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ABSTRACT 

Traditional credibdlty models have treated the process generating the losses as 
stable over time, perhaps with a deterministic trend imposed. However, there is 
ample evidence that these processes are not stable over time. What is required 
is a method that allows for time-varying parameters in the process, yet still 
provides the shrinkage needed for sound ratemaking. In this paper we use an 
automobile insurance example to illustrate how this can be accomplished 
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1. INTRODUCTION 

The goal of any ratemakmg process is to estimate future claims on the basis of 
prior experience. The experience will be available for many groups over several 
time periods. It has been long known (MoWBRAY, 1914) that both statistical 
and business optimality is achieved by first estimating a rate for each group 
and then reducing the large values and Increasing the small ones. Tra&tlonally 
(e.g., BOHLMANN and STRAUB, 1972) the lmtlal estimates are sample means. 
Others (e.g. HACHEMEISTER, 1975) have recommended deterministic trend 
factors. Most all approaches that are currently used assume that the time series 
observations from a single group vary independently around a stable mean or 
trend. 

Most time series, however, exhibit time-varying levels as well as autocorre- 
lattons among adJacent observations. The optimal forecasts for such series do 
not assign equal weights to all past observations, but discount the information 
according to their age; older observations get less weight. See Box and 
JENKINS (1976) or ABRAHAM and LEDOLTER (1983) for a thorough discussion. 
Evidence for time-varying parameters was presented for automobde losses by 
BAILEY and SIMON (1959). A problem with most standard time series 
approaches, however, Is that they are designed for making forecasts based on 
single series of  relatively long lengths. Typical insurance problems contain 
many (sometimes hundreds) series of  short (3-7 years) duration. Because these 
short series are occurring in a common external environment (e.g., of  rising 
health care costs, automobile safety improvements, etc.) many of  the features 
will be common to all o f  the series. The ~mportance of  both time series and 
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cross-sectional effects has also been noted in two recent econometrics papers by 
GAROA-FERRER et al. (1987) and ZELLNER and HONG (1989) who use 
shnnkage methods to predtct the economic growth rates of  several countries 

The purpose of  this paper is to bring together a dynamic model for the 
time-varying aspects of  the problem and a shrinkage techmque that takes 
account of the multiple group aspect. In Section 2 we rewew the cre&bllity 
model with t~me-invariant parameters. In Section 3 we discuss unlvarlate 
structural t~me-series models w~th time-varying trend and seasonal coefficients 
and we apply the shrinkage approach of  Sectmn 2 to the coefficients m the 
structural time series models. The final section illustrates th~s approach on 
actuarial data. 

2. THE STANDARD CREDIBILITY MODEL 

In all of  the situations discussed in this paper the data consists of  observations 
y[0, i =  l . . . . .  k, t = I . . . . .  n where k is the number of groups under 
consideratmn and n is the number of  periods of  observatmn. Typmally, each 
value represents the amount  paid in claims, divided by some measure of  the 
size of  the group, P['). The objechve is to forecast the value for a future period, 
y0) for each group. n + l ,  

A linear data generating model for the observations specifies 

(2.1) y[0 = x,~fl(0+e}0 e}0~N(0,  a2/pt0)) 

where e} O, for t = 1 . . . . .  n and t = l . . . . .  k, are independent and x,, are p x 1 
known design vectors, usually functions of  t. Two well-known models take (1) 
p = 1 and x,t = 1 and (2)p = 2 and _x,t = (l,  t) ' .  The data generating model in 
(1) IS part of  a special case of  the Biihlmann-Straub model (B~HLMANN and 
STRAUB, 1972); the linear trend in (2) is part of  the Hachemeister model 
(HACHEMEISTER, 1975). The factor P[') in (2 1) is a measure of  the amount of 
data that produces the observatmn Y,('), which in most actuarial situations is 
an average of  many observations. The forecast of ~+;,v(') the observation 
at a future time period, ~s prowded by the estimate of the mean 
E(v(,) , , ÷ ; j  = x,~,+;fl('). 

The standard credlbihty model also assumes that the coeffioents rio), for 
i = l, . . . ,  k, are independent reahzations from a common &stribution. That 
is, 

(2.2) fl(') = b + a  (') where a( ' )~N(p,  o'2B). 

