle, the X-trniangle, but we
shall work with two triangles. the N-triangle of the genuine IBNR claims and
the D-trianglc of the IBNER claims

From (2.1 1) and (2.1 2) 1t 1s seen that the X-triangle can be derived from the
N- and D-triangle.

To 1llustrate these definitions let us consider a very simple example.
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EXAMPLE

There are 3 accident years. For each accident year we have the usuval ‘as if’
statistics: revalued and developed individual excess claims as well as a revalued
measure of exposure

Claim Development year number
number 1 2 3
Accident
year number | 1 1 — —
2 2 2 15
3 — 05 15
E, =20 4 — 1 —
5 — 15 25
6 —_ — 1
Accident
year number 2 I 05
2 0S5 1.5
3 15
E, =125 4 — 0S§
5 — 2
6 — 1
Accident
year number 3 1 05
2 05
3 |
E =32 4 15
5 2

A claim demoted by ‘—’ is a claim which has not yet reached the priority or
which has dropped below the priority.
In our example the traditional IBNR triangle 1s:

X-tnangle
J
I 2 3
t
1 3 5 65
2 25 5
3 55

and the new statistics are
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N-triangle D-triangle
J J
1 2 3 ] 2 3
! 1
1 3 3 1 1 — 1 -05
25 35 2 — |
3 55 3 —

2.2. Assumptions

Let H, denote the set of those variables in the N- and D-triangle which are
observed up to calendar year k.
H,={N,D,|i+; <k+1}.

s

For the sake of convenience we also mntroduce
Hy = {0, Q}.

H, 1s the set of all variables which have been observed so far. H,, _, is the
history of the process up to the calendar year immediately preceding the
emergence of N, and D,.

We make the following assumptions:

(A) E[N,| Hs )l =EA  y=1,..n

The expected IBNR claims amount does not depend on past history, 1t is the
product of the exposure measure of the accident year with a factor depending
on the development year only.

(Ay) ED,|H\,2l=X,,.,6, 1=1, .n
1=2,..n

The expected decrease in IBNER claims amount ts equal to the reported claims
amount of the previous development year times a factor depending on the
development year

We only observe those vanables for which 1+ < n+1 but for the purpose
of loss reserving and rating we shall need the assumptions to hold true for all
Ly=1,...n

If we knew whether individual claims are open or closed it might be
preferable to replace the X, ’s in (A,) by the corresponding total claims amount
pertaining to open claims
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(A3) {Ni,, Dy, |J=1,2,...n}

{Ny Dy | 1= 1,2,...n}

are independent sets of random variables. i.e. random variables pertaining to
different accident years are stochastically independent.

Assumptions (A}), (A,) and (Aj;), though they are quite general, are not
always satisfied 1n praxis. In particular, as was remarked by one of the editors,
a new claims manager arriving on the scene may have an impact across claims
cohorts In such a case assumption (A;) would of course no longer hold true
This I think, shows the mitations of all statistical models and methods used to
assess loss reserves' when applying them to practical problems, we should
always make sure that we have all the necessary information on the process
generating the claims and that we take that information into account when
choosing a statistical method to estimate the outstanding losses.

2.3. Pricing

We now focus our attention on the pricing problem, i e. We want to estimate
next year’s expected excess claim amount E[X,,, ,] or alternatively next year’s
expected ultimate claims rate

Xll n
(22.1) R= E[ “'.}
En+l

If the measure of exposure £, ., 1s the premium income, then R is the expected
ultimate burning cost. Assuming that (A ) and (A,) hold true for accident year
n+1, one obtains straightforwardly:

(2.2.2) R(0) = E{X"“‘"} =4, (1=6y) ... (1=6,)+
] A1 =8 ... (1=8,)+

lu-—l (1 _(5")+
Ay

where

0 =4, .A,.0:,...0,).
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From (A,), (A,) and (A;) 1t follows that

n+l—y
5
(2.2.3) = ——— j=1,..n
Y E
=1
and
n+l—;
o)
X

J=1
=1

are biasfree estimates of the A’s and &’s respectively.
(225 RO =4(=-56) ... (1-8)+A4,(1=35) ... (1—-5,)+ 4,
is an estimate of the ultimate claims rate R. The individual estimates being

biasfree and the correlation between the factors being ‘small’ because of (A;)
the bias of R(f#) can be neglected.

ExaMPLE (continued)

- 11 . 6.5 . 1

Ay = — =0.143 Ay = — =10.144 Ay =— =0.05
77 45 20

R 2 - 0.5
5.5 5

R = 0.100+0.159+0.050 = 0.309

2.4. Loss reserving
The loss reserve for accident year 1 is
L, = E[X, | H,

Under assumption (A;) and (A,) 1t 1s easily seen that
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(226) Ll = X,_,,+|_,(l_5n+2_,)....'(1_5,,)
+ El['{n+2——1(1 _5n+3—1) .. (l _Jn)
+ j'n+3—|(l _6"+4_,) (l _5")

+ Ay (1 —6,)
+ 4,

i.e. the loss reserve consists in a component for IBNER claims and a
component for IBNR claims the former depending on the claims observed so
far and the latter on the exposure.

One obtains an estimate of L, by replacing the parameters 1n (2.2.6) by their
estimates (2.2.3) and (2.2.4) respectively.

ExaMPLE (continued)

Aceident  y iee dgn-, IBNER, E, IBNR, L
year i -
1 65 1 65 20 0 65
2 5 11 55 25 125 675
3 55 0 700 385 32 667 10 52
17 2377
Where 4,,1-, = (1 —=d,42-) ... (1 —4,) is the IBNER correction factor.

To compute the loss reserves in practice we will of course use the original
claims as opposed to the rcvalued claims used for pricing purposes; we will also
have to choose a suitable measure of exposure.

It 1s interesting to compare (2.2.6) to the formulas for loss reserve provided
by the chain-ladder method and by the Bornhuetter-Ferguson method respec-
tively

The loss reserve for accident year [ according to the chain-ladder method
1S

(227) LI = XI,II+|"‘I.FI1+1—!

Where F, 1s some factor pertarming to development year ; (for details see for
instance Nationale-Nederlanden [2]) The same quantity as estimated by the
Bornhuetter-Ferguson method 1s:

(2 28) Lz= Xl,n+|‘_l+El.Gn+l"l
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Where G, _, is a factor which is applied to the exposure.
With a suitable notation we can rewrite (2.2.6) 1n the following way:

(229) LI = X:,n+l—| An+l—1+E1An+I—l

It 1s seen that formally our estimator 1s a generalisation of both the chain-
ladder and the Bornhuetter-Ferguson estimator® 4,,,_,= F,,,_, and
Aysy-, =0 gives the chain-ladder estimator whereas 4,,,_, =1 and
Ay, = G, -, gives the Bornhuetter-Ferguson estimator.

2.5. Performance of the estimator

We now want to assess the performance of R(é) defined 1n (2.2.5) In order to
do so we need the following stronger assumptions.

(A) E[N,| H., -2 = E} Var [N,] = E, 0/
(AY) E[D, | Hyj-ol = X, =6, Var[D, | H]=X,, 1}

Developing R(é) in a Taylor serics, we obtain-
2n—1

OR(0
y 2 d-0)

=1 ,

(2.3.1) R(6) ~ R(O) +

(A;) implies that é, and é/ are not strongly correlated for 1 # ; hence

2n—1
(2.32) mse(R@B) = E(RO-R©O)* =~ Y (,‘5;;0)

=1

2 A
) Var ()

0=0
where we have replaced the unknown quantities.
OR(0)
_;0’,
by the approximations:
SR(0)
W 0:0.

We stiil have to find approximations for the Var (0 From (A}), (A%) and (Aj)
it follows that.

2

(2.3.3) ar( ) = — Jj=1,.n

]
n+1—y

E,

=1
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TZ

(2.3.4) Var§)=——~—— ;=2,..n

n+l—y

X,

el
1=1

on the other hand we have the following biasfree estimators of ajz and rj2
respectively

1 n+1-y . ]
(235 §r=—— Y (Ny~ALE)— J=1,...n—1
n—j =1 El
. 1 nt+l—y i ]
(236) P=— ) (D,~58X,)) J=2,...n—1
n—jJ =1 -1

and if there are enough development years at hand we have:
i,, =0 and 3,, =

and one may assume:
a,,z =0 and r,,2 =0.

Plugging the expressions given above into (2.3 2) we obtain an approximation
for the mean square error of R(6)

EXAMPLE (continued)

OR . X OR R OR
= (1-6)(1-85)=0700 — =(-dy)=11 —=1
5, 5, 824
SR X X SR R ..
= (1 -8)=—-0157 = -],(1-8)—4, = —0235
56, 60,
. 0,2 . 0,2
Var() = —— =48-10"% Var(ly) = —2— =2-107°
E,+E,+E, E,\+E,
N (72
Var(1;) = —=— =0
!
A 17 5 T3
Var (6,) = ‘=110 107° Var(;) =— =0
XII+X21 XIZ

from which one obtains
mse'? (R(§)) = 0.017

Another possibility to evaluate (2.3.3) and (2.3.4) 1s to specify a parametric
model. An example 1s given 1n the next section.
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3. A MODEL FOR CLAIM NUMBERS

We use the same definitions as in section 2 with the difference that claim
amounts are now replaced by claim numbers: X, denotes the number of excess
claims from accident year 1 in development year ;. D, is the decrease in total
number of claims between development year y—1 and development year ; with
respect to claims already known as excess claims in year j—1. (D, is a
non-negative integer smaller or equal to X, ,_,). N, denotes the number of new
excess claims pertaining to accident year : in development year j. Rela-
tions (2 1.1) and (2 1.2) hold true.

