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EDITORIAL AND ANNOUNCEMENTS 

G U E S T  E D I T O R I A L  

SOLVENCY C O N T R O L  OF I N S U R E R S  - -  
A C H A L L E N G E  TO A C T U A R I A L  SCIENCE 

Solvency of  insurers ~s a highlight of  actuarml study in our t~me. The topic Js 
regularly discussed m the actuarial hterature and at actuarial conferences. Even 
monographs  and special meetings are entirely devoted to it, and a number of  
working par t i e s - -na t iona l  as well as in te rna t iona l - -have  been commissioned 
to work out practical solvency requirements and routines of  solvency control 
Some general reasons for the prominence of the topic are obvious:  to an 
insurance company,  hke any other business, prevention of  negatwe results ~s of  
vital importance - -  preferably profit should be produced, and supervisory 
authorities conducting public affairs must ascertain that the insurers are 
maintaining their part  of  the socml security system. 

Special reasons for the evergrowing prominence of  the topic nowadays are to 
be found m the rapid changes m the market  Modern economic hfe ~s 
characterized by the emergence of  progresswely bigger decision making bodies 
- -  firms and organizations. In particular, thew role as purchasers of  insurance 
is quite different from that of  yesterday's typically smaller decision umts : they 
have the capactty for selfinsurance by e g. captwes or pension funds or simply 
by not buying insurance, they often possess know-how m risk assessment; and 
being buyers of  insurance on a large scale, they are able to compare  premium 
expenses to benefits and thereby judge the fairness of  the prices of insurance 
products. These changes on the demand side have enforced increased compeh- 
t~on between insurers. The globahzat~on of the insurance business pulls in the 
same direction. In their struggle for shares m a compet~twe market,  the insurers 
launch myriads of  new products designed for progresswely more specif ic--  
hence sma l l e r - -g roups  of  risks, and they quote premiums close to, and 
sometimes even below the net premium. It is a ddemma that the need for more 
accurate risk assessment is accompamed by a deterioration of  statlstlcal 
databases With the dissolution of the former cartel-hke cooperatave bodies of  
insurers and the shut down of  their joint offices of  statistics, one important  
advantage of large-scale business gets lost Not  surprisingly, there has been a 
number of  recent instances of  fadures of  insurers. In fact, far more than the 
number  of  eventual wind-ups since many of  them were hushed up by 
mergers 

In these circumstances the solvency issue faces the actuarial profession with a 
number  of  challenging tasks. The appearance of  actuaries of  the third kind is a 
response to the problems associated w~th assets risk. In a sense these problems 
are harder than those associated with insurance liabilmes assets risk is rooted 
m pohtlcal, social, and economic phenomena of great complexity, whereas the 
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2 GUEST EDITORIAL 

fluctuations of insurance habllltles to a greater extent are governed by 
techmcal, physical, and demographic mechamsms that lend themselves to the 
well established methodology of the "exact  sciences" This does not mean that 
the analysis of the hablhtles IS of secondary maportance Just look at the 
classical hfe insurance mathematics Through decades it was widely held to be a 
largely perfect structure. However, It was not the mathematics that was perfect, 
but rather the Idyll of the insurance companies in a situation where uniform 
premmms with substantial safety loadmgs built into them created great surplus. 
The insurers were prosperous and praised their actuaries The actuaries were 
flattered and praised their techniques. No development of theory was called 
for. Lately also hfe insurers are forced to compete, and suddenly the imperfec- 
tion of the classical techmques is brought to hght m confused discussions of  
how to determine appropriate premiums In different risk classes and how to 
redistribute surplus to them, m short, how to measure the risk Fresh thinking 
is reqmred from all kinds of  actuaries, first, second, and third, in order to meet 
the need for more accurate assessment of all kinds of risk m insurance In the 
present sltuat~on the only superfluous actuaries are those of the zero kind, who 
claim that actuarml mathematics can be d~spensed w~th in these urgent 
matters. 