Treating this second level distribuuon as a prior &stnbutlon, the Bayes 
shrinkage estimate of,8(') is given by 

(2.3) if( ' )= Z,t~(')+(I-Z,)b 
where 

(2.4) (z ) 1~(,) = pro ~,,LS,; E P}') ~,t y[O 
t 



C R E D I B I L I T Y  M O D E L S  WITH T I M E - V A R Y I N G  T R E N D  C O M P O N E N T S  7 5  

is the weighted least squares estimate in group t, 

(2.5) z ,  = B ( B +  V,)-', 

and 

(2.6) 

A problem with this solution IS that estimates of the quantities B and b must 
be obtained A commonly accepted approach ~s to use the method of moments 
estimates that have been developed m variance components analysis (see 
SWAMY, 1971). However, there are a number of drawbacks with this approach. 
The estimates of B and Z, are biased and, furthermore, the moment estimate of 
the scaled covariance matrix B need not be non-negatwe definite. These 
drawbacks can be overcome, in part, by either using the Iterative estimation 
approach of DEVYLDER (1981, 1984), or a true Bayes approach instead of an 
empirical Bayes approach. The details of the Bayes anal~is  can be found in 
KLUGMAN (1987). DeVylder proposes estimators B and /2 of B and /2 which 
depend wa Z, = B ( B +  V,) -~ on the parameter B to be estimated. He suggests 
an iteratwe procedure where 

(2 7) ~ = Z, Z,/~ (0, 

" =  Z o, 
t 

/~ = ( H + H ' ) / 2 3  -2, 

and 

t I 

The iteratwe procedure starts from an initial arbitrary non-negative definite 
symmetric matrix /~0- It stops if, from one iteration to the next, the elements 
in /~ do not change by more than a specified small quantity. 

Remark. We can think of  credibility models as cons~siting of two components. 
The first one in equation (2.1) models, for each group separately, the 
generation of the observations for gwen values of the coefficients ,6(0; we refer 
to this as the data generating model. The second component in equation (2.2) 
relates the parameters fl0) in the data generating model across the k groups; we 
refer to this as the shrinkage component As mentioned above, a shortcoming of 
the traditional cre&bdlty model in equations (2.1) and (2 2) is that it does not 
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allow for time-varying coefficients. As a consequence the age of the observa- 
tion does not enter into the analysis. 

3. S H R I N K A G E  ESTIMATION IN MODELS WITH T I M E - V A R Y I N G  COEFFICIENTS 

3.1. Analysis of a single series 

The following discussion concentrates on a single series (group) and, in order 
to simplify the presentation, we have omitted the group index i. In this paper 
we use structural time series models to incorporate time-varying coeffioents 
into the data generating model. These models (see HARVEY and TODD, 1983; 
HARVEY, 1984) are of the form 

(3.1) Yt = ~ct' f l t + e , ,  e t ~ N (  O, t72/pt) 

/~t "~- T ~ t  - l ~ -  .P t , .v t ~ N (.O, a 2 A ) . 

As the notation indicates, the et 's  a r e  normal and independent with mean zero 
and variance t r2 /P t ,  and the vt's are.independent and multivariate normal with 
mean vector zero and covariance matrix a 2 A .  Furthermore e t and ~,, are 
mutually independent. Actuaries have used models of this type before. DE 
JONG and ZEHNWIRTH (1983), for example, use these models in the credlblhty 
context and show that the data generating equation of traditional credlbdity 
models can be formulated in this form. NEUHAUS (1987) applied this type of 
model to the prediction of number of policies, claim frequency and mean 
severity, and he discussed how to select the appropriate model and how to 
estimate its parameters. A recent apphcation of these models in an insurance 
context is described by HARVEY and FERNANDEZ (1989) who combine a 
structural time series model for the size of claims with a model for the number 
of claims. 

The simplest special case of the model in (3.1) assumes that p = 1, x, = 1 
and T = 1. This model allows the mean level 3, of the series to change over 
time according to a random walk, fit = Bi t -~+ vt. The exponentially weighted 
moving average forecasts that arise from th~s model (see ABRAHAM and 
LEDOLTER (1986), for example) are a special case of the recurslve credibility 
model dlscusssed by GERBER and JONES (1975) and ItS generahzatlon by 
SUNDT (1981). If  Va r (v / )=  0, implying that the coefficients fit = fl are 
time-mvarmnt, then this model simplifies to the data generating equation of the 
Biihlmann-Straub model. 

Another speclal case of interest is the model with a time-varying linear trend 
component where 

(3.2) x , =  I0  l ,  f i t =  F f l ° ' l  T =  I~ 11 and A = [20' 0 1 
" k/~  ,_1 1 ~2 



CREDIBILITY MODELS WITH TIME-VARYING TREND COMPONENTS 77 

This model allows the slope fl~t = fl~,r-J +v2~ and the intercept 
f l0 t  = fl0. t - I+ f l l ,  t - I  + Vlt t o  change over tame. With 21 = 22 = 0 the model in 
(3.1) reduces to the data generating equataon of  the Hachemeister model. 

