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ABSTRACT 

This survey paper presents the basic concepts of cooperative game theory, at an 
elementary level. Five examples, including three insurance applications, are 
progressively developed throughout the paper The characteristic function, the 
core, the stable sets, the Shapley value, the Nash and Kalai-Smorodlnsky 
solutions are defined and computed for the different examples. 

1. INTRODUCTION 

Game theory is a collection of mathematical models to study situations of 
confhct and/or cooperation. It attempts to abstract out those elements that are 
common to many conflicting and/or cooperatwe encounters and to analyse 
these mathematically. Its goal is to explain, or to provide a normative guide 
for, rational behavlour of individuals confronted with strategic decisions or 
involved m socml interaction. The theory is concerned with opttmal strategic 
behaviour, equilibrium situations, stable outcomes, bargaining, coahtion for- 
matlon, equitable allocations, and similar concepts related to resolvmg group 
&fferences The prevalence of competition m many human activities has made 
game theory a fundamental modeling approach in such diversified areas as 
economics, poht~cal science, operations research, and mdltary planning 

In this survey paper, we wdl review the basic concepts of multiperson 
cooperative game theory, with insurance apphcat~ons in mind. The reader is 
first invited to ponder the five following basic examples. Those examples wdl 
progressively be developed throughout the paper, to introduce and Illustrate 
basic notions. 

Example 1. United Nations Security Council 

Fifteen nations belong to the United Nations Security Council five permanent 
members (China, France, the United Kingdom, the Soviet Union, and the 
Umted States), and 10 nonpermanent members, on a rotating basis (m 
November 1990' Canada, Colombia, Cuba, Ethiopia, Finland, the Ivory 
Coast, Malaysia, Romania, Yemen, and Zalre). On substantwe matters, 
including the investigation of a dispute and the application of sanctions, 
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decisions reqmre an affirmative vote from at least nine members, Including all 
five permanent  members. If  one permanent  member  votes against, a resolution 
does not pass. This is the famous "ve to  r ight"  of  the "b ig  five," used 
hundreds of  times since 1945. Thts veto right obviously gives each permanent  
member  a much larger power than the nonpermanent  members. But how much 
larger? [] 

Example 2. Electoral representation In Nassau County [m LUCAS (1981)] 

Nassau County,  in the state of  New York,  has six municipalities, very unequal 
in population. The County Government  is headed by a Board of  six Super- 
visors, one from each municipality In an effort to equalize citizen representa- 
tion, Supervisors are given different numbers of  votes The following table 
shows the situation m 1964. 

District Population % No of Votes % 

Hempstead I } 778,625 57 1 31 27 0 
Hempstead 2 31 27 0 
Oyster Bay 285,545 22 4 28 24 3 
North Hempstead 213,335 16 7 21 18 3 
Long Beach 25,654 2 0 2 I 7 
Glen Cove 22,752 1 8 2 I 7 

1,275,801 [15 

A simple majority of  58 out of  115 is needed to pass a measure Do the citizens 
o f  North  Hempstead and Oyster Bay have the same political power m their 
Government9  [] 

Example 3. Management  of  ASTIN money [LEMAIRE (1983)] 

The Treasurer of  A S T I N  (player l) wishes to invest the amount  of  1,800,000 
Belgian Francs on a short term (3 months) basis. In Belgium, the annual 
interest rate is a function of  the sum invested. 

Deposit Annual Interest Rate 

O- 1,000,000 7 75 % 
1,000,000-3,000,000 10 25 % 
3,00,0,000-5,000,000 12 % 

The ASTIN Treasurer contacts the Treasurers of  the International Actuarial 
Association (I.A.A - player 2) and of the Brussels Association of Actuaries 
(A.A.Br. - player 3). I.A.A. agrees to deposit 900,000 francs m the common 
fund, A.A.Br. 300,000 francs Hence the 3-mdlion mark is reached and the 
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interest rate will be 12% H o w  should the interests be split a m o n g  the three 
associat ions? The c o m m o n  practice in such situations is to award each 
part icipant  in the fund the same percentage (12%).  Shouldn ' t  A S T I N  however  
be entitled to a higher rate, on the grounds  that it can achxeve a y~eld o f  
1 0 2 5 %  on its own, and the others only 7 . 7 5 % ?  [] 

Example 4. Managing  retention groups  [BORCH (1962)] 

[For  slmphclty, several figures are rounded in this example]. Consider  a group 
o f n  I = 100 individuals. Each o f  them is exposed to a possible loss o f  l, with a 
probabil i ty q~ = 0.1. Assume these persons d e o d e  to form a risk retention 
group,  a small insurance company ,  to cover themselves against that  risk. The 
premium charged will be such that the ruin probabil i ty o f  the g roup  is less than 
0.001. Assuming that  the risks are independent,  and using the normal  
approximat ion  o f  the binomml distribution, the g roup  must  have total funds 
equal to 

PI = n lq l+ 3x /n lq l ( l - -q l )  = 1 0 + 9  = 19 

Hence each person will pay, in addit ion to the net premium o f  0.10, a safety 
loading of  0.09 

Ano the r  g roup  consists o f  n2 = 100 persons exposed to a loss o f  1 with a 
probablh ty  q2 = 0.2. If  they form their own retention g roup  under  the same 
condit ions,  the total premium will be 

P2 = n2q2+ 3x/n2q2(1-q2) = 2 0 + 1 2  = 32. 

Assume now that the two groups  decide to join and form one single 
c o m p a n y  In order  to ensure that the ruin probabil i ty shall be less than 0.001, 
this new c o m p a n y  must  have funds amoun t ing  to 

PI2 = nlql+n2q2+ 3 x / n l q l ( I - q 0 + n 2 q 2 ( 1 - q 2 )  

= 1 0 + 2 0 +  15 

= 45. 