It may be approprmte to corn the term "actuaries of  the fourth k ind"  for 
those working in supervisory offices They are not numerous, and most of them 
lead a shadow hfe pondering returns from the company accountants Certainly, 
some very impressive work has been done in the field, but this fact alone could 
hardly justify a distinguishing mark It ~s the characteristics of the field ~tself 
and ~ts great potential for stimulation of actuarial research that merits 
emphasis l shall list some items that hopefully will speak for themselves 

- -  The objectives of the supervisory authorities are not all the same as those of 
a company. Solvency and equity are the primary concerns Business goals 
are balanced against the welfare of  the insured, the efficiency of the 
insurance industry as a whole is considered, and its operations and 
organization can be Influenced by statutory regulations Regardless of  the 
market situation and the level of theoretxcal justification of the practices of 
actuaries of  the three first kinds, the actuary of  the fourth kind must 
employ models and methods that can serve these objectives (recall the life 
insurance s~tuat~on) And when adequate theory does not exist, it must be 
created 

- -  The data available to a supervisory office are different from those collected 
by the insurers Typically they are more aggregate and call for development 
of  models at macro level and statistical methods based on these However, 
in our era of  efficient data processing it is clearly possible to gather detailed 
statistics on policies and claims experiences for supemslon purposes If this 
cannot be done on a large scale, an interesting poss~blhty would be to study 
detailed data in carefully selected small samples from the insurance 
portfolios Then one can model at micro level, and derive the needed 
distributions for the totals determining the solvency state. 
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- -  The combination of data from several companies would presumably require 
employment  of  heterogeneity models to account for the unobservable 
differences between them The same goes also for the description of random 
fluctuation m collective risk factors Combining the two sources of  varia- 
tion leads to studies of  two-way random effect models, not necessarily the 
standard hnear ones. 

- -  An important  and difficult problem is the analysis of  the Impact of  the size 
of  the portfolio, its composition, and the reinsurance progranllne, which 
may be involved 

- -  Yet another  prominent problem ~s the projection of outstanding claims of 
all categories 

The list of  challenging actuarial and statistical problems could be extended 
far beyond this Some clues to their solutions are key-words hke stochastic 
processes, prediction and filtering, finite time ruin probablhtles m complex 
models, non- or semlparametrlc models, optimal risk sharing, utility and 
welfare theory, computerintens~ve statistical methods, standardization of deft- 
nltlOnS, organlsatlon of  statistical data bases and communicat ion between 
these, ... Let it suffice here to say that all lines of  Insurance business have to be 
analysed statistically, and all aspects that are judged to be of  s~gmficance to the 
total risk must be moulded into the analysis Not separately in ad hoc models, 
but simultaneously in one grand, comprehensive model, that must be suFfi- 
ciently reahst~c and mathematically tractable to produce, on a large scale, 
reliable and effiaent  deas~ons in matters of  major economic and socml 
importance That  is a formidable task and a great challenge to the actuarml 
saence and profession. 

RAGNAR NORBERG 





XXI ASTIN COLLOQUIUM 
NEW YORK, NOVEMBER 14-18, 1989 

The XXI ASTIN Colloquium was held in the New York Hilton Hotel in 
central Manhattan The col[oqumm was attended by about 235 participants 
and 85 accompanying persons, coming from 22 countries. Approximately 25 % 
of the participants were from the U.S.A., which is extraordinary but not 
surprising when one considers the location of the colloquium. The number of 
papers presented and contributions to the Speakers' Corner totalled 43. 

The colloquium started informally with registration and a welcome drink m 
the evening of November 14. The official opening of the colloquium on 
November 15 coincided with the closing session of the 75th Jubilee Meeting of 
the Casualty Actuarial Society (CAS), and was held in the famous Waldorf 
Astoria Hotel. Kevin M. Ryan, President of CAS, held the opening address, 
followed by Jean Lemaire, Chairman of ASTIN Jean Lemalre handed over a 
congratulatory gift from ASTIN to Kevln M. Ryan on the occasion of the 
Casualty Actuarial Society's 75th jubilee. The Academy of Actuaries and the 
Conference of Actuaries in Public Practice, both actuarial associations in the 
U.S.A., had conveyed their welcome greetings to ASTIN, which were then read 
by Jean Lemaire 

The first panel discussion of the session was on the Past, Current and Future 
Role of Non-Life Actuarws Around the WorM. Being vldeoed simultaneously, 
the discussion gave the audience an excellent opportumty to observe some 
eminent personalities in the actuarial profession at close range: LeRoy Simon 
the moderator, and Sidney Benjamin, Hans Btihlmann, Charles C. Hewitt and 
Jean Lemalre in the panel. Bfihlmann gave a lucid account of the evolution of 
the actuarial species, culminating in the actuary of the third kind. Quite 
another kind of evolution was invoked by Hewitt, who described the impact of 
individual variations in mortahty on population mortality rates, thus giving a 
plausible explanation of observed phenomena. Lemalre focused his speech on 
future challenges and opportunlhes of the actuarial profession; developments 
within the European Community (notably the planned recogmtion of actuarial 
qualifications across national boundaries); and the general decline of interest in 
mathematical studies, the traditional source of new recruits to the profession; 
and last but not least, the need to equip new actuaries with basic business skills 

Benjamin sketched what one may call a code of conduct for the professional 
actuary with a special view to general insurance. The four panelists succeeded 
in giving quite a comprehensive view of actuarial preoccupations: Historical, 
strategic, technical and ethical issues were touched. 