EXAMPLE (continued)

From the individual claims of the example of section 2 we obtain the following
IBNR triangle for claim numbers.

X-triangle
J
| 2 3
{
| 2 4 4
2 3 4
3 5
N-tnangle D-triangle
J J
1 2 3 1 2 3
! 1
1 2 3 1 1 — 1 1
3 3 2 — 2
3 5 3 —

Under assumptions (A ) and (A,) relation (2.2 2) holds true. R(f) is now the
expected ultimate claims frequency and J, 1s the probabulity for an excess claim
to drop below the priority between development year j—1 and development
year J.

The expressions given 1n (2.2.3) and (2.2.4) are biasfree estimates of the A’s
and o’s respectively. (2.2.5) gives an estimate of the ultimate claims frequency
R (). The bias of the estimate R(f) can be neglected.
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ExaMPLE (continued)

s 10 - 6 A |
I, =— =0130, i=—=0133, 1 =— =005
77 45 20
- 3 N 1
52 = == 06, 63 = . =0.25
5 4
R(6) = 0.189

The performance of R(#) can be assessed with (2.3.2).
We now make the following parametric assumptions:

(AY) N, | H.s,—p ~ Poisson (4, E)
(A5) D, | H., -, ~ Binomal (5, X, ,-1).

It 1s easily seen that:
AN =AY =>(4) i=12.

We also assume that (A-) holds true. The log likelihoods of the parameters
are:

n+1—y

G0y I(3) = - ( E |4+ NU)IogiJ
=1 =1
n+l-y n+l—y n+1—y
(3.2) 1(5,)=( Yy D,j)‘log(éj)+ X, = 3. D,|log(1-6)
=1 =1 =]

and it 1s seen, that the :1, and 31 of (2.2.3) and (2.2 4) are the maximum
likelihood estimates of the As and §,’s.
From the maximum likelthood theory we know that

-1 ntl-y
:l for Z E -

=]

821
8%,

Var (1) - [—E(

we therefore use the following approximations:

. 51 !
Var(4) =~ - ( > )
5 '1_/ A=1
. j,
3.3) Var (1) = P J=1,. n

E,

1=
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analogously:

6,(1-4)
n+t—y

Z X'-J—l
1=1

and we obtain an approximation of the mean square error of R(é) by plugging
(3.3) and (3.4) into (2.3.2)

(3.49) Var (3)) = J=2,...n

ExAMPLE (continued)

Var(3) = 17 100"  Var(d) = 30 107*  Var(i;) =25-107*
Var (3,) = 480-107*  Var (9;) = 469-10~*

OR OR OR
=03 =075 Ry
8 64, 8l

6R SR

= 0097 ZZ = —0.85

8, 65,

mse' 2[R (6)] = 0080

4. A PRACTICAL PRICING EXAMPLE

The following IBNR triangle (X-triangle) is borrowed from a practical motor
third party hability excess of loss pricing problem :

dvpt

. year 1 2 3 4 5 6 7 Exposure

acc

ycar
1 75 289 526 84 5 80 1 769 795 10'224
2 16 148 321 396 550 600 12°752
3 138 424 363 533 96 5 14875
4 29 140 325 469 17'365
5 29 98 527 19°410
6 19 294 17°617
7 191 187129

The excess claims and the measure of exposure (premium of the whole
portfolio) have been revalued. Based on these ‘as if’ statistics we want to
estimate the ultimate burning cost

Using the chain-ladder method we obtain:
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Total
Claims Estimated Estimated
Accident Exposure Amount Cumulative Ultimate Ultimate
year p per dvpt Factor Claims Burning
year Amount Cost
n+1-—g
1 10'224 795 | 795 078%
2 12'752 60 103 62 049%
3 14'875 96 5 105 1011 068%
4 17°365 46 9 137 64 037%
5 19410 527 200 1053 054%
6 17617 294 375 1102 063%
7 18129 191 17 07 3260 180%
110372 848 3 077%

(For details on the chain-ladder method see for instance Nationale-Neder-
landen [2]).

It 1s seen at once that the estimated ultimate burning cost pertaining to
accident year 7 1s much larger than the other estimated burning costs. This is
due to a well known problem inherent to the chain-ladder method: the claims
amount of the least developed accident year 1s muluphed with the largest
cumulative factor providing thus a very imprecise estimate which can heavily
influence the overall ultimate burning cost This drawback of the chain-ladder
method can easily be corrected by weighing the estimated ultimate burning
costs of the individual accident years 1n a different way. Let F, denote the
cumulative factor provided by the chain-ladder method which is to be applied
to the claims amount of development year ;. X, E, and R denote respectively
the total claims amount, the exposure and the ultimate burning cost as defined in
section 2. The estimated ultimate burning cost pertaining to accident year i1s then:

Xl‘n+l—l.Fﬂ+l—l
E,

The chain-ladder method weighs these estimates with E, the exposure of the
corresponding accident year, thus giving the following overall estimated
ultimate burning cost

Z Xx,n+l—l'Fn+l—l

=1
2 E
1=
Instead of E, we use the following weights:

£,
Fn+]-—l

R =
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which correspond to ‘used exposure’ and give less weight to less developed
accident years.
We obtain the following overall estimated burning cost:

n
Z Xl,n+l-l

=1

n E’
-

1=1 Fn+l—l
We have the thus rederived a special case of the Cape Cod method [3], an

IBNR method similar to the Bornhuetter-Ferguson method [1]. This method
provides the following estimates:

Total
Claims Estimated
Accident E Amount Cumulative ‘*Used Ultimate
xposure s
year as per Factor Exposure Burning
dvpt year Cost
n+1—y
| 10224 795 1 10224 078%
2 12752 60 103 12335 049%
3 14’875 9% 5 105 14’199 068%
4 17°365 469 137 12'697 037%
s 19'410 527 200 9’712 054%
6 17°617 29.4 375 4'698 063%
7 18129 19.1 1707 1062 I 80%
384 1 64’928 059%

We now consider the more detailed statistics of the N- and D-triangles. The
statistics of new IBNR claims are:

dvpt
year 1 2 3 4 5 6 7
acc
year
1 75 183 285 234 186 07 51
2 16 126 182 16 1 140 106
3 138 27 40 124 121
4 29 97 16 4 116
5 29 69 371
6 19 275
7 191

N-tnangle
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The statistics of decreases in the claims amount are:

dvpt
year 2 3 4 5 6 7
acc
year
1 -31 48 -85 230 39 25
2 -06 09 86 - 14 56
3 -59 101 -4 6 =311
4 -14 -21 -238
5 0 -58
6 0
D-tnangle

The striking feature of these more detailed statistics is that even in
development year 6 and 7 there 1s an important amount of new claims to the
layer, however this fact is partly compensated by a decrease of the amount of
already known excess claims and therefore the less detailed traditional IBNR
statistics give the spurious impression that the total amount of excess claims is
exactly known after six or seven development years which is obviously not the
case in this example.

We now want to estimate the ultimate burning cost with our method. From
(2.2.3) and (2.2.4) we obtain:

J 4 @

1 045 1073

2 106 1073 -0 359
3 140 1073 0072
4 (15 1073 -0 048
5 118 1073 -0054
6 049 10°? 0070
7 050 1073 0033

We see that the 4’s reach a maximum in year 3 and decrease thereafter but i1t
would be misleading to assume that 4, = 0 for j > 8.

Between the 1st and the 2nd development year there is an important increase
of the known excess claims, after that the excess increase or decrease more or
less randomly and the ¢’s oscillate around zero.

By plugging the parameters into (2.2.5) we obtain the following estimate for
the ultimate burning cost-

R = 0.61%,

An estimate which 1s almost identical to the one obtained with the Cape Cod
method.
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Under assumptions (A), (A,) and (A;) we know that R(#) 1s a practically
biasfree estimate of R(f), whereas neither in the case of the chain-ladder
estimate nor in the case of the Cape Cod estimate do we know anything about

the bias of the estimator.

We now make the stronger assumptions (A}), (A3) and (A%) and we estimate

o, and 7, according to (2.3.5) and (2.3.6).

J a, i,

1 0054

2 0074 0387
3 0109 1 269
4 0079 1177
5 0056 3460
6 0057 0303
7 0 0

The assumption g; = 0 and 7, = 0 is not very realstic, however 1t has httle
impact on the mean square error of R(f). From (2.3.3) and (2.3.4) we now

obtain the standard deviations of the estimators of our parameters.

