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EDITORIAL AND ANNOUNCEMENTS
GUEST EDITORIAL

SOLVENCY CONTROL OF INSURERS —
A CHALLENGE TO ACTUARIAL SCIENCE

Solvency of insurers 1s a highlight of actuarial study n our time. The topic 1s
regularly discussed 1n the actuanal literature and at actuarial conferences. Even
monographs and special meetings are entirely devoted to it, and a number of
working parties—national as well as international—have been commissioned
to work out practical solvency requirements and routines of solvency control
Some general reasons for the prominence of the topic are obvious: to an
insurance company, like any other business, prevention of negative results 1s of
vital importance — preferably profit should be produced, and supervisory
authorities conducting public affairs must ascertain that the insurers are
maintaining their part of the social security system.

Special reasons for the evergrowing prominence of the topic nowadays are to
be found in the rapid changes in the market Modern economic life 1s
characterized by the emergence of progressively bigger decision making bodies
— firms and orgamizations. In particular, their role as purchasers of insurance
is quite different from that of yesterday’s typically smaller decision units: they
have the capacity for selfinsurance by e g. captives or pension funds or simply
by not buying insurance, they often possess know-how 1n risk assessment; and
being buyers of insurance on a large scale, they are able to compare premium
expenses to benefits and thereby judge the fairness of the prices of insurance
products. These changes on the demand side have enforced increased competi-
tion between insurers. The globalization of the msurance business pulls in the
same direction. In their struggle for shares 1n a competitive market, the insurers
launch myriads of new products designed for progressively more spectfic—
hence smaller—groups of risks, and they quote premiums close to, and
sometimes even below the net premium. It 1s a dilemma that the need for more
accurate nisk assessment is accompanied by a deterioration of statistical
databases With the dissolution of the former cartel-hke cooperative bodies of
insurers and the shut down of their joint offices of statistics, one important
advantage of large-scale business gets lost Not surprisingly, there has been a
number of recent instances of failures of insurers. In fact, far more than the
number of eventual wind-ups since many of them were hushed up by
mergers

In these circumstances the solvency 1ssue faces the actuanal profession with a
number of challenging tasks. The appearance of actuaries of the third kind is a
response to the problems associtated with assets risk. In a sense these problems
are harder than those associated with insurance liabilities assets risk is rooted
1in political, social, and economic phenomena of great complexity, whereas the
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2 GUEST EDITORIAL

fluctuations of insurance lhabilities to a greater extent are governed by
technical, physical, and demographic mechanisms that iend themselves to the
well established methodology of the *“exact sciences™ This does not mean that
the analysis of the labihties 1s of secondary mmportance Just look at the
classical hife insurance mathematics Through decades it was widely held to be a
largely perfect structurec. However, 1t was not the mathematics that was perfect,
but rather the 1dyll of the insurance companics 1in a situatton where uniform
premiums with substantial safety loadings built into them created great surplus.
The insurers were prosperous and praised their actuaries The actuanes were
flattered and praised their techniques. No development of theory was called
for. Lately also life insurers are forced to compete, and suddenly the imperfec-
tion of the classical techniques 1s brought to hght in confused discussions of
how to determine appropriate premiums in different risk classes and how to
redistribute surplus to them, in short, how to measure the risk Fresh thinking
1s required from all kinds of actuaries, first, second, and third, in order to meet
the need for more accurate assessment of all kinds of risk in insurance In the
present situation the only superfluous actuaries are those of the zero kind, who
claim that actuarial mathematics can be dispensed with 1n these urgent
matters.

It may be appropnate to coin the term “actuaries of the fourth kind ™ for
those working in supervisory offices They are not numerous, and most of them
lead a shadow life pondering returns from the company accountants Certainly,
some very impressive work has been done in the field, but this fact alone could
hardly justify a distinguishing mark It 1s the characteristics of the field itself
and 1its great potential for stimulation of actuaral research that merits
emphasis | shall list some 1items that hopefully will speak for themselves

<

— The objectives of the supcrvisory authorities are not all the same as those of
a company. Solvency and equity are the primary concerns Business goals
are balanced against the welfare of the insured, the efficiency of the
msurance industry as a whole 1s considered, and its operations and
orgamization can be influenced by statutory regulations Regardless of the
market situation and the level of theoretical justification of the practices of
actuartes of the three first kinds, the actuary of the fourth kind must
employ models and methods that can serve these objectives (recall the life
insurance situation) And when adequate theory does not exist, 1t must be
created

— The data available to a supervisory office arc different from thosc collected
by the insurers Typically they are more aggregate and call for development
of models at macro level and statistical methods bascd on these However,
in our era of efficient data processing 1t is clearly possible to gather detailed
statistics on policies and claims experniences for supervision purposes If this
cannot be done on a large scale, an interesting possibility would be to study
detailed data in carefully sclected small samples from the insurance
portfolios Then one can model at micro level, and derive the nceded
distributions for the totals determining the solvency state,
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— The combination of data from several companies would presumably require
employment of heterogeneity models to account for the unobservable
differences between them The same goes also for the description of random
fluctuation 1n collective risk factors Combining the two sources of varia-
tion leads to studies of two-way random effect models, not necessarly the
standard lincar ones.

— An mmportant and difficult problem 1s the analysis of the impact of the size
of the portfolio, 1ts composition, and the reinsurance programme, which
may be involved

— Yet another prominent problem 1s the projection of outstanding claims of
all categonies

The list of challenging actuarial and statistical problems could be cxtended
far beyond this Some clues to their solutions are key-words like stochastic
processes, prediction and filtering, finite time ruin probabihities in complex
models, non- or semiparametric models, optimal risk sharing, utility and
welfare theory, computerintensive statistical methods, standardization of defi-
nitions, organisation of statistical data bases and communication betwecen
these, ... Let 1t sufficc here to say that all lines of insurance business have to be
analysed statistically, and all aspects that are judged to be of significance to the
total nisk must be moulded into the analysis Not scparately in ad hoc models,
but simultaneously in onc grand, comprehensive model, that must be suffi-
ciently realistic and mathematically tractable to produce, on a large scale,
reliable and efficient decisions 1in matters of major economic and social
importance That 1s a formidable task and a great challenge to the actuanal
science and profession.

RAGNAR NORBERG






XXI ASTIN COLLOQUIUM
NEW YORK, NOVEMBER 14-18, 1989

The XXI ASTIN Colloquium was held in the New York Hilton Hotel in
central Manhattan The colloquium was attended by about 235 participants
and 85 accompanying persons, coming from 22 countries. Approximately 25%
of the participants were from the U.S.A., which is extraordinary but not
surprising when one considers the location of the colloquium. The number of
papers presented and contributions to the Speakers’ Corner totalled 43.

The colloquium started informally with registration and a welcome drink in
the evening of November 14. The official opening of the colloquium on
November 15 coincided with the closing session of the 75th Jubilee Meeting of
the Casualty Actuarial Society (CAS), and was held in the famous Waldorf
Astoria Hotel. Kevin M. Ryan, President of CAS, held the opening address,
followed by Jean Lemaire, Chairman of ASTIN Jean Lemaire handed over a
congratulatory gift from ASTIN to Kevin M. Ryan on the occasion of the
Casualty Actuarial Society’s 75th jubilee. The Academy of Actuaries and the
Conference of Actuaries in Public Practice, both actuarial associations in the
U.S.A., had conveyed their welcome greetings to ASTIN, which were then read
by Jean Lemaire

The first panel discussion of the session was on the Past, Current and Future
Role of Non-Life Actuaries Around the World. Being videoed simultaneously,
the discussion gave the audience an excellent opportunity to observe some
eminent personalities 1n the actuarnal profession at close range: LeRoy Simon
the moderator, and Sidney Benjamin, Hans Buihimann, Charles C. Hewitt and
Jean Lemaire in the panel. Biihlmann gave a lucid account of the evolution of
the actuarial species, culminating in the actuary of the third kind. Quite
another kind of evolution was invoked by Hewitt, who described the impact of
individual vanations in mortality on population mortality rates, thus giving a
plausible explanation of observed phenomena. Lemaire focused his speech on
future challenges and opportunities of the actuarial profession; developments
within the European Community (notably the planned recognition of actuarial
qualifications across national boundaries); and the general decline of interest in
mathematical studies, the traditional source of new recruits to the profession;
and last but not least, the need to equip new actuanes with basic business skills

Benjamin sketched what one may call a code of conduct for the professional
actuary with a special view to general insurance. The four panelists succeeded
in giving quite a comprehensive view of actuarial preoccupations: Historical,
strategic, technical and ethical 1ssues were touched.

After the panel discussion the CAS meeting was ended officially with Kevin
M. Ryan handing over the Presidency to Michael Fusco Members of CAS and
ASTIN now reconvened to concurrent panel discussions with the following topics
ASTIN BULLETIN, Vol 20, No |




6 XXI ASTIN COLLOQUIUM

1 Insurance Prnicing: Return on Equity vs. Return on Sales.Yehuda Kahane,
Bernard Pelletier, Richard Woll and David Hartman (moderator)

2. Pricing Tort Reform Robert Buchanan, Claus Metzner, Philip Miller and
Paul Liscord (moderator).

3 Practical Applications of Determining Loss Developement Factors for
Casualty Excess-of-Loss Business. Harold Clarke, Dan Lyons, Ben Zehn-
wirth and James MacGinnitie (moderator)

A delicious luncheon was then served at the New York Hilton Hotel, where
the rest of the ASTIN Colloquium also was to take place Kevin M. Ryan
addressed the partcipants at lunch, telling about the Casualty Actuarial
Society’s work 1n educational matters

After lunch the traditional working sessions started The referee would
hardly be doing justice to the contributions by giving a one-sentence abstract of
each paper. Thus I shall restrict myself to naming the contributants and the
modecrators of each session 1n chronological order, departing from this rule
only when additional information seems interesting. Likewise | shall only name
the presenting author of multi-author papers A complete list of papers and
other contributions 1s given at the end

The first working session was moderated by Harr Lonka and Lioncl
Moreau. Papers were presented by Bob Alting von Geusau, Bob Buchanan,
John Cozzolino, Chns Daykin, Bill Jewell and Stuart Klugman. Several papers
presented n this session were results of cooperative effort. Buchanan’s paper 1s
a follow-up of a paper presented by Neuhaus at the 1985 ASTIN Colloquium
in Biarritz Cozzohino, Klugman and Meyers presented their respective parts of
work for the Insurance Services Office (1SO). The work presented by Daykin
has connccttons to similar work done in Finland. Jewell’s paper 1s part II in a
trilogy on IBNYR reserving, part 1 of which was presented to the 1987 ASTIN
Colloquium 1n Scheveningen.

The participants and their companions spent the evening on Broadway, or
the Imperial Theater to be precise. The play of the evening was ' Jerome
Robbins’ Broadway™, a cavalcade of songs from musicals which Robbins
staged over a period of 20 years. Listening to old favorites and watching a
performance full of American precision, zest and humour made the evening
thoroughly enjoyable

The following morning brought us back to the realm of actuarial mathemat-
ics Edwin J Elton, Nomura Professor of Finance at the Graduate School of
Business, New York University, gave an 1nvited survey lecture on the mathe-
matical theory of investment The lecture was held 1n a very clear and concise
style, giving the audience a ghmpse of a vast new area for actuarnal work,
practical as well as theoretical

Thursday morning’s working sesston was moderated by Marc Goovaerts.
Jecan Lemaire, Glenn Meyers and Ragnar Norberg presented their papers.
Lemaire’s paper, challenging actuaries to acquaint themselves with Fuzzy Set
Theory, set off a hvely debate involving Zehnwirth, Jewell, Norberg, Buhlmann
and Hachemeister.
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The ASTIN General Assembly followed. The minutcs of the 1988 General
Assembly, the Editor’s report and the Treasurer’s report were approved
Robert Baumann of the Swiss Association of Actuanes announced the 1990
ASTIN Colloquium 1in Montreux, and Alf Guldberg of the Swedish Society of
Actuaries announced the 1991 ASTIN Colloquium 1n Stockholm. A lengthy
debate was generated by two suggested amendments to the ASTIN rules; both
amendments were rejected with a clear majority vote. In the statutory elections
Giovanna Ferrara and Ragnar Norberg withdrew from the ASTIN Committee
and were replaced by Greg Taylor and Eddy Levay.

The first of the afternoon’s working sessions was modcrated by Richard
Gauthier and Lars Austin Teivo Pentikamen, Bjern Sundt, Hans Gerber,
Marna dec Lourdes Centeno and Erhard Kremer presented their work. Penti-
kinen described the approach taken in the report Insurance Solvency and
Fiancial Strength (abbr The Blue Book), a monumental work on insurance
solvency done in Finland The Finnish solvency group has cooperated with the
“Solvency Working Party™ of the Institute of Actuaries (cf. Daykin’s
paper)

Charles Levi and Gary Patrnik moderated the next afternoon session during
which Lawrence Vitale, John Narvell & Peter Licht, Greg Taylor, Gary Venter
and Walther Neuhaus presented their papers.

Friday was devoted entirely to working scssions. Eddy Levay moderated the
first session with contributions from Gary Patrik, Steven Haberman, Yehuda
Kahane, Charles Levi & Christian Partrat and Ermanno Pitacco.

Peter Johnson and Richard Gauthicr moderated the seccond morning session
with contributions from Mette Rytgaard, René Schnieper, Dirk Stiers, Bob van
der Laan, and Alfred Weller.

The Friday morning sessions were strongly dominated by loss reserving, this
being the subject of Kahane, Schnieper, Stiers and Weller. The hively discussion
which arose between the advocates of claborate models and the advocates of
simple methods was all too often curtailed for lack of time The referce fecls
that the subject would have deserved a morc thorough discussion which could
have resolved at least superficial misunderstandings

Maurice R Greenberg, Charrman of the American International Group was
the guest speaker during the luncheon. Greenberg conveyed an executive view
on 1ssues like environmental liability, proposing an allernative to current
practice

Friday afternoon was devoted to the Speakers’ Corner. Bill Jewell and Jean
Casanova moderated the first session where papers were presented by Jodo
Manuel Andrade e Silva, Heikki Bonsdorff, Marc Goovaerts, Erhard Kremer
and David Skurnick. Bonsdorff actually had two papers analyzing experience
rating by exponential smoothing

John Narvell and Charles Hachemeister moderated the XXI ASTIN Collo-
quium’s last working session Presentations were made by Ernesto Volpe,
Robert Miccolis and Eugenio Pricto Perez. On a lighter note, Gunnar
Benktander made a trendsetting remark, and Sidney Benjamin uttered ““only
one sentence’ (sic) Martu Pesonen and Heikki Bonsdorff made further
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comments on The Blue Book;, Bjern Sundt proposed to systematise loss
reserving acronyms. Teivo Pentikdinen, one of ASTIN's grand old men, struck
the proper closing note by his stubborn pledge to carry on working May all
our ASTIN colleagues be so stubborn!

The Colloquium Dinner took place on the 106th floor of the World Trade
Center, with a spectacular view of New York and its suburbs. Jean Lemaire
held the closing speech, thanking the American organisers for arranging the
Colloquium in a superb way. Robert Baumann invited all ASTIN members to
attend the XXII ASTIN Colloquium 1n Montreux. After dinner those who
wished could dance to the orchestra. The largest ASTIN Colloquium to date,
and one of the most interesting ones, had come to an end

For Saturday a tour of Manhattan, the United Nations and the Statue of
Liberty had been arranged.

WALTHER NEUHAUS
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ARTICLES

THE ASYMPTOTIC EFFICIENCY OF LARGEST CLAIMS
REINSURANCE TREATIES

By ERHARD KREMER

Hamburg & Lohnberg, FRG

ABSTRACT

Reinsurance treaties defined as generalizations of the classical largest claims
reinsurance covers are investigated with respect to the associated nisk, defined
as the vanance of the insurer’s retaining total claims amount Instead of the
unhandy vanance corresponding handier asymptlotic expressions are used
With these an asymptotic efficiency measure for comparing two such remnsur-
ance covers 1s defined. [t 1s shown that with respect to asymptotic cfficiency the
excess-of-loss treaty 1s better than the classical largest claims trcaty Further-
more the problem of giving optimal wheights to the ordered claims of a
generahized largest claims cover 1s discussed.

INTRODUCTION

The choice of the appropriate treaty 15 a very old and fundamental problem in
the reinsurance practice and theory Already in the sixties actuaries discussed
the problem of the optimal choice of a reinsurance treaty. The stop-loss and
quota shares were shown to have some very interesting optimality properties
(sece e.g BORcCH (1960), KaiiNn (1961), LEMAIRE (1973), OHLIN (1969),
PEsONEN (1967), Vaipa (1962), VERBEEK (1966) and the recent paper of
PESONEN (1984)) Collective and individual treaties were compared and also an
optimality property was given for the excess-of-loss treaty with respect to the
class of individual treaties (see e.g OHLIN (1969), GERBER (1980)). A short
presentation of these results 1s given e g 1in KREMER (1986b)

Nearly nothing 1s known on the goodness of the largest claims reinsurance
treaty or of some of its interesting generalizations, which arc defined e.g in
KREMER (1986a), (1988a). Some remarks on certain dependencies between the
largest claims and excess-of-loss treaty can be found in BERLINER (1972).
Furthermore one knows that under certain conditions the net premium of the
classical largest claims cover (see eg AMMETER (1964)) is asymptotically
equivalent to the net premium of a corresponding excess-of-loss trcaty plus
additive term (see KREMER (1982)) A generalization of that result to the
generalized largest claims reinsurance covers was given by the author (scc
KREMER (1984)) some years ago Some more advanced results remain to show
In the following the author presents some first new investigations on the

ASTIN BULLETIN, Vol 20, No |



12 ERHARD KREMER

goodness of the (classical or generalized) largest claims reinsurance treaties that
are of the type one expects to get. Like in the already classical studies on the
stop-loss, quota and excess-of-loss shares (see BorcH (1960), LEMAIRE (1973)
and OHLIN (1969)) the author takes the inverse of the variance of the
corresponding claims amount as measure for the goodness of the reinsurance
treaty. Unfortunately one cannot give handy formulas for the vanances under
consideration. That’'s why the author replaces the vanances by asymptotic
formulas which were already cited in KREMER (1983). With these the asymp-
totic efficiency of two reinsurance treaties of the discussed type will be defined
as the ratio of the inverses of the suitably transformed asymptotic variances.
Like in the classical studies one takes the constraint that the net premiums of
both treaties are {asymptotically) the same. With the help of this new concept
of efficiency the classical largest claims cover (see AMMETER (1964)) is
compared with the excess-of-loss treaty Finally the author deals with the
problem of choosing optimally coefficients, weighting the ordered claims in the
generalized largest claims reinsurance treaty.

THE GENERAL TREATY

Consider a collective of insurance risks producing claims with sizes
X, X5, X5, ..., each year Denote with N the random varnable describing the
number of claims per year. The claims sizes are assumed to be stochastically
independent and identically distributed with distribution function F. Finally the
claims number is assumed to be independent of the claims sizes Investigated
are remnsurance treaties which are based on the claims ordered 1n increasing
amount 1.e. on the random vanables

Avi1SXy25... S Xyy

The reinsurance treaty conditions are defined by a famuly of weighting
coefficients

Curs i=1,2, R (B n=l,2,3...
and a function
h on the nonnegative reals .

With these quantities the part of the total claims amount
N
SN = Z Xl
=1

that the insurer retains, when concluding the treaty, is given according
N

RN = Z cM'h(XN r)'

=1
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Such a reinsurance cover was recently called linear reinsurance treaty based on
ordered claims ( see e g KREMER (1988b)) In the more special situation where
h(x) = x holds for all x, one often denotes those reinsurance covers general-
1zed largest claims reinsurance treaties (see e.g. KREMER 1988a)) The sense of
the definition of the generalized treaty becomes obvious when considering some
examples.

ExaMpLE 1. For the choice ¢,, = | forall 1= 1,2,3, . and n=1,2,3,
and the special function

h(x) = min (x, P)

with a given nonnegative priority P one gets the classical excess-of-loss treaty
with prionty P. The nsurer has to pay for each claim up to the maximal
amount P. V

ExAMPLE 2. In case thatc,, = 1 foralli=1,2,...,n—pand ¢,, = 0 otherwise
and that A(x) = x holds for all x, one has the (classical) largest claims
rewmnsurance treaty, where the reinsurer pays for all claims except the p largest
ones V

The reader 1s invited to give some more examples, e.g one can combine the
situations of the example 1 and 2. Notice that in the present investigations we
consider the claims amount remaining by the insurer and not like m the
previous studies (sece KREMER (1986a), (1988a), (1988b)) the claims amount
taken by the reinsurer. In other words, the Ry here 1s just the Sy— Ry of the
previous papers.