After the panel discussion the CAS meeting was ended officmlly with Kevin 
M. Ryan handing over the Presidency to Michael Fusco Members of CAS and 
ASTIN now reconvened to concurrent panel discussions with the following topics 
ASTIN BULLETIN, Vol 20, No I 



6 xxl ASTIN COLLOQUIUM 

1 Insurance Pricing: Return on Equity vs. Return on Sales.Yehuda Kahane,  
Bernard Pelletler, Richard Woll and Dawd Har tman (moderator)  

2. Pricing Tort  Reform Robert  Buchanan, Claus Metzner, Philip Miller and 
Paul Liscord (moderator).  

3 Practical Applications of  Determining Loss Developement Factors for 
Casualty Excess-of-Loss Business. Harold Clarke, Dan Lyons, Ben Zehn- 
wlrth and James MacGlnnltle (moderator)  

A delicious luncheon was then served at the New York Hilton Hotel, where 
the rest of  the AST1N Colloquium also was to take place Kevm M. Ryan 
addressed the participants at lunch, telling about  the Casualty Actuarial 
Society's work in educational matters 

After lunch the traditional working sessions started The referee would 
hardly be doing justice to the contributions by gwmg a one-sentence abstract of  
each paper. Thus I shall restrict myself to naming the contrlbutants and the 
moderators  of  each session in chronological order, departing from this rule 
only when addluonal information seems interesting. Likewise 1 shall only name 
the presenting author  of  multi-author papers A complete list of  papers and 
other contributions is given at the end 

The first working session was moderated by H a m  Lonka and Lionel 
Moreau. Papers were presented by Bob Altlng von Geusau, Bob Buchanan, 
John Cozzohno, Chris Daykln, Bill Jewell and Stuart Klugman. Several papers 
presented in this session were results o f  cooperative effort. Buchanan's paper is 
a follow-up of a paper presented by Neuhaus at the 1985 ASTIN Colloquium 
in Blarrltz Cozzohno, Klugman and Meyers presented their respective parts of  
work for the Insurance Services Office (ISO). The work presented by Daykln 
has connections to s~mllar work done in Finland. Jewell's paper is part II m a 
trilogy on IBNYR reserving, part 1 of  which was presented to the 1987 AST1N 
Colloquium In Schevenlngei1. 

The participants and their companions spent the evemng on Broadway, or 
the Imperial Theater  to be precise. The play of the evening was " Je rome  
Robbms '  Broadway" ,  a cavalcade of songs from musicals which Robblns 
staged over a period of  20 years. Listening to old favorites and watching a 
performance full of  American precision, zest and humour  made the evening 
thoroughly enjoyable 

The following morning brought us back to the realm of actuarial mathemat-  
ics Edwin J E[ton, Nomura  Professor of  Finance at the Graduate  School of  
Business, New York Umverslty, gave an invited survey lecture on the mathe- 
matical theory of  investment The lecture was held m a very clear and concise 
style, gwing the audience a glimpse of a vast new area for actuarial work, 
practical as well as theoretical 

Thursday morning's  working session was moderated by Marc Goovaerts.  
Jean Lemaire, Glenn Meyers and Ragnar  Norberg presented their papers. 
Lemalre's paper, challenging actuaries to acquaint themselves with Fuzzy Set 
Theory,  set off  a lively debate revolving Zehnwirth, Jewell, Norberg,  Biahlmann 
and Hachemelster. 
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The ASTIN General Assembly followed. The minutes of the 1988 General 
Assembly, the Editor's report and the Treasurer's report were approved 
Robert Baumann of the Swiss Assocmt~on of Actuaries announced the 1990 
ASTIN Colloquium in Montreux, and All Guldberg of the Swedish Society of 
Actuaries announced the 1991 ASTIN Colloquium m Stockholm. A lengthy 
debate was generated by two suggested amendments to the ASTIN rules; both 
amendments were rejected with a clear majority vote. In the statutory elections 
Giovanna Ferrara and Ragnar Norberg withdrew from the AST1N Committee 
and were replaced by Greg Taylor and Eddy Levay. 