J a(d) 7(3)
1 016 1073
2 024 1073 0070
3 040 1073 0121
4 034 1073 0095
5 029 107} 0260
6 038 107 0026
7 0 0
We also need the following expressions:

OR OR 0R

— =4, = 1.253 — =4, = 0.921 —— =45 = 0.993

oA 04, 043

OR OR oR

-— = A4, = 0.948 — = 45 = 0.899 - — = d¢ = 0.967

O Ay d s 0l

oR i

Ly

OoR 1

(S(Sz 1_52

OR 1

= —[44,+1,4,] —— = —0.00166

3_5_3 1—53
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OR |

—_— = _[A.IA|+/12A2+/13A3] = _000279
5(54 l_(54

OR l

S = A+ .+ A By ——— = —0.0038]

34 I ~0s

OR |

_— = _[}.|A|+ .. +2,5A5]>**‘ = _000546

5d 1 —ds

OR

E l _57
From (2.3.2) we now obtain
mse'?(R() = 013%)

Our method also prowvides a measure of the precision of the point estimator.

To summarize what we have obtained so far we can say that we have an
estimate of the burning cost after scven development years (0.61%), this
estimate 1s practically unbiased and reasonably precise since its standard
deviation 1s (0 13%). Our detailed statistics have shown us that there are still
some excess claims to be expecled n the following development years, a fact
which we would have overlooked if we had only used the usual IBNR statistics.
To assess the impact of further development years on the ultimate burning cost
we can use the experience of similar portfolios or some market statistics if that
kind of data 1s available, 1f such 1s not the case we can extrapolate our
estimates of the A’s and of the §’s

Based on the analysis of the given portfolio, a realistic extrapolation would

be:

’18 = /{9 = 05 10_3
4 =0 J =10, 11
6, =20 7=28,9,
Thus our estimate of the ultimate burning cost 1s
R=071%.
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DISCUSSION PAPERS
THE SCHMITTER PROBLEM

By P. BROCKETT, M. GOOVAERTS, G TAYLOR

At the ASTIN Colloquium in Montreux, HANS SCHMITTER posed the follow-
ing problem.

PROBLEM

Consider the class # of distributions with range {0, ], mean g and vanance
ol Let ¥, r(u) denote the probability of ultimate ruin under a compound
Poisson claim process with given premium loading 6, initial capital u and
individual claim size d- f- F. For fixed ¢ and g, which Fe . maximizes v, (u)
for a particular given u? In particular, 1s F diatomic?

PRACTICAL BACKGROUND OF THE PROBLEM

H. SCcHMITTER describes the following practical background in which the
problem arises.

The problem of determining bounds for ruin probabilities arises when an
insurer decides his reinsurance retentions 1n order to increase the stability of an
account. He may not only choose between various forms of reinsurance (quota
share, surplus, excess loss etc.) but he usually combines them in what is called a
reinsurance program. When evaluating reinsurance programs he needs to
compare their prices and the effectiveness of the protection they offer. The
reinsurance price 1s the difference between the gross (i.e. before reinsurance)
and the net (1.e. retained, after reinsurance) expected profit. The effectiveness of
the protection, on the other hand, can be measured by the probability of ruin:
the lower the probability of ruin of the retained account the more effective the
reinsurance program. Computing ruin probabilities 1s often criticized as being
pointless because their absolute values are said to be irrelevant. However, 1f
two reinsurance programs both reduce the expected profit of the ceding
company by the same amount the one Icading to the smaller probability of ruin
is likely to be preferable.

The ruin probability depends on the initial reserve (known to the ceding
company), the security loading (defined as the expected retained profit, hence a
function of the reinsurance program) and on the retained claim amount
distibution In practice, the latter 1s hardly ever known, apart from the
maximum retained claim which is given by an excess loss deductible or a policy
limit. At best we have to our disposal estimates of the expected value and the
variance. An exact computation of the ruin probability is, therefore, not
possible and one has to accept the determination of upper and lower bounds.

ASTIN BULLETIN, Vol 21, No 1
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So far we do not even know the least upper bound in the case where the
expected value, the variance and the maximum claim are known Perhaps the
answer to the above question is not an isolated problem but leads to further
investigations and applications : Suppose that for several independent risks the
expected profits, frequencies, expected values, variances and maximum claims
are known. What 1s the least upper bound of the overall ruin probability for a
given initial reserve? Is there a natural way of allocating parts of the imnal
reserve to the independent risks? A question often asked in practice.

DISCUSSION

At Montreux, GREG TAYLOR pointed out that F more dangerous than G 1n
stop-loss order implies that ¥, p(u) = ¥y ¢(u) for all u (GOOVAERTS and DE
VYLDER, 1984; TAYLOR, 1985)

Hence the problem 1s reduced to seeking an extremal distribution n.# 1n
terms of stop-loss order. However an extremal distribution in terms of stop-loss
order does not exist in class ./,

The problem was further discussed at the *“ 1990 Risk Theory seminar at the
Mathematisches Forschungsinstitut of the Federal Republic of Germany, 1n
Oberwolfach ™

MARC GOOVAERTS pointed out that an upper bound can be obtained by the
criterion of danger which satisfies the range [0, ], x but not o® where now
danger 1s defined as in BUHLMANN et al (1977). One can deduce a distribution
which is more dangerous than all of those belonging to the class of distribu-
tions with prescribed range, mean g but with a minimal vanance, larger then
o’ analogy to Kaas and GOOVAERTS (1986).

But only danger as well as first order stop-loss ordening will give rise
to inequalities between ruin probabilities If we have E(X)= E(Y) and
E((X—1t).) < E((Y—1t);) Yt then ¥, r (u) < ¥y r,(u) uniformly for all 0

and u. The problem of finding Supf E((X—1),) does not give rise to a uni-
Fy,e.

form (in ¢) extremal distribution.

It 1s solved by constructing a polynomial of degree two above (X — ), which
1s tangent to this function in 2 points. The abscissas of these points will be the
mass points (a recent reference 1s e g GOOVAERTS et al., 1990) These results
are known but they cannot be used to obtain an upper bound for the infinite
time ruin probability because the extremal distribution depends on the value
of ¢.

One finds the following solution: A risk X with spectrum (r, s) exists with
mean x and variance o2 if and only if s = r’, where r’ = u+[6*/(u—r)]

The following mass points of the cxtremal distributions are obtained: (0, 0')
in case 0<t<I120, (t+(u—1)1>+c%, 1—J(u—1)*+c%) i case
1720 <t < 1/2(b+b') and (b, ") 1n case 1/2(b+b") < ¢ < b This indicates
that even for the simple extremal stop-loss problem no uniform extremal
distribution exists. Also BROCKETT and Cox (1985, 1986) present explicit
solutions to the above problem when n = 1,2 or 3 moments are given using
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Tchebycheff systems of functions. KEMPERMANN (1970) also solves this
problem in general.

A problem closely related to the one stated by SCHMITTER and as intriguing
1s the following: consider S = X+ ... Xy under the classical assumptions and

find Sup E((S—1).).
Fie /.

This problem can be solved for the case Fye.#, (= a set of distributions
with given p and b), (see BUHLMANN, GAGLIARDI, GERBER, and STRAUB,
1977) An attempl to solve the above problem (Fy €.) has been presented by
Kaas and GOOVAERTS (1984), cited above.

Also at Oberwolfach, P BROCKETT demonstrated that the Fe.# which
minimizes the adjustment coefticient R of the claim process hes in the class D,
of diatomic distributions. Since ¥, (u) ~ const. e~ * for large u, this imphes
that the required F hes in D, for sufficiently large u. It does not, however,
identfy F for smaller values of w. In fact, the extremal F for large u can be
identified as follows:

Massp = (b—p)¥/[o2+(b—w)* at p—o?/(b—u); and Mass | —p at b.

Similar results can be obtained for maximizing the adjustment coefficient.
These results can also be found in DE VyLpER, GOOVAERTS and HAEZEN-
DONCK (1984), BRoCKETT and Cox (1983, 1986) and KEMPERMANN (1970,
1971).

GREG TAYLOR suggested that, to the extent that Schmitter’s problem related
to premium rating (as SCHMITTER had said 1t did), that problem was probably
not the most relevant for solution. In practice, the assumption of unimodahty
of F would almost always be reasonable, and this additional restriction on F
could be expected to decrease the upper bound on ¥, (u) substantially

Moreover, this additional condition does not add to the difficulty of the
problem The history of this goes back to VERBEEK (1977), who dealt with the
extremal unimodal stop-loss premium with fixed mean and upper bound, and
TAyvLor (1977) who extended the results to the context of an arbitrary finite
number of linear constraints on the unimodal distribution, Much extension has
subsequently been made by GOOVAERTS (and co-authors) and BROCKETT and
Cox

The relevant result for Schmitter’s problem 1if unimodality 1s required 1s that
the extremal distribution must le 1n the class 4 of step functions with 3 levels
(with possible equality of 2 or 3 levels).