I f  quarterly or monthly data are analyzed, it may be necessary to incorporate 
a seasonal component .  A model with 

-1- -P0, 1 
0 /~,, 

(3.3) x, = 1 , ,fir = Y, ., T =  

0 7 I - I  

0 7 t -2  _j 

-1 1 0 0 0 -  

0 1 0 0 0 

0 0 - l  - 1  - 1  

0 0 1 0 0 

0 0 0 1 0 

-Pl t]  

V2t / 
vz = v 3 , [  and A = 

-21 0 0 0 0 -  

0 22 0 0 0 

0 0 23 0 0 

0 0 0 0 0 

0 0 0 0 0 

can be used for quarterly data. The first two components  in fit correspond to 
level and slope at time t. The last three components  of f l ,  correspond to addltwe 
seasonal factors. If  the 2's are zero, the model reduces to the Hachemeister 
linear trend model with seasonal indicators 

The reference in structural tame series models (3.1) as discussed in HARVEY 
and TODD (1983). The standard Kalman filter updating equations (see, for 
example, JAZWINSKI, 1970; MEINHOLD and SINGPURWALLA, 1983) are used to 
obtain fl,~,, the esumate of,8,, that is based on the observations Yj, Y2, . . . ,  yn. 
Furthermore,  one can 6btam its covarlance matrix a 2G,,I., predict 
future coefficients fin+; from ~,,+,,, = T ' ~ , , . ,  and future observations Y,,+t 
from Y . ( I ) =  x , ' ,+ ;T ' f l , i , .  

Starting values are needed to anitaahze the Kalman filter recursions 

(3.4) ~/,,_, = T~,_,,,_, 

= + 

G t t - I  = T G z - t l t - I  T ' + A  

G m = G m _ l - k , x / G m _  I 

k ,  = G , r _ 1 6 ~ ( x / G , i , _ l x r + P Z I )  - I  

For a single series an (3 1) we start these recursions with a p x 1 vector of  zeros 
for ~010 and a diagonal matrix with very large diagonal elements for Go 0- This 



78 JOHANNES LEDOLTER, STUART KLUGMAN, CHANG-SO0 LEE 

non-informative mltlalizahon reflects our ignorance about  starting values in the 
absence of  prior data. Other initialization approaches are possible (ANSLEY 
and KOHN, 1985; KOHN and ANSLEY, 1986, DEJONG, 1988), and their 
relationships are discussed in LEDOLTER, KLUGMAN and LEE (1989). 

With a non-lnformatwe prior distribution the Kalman filter estimate /~n,n 
is an unbiased estimator of  the coefficient at time n, fin- The estimate is a 
weighted average of the n past observations. In general, older observations 
receive less weight if there is evidence that the coefficients are time-changing. 

The Kalman filter updating equations, and therefore the estimate flnln and 
the forecast Yn(l) ,  depend on the variance ratios A in equation (3 I). These 
parameters  are estimated by maximum likelihood. The likelihood function 
of o .2 and A is obtained from the prediction error decomposition 
(SCHWEPPE, 1965). Assuming a non-informative initialization the log-hkehhood 
function can be written as 

n - p  l 
(3.5) l(a 2, A ; data) = c . . . .  log a 2 - log f ,  

2 2 ,=p+t 

_ 1  ~ ( y t _ x / ~ , l t _ l ) 2 / f t  ' 
20 .2 t -p+l  

where Y,-~c,'l~tl,~ l is the one-step-ahead prediction error at time t, and 0.2f, 
is its variance; fl,i,-I and f ,  = P,-I+x, 'G, i ,_ l~:  , can be obtained from the 
Kalman filter recursions The maximization ~s simplified by the fact that one 
can concentrate the log-likelihood function with respect to a2; the numerical 
maximlzahon of  the concentrated log-hkehhood l~ (A, data) needs to be carried 
out for elements in A only. 