Since Piz = 45 < Pi + Pz = 51, the merger results in a decrease o f  6 o f  the 
total safety loading. H o w  should those sawngs be divided between the two 
groups?  A traditional actuarial approach  would probably  consist in dividing 
the safety loading in p ropor t ion  to the net premiums.  This leads to premiums 
of  15 and 30, respectively. The fairness o f  this rule is certainly open to 
question, since it awards  g roup  1 most  o f  the gain accruing from the format ion  
of  a single c o m p a n y  In any case the rule is completely arbi t rary  []  

Example 5. Risk exchange between two insurers 

Insurance c o m p a n y  C~ owns a portfol io o f  risks, with a mean claim a m o u n t  o f  
5 and a variance o f  4. C o m p a n y  C2's portfol io has a mean o f  10 and a variance 
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of  8. The two companies decide to explore the posslblhty to conclude a risk 
exchange agreement. Assume only hnear risk exchanges are considered Denote 
by x I and x2 the claim amounts  before the exchange, and by Yl and Y2 the 
claim amounts  after the exchange. Then the most general form of a linear risk 
exchange is 

Yl = ( l - 0 0 x l +  fl x 2 + K  
0_< ~,p_< 1 

Y2 = o~ x l + ( 1 - f l ) x E - - K  

where K is a fixed (positive or negative) monetary amount.  I f  K = 5 ~ -  10fl, 
then E ( y  0 = E(xO = 5 and E(y2) = E(x2) = 10. So the exchange does not 
modify expected claims, and we only need to analyse variances. Assuming 
independence, 

Var (Yt) = 4(I  --002"1"-8fl 2 
Var (Y2) = 40¢2+8( 1 __fl)2 

If, for instance, c~ = 0.2 and ,6' = 0.3, Var(y~)  = 3.28 < 4 and 
Var (Yz) = 4.08 < 8. Hence it is possible to improve the situation of both 
partners (if we assume, in this simple example, that companies evaluate their 
sl tuanon by means of  the retained variance). Can we define " o p t i m a l "  values 
of  a and fl? [] 

Those examples have several elements m common : 

- - P a r t i c i p a n t s  have some benefits to share (pohtlcal power, savings, or 
money). 

- -  This oppor tumty  to divide benefits results from cooperation of  all partici- 
pants or a sub-group of participants. 

- -  Individuals are free to engage in negotiations, bargaining, coalition formation. 
- -  Participants have conflicting objectives; each wants to secure the largest 

part  of  the benefits for himself. 

Cooperat ive game theory analyses those situations where participants '  
objectives are partially cooperative and partially conflicting. It Is In the 
participants '  interest to cooperate,  in order to achieve the greatest possible total 
benefits. When it comes to sharmg the benefits of  cooperation, however, 
individuals have conflicting goals. Such situations are usually modeled as 
n-person cooperative games in characteristic function form, defined and 
illustrated m Section 2 Section 3 presents and discusses natural conditions, the 
mdwidual and collective rationality conditions, that narrow the set of  possible 
outcomes. Two concepts of  solution are defined: the yon Neumann-Morgen-  
stern stable sets and the core. Section 4 is devoted to axiomatic approaches that 
aim at selecting a unique outcome. The main solution concept is here the 
Shapley value. Section 5 deals with two-person cooperative games without 
transferable utilities. The Nash and Kalai-Smorodinsky solution concepts are 
presented and applied to Example 5. A survey of some other solutions and 
concluding remarks are to be found m Sections 6 and 7. 



COOPERATIVE GAME THEORY AND ITS INSURANCE APPLICATIONS 21 

2. CHARACTERISTIC FUNCTIONS 

First, let us specify which situations will be considered in this paper, and some 
implicit assumptions. 

- -  Participants are authorized to freely cooperate,  negotmte, bargain, collude, 
make binding contracts with one another,  form groups or subgroups, make 
threats, or even withdraw from the group 

- -  All participants are fully reformed about  the rules of  the game, the payoffs 
under each possible situation, all strategies available . . . .  

- -  Participants are negotiating about  sharing a given commodi ty  (such as 
money or political power) which is fully transferable between players and 
evaluated m the same way by everyone. This excludes for instance games 
where participants evaluate their positron by means of  a concave utility 
function; risk aversion is not considered. (In other words, it is assumed that 
all individuals have linear utility functions). For  this reason, the class of  
games defined here is called " C o o p e r a t w e  games with transferable utili- 
t ies." Thts major  assumption wdl be relaxed in Section 5. 

Defimtion 1" An n-person game in characteristic function form F is a pair 
[N, v], where N = {1,2 . . . . .  n} is a set of  n players, v is a real valued 
characteristic function on 2 N, the set of  all subsets S of N. v assigns a real 
number  v ( S )  to each subset S of  N, and v(qS) = 0. 

Subsets S of  N are called coalitions. The full set of  players N is the grand 
coalition. Intuitively, v(S) measures the worth or power that coalition S can 
achieve when its members act together. Since cooperation creates savings, it is 
assumed that v is superaddltive, i.e., that 

v ( S U  T)  >>, v ( S ) + v ( T )  for all T, S c N such that S["I T = q~ 

Defimuon 2 Two n-person games F and F ' ,  of  respective characteristic 
functions v and v', are said to be strategically equivalent if there exists numbers 
k > 0, c~ . . . .  cn such that 

v' (S )  = k v ( S )  + Z c, for all S _ c N .  

The switch from v to v' only amounts  to changing the monetary units and 
awarding a subsidy c, to each player. Fundamentally,  this operation doesn ' t  
change anything. Hence we only need to study one game in each class of  
strategically equivalent games. Therefore games are often normalized by 
assuming that the worth of  each player is zero, and that the worth of  the grand 
coalition is 1 [In the sequel expressions such as v({l,3}) will be abbreviated as 
v(13)]. 

v(l) = 0 t = 1, . , n  v ( N )  = 1 
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Example 1. (UN Security Council). Since a motion either passes or doesn't,  we 
can assign a worth of  l to all winning coalitions, and 0 to all losing coahtlons. 
The game can thus be described by the charactermtlC function 

v(S) -- l for all S containing all five permanent  members and at least 4 
nonpermanent  members 

v(S) = 0 for all other S. [] 

Games  such that v(S) can only be 0 or 1 are called simple games One 
interesting class of  simple games is the class of  weighted majority games. 