BROCKETT and Cox (1985, 1986) demonstrate that the unimodal process lies
in the class.”3. As in the case where unimodality is not required, they give an
explicit optimal solution to bounding the adjustment coefficient. They give the
corresponding solution for an arbitrary finite number of linear constraints on
F, and 1t 1s again true that his extremal distribution solves Schmitter’s problem
for sufficiently large u.
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THE SCHMITTER PROBLEM AND A RELATED PROBLEM:
A PARTIAL SOLUTION

By R. Kaas
University of Amsterdam, the Netherlands

ABSTRACT

At the 1990 ASTIN-colloquium, SCHMITTER posed the problem of finding the
extreme values of the ultimate ruin probability y(v) in a risk process with
initial capital u, fixed safety margin 0, and mean g and vanance o? of the
individual claims. This note aims to give some more insight into this problem.
Schmitter’s conjecture that the maximizing individual claims distribution 1s
always diatomic 1s disproved by a counterexample. It is shown that if one uses
the distribution maximizing the upper bound e™® to find a ‘large’ ruin
probabihty among risks with range [0, ], incorrect results are found if b 1s
large or u small

The related problem of finding extreme values of stop-loss premiums for a
compound Poisson (1) distribution with 1dentical restrictions on the individual
claims is analyzed by the same methods. The results obtained are very
similar.

I. INTRODUCTION

In a paper presented at the ASTIN-colloquium 1990, HANS SCHMITTER gives a
dentvation of an exact algorithm to compute the value of the ultimate ruin
probability y(u) for a compound Poisson ruin process with given premium
income ¢ per umt of time, and with claims having a finite number of mass
points In connection with this paper, he posed the following problem: given
that the individual claims have mean u and variance ¢ which claims
distributions minmimize and maximize the ruin probability for a given u ? A
practical justification of the problem can be found in the paper by BROCKETT,
GoOVAERTS and TAYLOR (1991), who also sum up the results of the discussion
of this matter at the colloquia of Montreux and subsequently Oberwolfach.

In the classical ruin model, the non-ruin probability of a compound Poisson
risk process can be shown to have a compound geometric distribution with
geometric parameter depending only on the safety loading 6, and with terms
having a distribution function related to the stop-loss premiums of the
mdividual claims.

In this note we also describe another problem, very similar to Schmitter’s.
Suppose a reinsurer has to determine a stop-loss premium for a risk with the
following propertics. the risk has a compound Poisson distribution with known

ASTIN BULLETIN, Vol 21, No |
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parameter A, and the individual claims have known mean y and variance o2
To be able to quote a safe premium, the reinsurer tries to determine the claims
distribution leading to the maximum value of the net stop-loss premium. Some
work in this direction was done by Kaas and Goovaerts (1986) and
STEENACKERS and GOOVAERTS (1990). See also GOOVAERTS et al. (1984)

A lower bound for both the ruin probability and the compound Poisson
stop-loss premium under these restrictions 1s attained by the distribution
concentrating all mass at g, see for instance GOOVAERTS et al (1990). This
distribution 1s not actually an element of the set of feasible distributions, which
is not a closed set. We will prove that both our functionals, ruin probabilities
and compound Poisson stop-loss premiums, are continuous at this boundary
point. Other functionals, Itke the variance, the skewness and the adjustment
coefficient do not have this property. See Section 2.

In this paper we concentrate on the upper bounds, and indicate how one
may find the diatomic claims distribution leading to the highest ruin probabl-
ity using the algorithm mentioned above. The compound stop-loss premium
can be computed by a very similar formula, based on special properties of the
compound Poisson distribution See Section 2 We found counterexamples for
Schmitter’s conjecture that the maximal ruin probability always is realized by a
diatomic distribution. For the compound Poisson stop-loss premiums, the
optimal diatomic distribution also was not always the overall maximum. See
Section 3.

A useful heuristic approximation to the maximal ruin probability with
diatomic claims 1s described in Section 4 It 1s based on maximization of the
most important term of the geometric distribution Our limited numerical
experience shows that this solution leads to a ruin probabihity which is
invanably close to the maximal diatomic ruin probability. For small A, this
same diatomic distribution also often leads to near-maximum compound
Poisson stop-loss premiums.

One of the referees remarked that applying this heuristic approach one
actually solves Schmitter’s problem optimally for very small values of the initial
capital. More precisely, 1f the initial capital/the retention is very small (less than
L E[X*/E[X]), the maximum ruin probability/compound stop-loss premium is
attained for the diatomic distribution with 0 as a mass point.

In any case 1t can be shown that this heuristic solution 1s better than many
other choices of the feasible distribution. If x; and x, are the mass points of the
heuristically found feasible distribution, with x; < x,, any distribution with
least mass point larger than x; leads to lower ruin probabilities and compound
Poisson stop-loss premiums.

In Section 5 we impose one more restriction on the claims distribution,
namely that the support is contained 1n an interval [0, #] One might expect
that the distribution with the largest value of the upper bound for the ruin
probability e "® also has a high probability of ruin. It can be shown that the
adjustment coefficient R with the claims distribution 1s minimal for the
diatomic distribution with b as one of its mass points. Then obviously e~ 1s
maximal. But if the maximum claim b 1s very large, the ruin probability with
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this distribution 1s close to mimimal rather than maximal On the other hand,
the adjustment coefficient R is maximal for the diatomic distribution with 0 as
a mass point, but for small values of u this distribution has maximal ruin
probability, 1n spite of the fact that is has minimal e ®. So looking at the
adjustment coefficient leads to the wrong answer, unless b 1s small and u 1s
large, say for b < 2u—yu, see the previous paragraph and Section 4.

In Section 2 it 1s shown that the third moment (skewness) of the compound
Poisson distribution 1s maximal for the diatomic claims distribution with b as a
mass point. So one may expect that for large retentions, this claims distribution
leads to maximal stop-loss premiums. Also in Section 5 we will show that for
small retentions the situation 1s reversed

2. SOME THEORY AND NOTATION

In both problems we study, the issue 1s to find a maximum of a functional H,,
working on distribution functions Fy of random variables X in a certain set.
More specifically, we may write both problems in the following form -

(1) Maximize H,[Fy]

subject to X 18 a non-negative random variable, with E[X} = g,
Var [X] = o?

Here H,[] assigns to Fy either the ruin probability w(x) in a compound
Poisson risk process with fixed safety loading € and 1mtial capital u, or the
stop-loss premium ng(u) at retention uw of a compound Poisson (1) distributed
random variable S, both with individual claims distributed as X. In the
remainder of this section we will give expressions for H,[ ] for both problems
in case X has a finite range. Also, we will characterize the feasible random
variables X having a two-point support. Finally, the theory of ordering of risks
15 applied to derive results on some integrals over H,[].

Consider the classical actuanial ruin model, that 1s, assume a compound
Poisson process with claims intensity 4, non-negative individual claims distrib-
uted as X, premmum income per unit time ¢ = (1+6) AE[X], which means
there 15 a safety loading 0 (assumed positive), and mitial capital ¥ See for
instance BOWERS et al. (1986, Chapter 12). Let the stochastic process N(¢)
denote the number of claims up to ume 1, and S(1) = X+ .. +Xy(, the
accumulated claims until time s. Define the maximal aggregate loss as L =
max {S(¢t)—ct}¢ = 0}. The ultimate ruin probability y («) denotes the probabil-
ity that the insurer’s surplus will ever become negative:

Q) w() = Plmin{u+ct—S()lt = 0} < 0] = 1 —P[L < u].

Defining L,, L,, .. as the amounts by which record lows in the insurer’s
surplus u+xct— S (¢) are broken, and M to be the number of record lows in the
surplus process, we may write
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Mz

3 L= L.

i=1

Then M has a geometric distribution with parameter y (0). From Theo-
rem I11.2.2.3 in GOOVAERTS et al. (1990) we see that the geometric parameter
w(0) = (1+6)™', and the distribution function of the L, equals

4 Fi (y) = 1=mx(y)/ny(0),

where ny(y) = E[(X—y),] denotes the net stop-loss premium for X at
retention y, so 7y (0) = E[X]
From (2) and (3) we obtain the following expression for the ruin probability -

1

0 d m
5 = P{L = _ -—-—-» P[L+...+L, .
(5)  w) = PIL> u] 1+9MZO{1+9} [Li+ ...+ L, > u]

ScHMITTER (1990) gives the following expression for the ruin probabulity in

case X has finite support {x,,x;,...,X,,}, with associated probabilities
DisPas- s Pm:
0 e Ty P
©  ww=1- DI CE ar | EAPR
148 k.ky0 ok =1 k!
where z=—(u—k\x;— ... ~k,x,)+.
¢

Similar expressions can be found in GERBER (1990), SH1U (1989), and earher
TakAcs (1967). The indices k, are assumed to range over 0, 1, .... If all mass
points x, are strictly positive, j = 1,...,m, (6) 1s a sum with only a finite
number of non-zero terms, so it leads to an easily programmed algorithm to
compute  (u) for discrete claims distributions If one of the mass points, say
X, 18 equal to 0, carrying out the (infinite) summation over k,, 1n (6) leads to
the same expression as (6) with m replaced by m—1, 4 by (1 —p,,), and p, by
pl(l=pn)y=1,...,m—1

In Section 111.5 of GOOVAERTS et al. (1990) we find that the distributions
with mean x and variance o’ that are diatomic with support {x,, x,}, for
Xx; = pu—é¢, can be characterized by

7 X, = p—e  x;= ptolfe,
pr = PlX =x]=c¥{o?+e?, p,=PlX=x)]=1-p

For 0 <x; < x, < o0, we must have 0 < x; < u, so 0 < ¢ < u. Note that x,
increases with x; for x; €[0, ).