The first of the afternoon's working sessions was moderated by Richard 
Gauthler and Lars Austin Teivo Pentlkamen, Bjorn Sundt, Hans Gerber, 
Mama de Lourdes Centeno and Erhard Kremer presented their work. Pent~- 
kfimen described the approach taken m the report Insurance Soh, ency and 
Financial Strength (abbr The Blue Book), a monumental work on insurance 
solvency done in Finland The Fmmsh solvency group has cooperated with the 
"Solvency Working Party" of the Institute of Actuaries (cf. Daykm's 
paper) 

Charles Levi and Gary Patr~k moderated the next afternoon session during 
which Lawrence V~tale, John Narvell & Peter Lcht, Greg Taylor, Gary Venter 
and Walther Neuhaus presented their papers. 

Friday was devoted entirely to working sessions. Eddy Levay moderated the 
first session with contributions from Gary Patnk, Steven Haberman, Yehuda 
Kahane, Charles Lew & Chmstlan Partrat and Ermanno Pitacco. 

Peter Johnson and R~chard Gauthler moderated the second morning session 
w~th contributions from Mette Rytgaard, Ren8 Schmeper, D~rk Steers, Bob van 
der Laan, and Alfred Weller. 

The Fmday morning sessions were strongly dominated by loss reserving, this 
being the subject of Kahane, Schnleper, Steers and Weller. The hvely discussion 
which arose between the advocates of elaborate models and the advocates of 
simple methods was all too often curtailed for lack of tune The referee feels 
that the subject would have deserved a more thorough discussion which could 
have resolved at least superficial misunderstandings 

Maumce R Greenberg, Chairman of the American International Group was 
the guest speaker during the luncheon. Greenberg conveyed an executive wew 
on ~ssues I,ke enwronmental liability, proposing an alternative to current 
practice 

Friday afternoon was devoted to the Speakers' Corner. Bill Jewell and Jean 
Casanova moderated the first session where papers were presented by Jofio 
Manuel Andrade e Silva, Helkkl Bonsdorff, Marc Goovaerts, Erhard Kremer 
and David Skurmck. Bonsdorff actually had two papers analyzing experience 
rating by exponentml smoothing 

John Narvell and Charles Hachemelster moderated the XXI ASTIN Collo- 
qmum's last working session Presentations were made by Ernesto Volpe, 
Robert Mlccohs and Eugemo Pmeto Perez. On a hghter note, Gunnar 
Benktander made a trendsettmg remark, and Sidney Benjamin uttered "only 
one sentence" (sic) Martt~ Pesonen and Helkk~ Bonsdorff made further 
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comments  on The Blue Book; Bjorn Sundt proposed to systematlse loss 
reserwng acronyms. Teivo Pent~kfimen, one of ASTIN 's  grand old men, struck 
the proper closing note by his stubborn pledge to carry on working May all 
our ASTIN colleagues be so stubborn! 

The Colloquium Droner took place on the 106th floor of  the World Trade 
Center, with a spectacular view of  New York and its suburbs. Jean Lemaire 
held the closing speech, thanking the American orgamsers for arranging the 
Colloquium in a superb way. Robert  Baumann invited all ASTIN members to 
attend the XXII  ASTIN Colloquium in Montreux. After dinner those who 
wished could dance to the orchestra. The largest ASTIN Colloquium to date, 
and one of  the most interesting ones, had come to an end 

For Saturday a tour of  Manhat tan,  the Umted Nations and the Statue of  
Liberty had been arranged. 

WALTHER NEUHAUS 
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ARTICLES 

T H E  A S Y M P T O T I C  E F F I C I E N C Y  OF L A R G E S T  CLAIMS 
R E I N S U R A N C E  TR EA TIES  

BY ERHARD KREMER 

Hamburg & Lohnberg, FRG 

ABSTRACT 

Reinsurance treaties defined as generahzatmns of  the classical largest claims 
reinsurance covers are investigated with respec! to the assocmted rusk, defined 
as the variance of the insurer's retaining total clmms amount  Instead of  the 
unhandy variance corresponding handier asymptotic expressions are used 
W~th these an asymptotic  efficiency measure for comparing two such reinsur- 
ance covers ~s defined. It is shown that with respect to asymptotic efficiency the 
excess-of-loss treaty ~s better than the classical largest claims treaty Further- 
more the problem of giving opumal  whe~ghts to the ordered clanns of a 
generahzed largest claims cover ~s discussed. 