Definition 3 A weighted majority game 

F = [M; wt . . . . .  w,], 

where w I , . . . ,  wn are nonnegatwe real numbers and 

M > - iv,, 
2 ,-i  

~s the n-person cooperative game with characteristic function 

v(S) = 1 If 2 w, >_ M 

v(S) = 0 If L w, < M,  
I E S  

for all S _~ N. w, is the power of  player l (such as the number of  shares held in 
a corporat ion) M is the required majority. 

Example 1. It is easdy verified that the U N  Security Council 's voting rule can 
be modelled as a weighted majority game. Each permanent  member  ts awarded 
seven votes, cach nonpermanent  member  one vote. The majority required to 
pass a motion is 39 votes A motion can only pass Jf all five permanent  
members  (35 votes) and at least four nonpermanent  members (4 votes) are in 
favor Without the adhesion of all permanent  members, the majority of  
39 votes cannot be reached. 

F = [39; 7 ,7 ,7 ,7 ,7 , l , l , l , l , l , l , l , l , l ,1 ]  

Does this mean that the power of  each permanent  member  is seven times the 
power of  nonpermanent  members? [] 

Example 2. Nassau County 's  voting procedures form the weighted majority 
game [58, 31,31,28,21,2,2] It clearly shows that numerical voting weights do 
not translate into political power. An inspection of all numerical posslbdttles 
reveals that the three least-populated municipalities have no voting power at 
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all. Their combined total of  25 votes ~s never enough to tap the scales. To pass a 
motion simply reqmres the adhesion of  two of  the three largest districts So the 
assigned voting weights might just as well be (31,31,28,0,0,0), or (I,1,1,0,0,0). 
We need a better tool than the number of  votes to evaluate participants '  
strengths. [] 

Example 3. (ASTIN money). Straightforward calculations lead to the total 
interest each coalmon can secure 

v(1) = 46,125 
v(2) = 17,437.5 
v(3) = 5,812.5 
v(12) = 69,187.5 
v(13) = 53,812.5 
v(23) = 30,750 
v(123) = 90,000 [] 

Example 4. (Retention groups) This example differs from the others in the 
sense that figures here represent costs (to mm~m~se) and not earnings (to 
maxlmise). Instead of  a superadditive characteristic function v(S), a cost 
function c(S) is introduced. Scale economies make c(S) a subad&tive func- 
tlon 

c(S[.J T) _< c(S)+c(T) for all S, T~_ N such that Sf ' l  T =  q~ 

A " c o s t "  game is eqmvalent to a " s a w n g s "  game, of  characteristic function 

v(s) = ~ c,-c(S). 
I t S  

In the case of  the example, c(S) is the p remmm paid by each coalition 

c ( l )  = 19 
c(2) = 32 
c(12) = 45 [] 

3. VON N E U M A N N - M O R G E N S T E R N  STABLE SETS AND THE CORE 

Example 3. (ASTIN money) If  they agree on a way to subdivide the profits of  
cooperatmn,  the three Treasurers will have a total of  90,000 francs to share 
Denote ~ = (~j ,  ~z, ~3) the outcome (or payoff, or al location) '  player t will 
receive the amount  ~, Obwously,  the ASTIN Treasurer wdl only accept an 
allocation that awards ham at least 46,125 francs, the amount  he can secure by 
himself This is the m&vldual rationahty con&tion. [] 

Defimtton 4 A payoff  c~ = (~1,0~2 . . . . .  0~,) Is mdwidually rational if 0~, > v(i) 
l = l ,  . . , n .  
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Defimtton 5 An imputa t ion for a game F = (N, v) is a payof f  ~ = (~l . . . . .  0~,) 
such that  

~, >_ v(t) i : 1 . . . . .  n 

~ cx, = v(N) 
1=1 

An imputa t ion is an lndwldually rational payof f  that  allocates the maximum 
a m o u n t  (This condit ion is also called "e f f i c i ency"  or  "Pa re to -op t ima l i t y " ) .  

Example 3. ( A S T I N  money)  An imputat ion is any allocation such that 

~ + ~ 2  +~3 = 90,000 
~j 2 46,125 
~2 2 17,437.5 
~3 ~ 5,812.5 [] 

Example 4. (Retent ion groups).  In this cost  example, an imputat ion Is any set 
o f  premiums ( ~ ,  72) such that  

~l +~2 = 45 
~l ~ 19 
~2 ~ 32 

Let us now add a third g roup  o f  n 3 = 120 individual to this example, all 
subject to a loss o f  1 with a probabil i ty q3 = 0.3. A risk retention g roup  with a 
rum probab lh ty  o f  .001 would require a total premium of  

n 3 q 3 + 3 N / n 3 q 3 ( ]  - - q 3 )  = 3 6 + 1 5  = 51 

I f  all three groups  decide to merge to achieve a maximum reduction o f  the 
safety loading, the total premium will be 

n l q t +  n2q2+n3q3 + 3 x / n t q l ( l - q l ) + n 2 q 2 ( l - q 2 ) + n 3 q 3 ( I - q 3 )  

= 1 0 + 2 0 + 3 6 + 2 1  

= 8 7  

In this case an imputa t ion is a payof f  (ctl, ct2,0~3) such that 

~ + ~ 2  +~3 = 87 
~l ~ 19 
~2 ~ 32 
~3 ~ 51 
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Are all those imputations acceptable to everybody? Consider the allocation 
(17, 31, 39). It is an imputation. It will however never be accepted by the first 
two groups Indeed they are better off  withdrawing from the grand coaht~on, 
forming coalition (12), and agreeing for instance on a payoff  (15 5, 29.5). 
Player 3, the third group, cannot  object to this secession since, left alone, he 
will be stuck to a premium of  51 He will be forced to make a concession 
during negotiations and accept a higher ~3. ~3 needs to be at least 42 to 
prevent players 1 and 2 to secede This is the collective rationality condition: 
no coalmon should have an incentive to quit the grand coalmon.  [] 

Definition 6. A payoff  (cx I , a2, -., ~xn) is collectively rational if 

Z o~, _> v(S) for all S c N.  