THE ASYMPTOTIC EFFICIENCY

Obviously the class of linear remnsurance treaties based on ordered claims 1s
farly large One can choose among many different such reinsurance covers
The question appears which of two given different treaties 1s preferable. For
deciding, one needs an appropriate measure with which one can select the
treaty which 1s more advantageous. A classical measure for judging the
goodness of a reinsurance treaty 1s the variance of the total claims amount
under consideration while choosing some parameters of the treaty such that the
mean value of the total claims amount 1s fixed (see e.g. OHLIN (1969) and
KREMER (1986b) chapter 5.1). In case of our above defined linear rcinsurance
treaty based on ordered claims no handy expressions for the expectation E(Ry)
and vanance Var (Ry) exist in general. Fortunately one can give elegant
formulas for both quantities with asymptotic considerations. More concretely
the author gave 1n a previous paper (see KREMER (1983)) expressions for
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E(R,) and Var(Ry) that are asymptotically equivalent to both quantities
These results are basic to all that follows and will be presented in the

sequel.
Consider a sequence of growing coliectives, indexed with the integer
k=123, ... Denote with N, the claims number of the collective no. £ and

suppose that

Im (E(Np)) = +w

k—cw

Var (Ny)
Iim | — =
e\ E(W)

with an arbitrary, but fixed constant ¢, The random varables of the claims
amounts are the same n each collective and denoted by the variables

Xl > X2 ’ X3 )
They are assumed to satisfy the conditions given n the beginning of the
previous section, especially they are assumed to be stochastically independent
of the claims numbers N, and to have the distribution function £ The linear
reinsurance treaty based on ordered claims now depends also on the collective

number k, more concretely the weighting coefficients are dependent of the
index number k-

cn=c® with k=123,

whereas the function 4 is independent of the number k. For giving the
asymptotic formulas for the expectation and variance of the claims amount

Ny
Ry=RE =3 % hXy, ),
=1
one defines the family of functions
bW m=1,2,3,..., k=123,
according
biF(0) = P,

5% (u) = ¢V for u 1n the mterval
((i—=N)/n,1/n]  and 1=1,2,3, .,n,

and assumes that there exist an asymptotic weighting furniction b and numbers

t, t=0,1, ,m+l
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with 1, < t,41, t, = 0, 1,5+, = | such that

hm (b)) = b

k= o
uniformly on closed subintervals of the complementary sct of {¢;,.. ,t,} and
for each sequence (n,,k = 1,2, ..) sausfying

The function b 1s supposed to consist of two parts
b = b5+bd’

where b; is of bounded variation and continuously differentiable and b, 15 a
step function with steps at the ponts ¢;, ,t,. Finally the function & shall be
nondecreasing, F be continuous and strictly increasing (from both sides) at the
points F~'(1), 1 =1,2,. ., m, with the convention

F ') = inf{x F(x)=u
With all these notations and assumptions one has the important resull that

with the expressions

oo

(1) (b, by = j b(F(x) h(x) F(dx)

0

oo

@ o2(b, h) = j r (min (F(s), F(1))= F(s) F(1) %
0

0

x b(F(s)) b(F(1)) h(ds) h(dr)

holds
E(RP
0) im (2R )
k=0 \ E(Ny)
Var (R
4) hm | YerG "‘)) = G2(b, W)+ ul(b, )
h—o E(Ny)

(see Theorem | in KREMER (1983)). In these formulas the distribution function
F is fixed and given The expressions depend only through the functions b and
h on the linear remsurance treaty based on ordered claims.

Now coming back to judging the goodness of a linear reinsurance treaty
based on ordered claims In the classical approach of comparing reinsurance
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treaties one fixes the expectation of the claims amount under consideration and
investigates the corresponding variance. According to the elegant result (3) the
fixing of the expectation can be formulated in an asymptotic sense according:

up(b, h) = constant .

Then according to (4) the investigation of the variance can be expressed 1 an
asymptotic sense as the investigation of the expression

ok(b, h).

All above remarks now are summarized in the following definition.

DEerFINITION. In the above setting consider two linear reinsurance treaties based

on ordered claims with corresponding functions b,, A,, i = 1,2 Suppose
that
(5) #e(bys h) = pp(by, hy)

1s satisfied. Then the value

HUW
EFF:(1:2) = M)

Urz"(bl', hy)

is called asymprotic efficiency of the treaty no. 1 relative to the treaty no 2. In
case that

(6) EFF(1:2) > 1

holds true, the treaty no. | 1s called better than the treaty no 2 (at the
underlying claims size distribution function F). In case that in (6) one has
equality, both treaties are called to be (asymptotcally) equivalent. ¥

Obviously this definition gives a practicable formal instrument for compar-
ing the linear reinsurance treaties based on ordered claims. In case of the
socalled generalized largest claims treaties (see above) one has A(x) = x for all
x, so that ur, 62 depend only on b. Then write shorter s (b), of(b) for the
special ug(b, h), (b, h). For illustration an important example shall be
discussed.

AN EXAMPLE

Consider the (classical) largest claims reinsurance treaty of the example 2 in the
above context of growing collectives. Denote the number p of the treaty in the
collective no % by p,. Assume that

Pk
Iim
koo ( E(Ny)

Il
5%




ASYMPTOTIC EFFICIENCY OF LARGEST CLAIMS 17
for an arbitrary, fixed value 5 between zero and ome. This treaty shall be
compared with the excess-of-loss treaty with priority P > 0 (see the example 1).
With these notations one gets the corresponding functions.

(a) for the excess-of-loss treaty
b(u)y=1, for all u,
h (x) = min (x, P), for all x,

(b) jo‘r the largest claims treaty

b, (1) = 1, if u 1s smaller or equal to 1~—35,
0, elsewhere,

h,(x) = x, for all x,

and the interesting result:

THEOREM The excess-of loss treaty 1s better than the largest claims cover in the
just given setting V

ProoF. Since

wrbys ) = j x F(dx)+ P (1= F(P))
[0. P]

ur(by, hy) = j x F(dx),

[0, F~' (1=4)]

the equation (5) means nothing else but that
) j x F(dx) — j x F(dx) = P-(1-F(P))
{0, 7] (0, P}

with the priority P’ = F~'(1—s) This implies at once that P’ = P Since
F(P") < 1, one also has F(P) < 1. Consequently one has because of (7) the
stronger condition-

(8) P >P

Inserting the b,, h, into the expression (2) imples the in structure i1dentical
formulas:



18 ERHARD KREMER

P P
) kb, k) =2 j F(r)-f (1= F@)) dr dr

0

(10) o2(by, hy) = 2- r. F(r) r' (1= F(¢)) de dr ,

0

r

from which one concludes easily with (8) that the excess-of-loss treaty 1s the
better one. V

This result can be seen as a theoretical justification for the common
preference of the excess-of-loss treaty on the international reinsurance market.
Surprisingly the proof of the theorem 1s fairly simple, when using the concepts
of the preceeding section. The result 1s new and fits well to the investigations of
BERLINER (1972). For given s € (0, 1) and distribution function F one can easily
compute the efficiency of the largest claums treaty relative to the excess-of-loss
treaty. Since s 1s given, the P’ 15 fixed, so that onc can compute the
corresponding priority P from the equation (7). For computing EFF(1:2) 1t
then remains to evaluate the integrals in (9) and (10) and then to take the ratio
Exemplarily one can take for F the classical Pareto-model

COROLLARY Suppose that F 1s the Pareto-model, 1.e
F(x)=1—x"° for x larger than 1,

with a given parameter a larger than 2. Define the following function:

_ 2(l-a) 1 2-a [@— 1) _
= (2‘(a—1))+y (a—2)

—yl_a' a _ a
a—1 2-(a—1-(a=2)
and the values:

al/(l—a) =l/a

yl = s

y2=s"""

With this notation one gets for the asymptotic efficiency of the largest claims
relative to the excess-of-loss treaty the result
g(yl)

EFFe(1:2) = ,
g(»y2)

in case that s is smaller than o/~ 9,
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Proor One evaluates with routine calculations the equations (7), (9) and (10).
More concretely (7) means with yl = P, y2 = P’ that:

y2
a- j x9dx = y1'7e
vl

what 15 equivalent with

yl=ai=a.

Since:
P =F'(l-s)=5"",

one has the formulas for yl = P and y2 = P’. Furthermore one shows that.

y Y
j F(r)'j‘ (1 =F())dt dr

0

= j‘ (1—r~9- ( r t“’dz)dr= =g(y) -7V

r

The Corollary shows that the efficiency depends for given parameters of the
distribution function F solely on the value of s.

OPTIMAL WEIGHTS

In this section the problem of how to choose the weighting coefficients c,,,
i=1,2,....,n,n=1,2 ..1s discussed for the situation that the function A of
the linear reinsurance treaty based on ordered claims is given and the insurer
likes to retain a net premium exceeding a minimum amount # Without loss of
generality let us assume that

h(x) = x, for all x.

This means that one deals with the generalized largest claims reinsurance treaty
and tries to find some 1n some sense optimal weighting coefficients for given
claims size distribution function F and on a constraint on the msurer’s net
income. Suppose that one has one in some sense optimal asymptotic weighting
Junction b for the treaty. Then an adequate choice of the weighting coefficients
is to take
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With this choice the treaty 1s in some sense asymptotically optimal So the
problem of giving adequate weighting coefficients reduces to the problem of
determining an optimal asymptotic weighting function. The above presented
concepts and ideas make it possible to define what might be regarded as an
optimal asymptotic weighting function b

DeriNtTION. Consider the class of generalized largest claims reinsurance
treaties with asymptotic weighting functions 4 1n the above context of growing
collectives. Suppose that one has with a given constant g the restriction on b:

(1) ur(h) 2 p,

where F 15 the fixed underlying distribution function of the claims sizes of the
collective. The asymptotic weighting function b, 1s called optimal 1n the class 4
if -

GF (be) = Inf (GF (),

where 4 1s a given class of asymptotic weighting functions with each be 4
satisfying (11) and the G2(b) is the right hand side of (4). A treaty with
corresponding asymptotic weighting function b, 1s called asymptotically opti-
mal 1n the class of treaties with weighting functions be 4. V

Assuming that the basic claims size distribution function F i1s continuous,
one can reformulate u,(b) and o7 (b) according

ur(b) = j b(u) ™" ()

0
agi(b) = j j(min(u,v)—u v)-b(u) b(v) F~'(du) F~'(dv).

Obviously g2 is something like a quadratic form and the x, nothing else but a
linear functional on the set of all asymptotic weighting functions b. In case one
restricts to uniformly continuous functions b, the determination of an optimal
b, reduces to a typical infinite optimization problem, 1e to the minimization of
the sum of a quadratic and a squared linear form under the contrant that a
linear functional exceeds a given constant For solving one can apply results of
the socalled infinite optimization thcory. The reader 1s referred to the literature
on this mathematical topic ( see e,g KraBs (1975)) Because of pracucal
reasons one will take 1n addition the condition on b that

b(u) is nonnegative for all u and
bounded by the amount .
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One knows that the optimal b, can be determined such that with a nonnegative
24 the tupel (by, 4,) 15 a saddlepoint of the Lagrange-function

L(b,A) = ar ()= 4 (up(b)—10)
with respect to all nonnegative b and 2

In practice one does not know F but only knows the corresponding empirical
distribution function F,,, defined with the known m past claims amounts
X, X,y,..., X, according-

]
F,(x) = (— ) < {number of X, < x).

m

Then one clearly mserts F,, for Fn the uz(b), o}(b), yielding as results

1 m
(12) #rm(b)=( ) Y b(—’)-x,,,,
m

—1 m

m—=1 m-1

(13) a,zrm(b) = ( ) Z Z (m oun (i,y)—1-))) %

1
2
m J=1

i
x b( - ) b (L) (Xm (1+l)_Xm 1)'(Xm (_/+l)_XI" _[)

n m

with probability one. Here one uses that for continuous F the ordered claims
are all different, 1€

(]4) Xm | < Xm 2 <. <X

nom

with probability one. In case some ordered claims are equal, both expressions
m (12), (13) have to be modified shghtly. Let us restrict exemplarily to the
situation (14) In (12), (13) the asymplouc weighting function b{(u) appears
only at the points v = 1/m, where i runs from | to m One can calculate optimal
values b, b,,. ., b, for 6(1/m),b2/m), ,b(1) by mimmizing 5}«’" (b) with
respect to the b (i/m) (with 1 = 1,2, .. ,m) under the constraints that

i, (b) 2 .

and that the 6 (¢/m) are nonnegative and bounded by 1 This 1s nothing but a
standard problem of the (fimite) optimization thecory, which can be solved with
the methods of the quadranc programming (see e g. Kunzi ct al. (1967)).
Having calculated the optuimal values b, (¢/m) =56, with 1 =1,2,. ,m,
one likes to have also values b,(u) for thc w uncqual to the ¢/m with
1=1,2,...,m A practical approach might thc simply to interpolate and
extrapolate the function b, («) between and from the points w = i/m with
1= 1,2, . ,m, by using a suitable method of the numerical mathematics.
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Since the methods of the quadratic programming nowadays work without great
problems on each modern computer, one can determine with the given
procedure an approximate optimal asymptotic weighting function b, 1n case
one has the empinical distribution function.

Clearly the problem of giving optimal weights ¢, (i=1,2,. .,n
n = 1,2,. .) or more concretely an optimal asymptotic weighting function b 1s
mainly of theoretical interest In practice the reinsurer clearly will not loose
time with computing such an “optimal” reinsurance treaty So the author
restricts to the above short discussion and closes the paper
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PARETO OPTIMAL RISK EXCHANGES AND A SYSTEM
OF DIFFERENTIAL EQUATIONS- A DUALITY THEOREM

By EricH WYLER
ETH Zurich, Switzerland

ABSTRACT

This article, based on a result of BorcH and an extension of BUHLMANN, gives
a complete characterization of Pareto optimal risk exchanges by a system of
differential equations linking the derivale of agents contributions to their risk
aversion coefficients.

KEYwWORDS

Pareto optimal risk exchange; Bernoulli utility function, absolute risk aver-
sion, system of differential equations.

1. INTRODUCTION

This article extends a result of BUHLMANN (1984) Starting from BORCH'S
theorem (1960), BUHLMANN found a system of differential equations with a
Pareto optimal risk exchange as the solution. Here we are starting from these
differential equations and prove existence and uniqueness of a solution without
assuming any further condition. This solution depends on initial values which
satisfy a certain clearing condition. It will turn out that 1t can be identified in a
bijective way with the set of Pareto optimal risk exchanges

2. MODEL

We consider a risk pool with »n participants. Participant { (1 <1 <n) is
characterized by

r, : 1nitial wealth

X,. imual risk (random variable defined on a probability space (22, 2, P); we
assume that the expected values E[X|] exists)
u, : Bernoullt utility function (defined on R, increasing, strictly concave and

twice differentiable: v, < 0, u," > 0)
p, . absolute nisk aversion (p,:= —u;'/u,. Notice u, > 0 and p, > 0 1e. the
participants are risk averse; see PRATT (1964)).

By a risk pool we mean any formal mutual agreement among the n participants

n
to redistribute their total initial risk Z X,.

=1

ASTIN BULLETIN, Vol 20, No 1
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The 1ntial risk vector X,
X. =X, .,X,),
1s called nisk vector before exchange whereas a risk vector ¥,
Y= (Y, .,Y,)

defined on the same probability space (2, U, P) and satisfying the clearing
condition

Y v= Y
=1 —1

1s denoted as risk vector after exchange or briefly as risk exchange
Furthermore a risk exchange Y* = (Y}, ..., Y.*) s called Parcto optimal if
there does not exist another risk exchange Y:= (Y,, . , Y, with

Elu(r,—Y®] < E[u,(r,—Y)] for all «
Elue(ro—Y¥] < E[u,(ro—Y,)] for at least one /°.

In the sequel we are interested in Pareto optimal risk exchanges

REMARK The motivation of a person for participating in a risk pool 1s to
improve his mnitial expected utility E[u(r— X)] Therefore a risk exchange Y
has to satisfy the individual rationality condition

Elu,(r,—=X)] < Elu,(r,—Y)] for all :

in addition to the pool condition of Pareto optimality Unfortunately there are
many Pareto optimal risk exchanges violating this condition. In order to
preserve the beauty of the main result we drop the individual rationality
condition and deal in this article with general Pareto optimal risk exchanges.

In order to simplify our notation we introduce the shifted disutihity functions v,
v,(x):= u,(r,—x) =1, .,n (v, <0,y <0)
With W, we denote the range of the derivative of v,

W,.= {yj(x)|xeR}

3. MAIN RESULT

Now we show the existence of a bijective mapping between the set of Pareto
optimal risk exchanges and the set of solutions of a system of differential
equations satisfying a constrained boundary condition.
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THEOREM

n

Let w, w-= (w,, .,w,)eR", be a vector with Z w, =0
=1

(1) Let (A) be the system of differential equations
1

(A  Y/(2) = p'(’ Y‘(Z)) =1, . .n

=1 P,(r Y,(2))

There exists a uniquely defined solution Y (z) = (Y,(z),. ., Y,(z)) of (A)
satisfying the boundary condition Y, (0) = w,i=1,. .,n

() If Y(z) = (Y,(z),.. , Y,(2)) 1s the solution of (A) with boundary condi-
tion Y, (0) =w,, 1 =1, ,n, then

1s a Pareto optimal risk exchange.

(i) If Y*:= (Y*,.. , Y} 1s a Pareto optimal risk exchange then there exists
a solution Y(z) = (Y,(2), .., Y,(2)) of (A) satisfying a uniquely defined

n

boundary condition Y, (0) = w,, 1= 1,...,n, Z w, = 0, with

=1

Y* = Y( Z X,) almost surely.
=1

PROOF
(1) Existence of a solution”

Let f; be the function f,(x) = Z (v)™! (-/\l) with &k := (k,, . ,k,),
1= *
-1
k,-= > 0. f; 15 a strictly decreasing and differentiable function defined
v (w)
on W

= (| Gkjixew)
=1

with range R (see Lemma 1, Appendix). Furthermore f, (— 1) = 0. (see Proof
of Lemma 1, Appendix) We have

1
Y@ = (Y1), ,Y,(2) with Y,(2) = ()" (k (fk)_l(z)), =1, .,n,
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and k, = ,
v/ (w)

i=1,...,n 1s a solution of (A)

Uniqueness of the solution:

Let ¥(z) = (¥,(2),. ., ¥,(z)) be another solution of (A) satisfying the same
boundary condition. We define differentiable functions g,(z), i = 2, ..., n:

g,(z):=klv,’(f.(z))—k,v,'(?,(z)), ZE[R
We have g,(0) = 0 for all : and for the derivatives g;(z), i = 2,..., n, we get

g/ (z) = kv (7,(2)) T/ @) —kv/ (V,(2)) ¥/ (2)
kv (F1(2) kv (7,(2))
— pl(rI_Yl(Z)) pl(rl_Yl(z)) (W]th (A))
Z": 1
=1 pj(rj—yj(z))
- g,(Z) . zeR.
g -, 2,(r,~ T,(2))
Because the homogeneous hnear differential equations
g (z) = £@) , zeR, 1=2,. ,n
g 1
!; p_](rj_ ?_/(z))
have only solutions of the form
: i
g,(z)=c,exp( j‘ . dt), ceR, 1=2...,n
Z‘n -y (t))

we get together with g,(0) = 0: ¢, = 0 and therefore g,(z) = 0 for all ze R and
1=2,...,n
This means

kv (P,(2) = kyvi(¥,(z)) forall zeR and :=2,...,n

Because Z ¥/(z) = 1 for all ze R it follows together with the boundary
=1

condition that Z Y (z)=zforal zeR

=1
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Because Y(z) and Y(z) satusfy both the equations (**) of Lemma 2 (see
Appendix) we conclude by uniqueness of the solution that

()= Y(2) for all zeR.
() Y@):=(Y\(2),..., Y,(2)) with Y,(2)=()"" (kL(fk)_'(z)), i=1,..,n,

-1
v/ (w)

satisfying the boundary condition Y,(0) = w,, i = 1, ..., n. Because this solu-
tion satisfies (**) of Lemma 2, (see Appendix), it follows from BORCH's
theorem (see BorcH, (1960))that ¥ (Z X)) 1s a Pareto optimal risk exchange

and k,:= , i=1,.. ,n, 1s the unique solution of (A)

(i) It follows from BoRcH's theorem (see BORCH, (1960) ) that there are
strictly positive constants k,, 1 = 1,...,n, with

kv (Y¥) =k v/(Y}¥) almost surely for i=2, . ,n.
Let w € 2 be an element of @ for which the condition of BoRrcH is satisfied, k

the vector k.= (k,, ..., k,) and f; the funcuion as defined above. Because f (x)
1s defined for x:= k;v| (Y*(w))

(condmon of BORCH)

n

=Y Y*w)

=1

kl Vl, (Yl* (w))

fulx) = Z (v)~! p

it follows analogously to Lemma 1, (see Appendix), that f; is defined on some
interval (a, b) with range R. Therefore (f;) ™' (0) exists. We define the vector
w=(w;, .,w, by

1
=(V.')_'(-—(fk)_l(0)), i=1,...,n.
k,

The unique solution Y(z) = (Y, (z), ..., Y,(z)) of (A) with boundary condi-
tion Y,(0) = w,, 1 = |,..., n, satisfies the equations (**) of Lemma 2, 1e.

Y Y(z)=z forall zeR

1=1
kv, (Y,(2) = kyv{(Y,(z)) for 1=2,...,n and all zeR.

We conclude by uniqueness of the solution that

n

Y* = Y( Z X,) almost surely .



28 ERICH WYLER

REMARK: Because — 1/k, 1s possibly not in the range of v/ we cannot

-1
define w, by w,:= (v/)~! ( - ) ) QED
k,
4 EXAMPLE
We assume that the participants are using exponential utility functions, 1e.
p(x)=gqa, for all xeR and i = 1,.. ,n, where p, denotes the absolute risk

aversion of participant : In this case the system of differential equations (A)
becomes very simplc

We therefore have

Y(2) = —_z4f, i=1,....n,

n

2

1
=1 4

where the fi’s satisfy the clearing condition

Y g =0.

For further examples, e.g. for utility functions of the HARA-type, see
L1IENHARD, (1986).
APPENDIX

To conclude the two technical lemmas already used in the proof of the main
Theorem are discussed.

