THE SCHMITTER PROBLEM AND A RELATED PROBLEM: A PARTIAL SOLUTION

By R. KaAs
Universtty of Amsterdam, the Netherlands

Abstract

At the 1990 ASTIN-colloquium, Schmitter posed the problem of finding the extreme values of the ultımate ruın probability $\psi(u)$ in a risk process with initial capital u, fixed safety margin 0 , and mean μ and variance σ^{2} of the individual claims. This note aims to give some more insight into this problem. Schmitter's conjecture that the maxımizing individual claıms distribution is always diatomic is disproved by a counterexample. It is shown that if one uses the distribution maxımizing the upper bound $e^{-R u}$ to find a 'large' ruin probability among risks with range $[0, b]$, incorrect results are found if b is large or u small

The related problem of finding extreme values of stop-loss premiums for a compound Poisson (λ) distribution with identical restrictions on the individual claims is analyzed by the same methods. The results obtaıned are very sımılar.

1. INTRODUCTION

In a paper presented at the ASTIN-colloquium 1990, Hans Schmitter gives a derivation of an exact algorithm to compute the value of the ultimate rum probability $\psi(u)$ for a compound Poisson ruin process with given premium income c per unit of time, and with claıms having a finite number of mass points In connection with this paper, he posed the following problem: given that the individual claims have mean μ and variance σ^{2}, which claıms distributions minımize and maximize the ruin probability for a given u ? A practical justification of the problem can be found in the paper by Brockett, Goovaerts and Taybor (1991), who also sum up the results of the discussion of this matter at the colloquia of Montreux and subsequently Oberwolfach.

In the classical rum model, the non-rum probability of a compound Poisson rısk process can be shown to have a compound geometric distribution with geometric parameter depending only on the safety loading θ, and with terms having a distribution function related to the stop-loss premiums of the individual claıms.

In this note we also describe another problem, very similar to Schmitter's. Suppose a reinsurer has to determıne a stop-loss premıum for a risk with the following properties . the risk has a compound Poisson distribution with known
parameter λ, and the individual claims have known mean μ and variance σ^{2} To be able to quote a safe premium, the reinsurer tries to determine the claims distribution leading to the maximum value of the net stop-loss premium. Some work in this direction was done by Kaas and Goovaerts (1986) and Steenackers and Goovaerts (1990). See also Goovaerts et al. (1984)

A lower bound for both the ruin probability and the compound Poisson stop-loss premium under these restrictions is attaned by the distribution concentrating all mass at μ, see for instance Goovaerts et al (1990). This distribution is not actually an element of the set of feasible distributions, which is not a closed set. We will prove that both our functionals, rum probabilities and compound Poisson stop-loss premiums, are contınuous at this boundary point. Other functionals, like the variance, the skewness and the adjustment coefficient do not have this property. See Section 2.

In this paper we concentrate on the upper bounds, and indicate how one may find the diatomic claıms distribution leading to the highest ruın probabılity using the algorithm mentioned above. The compound stop-loss premium can be computed by a very simılar formula, based on special properties of the compound Poisson distribution See Section 2 We found counterexamples for Schmitter's conjecture that the maxımal ruin probability always is realized by a diatomic distribution. For the compound Poisson stop-loss premıums, the optimal diatomic distrıbution also was not always the overall maxımum. See Section 3.

A useful heuristic approximation to the maximal rum probability with diatomic claıms is described in Section 4 It is based on maximization of the most important term of the geometric distribution Our limited numerical experience shows that this solution leads to a ruin probability which is invariably close to the maximal diatomic ruin probability. For small λ, this same diatomic distribution also often leads to near-maximum compound Poisson stop-loss premıums.

One of the referees remarked that applying this heuristic approach one actually solves Schmitter's problem optimally for very small values of the initial capital. More precisely, if the initial capital/the retention is very small (less than $\frac{1}{2} E\left[X^{2}\right] / E[X]$), the maxımum ruin probability/compound stop-loss premium is attained for the diatomic distribution with 0 as a mass point.

In any case it can be shown that this heuristic solution is better than many other choices of the feasible distribution. If x_{1} and x_{2} are the mass points of the heurıstically found feasible distribution, with $x_{1}<x_{2}$, any distribution with least mass point larger than x_{1} leads to lower ruin probabilities and compound Poisson stop-loss premiums.

In Section 5 we impose one more restriction on the claims distribution, namely that the support is contained in an interval $[0, b]$ One mıght expect that the distribution with the largest value of the upper bound for the ruin probability $e^{-R u}$ also has a high probability of ruin. It can be shown that the adjustment coefficient R with the claıms distribution is minimal for the diatomic distribution with b as one of its mass points. Then obviously $e^{-R_{u}}$ is maximal. But if the maxımum claim b is very large, the ruin probability with
this distribution is close to minımal rather than maxımal On the other hand, the adjustment coefficient R is maximal for the diatomic distribution with 0 as a mass point, but for small values of u this distribution has maximal ruin probability, in spite of the fact that is has minimal $e^{-R u}$. So looking at the adjustment coefficient leads to the wrong answer, unless b is small and u is large, say for $b \leq 2 u-\mu$, see the previous paragraph and Section 4.