3.2. Analysis of multiple series and the introduction of shrinkage 

So far we have discussed the analysts of  a single series with time-varying 
coefficients. In insurance applications we not only have a single series, but we 
have n observations from k groups, and the estimation of  A can be improved 
by incorporating information from the other groups Here we assume that the 
A in the k groups are the same. As the value of  n is usually small relative to k, 
it is not possible to estimate separate variance ratios for each series. Assuming 
independence across the k groups we can add the Iog-likehhood functions in 
(3.5) for the k groups and obtain estimates of  a common A via numerical 
optimization. An estimate of  the varmnce a 2 is obtained from 

(3.6) ~.2 _ 1 Z (Y}' ) -  '~' ~(') e, ,~ ,l,- 02If, (') . 
( n - p ) k  ,=l ,=p+l 

The estimate of  .4 is used to carry out the Kalman filter recursions. This is 
done for each group separately, using a non-reformative mnlallzatlon The 
resulting coefficient estimate ~}/r~ provides us with an estimate of  the parameter  
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at time n, fl,~'); ItS covariance matrix is g,ven by a~Gl[~, The estimate is a 
weighted average o f  the n observations.  The estimate o f  A determines the 
weights m this average. Posmve  variance ratios in A imply that  the impor tance  
o f  each observat ion in determining the estimate depends on ItS age. I f  the 
variance ratios are zero, then the Kalman filter estimates simplify to the usual 
regressmn estimates/~(') m equat ion (2.4). 

So far there has been no shrinkage, as we have ignored the cross-sectional 
correlations. In order  to effect shrinkage we introduce a second equation,  

(3.7) fin(') = b ~ + g  ') where a},')~N(O, 17 2 B,). 

This equat ion specifies that at time n the coefficient vectors in the structural 
time series model for the k groups  vary independently a round  a c o m m o n  value 
b,,. We combine  this equat ion with the results f rom the k separate Ka lman  
filters, 

(3 8) hi,) (,) .-(,) ~v~,)~N(9, a2tz(,)~ P'nln_ = fin~ + ,_vn where , - ,  n l n /  

are Independent  across groups  These two equat ions yield the s tandard  
two-stage credibility model in Sectmn 2. The shrinkage estimate based on (3.7) 
and (3.8) is gwen by 

(3 9) fl,~') = Z,~,~?.+(l-Z,)bn, 

- ~(0 The results m Section 2 can be used where Z, = B.  (B. + V,) i and V, = ....i,,- 
to estimate b,, and B. .  In our  examples we have used deVylder 's  lteratlve 
approach  discussed in Section 2. 

3.3. Discussion 

Adding this second equat ion to induce shrinkage is somewhat  heuristic, but  is 
needed as by itself the model in equat ion (3.1) does not  incorporate  cross- 
sectional correlations.  

In theory, a cross-correlat ion structure can be introduced by specifying a 
certain covarlance structure for the error  terms in a multivariate version o f  the 
model in  (3 1) However ,  it is usually quite difficult to identify the exact form 
of  the cross-correlat ion structure, especially for the short  time series which are 
typical with insurance data.  We have avoided these modelling issues by 
introducing a heuristic shrinkage equat ion at the last available observat ion 
period 

Model-based approaches  to shrinkage are clearly possible. One alternative to 
the above heuristic shrinkage approach  is a model  that introduces a shrinkage 
equat ion for the coefficient vector at the initml time period zero. That  is, one 
assumes that fl0 (') = b o+q(o '), where the q(0 '), for t = 1 . . . .  k, are independent  
realizations fr6m a normal  distr ibution with mean vector zero and covarlance 
matrix a 2 B 0 . This implies that at the initial time period the s tandard  actuarial 
shrinkage model is valid I f  the elements in A are zero, implying that  the 
coefficients in the data  generating model are tzme-invariant, this model and the 
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traditional credibility model are identical. For  time-varying coefficient models 
we start from the standard actuarial shrinkage model at time zero, but assume 
that the coefficients for subsequent periods are subject to stochastic change. 
For  the inference in this model one initmlizes the Kalman filter m each group 
by the same/~'l)0 = b0 and rz0) = Bo treats b0 and B0 as unknown parameters, ~ ~ LJ' 010 , ~ 

and simultaneously obtains esumates of  A, .b0 and B 0. This results in shnnkage 
of  the Kalman filter estimates/~'~n at time n towards the common initial mean ~ T 

.b0. But even for modest positive values of A this shrinkage effect disappears 
very qmckly as n increases, and for moderate n there ~s hardly any shrinkage. It 
is for these reasons that we have rejected this alternative approach and have 
concentrated our discussion on the former, somewhat heunsttc procedure. 

Another model that introduces cross-sect~onal correlations is one that 
assumes that the k coefficients at time t, fl['), for i = 1,.. , k, vary indepen- 
dently around a common trend component .bt which itself follows a structural 
time series model. LEE (1991) studies these common-trend type models in 
detail, and we hope to report on this work in a future paper. 