Inserting (7) in (6) with m = 2, we see that y (1) 1s continuous for diatomic
distributions as a function of ¢ at ¢} 0. So there i1s a sequence of feasible
diatomic distributions, whose ruin probabilities converge to the one of the
claims distribution with P[X = u]l = 1,0ore =20
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The compound Poisson stop-loss premium can be written in the form

(8) nsw) = Y. Ae MnlE[(X\+ ... +X,—u).].

n=0

If the range of the claims 1s finite, there is an expression for the compound
stop-loss premiums similar to (6) If S has a compound Poisson (1) distribution
with individual claims distribution as m (6), and N, counts the number of
occurrences of claim size x,, such that § = x ;- N+ ... +x, N, then 1t 15
well-known that the N, are independent Poisson (ip,) distributed random
variables. So the stop-loss premium of S at retention w can be written as:

(9) ns) = E[(S~u),] = E[S]—u+E[(u=S).]

m i kl
= E[S]—u + Z e_l(u—klx,—...—k,,,xm)+1—[ ﬂ
ky ky ok, =1 k!

It 1s evident that ng(0) = Ay, ng(0) =0, y(0) = (1+6)""' and y(w) =0
do not depend on the actual choice of the feasible distribution. We will show
that this holds for the integrals over ng(u) and w(u) as well; the weighted
integrals over ung(#) and wy (u), however, are minimal/maximal when the
third moment of the individual claims is.

We will use the following identities, vahd for non-negative random variables
Y with E[Y/*?] < o0, and which can be proved by partial integration :

w [ea] 1
(10) j Yrp(y)dy = j = Fy ()] dy;
0 o JT1

e 1
j YU -Fy()]dy = — E[Y'™*"], ;2 0.
0 ]+l

Using (10) and famihar properties of moments of compound distributions, we
may deduce for every feasible distribution of the individual claims:

(11 r ns(u)du = L E[S?] = }{Var [S]+(E[S)?} = ${A (6> + 1)+ 12

0

[c0] 1 w
j w () di E[L]=E[M1£[L,]=0j (1= Fyy ()]
0 0

1 r® 1 s o+t
~j ay(u)du = — E[1 X°] = -
Ou Jo Ou 20u
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The following relations for weighted integrals hold -

(12) r ung(u) du = (E[S’] = {E[(S—E[S]+ E[S])’]
° = LAEX) 432 u@ + o)+ 20 13

r wy (u) du = YE[L?) = } E[E{L}IM]]
° = LE[M - E[LY+MM—-1)(E[L])?}]
}E[M]E{L}+}E[M(M— D] (E[L)])?

1 1 1 (o + u*)?
—‘E[LIZ] + - (E[Ll])z = '—E[XS] + — s 5
20 0 66u 40°u

So the fatter the tail of the individual claims X (measured by their skewness, or
what is the same since 4 and ¢? are given, by their third moment), the larger
the integral over wy (1) and ung(u).

In the theory of ordering of risks as described in GOOVAERTS et al. (1990),
one compares stop-loss transforms or distribution functions of risks over the
whole interval [0, c0). In our case 1t is sufficient 1f these functions are ordered
only on the interval [0, u]. Suppose that for instance X has lower stop-loss
premuums than Y on the interval [0, u]. If Z 1s another independent risk, we
have

It

(13) E[(X+Z—-u),] Jm E[(X+Z—u),|Z = z)dF,(z)

0

E[(X—(u=12))+]dFz(z)
0

[
[ S,

< on E{(Y=(u=2)):]dFz(z) = EW(Y+Z—u),].
0

From this porperty we see directly that 1if X, X,, . and Y|, Y,,... are
sequences of independent risks distributed as X and Y respectively, and X
has lower stop-loss premmums than Y on [0,u], then we have
E[(X;+ . +X,—u).] < E[(Y,+.. +Y,—u),]forallm=1,2, ... Using
(8), we see that a compound Poisson distribution with X as claims distribution
has a lower stop-loss premium in » than one with Y. Using (4) and (5), we see
that ruin probabilities are lower as well,

3. MAXIMIZING THE FUNCTIONALS NUMERICALLY

It 15 easy to maximize the ruin probabihity numerically over the diatomic
feasible distributions. This can be accomplished using algorithm (6), together
with (7) to characterize the feasible diatomic distributions. It involves merely a
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one-dimensional maximization over the interval x, € [0, x]. To do this, one first
compules (6) at a number of values of x, to detect the interval in which the
maximum 18 to be found, and subsequently uses a method like golden section
scarch to determine the maximum more exactly. A reference for numerical
techniques to compute a maximum of a function over an interval is PRESS et
al. (1986). In Figure | we give graphs depicting the diatomic ruin probability
w(u, X, xs,p,p)= w(u, x;)as a function of x, €[0, 1], where x,, x,, p;, P2
are related by (7). We took g =3, 02=1,0=05, and u = 15,4.5 and 9
respectively In these graphs, the scale in the y-direction varies.

As announced, the ruin probability is mmimal and continuous at x, 1 x In
Figure | we see that for small u (v = 14) the maximum ruin probability is
found taking x; = 0. A close inspection reveals that the ruin probability does
not depend on x, if x; > w. Indeed 1n (6) one sees that the ruin probability
does not (directly) depend on mass points larger than u. It also follows from (4)
and (5). For large u (v = 9), w (1) 15 very nearly constant for small to moderate
values of x,, then increases, and next decreases steeply to 1ts mimimal value at
x T

For intermediate ¥ (u = 4.5), the situation 1s rather unclear there are some
local maxima. For this specific situation we were able to find a three-point
distribution with a larger ruin probability than the one corresponding to the
maximizing diatomic distribution. In fact, for

It

X
P

1.56592, X, = 2.67226, x; = 5.182086,
0.071198, p, = 0766835,  p; = 0.161967

the ruin probability 1s 0279271, which, although (probably) not the optimal
solution, 1s higher than the maximal diatomic ruin probability 0.279185, found
at x, = 2.5597, x, = 5.2712.

Although we tried a lot of combinations of g, o2, 0 and u, we rarely found a
randomly generated three-point distribution better than the best diatomic
distribution ; 1f we did, the difference was never substantial.

We did not try to optimize systematically over all three-point spectra. First,
this 1s not a trivial task: if the number of mass points 1s m, the number of free
variables equals 2 m— 3, being the number of support points x, plus the number
of probabihties p,, minus the number of restrictions. So to find the maximal
ruin probability over all three-point spectra involves solving a three-
dimensional maximization, with borderline conditions p, = 0. Second, even
supposing we successfully optimized over three-point distributions, there 1s still
no guarantee that for instance a 15-pomnt support might not be better

The fact that for small » the ruin probability is maximal at x, = 0 can be
explamed as follows. By relation (11), one sees that neither w(0) and y (o0),
nor | w(u)du depend on x, By (12), however, we see that the weighted
integral increases (linearly) with the third moment of the claims distribution. So
the weighted integral is minimal for the diatomic distribution with x, = 0,
which means that taking x; = 0 gives the smallest integral over uy (1) So at
small values of u, y () should be large for x, = 0 By similar reasoning, one
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explains that for large u, a large value of x, leads to maximum y (). For too
large values of x,, we obtain low ruin probabilities (close to the minimal
value), as explained 1n the following section.

For the same reasons, one can expect a similar pattern to arise in the case of
compound Poisson stop-loss premiums This is indeed the case: see Figure 2.
In this figure, we took A =2, g =3 and o> = 1. At small u (u = 2), the
stop-loss premium 1s virtually constant over x,, but 1t 1s maximal at x; = 0. At
large u = 20, we see that the stop-loss premium is practically constant for x,
from O (where 1t equals 0.0109) to very close to u. Then it increases very steeply
to its maximum value 0.0522, and for x, T g, 1t decreases continuously to its
minimal value of 0.0088. For intermediate ¥ = 7, with increasing x,, ng(u)
increases shightly and irregularly at first from 1.3373 to the maximal value
1 3954, and then for x, 1 g, 1t decreases again to its infimum 1.3008. For this
case we found again an example where the maximal diatomic distnibution was
not a global maximum over all feasible claims distributions The maximal
diatomic distribution is at x, = 24, where ng(w) = 1.3954, but a larger
stop-loss premium of 1.3995 1s attained by the triatomic distribution

x; =0, x,= 2.8, x; = 57143, p, = 00286, p, = 0.8754, p; = 0.0961 .

