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A B S T R A C T  

In this paper, we seek to find the optimal retentions for an insurance company 
which intends to reinsure each o f n  risks belonging to its portfolio, by means of 
a pure quota-share treaty, a pure excess of  loss treaty or any combination of 
the two. The criterion chosen to the selection of  the optimal programme is the 
maximization of the adjustment coefficient, attending to the relationship 
existing between thls coeffioent and Lundberg's upper bound of  the ruin 
probability. 

l .  I N T R O D U C T I O N  

Suppose that an insurance company seeks reinsurance for n independent risks 
(by a risk we mean a single pohcy or a group of  policies--so we could speak of 
n independent hnes of insurance), and has a choice between a pure quota-share 
treaty, an excess of  loss treaty or any combination of the two, for any of the 
risks. The way this combination operates is as follows: first the quota share 
contract will apply, so that the insurer shall remain responsible for no more 
than its share--established by the con t rac t - -o f  any claim that may occur for 
that nsk;  afterwards, the excess of loss contract applys, so that, by no means, 
shall the insurer (of course considering only that part for which it remains 
reponsible after the quota-share contract) pay more than a certain fixed 
amount  of  any claim that takes place. 

The problem consists of determining the optimal retention limits for each 
risk, in each of  the two forms of  reinsurance. " O p t i m a l "  in the sense those 
limits maximize the adjustment coefficient and, therefore, minimize the upper 
bound to the ruin probabihty, supplied by Lundberg's inequality This same 
criterion was also adopted by WATERS (1979) and CENTENO (1986) and, in a 
certain way, this work may be considered as a generalization of  their results 
Although this criterion does not by any means have to minimize the (analyti- 
cally uncalculable) rum probability, it is a good criterion if one wishes to give 
analytical results. 

Surplus and stop loss treaties are not considered in th~s paper WATERS 
(1983), derives sufficient conditions for the adjustment coefficient to be 
uni-model, for stop loss reinsurance. 
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For  each ~ =  1, 2 . . . .  , n, let a,,  be the decision variable representing the 
quota-share retention on risk i; Me, the decision variable representing the 

N, 

of  loss retention limit on risk i; Y, = _~~ X,j,  with X,0-= 0, the excess 
j=0  

insurer's aggregate gross (of reinsurance) clatms on risk l, m some fixed time 
interval, where N, is the number  of  claims and {X,j}j= i. , N, are the in&vidual 
claims; P, the insurer's gross (of expenses and reinsurance) p remmm income 
with respect to risk i and e, P, the amount  used to cover the insurer's expenses 
with respect to the same nsk. 

After a combination of  a quota-share with an excess of  loss treaty the insurer 
N, 

will retain, from risk t, Y , (a , ,  Me) = ~ min {a, X v ,  M,},  (i = 1 . . . .  , n ) .  
j = l  

The choice of  uniform aj = ... = an and Mi = ... = Mn, which is generally 
made in practice, has been dealt with in CZNTENO (1986). In this paper, 
therefore, retention limits which can, for instance, be set differently for 
portfolios of  different classes of  business are also dealt with 

Let Pt , (a , ,  Me) be the total reinsurance premium paid by the insurer, in 
respect to risk i 0t is, naturally, the summation of the quota-share and excess 
of  loss reinsuance premmms).  

The problem which is to be solved is, then, 

Maximize R ( a ,  _M_) 
sub. to: 0 _< a, _< 1 

M , > O  
( i =  1,2, . . , n ) ,  

where R ( a ,  M ) ,  is the adjustment coefficient, defined, as it is known, as the 
unique positive root of  

Note that R ( a ,  _M_) is the adjustment coefficient (see BEARD, PENTIKAINEN 
and PESONEN (1984), p. 363) after taking account of  the reinsurance arrange- 
ment. 