The advantage of  our admittedly heuristic method is that it Js more general 
than the tra&tional credibility approach. It recogmzes the fact that most time 
series exhibit changing levels, trends and seasonality, and it discounts prewous 
observations when ~t determines their estimates The difference between the two 
approaches is shown best in the case of  the Bfihlmann-Straub model The 
traditional approach shrinks the sample means towards a common average, 
whereas our new approach shrinks exponentially weighted averages. Further- 
more, it can be shown that for A = 0 our approach coincides with the solution 
in Secuon 2. 

4. EXAMPLES 

In this section two examples are given, with the second one being analyzed m 
detail. These examples provide dlustrations of  situations m which models that 
combine time-varying and shrinkage aspects are likely to improve the 
results 

4.1. Worker's compensation 

MEYERS (1984) studies yearly loss ratios under Worker 's  compensation insur- 
ance for 319 classes (occupation groups) and three years A model without 
trend component  is appropriate since these data are already adjusted for 
inflation Meyers uses the Buhlmann-Straub model m his analysis However. 
MEYERS and SCHENKER (1983) provide evidence that the loss ratios are not 
constant, but vary independently from year to year around a common mean In 
the notation of our present paper 

(4 I) ~ ' ,=  I l l  ' fl'=- Lfl~ Ffl°tl',j T =  I~  11 l '  and A = I~ '  ~ l '  
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where  ,Bit is an unchang ing  long- te rm average  and ~0t is the level in year  t. A n  
a p p r o a c h  that  combines  this s ta te -space  model  with sh r inkage  can be expected 
to improve  the forecasts  for future  losses, as m a n y  o f  the 319 classes have very 
small  sample  sizes. 

4.2. Automobile bodily injury 

The d a t a  for  the second example  are taken  f rom the a u t o m o b i l e  insurance  
indus t ry  Quar t e r ly  da t a  on the a m o u n t  (not  ad jus ted  for inf la t ion)  pa id  under  
the bodi ly  injury c o m p o n e n t  o f  a u t o m o b i l e  insurance  policies (LOSS)  and the 
number  o f  cars  covered by these pohcies  ( E X P O S U R E )  were ob ta ined  f rom 
31 states.  Only  states  wi thou t  no- fau l t  laws were inc luded,  as under  no- fau l t  
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FIGURE I Multiple time series plot of the ratio R = LOSS/EXPOSURE 
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laws many claims that would otherwise be covered by the habllity portion of  
the insurance are paid under the bodily ln lury component .  Data  from the first 
quarter of  1983 to the second quarter of  1988 (n = 22) are used m our 
analysIs. 

The ratio R~ '~ = LOSS}')/EXPOSURE~ '), where t = 1 . . . .  22 (quarters) and 
i = 1, . . ,  31 (states) is our dependent variable that needs to be predicted The 
multiple ume series plot of  the rattos RI o in Figure 1 shows presence of 
seasonality and a need for a logarithmic transformation. The presence of  
seasonahty is seen more clearly in Figure 2 where we have plotted esumates of  
the multiphcattve seasonal indices for the 31 states. We use the followmg 
procedure to obtain the seasonal indices. For  each univariate series we 
calculate centered yearly moving averages to estimate the trend component ;  we 
then obtain, for each time period t, an estimate of  the seasonal factor from the 
ratio of  the observation and the corresponding centered moving average, next, 
we average the seasonal factors for each quarter to obtain seasonal in&ces for 
the four quarters;  finally, we normalize these indices so that they sum to four. 
The dot plot of  these normahzed seasonal indices m Figure 2 shows a seasonal 
pattern;  in the fourth quarter the rattos R} ') tend to be highest 

-+ ......... + ......... + ......... + ......... + ......... + ..... Quarter i 

.: : . 

• • • • ° • • • o  o °  • •  ° •  ° 

+ + + + + + --Quarter 2 

o ° o , . , ° •  
• • •  ° . • o • o • ° o •  ° • o o o .  

-+ ......... + ......... + ......... + ......... + ......... + ..... Quarter 3 

:o 

• .. : :. ::::.: : . . . .  

+ ÷ + + ......... + ......... + ..... Quarter 4 

0.80 0.88 0.96 1.04 1.12 1.20 

FIGURE 2 Dot plot of the seasonal radices for the 31 states 

A multzple time series plot of  the transformed observations, Yt (') = log R~ '), 
is given m Ftgure 3. This plot in&cates that a hnear trend model with addttive 
seasonal components  provides a good description of  the transformed observa- 
tions. 