INTRODUCTION 

The choice of  the appropriate  treaty is a very old and fundamental problem in 
the reinsurance pracnce and theory Already m the s~xt~es actuaries d~scussed 
the problem of the optmaal choice of  a reinsurance treaty. The stop-loss and 
quota shares were shown to have some very interesting optnnahty properties 
(see e.g BORCH (1960), KAJJN (1961), LEMAIRE (1973), OHLJN (1969), 
PESON~N (1967), VAJDA (1962), VER~EtSK (1966) and the recent paper of  
PESON~N (1984)) Collective and m&vldual treaUes were compared and also an 
optJmahty property was gJven for the excess-oHoss treaty with respect to the 
class of  individual treaues (see e.g OHLIN (1969), GERBER (1980)). A short 
presentation of these results is g~ven e g m KREMER (1986b) 

Nearly nothing ~s known on the goodness of the largest claJms reinsurance 
treaty or of  some of its interesting generahzatlons, which are defined e.g m 
KREMER (1986a), (1988a). Some remarks on certain dependencies between the 
largest claims and excess-of-loss treaty can be found m BERLINER (1972). 
Fur thermore one knows that under certain conditmns the net premium of the 
classical largest clmms cover (see e g AMMETER (1964)) is asymptotically 
eqmvalent to the net p remmm of a corresponding excess-of-loss treaty plus 
addmve term (see KREMER (1982)) A generahzatlon of that result to the 
generahzed largest claims reinsurance covers was g~ven by the author  (see 
KREMER (1984)) some years ago Some more advanced results remain to show 
In the following the author  presents some first new mvesugauons on the 
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12 E R H A R D  K R E M E R  

goodness of  the (classical or generalized) largest claims reinsurance treaties that 
are of  the type one expects to get. Like in the already classical studies on the 
stop-loss, quota and excess-of-loss shares (see BORCH (1960), LEMAIRE (1973) 
and OHLIN (1969)) the author takes the inverse of  the variance of  the 
corresponding claims amount  as measure for the goodness of the reinsurance 
treaty. Unfortunately one cannot gwe handy formulas for the variances under 
consideration. That 's why the author replaces the variances by asymptotic 
formulas which were already cited in KREMER (1983). With these the asymp- 
totic efficiency of two reinsurance treaties of the discussed type will be defined 
as the ratio of  the inverses of the suitably transformed asymptotic variances. 
Like in the classical studies one takes the constraint that the net premiums of 
both treaties are (asymptotically) the same. With the help of  this new concept 
of  efficiency the classical largest claims cover (see AMMETER (1964)) is 
compared with the excess-of-loss treaty Finally the author deals with the 
problem of  choosing optimally coefficmnts, weighting the ordered claims in the 
generahzed largest claims reinsurance treaty. 

T H E  G E N E R A L  T R E A T Y  

Consider a collective of  insurance risks producing claims with sizes 
X~, X2, X3 . . . . .  each year Denote with N the random variable describing the 
number of claims per year. The claims sizes are assumed to be stochastically 
independent and identically distributed with distribution function F. Finally the 
claims number is assumed to be independent of  the claims sizes Investigated 
are reinsurance treaties which are based on the claims ordered in increasing 
amount  i.e. on the random variables 

XN I ~ XN 2 ~ "'" ~ XN N 

The reinsurance treaty conditions are defined by a famdy of weighting 
coefficients 

and a function 

c,,, i =  1,2 . . . .  n, n = 1 , 2 , 3 . . .  

h on the nonnegatlve reals. 

With these quantities the part of  the total claims amount  

N 

SN = ~ X, 
I=[  

that the insurer retains, when concluding the treaty, is given according 

N 

R a = ~ CN,'h(XN,). 
t= l  
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Such a reinsurance cover was recently called lbzear reinsurance treaty based on 
ordered clatms( see e g KREMER (1988b)) In the more  special situation where 
h (x) = x holds for all x, one often denotes those reinsurance covers general- 
tzed largest claims reinsurance treatzes (see e.g. KREMER 1988a)) The sense o f  
the definition o f  the generahzed treaty becomes obvious when considering some 
examples. 