LEMMA 1
Let w,w.=(w,, .,w,)eR" be a vector with Z w, =0
=1
=1
and Kk, k= (k,, ,k,)eR"the vectorwithk, = — - >0

v (w)
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is a strictly decreasing and differentiable

Then /;(x) = 3 () (%
1=

I

function defined on W
= ﬂ {xk,|xe W}
1—1
with range R.

ProOOF

Obviously W is an open mterval W 1s not empty because 1t contains —1

n

ful=1) = Z ) (_ ) Z o) )= Y w=0.

1=1
We denote by (a,, b)) the open interval W, and by (a, b) that of W We have
a= ak, for at least one 1
and therefore

llm fi(x)=Im Z )"

1

1=1

s im ) (" )— hm (7)) L(p)=om.
v—ah, k,

v>a l>.’l

Analoguously we get
Iim fi(x)= -
x—b

It follows that the continuous function f, has range R Obviously f; 1s
differentiable on W with derivative

1
Ji (x) = Z — <0. QED
oHH =

( k’
LEMMA 2
Let w,w = (w,...,w,)eER", be a vector with Z w, =0

-1 'P
and  k, k.= (k|,.. ,k,) eR" the vector with k,.= ->0.
vll(‘vl)

Furthermore let (*) and (**) respectively denote the system of equations (in
Y](Z),..., Y"(Z))
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*) z = fik,v] (Y(2))) i=1,...,n.

n

Y r(z)=z forall zeR

=1

**) kv, (Y, (2) = kv (Y, (2)) for =2, ..,n.

Then Y(2):= (Y,(2), ..., Y, (2)) with Y, (z) = (v)) " (k—l(fk)_'(z)) ga=1...,n,

1s the umque solution of (*) resp. (**). The functions Y,(z), i = 1, ..., n, are
strictly increasing and differentiable They satisfy Y, (0) = w, fori =1, ..,n

PRrROOF

From Lemma 1 it follows that (f;)~' exists and is defined on R. Therefore
Y(z) 1s well defined, strictly increasing and differentiable. By inverting
equation (*) we see that ¥(z) 1s a solution and even the unique solution of (*)
Obviously Y(z) 1s also a solution of (**).

Note that

Z Y. (2) = fi(f) ' (@) =z
=1

kv (Y, (2) = (/) ' @) = kv (Y, (@) for 1=2,...,n.

Furthermore

Y,(0) = () (k]—(— 1)) = w, (see proof of Lemma I)

Let ¥(z):= (¥ (2), ..., ¥,(z)) be another solution of (**) Then we have
n - n k -
z= Z Y (z) = Z o)™ (kl vu'(Yn(Z)))
=1 1=1 f

= fi(k, vll(?l () = fulk, V,'(?.(Z)))

But the solution of (*) is unmique, so we have P(z) = Y (z) for all ze R. This
completes the proof
QED
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ABSTRACT

Fuzzy set theory 1s a recently developed field of mathematics, that introduces
sets of objects whose boundaries are not sharply defined. Whereas in ordinary
Boolean algebra an element is either contained or not contained 1n a given set,
in fuzzy set theory the transition between membership and non-membership 1s
gradual The theory aims at modelizing situations described in vague or
imprecise terms, or situations that are too complex or 1ll-defined to be analysed
by conventional methods This paper aims at picsenting the basic concepts of
the theory 1n an insurance framework. First the basic definitions of fuzzy logic
are presented, and applied to provide a flexible defimtion of a *preferred
policyholder” 1n hife insurance. Next, fuzzy decision-making procedures are
illustrated by a reinsurance application, and the theory of fuzzy numbers 1s
extended to define fuzzy insurance premiums.

KEYWORDS

Fuzzy set theory; preferred policyholders in life insurance, optimal XL-
retentions; net single premiums for pure endowment insurance

l INTRODUCTION

In 1965, ZADEH pubhshed a paper entitled ““ Fuzzy Sets” 1n a little known
journal, Information and Control, introducing for the first time scts of objects
whose boundaries are not sharply defined. This paper gave rise to an enormous
interest among researchers, and mitiated the fulgurant growth of a new
disciphine of mathematics, fuzzy set theory. The number of papers related to
the field exploded from 240 in 1975 (ZADEH et al.), to 760 in 1977 (GuPTA et
al.), 2500 in 1980 (CHEN et al ), and 5000 in 1987 (ZIMMERMAN). Today, there
are many more researchers in fuzzy set theory than in actuanial science, and
they form a much more international group, with important contributions
from China, Japan, and the Soviet Union. Two monthy scientific journals
publish new theoretical developments and applications, that are to be found in
linguistics, risk analysis, artificial intelligence (approximate reasoning. expert
systems), pattern analysis and classification (pattern recognition, clustering,
image processing, computer vision), information processing, and decision-
making. In this paper we will explore some possible apphcations of fuzzy set
theory to insurance.

ASTIN BULLETIN, Vol 20, No |
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In ordinary Boolean algebra, an element 1s either contained or not contained
n a given set. the transition from membership to non-membership 1s abrupt.
Fuzzy sets, on the other hand, describe sets of elements or variables whosc
limits are 1ill-defined or imprecise The transition between membership and
non-membership is gradual: an element can ‘“more or less™ belong to a set
Consider for instance the set of “young drivers”. In Boolean algebra, 1t 1s
assumed that any individual either belongs or does not belong to the set of
young drivers. This imphes that the individual will move from the category of
“young dnivers” to the complementary set of ““not young drivers™” overnight
Fuzzy set theory allows for grades of membership. Depending on the specific
application, one might for instance decide that drivers under 20 are definitely
young, that drivers over 30 are definitely not young, and that a 23-year-old
driver is ““more or less”” young, or 1s young with a grade membership of 0.7, on
a scale from 0 to 1

Fuzzy set theory thus aims at modelizing imprecise, vague, fuzzy informa-
tion, which abound 1n real world situations. Indeed, many practical problems
are extremely complex and 1ill-designed, hence difficult to modelize with
precision To quote ZADEH, “‘as the complexity of a system increases, our
ability to make precise and yet significant statements about its behaviour
diminishes until a threshold 1s reached beyond which precision and significance
become almost exclusive characteristics”™ Computers cannot adequately handle
such problems, because machine intelligence still employs sequential (Boolean)
logic. The superiority of the human brain results from 1ts capacity of handling
fuzzy statements and decisions, by adding to logic parallel and simultaneous
information sources and thinking processes, and by filtering and selecting only
those that are useful and relevant to its purposes. The human brain has many
more thinking processes available and has developed a far greater filtering
capacity than the machine A group of individuals 1s able to resolve the
command “ tall people 1n the back, short people 1n the front”, a machine 1s
not Fuzzy set theory explicitly introduces vagueness in the reasoning, hoping
to provide decision-making procedures that are closer to the way the human
brain performs.

A clear distinction has to be made between fuzzy sets and probability theory.
Uncertainty should not be confused with imprecision Probabilities arc pri-
marily intended to represent a degree of knowledge about real entities, while
the degrees of membership defining the strength of participation of an entity in
a class are the representation of the degree by which a proposition 1s partially
true Probability concepts are derived from considerations about the uncer-
tainty of propositions about the real world Fuzzy concepts are closely rclated
to the multivalued logic treatments of 1ssues of imprecision 1n the defimtion of
entities Hence, fuzzy set theory provides a better framework than probabihty
theory for modelling problems that have some inherent imprecision The
traditional approach to risk analysis, for instance, 1s based on the premise that
probability theory provides the necessary and sufficient tools for dealing with
the uncertainty and imprecision which underline the concept of risk 1n decision
analysis The theory of fuzzy sets calls into question the vahdity of this
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premise. It does not equate imprecision with randomness It suggests that much
of the uncertainty which 1s mntrinsic 1n risk analysis is rooted 1n the fuzziness of
the information which 1s resident 1n the data base and in the imprecision of the
underlying probabilities. Classical probability theory has 1ts effectiveness
limited when dealing with problems 1n which some of the principal sources of
uncertainty are non-slatistical in nature

In the sequel we will present the basic principles of fuzzy logic, fuzzy
decision-making, and fuzzy arithmetics, while developing three insurance
examples We will show that fuzzy set theory could provide decision procedures
that are much morc flexible than those originating from conventional set
theory Indeed, insurance executives and actuaries, much better trained to deal
with uncertainty than with vagucness, have often transformed imprecisc
statements tnto ‘‘all-or-nothing™ rules. For instance, Belgian insurers have
used the fuzzy stautistical evidence ““ Young drivers provokce more automobile
accidents” to set up the a posterior: rating rule * Drivers under 23 years of age
will pay a $ 150 deductible 1f they provoke an acctdent™. Hence " young” was
cquated with “under 23, a definite distorsion of the itial statement As
another example, Belgian regulatory authorities define, for statistical purposes,
a “severcly wounded person’ as “any person, wounded in an automobile
accident, whose condition requires a hospital stay longer than 24 hours™, a
very arguable ““ de-fuzzification™ of a fuzzy health condition

In Section 2 we will present the basic defimtions of fuzzy logic and apply
them to provide a more flexible definition of a ** preferred pohcyholder™ than
the one currently used by some American life insurers Section 3 introduces the
main concepts of fuzzy decision-making, and uses them to select an optimal
Excess of Loss retention. Fuzzy anthmetics arc presented in Section 4, and
applied to compute the fuzzy premium of a pure endowment policy

First, let us introduce our three examples.

Problem 1 Defuninon of a preferred policyholder in life insurance

Heavy competition between American life insurers has resulted in a greater
subdivison of policyholders than in Europe U.S. insurers first began, mn the
mid 1960s, to award substantial discounts to nonsmokers purchasing a term or
a whole life insurance. Then the " preferred policyholder ™ category was further
refined, and more discounts were granted to applicants who met very stringent
health requirements, such as a cholesterol level not cxceeding 200, a blood
pressure not exceeding 130/80, . For instance, one company offers a non-
smoker bonus of 65% morc insurance coverage with no increase in premium 1f
the applicant has not smoked for 12 months prior to apphcation A bonus of
100 % 1s offcred 1if the applicant:

— has not smoked for the past 12 months, and

-— has a resting pulse of 72 or below, and

— has a blood pressure that does not exceed 134/80, and
— has a total cholesterol reading not cxceeding 200, and
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— does not engage 1n hazardous sports, and

— nigorously follows a 3-times-a-week exercise program of at least 20 minutes,
and

— 1s within specified height and weight hmits, and

-~- has no more than one death in immediate family prior to 60 years of age
due to kidney or heart disease, stroke or diabetes

Again this is a distorsion, or a least a very strict interpretation, of the medical
statement ** People who exercise, who do not smoke, who have a low level of
cholesterol, low blood pressure, who are neither overweight nor severely
underweight, ... have a higher life expectancy . Insurers demand all conditions
to be strictly met, the slightest infringement leads to automatic rejection of the
preferred category For instance, a cholesterol level of 201 implies that the
preferred rates won’t apply, even If the applicant meets all other requirements.
A cholesterol levet of 200 is accepted, a level of 201 1s not! We will show that
fuzzy set theory can be used to provide a more flexible definition of a preferred
policyholder, that allows for some form of compensation between the selected
criteria.

Problem 2. Selection of an optimal excess of loss retention

Imprecise statements seem to be pervasive in reinsurance practive, where vague
recommendations and rules abound. *“ As a rule of thumb, an excess of loss
(XL) retention should approximatively equal 1% of the premium income”,
“Qur long-term relattonship with our present remnsurer should in principle be
maintained ”, ““ We could accept those conditions providing substantial retro-
cessions are offered”, ““A ball-park figure for the cost of this reinsurance
program is $ 10 mullion ™, are fuzzy sentences frequently heard in practice. To
illustrate fuzzy decision-making procedures, we shall consider the problem of
the selection of the optimal retention of a pure XL treaty, given the four
following fuzzy goals and constraints.

Goal 1: The ruin probability should be substantially decreased, 1deally down
to be neighbourhood of 1075,

Goal 2: The coefficient of varation of the retained portfolio should be
reduced; if possible 1t should not exceed 3

Constraint 1. The reinsurance premium should not exceed 2 5% of the line’s
premium income by much.

Constraint 2. As a rule of thumb, the retention should approximatively be
equal to | % of the line’s premium income

Problem 3 Computation of the fuzzy premum of a pure endowment policy

Forecasting interest rates is undoubtedly one of the most complex modelling
problems. Money market interest rates seem to fluctuate according to monthly
U.S. unemployment and trade deficit figures, vague statements made by
Mr Kohl or Mr Greenspan, the markets’ perception of Mr Bush’s willingness
to tackle the deficit problem, the mood of the participants to an OPEC
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meeting, etc. To compute insurance premiums over a 40-year span with a fixed
interest rate of 4.75% then seems to be an exercise in futility. We will show
that the introduction of fuzzy interest rates (and fuzzy survival probabilities) at
least allows us to obtain a partial measure of our i1gnorance.

As 1llustrated by our examples, fuzzy set theory attempts to modelize
imprecise expressions like “more or less young”, ‘ neither overweight nor
underweight”, *“in the neighbourhood of”, “in principle”. In retreating from
precision 1n the face of overpowering complexity, the theory explores the use of
what might be called linguistic variables, that is, variables whose values are not
numbers but words or sentences. In summary, fuzzy set theory endorses
Bertrand Russell’s opinion that

“All traditional logic habitually assumes that precise symbols are being
employed. It 1s therefore not applicable to this terrestrial life but only to an
imagined celestial existence™

and rejects Yves Le Dantec’s aphorism

“That only 1s science which deals with the measurable ™.

2 FUZZY LOGIC AND FUZZY PREFERRED POLICYHOLDERS

2.1. Basic definitions

A fuzzy set 1s a class of objects in which there 1s no sharp boundary between
those objects that belong to the class and those that do not. More precisely, let
X = {x} denote a collection of objects denoted generically by x A fuzzy set A4
n X 1s a set of ordered pairs

A= {x, U,(x)}, xeX

where U, (x) 1s termed the grade of membership of xin A,and U4 X — Misa
function from X to a space M, called the membership space Hence a fuzzy set
A on a refcrential set X can be viewed as a mapping U, from X to M.
(Examples of membership functions are presented in all figures).

For our purposes 1t 1s sufficient to assume that M is the interval [0, 1], with
0 and 1 representing, respectively, the lowest and highest grade of membership
The degree of membership of x 1in A4 corresponds to a ‘‘truth value” of the
statement *“ x is a member of 4. When M only contains the two points 0 and
1, A 1s nonfuzzy.

Problem [

Let X be a set of prospective policyholders, x = x (1, 15, t3, t4). For simplicity,
assume that the requirements for the status of ** preferred policyholder” will be
based on the values taken by 4 vanables

t;, the total level of cholesterol in the blood, in mg/dl,
t,, the systolic blood pressure, in mm of Hg
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13, the ratio (in %) of the effective weight to the recommended weight, as a
function of height and build
l4, the average consumption of cigarettes per day

Using a classical approach, an insurance company would for instance define a
preferred policyholder as a nonsmoker with a cholesterol level that does not
exceed 200, and a blood pressure that does not exceed 130, and a weight that 1s
comprised between 85% and 110% of his reccommended weight.

If a fuzzy set approach is to be used, membership functions have to be
defined for all criteria.

National Institutes of Health nowadays recommend a level of less than
200 mg of cholesterol per deciliter of blood Levels between 200 and 240 mg/dl
are considered to be borderline high The fuzzy set 4 of the people with a low
level of cholesterol can then be defined by the membership function
UA (X, ,l)

(1 1 < 200
11_200 2

1 -2 —— 200 < ¢, £ 220

40
Uslx;1) = 9
240—1, |2

2 220 < 1, < 240
40

L0 240 < 1,

The normal systolic blood pressure 1s about 130 mm of mercury. People with a
blood pressure greater than 170 are five times more likely to suffer from
coronary heart disease than individuals with normal blood pressures Hence the
fuzzy set B of the people with an acceptable blood pressure can be defined by

the membership function Ug(x, ¢,)
r

] H <130
1,— 130 \?2
1—2 130 < 1, < 150
40
Ug(x, 1y) = 3
170—1,\2
o 2T 150 < 1, £ 170
40
L0 170 < ¢,

Overweight and underweight people have a shorter life expectancy, skinniness
being less primordial than obesity. This 1s reflected 1n the asymmetric member-
ship function Ue(x, (3) that charactenzes the fuzzy set C of the people with
adequate weight
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0 LS 60
1,—60 \?
207 - 60 << 725
25
85_’3 2
-2 7 2 N5<, < 85
25
Us(x,13) =<1 85 < £110
13— 110\2
=2 -7 110 <13, 120
20
130—+45\?2
ol aiE] 120 < 1, <130
20
L0 130 < g

Even light smokers are more prone to suffer from cancer and cardiovascular
diseases than nonsmokers Hence they cannot be considered as * preferred”
and the set D of the nonsmokers 1s nonfuzzy

1 14=0
Up(x,ty) = { )
0

1y > 0.

The four selected membership functions are represented in Figure 1. Admit-
tedly, there 1s some arbitrariness in the definiton of these membership
functions, but fuzzy sct theory contends that this is better than membership
functions that abruptly jump from 1 to 0, in the classical approach

A fuzzy set 1s said to be normal iff Sup, U, {x) = 1 Subnormal fuzzy sets
can be normalized by dividing each U, (x) by the factor Sup, U,(x)
A 1s said to be the complement of 4 1ff Uz(x) = 1-U,(x) Vx.

A fuzzy set 1s contained 1n or 15 a subset of a fuzzy set B (4 < B) off
Ug(x) £ Up(x) Vx

The union of A and B, denoted A |J B, 1s defined as the smallest fuzzy set
containing both 4 and B Its membership function 1s given by

Ugup(x) = max [Uy(x), Up(x)]  xeX

The intersection of 4 and B, denoted 4 N B, 1s defined as the largest fuzzy set
contamed 1 both 4 and B. 1ts membership function 1s given by

Usns(x) = mmn [U,(x), Ug(x)] xeX

The notion of intersection bears a close relation to the notion of the connective
“and”, just as the union of A and B bears a close relation to the connective
“or”. It can be shown that these definitions of fuzzy union and intersection are
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the only ones that naturally extend the corresponding standard set theory
notions, by satisfying all the usual requirements of associativity, commutativ-
ity, iIdempotency and distributivity.

Problem 1

The fuzzy set E of the nonsmoking individuals with low cholesterol, acceptable
blood pressure and adequate weight 1s the intersection of the 3 fuzzy sets 4, B,
C, and the nonfuzzy set D. Its membership function is given by

Upg(x; 6,1, 83, t) = min [U (x5 1)), Ug(x, 8y), Uc(x; 13), Up(x; 14)]

So an individual can only be a full member of £ if he doesn’t smoke, has a
cholesterol level not exceeding 200, a blood pressure not above 130, and a
weight no less than 85% and no more than 110% of his recommended or 1deal
weight. This corresponds to the classical approach.

A nonsmoker x = x (210, 145, 112, 0) with a cholesterol level of 210, a blood
pressure of 145, and who 1s overweight by 12% 1s a member of £ with a grade
of membership

Ug(x,210, 145, 112, 0) = mun (0.875, 0.71875,0 98, 1) = 0.71875.

In other words, the “M” operation assigns a grade of membership that
corresponds to the most severe of the infringements to *““perfection”, in this
case blood pressure. Cumulative effects and interactions between the criteria
are ignored, which 1s not realisuic. Obviously, the health consequences of high
blood pressure are worse when there is also an excess of weight and cholesterol.
Also, since only the most severe condition 1s considered, it 1s impossible to
introduce compensations or trade-offs in decision rules. A mild excess of
weight cannot be compensated by ideal cholesterol and blood pressure

2.2. Other definitions of the intersection

The mimmum operator that characterizes the intersection corresponds to the
“logical and” Other definitions of the intersection have been suggested, they
correspond to “softer”’, more flexible interpretations of the connective *“and .
They all amount to exactly the same in the conventional case of degrees of
membership restricted to 0 and 1. The selection of a specific operator will
depend on 1ts possibilities to allow for cumulauve effects, interactions, and
compensations between the criteria. We wish the following properties to be
satisfied.

Property 1 (cumulative effects): Two infringements are worse than one.
Usnpx) <mn[Uy(x), Ug(x)] 1of Uy(x) <1 and Ug(x) < 1.

Property 2 (interactions between criteria). Assume U, (x) < Ug(x) < 1. Then
the effect of a decrease of U,(x) on U,pnp(x) may depend on Ug(x)
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Property 3 (compensations between critena): If U,(x) and Ug(x) < 1, the
effect of a decrease of U,(x) on U,n,(x) can be erased by an increase of
Ug(x) (unless, of course, Ug(x) reaches 1).

The algebraic product F of 4 and B is denoted AB and 1s defined by
Ugs(x) = Uy(x) Uplx)
The bounded difference G of 4 and B is denoted 4 © B and 1s defined by
Ujop(x) = max (0, U (x)+ Up(x)—1]
The Hamacher operator H defines the intersection of two fuzzy sets 4 and B by
o B UA(x)f;UB(X)
pH=p) U, (x)+Up(x)— Uy(x) Up(x)]
The Yager operator Y defines the intersection of two fuzzy sets 4 and B by

Uh(x) = 1=mmn (L, [(1= U )"+ A= Ug ()1} p2 |

Uh(x) = 0=p=l

Problem 1

The generalized operators provide a more reahstic way of modelling this
specific problem because they explicitly allow for compensations and interac-
tions between the selected criteria First consider the algebraic product. The
grade of membership of individual x(210, 145, 112,0) in the fuzzy set
F = ABCD 1s

Up(x; 210, 145, 112,0) = (0 875) (0.71875) (0.98) (1) = 06163

The effect of high blood pressure 1s here amplified by the presence of a shght
obesity and a cholesterol level mildly above normal This operator satisfies all
three properties.