In the standard actuarial model tt ts usually assumed that the variance of  the 
error component  ts related to the exposure p0); that is, Var (e~ ')) = a2/P, ~') We 
now want to check whether this ts a reasonable assumption. Since the 
exposures PI ') do not change much over time, we calculate an average exposure 
fi~') for each state Due to size differences among the states, these averages are 
quite different. Next, we adjust each time series Y~') for trend and seasonahty 
and calculate an estimate of  tts variance. The restduals from a regression of  y I,) 
on time t and additive seasonal indicators are used to calculate the variance 
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FIGURE 3 Mul t ip le  t ime serms plot  of  Y = l o g ( L O S S / E X P O S U R E )  

estimate. In Figure 4 we plot the resulting mean square errors against the 
reciprocal of  the average exposures. The linear relationship confirms that 
Var (el ')) = a2/P} ') is a reasonable assumption 

Based on this preliminary analysis we are led to consider the structural time 
series model with a linear trend and additive seasonal components,  

(4.2) Y[') = xt ' f l t( ')+e} ') e~ ' )~N(O,  trZ/P~ ')) 
o) 

~ ~ j t o t _  1 - -  

where ~:,, T and A are given in equatton (3.3). Our model allows for 
time-varying coefficients and reduces to a hnear trend regression model with 
quarterly indicators xf 2t = 22 = 23 = 0. 
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FIGURE 4 Plot of  the mean square error  ~ o m  the linear trend regression with seasonal indicators 

against  the reciprocal o f  average exposure,  k = 31 states 

The maximum hkehhood estimation approach in Section 3 is applied and, 
assuming independent groups, estimates of  t72 and the three variance ratios are 
obtained It is found that 62 = 3.8089* l0 -3, 21 = 0.0495, 22 = 0.0044 and 
~-3 = 0.00008. The e snmate 23 is close to zero and the log-hkehhood deficiency 
(ratio), lc(~.~,~.2, A3)-lc(AI, ~.2,0), IS quite small. This implies that the 
seasonal coefficients do not change much over time. Contours of  the log- 
hkehhood function of  21 and 22, for ~-3 = 0.00008, are,plotted m Figure 5 
This plot, as well as the large log-hkehhood deficiency 1c(21,2 z, 0 ) - l c (0 ,  0, 0) 
= 19.16, shows that a standard least squares approach which assumes time 
constant intercept and slope coefficients would be ,nappropriate 

In order to check the adequacy of  the structural time series model in 
equation (4.2) we calculated the standardized one-step-ahead forecast errors for 
periods 6 through 22. Standard,zauon of  the forecast error by its standard 
error 6./', ~/z assures that its variance does not depend on time. We found that 
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FIGURE 5 C o n t o u r  plot  of  the concen t ra ted  Iog- l ,kehhood funct ion The  var iance  rat io  tha t  
de te rmines  the v a n a b l h t y  in the seasonal  c o m p o n e n t  is set at  its es t imate  ).3 = 0 00008 Probab i l i ty  

coverage  of  the con tours  ~s ob ta ined  from the Chl -square  approx~mat ,on  

the standardized one-step-ahead forecast errors were serially uncorrelated for 
essentially all 31 groups^ 

The estlmates of  21 22 and ~-3 are used to calculate the estimates h(,) for , I J n ] n ,  

n = 22 (the last available time period) and z = l, . . . ,  3l (states). Dot  diagrams 
of  the k = 31 esttmates of  intercept, slope and seasonal coefficients (only the 
first one is shown), together wzth their standard errors, are given zn Figure 6. 
The standard errors are obtained from the diagonal elements m 62"=(° "-~' n Ln - 

We notice considerable varmbthty among  the k = 31 intercept estimates. 
Furthermore,  we find that the between group vartablhty is much larger than 
the uncertainty that is assocmted wzth each estimate (that is, the within group 
varmbflity as measured by the standard error of  the esttmate). This result 
indzcates that there should be no or httle benefit to shrink the intercept 
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Intercept: 

.: 

. : . . , :: .:. :.° :. 

............... + ......... + ........ 2 . . . . .  2___2+ . . . . . . .  2 _ ÷ _ _ _ E s t i m a t e  
3.60 3.90 4.20 4.50 4.80 5.10 

., . . . . ,  . : ,  , • 

+ . . . . . . . .  - - +  - I I I I - - I - + I - I I - - - I I +  . . . . . . . . .  + . . . . . . . . .  + . . . . .  Standard  
0 0 . 0 2  0 . 0 4  0 . 0 6  0 . 0 8  0 , 1 0  D e v i a t i o n  

Slope: 

. . . . . .  :::.:.: ::. .. :. . 