2. ASSUMPTIONS AND PREMIMINARIES 

At: Y,(t = 1, 2 . . . . .  n) are independent random variables; 

For  each i (t = I, 2 . . . . .  n):  

A2: N , ( t  = 1, 2, . . ,  n )  is a Poisson random variable with parameter  2,; 
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,43: {X~j}j=l.2, ,N, are i i d. non-negative random variables, independent of 
N,, and with common distribution function F, such that 

F,(x) = O, x < X,o 

0 < F,(x) < 1, x > X,o, 

for some x,0 >_ 0, 

d 
A4: - - F t ( x  ) exists and it is continuous everywhere; 

dx 

As: The m.g.f, of the random variables Xu, exists m the ( -  m, Q,] interval, 
f o r 0  < Q,N  + ~  and 

hm E[e ''xo] = + m ;  
l l ~ a j  

A6: The quota-share reinsurance premxum is 

( 1 - a , ) P , - c , ( 1 - a , ) P ,  = (1 -c , )  ( 1 - a , ) P , ,  

where c , (1-a , )P , ,  0 < c, < 1, is the habitual commission paid by the 
quota-share reinsurer; 

A7: The excess of loss reinsurance premium, which we denote P,(a,, M,), is 
calculated according to the expected value principle, i.e., 

P,(a, ,M,) = (1 +0~,)2, ( a , x - M , ) d F , ( x )  
M,/a I 

with ~, > 0. 

As. e~ > c,; 

,49: (1 - c , ) P , - 2 ,  E[X,] > 0, where E[X,] denotes the expected value of X,j, 
j =  1,2 . . . .  ,N, ;  

Ai0: ( l - e , ) P ,  < (I+o~,)2, E[X,]; 

Finally, we assume that 

All- ~ [ (1 -e , )P , -A,E[X, ] ]  > O. 
t = l  

From A2 and h 3 it follows that Y, and Y,(a,, M,) have compound Poisson 
distributions. From A 6 and A 7 we can say that 

(2) Pt,(a,, M,) = (1 -c , )  (1 - a , )  P ,+( I  +~x,) 2, ( a , x - M , )  dF,(x). 
M,/a, 
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Assumption As is somewhat restrlcnve, but without it the insurer could 
reinsure the whole risk through a quota-share arrangement with a certain 
profit. The same applies to At0, but with respect to the excess of loss 
reinsurance treaty A 9 lmphes that the loading on the quota-share reinsurance 
premium is positive At last, All assures the existence of  a margin, necessary to 
cover eventual deviations from the expected losses, and also to pay the 
reinsurance costs. 

Under assumptions A~, A2 and A3, R ( a ,  __M_) is the only pos~nve root of  

(3) G(R;  a ,  __M_) = O, 

where 

(4) G ( R ; a , _ M _ ) =  2, eR~'~dF,(x)+e RM' [ I - F , ( M , / a , ) ] - I  - 
~ 1  dO 

- R ~ [(I-e,)P,-P,,(a,, M,)] 

(See BEARD, PE~TIKAINEN and PESONEN (L984), p. 363, for the equivalence of  
(4) and (1).) Let E[W(a,_M_) ] denote the insurer's expected net profit, after 
reinsurance and expenses, i.e., 

(5) E[W(a,_M_> = ,=,~ I ( c , - e , ) P , + a ,  [ ( I - c , ) P , - a ,  E t X , ] ] -  

- 2 ,~x ,  ( a , x - M , ) d F , ( x )  , 
M,/a, 

and let us define 

T =  {(a_,_MM_)' 0_< a,_< 1, M,_> 0 and E[W(a_,__M_)] > 0}, 

and 

F = {a_. 0 _< a, _< 1, ~ = 1, 2, . . . ,  n and there exists at least one M such that 
E[W(a, .YM_)] > 0). 

Since 

0 
- -  E [ W ( a ,  MM_)] = 2 , cx , ( l -F , (M, /a , ) )  
0M, 

is non-negative, we can say that for fixed a ,  the expected net profit will be 
mammum when M, = + oo (l = 1, 2 , . . . ,  n). Hence it is possible to specify F 
as being 

(6) F =  { a :  ,=~ [ ( c , - e , ) P , + a , [ ( I - c , ) P , - 2 , E  [X,]]]> 0 } .  
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Let us denote - -  G(R;  a_,__M_.) by D(R,  a_,M_) so that 
OR 

(7) D ( R ; a , M ) =  2, a, x e R " ' ~ d F , ( x ) + M , e " U ' ( l - F , ( M , / a , ) )  - 
1=[ 

- ~ [(1 - e,) P, - P,, (a,, M,)],  
t = l  

with G(R;  a_, _M_) defined by (4). 
The following lemma discusses the existence of the adjustment coefficient. 