EXAMPLE 1. For  the choice cm = 1 for all ~ =  1 , 2 ,  3, . and n = 1,2, 3, . 
and the special funct ion 

h (x) = min (x, P)  

with a given nonnegat~ve priority P one gets the classical excess-of-loss treaty 
with priority P. The insurer has to pay for each claim up to the maximal  
a m o u n t  P. V 

EXAMPLE 2. In case that c,, = 1 for all i = 1, 2 . . . . .  n - p  and c,, = 0 otherwise 
and that h ( x ) =  x holds for all x, one has the (classical) largest claims 
remsurance treaty, where the reinsurer pays for all claims except the p largest 
ones V 

The reader is invited to give some more  examples, e.g one can combine  the 
si tuations o f  the example I and 2. Notice that in the present investigations we 
consider the claims amoun t  remaining by the insurer and not like in the 
previous studies (see KREMER (1986a), (1988a), (1988b)) the claims amoun t  
taken by the reinsurer. In other  words,  the R N here is just the SN--RN of  the 
previous papers. 

THE ASYMPTOTIC EFFICIENCY 

Obviously the class o f  linear reinsurance treaties based on ordered claims is 
fairly large One can choose  a m o n g  many  different such reinsurance covers 
The question appears  which o f  two given different treaties is preferable. For  
deciding, one needs an appropr ia te  measure with which one can select the 
treaty which is more  advantageous.  A classical measure for judging the 
goodness  o f  a reinsurance treaty is the variance o f  the total claims amoun t  
under  considerat ion while choosing some parameters  o f  the treaty such that  the 
mean value o f  the total claims amoun t  is fixed (see e.g. OHLIN (1969) and 
KREMER (1986b) chapter  5.1). In case o f  our  above defined linear reinsurance 
treaty based on ordered claims no handy  expressions for the expectat ion E(RN) 
and variance Var (RN) exist m general. For tunate ly  one can give elegant 
formulas  for both quantities with asymptot ic  consMerations.  More  concretely 
the au thor  gave in a previous paper (see KREMER (1983)) expressions for 
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E(RN) and Var(RN) that are asymptotmal ly  equivalent to both quan tmes  
These results are basra to all that follows and will be presented m the 
sequel. 

Consider  a sequence o f  growing collecuves, indexed w~th the integer 
k = 1, 2, 3 . . . .  Denote  with N~ the clmms number  o f  the collectwe no. k and 
suppose that 

I,m ( E ( N e ) )  = + ov 
k ~ c o  

Var (Nk) ) 
hm = c 
k .oo E(Nk) 

with an arbttrary,  but fixed constant  c. The r andom varmbles o f  the claims 
anaounts are the same in each collectwe and denoted by the varmbles 

X i , X 2 ,  X3, . .  

They  are assumed to satisfy the c o n d m o n s  given m the beginning of  the 
previous sect,on, especially they are assumed to be stochastmally independent 
o f  the claims numbers  Nk and to have the d~stnbut,on function F The hnear 
reinsurance treaty based on ordered clmms now depends also on the collectwe 
number  k, more concretely the weighting coefficients are dependent  o f  the 
index number  k" 

..(k) with k = 1.2, 3, Cnl = ~t l l  , 

whereas the functmn h is independent  o f  the number  k. For  Dvmg the 
asymptot ic  formulas  for the expectation and variance o f  the claims amoun t  

Nk 

R .  = ,,N,"(" = ,) 
t = l  

one defines the family o f  funcuons  

b~ ~), n = 1 ,2 ,3  . . . . .  

according 

k = 1 ,2 ,3 ,  

b~f  I ( 0 )  = - (k) Ltl [ , 

b},k'(u) = C.(~ ) for U Ill the interval 
( ( i - I ) / n , t / n ]  and t = 1 ,2 ,3 ,  . , n ,  

and assumes that there exist an asymptottc weighting functton b and numbers  

t,, i = O, 1, ,m-4-1 
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with t, < t,+~, t o = O, t,,,~.~ = 1 such that 

hm (b(k)'~ = b 
\ I1]~ ] k~co'z 

uniformly on closed subintervals of the complementary set of {tl . . . .  t,,} and 
for each sequence (nk, k = 1, 2 , . .  ) satisfying 

ll k ) 

The function b is supposed to consist of  two parts 

b = b~+bd, 

where bs is of  bounded variation and continuously dlfferentiable and ba is a 
step function with steps at the points t l ,  , t,,. Finally the function h shall be 
nondecreaslng, F be continuous and strictly increasing (from both sides) at the 
points F - t  (t,), i = 1 , 2 , . . ,  m, with the convention 

F - I ( u )  = inf{x F(x)=> u} 

With all these notations and assumptions one has the important result that 
with the expressions 

(1) lZF(b,h ) = b(F(x)) h(x)F(dx)  
0 

(2) a t (b ,  h) = i v  i ~  (min (F(s), F( t ) ) -F(s)  F(t)) x 
0 0 

x b(F(s)) b(g( t ) )h(dslh(dt)  

holds 

(3) lim ( E(R~)) ) = pr(b,h ) 
k~oo E(Nk) 

(4) hm /\/_Var!R(~A,~))} = aZ(b,h) +c p~(b,h) 
~-o~ ~ ) 

(see Theorem 1 in KREMER (1983)). In these formulas the distribution function 
F is fixed and given The expressions depend only through the functions b and 
h on the linear reinsurance treaty based on ordered c/aims. 