In Section 2 it is shown that the third moment (skewness) of the compound Poisson distribution is maximal for the diatomic claims distribution with b as a mass point. So one may expect that for large retentions, this clams distribution leads to maximal stop-loss premiums. Also in Section 5 we will show that for small retentions the situation is reversed

2. SOME THEORY AND NOTATION

In both problems we study, the issue is to find a maximum of a functional H_{u}, working on distribution functions F_{X} of random variables X in a certain set. More specifically, we may write both problems in the following form•
(1) Maxımıze $H_{u}\left[F_{X}\right]$
subject to $\quad X$ is a non-negative random variable, with $E[X]=\mu$, $\operatorname{Var}[X]=\sigma^{2}$

Here H_{u} [] assigns to F_{X} etther the ruin probability $\psi(u)$ in a compound Poisson risk process with fixed safety loading θ and intial capital u, or the stop-loss premium $\pi_{S}(u)$ at retention u of a compound Poisson (λ) distributed random vartable S, both with individual claims distributed as X. In the remainder of this section we will give expressions for H_{u} [] for both problems in case X has a finte range. Also, we will characterize the feasible random variables X having a two-point support. Finally, the theory of ordering of risks 1s applied to derive results on some integrals over $H_{u}[]$.

Consider the classical actuarial rum model, that is, assume a compound Poisson process with clams intensity λ, non-negative individual claims distributed as X, premum income per unit time $c=(1+\theta) \lambda E[X]$, which means there is a safety loading θ (assumed positive), and initial capital u See for instance Bowers et al. (1986, Chapter 12). Let the stochastic process $N(t)$ denote the number of claims up to time t, and $S(t)=X_{1}+\ldots+X_{N(t)}$ the accumulated clams until time t. Define the maximal aggregate loss as $L=$ $\max \{S(t)-c t \mid t \geq 0\}$. The ultimate ruin probability $\psi(u)$ denotes the probability that the insurer's surplus will ever become negative:

$$
\begin{equation*}
\psi(u)=P[\min \{u+c t-S(t) \mid t \geq 0\}<0]=1-P[L \leq u] . \tag{2}
\end{equation*}
$$

Defining L_{1}, L_{2}, .. as the amounts by which record lows in the insurer's surplus $u+c t-S(t)$ are broken, and M to be the number of record lows in the surplus process, we may write

$$
\begin{equation*}
L=\sum_{i=1}^{M} L_{i} \tag{3}
\end{equation*}
$$

Then M has a geometric distribution with parameter $\psi(0)$. From Theorem III.2.2.3 in Goovaerts et al. (1990) we see that the geometric parameter $\psi(0)=(1+\theta)^{-1}$, and the distribution function of the L_{1} equals

$$
\begin{equation*}
F_{L_{1}}(y)=1-\pi_{X}(y) / \pi_{X}(0), \tag{4}
\end{equation*}
$$

where $\pi_{X}(y)=E\left[(X-y)_{+}\right]$denotes the net stop-loss premium for X at retention y, so $\pi_{X}(0)=E[X]$

From (2) and (3) we obtain the following expression for the ruin probability-

$$
\begin{equation*}
\psi(u)=P[L>u]=\frac{\theta}{1+\theta} \sum_{m=0}^{\infty}\left\{\frac{1}{1+\theta}\right\}^{m} P\left[L_{1}+\ldots+L_{m}>u\right] \tag{5}
\end{equation*}
$$

Schmitter (1990) gives the following expression for the ruin probabolity in case X has finite support $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$, with associated probabilities $p_{1}, p_{2}, ., p_{m}$:

$$
\begin{align*}
& \psi(u)=1-\frac{\theta}{1+\theta} \sum_{k_{1}, k_{2}, k_{m}}(-z)^{k_{1}+}+k_{m} e^{z} \prod_{j=1}^{m} \frac{p_{j}^{k_{1}}}{k_{j}!}, \tag{6}\\
& \text { where } z=\frac{\lambda}{c}\left(u-k_{1} x_{1}-\ldots-k_{m} x_{m}\right)_{+} .
\end{align*}
$$

Similar expressions can be found in Gerber (1990), Shiu (1989), and earler TaKÁCs (1967). The indices k, are assumed to range over $0,1, \ldots$. If all mass points x_{j} are strictly positive, $J=1, \ldots, m$, (6) is a sum with only a finite number of non-zero terms, so it leads to an easily programmed algorithm to compute $\psi(u)$ for discrete claims distributions If one of the mass points, say x_{m}, is equal to 0 , carrying out the (infinite) summation over k_{m} in (6) leads to the same expression as (6) with m replaced by $m-1, \lambda$ by $\lambda\left(1-p_{m}\right)$, and p_{J} by $p_{j} /\left(1-p_{m}\right), J=1, \ldots, m-1$.