The grade of membership of the same individual in the fuzzy set
G = AO B6 CoS D corresponding to the bounded difference operation 1s

Ug(x; 210, 145, 112,0) = max [0, 0 875+0.71875+0 98+ | — 3] = 0 57375

Hence the effects of the criteria are additive; no interactions are introduced,
since the consequences of cholesterol are the same whatever the blood pressure
and the weight. This operator satisfies properties 1 and 3, but not
property 2

The mmimum and algebraic product operators model two extreme situa-
tions. The minimum operator does not satisfy any property Compensations
and interactions cannot be introduced. The algebraic product allows for
compensation and maximum interaction, since the effect of one criterion fully
impacts the others. The Hamacher and Yager operators model intermediate
situations, with flexibility provided by the parameter p.

The Hamacher operator reduces to the algebraic product when p = 1. For
p < 1, the denomunator 1s less than 1 and Uy{x) > Ug(x): the product
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operator 1s “softened’; this operator models weaker nteractions It reduces
the effect of combined infringements The reduction effect 1s greater for severe
infringements. Also, the lower the selected p, the greater the reduction effect
Hence this operator can be used 1f 1t 1s considered that the combined effect of
high cholesterol and hmgh blood pressure is somewhat less than multiplicative
Selecting p = 0.5 for our example, we obtain successively

" (0 875) (0 71875)
UpfA(x,210,145) = ——— . = =06
05+(1~05)[0.875+0.71875~(0.875) (0.71875)]
Uil (x,210, 145, 112,0) = U,{*(x, 210, 145, 112)

402

(0 6402) (0 98) _

S T N A = 6

T 0.54(1=0 5[0 6402+ 0 98— (0 6402) (0.98)]

This operator satisfies all three properties.

The Yager operator reduces to the bounded difference operator when p = 1,
and to the mimmum operator when p — 0. U% (x) 1s an increasing function of
p- Hence all intermediate situations can be modelled, from the strongest to the
weakest “and” Selecting p = 2, we obtain

Uy(x) = 1=min{l, [(1—0.875)+ (1 -0 71875)*+ (1 — 0 98)]"% = 0.69157

This operator satisfies all three properties, except in the case p = .

2.3. Selection of a decision rule

If A4 15 a fuzzy subset of X, its a-cut 4, 1s defined as the nonfuzzy subset such
that

A, = xIU,(x) 2 a} for 0<agl

An a-cut can be interpreted as an error interval whose truth value 1s a.

Problem 1

The notion of a-cut provides a flexible way of defiming preferred policyholders.
The “classical” approach corresponds to l-cuts such as E, or F,. Lower
values of a provide generalizations of this definition For mstance preferrred
customers could be defined as the members of £y 45 or Foe. Eg7s 15 the set of
pohicyholders for which the grade of membership attains at least 0 75 for each
of the selected criteria (for our specific membership functions, ¢, < 214,
1, £ 144,762 < t; < 117.1, 1, = 0). Hence this amounts to relaxing all criteria
i a uniform way

Fy 60 18 the set of policyholders for which the product of the four grades of
membership attains at least 0 60 The latter definition 1s more realistic because
it allows for interactions and compensations An excess of blood pressure can
for instance be compensated by normal or near-normal weight and cholesterol
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levels Policyholder x(210, 145, 112, 0) is accepted as preferred using the sccond
criterion. He 1s not accepted if the first criterion 1s used

Similar deciston rules can be constructed using the other operators, 1f
medical considerations hint that they provide a better model of the problem.

2.4. Fuzzy operations

The concept of grades of membership allows to define the following operations
that have no counterpart in ordinary set theory; they are umquely fuzzy.

Concentration: A fuzzy set 1s concentrated by reducing the grade of member-
ship of all elements that are only partly in the set, 1n such a way that the less an
element 1s in the set, the more 1ts grade of membership 1s reduced The
concentration of a fuzzy set A 1s denoted CON (4) and defined by

Uconia)(x) = Ug(x) a>1

Dilation: Dilation 1s the opposite of concentration A fuzzy set is dilated or
stretched by increasing the grade of membership of all elements that are partly
in the set. The dilation of a fuzzy set A4 1s denoted DIL (4) and defined by

UpiLay(x) = UG(x) a <1

a is called the power of the operation.

Intensification: A fuzzy set can be intensified by increasing the grade of
membership of all the elements that are at least half in the set and decreasing
the grade of membership of the elements that are less than half in the set The
intensification of a fuzzy set 1s denoted INT (A4) and is defined by

2U%(x) 0 <Ux)E05

UINT(A)(X) = { )

1-2[1-U,(x)] 05<UMKx)=1
Fuzzification. A fuzzy set can be fuzzified or de-intensifed by increasing the
extent of its fuzziness. There are several ways of achieving this.

Problem 1

The operations of concentration and dilation roughly approximate the effect of
the linguistic modifiers “ very’ and “ more or less . They are used whenever
the different criteria have to be weighted. The presentation of problem 1 so far
implicitly assumes that each criterion has the same importance. If for medical
reasons this is not desirable, fuzzy operations can be used. Suppose that
cholesterol level is the better predictor of future heart problems, while the
importance of blood pressure has to be downgraded. This can be reflected by
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assigning powers of 2 and 0.5 to the two criteria. The modified fuzzy set £,
corresponding to the mimimum operator, 1s characterized by

Up(x; 1, 1, 1y, tg) = min [U3(x, 1), UF2 (x5 1), Uc(ox; 13), Up(x; 14)]

The modified fuzzy set F, corresponding to the algebraic product, has the
membership function

Up(x; 1y, 1o, 13, 1a) = Ug(x, 1) U™ (x5 1) U (x5 13) Up(x: 1)
Prospective policyholder x (210, 145, 112, 0) has a grade of membership of
min [(0.875)%, (0.71875)"2,0 98, 1] = 0.7656
in E, and of
(0.875)%-(0 71875)""? (0.98) (1) = 06361

in F. He 1s now accepted as a preferred customer under each of the two critena
of Section 2 3, since x (210, 145, 112, 0) 1s included 1in both E, ;5 and Fyeq.-

3 DECISION-MAKING WITH FUZZY GOALS AND CONSTRAINTS
AND FUZZY REINSURANCE

In the classical approach to decision-making, the principal ingredicnts of a
decision problem are (@) a set of alternatives, (b) a set of constraints on the
choice between different alternatives, and (¢) an objective function which
associates with each alternative its evaluation. There is however an intrinsic
simiarity between objective functions and constraints, a simularity that
becomes apparent when for instance Lagrangian multipliers are introduced

This similanty 1s made exphicit in the formulation of a decision problem 1n a
fuzzy environment Let X = {x} be a given set of alternatives. A fuzzy goal G 1n
X, or simply a goal G, 1s expressed and 1dentified with a given fuzzy set G in X
In other words, a fuzzy goal 1s an objective which can be characterized as a
fuzzy set in the space of alternatives In the classical approach, the objective
function serves to define a linear ordering on the set of alternatives. Clearly the
membership function Ug(x) of a fuzzy goal serves the same purpose, and may
even be derived from a given objective function by normalization, which leaves
the linear ordering unaltered Such normalization provides a common denom-
inator for the various goals and constraints and makes 1t possible to treat them
alike. A fuzzy constraint C in X, or simply a constraint C, 1s similarly defined
to be a fuzzy set C in X. An important aspect of those definitions is thus that
the notions of goal and constraint both are defined as fuzzy scts 1n the space of
alternatives. Hence they can be treated 1dentically 1in the decision process Since
we want to satisfy (optimize) the objective function as well as the constraints, a
decision 1n a fuzzy environment is defined as the selection of activities which
simultaneously satisfy objective functions and constraints. A decision can
therefore be viewed as the intersection of fuzzy constraints and fuzzy objective
function(s) The relationship between constraints and objective functions 1n a
fuzzy environment 1s therefore fully symmetric
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Assume we are given a finite set of alternatives X' = {x,, x5, ..., x,}, a set of

goals G,,. .,G,, characterized by their respective membership functions
Ug, (x), -, UGF(x), and a set of constraints Cy, .., C,, characterized by their
respective membership functions U¢ (x), ..., ch(x). Finiteness 1s assumed for

expository purposes only and can be easily relaxed.

A decision 1s a choice or a set of choices drawn from the available
alternatives, satisfying the constraints and the goals. The constraints and goals
combine to form a decision D, which 1s naturally defined as the intersection of
the fuzzy sets G’s and C’s.

D=6GNGN..NGNC NCN...NC,

Consequently a decision D 1s a fuzzy set in the space of alternatives whose
membership function 1s

Up(v) = min [Ug (x), ., Ug,(x), Ue (x), ., Uc (x)]

This decision membership function can be interpreted as the degree to which
each of the alternatives satisfies the goals and constraints As in example 1,
concentrations and dilations can be performed to reflect unequal importances
of the goals and constraints, and other intersection operators can be used.

Let K be the (nonfuzzy) set consisting of all the alternatives for which U, (x)
reaches 1ts maximal value K 1s called the optimizing set, and any alternative 1n
K 1s an optimal decision. The decision-maker simply selects as best alternative
the one that has the maximum value of membership in D

This decision-making procedure 1s essentially a maximmin technique, similar
to the selection of an optimal strategy in noncooperative game theory. For
each alternative the mimimum possible grade of membership of all the goals
and constraints 1s computed to obtain D Then the maximum valuc over the
alternatives in D 15 selected

Problem 2

Given the formulation of the problem, a reinsurance program 1s characterized
by 1its XL deductible, and evaluated by means of 4 different vanables

1, = probability of ruin (> 10%)

1, = coefficient of varniation of the retained portfolio

!

remsurance premium
ty = (in %)
cedent’s premium 1ncome

deductible
ty = (in %)
cedent’s premium 1ncome

Assume the reinsurer offers 10 different XL deductibles, arranged n increasing
order (x = 1,2,. ,10). The values taken by the selected varables arc pro-
vided 1n Table |
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TABLE |

CHARACITERISTICS OF THE 10 XL REINSURANCE PROGRAMS

47

Program ! 2 3 4 5 6 7 8 9 10
G 339 280 200 200 313 339 360 388 419 465
Gy 1 298 300 303 307 312 319 328 352 380 420
C 1 320 300 285 273 264 257 252 248 245 243
Cy 14 4 6 8 9 10 11 12 14 16 18

The following membership functions have been chosen They are represented

in Figure 2

Goal 1 (probabihty of ruin)

e

1
t,—.00002 \*
(2

100008

Ug, (x, 1) = 3
0001 —1, 2
2100 -
00008

0
Goal 2 (coefficient of variation)

1
Ug,(x, 1) = < 41— 1
0

Constraint | (reinsurance premium)

Ue,(x, 1) = 3

!

00002 < 1,

00006 < 1,

0001

< 4

3l <

41 <1y

25< 3=

2.8 < 1y

3 <1y

< .00002

< .00006

=< .0001
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Constant 2 (deductible)

14+0.1 0 <u=09
| | 09 <4 =11
Uc,(x;15) = 2.65—1.51, 11 <1y, £1.7667
0 17667 < t,

Given those membership functions, the grades of membership for all alterna-
tives are casily computed. They are presented in Table 2.

TABLE 2
GRADES OF MEMBERSHIP OF THE 10 DIFFERENT PROGRAMS

Program 1 2 3 4 S 6 7 8 9 10
G, 94 98 1 1 96 94 92 89 85 78
G, 1 1 1 1 I 9] 82 8 30 0
C, 0 0 06 35 7 89 97 998 1 1
C, 5 7 9 1 1 1 85 55 25 0

The membership function Up(x) of the decision D 1s obtained by simply
taking the minimum of the U’s, for each alternative, as shown in Table 3

TABLE 3
MEMBERSHIP FUNCTION OI' D

Program | 2 3 4 5 6 7 8 9 10

Up(r) 0 0 06 35 71 89 82 55 25 0

Note that no alternative has full membership in D: fuzzy set D is subnormal
This of course reflects the fact that the specified goals and constraints conflict
with one another, ruling out the existence of an alternative which fully satisfies
all of them

In our case, when all goals and constraints are considered to be of equal
importance, the ruin probability criterion 1s inoperative, it does not influence
the decision. The membership function of D 1s based on the first constraint for
alternatives 1 to 6, on the sccond goal for alternative 7, and on the second
constraint for alternatives 8 to 10

The optimal decision 1s program 6, corresponding to a retention of 1 1% of
the cedent’s premium income. This alternative fully satisfies the second
constraint, girven our selecton of membership functions. The other constraint
and the two goals are conflicting and cannot be fully satisfied The worst
infringement 1s the remnsurance premium, considered to be too high.

Assume now that, after reviewing the preceding analysis, the manager of the
reinsurance department decides that the first constraint C, is of paramount
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importance, and accordingly assigns 1t a higher weight. A concentration of the
fuzzy set C,, with a = 2, 1s then performed: the values of U (x, 15) arc simply
squared. This has the effect of decreasing the membership function of that
important constraint and making 1t more influential 1n the determination of D.
It 1s easily seen that the optimal decision becomes program 7. This 1illustrates
an inherent weakness of fuzzy decision-making the sensitivity of the optimal
solution to the particular selection of membership functions. And it 1s difficult
to avoid an important element of subjectivity in the determination of those
functions (see, however, CIvANLAR and TRUSSEL (1986) and DisSHKANT (1981)
for attempts to construct membership functions using statistical data)

The preceding analysis used the ‘““hard ™" defimition of the connective ““and”,
since the minimum operator was used as intersection. As illustrated in
Example 1, this excludes all forms of compensations and interactions between
the goals and constraints In some managerial problemes the decision maker
mught wish to be less restrictive. For instance, he might not really want to
actually maximize the objective function, but rather reach some aspiration
level, which might not even be definable crisply (his objective mught be to
“improve the present cost situation considerably ™, for instance). Or the ©* £ 7
sign 1n a constraint might not be meant 1n the strict mathematical sense, but
small violations might be acceptable, especially if an important improvement in
the objective function results (effective cxpenditurcs might shghtly exceed a
budget constraint, for instance) Hence in many cases it is more appropriate to
use a ‘‘softer” aggregation operator than the minimum, like the bounded
difference or the Yager operator. A decision 1s then defined as the confluence
of goals and constraints

Up(x) = Ug (x)*...* UG,,(J\.) *Up(x)  * U(',(x),

where * is the selected operator.

It 1s easily checked, for instance, that if the algebraic product 1s used instead
of the minimum operator, program 6 1s the optimal solution of problem 2, with
program 5 a close second.

4. FUZZY ARITHMETICS AND FUZZY INSURANCE PREMIUMS

DEFINITIONS. A fuzzy number is a fuzzy subset of the real line whose highest
membership values arc clustered around a given real number. The membership
function 1s monotonic on both sides of this real number More preciscly, a
fuzzy number A is a fuzzy subset of the rcal ine R whose membership function
Uy(x)=Uy(x;a,,a;,az,a4) 18"

(1) a continuous mapping from R to the closed interval [0, 1]
(1) zero on the interval (— oo, a,]

(in) strictly increasing on the interval [, a,]

(1v) one on the interval [a;, a;]

(v) strictly decreasing on the interval [as, a4]

(v1) zero on the interval [ay, 00),
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where a; < a, < a3 < a4. (Examples of membership functions of fuzzy num-
bers are presented in Figure 3). The increasing part of U,(x), on interval
la,, a;], 1s denoted U4 (x), the decreasing part of U ,(x), on interval [a3, a4,
is denoted U 4, (x). Alternatively, the inverse functions of U, (x) and U, (x),
Uy'(y) and Ug'(y) can be used; they are denoted V4, () and V().

If ) = a = a; = a,, A 1s an ordinary rcal number.

A fuzzy number A4 1s said to be positive 1if a; > 0. It 1s negative 1f a, <0

Let A and B be two fuzzy numbers with membership functions
Us(x) = Ug(x;ay,ay,ay,ay) and Ug(x) = Ug(x; by, by, b3, by). The mem-
bership function of the sum C of 4 and B, denoted 4 @ B, 1s defined as

Uc(z) = max mm[U,(x), Ug(»)] (x,y,z)e R’

vty =z

= max min [U,(x), Ug(z—x)].

It can be shown (see for instance DuBols and PrRADE (1978) and (1980)) that
the sum of fuzzy numbers 1s associative and commutative, and that

) Usz)=20 ze(—oo,a,+b)) Ulas+ by, 0]

() Uc(2) 1s strictly increasing in [a,+b,, a,+b,], and strictly decreasing n
las+ b3, as+by)

m) Ues(z) =1 z€lay+ by, ay+bs]

(v) Uea(2) = [UA_II(Z)_*‘UB_II(Z)]—I or Ve(z) = Vy(z)+ Vg (2)
Ua)=[Us' )+ Ug' @] or Val(z)= Val@)+Vi(2).

The product D of A4 and B, denoted 4 © B, 1s defined by

Up(z) = max mun[U,(x), Ug(y)] (assuming a,, b, > 0)

-z

It can be shown that D 1s a fuzzy number, with d, = a,b,. d;, = a»b,,
d:; = 03,)3, ({4 = (l4/]4,

Up(z) = [UA_II(Z) UB—II(Z)]—l or Vp(z) = Vy(2) Vi (z)
Up,(z) = [UA—2|(Z) Uazl(z)]_l or Vp(z) = Va(z) Vl(z).

The product 1s associative and commutative, and distributive on @. The »™
power of A 1s naturally recursively defined as

An= AoAn—l

The only reference dealing with finance applications of fuzzy arithmetics seems
to be BUckLEY (1987), who defined the fuzzy extensions of the notions of
present and accumulated value, and annuities, and showed how to compare
fuzzy cash flows by means of extended net present value and internal rate of
return methods. Problem 3 1s a straightforward generalization of that paper to
an 1nsurance problem
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Problem 3

Let us compute the net single premium of a $ 1000, 10-year pure endowment
policy, on a hife aged (55), where p = |, pss 1s 0.87. The interest rate ; 1s fuzzy
and assumed to be approximately equal to 6 %, as modelized by

(0 x <103
U,(x)=50x—-515 103 <x=£105
U(x) =+ 1 1.05 < x £ 107
Up(x)=545-50x 1.07 < x £ 1.09

L0 1.09 < x

(see Figure 3, upper left). As shown by the defimitions of @ and O, 1t 1s easier
to use the inverse functions

Vi(y) =103+0.02y and V,(p)= 1.09-002y.

The present value PV (S, n) of a positive fuzzy amount S, n periods n the
future, if the fuzzy interest rate 1s / per period, can be defined as

PV(S,m) =SSO0 ®)™"

This definition makes sense given the associativity and the distmbutivity
properties of © Note however that, generally, PV (S, n) © (1 @ 1)" will not be
equal to S. Since the face value and the survival probability are nonfuzzy, the
single fuzzy premium A4 of the policy,

A=1000-087-(1@® )" '°,

1s defined by the membership function

(o x £ 36750
Uqn(x) or Vg(y) 367.50 < x < 442.26
U,(x)= <1 44226 < x < 534.10
Uga(x) or Vaa(p) 53410 < x £ 647 36
L0 64736 < x
where
Vai(y)=2870(1.09-002y)""°
and

V. (y) = 870(1 03+0.02y)" 10 Oy

This function s represented in Figure 3, upper right
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Next assume that p = 5pss 15 also fuzzy, with membership function

0 (x <077 U(x > 0.97)
U,(x) = 10x—7.7 077 < x £ 087
9.7-10x 0.87 < x £097

and mverse functions V, (y) = 0.77+001y and V,,(y) = 097—-0.01 y (see
Figure 3, lower left).
The membership function of the premium A4 now becomes

(0 x < 325.26
Ug (x) or Ve (p) 32526 < x < 442.26
Ug(x) =< 1 44226 < x < 534 10
U(x) or V() 53410 < x < 721.77
L0 72177 < x

where
Va (9) = 1000V, () [1+V, 5,0 "° J=12
Va(y)=1000(077+0.1y) (1 09—0.02y)~ "
V. (y) = 1000(0.97—0 1 y) (1 03+0.02y)" '

This membership function, represented 1n the lower right part of Figure 3,
reflects the increased fuzziness.
It 15 also possible (see BUCKLEY (1987)) to fuzzify the number of periods n.

5 FUZZY SETS LITERATURE

The literature about fuzzy sets 1s abundant and highly specialized. A good
introductory textbook 1s ZIMMERMANN (1987), despite the important number
of musprints. More specialized textbooks are KAuFrMaNN (1975) and Dusois
and PrRADE (1980). The seminal papers about fuzzy decision-making are
BeLLMAN and ZapeH (1970) and YAGER and Besson (1976). Fuzzy graph
theory, fuzzy linear and dynamic programming and extensions of other
operations research methods are surveyed in ZIMMERMANN (1985) and (1987).
Reference papers for applications of fuzzy set theory to statistics are HESH-
MATY and KANDER (1985), BUCkLEY (1985) and Jaiuca (1986). Topics of
interest for actuaries where fuzzy applications have been developed include
game theory (AusIN (1981), Burnariu (1978, 1980)), economics
(CHANG (1977), CHEN et al (1980)), and utility theory (MATHIEU-
Nicot (1986))
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PSEUDO COMPOUND POISSON DISTRIBUTIONS IN RISK THEORY

By W. HURLIMANN

Winterthur, Switzerland

ABSTRACT

Using Laplace transforms and the notion of a pseudo compound Poisson
distribution, some risk theoretical results are revisited A well-known theorem
by FELLER (1968) and VAN HARN (1978) on infinitely divisible distributions 1s
generalized. The result may be used for the efficient evaluation of convolutions
for some distributions. In the particular arnthmetic case, alternate formulae to
those recently proposed by DE PriL (1985) are derived and shown more
adequate in some cases. The individual model of risk theory is shown to be
pseudo compound Poisson. It 1s thus computable using numerical tools from
the theory of integral equations in the continuous case, a formula of Panjer
type or the Fast Fourier transform in the anthmetic case. In particular our
results contain some of DE PriL's (1986/89) recursive formulae for the
individual life model with one and multiple causes of decrement. As practical
illustration of the continuous case we construct a new two-parametric family of
claim size density functions whose corresponding compound Poisson distribu-
tions are analytical finite sum expressions. Analytical expressions for the finite
and infimte time ruin probabilities are also derived.