In fact, as one of the referees pointed out, it can be proven that the diatomic
distribution with x; = 0 as a mass point is optimal for very small values of u
(u < $ E[X?]/E[X]) The proof goes as follows

From Theorem I11.5.2.3 of GOOVAERTS et al. (1990) we see that uniformly
for all u < L E[X*E[X] = 4 (u+0?*/y), the maximal stop-loss premium over
the feasible distributions 1s attained for a random vanable X having mass
points 0 and g+ o2/, see (7). As a consequence of (13), we have immediately
that if H s the distribution function of X, and X is a feasible claim size, then
F¥" has smaller stop-loss premium in # than H*" forn = 2,3, . ., too In view
of (8), we have then found that H 1s the claims distribution maximizing the
compound Poisson stop-loss premium, when the retention v < % (u+o?/p).

Using (4), we can deduce by similar reasoning that this same claims
distribution also maximizes not only P[L, > u] for u < 4 (u+0a?/y), but also
PlLi+ ... +L,>u] for all m=2,3, .., and thus maximizes the ruin
probability (5).

So Schmitter’s problem 1s solved for very small values of the imtial capital u.

Thus result 1s confirmed in Figure 1 for ¥ = 4. But note that in Figure 2 for
u=2>%+u+0c*u sull the distribution having mass point 0 led to the
maximal compound Poisson stop-loss premium

4. AN APPROXIMATION FOR THE MAXIMIZING
DIATOMIC DISTRIBUTION

Though we are as yet unable to solve the problem of maximzing
w () = P[L > u] given p and o2, a problem we can solve 1s the maximization
of P[L, > u]. We may expect P[L > u] to be large when P[L, > u] is,
because the term with m = 1 1n (5) has the largest weight factor.
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In view of (4), and sincc 7y (0) = E[X] = u 1s given, to maximize P[L| > u]
we just have to maximize ny(u), the stop-loss premium of X. The solution to
this problem can for instance be found in GOOVAERTS et al. (1990), Theo-
rems II1.52.2 and 5.2 3. These theorems express that the maximal stop-loss
premium for a (non-negative) risk X with mean x and variance ¢? at retention
u is the diatomic distribution with smaller mass point x; = max {u—d, 0},
where d = {(u—u)?*+o?}. When o is small with respect to |u—u|, we may
write

(14) (w-pwy—d=(u—p—d)

u—pu+d —a?

x —}oifu—p).
u—p+d u—pt+d

So we may conclude that the diatomic distribution with the following mass
points gives a ‘high’ ruin probabulity:

o2
(15 x,=pu—¢ with e= — =~ L+ (u—p), s0 X, = u+rd~2u—pu

In the examples we tested, the diatomic distribution maximizing the ruin
probability had x; only shghtly smaller than u—d. See Table 1.

Of course this same diatomic distribution maximizes the term with n = 1 of
the compound Poisson stop-loss premium (8) So one may expect this
distribution to have a high stop-loss premium if the probability of just one
claim 1s large, which is the case if 4 1s small. For large A, however, this
approximation will not be as useful.

Our heuristic procedure may not always lead to the optimal value, but it can
be shown that it 1s better than many other choices Suppose Z has distribution
(15), and suppose Y 1s another feasible choice such that the least mass point of
Y 1s larger than that of Z, which 1s u—d We know that n,(z) 1s piecewise
linear, with edges at u—d and u+d. Since Y has no mass below u—d, we have
ny(u—d) = ny(u—d) Also, ny(u) < ny(u) since my(u) is maximal. So
ny(t) < n,(t) for all 1 < w, which means that Y generates lower compound
Poisson stop-loss premiums and ruin probabilities.

TABLE 1
VALUES OF  (4) FOR DIFFERENT VALULS OF THE HIGHER MASS POINT IN A DIATOMIC DISTRIBUTION

,u=l,az=l,0=l ,u=3,t72=l,()=5
u=135 u=45 u=9 u=15 u=45 u=9
X = wu) = w () = viu) = w(u) = wu) = wu) =
0 102003 002315 000008 534796 248974 078779
utaily 272504 039292 002315 550047 278350 098945
optimal 275023 081105 034151 550047 279190 106205
u+d 269824 078214 033632 534796 276506 101811
2u-p 272504 .07865! 033659 550047 277596 101901
10 146348 071460 024767 534796 265714 106184
15 130637 055095 034151 534796 259498 101901

20 123125 044244 031936 534796 256613 097203
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In particular, the diatomic solutions with support {b, b’} with b > u—d are
apparently non-optimal.

5. EXTREMAL VALUES OF THE ADJUSTMENT COEFFICIENT

Consider all claims distributions with mean g, variance ¢ and as an extra
requirement, support contained in [0, 5] for some b > u+¢c?/u. Just as we did
in the previous section for P[L, > u], one may tackle the problem of finding
extremal ruin probabilities by using distributions leading to extremal values of
related quantities likke an approximation or an upper bound for the ruin
probability. Here we use the upper bound e™**, where the adjustment
coefficient R 1s the positive solution to the equation

(16) 1+(1+ @) pur = E[e™].

Asymptotically, this upper bound can be used as an approximaton, since
w(u) e® has a it 1n (0, 1) for u — co.

It can easily be shown that the diatomic distribution with mass points 0 and
u+06%/u1s minimal 1n second degree stop-loss order, while the one with mass
points b and u—a?/(b— p) 1s maximal. See Theorem 11 4.2.3 of GOOVAERTS et
al. (1990). This implies that these special diatomic distributions have minimal
and maximal moment generating functions on (0, o0) 1n the class considered,
and accordingly the corresponding adjustment coefficients (roots of (16)) are
maximal and minimal respectively.

One would expect that the support {u—a?/(b— ), b}, with minimal adjust-
ment coefficient, leads to large ruin probability, too Taking b too large,
however, so u—o2/(b— ) is very close to g, results 1n the opposite of what we
wanted: the ruin probability of this distribution is very small rather than
maximal. For b — o, by (7) we see that the mgf E[¢"*] - co for all r > 0, so
then R — 0, which gives us the trivial upper bound y(v) < | So we observe
that for b —» o, the upper bound e~ ® increases, while the ruin probability
decreases. But if b 1s not too large, say such that u—o?/(b— ) ~ x, as in (15),
which means that b & 2u—pu, this distribution does lead to a large ruin
probability

On the other hand we learn for instance from Figure | that for small u, the
diatomic distribution with mass point x; = 0 has maximal ruin probability,
even though 1t gives the tightest upper bound e~ ®*

It can be shown, too, that the compound Poisson distributions with these
distributions for the individual claims are extremal in second degree stop-loss
order. This means that they have minimal and maximal third moment, and
since mean and standard deviation are fixed, also minimal and maximal
coefficient of skewness. As proved at the end of Section 2, these same special
spectra also generate the extreme values of j ung(u) du So one would be
inclined to expect that they lead to high and low values of the compound
Poisson stop-loss premium as well, but the same caveats as above apply
here.
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6. SOME FINAL REMARKS

To conclude, we comment on tables of some results for distmbutions with
support {u—a?/(b— u), b} for different values of b. These distributions have
minimal adjustment coefficient (maximal skewness) for all feasible distnibutions
with support contained in [0, »]. They are compared to other distributions
described above: the optimal diatomic distribution, the heuristical approxima-
tions to the optimum found by applying (15) and the distributions with only
one positive mass point: support {0, z+0c*/u} and {u}. The latter support 1§
denoted by higher mass point oo, where the mass on o is of course 0 (but
contributes to ¢2). Note that for u not too large and b = 20, the phenomenon
described above indeed occurs Even though we showed that looking at the
minimal adjustment coefficient sometimes gives incorrect results, especially for
large b or small u, we fear that this method will be used quite often.

Further note that for large v and ¢, mimimal and maximal ruin probability
are widely apart. For g2 small with respect to u and g, the ruin probability
cannot vary enormously.

Table 2 gives some results for the compound Poisson stop-loss premiums.
Note the meaningless results obtained by the wrong choice of 4 for large values
of u, and also for small values of u.

An approach that we plan to follow in the near future 1s to try to optimize
the compound Poisson stop-loss premium over the set of claim distributions
with support {0, 8,24, ..., nd}. The more general problem 1s obtained taking
limits for n — o0 and & | 0. The restricted problem can be written in the form
of the maximization of a non-linear cnterion function with three linear
constraints on the probabilities p, = P[X = jo], required to be non-negative

TABLE 2

VALUES OF ms(1) FOR DIFTERENT VALUES OF THE HIGHER MASS POINT
IN A DIATOMIC DISTRIBUTION

u=3gt=11=2 u=30%=11=5
u=2 u=17 u=20 u=>5 u=12 u =40
X2 = ns(u) = ns(u) = ns(u) = ns(u) = ns{u) = ns(u) =
0 4270671 1 300816 0 008804 10 101076 1 004413 0002488
p+olfu 4330598 1337326 0010879 10 138862 1077055 0 003859
optimal 4332192 1395435 0052178 10 138862 1 136463 0 058680
u+d 4331675 1 374006 0047330 10 105046 1 077758 0049633
2u—pu 4 324805 1 374694 0047347 10 105033 1077807 0 049638
5 4 270671 1 376488 0014677 10 101069 1 105061 0 005110
10 4270671 1 380493 0 022903 10 104438 1113764 0007883
15 4270671 1 356405 0 034962 10 103393 1 124541 0012330
20 4270671 1 342594 0047335 10 102812 1 116290 0018726
25 4270671 1 334135 0052137 10 102458 1 103217 0 028545

30 4270671 1 328482 0051061 10 102223 1091199 0 040868
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for all j. By restricting to an arithmetic spectrum we are able to use Panjer’s
recursion instead of (9), the necessary partial derivatives can also be computed
by a recursive scheme. The procedure can be generalized If more moments are
known.