Now coming back to judging the goodness of  a linear reinsurance treaty 
based on ordered claims In the classical approach of  comparing reinsurance 
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treaties one fixes the expectation of  the claims amount  under consideratmn and 
investtgates the corresponding variance. According to the elegant result (3) the 
fixing of  the expectation can be formulated in an asymptotic sense according : 

PF(b, h) = constant .  

Then according to (4) the investigation of the variance can be expressed in an 
asymptotic sense as the investigation of the expression 

o~(b, h). 
All above remarks now are summarized m the following definition. 

DEFINITION. In the above setting consider two linear reinsurance treaties based 
on ordered claims with corresponding functions b,, h,, i = 1, 2 Suppose 
that 

(5) pF(bl, h0 = //F(b2, h2) 

is satisfied. Then the value 

EFFF(I:2) = (  °'~(b2' h2) ) 
ar(b¢, hO 

is called asymptottc efficiency of  the treaty no. 1 relative to the treaty no 2. In 
case that 

(6) EFF F (I • 2) > 1 

holds true, the treaty no. 1 is called better than the treaty no 2 (at the 
underlying claims sIze distribution function F). In case that m (6) one has 
equality, both treaties are called to be (asymptotically) equivalent. V 

Obviously this definition gives a practicable formal instrument for compar- 
ing the linear reinsurance treaties based on ordered claims. In case of the 
socalled generalized largest claims treaties (see above) one has h(x)  = x for all 
x, so that ~F, a~ 2 depend only on b. Then write shorter gtr(b), ~r2r(b) for the 
special pF(b,h), ~rZ(b,h). For dlustratlon an important example shall be 
discussed. 

AN EXAMPLE 

Consider the (classical) largest claims reinsurance treaty of  the example 2 m the 
above context of growing collectives. Denote the number p of  the treaty in the 
collective no k by Pk- Assume that 

,lm ( 
k~co 
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for an arbitrary,  fixed value s between zero and one. This treaty shall be 
compared with the excess-of-loss treaty with priority P > 0 (see the example I). 
With these notations one gets the corresponding functions. 

(a) for the excess-of-loss treaty 

bl (u) = 1, for all u, 

h~(x) = m i n ( x , P ) ,  for all x, 

(b)Jor  the largest clarets treaty 

bz(u) = I, if u is smaller or equal to 1 - s ,  
= 0, elsewhere, 

h2(x) = x, for all x, 

and the interesting result: 

THEOREM The excess-of loss treaty is better than the largest claims cover in the 
just given setting 

PROOF. Since 

]'IF(hi'hi) = I xF(dx)+P ( 1 - F ( P ) )  
[o, PI 

pr(b2,h2) = [ x F ( d x ) ,  
J [0, F -I (I -~)] 

the equatton (5) means nothing else but that 

(7) I x F ( d x ) -  I xF(dx)= P.( I -F(P))  
[0, P'] [0, PI 

with the priority P ' =  F - I ( l - s )  This implies at once that P ' ~  P Since 
F ( P ' )  < 1, one also has F(P) < 1. Consequently one has because of (7) the 
stronger condition" 

(8) P' > P 

Inserting the b,, h, into the expression (2) nnphes the in structure identical 
formulas : 
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P P 

(9) a F 2 ( b l ,  h i ) =  2 I F(r)'I(I-F(t))dtdr 
0 r 

S Ii (10) tT~(b2, h2) = 2- F(r) (l - F ( t ) )  dt dr, 
o 

from whmh one concludes easily with (8) that the excess-of-loss treaty is the 
better one. V 

This result can be seen as a theoretical .lUStlfiCatlon for the common 
preference of the excess-of-loss treaty on the international reinsurance market. 
Surprisingly the proof  of  the theorem ~s fairly slmple, when using the concepts 
of  the preceeding section. The result is new and fits well to the investigations of  
BERLmER (1972). For g~ven s e (0, I) and dls tnbutmn function F o n e  can easdy 
compute  the efficiency of  the largest claims treaty relative to the excess-of-loss 
treaty. Since s is given, the P '  is fixed, so that one can compute the 
corresponding priority P from the equation (7). For computing EFFF(I:2) it 
then remains to evaluate the integrals m (9) and (10) and then to take the ratio 
Exemplardy one can take for F the classical Pareto-mode[ 