Defimtion 7 The core of  the game is the set of  all collectively rational 
payoffs. 

The core of  a game can be empty. When it is not, it usually consists of  several, 
or an infinity, of  points. It can also be defined using the notion of  
dominance. 

Definmon 8. Imputa t ion ,8 = (ill,,82 . . . . .  ,sn) 
= (a l ,  ~ z , - . . ,  ~n) with respect to coalition S if 

(i) S ~ q ,  

(i 0 fl,> ~, for all i t S  

dominates imputation 

(ill) v(S) >_ ~ L 
t E S  

So there exists a non-void set of  players S, that all prefer ,8 to ~, and that has 
the power to enforce this allocation. 

Definition 9 Imputat ion ,8 dominates imputation ct if there exists a coalition S 
such that fl dominates ~ with respect to S 

Definition 7' The core is the set of  all the undominated imputations. 

Definitions 7 and 7' are equivalent. 

Example 4. (Retention groups). The core ~s the set of  all payoffs that allocate 
the total premium of 87, while satisfying the 3 individual and 3 collective 
ratlonahty conditions. 
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0~l'k-0~2+0~ 3 = 87 
~X~ _< 19 
0~ 2 < 32 
0C 3 ~ 51 
0 ~ + ~  2 _< 45 
~ +CX 3 _< 63 5 

~X2+0~ 3 < 75.3 

So the core enables us to find upper and lower bounds  for the premiums 

~ + ~ 2 + ~ 3  = 87 
11.7 _< ~xl _< 19 
23.5 < ~x2 _< 32 
42 _< ~x 3 _< 51 

An allocation that  violates any mequahty  leads to the secession o f  one or two 
groups.  []  

Example 3. ( A S T I N  money).  The core consists o f  all payoffs such that  

0~ I +~2q-0~3 = 90,000 
46,125 < 0~ < 59,250 
17,437.5 < 0c 2 < 36,187.5 
5,812.5 < 73 < 20,812.5 [] 

Despite its intuitive appeal, the core was historically not  the first concept  
that  a t tempted to reduce the set o f  acceptable payoffs  with rationality 
condit ions.  In their pa th-breaking work,  VON NEUMANN and MORGEN- 
STERN (1945) introduced the notion o f  stable sets 

Definition 10 A von Neumann-Morgens t e rn  stable set o f  a game f '  = (N, v) is 
a set L o f  imputa t ions  that  satisfy the two following condit ions 

(1) (External stabdlty) To each imputat ion ~x ~ L corresponds  an imputat ion 
/3 ~ L that dominates  c~ 

(ii) (Internal stabdlty) No  imputation of  L dominates another imputation of  L. 

Stable sets are however  usually very difficult to compute  
The main d rawback  of  the core and the stable sets seems to be that, in most  

cases, they contain  an infinity o f  allocations For  instance, the core and the 
stable set o f  all 2-person games simply consist o f  all imputat ions  It would be 
preferable to be able to single out a umque,  " f a i r "  payof f  for each game Thls 
is what  the Shapley value achieves 
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4 THE SHAPLEY VALUE 

Example 3. (ASTIN money). Assume the ASTIN Treasurer decides to initiate 
the coalition formation process. Playing alone, he would make v(l) = 46,125. 
If player 2 decides to join, coalition (12) will make v(12) = 69,187.5. Assume 
player 1 agrees to award player 2 the enhre benefits of cooperation; player 2 
receives his entire admission value v(12 ) -v ( l )  = 23,062.5. Player 3 joins in a 
second stage, and increases the total gain to 90,000. If he is allowed to keep his 
entire admission value v(123)-v(12) = 20,812.5, we obtain the payoff 

[46,125; 23,062.5; 20,812.5] 

This allocation of course depends on the order of formation of the grand 
coalition. If player 1 joins first, then player 3, and finally player 2, and if 
everyone keeps his entire admission value, the following payoff results 

[46,125, 36,187.5, 7,687.5] 

The four other player permutations [(213), (231), (312), (321)] lead to the 
respecnve payoffs 

[51,750; 17,437.5; 20,812.5] 

[59,250; 17,437.5; 13,312.5] 

[48,000; 36,187.5; 5,812.5] 

[59,250, 24,937 5, 5,812.5] 

Assume we now decide to take the average of those six payoffs, to obtain the 
final allocation 

[51,750; 25,875 , 12,375 ] 

We have in fact computed the Shapley value of the game, the expected 
admission value when all player permutations are equiprobable [] 

The Shapley value is the only outcome that satisfies the following set of three 
axioms [SHAPI..EY, 1953)] 

Axiom 1 (Symmetry). For all permutations H of players such that 
v[ll(S)] = v(S) for all S, 0~nl,) = ~,. 

A symmetric problem has a symmetric solution. If  there are two players that 
cannot be distinguished by the characteristic function, that contribute the same 
amount to each coalmon, they should be awarded the same payoff. This axxom 
is sometimes also called anonynuty,  It imphes that the selected allocation only 
depends on the characteristic function, and not, for instance, on the numbering 
of the players 

Axiom 2 (Dummy players). If, for a player t, v(S) = v(Sl l )+ P(l) for each 
coalition to which he can belong, then 0~, = v(0. 



28 JEAN LEMAIRE 

A dummy player does not contribute any scale economy to any coahuon. The 
worth of any coalition only increases by v(i) when he joins. Such an inessenual 
player cannot claim to receive any share of the benefits of cooperation. 

Axiom 3 (Ad&tlvity). Let F = (N, v) and F'  = (N, v') be two games, and ~(v) 
and c((v) their respectwe payoffs. Then ~ ( v + v ' ) =  ~x(v)+~(v') for all 
players. 