In Section III. 5 of Goovaerts et al. (1990) we find that the distributions with mean μ and variance σ^{2} that are diatomic with support $\left\{x_{1}, x_{2}\right\}$, for $x_{1}=\mu-\varepsilon$, can be characterized by

$$
\begin{align*}
& x_{1}=\mu-\varepsilon, \quad x_{2}=\mu+\sigma^{2} / \varepsilon \tag{7}\\
& p_{1}=P\left[X=x_{1}\right]=\sigma^{2} /\left\{\sigma^{2}+\varepsilon^{2}\right\}, \quad p_{2}=P\left[X=x_{2}\right]=1-p_{1}
\end{align*}
$$

For $0 \leq x_{1}<x_{2}<\infty$, we must have $0 \leq x_{1}<\mu$, so $0<\varepsilon \leq \mu$. Note that x_{2} increases with x_{1} for $x_{1} \in[0, \mu)$.

Inserting (7) in (6) with $m=2$, we see that $\psi(u)$ is continuous for diatomic distributions as a function of ε at $\varepsilon \downharpoonright 0$. So there is a sequence of feasible diatomic distributions, whose ruin probabilities converge to the one of the claıms distribution with $P[X=\mu]=1$, or $\varepsilon=0$

The compound Poisson stop-loss premium can be written in the form

$$
\begin{equation*}
\pi_{S}(u)=\sum_{n=0}^{\infty} \lambda^{n} e^{-\lambda} / n!E\left[\left(X_{1}+\ldots+X_{n}-u\right)_{+}\right] \tag{8}
\end{equation*}
$$

If the range of the claims is finite, there is an expression for the compound stop-loss premiums similar to (6) If S has a compound Poisson (λ) distribution with individual claims distribution as in (6), and N_{J} counts the number of occurrences of claim size x_{j}, such that $S=x_{1} \cdot N_{1}+\ldots+x_{m} \cdot N_{m}$, then it is well-known that the N_{j} are independent Poisson (λp_{j}) distributed random variables. So the stop-loss premium of S at retention u can be written as:

$$
\begin{align*}
\pi_{S}(u) & =E\left[(S-u)_{+}\right]=E[S]-u+E\left[(u-S)_{+}\right] \tag{9}\\
& =E[S]-u+\sum_{k_{1}, k_{2}, \cdot k_{m}} e^{-\lambda}\left(u-k_{1} x_{1}-\ldots-k_{m} x_{m}\right)_{+} \prod_{j=1}^{m} \frac{\left(\lambda p_{j}\right)^{k_{j}}}{k_{J}!}
\end{align*}
$$

It is evident that $\pi_{S}(0)=\lambda \mu, \pi_{S}(\infty)=0, \psi(0)=(1+\theta)^{-1}$ and $\psi(\infty)=0$ do not depend on the actual choice of the feasible distribution. We will show that this holds for the integrals over $\pi_{S}(u)$ and $\psi(u)$ as well; the weighted integrals over $u \pi_{S}(u)$ and $u \psi(u)$, however, are mınımal/maxımal when the third moment of the individual clams is.

We will use the following identities, valid for non-negative random variables Y with $E\left[Y^{j+2}\right]<\infty$, and which can be proved by partial integration:

$$
\begin{align*}
& \int_{0}^{\infty} y^{J} \pi_{Y}(y) d y=\int_{0}^{\infty} \frac{1}{\jmath+1} y^{j+1}\left[1-F_{Y}(y)\right] d y \tag{10}\\
& \int_{0}^{\infty} y^{j}\left[1-F_{Y}(y)\right] d y=\frac{1}{\jmath+1} E\left[Y^{j+1}\right], \quad J \geq 0
\end{align*}
$$

Using (10) and familiar properties of moments of compound distributions, we may deduce for every feasible distribution of the individual claıms:

$$
\begin{align*}
& \int_{0}^{\infty} \pi_{S}(u) d u=\frac{1}{2} E\left[S^{2}\right]=\frac{1}{2}\left\{\operatorname{Var}[S]+(E[S])^{2}\right\}=\frac{1}{2}\left\{\lambda\left(\sigma^{2}+\mu^{2}\right)+\lambda^{2} \mu^{2}\right\} \tag{11}\\
& \begin{aligned}
\int_{0}^{\infty} \psi(u) d u & =E[L]=E[M] E\left[L_{1}\right]=\frac{1}{0} \int_{0}^{\infty}\left[1-F_{L_{1}}(u)\right] d u \\
& =\frac{1}{0}-\int_{0}^{\infty} \pi_{X}(u) d u=\frac{1}{\theta \mu} E\left[\frac{1}{2} X^{2}\right]=\frac{\sigma^{2}+\mu^{2}}{2 \theta \mu}
\end{aligned}
\end{align*}
$$