KEYWORDS

Pseudo compound Poisson, mntegral equation, infinite divisibility; multiple
decrement model, ruin probability.

I. PSEUDO COMPOUND POISSON DISTRIBUTIONS

’

In order to investigate probability density * functions” such as

S(x) =exp(=A) d(x)+ (1 —exp (—4)) pexp (- px),
4y >0, d(x) the Dirac function,

we need the theory of ““ generalized functions” or ““ distributions” in the sense
of L. ScHwaRrTz (1950/51/65/66). In this paper we refer to the presentation by
DoEetscH (1976) (English translation 1s available) To avoid a conflict of
terminology between Function Theory and Statistics we use the term general-
1zed function. This 1s a linear and continuous functional on the space of
infinitely differentiable functions on R with compact support In this paper
generalized functions are usually written without argument as f; g, . Some-
umes and especially in applications we will abuse notation and wnte f(x)

ASTIN BULLETIN, Vol 20, No |
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instead of £, e.g. we write J (x) for the Dirac function instcad of . Integrals are
always understood in the Lebesgue sense.

Let 7 be the space of all locally integrable functions on [0, o0) (1.e. integrable
in every finite subinterval of [0, «0)), and let */ be the space of all generalized
functions on R. For fe 7, s€C, the Laplace transform of f(x)1s defined to be

oC

Lf(s) = j exp(—st) f()dr.

0

This mathematical object 1s extended as follows to an appropriate subspace of
7/ (see DOETSCH, §12). Let D*, k = 1,2, ..., be the k-th derivative operator
acting on the space 7. A generalized function f is said to be of finite order k if
f = D*h(x) for a continuous function h(x) defined on R, and k 15 the smallest
integer with this property. For example, the Dirac function

0, x<0

5= D*h(x), hix) = {
X, x>0

is of order 2. Restrict now & to the subspace 7/, of generalized functions of
finite order whose associated continuous functions A(x) satisfy the condi-
tions

hix)=0 for x<0,

Lh(s) converges absolutely for Re(s) > o,

o dependent on h.
For f = D*h(x)e ,, se C, the Laplace transform 1s defined to be
(1.1 Lf(s) = s* Lh(s)

and is an analytical function for Re(s) > o. The space ¥ 1s embedded 1in 7 as
follows. The generalized function defined by fe 1s the functional

o0
j f(x)p(x) dx, (x) infinitely differentiable on R with compact support.
— o0

A function fe€# with a Laplace transform in the classical sense has the same
Laplace transform in the generalized sense (DOETSCH, Satz 12.2). Moreover the
inverse of the Laplace transform is unique up to a zero (generalized) function
1n both the classical and generalized sense (DOETSCH, Satz 5.1, and p 72) Here
the zero function z(x) in ¥ is a function such that

j z{(x)dx =0, for all 120,
0

The convolution operator on ‘7, 1s defined as follows. If f= D" h(x),
g = D" k(x), then

frg=D"""(h*k)(x).
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The operations on the classical Laplace transform extend to the generalized
case Some operations used in this paper are summarized 1n the next Table

(Generalized) function Laplace transform
fe Lf(s), Lg(s)
aft+bg, a,beR alf(s)+bLg(s)
frg Lf (s) Lg(5)

X —~(dfds) Lf (5)
exp(—axr)f, aeR Lf(s+a)

S (x) sLf(s)=f(07)
J(x) (Dirac function) 1

To ilustrate the consistency of the Table with definition (1.1) we derive the
formula for the Laplace transform of the n-th derivative £ of a function
J€7 . From the theory of generalized functions (e.g. DOETSCH, § 14) one knows
that

an=/'(n)_+_f(n—l)(0+)§ + +f(0+)5(,1—])
Since L6%) (s) = s* it follows with (1.1) that

s"Lf(s) = LD" f(s)
= Lf(")(s) +f(n*l)(0+) + +f(0+)sn—l’

which provides after rcarrangement the desired formula. The differential rule
for a generalized function fe 7/, looks somewhat different, namely

LD"f(s) = s"Lf(s).

From now on our main concern 1s probabilistic. The set of locally integrable
probability density functions f€” 1s denoted by ¥ P The distnbution corre-
sponding to f(x) 1s

F(x) = j‘ f@t)dr.
0

It s well-known that Panjer’s recursive formula plays an important role in
computational risk theory. For fe” P we are interested in the analogous
integral equation

X

(12) «\f(x)=ij Wh(y) f(x=p)dy, ieR,

0

where he” is not necessarily positive In applications of risk theory the
assumption 0 < F(0) < 1 is almost always fulfilled. We consider therefore the
subset ¥ P, of all functions fe~ P with 0 < F(0) < 1 and for which there is a
unique solution A€ with
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r h(x)de =1,

0

such that (1.2) 1s almost everywhere fulfilled From results by STEUTEL (1970)
and VAN HARN (1978) the set v P, contains all infinitely divisible densities on
(0, o) (see Corollary 2). It has been shown tn the arithmetic case that there are
interesting non-infinitely divisible distributions on N for which the arithmetic
version of (1.2} is fulfilled, e.g. the mndividual model of nisk theory with
multiple causes of decrement (HURLIMANN (1989b)) Are there analogous
continuous candidates 1n ¥ P, and what 1s exactly this set? A practical answer
15 postponed to the end of this Section. From a mathematical point of view, the
set v P,, given that 1t contains non-infinitely divisible distributions, 1s appeal-
ing, since 1t leads to a natural generalization of the characternization by FELLER
(1968) and VAN HARN (1978) of infinitely divisible distributions with non-
vanishing zero-probability.

THEOREM 1 Let f(x) be 1n the class ¥ P,. Then i the space ¢/, the following
representation holds almost everywhere

o0

JG) =) exp(=A) k! B (x)

k=0
where #*°(x) = 6(x), A = —In{F(0)} and A(x) 1s almost everywhere the
unique solution of the integral equation

X

(13) X (x) = j Yh(y) fCx—y) dy.

0

ProoF. The integral equation (1 3) can be rewritten as

Xf(x)=4a(f*u)(x) with u(x) = xh(x).
Applying the Laplace transform we get
(dfds) Lf (s) = A Lf (s)-(d/ds) (Lh(s))

It follows that

Lf(s) = c-exp (A Lh(s)).
By Laplace inversion 1n the space /, we get almost everywhere

SO =c ) Akt k¥ (x).
A=0

In this formula we see that p = f—cd € 7, comes from a function pe
By integration

X

F(x)=c¢+ j p(t)dte,

0
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which shows that ¢ = F(0). Put 1 = —In{F(0)} to get the result.
The above result suggests the following defimtion.

DEFINITION. A probability density function f(x) defined on (0, c0) 1s said to
be of pseudo compound Poisson type if fe'v P,. We call the associated h(x) a
pseudo density.

INTERPRETATION In nisk theory and when it is actually non-negative the
function h(x) plays the role of claim size density

The following equivalent formulation of Theorem | can be more adequate
for pracucal evaluations In particular 1t generalizes the result by
STROTER (1985)

CorOLLARY [. Let f(x) be pseudo compound Poisson with parameter 4 and
pseudo density h(x) Define p(x) = f(x)—cxp(— 1) d(x).
Then p(x) satisfies the integral equation

1

(14 xp(x) = dexp (=) xh(x)+41 j Yh(y)p(x—y)dy
0

ProoOF. Introduce f(x) = exp (— 1) 6{x)+p(x) in the integral equation (1.3)
to obtain immediately (i 4).

In view of its importance both in theory and practice (see e g. STEUTEL
(1979)) we recall the defimition of infinite divisibility,

DEerFiNITION. A random variable X, taking values in R, 1s called nfinitely
divisthle 1If for every ne N there exist independent, identically distributed
random variables Y, ,, ..., Y, , such that the following equality in distribution
15 vahd -

d
X=Y),+..+7Y,,.

Equivalently P(z)'" = E[z*1"", Lf(s)"" = Elexp (—sX)]"" or @) =
Elexp (tX)]'" 1s respectively a probability generating function, a Laplace
transform or a charactenstic function for every n e N The associated proba-
bility density and distribution are also called infinitely divisible

The spccial case of Theorem | for mfinitely divisible distributions on [0, o0)
has been 1dentified 1n other forms by STEUTEL (1970) and VAN HARN (1978) 1n
the general and KATT1 (1967) and FELLER (1968) 1n the arithmetic case

COROLLARY 2. Let X be a random vanable defined on [0, o0) with locally
integrable density f(x) such that 0 < £(0) < 1. Then the following conditions
are equivalent-
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(a) X 15 infimtely divisible;

(b) X 1s compound Poisson with parameter A and jump density 4 (x) and f(x)
is solution of the integral equation (1.3);

(c) The solution 4 (x) of the integral equation (1.3) is positive

ProoF. In the arithmetic case the equivalence of (a) and (c) has been shown by
KATTI (1967) (other proof by STEUTEL (1970, p. 83)) The equivalence of (a)
and (b) was shown by FELLER (1968, vol. 1, 3rd edition, p. 290) (other proof
by GERBER and VALDERRAMA OspiNa (1987)). In the continuous case the
equivalence of (a) and (b) 1s due to VAN HARN (1978, theorem | 6.6) for the
compound Poisson representation and STEUTEL (1970) (see also VAN HARN,
Corollary 1 6.3) for the integral equation representation. The equivalence of (b)
and (c) follows from Theorem 1.

Next we display a subclass of # P, which 1s big enough for our applications.
In particular we will show by construction i Section 4 that the class ~ P,
contains more functions than the infinitely divisible ones.

THEOREM 2. Let 7~ P’ be the subclass of # P consisting of functions f (x) which
satisfy the following conditions:

(1) 0<F@O) <.
(n) The associated generalized function f— F(0)dJ € /, comes from a contin-
uous function f(x)— F(0) J (x) defined on [0, oo).

Then 7 P’ 1s contained in 7 P,.

Proor Let fe P'. The function p(x) = f(x)—F(0) d(x) 1s by assumption
continuous on [0, o) Consider the Volterra integral equation of the second
kind

A3

a(x) = A 'exp (A) xp(x)—exp (1) J- a(yyp(x—y)dv, A= —In{F(0)}.
0

Since p(x*y) and xp(x) are continous on {0 < x < ¢, 0 < y < x} respectively
{0 < x < 4}, this equation can be solved uniquely for a(x) (see eg JERRI
(1985), p. 194 and p 201) Set /i(x) = a(x)/x. After algebraic manipulation
one sees that /1(x) is the unique solutton of the integral equation (1.4). Since
S(x) = F0)d(x)+p(x), one checks easily that £(x) 1s also the unique
solution of the integral equation (1.3). Provided that

[}

j h(x)dx =1,
0

we have shown that fe~ P,. This point 1s proved as follows. Since h(x) 1s
solution of (1 3) one shows that
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j h(x)de =c¢ < o
0

Then %(x) = h(x)/c 1s the unique solution of the intcgral equation

oC

M (x) = Ac j Vh(p) f(x=y)dy.

0

Since j h(x)dx =1 one has fe~ P,. But from Theorem | one has then
0

de = —In{F(O)}.

By definition of 1 above one has indeed ¢ =1.

REMARKS

(1) In Theorem | and Corollary 2 the condition F(0) > 0 is necessary. The

infinitely divisible exponential density f(x) = u exp (— ux) leads to the solution
o

h(x) = exp (—ux)/x, but j h(x)dx = oo. This density s not compound
0
Poisson, but the weak himit of the compound Poisson densities f;(x) = exp

(A Sx)+(I—exp (—A) peexp (—ux) as 2 — oo, with claim size densities
h;(x) = exp (—pux) (1 —exp (—ax))/ix, a = (exp () — 1) u. This result will be
derived 1n Section 4. In general p(x) with P(0) = 0 is infinitely divisible 1f and
only if fi(x) = exp (—A) d(x)+ (1 —exp (—4i) p(x)1s mfimtely divisiblc with
F(0) = exp(—4) and p(x) 1s the weak limit of the f;’s as - oo. (FELLER
(1968), vol 2, 2nd cdition, p. 303).

(2) In the anthmetic case the integral equation (1.3) 1s to be replaced by the
well-known Panjer recursive formula

A
(1.5) kptk) =4 ) sh(s)p(k—s)
s—1

An independent and more elementary proof of the results in this mathemati-
cally simpler case in presented 1n HURLIMANN (1989a, 1989b). Obscrve that
Laplace transforms are to be replaced by the geometric transform (= proba-
bility generating function in case of arithmctic distributions, see GirrIN (1975)
for fundamentals)

(3) Methods to solve integral equations can be found in all parts of Appled
Mathematics. Transform theory (see WIDDER (1971)), cspeccially Laplace
transforms, is a powerful tool to get closed analytical results An illustration is
given 1 Section 4. Numerical methods were extensively studied by BAKER
(1977) and more recently equation (1 4) has been solved in the insurance
context by STROTER (1985). It is worthwile to mention that the Laplace
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transform approach simplifies the derivation of Theorem 1 1. of the latter
author, which uses the method of successive approximation.

(4) Theorem | can be interpreted as a duality assertion. There 1s a duality
between integrable densities on [0, o0) and pseudo densities, where the pseudo
compound Poisson representation realizes this duality The subclass of 1nfi-
nitely divisible densities 1s just dual to the ordinary densities.

(5) Theorem 1 suggests many (also difficult) applications. It can be useful for
the computational evaluation of convolutions (see next Section), as well as for
the study of other properties of exact sampling distributions. A statistical
application 1s given in HURLIMANN (1989a).

(6) With more technical refinements 1t should be possible to extend the results
to arbitrary one-sided unbounded intervals [a, o), a > — o0, (see VAN HARN
(1978) for the case of infinitely divisible distributions). It would be of great
interest to generalize Theorem 1, if possible, to the whole real line and
especially obtan a single charactenzing functional equation valid on R.
Unfortunately, even for infinitely divisible distributions, the latter requirement
1s still an open problem, as reported by VAN HARN (1978), p. 189.

2. CONVOLUTIONS OF DISTRIBUTIONS

Let X,, X,,. , X, be n mutually independent random variables on [0, c0) with
a common niegrable density f(x) such that 0 < F(0) < 1. In probability and
statistical theory one 1s interested in the exact sample distribution of the mean.
1t 1s a straightforward rescaling of the distribution of the sum

X=X +..+tX,
whose density 1s given by the n-fold convolution
Jx) =/*"(x).

The evaluation of this function uses the recursive formula
SHE () = j SN (=) dy
0

which 1s very time-consuming for large values of n, especially when f(x) 1s not
a simple function

Using Theorem 1 and the various methods for solving integral equations, an
alternative general approach to this problem follows immediately. In the
following we will often use g(x) = Ah(x) instead of A (x)

CoROLLARY 3. Let the X, be defined on [0, c0) with 0 < F(0) < 1. Assume
fer P,. Let g(x) be the solution of the integral equation
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X

@.1) A (x) = j yg(y) fx=y) dy

0

Then the n-fold convolution f(x) 1s solution of the integral equation

1

@2) () = j ye(y) Fx—y)dy

0

ProoOF. In the proof of theorem 1 we have seen that
Lf(s) = F(0)exp (Lg(s)),
and thus

Lf (s) = F(0)" exp (nLg(s)).
Therefore f(x) 1s pseudo compound Poisson with parameter ni and pseudo
density g(x)/A. The affirmation follows from Theorem 1.
Let us have a look to the special anthmetic case. The n-fold convolution
p(x) = p*"(x) can be evaluated using the recursive Panjer formula

5(0) = p(0y
2.3) k
kp(ky=n Y sg(s)plk—s)

s=1
where g(s) is 1tself computed recursively by
=1
(24) sg($)p(0) = sp(s) = ). gD pls—1)
1=
At first sight it might appear that this two-stage nested recursive algorithm is

computationally less efficient than the recursive formula proposed by DE PriL
(1985), Theorem 1

A(0) = p(0)'
25)

k
KBk p(©) = ), [+ D)s—kIp(s) jlk—s)

s=
In some cases 1t might be that only g (k) 1s known and p (k) must be computed

recursively using Panjer’s formula (1.5). Then the formula (2.3) 1s simpler and
more direct than formula (2.5)

ExampLES. The choice

“r(a+k—=1)c!
26 gk =_F 10 ) k=1,2...p>0c>0, a0
I'(@a)k! (1+¢) !

leads to Hoffmann/Thyrion’s family proposed as claim number distribution by
KESTEMONT and Paris (1985/87). A similar choice would be the ETNB
distribution
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I'k+a) g
en gk = ¢r9F k=12, —1<a<00<f<1,

r@k! [(1=-p="1"
studied as probability density (however) by WiLLmoT (1988). In these examples

1t 1s more direct to apply formula (2 3) to compute exact n-fold convolutions
than to usec De Pril’s formula (2.5).

3. THE INDIVIDUAL MODEL OF RISK THEORY

Consider » mutually independent random variables X, X,, ., X,, not neces-
sarily 1dentically distributed as in Section 2 Suppose each X, has a range
contained 1n the interval [0, c0), which may be anithmetic or not. In risk theory
the sum

X=X +X,+ ..+ X,

called individual model, can be interpreted as the aggregate claims n a finite
period on a portfolo of » independent contracts. Let F(x) = Pr(X < x),
F(x)=Pr{X,<x),:=1,2, .,n, and assume that 0 < F,(0) < 1 for all +.

THEOREM 2. Assume the probability densities f,e ~ P,, t = 1, . ,n Then the
individual model of risk theory 1s pseudo compound Poisson with parameter

(3.1) A= —In{FO)} = = ), In{FO)},
=1

and pseudo density

n

(32) hx) = ( > g,<x))/a,
— 1
where each g,(x) is unique solution of the integral equation

1

(3.3) X (x) = j y&r(3) fix=y) dy

0

ProoF Clearly f = f,*f,* *f,. In the proof of Theorem 1 we have seen
that

Lf,(s) = F,(0) exp (Lg,(s)), =12, . ,n
It follows that

n n

Lf(s)= Y Lfs) =[] F.0) exp( Y Lg,(s>)
=1

=1 1=1
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Taking inverse Laplace transforms in the space 7, the result follows imme-
diately

For simplicity restrict the following discussion to the arithmetic case First of
all formulae for g,(x) must be obtained, or the g,(x) must be computed by
other means, using for example Panjer’s recursive formula (3.3). Then the
probability density function of the individual model can be computed using
Panjer’s recursion, valid in the generalized case

H 0, x=0,

(3.4) f(x) = \
(—In{fOx) Y, yh(v) f(x=p), x>0.

v=1
Compared to the collective model of rnisk theory the extra cost for preparing
h(x) may be substantial since many values of g,(x), t = 1, 2,. ., are involved
in the computation. A sound procedure would be Lo approximate the pscudo
density, as suggested by De PriL (1987/89) (see Example 1 below), by a more
tractable function #2* (x) and compute the approximmate density

[T1/£0. x=o0,
=1

(BS5)  Srx) = \
(=In{fO}x) D, yh*(») f*(x=y), x>0
p=1

Another possibility to reduce the computational effort 1s to apply the Fast
Fourier Transform, inverting the Fourier transform of the pseudo compound
Poisson representation according to the formula

f = {/(0)/n} FFT " (exp (FET" (g)))

Here FFT™, {1/n} FFT~ denote Fast Fourier Transform, respectively the
inverse transform, and » 1s the size of the vectors /—, g associated to the
functions f(x), g(x). Since one has to take into accout a relatively long
support of h(x), the FFT-method has been shown superior to Panjer’s
recursion 1n many cases (cf BUHLMANN (1984)), and the error bound in the
distribution as well as 1n associated stop-loss precmiums are controllable
(BUHLMANN (1984), HURLIMANN (1986))

ExampLE 1. The simplest individual life model has been considered by DE
PriL (1986/87). Let n, be the number of policies with amount at nisk ¢ and
mortality rate q4,1=1, ..,a,y=1, ,b Let p, = 1 —gq, the corresponding

[
survival probabilitics, n, = Z n, the number of policies with mortality

=1
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b a [
rate q,, n = Z n, the total number of policies, and m = Z Z i-n, the
Py =1 =1
maximum possible amount of aggregate claims. Furthermore let X, be the
random variable representing the claim produced by a policy with amount at
nisk i/ and mortality rate g,. Its probability density function 1s given by

P x=0
(3.6) Jy(x) =+ 4, x =1
0, else

Following the device given by the arithmetic version of Theorem 2 we search
for unique functions g, (x) such that

xfy(x) = Z yg,(y) f,(x—y)
y=1

In the lemma below they are shown to be
(=D Yk (q,/p)", x=ik, k=12, ...
; else

(3.7 g,(x) =

It follows that this individual model 1s pseudo compound Poisson with
parameter

b
A== nln(p)=—In{f(O)
=1
and pseudo density

a b
hx)=1/A Y, Y ng,(x).
1—1 =1

I

Insert these formulae in (3.4). Then one has
b

r@ =TI (py
J—=1

For x > 0 one obtains with y = k-

min (a, x) [vi)

(B8) ()= Y Y, AGK) fx—ik), x=12 .,m

=1 k—1
with
b
AG k) = (=D Y (g, /p)t
7=1

This has been derived differently by DE PriL (1986). For computational
reasons REIMERS (1988) has proposed to reverse the order of summation:
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x  mn(a, [\/k])

(B9 =) D) AWk) f(x—ik)
k=1 =1

To save computer time it is advisable to truncate the first summation taking
only 4-5 terms as proposed by DE Prii. and VANDENBROEK (1987). An analysis
of the magnitude of error involved 1n this approximation step is given by DE
PrIL (1988).