Cr 2 

~I = v(1) 
INDIVIDUAL RATIONALITY 
FOR PLAYER 1 

~z + ~2 = v(12) 
CHARACTERISTIC FUNCTION 

SHAPLEY VALUE 

CORE/ 

STABLE SET 

~ = v(2) 

DISAGREEMENT 
POINT 

INDIVIDUAL RATIONALITY 
FOR PLAYER 2 

\ 

O~ x 

FIGURE 1 Two-person cooperative game with transferable ut=llties 
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Payoffs resulting from two distinct games should be added. While the first two 
axioms seem quite justified, the latter has been criticized It rules out all 
interactions between the two games, for instance. 

Shapley has shown that one and only one allocation satisfies the three 
axioms 

~, = (1/nl) 2 ( s - l ) l ( n - s ) ! [ v ( S ) - v ( S ~ i ) ]  i = 1 , . . , n  
s 

where s is the number  of  members of  a coalition S 
The Shapley value can be mterpreted as the mathematical  expectation of the 

admission value, when all orders of  formation of  the grand coalition are 
equiprobable. In computing the value, one can assume, for convenience, that 
all players enter the grand coaht~on one by one, each of  them receiving the 
entire benefits he brings to the coalition formed just before him. All orders of  
formation of  N are considered and intervene with the same weight 1/n! in the 
computat ion.  The combinatorial  coefficient results from the fact that there are 
( s -  1)! ( n - s )  I ways for a player to be the last to enter coalition S '  the s -  1 
other players of  S and the n - s  players of  N"NS can be permuted without 
affecting Cs position 

In a two-player game, the Shapley value is 

oc, = ( l / 2 ) [ v ( l Z ) + v ( 1 ) - v ( 2 ) ]  

cz2 = (1/2) [v(12)+ v ( 2 ) - v ( l ) ]  

It is the middle of  the segment ocl +o¢2 = v(12), ~z¿ >- v(1), a2 >- v(2). This is 
illustrated in Figure 1. 

Example 1. (UN Security Council). In a weighted malonty  game, the admission 
value of  a player is either 0 or 1. One simply has to compute  the probabili ty 
that a player clinches victory for a motion. In the U N  Security Council game, 
the power of  a nonpermanent  member  t is the probablhty that he enters ninth 
in any coalition that already includes the five permanent  members  It is 

(8) 
cz, = (5/15) (4/14)(3/13) (2/12) (1/11) (9/10) (8/9) (7/8) (1/7) 

3 ~ v J ~  -, J ,L 
all five permanent  before t 3 of  the a then 

nonpermanen t  enters 
before 

= 0.1865% 

By symmetry,  the power for each permanent  member  is 

0c, = 19.62% 

So permanent  nations are 100 times more powerful than nonpermanent  
nations. [Note: m practice a permanent  member  may abstain without impaIr- 
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ing the validity of  an affirmatwe vote. Whde this rule complicates the analysis 
of  the game, it only changes the second decimal of  the Shapley value]. [] 

Example 2. (Nassau County) The Shapley value of the districts is (1/3, 1/3, 1/3, 
0, 0, 0). This analysis led the County authorities to change the voting rules by 
increasing the required majority from 58 to 63 There are now no more dummy 
players, and the new power md~ces are [0 283, 0.283, 0 217, 0 117, 0.050, 0.050]. 
This ~s certainly much closer to the original mtent~on. [] 

Example 4. (Retention groups). In the two-company version of this game, the 
Shapley value is [16,29]. In the three-company version, the value is [14.5, 26.9, 
45.6]. The traditional pro rata approach leads to [13.2, 26.4, 47.4]. It does not 
take into account the savings each member brings to the grand coalition, or its 
threat possibilities. It is unfair to the third group, because it fads to gwe proper 
credit to the important reduction (10) of  the total safety loading it brings to the 
grand coahtlon [] 

The Shapley value may lie outside the core In the important subclass of 
convex games, however, it wdl always be in the core. 

Definmon 11. A game is convex if, for all S -~ T_c N, for all :¢  T, 

v(TOi) -v (T)  >_ v (SOO-v(S) .  

A game is convex when it produces large econonues of scale, a " snow-ba lhng"  
effect makes ~t increasingly interesting to enter a coalition as ~ts number of  
members increases. In particular, ~t ~s always preferable to be the last to enter 
the grand coaht~on N. The core of  convex games ~s always non-void. 
Furthermore,  ~t coincides with the unique yon Neumann-Morgenstern stable 
set. It is a compact convex polyhedron, of  dimension at most n - 1  The 
Shapley value lies m the center of  the core, in the sense that it is the center of  
gravity of  the core's external points. 

5. TWO-PERSON GAMES WITHOUT TRANSFERABLE UTILITIES 

Example 5. (Risk exchange). As shown in the presentation of the example, 
selecting ct = 0.2 and fl = 0.3 results m a decrease of Var (Yl) of 0.72, and a 
decrease of  Var (Y2) of  3.92. This risk exchange treaty is represented as point 1 
in Figure 2. 

In this figure the axes measure the respective variance reductions, p~ and P2- 
Point 2 corresponds to ct = /3  = 0 4. It dominates point 1, since it leads to a 
greater variance reduction for both companies. Point 3 is 7 = 0.53,/3 = 0.47, ~t 
dominates points 1 and 2. It can be shown that no point can dominate point 3, 
and that all treaties such that ct+/3 = 1 neither dominate nor are dominated by 
point 3. For  instance, point 4 (ct = 0.7,/3 = 0.3) will be preferred to point 3 by 
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VARIANCE 
REDUCTION 