Lemma 1 : 

O) R(a,_M_) exists, if and only l f (a , ._M_)~T,  

(i0 For  any (a,_MM_)~T, D(R;a,_M_) is positive at R = R(a,__M_). 

Proof:  

(i) By As, it is clear that for fixed (a,_.M_), G is defined for all 
R ~ ( - o o ,  Q), 

where 

and 

Q = mln {~,} 

~ , = f  +oo, if M,/a, < +oo 

L ~'  , If M,/a,  = +oo 
az 

( i =  1 , 2 , . . , n ) .  

The first aspect to be considered, is that R = 0 is a trivial solution of  
equation (3); 

Secondly, we have that 

G ( R , a , M ) =  L ( a , x ) 2 e n " ' ~ d F , ( x ) + M , 2 e e M ' ( l - F , ( M , / a , )  
~R ~ - - -  ,=1 o0 

it Is non-negative, V ( a , M ) ,  which means that G ( R ; a , M )  is a convex 
function of  R, 
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Third, 

hm G(R; a, M) = 
R~Q t = l  

fM,/a, lim 2, 
R~Q O0 

[eRe'X--R(1 +tx,)a,x] dF,(x) + 

+ 2,[eRM'--R(1 +O~,)M,] (1 -F,(M,/a,))-2,  - 

- R[(c , -e , )P,+a,[( I  - c,) P , - ( I  + a , )  2, E[X,]]] t 
) 

= --boO, 

by assumptions A s and A 9. 
Hence, as G(R; a ,  _M_) equals zero when R is null, G(R; a ,  _MM_) Is a convex 

function of  R, and G(R;a,_M_.) tends to infinity when R tends to Q, then, ~t 
will only exist such an R = R(a,_M_) > 0 which turns G(R,a ,  M)  to be null 
again, if and only if, 

G(R; a,__M_) R=0 
0R 

< 0 .  

To finish the prof, we only have to notice that 

a G(R;a_,_MM_) [ < O.~.E[W(.qq,_gM_)] > O. 
I aR R=o 

(li) Immediate,  given the proof  of  (1). 

The following lemma will be useful to the solution to our problem. 

L e m m a  2 : For  any a e F there exxsts a umque (a ,  ._M_) e T ,  let it be ( a ,  _~._), 
such that 

- In (1 +~,)  
t = 1 , 2 , . . , n .  

Proof:  Let us consider the set of  points _M_ such that 

In( l+0ct )  _ l n ( l + ~ 2 )  = . . . -  In( l+~tn)  _ 1 M > 0 

M 1 M 2 M,  M ' 

and let us define 
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which is to say 

~ { i *  ~"(~') 
Qi " ~ Q t  X H(a_, ~,l~t) = 2, MeM dF,(x) + 

t = l  0 

+ 2, A ~ ( I + c t , ) [ 1 - F , ( / ~ t  In(l+~X,)a, ] - ~ 2 , -  

- [(1- e,) P,-  (l - c,) (1-a,)P,] + 

i 
+ o o  

+ (1 +~,)2,  
.,~ In (I + ct,) 

a t 

_ _  ( a , x -  lQ ln(l  +tz,)) dF,(x) } . 