The following relations for weighted integrals hold •

$$
\begin{align*}
& \int_{0}^{\infty} u \pi_{S}(u) d u=\frac{1}{6} E\left[S^{3}\right]=\frac{1}{6} E\left[(S-E[S]+E[S])^{3}\right] \tag{12}\\
&=\frac{1}{6}\left\{\lambda E\left[X^{3}\right]+3 \lambda^{2} \mu\left(\mu^{2}+\sigma^{2}\right)+\lambda^{3} \mu^{3}\right\} \\
& \begin{aligned}
\int_{0}^{\infty} u \psi(u) d u & =\frac{1}{2} E\left[L^{2}\right]=\frac{1}{2} E\left[E\left[L^{2} \mid M\right]\right] \\
& =\frac{1}{2} E\left[M \cdot E\left[L_{1}^{2}\right]+M(M-1)\left(E\left[L_{1}\right]\right)^{2}\right] \\
& =\frac{1}{2} E[M] E\left[L_{1}^{2}\right]+\frac{1}{2} E[M(M-1)]\left(E\left[L_{1}\right]\right)^{2} \\
& =\frac{1}{2 \theta} E\left[L_{1}^{2}\right]+\frac{1}{\theta^{2}}\left(E\left[L_{1}\right]\right)^{2}=\frac{1}{6 \theta \mu} E\left[X^{3}\right]+\frac{\left(\sigma^{2}+\mu^{2}\right)^{2}}{4 \theta^{2} \mu^{2}}
\end{aligned}
\end{align*}
$$

So the fatter the tail of the individual claims X (measured by their skewness, or what is the same since μ and σ^{2} are given, by their third moment), the larger the integral over $u \psi(u)$ and $u \pi_{S}(u)$.

In the theory of orderıng of risks as described in GoovaERts et al. (1990), one compares stop-loss transforms or distribution functions of risks over the whole interval $[0, \infty)$. In our case it is sufficient if these functions are ordered only on the interval $[0, u]$. Suppose that for instance X has lower stop-loss premums than Y on the interval $[0, u$]. If Z is another independent risk, we have

$$
\begin{align*}
E\left[(X+Z-u)_{+}\right]= & \int_{0}^{\infty} E\left[(X+Z-u)_{+} \mid Z=z\right] d F_{Z}(z) \tag{13}\\
= & \int_{0}^{\infty} E\left[(X-(u-z))_{+}\right] d F_{Z}(z) \\
& \leq \int_{0}^{\infty} E\left[(Y-(u-z))_{+}\right] d F_{Z}(z)=E\left[(Y+Z-u)_{+}\right]
\end{align*}
$$

From this porperty we see directly that if X_{1}, X_{2}, and Y_{1}, Y_{2}, \ldots are sequences of independent risks distributed as X and Y respectively, and X has lower stop-loss premıums than Y on $[0, u]$, then we have $E\left[\left(X_{1}+\ldots+X_{m}-u\right)_{+}\right] \leq E\left[\left(Y_{1}+\ldots+Y_{m}-u\right)_{+}\right]$for all $m=1,2, \ldots$ Using (8), we see that a compound Poisson distribution with X as claims distribution has a lower stop-loss premium in u than one with Y. Using (4) and (5), we see that ruin probabilities are lower as well.

3. maximizing the functionals numerically

It is easy to maximize the ruin probability numerically over the diatomic feasıble distributions. This can be accomplıshed using algorıthm (6), together with (7) to characterize the feasible diatomic distributions. It involves merely a
one-dımensional maxımızation over the interval $x_{1} \in[0, \mu]$. To do this, one first computes (6) at a number of values of x_{1} to detect the interval in which the maximum is to be found, and subsequently uses a method like golden section search to determıne the maxımum more exactly. A reference for numerical techniques to compute a maximum of a function over an interval is Press et al. (1986). In Figure 1 we give graphs depicting the diatomic ruin probability $\psi\left(u, x_{1}, x_{2}, p_{1}, p_{2}\right)=\psi\left(u, x_{1}\right)$ as a function of $x_{1} \in[0, \mu]$, where $x_{1}, x_{2}, p_{1}, p_{2}$ are related by (7). We took $\mu=3, \sigma^{2}=1,0=0.5$, and $u=15,4.5$ and 9 respectively In these graphs, the scale in the y-direction varies.