FOR Ca 
8 

IDEAL POINT b 

v(12) = PARETO 
~PTIMAL CURVE 

"I 
KALAI-SMORODINSKY SOLUTION 

NASH SOLUTION 

GAME 

SPACE M 

1 2 3 0 p~ = VARIANCE 
DISAGREEMENT REDUCTION 

POINT FOR Ci 

FIGURE 2 Two-person cooperaUve game without transferable uuhttes 

C~ However C 2 will prefer point 3 to point 4 Hence neither point dominates  
the other The set o f  all treaties such that ~ + , 8  = 1 forms curve v(12), the 
Pareto-opttmal surface. Points to the north-east o f  v ( 1 2 ) c a n n o t  be attained. 
All points to the south-west of  v(12) correspond to a gwen selection o r s  and ,8. 
The convex set o f  all attainable points, including the boundary v(12), is called 
the game space M. That space ~s hm~ted by the Pareto-optlmal curve and the 
two axes. The axes represent the two mdw~dual ratlonahty conditIons: no 
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company will accept a treaty that results m a variance increase For instance 
point 5 (co = 0.35, fl = 0.65) will not be accepted by Ci While each point In 
the game space is attainable, it is in both companies '  interest to cooperate to 
reach the Pareto-optlmal  curve. Any point that does not lie on the north-east 
boundary is dominated by a Pareto-opt ,mal point. Once the curve is reached, 
however, the players'  interests become conflicting. C1 will negotiate to reach a 
point as far east as possible, while C2 will a t tempt to move the final treaty 
north. I f  the players cannot  reach an agreement, no risk exchange will take 
place. The disagreement point results m no variance reduction. 

Hence all the elements of  a two-player game are present in this slmphfied 
risk exchange example. In fact, Figure 2 closely resembles Figure 1, with an 
important  difference: the Pareto-optlmal set of  treaties v(12) is a curve in 
Figure 2, while the characteristic function v(12) in Figure 1 is a straight line 
This is due to the non-transferability of  utilities in the risk exchange example. 
The players are " t r a d i n g "  variances, but an increase of  l of  Var (Y0 results In 
a decrease of  V a r ( y ~  that is not equal to 1. Example 5 is a two-person 
cooperative game without transferable utility. [] 

Definition 12. A two-person cooperative game without transferable utilities is a 
couple (M, d), where d = ( d l ,  dz) is the disagreement point (the initial utilities 
of  the players). M, the game space, is a convex compact  set in the two- 
dimensional space E 2 of  the players' utilities; it represents all the payoffs that 
can be achieved. 

Such a game is often called a two-person bargaining game Let B be the set 
of  all pairs (M, d). Since no player will accept a final payoff  that does not 
satisfy the individual rationality condition, M can be hmited to the set of  
points (Pl ,P2)  such that p~ > d~ and P2 > d2. Our goal is to select a unique 
payoff  in M. 

Definmon 13 A solution (or a value) Js a rule that assooates  to each bargaining 
game a p a y o f f m  M It is thus a m a p p i n g f : B - - * E  2 such t h a t f ( M , d )  is a 
point P =  (P, ,P2)  of  M for all ( M , d ) ~ B ;  f l ( M , d )  = p l  and 
fz (M, d) = P2. 

The first solution concept for bargaining games was developed m 1950 by 
Nash. The Nash solution satisfies the four following axioms 

Axiom 1. Independence of  hnear t ransformations 

The solution cannot  be affected by linear transformations performed on the 
players'  utilities. For  all (M, d) and all real numbers a, > 0 and b,, let (M ' ,  d ' )  
be the game defined by d,' = a,d,+b, (l = 1, 2) and M '  = {q ~ EZJ3p ~ M such 
that q, = a,p,+b,}. Then f , ( M ' ,  d') = a,f , (M, d)+b,  i = 1, 2. 

This axiom is hard to argue with. It only reflects the reformation contained 
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m utility functions. Since utilities are only defined up to linear transformations, 
~t should be the same for solutions. 

Axtom 2. Symmetry 

All symmetric games have a symmetric solution. A game is symmetric if 
dl = d2 and (p~, P2) ~ M ~ (P2, P0  ~ M The axiom requires that, in this case, 
f , (M, d) = f2 (M, d). 

Like axiom 1, axiom 2 requires that the solution only depends on the 
information contained in the model A permutation of  the two players should 
not modify the solution, if they cannot be differentiated by the rules of  the 
game. Two players with the same utility function and the same mmal wealth 
should receive the same payoff if the game space Is symmetric. 

Axiom 3. Pareto-optimality 

The solution should be on the Pareto-optlmal curve For all (M, d ) ~  B, if p 
and qE M are such that q, > p, (t = 1,2), then p cannot be the solution: 
f ( M ,  d) 4= p. 

Axiom 4. Independence of irrelevant alternatives 

The solution does not change ~f we remove from the game space any point 
other than the &sagreement point and the solution itself. Let (M, d) and 
(M' ,  d) be two games such that M '  contains M a n d f ( M ' ,  d) is an element of  
M. Then f ( M, d) = f ( M', d). 

This axiom formahzes the negotmt~on procedure. It requires that the 
solution, which by axiom 3 must lie on the upper boundary of the game space, 
depends on the shape of  this boundary only in its nelghbourhood, and not on 
&stant points. It expresses the fact that, during negotiations, the set of the 
alternatives likely to be selected ~s progressively reduced. At the end, the 
solution only competes with very close points, and not with proposals already 
eliminated during the first phases of the discussion. Nash's axioms thus model 
a bargaining procedure that proceeds by narrowing down the set of  acceptable 
points. Each player makes concessions until the final point ~s selected. 

NASH (1950) has shown that one and only one point satisfies the four 
axioms. It is the point that maximizes the product of  the two players' utility 
gains. Nash's solution is the function f ,  defined by f ( M ,  d ) =  p, such that 
p _> d a n d  (P l -d l ) (p2 -d2)  >- (ql-dt)(q2-d2) ,  for all q ~ p e M .  