+ + + ........ + ......... + ..... Estimate 
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..:: ,. 

..,,, ,. . ....,,,,,., 

+ ......... + ......... + ......... + ......... + ..... Standard 

0 0.005 0.010 0.015 0.020 Deviatlon 

Seasonal: 

. . : : . . . : : : : . . :  .: . . . .  

+ + + + + ..... Estlmate 

-0.i0 -0.05 0.00 0.05 0.10 

1 , : . : :  : . . . . . . .  : :  • • 
+ ......... + ......... + ......... + ..... Standard 

0 0.03 0.06 0.09 Deviation 

FIGURfi 6 Dot plots of the estimates and their standard errors for the intercept, slope, and seasonal 
coefficaents m model (4 2), k = 31 states 

esUmates. The dot plots of  the slope estamates and thear standard errors show a 
different pacture; the wathm group varmbahty as qmte large when compared 
wath the variabdity between the slope esttmates. These pictures suggest that 
shrinkage procedures should pool the slope estimates towards a common value. 
The same conclusion is reached for the seasonal factors (the third, fourth and 
fifth component  of the beta vector). They, too, should be shrunk towards 
common means. 

Next, we apply shrinkage and calculate the shrinkage estamate dascussed m 
equation (3.9) of Sectaon 3. That  is, we compute 

(4.3) klt~ = 97/~(,) +(l-Z,)b,, ~ .  --t c n .  ~ 
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where Z, = B . ( B . +  V,) - t  and V, = G~'i ) .  DeVylder's modification in (2.7) is 
used to esttmate b. and B..  The only minor difference is that we are using the 
maximum hkelihood estimate 62 -- 3.8089 * 10 -3 from the Kalman filter as the 
esUmate of  a 2 In Ftgure 7 we compare the esumates before and after 
shrmkage. The graphs confirm what we had antictpated From the results in 
Figure 6. The slopes and seasonal components are shrunk towards thetr 
respective means, whereas the intercepts are essentially unchanged. 

INTERCEPT SLOPE SEASONAL 

53 

49 

45 

41 

37 

33 

BEF( 

0 05 

0 04 

0 03 

002  

001 

0 00 
. . . . . . . . .  i 

,RE AFTER BEFORE AFTER 

012 

0 08 

0 04 

000. 

-O04 

-0  08 

- 0 1 2  

BEFORE AFTER 

FIGURE 7 Intercept, slope and first seasonal coefficient estimate m model (4 2) before and after 
shrinkage, k = 31 states 

Forecast comparisons 

The pre&ction of future values ~s a major reason for fitting models to data. We 
must now mvestlgate whether the proposed new approach leads to forecast 
improvements In particular, we address the following two questions'  

(1) Has shrmkage of the coeffictents improved the forecasting performance of  
our rime-varying trend component model9 To address this issue we 
compare forecasts that are calculated from the shrinkage estimates ~,}') in 
(4.3) [method 1] and forecasts that are calculated from the standard 
Kalman filter esUmates 1~}[,~ [method 2]. 
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(2) Has our generalization of  incorporating ttme-varying trend components  
helped the forecastmg? To investigate this question we compare the 
forecasts that use the shrinkage estimates ff,~') m (4.3) [method 1] wtth 
forecasts that are calculated from the shrinkage esttmates in the standard 
regresston model with constant hnear trend and seasonal indtcators [Hache- 
metster, method 3]. 

A true test of  the forecast performance of  a model is obtamed by an 
out-of-sample comparison of  forecasts and actual observations. Here we use 
the last four observations RC~)9 through R ~ ,  for t = 1, . , 31, as our hold-out 
sample. Thm is a reasonable choice as actuarial practice bases predictions of  
future premiums on about  four to five years of  past data. For  each state we 
calculate four one-s[ep-ahead forecast errors R t - / ? , _ ~ ( l ) ,  t =  19 . . . . .  22, 
where /? t( l)  = exp [Yt( l ) ]  ts obtained by applying the Averse t ransformation 
to the forecast of  the logarithmtcally transformed data For each state 
separately, we then compute the mean square error MSE, the mean absolute 
devtation (error) MAD,  and the mean absolute percent error MAPE For  each 
measure (MSE, MAD,  MAPE)  and for each method (methods I through 3) we 
calculate a weighted average that combines the mformatlon from the 31 states 
The average exposures p0), t = 1 . . . . .  31, are used as weights. The results are 
given m Table 1. Table 1 also shows the results of a further refinement of  
method 1 (Kalman filter with shrinkage). In method 1R we shrmk the last 
4 components  of  the 5-dimensional coefficient vectors, but leave the first 
components  (intercepts) unchanged 