LEMMA The Panjer recurrence relation equations

A

() =Y ye(p) f(x—p)

where

P x=20
fxy=+< g x =1 0<g<lI, ptqg=1,

0, else

have the unique solution
(=D k- (alp), x=1k, k=12,..

glx) =
5 else

ProoF One uses induction. For this rewrite the recurrence equations in
form (2.4):
v—1
xg(x) f(O) = x/(x) = 2, yg(y) S(x=»).
r=1

For x = 1,...,1—1 one obtains g(x) = 0 For x = i the equation reads

g()p = 1q.
Hence one has g(i) = g/p. Let now x > : and assume the formula for g( y)
correct for all y < x. If x = ik 1s a multiple of i, then the right-hand side of the
equation gives a contribution only for x—y = i, that 1s y = (k—1)i. The
cquation reads

tkg(x)p = —(k=1)1g((k—1)i)q
and the correct value of g(x) is checked by induction assumption. When x 1s
not a multiple of : the rnght-hand side vanishes and hence g(x) = 0.

ExaMpPLE 2. Consider the individual life multiple decrement model which has
applications in pension theory for example (sce BOWERS et al. (1986)). Let m be
the number of causes of decrement and let the vector s = (sy, ..., s,,) represent
amounts at risk, 5, being a sum at risk due to cause . "The vector s 1s assumed
to take values 1n a ﬁmte set A = Z". Let n be the number of policies with risk
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sum structure s and probabilities of decrement g due to cause, J,
m

J=1,...,m k=1, b Let p=1- z g’ be the survival probability

=1

due to all causes of decrement Denote by n, = Z ng, the number of pol-
sS€A -
b

cies with survival probability p{” and by n = z n, the total number of
eyl

pohcies The maximum possible amount of aggregate claims 1s denoted by M
and is equal to

b
M= Z Z max (s,) ng.
k=1

- sed 1<ygsm

Moreover let the random variable X, represent the claim produced by a policy

with nisk sum structure s and probabilities of decrement g =1,...,m,
k =1, . ,b Its probabihty density function, denoted by fy (x), 1s given by
P x=0
(3.10)  Sfu(x)= ), x=s. Jy=1,..m,
0, else

Evaluate now the probability density function of aggregate claims using
Panjer’s recursive formula (3.4). We have clearly

b
f@ =11 (.
k=1

For x > 01t is necessary to evaluate first 1n a recursive manner the functions
£, (x) such that

G ulx) = Y veu(¥) fulx=p), se€d k=1, b
r—1

Then
(3.12) hy =12 3, T nugs),
sed k=l
A= —In{f(O)},

is introduced n the recursive formula (3.4). Tt 1s important to note that the
proposed algorithm requires a two-stage nested recursive computation. Up to
the maximum possible amount of aggregate claims M prepare for cach
y = 1,2, . , M the finite number of elements g, ( y) recursively solving (3.11)
such that B
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y—-1

(B13)  gu(y)= [.Vfgk(y) - Y 24(2) .fgk(y—Z)J/(ypi”)

Then apply Panjer’s recursive formula (34) computing A(y) using for-
mula (3.12) As many of the values f,,( y) indeed vamish the summation n
(3.13) extends over at most m terms. To illustrate consider the double-
decrement model with m = 2, for example death and withdrawal or death and
disability as causes of decrement. Use for brevity the notation s = (7,7) with
A={l <1, ;< a} Assuming i < (the other cases; = jand ¢ > ; are similar)
the elements g, (x) are computed more efficiently by the recursive formulae
s

0, if xef{l, .,i—1} or
xe{t+1,...,7— 1| x not multiple of 1}
07 @Opy. f x =iy,
refl, .,[JB

(B14)  gu(x) =1 g2, if  x =j1s not multiple of
g p+ (=1 e gipy,if
xX=)=nr for relN,
— (= g (x—y) gf? +

o D) g (=) ¢ ixpl?),  of x>y
An alternative derivation and additional formulae concerning the individual
model of risk theory can be found in DE PriL (1989)

4 PARAMETRIC AGGREGATE CLAIMS MODELS

It 1s well-known that the compound Poisson gamma and the compound
negative binomial exponential distributions can be expressed as analytical
series, the latter one as a finite sum. Other cases are less well-known. For many
practical purposes it is most desirable to have tractable parametric functions
modeling aggregate claims. The classical approach to this problem uses
asymptotic approximate formulae as Normal, Normal-Power, Wilson-Hilferty,
three-parameter gamma, Haldane, Esscher transforms and others These
approximations are attached with approximation errors which are usually
difficult to control Furthermore the structure of the claim size density has been
lost 1n these models Since 1t 1s often necessary to study claims frequency and
claim size separately, parametric aggregate claims models with explicit struc-
ture of claim number and claim size distribution are of interest This can be
achieved solving analytically integral equations of the form (I 4). The method
15 llustrated at a simple new case, namely a modified two parameter gamma
aggregate claims model.

Let f(x) be an aggregate claims density such that 0 < F(0) = exp(—4) < I.
This assumption 1s 1n particular fulfilled for a Poisson claim number model
with parameter 4 and when there are no claims of amount < 0 Morc generally
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this can be assumed for infinitely divisible aggregate claims distrnibutions
defined on [0, o) (see Corollary 1). Rewrite the density as

(4.1 SGx) =exp(=4)d(x)+g(x)

The derivative (d/ds) Lf(s) of a Laplace transform 1s denoted for short by
L’ f(s) Solving the integral equation (1 4) is equivalent to solving a differential
equation in the Laplace space and taking inverse Laplace transforms The
differential equation reads

42 L'g(s)=ALg)L h(s)+Aexp(—2) L h(s)
Given the function A(x) its general solution 1s
(4.3) Lg(s) = c-exp (ALAh(s))—exp (—4).

where ¢ is a constant. We have gained nothing since this 1s equivalent to the
pseudo compound Poisson representation and is difficult to handle analytically.
However specifying the function g (x) it might be easier to find 4 (x) according
to the formula

(4.4) L'h(s) = exp (1) L' g (s)/[A(1 +exp () Lg(5))]

For the modified two-parameter gamma aggregate claims model, the task 1s to
find the pseudo density A{x) which corresponds to

(4.5)g(x) = (1—exp (=) p*x" exp (—ux)/T (@), a=1, u>0
Setting w = 1—exp (—4) one gets
(46)  Lg(s) = w(l+s/m)™%  Lg(s)= —(aw/p) (1+s/m)™"""

After straightforward calculation 1t follows that

I

4.7) L'h(s) = —aa/[A(s+u) ((s+p)*+a")],
where a is the positive a-th root defined by
(4.8) a® = (exp (W)= 1)u*

Inverse Laplace transformation yields

1

(4.9) h(x) = exp (—ux)/Ax j L™ [aa®/(a*+sD](y) dy
0

We show now that for integer values a = n = 1,2, 3, . the function h(x) has
a finite closed form. Using properties of the Laplace transform it suffices to
invert the functions

(4.10) L'h(s)= —1[s(1+sN =51 +s~1/s, n=12, ..

Set h(x) = b, (x)+hy(x) with L'h(s) = —1/s, L'hy(s) = s"" /(1 +5"). Tt

follows that },(x) = 1/x, x > 0, and hy(x) = —(1/x)- L™'[s"'/(1 +5] (x),
x > 0. To find the latter inverse Laplace transform expand the rational
function as a parual fracuon (e.g. DOETscH (1976), p. 89):
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n—1

@.11) ST+ = 1n Y, 1(s—exp 12k +1)n/n))

k=0

and re-group the complex conjugate terms. As # 1s odd or not one obtains two
different formulae summarized as follows:

(4.12) s +sT) = (1/n) [(] (=201 +s5)] +

[n/2}=1
+ Z 2(5—(1;(‘,,)/(5'2“2&/(‘"5‘*'I)J
£=0

where a, , = cos[(2k+1)n/n]. For later use set f8,, = Isin{(2k+ 1) m/n]l.

From a table of Laplace transforms (e.g. DOETSCH (1976)) one has
L7'1/(s*=2as+ D] (x) = (1/B) exp (ax) s (fx).

It follows that

(4.13) L™'[(25—2a)/(s*—2as+ 1)] (x) = 2 exp (ax) cos (fx)

whenever a?+ 2 = 1. Using these results one gets after some algebraic

manipulation the pseudo density in form of a finite sum*

@.14)  h(x) = (exp (— ux)/ix) [n—(l —(—1)") exp (—ax)/2 —

[#/2]—1
— D 2exp (ax.qax) cos (B, ,ax)
k=0
with a = (exp (A)—= 1)"" . In particular for lower dimensions one has the
pseudo densities

n=1: h(x) = exp (—px) (I —exp (—ax))/(4x),
a= p(exp()—1),
(415 n=2: h(x)=2exp(—ux)(1-cos (ax))/(Ax),

= pyfexp(A)—1,

n=73: h(x) = [exp (—ux)/(Ax))[3—exp (—ax) —
— 2 exp (ax/2) cos {(\/3/2) ax}],

a = pJdexp -1

We apply now Corollary 2. For n = 1,2 we have h(x) >0 and the
corresponding model (4.1) 15 infinitely divisible and thus compound Poisson
For n = 3 one may have A(x) < 0. Hence (4.1) 1s not infinitely divisible and
thus only pseudo compound Poisson In particular we have shown that the
classe # P is bigger than the class of infinitely divisible probability density
functions defined on (0, c0) As known to the author the present model n = |
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1s among the few examples of compound Poisson models allowing frure
analytical sum expressions for the main nisk theoretical quantities of interest. In
particular 1t 1s comparable to the Poisson exponential aggregate claims model
concerning mathematical simphcity.

Furthermore analytical expressions for the finite and infinite time ruin
probabilities can be derived. We have computed the simple case n = | (details
of calculation 1n appendix). Assume a stationary evolution of the portfolio. In
this context P = (1 +0) Am represents the premiums received continuously per
unit of time, with 8 the security loading, m the expected claim size, and A
measures the expected number of claims per unit of time Then the probability
of ruin y(x, t) before time ¢ given the ninhal reserves x 1s

(4.16) w(0,1) = 1/(1+0)— (I —exp (—4t)) exp (—uPt)/(uPt),
and for x > 0,
4.17) w(x,t) = (1—exp(—4it)) exp (—pu(x+Pt)) +

+ 0/(1 +0)-exp (—ux)-[A/(A+ Pr) —

— exp (—pPr)-{l —exp (= At)- Pul/(A+ Pu)}] +

k=1

+exp(—p(x+P0) Y. (—Ak! Y 17
k=2

=1
Taking hmits as ¢ — oo 1t follows that the infinite ime ruin probabilities are
(4.18)  w(0) = 1/(1+0),
w(x) = 0/(14+8)-exp (—pux)- A/(A+ Pu), v > 0.

The obtained results will practically be more useful if one fits the claim size
density by a linear combination of densities as follows:

4 19) hx) = Y coh(x), o+ .. +c =1,
h(x) = exp (= p,x) {1 —exp (—a,x)}/Ax,
.= (exp (D= Dp,.

From the proof of Theorem 1 we know that the aggregate claims density
f(x, ) up to time ¢ satisfies the Laplace representation

a

r

(L) (s) = exp (— A1) exp (AtLh(s)) = l—[ exp (—Ac, t)-exp (A, tLh,(3)).

=1
Define f,(x, t) as solution of the Laplace equation
(Lf) (s) = exp (—Ac, t)-exp (Ac, tLA,(s)).
As we have shown, one obtains by inversion
4200 filx,t) =exp(—Ac)d(x) + (1 —exp (—Ac, 1)) -, exp (—p, x).
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The direct calculation of the convolutions

S, ) =filx,)*...xf(x 1)

yields the formula (use induction):

@21)  f(x, ) =exp(—A) o) + Y. (I—exp(—A¢1)) x

x [H (,—n, CXP(—JCJI))/(;!,—#.)} x

I
X p,exp(—pu,x)

In this model the net stop-loss premiums to the priority M can be expressed as
fintte analytical sums, namely

4.22) SL(F, M) = jw (x—M) f(x, t)dx= Zr: (1—exp(—4c, 1))
1=1

M
x [H (= 1 exp (—ACJ’))/(IIJ—/Q)} x
J#i
x exp (= M)k,

Analytical formulae for the finite and infinite time ruin probabilities can also
be derived

APPENDIX "
CALCULATION OF RUIN PROBABILITIES

Assume an aggregale claims distnibution function up to time ¢ of the form
F(x,) = 1—(1—exp (—An)-exp (—ux).

Then the probability of survival to time 1, denoted by U{x,t) = | —w(x, 1),
can be calculated using Scal’s formulae (e.g GERBER (1979)).

U, 1) = 0)(1 +0)+(1/Pr) r (1= F(z, 1)) dz

1
F(x+P1,1)—P j U, 1=w) f(x+ Pw,w) dw
0

U(x, t)

One obtains

U(o, )

O/(1+ )+ (1 —exp (— At)) - exp (— pPr)/(uPt).

Further calculate
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U(x,t) = 1—(1—exp(—A0)-exp (—u(x+ Pt)) —

P Ju [6/(1+8)+ (1 ~exp(—A(t—w)) x

0

X

exp (—uP(t—w))/(uP(t—w))] x
[exp (— Aw) 8 (x+ Pw)+ (1 —exp (— Aw)) X
exp (—u(x+ Pw))] dw.

Since x+ Pw > 0 for w e (0, ) the term in d(x+ Pw) does not contribute to the
integral. For clearness write

Ux, 1) = 1=(1 — exp (—41) -exp (—p(x+ Pr) + I +1y,

X

x

with

I=—=P) 6/(1+6)-(1—exp(—Aw)) x
Jo

X pexp (—u(x+ Pw))dw,

n!

L=-P (1=exp(—A(—w)))-(1—exp (— Aw)) x
v o

X exp (—pu(x+PO)/(P(t~w)) dw
The evaluation of the first integral gives

I

Iy =6/(1+0)-exp(—px)- {-Py j exp (—uPw)dw +
0

+ Pu J-’ exp (—(A+ P,u)w)dw:I
0

= 0/(1+0) exp(—ux) [exp (—uPt) —

= 1+ Pu/(A+ Pu)-(1—exp (= (A+ Pu) 1))]
= 0/(1 +0) exp (—px)-[exp (—uPt) %

x {l—exp (= A4r)- Pu/(A+ Pu)} — /(A + Pu))

To evaluate the second integral expand the first exponential function 1n a
Taylor series to get

o0

L= —exp(—u(x+P0)) D (= DA k+1)!

]

jﬂ (1—exp (—Aw)) (t—w)* dw
0
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By induction one shows the recursive relation
1
j exp (—Aw) (1—w)* aw
0
1

= */)—k/A j‘ exp (—Aw) X (t—w)* ! dw, k>0,
0

with starting value
t
j exp (—Aw)dw = (1 —exp (—A0))/4.
0
It follows that

j' (1—exp (= Aw))-(1—w)* dw = 7' J(k+ 1) —k!

0

k
[exp(—lt)/(—l)kﬂ _ Z [}/j!(—},)k"'l—-’:l

=0

Introduced above one obtains

I, = exp (—pu{x+P1))-[S,+S,+ 8]

with
Si= ) Uk D} (= A0k + 1)L,
k=0
Sy== Y lk+1) Y (i),
k=0 =0
o k
Sy= Y Lk+1) ). (—Aeyppr.
k=0 =0
But one has
Si+Sy+Ss == 3 Hk+1)- Y (=)
k=0 J=k+2

j—1

=Y (—ayt YV,
1=2

k=1

77

the last equality being obtained by interchanging the order of summation

Therefore formula (4.17) is shown.
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DISTRIBUTIONS IN LIFE INSURANCE

By Jan DHAENE
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ABSTRACT

In most textbooks and papers that deal with the stochastic theory of life
contingencies, the stochastic approach 1s restricted to the computation of
expectations and higher order moments. For a wide class of insurances on a
single life, we derive the distribution and the probabihity density function of the
benefit and the loss functions. Both the continuous and the discrcte case arc
considered.

KEYWORDS

Single life contingencies, benefit function, loss function, stochastic approach.

| INTRODUCTION

In the two recent actuarial textbooks of GERBER (1986) and BOwERs et al
(1987) the thcory of life contingencics 1s built up 1n function of the stochastic
remaining hfe time of the msured.

This stochastic approach permits to define two important kinds of stochastic
functions for an msurance: the benefit function and the loss function at a
certain time. The benefit function of an insured of age x at policy i1ssue 1s
defined as the discounted value of all the benefits to be paid by the insurer over
the random future lifettime 7', of the insured. The loss function at time s, given
the nsured 1s alive at that time, 1s the discounted value of all the benefits to be
paid by the insurer over the random future lifeime T, , , of the insured less the
discounted value of all the premiums to be paid by the insured over the same
period

Most results of the traditional deterministic theory arc obtained by consider-
ing only the expected value of the above defined functions. The net single
premuium 1s defined as the expectation of the bencfit function The equivalence
principle 1s the requirement that the expeccted loss at ume 0 equals 0. From this
requirement the net premiums can be computed The net premium reserve at
time s 18 defined as the expectation of the loss function at time s.

BoweRrs ct al (1987) state that the probabilistic approach of Iife contingen-
cies “admits a rich field of random variable concepts such as distribution

ASTIN BULLETIN. Vol 20. No 1
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function, probability density function, expected value, variance and moment
generating function” Nevertheless, the Iterature on this probabilistic
approach is mostly restricted to the computation of moments of the benefit and
the loss functions, see e.g. POLLARD and POLLARD (1969), WoLTHUIS and VAN
Hoek (1984), GERBER (1986) and BowERs et al (1987)

De Prir (1989) gives a survey of the distribution functions (d.f.) and the
probability density functions (p.d f.) of the benefit function of most common
life insurances and annuities.

In this paper we will consider the benefit and loss functions of a *‘ general
msurance”’, by which we mean a combination of the commonly used hfe
insurances, endowment insurances and hife annuities It will be shown that
these functions are random variables of a special type The d f. and the p.d.f. of
a random variable of this type will then be derived. For completeness both the
continuous and discrete case will be treated.

‘

2. CONTINUOUS DESCRIPTION OF SINGLE LIFE CONTINGENCIES

Let T, = T be a continuous nonnegative random vanable representing the
future hfetime of a life-aged-x
Using the common actuanal notation, the d.f. of T can be written as

0 <90
21 Fr(t) = Prob(T < I)={
ge=1—,p, 120
TABLE 1
CONSTANTS T OR THE CONTINUOUS ACTUARIAL FUNCTIONS
L1 = Life Insurance, E]1 = Endowment Insurance, L A = Life Annuity
Name Notation a b ¢ m n
whole L 1 A, 0 1 0 0 oo}
n-year term L1 AL o 0 | 0 0 n
m-year deferred L I A 0 1 0 m o
m-year deferred AL 0 1 0 m "
n-year term L 1
n-year pure E I AL, 0 y" 0 n
n-ycar E 1 Ay un 0 1 P 0 "
m-year deferred m Ay 0 1 vrhe m "
n-year E 1
whole L A a, 1/6 -1/ 0 0 ©
n-year temporary L A Qe nm 1/6 -1/6 [T 0 n
m-year deferred whole L A m v -1/ 0 m o0
m-year deferred m @y v -1/ v, m n

n-year temporary L A
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with .4, =0 and lim ,q, = L.

1= w

The p d.f of T 1s given by

0
Q2 fr0) = Fp) = {
Py Heto t>0

where u, denotes the force of mortality of a life aged x

From Table 1 it can be seen that the benefit function of the common life
insurances, endowment insurances and life annuities on a single life aged x at
policy 1ssue can be written as a stochastic variable of the form

0 0<T<m
(2.3) S=< at+b’ m<T<m+n
c T>m+n

where a, b and ¢ are real numbers and m and » are nonnegative integers.
Further, v = 1/(1 + 1) 1s the present value factor related to the annual valuation
rate of interest ..