Example 5. (Risk exchange). In this example, the players' objectwe is to reduce 
the varmnce of  their claims Hence d = (0, 0) : if the compames cannot agree 
on a risk exchange treaty, they will keep their original portfolio, with no 
improvement The players' variance reductions are 
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Pt = 4 - 4 ( 1 - ~ x ) 2 - 8 f l  2 
P2 = 8 - 4 0 ~ 2 - 8 ( 1 - ~  2 

Maximismg the product PIP2, under the condition ~ + f l  = l, leads to the Nash 
solution 

= 0.613 
fl = 0.387 
Pl = 2.203 
P2 = 3.491 [] 

Nash 's  axiom 4 has been cnticised by KALA! and SMORODINSKY (1975), who 
proved that Nash 's  solution does not satisfy a monotonicity condition. 
Consider the two games represented in Figure 3. The space of  game 1 is the 
four-sided figure whose vertices are at d, A, B, D. The Nash solution is B. The 
space of  game 2 is the figure whose vertices are at d, A, C, D From the second 
player's point of  view, game 2 seems more attractive, since he stands to gain 
more if the first player 's payoff  is between E and D. So one would expect the 
second player 's  payoff  to be larger in game 2. This is not the case, since the 
Nash  solution of game 2 is C. 

P~ 

E D 

Pl 

FIGURE 3 Non-monotonlc~ty of Nash's solution 
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Axwm 5. Monotomci ty  Let b(M)  = (bl,  b2) the " i d e a l "  point formed by the 
maximum possible payoffs (see Figure 2): b, = max{p,l(pl,p2) ~ M} 
(l = 1, 2). I f  (M, d) and (M' ,  d) are two games such that M contains M'  and 
b(M)  = b(M') ,  then f ( M ,  d) >_ f ( M ' ,  d). 

KALAI and SMORODINSKY have shown that one and only one point satisfies 
axmms 1, 2, 3, and 5. It is situated at the intersectIon of the Pareto-optlmal 
curve and the straight line linking the disagreement point and the ideal 
point. 

Example 5, It  is easily verified that the equation of  the Pareto-optlmal curve ~s 

+ ~  = 12 Since the ideal point is (4,8), the line jo imng d and b 
has equatmn P2 = 2 pl • Kala i -Smorodmsky 's  soluUon point, at the intersection, ts 

= 0.5858 
13 = 0 4142 
Pl = 1.9413 
P2 = 3.882l 

It is slightly more favourable to player 2 than Nash 's  solution. [] 

6. O T H E R  S O L U T I O N  C O N C E P T S  -- O V E R V I E W  O F  L I T E R A T U R E  

Stable sets and the core are the most  important  solution concepts of  game 
theory that at tempt to reduce the number of  acceptable allocations by 
introducing intuitive condmons.  Both notions however can be criticized. 

Stable sets are difficult to compute.  Some games have no stable sets. Some 
others have several. Moreover,  the dominance relation is neither ant lsymmetnc 
nor transitive It is for instance possible that an imputation fl dominates an 
imputation 0~ with respect to one coahtlon, while cx dominates fl with respect to 
another  coahtmn Therefore an imputation inside a stable set may be domi- 
nated by an imputat ion outside. 

The concept of  core is appealing, because it satisfies very intmtlve rationality 
conditions. However,  there exists vast classes of  games that have an empty 
core: the rationahty conditions are conflicting. Moreover,  several examples 
have been built for which the core provides a counter-intuitive payoff, as 
shown in Example 6. 

Example 6. A pair of  shoes 

Player 1 owns a left shoe. Players 2 and 3 each own a right shoe. A pair can be 
sold for $ 100. How much should 1 receive if the pair is sold? Surprisingly, the 
core totally falls to catch the threat posstbllmes of coafitton (23) and selects the 
paradoxical allotment (100, 0, 0). Any payoff  that awards a positive amount  to 
2 or 3 is dominated,  for instance (99, 1, 0) is dominated by (99.5, 0, 0.5). 
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Moreover, the paradox remains tf we assume that there are 999 left shoes and 
1000 right shoes. The game is now nearly symmetrical, but the owners of right 
shoes stdl receive nothing. The Shapley value is (66%, 16%, 16%), defimtely a 
much better representation of the power of each player than the core. [] 

Many researchers feel that the core is too static a concept, that it does not 
take into account the real dynamics of the bargaining process. In addition, 
laboratory experiments consistently produce payoffs that lie outside the core. 
This led AUMANN and MASCHLER (1964) to define the bargaining set. Th~s set 
exphcitly recognizes the fact that a negotiation process ~s a mulh-criterla 
situation. Players definitely attempt to maxim~se their payoff, but also try to 
enter into a " s a f e "  or " s t ab le"  coahtion. Very often, ~t 1s observed that 
players willingly give up some of their profits to join a coalition that they think 
has fewer chances to fall apart. This behavlour is modelled through a dynamic 
process o f "  threats"  and "counter- threats ."  A payoff is then considered stable 
if all objections against it can be answered by counter-objections 

Example 7. Consider the three-person game 

v(i) = v (2 )=  v(3) = 0  
v(12) = v(13)= 100 
v(23) = 50 

The core of this game is empty. For instance, the players will not agree on an 
allocation like [75, 25, 0], because it is dormnated by [76, 0, 24]. Bargaimng set 
theory, on the other hand, claims that such a payoff is stable. If  player 1 
threatens 2 of a payoff [76,0, 24], this objection can be met with the 
counter-objection [0, 25, 25]. Player 2 shows that, without the help of player 1, 
he can protect his payoff of 25, whde player 3 receives more in the 
counter-objection than in the objection. Similarly, objechon [0, 27, 23] of 
player 2 against [75, 25, 0] can be counter-obJected by [75, 0, 25]. So, if a 
proposal [75, 25, 0] arises during the bargaining process, it is probable that it 
wdl be selected as final payoff. Any objection, by either player l or player 2, 
can be countered by the other. On the other hand, a proposal hke [80, 20, 0] 1s 
unstable. Player 2 can object that he and player 3 will get more in [0, 21, 29]. 
Player 1 has no counter-objection, because he cannot keep his 80 whde offering 
player 3 at least 29 

Thus, in addition to all undominated payoffs (the core), the bargalmng set 
also contains all payoffs against which there exists objections, providing they 
can be met by counter-objections The bargaining set for this example consists 
of the four points 

[0,  o, o] 
[75, o, 25] 
[75, 25, o] 
[ o, 25, 25] [] 
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The bargaining set ~s never empty. It always contains the core. For  more 
details, consult OWEN (1968, 1982) or AUMANN and MASCHLER (1964). 