As announced, the ruin probability is minımal and continuous at $x_{1} \uparrow \mu$. In Figure 1 we see that for small $u\left(u=1 \frac{1}{2}\right)$ the maximum run probability is found taking $x_{1}=0$. A close inspection reveals that the ruin probability does not depend on x_{1} if $x_{1} \geq u$. Indeed in (6) one sees that the ruin probability does not (directly) depend on mass points larger than u. It also follows from (4) and (5). For large $u(u=9), \psi(u)$ is very nearly constant for small to moderate values of x_{1}, then increases, and next decreases steeply to its minımal value at $x_{1} \uparrow \mu$.

For intermediate $u(u=4.5)$, the situation is rather unclear there are some local maxima. For this specific situation we were able to find a three-pont distribution with a larger ruin probability than the one corresponding to the maximizing diatomic distribution. In fact, for

$$
\begin{array}{lll}
x_{1}=1.56592, & x_{2}=2.67226, & x_{3}=5.182086, \\
p_{1}=0.071198, & p_{2}=0766835, & p_{3}=0.161967
\end{array}
$$

the ruin probability is 0279271 , which, although (probably) not the optimal solution, is higher than the maximal diatomic ruin probability 0.279185 , found at $x_{1}=2.5597, x_{2}=5.2712$.

Although we tried a lot of combinations of μ, σ^{2}, θ and u, we rarely found a randomly generated three-point distribution better than the best diatomic distribution; if we did, the difference was never substantial.

We did not try to optımize systematically over all three-point spectra. First, this is not a trivial task: If the number of mass points is m, the number of free variables equals $2 m-3$, being the number of support points x, plus the number of probabilities p_{j}, mınus the number of restrictions. So to find the maxımal ruin probability over all three-point spectra involves solving a threedimensional maximization, with borderline conditions $p_{J} \geq 0$. Second, even supposing we successfully optimized over three-point distributions, there is still no guarantee that for instance a 15 -point support might not be better

The fact that for small u the ruin probability is maximal at $x_{1}=0$ can be explained as follows. By relation (11), one sees that neither $\psi(0)$ and $\psi(\infty)$, nor $\int \psi(u) d u$ depend on x_{1} By (12), however, we see that the weighted integral increases (linearly) with the third moment of the claims distribution. So the weighted integral is minimal for the diatomic distribution with $x_{1}=0$, which means that taking $x_{1}=0$ gives the smallest integral over $u \psi$ (u) So at small values of $u, \psi(u)$ should be large for $x_{1}=0$ By similar reasoning, one

Figure $1 \psi\left(u, x_{1}\right)$ as a function of $x_{1}, \mu=3, \sigma^{2}=1, \theta=\frac{1}{2} . u=1 \frac{1}{2}, 4 \frac{1}{2}, 9$
explains that for large u, a large value of x_{1} leads to maxımum $\psi(u)$. For too large values of x_{1}, we obtain low ruin probabilities (close to the minimal value), as explained in the following section.

For the same reasons, one can expect a sımilar pattern to arise in the case of compound Poisson stop-loss premiums This is indeed the case: see Figure 2. In this figure, we took $\lambda=2, \mu=3$ and $\sigma^{2}=1$. At small $u(u=2)$, the stop-loss premium is virtually constant over x_{1}, but it is maximal at $x_{1}=0$. At large $u=20$, we see that the stop-loss premium is practically constant for x_{1} from 0 (where it equals 0.0109) to very close to μ. Then it increases very steeply to its maximum value 0.0522 , and for $x_{1} \uparrow \mu$, it decreases continuously to its minımal value of 0.0088 . For intermediate $u=7$, with increasing $x_{1}, \pi_{S}(u)$ increases slightly and irregularly at first from 1.3373 to the maximal value 13954 , and then for $x_{1} \uparrow \mu$, it decreases again to its infimum 1.3008. For this case we found again an example where the maximal diatomic distribution was not a global maxımum over all feasible claims distributions The maximal diatomic distribution is at $x_{1}=2 \frac{2}{3}$, where $\pi_{S}(u)=1.3954$, but a larger stop-loss premium of 1.3995 is attained by the triatomic distribution

$$
x_{1}=0, x_{2}=2.8, x_{3}=57143, p_{1}=00286, p_{2}=0.8754, p_{3}=0.0961
$$

In fact, as one of the referees pointed out, it can be proven that the diatomic distribution with $x_{1}=0$ as a mass point is optimal for very small values of u ($u \leq \frac{1}{2} E\left[X^{2}\right] / E[X]$) The proof goes as follows

From Theorem III.5.2.3 of Goovaerts et al. (1990) we see that uniformly for all $u \leq \frac{1}{2} E\left[X^{2}\right] / E[X]=\frac{1}{2}\left(\mu+\sigma^{2} / \mu\right)$, the maximal stop-loss premium over the feasible distributions is attaned for a random variable X_{0} having mass points 0 and $\mu+\sigma^{2} / \mu$, see (7). As a consequence of (13), we have immediately that if H is the distribution function of X_{0} and X is a feasible claim size, then $F_{X}^{* n}$ has smaller stop-loss premium in u than $H^{* n}$ for $n=2,3, \ldots$, too In view of (8), we have then found that H is the claıms distribution maxımizing the compound Poisson stop-loss premıum, when the retention $u \leq \frac{1}{2}\left(\mu+\sigma^{2} / \mu\right)$.