In Table 1 the following notation 1s used. 0 = In (1 +1) 1s the force of
interest associated with the valuation rate of interest rand 4, , = (1—v")/d 15 a
continuous n-year temporary annuity certain

A general continuous 1nsurance on a single hfe aged x at policy issue 1s
defined as a combination of the life insurances, endowment nsurances and hife
annuities considered 1in Table 1 and where the premiums are paid by a
combmation of the hfe annuities and pure endowment insurances of
Table 1

The stochastic variable describing the benefit function of a general contin-
uous nsurance 1s a linear combination of random vanables of the form (2 3)
So it follows immediately that this stochastic variablc can be written as

(2.4) S=a+bv" m@i-1)<T<m@), 1=1, .,n

with T=T,, g, and b, (i = 1, ..,n) real numbers and m(@) (1 =0, ..., n)
nonnegative integers satisfying

2.5 0<m@0) <m(l) < <mn) < oo

It is easy to see that the loss function at times s (s > 0), given survival of the
msured at that time, can also be described by a stochastic variable of the
form 2Q4) with T= T, .,

The p.d.f of a random varniable of the form (2.4) will be derived in the
following theorem The delta-function will be denoted by 4(x) to avoid
confusion with the symbol & for the forcc of interest. For a study of the
delta-function see e g. PApouLIS (1962)
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Theorem 1. Let S be the stochastic variable defined in (24) with T = T,
Dcfine for: =1, . ,n

(2.6) m(1)” = a,+mn (b, v, b,y

27 m@)" = a,+max (b, v p, ")

The p.d.f. of S1s given by

n

28  f()= ) G,

ey
with fori=1,.. ,n
A¢=a) lwy yP:=mwp:) b, =0
(2.9 G(s) =< ,wP: Uzerwl/l6(s—a)l b, #0and m()” <s<m()”
0 elsewhere
where r (1) 1s given by

(2.10)  r(i)= — ! ln( > 0
0

s—a, s—a,
b, ) b,
Proof. Using the Law of Total Probability the p d f. of S can be written in the
form (2 8) with
G()=f(slm@i-1)<T<m@)Prob(m(:—1) < T < m(i))
For b, = 0 1t follows that
fsimG—1) < T <m@)=d(—a).

Consider now the case b, # 0 We obtamn

fr(r())/(S(s—a)) b, >0, a,+b v"" <5 < a+b v "
G,(8) = < fr(r)/(6(a,—s)) b, <0, a+bv"" V< g <a+h v

0 : elsewhere.

with r(r) defined 1n (2 10)
So 1t follows that G,(s) 1s given by (29).

The d f of S 1s derived 1n the next theorem The following notation will be
used:

(x), = max (0, x)
and
x<0

x>0

0
H(r)={l
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Theorem 2. The d.f of the random variable S defined in (24) with T= T 18
given by

212 FGs) =Y (uwd=—puds)+ K.(s)
=1

where a(¢) and B(z) (! = 1,...,n) are given by

r

l —_
max{(), mm{m(l), —~ln(sgb-_')}} . b, <0, s<aq,
Y ;
(213) a@) =<
L m() . elsewhere
( m@—1) . b, <0
1 s—a,
214) p@) =< max{m(z—l), —;5111( 5 )} b, >0, s> a,
L m@) h,>0, s<aq,
Finally, K,(s) (¢ = 1,..., #) 1s defined as
H(s—a, b, =0
@15) K@) ={ (e
1 b #0

Proof. Using the Law of Total Probability we find that

(2.16) F(s) = Z Prob (a,+b,v" < sand m(i—1) < T < m(1))
=1

It follows that

Prob (a,+b,v" <s and m(i—1) < T < m(1))

(H(s—a)Prob(m(i—1) < T < m(i)) b, =0
1 s—a,

Prob(max{m(l—l), — - In }ST<H1(I)) . b, >0, s> a,
Y ;

=<0 b, >0, s<a,
Prob(m(i—1) < T < m(1)) . b, <0, s=q,
) | s—a,
Prob {m(i—1) < T < min{m(s), -—Eln b, <0, s<uyq,
b,

\
Or

Prob (a,4+ b, v" <sand m(—1) < T < m(1)) = (o(y4:— pyd-)+ K. (s)
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with a(1) and B(i) defined 1n (2 13) and (2.14).
Now (2.12) 1s obtained with the help of (2.16)

The p.d.f. and the d.f. of the benefit function of the insurances and annuities
considered 1n Table | can be written in a simpler form as 1s proven in the
following coroilary.

Corollary 1. Let S be the stochastic variable defined in (2.3) with T = T,
Define

2.17) m~ = a+min(bv", hv"™"
(218) m* = a+max (bv", bv""")

The p.d f. of S1s given by

(2.19) S) = g 4($)+G($)+ i p 4(s—0)

where G (5) is defined as
A(S_a) (mpx_m+\p\') 'b=0

(2.20) G(s) =< .py Uy /16 (s—a)) cb#0and m™ <s<m”
0 . elsewhere
with
l S—a s—ua
221) r=- "1In - ST
J b b
The d.f. of S 1s given by
(222) F(S) = md H(s)+(aq\_ﬂq,\)+ K(s)+m+np\ H(S—’C)
with
'Y 1 s—a
max{O, mm{m+n,—gln —_ }} 1 b<0,s<a
223) a= J
Lm+n elsewhere
(m “b<0
1 —
@24) f=<{max{m, —-In| 2 } b>0,s>a
S b
Lm+n bh>0, s<a
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225 K(s) = { H(s—a) cb=0

b #0

Proof. The random vanable S defined 1n formula (2.3) 1s a special case of the
random variable defined by (2.4) with the constants n = 3, a, =0, b, = 0,
a=a, by=b a3=¢, b3=0, mO0) =0, m(1)=m, m2)=m+tn,
m(3)=owand T=T,.

Using Theorems 1 and 2, after some straightforward calculation one obtains
formulae (2.19) and (2.22).

The d.f. and the pd.f. of all the continuous insurances and annuities
considered 1n DE PRIL (1989) can be obtamed by using Table 1 and Corollary 1

TABLE 2

CONSTANTS FOR THE DISCRETE ACTUARIAL FUNCTIONS
L1 = Life Insurance, E1 = Endowment Insurance, L A = Lifc Annuty

Name Notation a b ¢ m n
whole L1 A 0 | 0 0 0
n-year term L1 A 4 0 1 0 0 n
m-year deferred L1 m AL 0 1 0 m 0
m-year deferred o AL 0 1 0 m n
n-yedr term L1

n-year pure E 1 A lo 0 0 v 0 n
n-year E | A, am 0 1 v 0 n
m-year deferred R - 0 1 ymrn m n
n-year E |

whole L A due d, 1/d -1/d 0 0 es)
whole L A immediate a, 1/1 —1/d 0 0 o0
n-year temporary L A duc a, uq 1/d -1/d - 0 n
n-year temporary L A ay nm /i —1/d Ay 0 n
immediate

m-ycar deferred whole L A m Uy v id —1/d 0 m o0
due

m-year deferred m e vt - 1jd 0 m o]
whole L A immediate

m-year deferred Y v™id - d v a4 m n

n-year temporary L A due

m-year deferred

n-year temporary L A mi @y g v - 1/d V7 g m n
immediate
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3. DISCRETE DESCRIPTION OF SINGLE LIFE CONTINGENCIES

Let K = K, be a nonnegative random variable, representing the number of full
years to death of a hfe-aged-x
The distribution of K can then be written as

(3 l) FK(k)ZPFOb(KSk)=k+Iq\= l_k+l[)r /\'=0,],2, .

with lm g, = 1
k—o

The p.d.f of K is given by
(32) fK(k)=kp.\_l\+lp\=l\q\ k=0s 1527

The benefit functions of the common discrete life msurances, endowment
insurances and hife annuities on a single life aged x at policy issue can be
defined as stochastic variables of the form

0 cK=0,1,...,m—1
(3.3) S=< a+bvkt! c K=mm+1, ,m+n—1
c c K=m+nm+n+l,. .

The suiting values for a, b, ¢, m and n are given in Table 2

The following notation 1s used. d = l—v, 4,4 = (1—v")/d 15 a discrete
n-year temporary annuwity due and a, , = (1 —v")/i is a discrete n-year tempo-
rary annuity immediate.

A general discrete insurance on a single life-aged-x 1s defined as a combina-
tion of the insurances defined in Table 2 The premiums are paid by a
combination of the life annuities and pure endowment insurances of
Table 2.

The benefit function and the loss function of a general discrete insurance can
be described by a stochastic variable S of the form

3.4 S = a,+bvE*! m@—1) < K <m(); i=1,...,n

with K = K, for the benefit function and K = K ., for the loss function at
time s. Further, a, and b, (¢ =1, .,n) are real numbers and m(r)
(i =0,1,. .,n) are nonnegative integers satisfying

35) 0<m0)<m(l)< ..<mn) < w

In the following theorems the p.d.f. and the d.f. of S are derived.

Theorem 3. The p.d.f. of the variable S defined 1n (3 4) where K = K, 15 given
by

(3.6) )= Gs)

1=1
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where for i = 1, ., n the functions G,(s) are given by
(m(l—l)pz_m(l)p:)A(s—ax) . bl =0
(37) G, (S) = m{n—1|
k(I:A(S—”,—b: VA+I) ’ bl%o
k=m@—1)

Proof. For m(i—1) < K < m(u) and b, = 0 we get that § = 4, or
f(sIm@G—=1) < K<m()) = A(s—a)
If m(—1) £ K< m() and b, # 0 the possible values for S arc
a,+b, v<*! k=m@=1),...,m@)—1

with respective probabilities
wd /Prob(m(—1) < K <m(1))

So we find for b, # 0

Slsim@—=1) < K< m@)) Prob(m@i—1) < K < m(1))
m{n—1

= Z k|q\A(S_aI_bl Vk+|)
k=m@—1)

By using the Law of Total Probability we obtain formula (3.6).

89

Theorem 4. The d f. of the random variable S defined in (3 4) where K = K. is

given by
(33) F(s) = ), (ande= s+ K (5)
=1
where for 1 = 1, .., n the functioins a(¢), f(¢) and K,(s) are given by
) 1 s—a,
max{O, min {m(l), ——In|-— }} i b, <0, s<aq,
0 b,

3.9 a@)=

m(1) elsewhere

m(i—1) b, <0

310) B() = max{m(,—l),}—lln(s"“'
s\ b

-—l[} 0 b, <0, 5> g,

m(1) :5,>0, s<aq,
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a1 K(s) ={H(s—a,) . b,=0

b 40

For a real number x, ]x[ denotes the smallest integer greater than or equal to x
and [x] denotes the greatest integer less than or equal to x.

Proof. For m(:—1) < K < m (1) we find

Prob (a,+b,v**' < sand m(i—1) < K < m(1))

(H(s—a)Prob(m(i— 1)< K<m(1)) . b=0
1 s—a,
Prob(max{m(i—l),:|— 5 In| - )—ll:}s](<m(1)) *b,>0,5>q,
=<0 “b,>0,s<a,
Prob(m(i—1) < K < m(1)) :b,<0,5>a,
. . 1 s—a,
Prob(m(z—l)s K < min {m(:), {— r ln( - ”}) :b,<0,s<aq,

.

Or
Prob (al+bl vK+l <s and m(l_ 1) < K< m(l)) = (a(!)qz_ﬂ(l)q:)+ K,(S)

with a(z), #(i) and K, (s) defined in (3.9), (3.10) and (3 11).
By using the Law of Total Probalility we obtain the desired result.

The p.d f and the d.f. of the benefit function of the discrete insurances and
annuities considered in Table 2 can be written in a simpler form which 1s
derived in the next corollary.

Corollary 2. Let S be the stochastic variable defined 1in (3.3) with K = K,
The p.d.f. of S i1s given by

(3.12) S() = g, 4(s)+G(s)+prnpc 4(s—c)
with
(mP\= m+nPs) A(s—a) ibh=0
313 GG)={ ..
z ke d(s—a—b VT b #0
K=m

The d.f of S 1s given by
(314) F(S) = mq\ H(S)+(aq\‘_ﬁq\)+ K(S)+m+np,\ H(S_C)
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with
| s—a
max{O, m1n{m+n, [— éln( )}}} .b<0,5<a
b
3.15) a =
m+n : elsewhere
m b0
1 s—a
(3.16) f=<max{m, |—1— -In|— :bh>0,5>a
o b
m+n :b5>0,5<a
H(s—a) cb=0
3.17) K(s) =
b #0

Proof. The proof follows immediately from Theorems 3 and 4.

The pd f and the d f. of the discrete insurances and annuities considered in
DE PriL (1989) can be derived with the help of Table 2 and Corollary 2.

4. EXAMPLE

A person aged x purchases a combination benefit consisting of a n-year term
ife insurance of / payable immediately on his death and a n-year deferred
whole life annuity of J per annum payable continuously while he survives
beyond age x+n

Let the benefit functions of the insurances and annuities defined in Table 1
be denoted by adding a tilde to the usual deterministic symbols. The benefit
function of the continuous general insurance defined above is then given by

S= ["jlrnj—}_‘lng_\’

By using (2.3) and Table | this benefit function can be written as a variable of
the form (2.4) wvith T = T:

IvT 0« T<n

T >n

From Theorem 1 1t follows that the p.d f of S is given by
JG) = G (s)+Ga(s)
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with
r 1 r 6 : I n < < [
G, (s) ={ Py Hrr(n/(05) o< s
. elsewhere
Gg(S) - { r(2)Px /l\+r(2)/(-/v"—(55) < s < JV”/5
0 : elsewhere
and

r(1) = —=(1/8) In(s/I)
r(2) = —(1/8) In (v" = (6s)/J)
The d.f. of S follows from Theorem 2
F(s) = (aqc7pq)+ T (a4 =04 )+

with
_ { max {0, r(2)} s < Jv'/o
a_{oo s> JV'o
n 185<0
) { max {0, r(1)} “5>0
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PREDICTING IBNYR EVENTS AND DELAYS
II. Discrete Time

By WiLLIAM S. JEWELL

Engineering Systems Research Center
University of Califorma at Berkeley

ABSTRACT

An IBNYR event 1s one that occurs randomly during some fixed exposurc
interval and incurs a random delay before it is reported. A previous paper
developed a continuous-time model of the IBNYR process in which both the
Poisson rate at which events occur and the parameters of the delay distribution
are unknown random quantities; a full-distributional Bayesian method was
then developed to predict the number of unreported events Using a numerical
example, the success of this approach was shown to depend upon whether or
not the occurrence dates were available 1n addition to the reporting dates. This
paper considers the more usual practical situation in which only discretized
epoch information 1s available, this leads to a loss of predictive accuracy,
which 1s investigated by considering various levels of quantization for the same
numernical example.

KEYWORDS

Incurred But Not Reported (IBNR) models; reporting delays; Bayesian
estimation and prediction; Bayesian approximations; discrete-time models.

l. INTRODUCTION

An Incurred But Not Yect Reported claim 1n mnsurance 1s an event whose
occurrence during some fixed exposure interval 1s not known until some later
date because of random reporting delays. These claims, plus the Incurred But
Not Fully Reported claims, which have been reported but whose cost
development 1s incomplete, form the Incurred But Not Reported (IBNR)
portfoho for a given policy exposure interval The accurate prediction of the
total number and the ultimate costs of such claims 1s a critical and recurring
problem 1n many nsurance lincs

In JEWELL (1989), heremnafter referred to as IBNYR-I, the author developed
a continuous-time model for predicting the number of unreported IBNYR
events, under the assumptions that the random (Poisson) rate of event
occurrence as well as the parameters of the delay distribution are unknown

ASTIN BULLETIN, Vol 20, No 1
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Examination of the likelihood revealed not only a coupling between the
unknown parameters for the number of occurrences and their associated
random delays, but a strong dependence upon the type of epoch data available,
for example, having only reporting dates but not occurrence dates led to
predictions with wider variances than when both dates were available A
Bayesian development was then used to obtain a full predictive distribution
and, from 1t, the interesting point predictors; natural conjugate priors were
used for simplicity, although extensions to empirical priors are immediate.
Either way, the key computational issue is the evaluation of the ratio of two
integrals, for which various good approximation techniques are available. So
predictive means, variances, and tail probabilities for IBNYR events are now
easily obtained under continuous-time assumptions

However, 1n most firms, exact epoch data 1s difficult to obtain, 1s unrehable,
or, possibly, 1s dismissed as being umimportant For instance, most models 1n
the IBNR literature use quanuzed reporting intervals that are one year long,
the same length as the usual exposure period While this may give satisfactory
results for the long-duration cost evolunion of many casualty claims, reporting
delays may be shorter than or comparable to the cxposure interval, so that
gross discretization can, as we shall see, lead to a significant loss in predictive
power. Exceptions might be claims for industrial diseases (such as asbestosis)
or for product liability, both of which may take a long time to develop

The model we develop below 1s parallel to that of IBNYR-I, except that the
reporting of dates 1s discretized into intervals equal to, or a submultiple of, the
basic exposure interval We model the equivalents of the first two cases of
epoch data described in IBNYR-I (reporting dates always observed, occurrence
dates may or may not be reported), since we know that both classical and
Bayesian predictions are already bad in the other continuous cases where only
occurrence dates, or only counts-to-date are available To compare the effects
of changing from continuous to quantized data, we consider the same
numerical example as in the first paper

Important references on the IBNR problem were given in IBNYR-I;
supplemented by those below, they together give an overview of research in this
area. most of which emphasizes point estimates for discrete-time cost-evolution
models. Our results will not parallel these other efforts until a planned third
paper on the “IBNR triangle” appears, in which the effect of collateral
discretized data from several cxposure periods 1s analyzed. As discussed 1n
IBNYR-I, we believe that it 1s important to understand thoroughly the effect of
various modelling assumptions upon event prediction before adding on the
dynamics of random cost evolution

2 THE MODEL

As in IBNYR-1, we assume that, during an exposure interval (0, T, a random
number of events, 77, occurs according to a Poisson process with parameter AT
This 1implics that, given # = n, the occurrence epochs (%,,%,, .X,) of the
events are, @ priorr, independent and uniformly distributed over (0, 7).
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Associated with each event indexed & 1s a random reporting delay, W, , so that
the actual observation or reporting epochs are p, = X, +w, (k =1,2,...n)
Each delay 1s assumed to be 1.1.d with a common probability density, f(w|6),
that depends upon one or more parameters, 0. It follows that, i1s given 0, each
event pair (X, ;) is r.1.d. with joint density -

2.1 plx, y10) = ;_f(y—xlﬂ) 0<x<T, x<y<m)

over the semi-infinite wedge-shaped region shown n Figure 1, and zero
elsewhere. If we observe the reporting dates of the IBNYR events over some
observation nterval (0, 1], 1t 1s clear that only those pairs with y, <t will
actually be reported, so that the total number of reported events will be some
number R less than n

As before, we assume that 4 and () are outcomes of the unknown random
quantities 4 and 6, respectively, for convenience «¢ priort independent with
known prior densities, p(2) and p(0). Suppose that epoch data 7/, 1s observed
for each of the R reported events. Given these priors and the total data,
v ={R,U 7}, the parameter estimation problem 1s to determine p(4,0|7/)
and the event prediction problem s to determine p(u| /), where & = /i— R1s the
unknown number of unobserved IBNYR events stull outstanding

To introduce the effects of discretc-time reporting, we imagine that the time
axis is parutioned nto equal reporting ntervals, ;= ((I—1)4,14]
(=12, .), thus 4 < Tis the common length of the reporting intervals, and
the precise values of any dates within that interval are lost. We assume that 4 is
a submulitiple of T, so that 7 = T/4, the quantization level, 1s a positive integer
In practice, 7 1s usually one year, and /= 1,2,4, or 12. The observation
mnterval (0, 1] can now only be, say, t = J4, with J = 1,2, . .

We now consider two cases of quantized epoch reporting that correspond to
the continuous data types I and Il analyzed in IBNYR-L

2.1. Type Iq Data. Quantized Occurrence and Reporting Dates

In this case, the continuous-time epoch data (x;, y,) for an observed cvent
indexed k 1s mapped mmto 7, = (i, 1), two positive integers indicating the
reporuing intervals, viz (i,;)) = (xe ;)N {y € +,). Obviously, (I <: < I)and
(y = i) always Figure I, which shows the joint partitioning of the allowed
region for / = 4 and ¢ = 4.0, gives a “tiling” that helps us to visualize the
quantization Most of the tiles are squares with sides 4, but, if x and y are n
the same mterval, then (y,;)} 1s reported in a triangular region, simce x < y
always

The probabilities associated with each tile can be expressed most easily with
the aid of the function:

hd
22) qb,,(0)=_l_j FwlO)dw  (h=1,2, )

(h—1Ha

(@,(0) = 0), which 1s monotonic over the integers and approaches /™' for
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s= [38 14 7 5 6 4 6 -]
x S S

I-['T
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FIGURE 1 Regions of definition of quantized occurence and reporting dates, showing the
distribution of 74 of the 100 events generated with § = 05 year™', for /= 4 and J = 16

every ) as h — oo. Letting n,(0) =/ {/, = (1,7)|0} (any k) be the mass
associated with tile (z,7), we find from (2 1) that:

23) 1,0)= @ (O-0.,(0) (<i<D(=0).

In other words, the mass of ecach cell along the *“diagonals™ with constant
h=y—1+1 (h= 1,2, .)1s the same, which might be expected from first
principles This is the discrete equivalent of a likelihood that depends only on
w = y—x (w>0), as in the Type | continuous-time data models, 1n fact, 1If
(—i1)=wand 4 -0,(23) approachesf(wl&)Az/T, so that events with about
the same w carry the same information n the himut

Suppose a total of R events were reported during the observation interval
(0, J4]; this includes only events for which y < t/4 Rather than reporting the
discrete dates (1,y) for each event k, we can imagine that the epoch data
represents a distribution of the R events nto r, events for each ule (1)),
following a multinomial law with probabilities equal to 7, (0). normalized by
dividing by the sum of probabilities over all cells in the observation interval.
However, because of the structure of (2.3), the {r,} can be accumulated over
cells of equal mass on each diagonal, reducing them to the sufficient statistics
Jor Type g data:

mn(/ J+ 1=k

(24) S = Z Fooovn (h=1~2’ J)
=1

The complicated upper hmit restricts the length of the observable “ diagonal ”
elements as s approaches J and 1f J < I.