T h e n  

10 hm 
4 0 +  

_2_ 
H(a_, )14') = ~ - [(1 - e , ) P , - ( 1  - c , )  (1 - a , ) P ,  - 

t = l  

- (1 +o~,)2,a,E[X,]] > O, 

using A8 and A~0, 

2) hm H ( a , J Q )  = - ~ {[(c,-e,)  P , + a , [ ( l - c , ) P , -  
/~ ~ + oO 1=1 

-2,E[X,]]} < 0; 

3) Differentiating H(a, .,~') twice with respect to M we obtain (see, for 
example, COURANT and JOHN (1974), p 77) 

8 2 ~i~'nO+~')'(a,x)2 
eM dF,(x) > O. aM 2 H ( a ,  A~) = 2, a, ~ a , x  

J = l  0 /~ , j3  - -  

Hence, for each a • F there exists a unique posmve MTI = h.~ (a )  such that 
H(ga ., )Q) = 0 and it is clear from the definmon of H(qq., JQ) that 

G ; a , /~ /  = 0 ,  

where 

._~.. = (A~I ,  / ~ 2  . . . . .  /Kin) = ( 3.7/ ]n (1 +0¢1) , /~/ In (1 ÷o¢2) , . , M In (l +~n)) O 

This lemma Implies that if we define 

(8) (~ ( /~ ;a_ )=G( /~ ;a_ , /~ - l ln ( l+Ct l ) ,  /~- t ln( l+c¢2) ,  . ,R- l ln ( l+c¢ , , ) ) ,  
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then G (R ; a )  has a unique positive root  for each a ~ F. Let  us denote  i t /~ (a.). 
It can be proved,  using the Implicit Funct ion  Theorem (see for example 
COURANT and JOHN (1974), pp. 221-223), Part  (2) of  Lemma 1 and A4, that 
R (_a, _MM_.), for  ( a ,  _M_) ~ T ,  and /~ ( a ) ,  for a ~ F, are twice dlfferenUable. 

3. THE SOLUTION TO THE PROBLEM 

The following result provides the solution to our  problem. 

Resul t  I : 

(i) Fo r  a fixed value a ~ F ,  with a, 4 :0 ,  Vi= 1 , 2 , . . . , n ,  R(a,_M_) is a 
unimodal  funct ion of  __M_, and for any a_s F its maximum value is 
k (a_) 

(i0 1~ (a_) is a unimodal  function o f  a_, for a_ ~ F and, at the point  where it 
at tains its max imum" 

a) a, = 1 if and only if - -  ./~ ( a )  (a, = 1) > 0, 

o r  

b) a, is such that  - -  /~ (a ) = 0, If and only if 
~a~ 

8 
, 

~a, 
- - l ~ ( a ) ( a ,  = 1) < 0, t = i , 2  . . . . .  n. 

Proof :  

seen that 
aM, 

(i) The  equat ion defining R ( a ,  _M__) for all ( a ,  ._M__) ~ F Is 

(9) G (R; a ,  ._M_) = 0,  

with G(R; a,__M_.) gwen by (4). Differentiat ing (9) with respect to M, it can be 

R(a,_.M_) = 0 if and only if (using the Imphclt  Funct ion 

Theorem)  
ReRM'(1 -F,(M,/a,)) = n ( l  +~, )  (1 - F,(M,/a,)). 

So, using Lem ma  2 we can say that  for  a fixed value o f  a e F, with a, 4: 0, 
Vt = 1, 2 . . . .  n, the only turmng point  o f  R (a,__M_) is such that 

(10) M , =  R - l l n ( l + a , ) ,  t =  1,2 . . . .  n.  
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Differentiating (9) twice with respect to M, (using again the Implicit Function 
Theorem and (10)) we get 

~2 M=R-' 2'R2eRM'[I-F'(M'/a')] M,= (11) R(a,  M )  = - 
~M, 2 - - -  , 1nO + ~,) D (R ; .q., __M_) R-' 1nO +~,) 

with D(R;  a,  __M_) given by (7). We can see that each side of equation (11) IS 
negative since D(R;  .a., _M_) is positive by Lemma 1 (li). 

On the other hand, 

~M, oMsR(q_,_M_) = 0 ,  j -/= ,. M,= R -~ ln( I  +=,) 
Mi=R-' In{1 +~j)  

Hence we can conclude that for a fixed value a e F with a, ~ 0, 
Vi = 1, 2 . . . .  , n, R(a_, _M._) is a unlmodal function of _M_. 