Using (4), we can deduce by similar reasoning that this same claıms distrıbution also maximizes not only $P\left[L_{1}>u\right]$ for $u \leq \frac{1}{2}\left(\mu+\sigma^{2} / \mu\right)$, but also $P\left[L_{1}+\ldots+L_{m}>u\right]$ for all $m=2,3, \ldots$, and thus maximizes the ruin probability (5).

So Schmitter's problem is solved for very small values of the initial capital u.
This result is confirmed in Figure 1 for $u=1 \frac{1}{2}$. But note that in Figure 2 for $u=2>\frac{1}{2}\left(\mu+\sigma^{2} / \mu\right)$ still the distribution having mass point 0 led to the maxımal compound Poisson stop-loss premium

4. AN APPROXIMATION FOR THE MAXIMIZING DIATOMIC DISTRIBUTION

Though we are as yet unable to solve the problem of maximizing $\psi(u)=P[L>u]$ given μ and σ^{2}, a problem we can solve is the maximization of $P\left[L_{1}>u\right]$. We may expect $P[L>u]$ to be large when $P\left[L_{1}>u\right]$ is, because the term with $m=1$ in (5) has the largest weight factor.

Figure $2 \pi_{S}\left(u, x_{1}\right)$ as a function of $x_{1}, \mu=3, \sigma^{2}=1, \theta=\frac{1}{2}, u=2,7,20$

In view of (4), and since $\pi_{X}(0)=E[X]=\mu$ is given, to maxımize $P\left[L_{1}>u\right]$ we just have to maximize $\pi_{X}(u)$, the stop-loss premium of X. The solution to this problem can for instance be found in Goovaerts et al. (1990), Theorems III. 52.2 and 5.2 3. These theorems express that the maximal stop-loss premium for a (non-negative) risk X with mean μ and variance σ^{2} at retention u is the diatomic distribution with smaller mass point $x_{1}=\max \{u-d, 0\}$, where $d=\left\{(\mu-u)^{2}+\sigma^{2}\right\}^{\frac{1}{2}}$. When σ is small with respect to $|u-\mu|$, we may write

$$
\begin{equation*}
(u-\mu)-d=(u-\mu-d) \frac{u-\mu+d}{u-\mu+d}=\frac{-\sigma^{2}}{u-\mu+d} \approx-\frac{1}{2} \sigma^{2} /(u-\mu) \tag{14}
\end{equation*}
$$

So we may conclude that the diatomic distribution with the following mass points gives a 'high' ruin probability:

$$
\begin{equation*}
x_{1}=\mu-\varepsilon, \text { with } \varepsilon=\frac{\sigma^{2}}{u-\mu+d} \approx \frac{1}{2} \sigma^{2} /(u-\mu), \text { so } x_{2}=u+d \approx 2 u-\mu \tag{15}
\end{equation*}
$$

In the examples we tested, the diatomic distribution maximizing the ruin probability had x_{1} only slightly smaller than $u-d$. See Table 1.

Of course this same diatomic distribution maximizes the term with $n=1$ of the compound Poisson stop-loss premium (8) So one may expect this distribution to have a high stop-loss premıum if the probability of just one claim is large, which is the case if λ is small. For large λ, however, this approximation will not be as useful.

Our heuristic procedure may not always lead to the optimal value, but it can be shown that it is better than many other choices Suppose Z has distribution (15), and suppose Y is another feasible choice such that the least mass point of Y is larger than that of Z, which is $u-d$ We know that $\pi_{Z}(t)$ is piecewise linear, with edges at $u-d$ and $u+d$. Since Y has no mass below $u-d$, we have $\pi_{Y}(u-d)=\pi_{Z}(u-d)$ Also, $\pi_{Y}(u) \leq \pi_{Z}(u)$ since $\pi_{Z}(u)$ is maximal. So $\pi_{Y}(t) \leq \pi_{Z}(t)$ for all $t \leq u$, which means that Y generates lower compound Poisson stop-loss premiums and ruin probabilities.