Figure | shows how the 74 counts for J = 16 and / = 4 in the numerical
example are distributed over the cells. We find easily that s = [3, 8, 14, 7, 5, 6,
4,6,5 6,5 2,2, 1,0, O_]T, but note that, because of (2.4), if we decide to



PREDICTING IBNYR EVENTS AND DELAYS 97
increase J, then the last (underlined) /— 1 numbers would have to be increased

by any new counts on their diagonals'
If we express the probabihities (2 3) in terms of

25) on(0) = 0, (0)= @, ()  (h=12,..),

the multinonual conditional data hikelihood, given R and 0, 1s

R J ! R
) n [(/’/,(0)]5"/]?2 min (/,J+1-=1/) (/71(0):[ ,
A h—1 1

/-

(2.6)  pU (IR 0) =

where s = [5),5,,. .3,]7 is defined over the discrete simplex, 0 < s, < R,
2s, = R Note how the total normalizing mass requires a weighted sum of all
the {p, ()} to account for the fewer tiles near h = J

2.2, Type llq Data. Quantized Reporting Dates

The situation 1s somewhat simpler with only reporung epochs, ~, = (J.),
given for each event, which means that all event counts and probabilities are
merged 1n each *column” of cells in Figure 1. Thus, the sufficient statistics for

Type 1lq data are r = [r|,ry,. .r,]", where.
mn {7, )
27) R= > o, (=12 J).

This givesr = [2, 1, 8,6, 11,7,5,6,6,5,5,5,2, 1, 4, O]T from Figure 1 (2 7)
can also be thought of as the result of a mulunomial sorting of R cvents, this
time with probabilitics

mn (4, /}

(2.8) n,(0) = Z n,(0) =@ (0)—®, ,(0) (yr=12,..),

1—1

where the second term vanmishes 1f jy < 1
Thus, for Type Ilg epoch data, (2 6) 1s replaced by,

R J S R

29) p(U 741 R,0) = ( )H [n,(O)]"/[Z n,w)} ,

¥ =1 |

1=

with r defined over the discrete R-simplex Here the normalizing mass 1s
simpler because each x,(0) 1s alrcady the sum of individual tile probabilitics in
each column.

As 4 — 0, (2.8) reduces to 4 times the usual probability for continuous
Type 1l data, that s, [F(110)— F((t—T)" 10} 4/T. Of course, when [ = 1 and
4 =T, the distincuon between discrete Cases Iq and 1lg vamishes, since
s, =r, =1y, and ¢, (0) = 7,(0) = n,,(0)

J 7
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3, DATA LIKELIHOODS AND MLE ESTIMATES

In the next two sections, we assume that Type Ilq data 1s available, however,
all formulae in which {r} and {r,(0)} are used can bc changed to Type Iq
simply by replacing them with {s,} and {p, ()}, respectively Our first step 1s to
uncondition (2.6) and (2.9) on R by noting that, given n and €, n can be
considered as being paruitioned binomally mto R and &. At this point, 1t 1s
useful to mtroduce the continuous cumulative probability function defined in
IBNYR-I:

/

(3.1) H(10)= IAJ- Fwl0)dw =Y n,(0) =Y mn(l,J+[—h) g, (0).
T (r-T)* h

vgnh t = J4 and T = 14, as before Thus, IT1(J4|#) 1s thc mass associated with
R, and cach event i1s unreported with probability | — I7(J410) The rotal duta
conditional likelihood becomes the multinomial

/
32 p/10n) = ) [T wonrn-nua ot
j -1

| A

Let 7 = min(T,7) = Amn{/,J). Then, gtven A, the tote/ number of events
generated (but not necessarily observed) in (0, ] follows the Poisson law with
parameter At. Setung ¥ = n— R in (3 2) and marginalizing over all values of u,
we obtain the final data likelthood 1n terms of the underlying paramecters

J

(33) p(712,0)= l H [nj(())}r, (;”)R e ‘T O

(,h -1

(The first term is uninformative, and may be dropped) (3.2) should be
compared with (4 2) in IBNYR-I (where R was written r), 1t might, in fact, be
argued dircctly from it. The last term in (3 3) reflects the coupling between 2
and 0 induced by the data. so that, even if they are ¢ priorr independent, they
will become « postertort dependent

Assuming ¢ represents a single delay parameter, the tradiional poimnt
estimates of the parameters, the MLEs (2, 0), are found from-

34  (ozr@ =R Y ""'(9)[ oo R } = 0.
do 7, () 27u,(0)

(All sums arc over observed intervals only) The second equation can be used
to find 0 numerically, which 1s then used 1n the first equation to give A The
ML predictor would then be i = it —R.

4. BAYFSIAN FORMULATION

As argued 1n IBNYR-I, we believe that a Bayesian formulation 1s the natural
one for IBNYR problems, since in most applications there will always be
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rather good prior opmion and relevant experience data about the likely values
of A (which will be hinked to the number of risk contracts in the portfolio), and
about the paramcter(s) of the delay distnbution (which reflects claim filing
delays, administrative flow, adjustment procedures, etc, that arc common to
all claims m similar lines in each company) No actuary makes estimates 1n a
complete vacuum. The Bayesian approach also has the great advantage of
giving a complete predictive distribution, which 1s essential for setting aside
portfolio fluctuation reserves. : N

For consistency with IBNYR-I. we again assume that 4 and ¢ are, a priort,
independent, with p(2) a %ewne (a. b) density For the rest of this section, we
shall leave f ( |0) and p(6) in general form, later specializing to exponential
delays and another Gamma prior for 6. As in IBNYR-I, these assumptions do
not simplify the jownr posterior-to-data density, p{(4, 0]/ ). because of the
coupling term, exp[— Atf1(JA4|0)]. However, when predicting the number of
unreported events, & = 7i— R, we can follow the development in IBNYR-I and
show that i, given (4, ), is Poisson with parameter A{T—t/I(116)], because of
a fortuitous cancellation of the coupling term Thus, the predicuive density
factors mto a product of two shaping factors:

(4.1) pul ) o hy(ul ) hy(ul ),

with

™ I'(a+ R+ T u
42 hulv)= ' j. AR e T () dh o« (a u) [ }
.

u' b+T

with a %o (a, b) prior, and

J

@3) b)) = j I1 [n,w)]"[l E (;) n(z.m} p(0) d0

7 -1

for Type 11q data, with a similar form for Type Iq. Note that the first shaping
factor depends only on R and p(4), while (4.3) depends only on r or s and p (0)
As i IBNYR-I, we rcfer to the term involving « in (4.3) as the kernel,
K(9).

Computation of the predictive distribution 1s most easily accomplished using
the recursive form:

putl]) _
pul’7)

T
b+T

at R+u
(4.4)
u+1

hy(u+1]77) )
hou ) |

calculated by starting with p(0] /) = I, then normahzing when finished With

no data, the marginal (prepostcrior) predictive density 1s simply a Ao/
(a, T{(h+T)) density As in IBNYR-I. (4 4) also provides a Bayesian point
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estimator, the predictive mode, 6{ *2 ), as the smallest integer not less than the

value «* that satisfies:
hy(u* =+ 1 %
T ( {)( ) )

hy(u*]77)

a+ R+u*
b+T

(4.5) w1 =

Note that only the rarios of h, arc needed i (4.4), which means that simple
approximations to the integrals will give quite accurate predictive densities
(TiErRNEY & KADANE, 1986), (Kass, TIERNEY & KADANE, 1988) We now
consider how these integrals might be approximated if the delay distribution
were exponential.

5 EXPONENTIAL DELAY DISTRIBUTION

Following the example in IBNYR-I, we set f(wi0) = 0 exp{(—0w) (w = 0),
and recall that

(5[) ”(1|()) = ( ;)(1_!//(0'[)(:‘ e I,’),

where the properties of the useful function w(v) = [l —e¢ ‘}/v were given n
that paper
Then, from (2 2), we find

(5.2) &, =1""(1—w@)e """ (h=12.).
and the Type Iq probabilities from (2 5) are

I =w (0] (h=1 }
)

53) ,(0) = ,
( i {1 04 pROd)e B D) =23,

The shghtly more complicated Type I1q data probabihties are found from (2 &)

ds”

I '[I—w@@dye Y D7) (y=1.2... 0D }
g

54 6 =
R {1 HOT w04y w(@T)ye © 1 VO ()= 1T1+1,1+2,.

Rewriting /i, as in IBNYR-1.

(5.5) hy(uis)y= j‘ LB 7 )Y[KD])" pt)do,

the epoch data likehhood, L (0), 1s then cxpressed for Type Ig data as
/
(56) L) = ]_[ [, (O] o [ = w (O] [04 @ (OIR e MO

ho
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where uninformative constants have been dropped, and M, 1s the moment:
J

7 M=) (h=2s,.
h=2

In other words, with exponential delays, (s,, R, M,) becomes the reduced set of
sufficient statistics for Type Iq data. Remcmber that, with each new value of J,
the /— 1 most recent values of s have to be recomputed from (2.4), otherwise,
there 1s nothing special about the choice of J relative to /.

For Type Ilq data, assuming J > [I:

J !
(5.8) L(OI12)= 1—[ [7,(0)]" oc n (1= (04) e~ =104,
=1 J=1

X [0T w(04) y (OT)] R+ ¢~ M-04
where uninformative constants have been dropped, and

J

69 R=Y . M= (-I-Dr,.
J=1+1 g=1+1

In this case, (ry,r,, ... r;; Ry; M,) become the sufficient statistics If J < /, the
product term 1n (5.8) has an upper limit of J, the terms on the second line are
dropped since R; = M, = 0, and the sufficient statistics revert to (ry,r3,. . r).
In contrast to Iq data, once all of the values in r are computed for a given /,
they can be used for any J

6 NUMERICAL EXAMPLE AND DATA ANALYSIS

To facilitate comparison with prediction using continuous data, we will use the
same basic data and assumptions as in IBNYR-[, namely, that 4 has a

Gamma (2,0.02) prior density and 7 = 1, so that the no-data (margnal)

prediction density 18 S (2,1 027"), with mean~ {i} = 100 events, mode
A =49, and fractiles ngs = 165, n,s = 47.0, n,5 = 134.5, and ngy = 238 1
The delay 1s assumed to be exponentially distributed, with a “awwe {4,6) prior
density on g, so that the prior mean delay 1s ¢ {07"} = 2.0 years, with
7 {07} = 8.0 years®

For the purposes of simulation, we ““stacked the deck ” by using the same
100 samples (xy, y;) as IBNYR-I, where the x, were drawn from a uniform
distribution over (0,1), and the delays, w, = y,—x,, were drawn from an
exponcntial density with true parameter § = 05 years™' As shown n Table |
of IBNYR-I, this gave continuous delay samples from 0 163 to 12.402 years,
with a sample average delay of 2 35 years, somewhat larger than the true mean
Thus, our experiment assumes accurate but not too precise prior knowledge, so
that the behavior below shows primanly the effects of quantization and the two
different data types Clearly, with vagucr prior information, we would see a
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further degradation of the predictive power for the smaller values of (/).
Figure | shows the individual cell counts for this sample when 4 = 0.25 years
(/ = 4), and + = 4.0 years (J = 16). The values for the statistics s and r were
given above 1n Section 2.

As the effects of quantization are the main interest of this paper, computa-

tions were carried out for many different values of /, with 7 = 1,2,4, and 8
finally chosen as representative, with complete predictive densities computed
for observation intervals = 0(05)10.0, except when /= 1, when only

t =0(10)100 1s possible. Approximations for the shaping factor integral i,
were computed using the Gammoid method outlined in IBNYR-I, in which a
numerical search for the mode, #, of the combination L(f| /) p(0) is made,
and the unimodal curve then approximated at the mode by a curve of the form
g(0) = (40)° ¢~ 2’ Since, t> a good approximation, the kernel K(0) ~ ¢ % in
the neighborhood of this mode, the integral (4.3) can be computed exactly,
giving a final recursive relationship like that in (10.1) of IBNYR-I Initially, the
mode was chosen from the prior density as § = 0.5, from two to five iterations
were then necessary to find the true value of the mode, which ranged from 0 46
to 1.98 in the cases examined. For smaller values of rand I, p(u«| 7/ ) 1s heavy 1n
the tails, so, to obtain stable means, the recursion (10.1) was carried out over
the range [0,1000], and. in a few cases, [0,2000]. As the no-data (¢ = 0) case 1s
known analytically, a total of 2x(10+3x20) = 140 complete densities,
p(ul| /), were computed for Figures 3-6 below This task took 5-10 seconds per
density on a PC-AT. The densities themselves look much like Figures 5 and 6
in IBNYR-I, and are not shown. But from these, the means, modes, and
fractiles shown in the figures below were computed for the total count
n=R+u

Qur standard of comparison will be the continuous data predictions, the
results for which are reproduced from IBNYR-I in Figures 2a & 2b; for short,
we shall refer to these as the Ic and Ilc results, respectively For ease n
comparison, we keep the same vertical scale 1n all plots against the observation
interval, ((J).

Figures 3a & 3b show the Types Iq and Ilq results for a fine quantization
level, 7= 8 At this level, it 1s practically impossible to see the effects of
discrete reporting, as the only differences are a few percent in the upper
fractiles in the interval 1.5 <1 <25

When we coarsen the quantization level to 7 = 4, as shown 1n Figures 4a &
4b, there begins to be a noticeable increase 1n the Case Iq upper fractiles and
the predictive mean n the interval [1.0, 3 0], but still less than 4 % in the worst
case. However, the degradation of Type llq predictions 1s noticeably worse,
with increase in the fractiles, the mean, and the mode in the region [0.5, 3.5],
up to 11% in the worst cases It should be remembered that / = 4 means that
the reporting interval 1s one-eighth the mecan delay, which 1s already morc
frequent than many implementations encountered in practice

Then, with 7 = 2, Figures 5a & 5b both show the instability in the interval
[10,35] that before was characteristic of only Type Il data. In fact, the
Type Tlq predictions 1n the unstable region are now so bad as to be unrehable
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unless no other estimates are available. Even the region r > 4.0, which
heretofore had given similar results for both types of data because over 74 % of
the counts were reported, now shows some * bobbling around™ due to the
changing aggregation of data.

Finally, we have the case /= 1 in which Cases Iq and llg coalesce. To
illustrate the extreme degradation in this case, we have chosen to plot the
results 1n Figure 6 on the same vertical scalc as previous graphs, rather than
changing the scale to show all the results For r= 2.0 (+ = 1.5 cannot be
computed), the missing predictive mean count 1s 481 1, the mode 1s 430, and
the upper fractiles are 575 and 763, respectively! Clearly, the use of a
quantization interval that is one-half the mean delay 1s much too coarse when
1.0 <1 <60 Admittedly, the region above that 1s reasonable, but that 1s
prediction with at least 93 % of the events already reported!

Figures 7a & 7b give a *“cross-sectional ” impression of the changing level of
quantization, in the case for + = 2 0, which 1s 1n the region of instability with
46 % of the events reported. The vertical scale has now been doubled, so that
one may now clearly see how bad the cases / = 1 and / = 2 truly are. In my
opinion, one should pick ar least I = 4 1n Case Iq and / = 8 in Case Ilq Lo gel
“good” predictions, which means that, given a mean delay of 2.0 years, one
must have semi-annual or quarterly data, respectively!
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7. DISCUSSION AND SUMMARY

We should perhaps emphasize once more that the results obtained with
changing levels of quantization (for a fixed observation interval) are due solely
to changes in 4 and data type upon the epoch data likelthood L(8]7), mn
(5.5). This 1s because the part of the prediction that depends upon i 1s
unaffected by changing 4; R reflects @/l of the relevant information we can
obtain about the event rate for the purposes of prediction. On the other hand,
(3.3) shows that the computation of the joint estimates of 1 and § will be much
more difficult

The effect of quantization upon the epoch data likelihood can be visualized
in Figures 8a & 8b, which show this function when 1 = 2.0 for /= o
(continuous data), 4, 2 and 1, for the two different data types Although the
mean and mode shift somewhat as [ decreases from oo towards 2, the
predominant cffect 1s an increased spread in the hikelihood These hkelihoods
are multiplied by the prior density (dotted line), the results approximated by a
Gammouid, and then used with the kernel to find the shaping factors A, (u| #"),
and, from the recursion (4.4), the final predictive density. Note that Type Ilq
data likelihoods, although converging faster with finer quantization, do not
shift the mode as much as Type Iq; since the true value of #1s 0.5 (mode of
prior density), this means that Type Ilq data will give less accurate predictions.
The case I = 1 1s, well, hopeless.

Keeping in mind the summary observations that were alrcady made in
IBNYR-I about the continuous-data prediction problem, the main lessons to
be drawn from this paper are-

(1) The introduction of quantized reporting of epochs into the IBNYR model
requires no new concepts and only a modest increase 1n algebra and
computational effort.

(2) Case llq data (no occurrence dates reported) continue to give poorer
predictions than Case Iq (both occurrence and reporting epochs known)
and the predictions degrade more quickly with coarser quantization.

(3) The predictive accuracy of these discrete-time models, in comparison with
the continuous case, declines dramatically as 4 increases from, say,
one-sixteenth the mean delay to one-quarter the mean delay. A tentative
rule-of-thumb seems to be to choose 4 to be at least onc-eighth the mean
delay with Iq data and one-sixteenth the mean delay with 1Iq data, if at all
possible.

(4) The case I = | (4 1s one-half the mean delay), while coalescing the two data
types and simplifying the sufficient statistics, 1s so poor as to be unusable in
the region of interest.

Admttedly, 1t 1s dangerous to extrapolate from one numerical example to
practice For instance, one may be able to be much more precise a priori about
the parameters of the delay distribution; this narrower prior will, to some
extent, counteract the imprecise data likelihoods obtained with coarse quanti-
zation. And, as always, the final predictive spreads can be greatly reduced if we
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can provide betier prior information about the occurrence rate, perhaps by
incorporating the underlying business volume nto the model

With this understanding of the potential hazards of quantized reporting, our
next paper will consider the question of whether or not cohort data from an
IBNR traingle can sharpen our estimation of the unknown delay distribution
and mmprove our predictions of the unreported events

1 would like to thank M. LIN for her substantial computational and proofing
assistance 1n developing these results Any comments or criticisms on this paper
are welcome, as are suggestions for making the basic model more realistic and
useful.
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SHORT CONTRIBUTIONS

RUIN PROBABILITY FOR TRANSLATED COMBINATION
OF EXPONENTIAL CLAIMS
By BeEpA CHAN

Unwersity of Toronto, Canada

ABSTRACT

An alternative expression for the coefficients in the ruin probabihty for the clas-
sical ruin model with translated combination of exponential claims is derived

KEYWORDS

Probability of ruin; translated combination of exponentials

In a compound Poisson claim process with claim amounts distributed as a
mixture of exponentials

n

pix)= ) Ape

=1

for x > 0 where all 4, > 0 and Z A, =1, 1t 15 well known that the run

=1

probability is also a linear combination of exponentials

wy= Y, Ce ™
=1
where {r,, .., r,} are solutions to thce adjustment coefficient equation
MX (r) —1
(140 p = —5

r
and {C;,.. , C,} arc determined by the partial fractions of
My(ry—1

i Cr, 0 _ r
= T 1+0 My(r)—1 .

(I+0)p -

r

See BOWERS et al. (1986), § 12 6 for details. This result was later extended by
DuFRESNE and GERBER (1989) to the case when the claim distribution 1s a
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translated (density function moved by t to the left) combination of exponen-
tials. (Note that the 4,’s need not be positive) They found that the coefficients
C/’s are the solution to the system:

) > _ﬂi_ck=1, i=1,. .,n,

and gave C, explicitly. In this note we give an alternative expression for the
solution for (1):

n n
r =
(2) Ck — ' ﬂ A )
#k 1T ) B,
To verify (2), consider
n n
X r(x—
c=1- T 7h)
=1 x—r, =1 f.(x—r)
where the two sides are different expressions for the same rational function of
(degree n/degree n) which has simple poles {r|, ..., r,} and takes the value | at

x =B, ..., B, and the value 0 at x = 0. Multiply by x~r, and let x = r, to
obtain (2).

Two different expressions for C,, (49) and (54) in DUFRESNE and GERBER
(1989), arise naturally when a more detailed problem including the severity of
ruin 1s studied These two expressions can be obtained from summing (9) and
(22) in DuFresNE and GERBER (1988) over ; respectively
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W R HEILMANN (1988). Fundamentals of Risk Theory. Verlag fir Versiche-
rungswirtschaft, Karlsruhe, 288 pages, 36 DM.

This book 1s essentially an English translation of the book * Grundbegriffe” by
the same author. Our readers are therefore referred to the book review of
“Grundbegriffe”” published 1n the ASTIN Bulletin 18, vol 1, 115-116.

*
* %

IBR. International Bibliography of Reinsurance 9th edition 1989/90 Copyright
and edited by. Bayerische Ruckversicherung Aktiengesellschaft, Sederanger
4-6, Tucherpark, D-8000 Miinchen 22.

The present bibliography which appeared for the first time 1n 1962 documents
some 4’800 titles 1n retnsurance literature going back to 1912. Earlier books
and articles have been included only if of historical value or of perenmal
fundamental importance.

In the present ninth edition the new publications of 1987 and 1988 have been
included. The closing date for inclusion was 31st December 1988.

IBR has remained a handy reference book which as was already mentioned
in the preface of the first edition **1s intended to serve the purposes of practical
insurance by helping those working on a reinsurance problem to turn to
account the experiences, considerations and proposed solutions as reported 1n
publications”. Because 1t i1s compiled simultaneously in two languages—
German and Enghsh—the IBR can be sure to find a large and international
readership.
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