If a_e F and ak = 0 for some k = 1, 2 , . . ,  n, then of course any value for 
the excess of loss retention limit of risk k, including Mk = R -I In (1 +Uk), will 
provide the same value for the adjustment coefficient. 

Then the maximum of R(a_, .._M_) is attained at the point (a_,.M_) which is 
the unique point satisfying G(R;a_,...MM_..)=0 and M , = R - l l n ( l + o q ) ,  
t = I, 2 , . . . ,  n, I.e., for a fixed a ~ F, the maximum of R (a ,  _.M_..) is /~ where 
/~ =/~ (a )  is the only positive root of G (/~ ; a_) = 0, with G (1~ ; a )  given by (8). 

(n) Differentiating 

(12) d (R ;a_) = 0 

with respect to a, we obtain 

ida, - / ) ( ~ ; a )  (1-c,)P,-  (1 

In (I +ct,) 

I 
+oo 

+~,)L ~.¢!+.a xdg, (x) -  
Rat 

_ 2 ,  I ° k,, xe~a,., dF,(x) l  ' 

where 

/) (/~ ; a )  = D(/~ ; a , / ~  - l  In (1 +a t ) ,  /~- i  in (1 +o~2), . . . , / ~ - ,  In (1 +~x,,)). 

So, 

(13) 

if and only if 

In ( | + ct,) 

(14) ( l - c , ) P ,  = 2, I ka, 
0 

a 
- -  R ( a )  = 0 
8a~ 

i 
+oo 

xe "ga'x dF~(x) + (1 + oq) 2, x dF,(x) 
In (!+oq) 

Ra, 
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Differentiat ing (13) with respect to a,, and using (14), we obtain 

~ln (1 +a,) 
,~ ~o--~a~ l~2 x2 eSa, X dF~(x) 

0 2 
- -  . ~ ( a )  = - 
~ a ,  2 ~ z )  =o /3 (/~ ; a_) -~- ~._~ = 

and 

~ k (a) ~ ~ )  = o , -  1~ Ca_) = o 
Oaj 

= O, i f i= ~ j .  

This implies that  there exists at most  a point  ~ F  such that (14) holds for 
i =  1, 2, . . . , n .  

Not ic ing  that  

hm - - -  R(_q.) = [ ( I - c , ) P , - 2 ,  E[X,]] hm 
o,~0÷ 0a, ~,~0+ /5 (k ,  a) 

with a ~ F, is positive by A 9 and Lemma 1 (n), the p r o o f  is finished. O 

To summarize,  we can now conclude that  the op t imum programme of  
reinsurance, when a c o m p a n y  IS to reinsure n independent  risks by a combina-  
non  of  the quo ta  share an excess o f  loss forms of  reinsurance, is the point  
( a ,  M )  which fulfils the following set o f  condi t ions :  

In (1 +~, )  
---, M , -  , ( i =  1 , 2 , . . . , n )  

R 

In (1 +a,) 

a,: ( l - c , ) P ,  = )~, f R~, 
d 0 

or a, = 1, 

xe Ra'* dE(x )  + (1 +a,)~, i,o+~,) x dF,(x),  

Ran 

If < 0 when a ,=  1 

if >_ 0 when a, = 1 

(i = 1,2 . . . .  , n )  

6 ( R ;  a ,  M__) = 0 

Corollary 1 : I f (1  -c , )  P, > 2,(1 + ~,) E[X,] for some i (l = 1, 2 . . . . .  n), then the 
opt imal  a r rangement  is such that a, = 1. 
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Proof:  We only have to notice that in this case 

i ( 1 - c , ) P , -  2, x e R ~ d f , ( x ) - ( 1  +~x,) 2, x d F , ( x )  >_ 
0 R -I In (I +~,) 

i 
R I In (I +e,)  

>_2, x ( l  +o~,-eRX) >_ O. 
0 

Note that we can regard the quota-share reinsurance premium for risk t 
( s e e  A6) as being calculated using the expected value principle with loading 
factor ~,, where 

~, = [0 - c,) - 2, E[X,]]/[2, E[X,]]. 