TABLE 1
Values of $\psi(u)$ for different values of the highier mass point in a diatomic distribution

	$\mu=1, \sigma^{2}=1,0=1$		$\mu=3, \sigma^{2}=1,0=5$			
$x_{2}=$	$u=15$	$u=45$	$u=9$	$u=15$	$u=45$	$u=9$
	$\psi(u)=$	$\psi(u)=$	$\psi(u)=$	$\psi(u)=$	$\psi(u)=$	$\psi(u)=$
∞	102003	002315	000008	534796	248974	078779
$\mu+\sigma^{2} / \mu$	272504	039292	002315	550047	278350	098945
optumal	275023	081105	034151	550047	279190	106205
$u+d$	269824	078214	033632	534796	276506	101811
$2 u-\mu$	272504	.078651	033659	550047	277596	101901
10	146348	071460	024767	534796	265714	106184
15	130637	055095	034151	534796	259498	101901
20	123125	044244	031936	534796	256613	097203

In particular, the diatomic solutions with support $\left\{b, b^{\prime}\right\}$ with $b>u-d$ are apparently non-optımal.

5. extremal values of the adjustment coefficient

Consider all claıms distrıbutions with mean μ, variance σ^{2} and as an extra requirement, support contained in $[0, b]$ for some $b \geq \mu+\sigma^{2} / \mu$. Just as we did in the previous section for $P\left[L_{1}>u\right]$, one may tackle the problem of finding extremal ruin probabilities by using distributions leading to extremal values of related quantities like an approximation or an upper bound for the ruin probability. Here we use the upper bound $e^{-R u}$, where the adjustment coefficient R is the positive solution to the equation

$$
\begin{equation*}
1+(1+\theta) \mu r=E\left[e^{r X}\right] \tag{16}
\end{equation*}
$$

Asymptotically, this upper bound can be used as an approximaton, since $\psi(u) e^{R u}$ has a limit in $(0,1)$ for $u \rightarrow \infty$.

It can easily be shown that the diatomic distribution with mass points 0 and $\mu+\sigma^{2} / \mu$ is minimal in second degree stop-loss order, while the one with mass points b and $\mu-\sigma^{2} /(b-\mu)$ is maximal. See Theorem II 4.2.3 of Goovaerts et al. (1990). This ımplies that these special diatomic distributions have minımal and maximal moment generating functions on ($0, \infty$) in the class considered, and accordingly the corresponding adjustment coefficients (roots of (16)) are maximal and minımal respectively.

One would expect that the support $\left\{\mu-\sigma^{2} /(b-\mu), b\right\}$, with minimal adjustment coefficient, leads to large ruin probability, too Taking b too large, however, so $\mu-\sigma^{2} /(b-\mu)$ is very close to μ, results in the opposite of what we wanted: the ruin probability of this distribution is very small rather than maximal. For $b \rightarrow \infty$, by (7) we see that the $m g f E\left[e^{r X}\right] \rightarrow \infty$ for all $r>0$, so then $R \rightarrow 0$, which gives us the trivial upper bound $\psi(u) \leq 1$ So we observe that for $b \rightarrow \infty$, the upper bound $e^{-R u}$ increases, while the ruin probability decreases. But if b is not too large, say such that $\mu-\sigma^{2} /(b-\mu) \approx x_{1}$ as in (15), which means that $b \approx 2 u-\mu$, this distribution does lead to a large ruin probability

On the other hand we learn for instance from Figure 1 that for small u, the diatomic distribution with mass point $x_{1}=0$ has maximal ruin probability, even though it gives the tightest upper bound $e^{-R u}$

It can be shown, too, that the compound Poisson distributions with these distributions for the individual claims are extremal in second degree stop-loss order. This means that they have minimal and maximal third moment, and since mean and standard deviation are fixed, also minimal and maximal coefficient of skewness. As proved at the end of Section 2, these same special spectra also generate the extreme values of $\int u \pi_{S}(u) d u$ So one would be inclined to expect that they lead to high and low values of the compound Poisson stop-loss premıum as well, but the same caveats as above apply here.

6. SOME FINAL REMARKS

To conclude, we comment on tables of some results for distributions with support $\left\{\mu-\sigma^{2} /(b-\mu), b\right\}$ for different values of b. These distributions have mınimal adjustment coefficient (maximal skewness) for all feasible distrıbutions with support contained in $[0, b]$. They are compared to other distributions described above: the optımal diatomic distributıon, the heuristical approximatıons to the optımum found by applying (15) and the distributions with only one positive mass point: support $\left\{0, \mu+\sigma^{2} / \mu\right\}$ and $\{\mu\}$. The latter support is denoted by higher mass point ∞, where the mass on ∞ is of course 0 (but contributes to σ^{2}). Note that for u not too large and $b=20$, the phenomenon described above indeed occurs Even though we showed that looking at the mınimal adjustment coefficient sometimes gives incorrect results, especially for large b or small u, we fear that this method will be used quite often.

Further note that for large u and σ^{2}, minımal and maximal ruin probability are widely apart. For σ^{2} small with respect to u and μ, the ruin probability cannot vary enormously.

Table 2 gives some results for the compound Poisson stop-loss premiums. Note the meaningless results obtained by the wrong choice of b for large values of u, and also for small values of u.