Of course, as the title of our paper indicates, maximization over the diatomic
distributions only does not give a complete solution of either problem. We find,
however, that by using this technique both problems are sufficiently solved for
practical purposes In the first place, our examples led us to the conviction that,
although the optimal diatomic distribution 1s not always globally optimal, it is
not much removed from this optimum. Second, 1n our opinion 1n practice one
might judge the attractiveness of risks or risk processes with known mean and
variance of the claims by the worst feasible diatomic distribution as well as by
the overall worst feasible distribution.
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SHORT CONTRIBUTIONS
A NOTE ON THE NORMAL POWER APPROXIMATION

By CoLIN M RAMSAY

Actuarial Science
University of Nebraska — Lincoln, USA

ABSTRACT

The normal power (NP) approximation essentially approximates the random
variable X as the quadratic polynomial X = Y+y(Y*=1)/6 where
X = (X—p)/o 1s the standardized variable, ¥ ~ N (0, 1), and u, ¢ y are the
mean, variance skewness of X respectively. The coefficients of this polynomial
are not determined by equating the lower moments. It 1s shown that matching
these moments does not improve the overall accuracy of the approximation.

|. INTRODUCTION

Let X be the aggregate claims in one year, Z, be the size of the k™ claim and N
be the total number of claims, 1.¢.,

N
X=Y Zz,
k=1

with X = 0 if N = 0. Let F(x) be the cumulative distribution function (cdf) of
X. It 1s well known that F(x) 1s given by

[eo]

F(x)= ) pG¥(x), x20
k=0
where G (x) is the cdf of Z,, G**(x) 1s the & convolution of G with itself,
G*°(x) = 1for x> 0, and p, = P[N = k]

Direct evaluation of F(x) 1s possible only in very special cases, so approxi-
mations are needed. A simple and easy approximation to F(x), is the normal
power (NP) approximation. The essential 1dea of the NP approximation 1s to
transform the standarized original varable X = (X—p)/o, where u = E[X]
and ¢? = Var[X], into a symmetric variable Y = v(X). In particular v 1s
chosen so that Y 1s a standard normal variable or 1s nearly so. By inverting the
Edgeworth expansion of the unknown cdf of X and using Newton’s mecthod
(see BEARD et al. (1984), pp. 108-111), 1t can be proved that

() izy+%(y2—1)

ASTIN BULLETIN, Vol 21, No 1
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where Y ~ N(0,1) and y is the skewness of X. This results in the NP
approximation

@) F(x)zN(i+,/%+1+ff),
14 Y 7

where X = (x—pu)/o. This approximation is vahd for £ > 1, and 15 fairly
accurate 1f 0 < y < 1, with the accuracy decreasing as y increases.

2. THE MAIN RESULT

Since the inverse transform v~ ' (Y) approximates X, one would expect the left

hand side (LHS) and the right hand side (RHS) of equation (1) to have

approximately equal moments However this is not the case because

k 0 if k=1

E[ Y + 1()’2—1)) :l =< 149Y18 if k=2
6 y+93 27 it k=3

while
0 f k=1
E[X1=<1 k=2
y if k= 3.

If y is small, the terms y*/18 and y°/27 can be neglected, giving an approximate
equality between the first 3 moments of the LHS and RHS. On the other hand
if y is large, the variance and skewness of the RHS of equation (1) will be
inflated, possibly leading to poorer approximations

The important question at this point is this: can the accuracy of the NP
approximation be improved by equating the first three moments of the LHS
and RHS of equation (1)? To this end, consider the quadratic

3) X =aY+b(Y*-1

where a and b are real constants and, once again, Y ~ N(0, 1) Matching the
first three moments yield the following equations

a’+2 bt

= 6a’b+8b°

~ -
|

These equations reduce to

C) a=1-26 for [—1\2 <b < 1/2]

y = 6b—4b>.
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TABLE 1
y =008
X F(x) NP Ad)-NP
10 01586 01587 0 1586
20 0 0249 00249 00249
30 00019 00019 00019
40 0 0001 0 0001 00001
y=10238
X F(x) NP Adj)-NP
10 01579 01587 01583
20 00288 00289 00286
30 00031 00031 00030
40 0 0002 00002 00002
y = 0593
X F(x) NP Ad)-NP
10 01529 01587 01566
20 00362 00372 00362
30 0 0068 00064 00062
40 00011 00009 0 0008
y=0779
X F(X) NP Adp-NP
10 01526 01587 01553
20 0 0394 00411 0 0395
30 0 0084 00084 0 0080
40 00011 00014 00014
y=1082
H F(3) NP Ad)-NP
10 01376 01587 01525
20 00376 00470 0 0440
30 00125 00119 00109
40 0 0042 00027 00024
y=1628
X F(%) NP Ad)-NP
10 01280 01587 01452
20 00370 00562 0 0496
30 00140 00184 00159
40 0 0069 00057 00048

It is clear that for —2 \/5 <y<g?2 \/5 equation (4) has exactly one root in the
region —1/\/5 <bh< l/ﬁ. Since the distribution of insurance claims are
usually positively skewed, only the case where 0 <y < 2 ﬁ 1s considered.

For 0 < y2 \/5, let by be the unique root of equation (4) which lies 1n the
region 0 < by < 1/\/5, and let

(5) ag = J1—-2h3.
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Substituting the values 1nto equation (4), the following approximation results

_ 2 =
6) FoymnN| 24+ J2 14 X
2b, 453 by

This approximation will be called the ‘“adjusted” NP approximation

Table 1 shows the values produced by the traditional NP approximation
(equation (2)) and by the adjusted NP approximation (equation (6)). The
values of F and NP are taken from PENTIKAINEN (1987, pp. 32-34, cases
1,3,5,6,7,8). Following PENTIKAINEN, F 1s actually 1—F (the nght tail
probability) for ¥ > 0. From this table, 1t is clear that both NP approximations
yield similar values. As a result, equation (2) must be viewed as being superior
because it 1s easier to use, 1.e., it requires fewer steps to derive this approxima-
tion

Finally, 1t should be noted that these approximations have not been properly
calculated; F(x) should be approximated as follows:

(7 F(x) = P[X < x]
x PlaY+b(Y*—1) < ]

=Plr, < Y <r,] because b >0

= N(r)—N(r)
where r| < r, are the roots of the equation
(8) =ay+b(y’-1),

with a = 1, b = y/6 for the traditional NP approximation, and ¢ = ap, b = b,
for the adjusted NP approximation. The approximation (7) will serve to
increase the estimates of the right tail probabihities | — F(x). However, over the
range of applicability of the NP approximations, 1.e ,for ¥ > l and 0 < y < |,
the extra term N (r|) is insignificant.
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BOOK REVIEW

M.J. GoovaerTs, R Kaas, A.E VAN HEERWAARDEN, T BAUWELINCKX
(1990): Effective Actuarial Methods. Elsevier Science Publishers BV, Amster-
dam, 316 pages, US$ 92 25/DFL. 180.00

The ‘Effective actuarial methods’ comprise three separate essays on Ordering
of Risks (Part 1), Credibidity Theory (Part 2) and IBNR Techniques (Part 3) Via
these topics the authors present material from actuanal science which 1s
interesting, both from a mathematical and an applications point of view. The
latter 1s ighlighted by analyses based on real portfolio data using the software
packages SLIC (stop-loss remnsurance), CRAC (credibility) and LORE (IBNR
modelling).

In PART | a review of various orderings of risks, together with a discussion
of the related algebraic properties, arc given. Having these tools available, 1t 1s
relatively easy to tackle specific problems n the collective risk model These
mainly are estimation and ordering of adjustment coefficients and ruin
probabilities, but also results on optimal reinsurance are obtained. In many
cases do these ‘order’ resuits allow for easier numerical calculations. After a
rather trivial excursion into the realm of survival distributions, this first part
closes with a discussion on incomplete information, 1.¢. situations where only
moment conditions and/or shape information (like unimodality) of the relevant
random variables are/is assumecd. Think for instance of the construction of
stop-loss premiums with » moments known.