Then, Corollary I imphes that if &, > ~,, Le if quota-share is, in the obvious 
sence more expensive than excess of  loss reinsurance, then excess of  loss 
reinsurance is optimal. Excess of  loss reinsurance was already proved to be the 
optimal form of  reinsurance (see GERBER 1979), p 129), m the sence that it 
maximizes the adjustment coefl'iclent, under the assumption that the loading 
coeffioent is the same for the insurer and the reinsurer (which ~s not the case in 
our paper). 

When the number  of  risks, n, ~s greater than one, the solution found for the 
problem, may not be the solutton that we would obtain if the risks were 
considered separately In other words, if we regard as optimal a set of  retention 
limits that maximizes the adjustment coeffioent,  then what is optimal when 
each risk is considered individually may not be optimal when the risks are 
considered together, as we will see next 

In the result that follows, R(a,,  M,) (i = I, 2 . . . .  n) is, for fixed (a,, M,), the 
adjustment coefficient associated to risk t, when this ~s considered on its own, 
defined as the unique positive root of  

G,(R,; a,, M,) = O, (15) 

where 

(16) G,(R,; a,, M,) = 2, e R'°'" dF,(x)+en'M'[l - F , ( M , / a , ) ] -  1 - 

- R,[(I - e , ) P , - P , , ( a , ,  M,)] 
if such a root exists, or zero otherwise 

Result 2: For  fixed (a,_MM_) e T we have 

rain {R,(a, ,M,)} < R(_q_,__M_ ) < max {R,(a, ,M,)}.  
1=1, ,n  1=1, , n  

The need to redefine R,(a,, Mr)comes from the fact tha t  E[W(a, M ) ]  > 0 does  not  imply  tha t  
E[W,(a,,M,)] > 0, for all t = 1,2, , n  
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Let 

(l 7) min 
1=1, , n  

and 

{R, (a,, M,)} = R k (ak, Mk) 

(18) max {R,(a,, M,)} = Rl(at, Mr). 
I = l ,  , n  

Then, considering the definition of R,(a,, M,), Vi = 1, 2 . . . . .  n, we have that 

0 <_ R k (ak, Mk) -< Rt(at, Mr), 

and, on the other hand, having in mind the proof of Lemma 1, we know that 

(19) I G,(R,;a, ,M,)  < 0 if 0 < R, < R,(a,,M~) 

t G, (R,; a,, M,) > 0 If R, > R,(a,, M,) 

for t = 1 , 2 , . . . , n .  
From (19) and attending to (17) and (18) we have that 

(20) ~ G,(Rk(a k, Mk); a,, M,) < O, 
t=l  

being zero if and only if Rk(ak, Mk) = Rl(al, Mi). Simdiary 

(21) ~ G,(Rl(at, Mr); a,, g , )  ~ 0, 
~=1 

being zero if and only If Rk(ak, Mk) = Rl(at, Mr). 
Then the result follows immediately, since R(_a.,_M_) for (.a.,_M_) e T is the 

unique positive root of 

(22) ~ G, (R ; at , M,) = 0 
t --[  

Corollary 2: If R,(a,, M,) achieves its maximum value at (a,, M,) = (6,, M,), 
i = 1, 2 . . . . .  n, ~ and if R(a_,_M_) achieves Its maximum value at 
(a_, _M_) = (&, _MM_), then 

min {R, (6,, &l,)} < R (~., M_M_. ) < max {R, (6,, ~1,)} 
t ~ [ ,  )rt I ~ l ,  , n  
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Proof:  Attending to Result 2, to the defimtlon of (~, _~_) and to the definition 
of  (~,, M,), i = 1, 2 , . . . ,  n, then 

m i n  _< _< R(h, 
I=1 ,  jn  

and 

R (~., _~_) _< max {R, (~,, ~¢1,)} <_ max {R, (6,, ~/,)} 
I ~ l ,  ,rt 1~1, ,n  

which finishes the proof. O 

4. EXAMPLE 

Let n = 2 and 

i ' -  if x < 0  

G I (x) = 1 
] e - a S ( x + 4 ) ,  if x >  O, 

which corresponds to a ), 2, 4 , and 

{0 
G 2 ( x )  = 1 - e  - 3 ( x - I ) ,  

if x <  I 

if x >  1, 

which is an exponenclal. 
Let )-1 = 2, 22 = 10, Pi = 27, P2 = 23.5, el = e2 = .35, Ul = 30 and 