In 1965, DAVIS and MASCHLER defined the kernel of  a game, a subset of  the 
bargaimng set. In 1969, SCHMEIDLER introduced the nucleolus, a unique 
payoff, included m the kernel. It ~s defined as the allocation that mlnimises 
successively the largest coalitional excesses 

e(u, S) = v(S) - ~ o~, 
t E S  

The excess is the difference between a payoff a coalition can achieve and the 
proposed allocation. Hence it measures the amount  ( " the  size of the com- 
plaint")  by which coalition S as a group falls short of  its potential v(S) in 
allocation ~ If  the excess is positive, the payoff ~s outside the core (and so the 
nucleolus exists even when the core is empty). If the excess is negative, the 
proposed allocation Is acceptable, but the coalition nevertheless has interest m 
obtaining the smallest possible e(~, S) The nucleolus ~s the imputation that 
minimises (lex~cographically) the maximal excess. Since it is as far away as 
possible of  the rationality conditions, it lies in the middle of  the core. It is 
computed by solving a finite sequence of  linear programs. Variants of the 
nucleolus, hke the proportional and the &srupt~ve nucleolus, are surveyed 
among others m LEMAIRE (1983). The proportional nucleolus, for instance, 
results when the excesses are defined as 

Since it conststs of a single point, the nucleolus (also called the lexicographic 
center) prowdes an alternatwe to the Shapley value. The Shapley value has 
been subjected to some criticisms, mainly focussing on the ad&tivlty axiom and 
the fact that people joining a coahtion receive their full admission value. 

Example 3. (ASTIN money). The Shapley value, computed in Section 4, is 

[51,750 ; 25,875 ; 12,375] 

It awards an interest of  11.5% to ASTIN and I.A.A., and 16.5% to A.A.Br. 
This allocation is much too generous towards A.A.Br.'s Treasurer, who takes a 
great advantage from the fact that he ts essential to reach the 3-milhon mark. 
His admission value is extremely high (m proportion to the funds supphed) 
when he comes in last. The nucleolus is 

[52,687.5; 24,937.5; 12,375] 

or, in percentages 

[11.71; 11.08; 16.5] 
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It recognises the better bargaining position of ASTIN versus I A.A., but stdl 
favours A.A.Br. Both the Shapley value and the nucleolus, defined in an 
additive way, fail in this multiphcaUve problem. The proportional nucleolus 
suggests 

or, in percentages, 

[54,000 ; 27,000, 9,000] 

[12; 12; 12], 

thereby justifying common practice. [] 

Only the case of the two-person games without transferable utlliues has been 
reviewed in Section 5. A book by ROTH (1980) is devoted entirely to this case. 
It provides a thorough analysms of Nash's and Kalm-Smorodlnsky's solutions. 
The generalisatlon of those models to the n-person case has proved to be very 
difficult. In the two-person case, the disagreement point is well defined : ff the 
players don't  agree, they are left alone. In the n-person case, if a general 
agreement m the grand coalitton cannot be reached, sub-coalmons may form 
Also, some players may wish to explore other avenues, like possible business 
partners outside the closed circle of the n players. This xs an objection against 
modeling market situauons as non-transferable n-person games. Such games 
ignore external opportumties, such as competitive outsxde elements See 
SHAPLE¥ (1964) and LEMAIRE (1974, 1979) for definitions of values in the 
n-player case. 

Though somewhat dated by now, the book by LUCE and RAIVVA (1957) is 
still an excellent mtroducuon to game theory and utthty theory. It provides an 
insightful critical analysis of the most important concepts An excellent book 
that surveys recent developments is OwEN (1968, 1982, especially the second 
edition). A booklet edited by LUCAS (1981) provides an interesting, simple, 
abundantly illustrated analysis of the basics of cooperaUve and non-coopera- 
tive game theory. Finally, the proceedings of a conference on apphed game 
theory [BRAMS, SCHOTTER, SCHWODIAUER (1979)] provide a fascinating over- 
view (from a strategic analysis of the Bible to the mating of crabs) of 
apphcaUons of the theory. 

7 CONCLUSIONS 

Game theory solutions have been effectively implemented in numerous situa- 
tions. A few of those apphcanons are 

- -  allocating taxes among the divisions of McDonnell-Douglas Corporation 
- -  subdividing renting costs of WATS telephone hnes at Cornell University 
- -  allocating tree logs after transportation between the Finnish pulp and paper 

companies 
- -  sharing maintenance costs of the Houston medIcal library 
- -  financing large water resource development projects m Tennessee 
- -  sharing construction costs of multipurpose reservoirs in the Umted States 
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--subdividing costs of building an 80-kilometer water supply tunnel In 
Sweden 

- -  settmg landing fees at B~rmlngham Airport 
- -  allotting water among agricultural communities in Japan 
- -  subsld~sing public transportation in Bogota 

Cooperative game theory deals with competition, cooperation, conflicts, 
negotiations, coaht~on formation, allocation of profits. Consequently one 
would expect numerous apphcat~ons of the theory m insurance, where compe- 
titive and conflicting situations abound. It has definitely not been the case. The 
first article mentionmg game theory in the ASTIN Bulletin was authored by 
BORCH (1960a). In subsequent papers, BORCH (1960b, 1963) progressively 
developed his celebrated risk exchange model, which in fact IS an n-person 
cooperatwe game w~thout transferable utihties. This model has further been 
developed by in the 1970s by Lemalre and several of his students [BATON and 
LEMAIRE (1981a, 1981b), BRIEGLEB and LEMAIRE (1982), LEMAIRE (1977, 
1979)]. The ASTIN Bulletin has yet to find a third author attracted by game 
theory! It is hoped that this survey paper will contribute to disseminate some 
knowledge about the situations game theory models, so that the risk exchange 
model will not stand for a long time as ~ts lone actuarial application. 
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