TABLE I 

WEIGHTED AVERAGES OF ACCURACY MEASURES AVERAGE EXPOSURES ARE USED TO COMBINE 
THE INFORMATION FROM k = 31 STATES 

Method 1 
Kalman filter model 
(4 2) with shnnkage 

1 I R  

Method 2 
Kalman filter model 

(4 2) without shrmkage 

Method 3 
Hachemelster 

constant linear trend 
& seasonal mdlcator 
model with shrinkage 

MSE 32 28 31 88 39 24 38 02 

MAD 3 75 3 70 4 20 4 32 

MAPE 5 12 4 99 5 35 5 40 

In addition to the comparison of  the aggregate measures, we compare the 
measures for each state separately. We asstgn a score of  1 if in state ~ the first 
method leads to a lower MSE (MAD, MAPE)  than the second. The proport ion 
of  states where method I outperforms method 2 (method 3) is gwen in 
Table 2. 
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T A B L E  2 

PROPORTION OF STATES WHERE ONE METHOD OUTPERFORMS THE OTHER 

89 

C o m p a r i s o n  MSE M A D  M A P E  

Method  1 vs Me thod  2 58 55 58 
Me thod  1 R vs Me thod  2 71 65 61 

Method  1 vs Me thod  3 61 58 61 
Me thod  I R vs Me thod  3 65 55 55 

Me thod  2 vs Method  3 55 52 55 
Me thod  I R vs Method  1 52 48 52 

Comments. (i) For  shrinkage methods we calculate the forecasts Y,(I) after 
shrinkmg the estimates that are obtained at hme t. We carry out a new 
shrinkage if we go to another forecast origin. (ii) The Kalman filter methods 1 
and 2 reqmre estimates of  the variance ratios 21,22 and 23. In order to avoid 
the numerical maximization of the log-likelihood for each forecast origin t, we 
use the estimates that are obtained from the complete data set (n = 22). 
(m) The transformation / ~ , ( l ) =  exp[Y,(l)]  results in the median of the 
pre&ctlve distribution of  Rt+t. The mean of  the predictive distribution can be 
obtained by incorporating the variance of  the predictive distribution into the 
inverse transformation (see GRANGER and NEWBOLD, 1976). Because differ- 
ences are usually relatively minor and because ~t is not obvious whether the 
mean of the posterior distribution is preferable to the median we have not 
pursued this adjustment. 

Interpretation of results 

Table I shows that we can improve the one-step-ahead forecast performance if 
we allow the trend and the seasonal components to change over ttme. 
Comparmg the results of the two shrinkage methods (methods l and 3) we find 
that the structural time series model in (4 2) leads to a 15.1. (16.1), 13 2 (14.4), 
and 5.2 (7.6) percent reduction in MSE, MAD, and MAPE, when tt is 
compared to the Hachemeister model with fixed trend and seasonal compo- 
nents. The numbers m parentheses reflect the improvements ff shrinkage ~s not 
applied to the intercepts in the structural time series model. Table 2 leads to a 
similar conclusion. The one-step-ahead forecasts from the structural time series 
model with shnnkage outperform the forecasts from the Hacheme~ster model 
in roughly 60 percent of  the states (the proportion varies from 55 to 65 percent, 
depending on the accuracy measure that is used m the comparison). 

Tables l and 2 also show that shrinkage of  the coefficients improves the 
forecasts in the structural time series model (4 2) The size of  the Improvements 
that are due to shrinkage (method 1 vs method 2) is roughly the same as the 
one we obtain by allowing the trend and seasonal coefficients in the two 
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shrinkage methods to change over time (method I vs method 3) There is very 
httle difference between the forecasts from the structural time series model 
without shrinkage and the Hachemeister shrinkage model with fixed trend and 
seasonal coefficients (method 2 vs method 3). 

This example shows the feaslbthty of an approach that applies shrinkage to 
the coefficient estimates in structural time series models and illustrates its 
potential for forecast improvements GARCIA-FERRER et al. (1987) and 
ZELLNER and HONG (1989) reach a similar conclusion in their analysis of  
macroeconomic data. They find that individual country growth rate forecasts 
are improved by shrinking the forecasts to a common average However, their 
shrinkage methods are somewhat different from the ones considered in this 
paper. Furthermore,  they apply shrinkage primarily to forecasts and not to 
estimates in time-varying coefficient models. 
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