U2 = 15 The expected profit, before any reinsurance arrangement takes place, 
is 3.491(6) (1.55 from risk I and 1.941(6) from risk 2), R is .02849 and, 
therefore, the upper bound given by Lundberg's inequality for the rum 
probability, is 0.2774. Considering the two risks separately the adjustment 
coefficients are R~ = 0 01487 and R2 = 0 1864, giving then upper bounds for 
the ruin probablhtles of 0.6401 and 0.0610, for risks 1 and 2 respectively. 

The optimal reinsurance programme was calculated assuming different 
values for ~ and setting ~2 = .3, c~ = c2 = .25. The results can be seen on 
Table 1. Analysing Table 1, the mare aspect that seems evident is that, as long 
as ~ increases, a similar evolution is presented by ratio M~/al, that is to say, 
the excess of loss form of reinsurance becomes less and less attracnve. 

Table 2 gives the same kind of  information as Table 1, when treating the two 
risks separately. Note that Ri < R < R2. One way of  explaining this occur- 
rence may be the following when the reinsurance problem is solved taking the 
risks together, there is a sort of a transfer of part of the income produced for 
the "less dangerous"  (and, therefore "less needed" of reinsurance) risks, to 
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T A B L E  1 

Opt imal  Expected Ad jus tmen t  Upper  Bound 
cq Re tenhons  Net Profit  Coeffictent by Lundberg ' s  

Inequah ty  

a I = 00 77 
a 2 = 01 00 

0 3 I 4986 0 04300 0 1444 
M I = 06 10 
M 2 = 06 10 

at = 0 0  57 
a 2 = 01 00 

0 4  14177 003919  0 1714 
M 1 = 08 59 
M z = 06 69 

a l  = 00 53 
a 2 = 01 00 

0 5 1 3946 003827  0 1787 
Mi = 10 59 
M 2 = 06 86 

a t  = 00 52 
a 2 = 01 00 

0 6 I 3846 0 03794 0 1814 
M I = 12 39 
M2 = 06 92 

T A B L E  2 

Opt imal  Expected Ad jus tmen t  Lundberg ' s  
~z~ Re tenuons  Net  Profit Coeffictent lnequah ty  

a I = 01 00 
a 2 = 0 1 0 0  E[W~] = 1 3317 R~ = 01552 ~u~(30) ~ 6278 

0 3 E[W2] = I 5803 
M~ = 1690 E [ W ]  = 29120  R z =  1959 ~,'z(15) ~ 0529 
M 2 = 01 34 

al = 01 00 
a2 = 01 00 E[Wi] = 14583 Rt = .01508 ~ ( 3 0 )  ~ 6361 

0 4 E[Wz] = 1 5803 
M z = 2231 E [ W ]  = 30387  R 2 = 1959 ~z(15)  ~ 0529 
M 2 = 01 34 

a l  = 01 O0 
a2 = 01 00 E[Wi] = 1 5101 Rt = 01495 ~1(30) ~ 6386 

0 5 E[W2] = I 5803 
M~ = 27 12 E[W]  = 3 0904 R 2 = 1959 gw2(15) ~ 0529 
M2 = 01 34 

a t = 01 00 
a 2 = 01 00 E[W~] = I 5322 R~ = 01490 e t ( 3 0 )  ~ 6395 

0 6 E[W2] = I 5803 
M~ = 31 54 E[W]  = 3 1125 R 2 = 1959 V2(15) ~ 0529 
M2 = 01 34 
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substd~ze the payment of the reinsurance of  those potentially more risky. In th~s 
example such interaction implied a decrease in the joint expected net profit, but 
there are substantial benefits in the company's security, as a whole. Nothing of  
this can be achieved, if one ms~sts on treating each risk separately 
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