An approach that we plan to follow in the near future is to try to optimize the compound Poisson stop-loss premium over the set of claim distributions with support $\{0, \delta, 2 \delta, \ldots, n \delta\}$. The more general problem is obtained taking limits for $n \rightarrow \infty$ and $\delta \downarrow 0$. The restricted problem can be written in the form of the maximization of a non-linear criterion function with three linear constraints on the probabilities $p_{J}=P[X=j \delta]$, requred to be non-negative

TABLE 2
Values of $\pi_{S}(u)$ for dirterent values of the higher mass point IN A DIATOMIC DISTRIBUTION

$x_{2}=$	$\mu=3, \sigma^{2}=1, \lambda=2$			$\mu=3, \sigma^{2}=1, \lambda=5$		
	$\begin{gathered} u=2 \\ \pi_{S}(u)= \end{gathered}$	$\begin{gathered} u=7 \\ \pi_{S}(u)= \end{gathered}$	$\begin{gathered} u=20 \\ \pi_{S}(u)= \end{gathered}$	$\begin{gathered} u=5 \\ \pi_{S}(u)= \end{gathered}$	$\begin{gathered} u=20 \\ \pi_{S}(u)= \end{gathered}$	$\begin{gathered} u=40 \\ \pi_{s}(u)= \end{gathered}$
∞	4270671	1300816	0008804	10101076	1004413	0002488
$\mu+\sigma^{2} / \mu$	4330598	1337326	0010879	10138862	1077055	0003859
optimal	4332192	1395435	0052178	10138862	1136463	0058680
$u+d$	4331675	1374006	0047330	10105046	1077758	0049633
$2 u-\mu$	4324805	1374694	0047347	10105033	1077807	0049638
5	4270671	1376488	0014677	10101069	1105061	0005110
10	4270671	1380493	0022903	10104438	1113764	0007883
15	4270671	1356405	0034962	10103393	1124541	0012330
20	4270671	1342594	0047335	10102812	1116290	0018726
25	4270671	1334135	0052137	10102458	1103217	0028545
30	4270671	1328482	0051061	10102223	1091199	0040868

for all J. By restricting to an arithmetic spectrum we are able to use Panjer's recursion instead of (9), the necessary partial derivatives can also be computed by a recursive scheme. The procedure can be generalized if more moments are known.

Of course, as the title of our paper indicates, maximization over the diatomic distributions only does not give a complete solution of either problem. We find, however, that by using this technique both problems are sufficiently solved for practical purposes In the first place, our examples led us to the conviction that, although the optımal diatomic distribution is not always globally optımal, it is not much removed from this optımum. Second, in our opinion in practice one might judge the attractiveness of risks or risk processes with known mean and variance of the claims by the worst feasible diatomic distribution as well as by the overall worst feasıble distribution.

ACKNOWLEDGMENT

The author wishes to thank Angela van Heerwatrden for some constructive suggestions, and Marc Goovaerts for stimulating discussions. Also, the valuable contributions of both referees are acknowledged.

REFERENCES

Bowers, N L, Gerber, H U , Hickman, J C, Jones, D A and Nesbitt, C J (1986) Acharial Mathemafics Society of Actuartes, Itasca, Illnois
Brockett, P L, Goovaerts, M J and Taylor, G C (1991) The Schmıter problem ASTIN Bulletm 21, 129-132
Gerber, H U (1990) From the convolution of uniform distributions to the probability of ruin Mittethungen der VSVM Heft 2/1989, 283-292
Goovaerts, M J, De Vylder, F and Haezendonck, J (1984) Insurance premums NorthHolland, Amsterdam
Goovaerts, M J. Kaas, R, Van Helrwarden, A E and Bauwelinckx, T (1990) Effective Actuarial Methods North-Holland, Amsterdam
Kaas, R and Goovaerts, M J (1986) Bounds on stop-loss premiums for compound distributions ASTIN Bulletin XVI, 1, 13-17
Press, W H, Flannery, B P, Teukolsky, S A and Vetterling, W A (1986) Numerical recipes, the art of scientific compuing Cambridge University Press
Scimmitter, H (1990) The ruin probability of a discrete claims distribution with a finte number of steps Paper presented at the XXII ASTIN-colloquium, Montreux, Switzerland
Situ, E S W (1989) Rum probabllity by operational calculus Insurance Mathematics and Economics 8, 243-249
Steenackers, A and Goovaferts, M J (1990) Bounds on stop-loss premums and rum probabilltes for given values of the mean, variance and maximal value of the clam size Paper presented at the XXII ASTIN-colloquium, Montreux, Switzerland
Takics, L (1967) Combmatortal Methods in the Theory of Stochastic Processes Wiley, New York. Reprinted by Krieger, Huntungton, NY (1977)

Rob Kaas
Institute for Actuarial Science and Econometrics, University of Amsterdam, Jodenbreestraat 23, NL-1011 NH Amsterdam, the Netherlands