PART 2 on Credibility Theory starts with a very readable introduction on
‘what 1s credibility all about’ before giving an overvicw of the various models
and their analysis. The models included are those by BUHLMANN, BUHLMANN-
STrRAUB, the hierarchical one and regression type models. The materal 1s
presented in a well-documented, self-contained way which gives the reader a
thorough 1nsight into the basic theory Proofs are given explicitly Some
interesting extensions of the ‘classical theory’ are given in Chapter VI These
comprise credibility formulae of the updating type together with results on
covariance structures leading to such formulae Furthermore, in a section on
credibility for loaded premiums, 1t 1s shown how credibility estimators can be
based on weighted loss functions; examples are Esscher and variance prem-
ums. After some brief comments on multidimensional credibility, the authors
spend some more time on semi-linear credibility where linear functions of
transformed variables are considered as estimators. An interesting chapter on
insurance applications of credibility theory, based on the CRAC-software
package for two level, semi-linear hicrarchical credibility ends this section of
the book.

ASTIN BULLETIN, Vol 21, No |
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The final PART 3 contains an introduction of IBNR-techniques. These
involve mechanical smoothing (where no underlying model is assumed),
statistical methods (mostly of (auto)regression type) and credibility based
methods (including Kalman filtering). Via the loss reserving software package
LORE, the versatility of the methods presented 1s demonstrated on real data
coming from:

— recuperation in credit insurance;

— loss-reserving for hability insurance for notaries;

— loss-reserving in automobile hability insurance, and
— ‘activity coefficients’ 1n a pension fund of physicians.

The overall material 1s well-balanced between the three parts with exercises
adding to the course-book status. It is clear that having the software would add
to the understanding of some of the material presented though this 1s by no
means a necessity. One of the main attractions with respect to teaching lies in
the fact that based on this one book, actuarial students will gain constderable
insight into some of the specific techmques which are by now well-established
as core material within modern actuarial science. I am convinced that many
actuanal students, and indeed many researchers in the field, will find this text a
very useful one to have on one’s bookshelf.

PauL EMBRECHTS



LETTER TO THE EDITORS

Dear Sir,

I am writing 1n connection with the Claims Reserving Manual, Volume 2,
published by the Institute of Actuaries.

Volume [ of this manual deals with arithmetic or deterministic methods,
while Volume 2 covers more advanced methods involving probabilistic and
statistical methods.

We are now considering further contributions to Volume 2 and would be
very happy to receive articles written by members of ASTIN. The test for the
inclusion of a method is that it has been found useful by a practitioner. The
fact that a method may contain weaknesses from a theoretical point of view
may be commented upon, but will not prevent its publication. Methods which
have already been written up in journals are still eligable for inclusion in the
manual, although the write-up should have a practical bias.

Contributions should be sent to
S. BENJAMIN esq ,
Bacon and Woodrow,
St Olaf House,
London Bridge City,
London SE1 2PE

Yours faithfully

S. BENJAMIN and R. VERRALL
Editors, Claims Reserving Manual, Volume 2
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ACTUARIAL VACANCY

Faculty Position at the University of Manitoba
Department of Actuanal & Management Sciences
Faculty of Management

The Department of Actuarial & Management Sciences has an opening for a
tenure-track appointment in actuarial science at the Assistant, Associate, or
Full Professor level beginning July, 1991 or other mutually agreed date
Appomtment as Department Head may be considered at a later date. Salary is
competitive at all levels.

Qualifications include a Ph.D. in Actuarial Science or closcly related area, or
FS.A (F.C.I.LA) or equivalent. Candidates should have a strong interest 1n
effective teaching, and evidence of research capability and interest 1n actuanal
research. An appointment at senior levels requires an excelent research record
1n actuarial science Industry exprience 1s an asset and all candidates should
have an interest in participating in an actuarial program within a management
school context with a balanced emphasis on teaching and research. Primary
duties will be teaching graduate and undergraduate courses in actuarial science
and developing a research program in actuanal science

The Faculty of Management offers actuarial education within a general
management program at the undergraduate level Students choosing the
actuarial pattern graduate with a Bachelor of Commerce (Honours) degree
with a major in actuarial science. Specialized actuanal education is offered 1n a
Master’s of Actuarial Science program in the Faculty of Management and joint
undergraduate programs with the Faculty of Science. The Department of
Actuarial and Management Scicnces also houses the L.A.H. Warren Chair 1n
Actuarial Science. A Ph.D program in management science is scheduled to
begin in 1993. There are presently three full-time faculty members n the
actuarial area

The University of Manitoba encourages applications from qualified women
and men, including members of visible minorities, aboriginal people, and
persons with disabilities and provides a smoke-free work environment In
accordance with Canadian immigration requirements, priority will be given to
qualified Canadian citiziens and permanent residents of Canada.

Applications will be accepted until April 15, 1991 or untl the position 1s
filled, and should be sent to:

Dr. JERRY GRAY, Associate Dean
Faculty of Management
University of Manitoba
Winnipeg, MB R3T 2N2

ASTIN BULLETIN, Vol 21, No 1






GUIDELINES TO AUTHORS

1. Papcrs for publication should be sent m quadruplicate to one of the Editors

Hans Buhlmann, D Harry Reld,
Mathematik, ETH-Zentrum, Eagle Star Insurance Company Ltd,
CH-8092 Zurich, Switzerland Eagle Stat House, 9 Aldgate High Street,

London EC3N ILD, Unmited Kingdom
or to one of the Co-Editors

Alois Gisler,

“Winterthur™ Swiss [nsurance Company,

PO Box 357, CH-8401 Wmteithur, Swizerland

David Wilkie

Messrs R Watson & Sons

Watson House, London Rd, Reigate, Suriey RH2 9PQ, United Kingdom

Submission of a paper 1s held to imply that 1t contaimns original unpubhshed work and 1s not
being submutted for pubhcation elsewhere

Reccipt of the paper will be confirmed and followed by a rcfercemg process, which will take
about three months

2. Manuscripts should be typewrntten on one side of the paper, double-spaced with wide
margins The basic clements of the journal's style have been agiced by the Editors and
Publishers and should be clear from checking o recent issue of Asriv Buert 1iv 1 vanations
arc felt nccessary they should be clearly indicated on the manuscript

3. Papers should be written in English or in Fiench Authors intending to submit longer papers
(e g cxceeding 30 pages) are advised to consider splitting their contribution 1nto (wWo or more
shorter contributions

4. The first page of each paper should start with the title, the name(s) of the author(s), and an
abstract of the paper as well as some major keywords An institutional affiliation can be
placed between the name(s) of the author(s) and the abstract

5. Footnotes should be avoided as far as possible

6. Upon acceplance of a paper, any figures should be drawn n black ink on white paper mn a
form suitable for photographic reproduction with lettering of umform size and sufficiently
large (o be legible when reduced Lo the final size

7. References should be arranged alphabetically, and for the same author chronologically Use
a, b, ¢, ctc to separate publications of the samec author in the samec year For journal
references give author(s) year, title, journal (in talics, ¢f point 9), volume (in boldface, cf
pomnt 9), and pages For book references give author(s), year, title (in 1talics), publisher, and
city
Examplcs

BArLOW, R E and PROSCHAN, F (1975) Mathematical Theory of Relwabiity and Life
Testmg Holt, Rinchart, and Winston, New York

JEwWELL, W S (19754) Model variations in credibibty theory In Credibility  Theory and
Applications (ed P M KaHN), pp 193 244, Academic Press, New York

JewriL, W' S (1975b) Regularity conditions for exact credibihty ASTIN Bufletn 8,
336-341

References in Lhe text arc given by the author’s name followed by the yecar of publication
(and possibly a lctter) in parcntheses

8. The address of at least one of the authors should be typed following the references

Continued overleaf



COMMITTEE OF ASTIN

Bjorn AJne Sweden Chairman

James N STANARD USA Vice-Chairman

G. Willem pE WiIT Netherlands Secretary

Jean LEMAIRE Belgium/USA Treasurer

Hans BUHLMANN Switzerland Editor/lIAA-Delegate
D. Harry Reip United Kingdom Editor

Edward J. LFvay Israel Member

Patrick PICARD France Member

Jukka RANTALA Finland Member

LeRoy . SiMON USA Member/1AA-Delegate
Jurgen STRAUSS Germany Member

Gregory C TAYLOR Australia Member

Alois GISLER Switzerland Co-Editor

David WILKIE United Kingdom Co-Editor

Neither the COMMITTFE OF ASTIN nor CHUTERICK s a arc responsible for statements made or
opunons expressed 1in the articles, criticisms and discussions published in ASTIN BuLLETIN

Guidelines to Authors continwied from nside bach cover

9,

Italics (boldface) should be indicated by single (wavy) underhiming Mathematical symbols
will automatically be set mn italics, and need not be underlined unless there 1s a possibility of
misinterpretation

Information helping to avord musinterpretation may be listed on a separate sheet entitled
“special instructions to the printer’ (Example of such an instruction Greek letters are
indicated with green and script letters with brown underlining, using double underhining for
capitals and single underhining for lower case )

Authors will recerve from the publisher two sets of page proofs together with the manuscript
One corrected set of proofs plus the manuscript should be returned to the publisher within
onc week Authors may be charged for alterations to the original manuscript

Authors will recerve 50 offprints free of charge Additional offprints may be ordered when
returning corrected proofs A scale of charges will be enclosed when the proofs are sent
out