COROLLARY Suppose that F is the Pareto-model,  Le 

F(x)  = 1 - x  -a , for x larger than l , 

with a given parameter  a larger than 2. Define the following function: 

2 . ( a -  1) a - 2  

o )_ o 
a ----1 2- (a  - ~ - ( a  - 2) 

and the values: 

yl = a l l ( I - a )  S -Ila 

y2 = s-~1~ 

With this notation one gets for the asymptotic  efficiency of the largest claims 
relative to the excess-of-loss treaty the result 

g ( y l )  
EFFF(1:2) - 

g (y2)  

in case that s is smaller than a "/O-a). 
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PROOF One evaluates with rout ine  calculatzons the equa t ions  (7), (9) and  (10). 
More  concretely (7) means  with y l  = P, y2 = P'  tha t :  

i 
y 2  

a " x - ~  dx = y l  I-~ 
V I 

what  ~s eqmvalen t  with 

Since : 

y l  = a t / ( j - a ) . y 2  . 

p,  = F - I ( l - - s )  = s - I / ~ ,  

one has the formulas  for y l  = P and y2 = P ' .  Fu r t he r mor e  one shows tha t .  

I Y F( r ) "  I y ( l - F ( t ) ) d t d r  
0 r 

= ( l - r - e )  - t - ° d t  dr = . . .  = g ( y ) . ( l - a )  -~" V 
r 

The Corol lary  shows that the efficiency depends for given parameters  of  the 
d is t r ibut ion  funct ion F solely on the value of s. 

OPTIMAL WEIGHTS 

In this section the problem of  how to choose the weighting coefficients cn,, 
i = I, 2 . . . .  , n, n = 1, 2, .. is discussed for the si tuatIon that the funct ion h of 
the hnear  re insurance treaty based on ordered claims is gwen and  the insurer  

likes to retain a net p remium exceeding a m i n i m u m  a m o u n t  u W~thout loss of  
generali ty let us assume that 

h ( x )  = x, for all x .  

This  means  that  one deals wIth the generahzed largest claims re insurance treaty 
and  tries to find some m some sense opt imal  weighting coefficients for gwen 

claims size d i s t r lbuhon  funct ion F and on a cons t ra in t  on the insurer 's  net 
income. Suppose that  one has one in some sense opt imal  asymptotic  wetghtmg 

funct ton b for the treaty. Then  an adequate  choice of the weighting coefficients 
is to take 

cn, = b - , for i = 1,2 . . . .  n 
n 

n = l , 2 ,  . . 
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W~th this choice the treaty is in some sense asymptotically optimal So the 
problem of giving adequate weighting coefficients reduces to the problem of  
determining an optimal asymptotic weighting function. The above presented 
concepts and ~deas make ~t possible to define what might be regarded as an 
optimal asymptotic weighting function b 

DEFINITION. Consider the class of generalized largest claims reinsurance 
treaties with asymptotic weighting functions b in the above context of growing 
collectives. Suppose that one has with a given constant/~ the restriction on b: 

(11) /lF(b ) ~ / l ,  

where F is the fixed underlying distribution function of the claims sizes of the 
collective. The asymptotic weighting function b,  is called opumal In the class A 
if' 

d~(b,) = ln f  [6~ . (b ) ] ,  
b e d  

where d is a given class of asymptotic weighting functions with each b s  d 
satisfying (11) and the d~(b) is the right hand side of (4). A treaty with 
corresponding asymptotic weighting function b,  is called asymptotically opu- 
real in the class of  treaties with weighting functions b s d. V 

Assuming that the basic claims size dlStrlbutmn funcuon F is continuous, 
one can reformulate I~r(b) and ar2(b) according 

I 

IAF(b) = I b(u)'F-I(u)du 
0 

~r~(b) = I I ( m i n ( u ' v ) - u  v).b(u)b(v)F-~(du)F-I(dv). 

Obviously aV 2 is something hke a quadratic form and the llF nothing else but a 
linear functional on the set of all asymptotic weighting functions b. In case one 
restricts to uniformly continuous functions b, the determination of an optimal 
b, reduces to a typical infinite optimization problem, i e to the minimization of 
the sum of a quadratic and a squared linear form under the contralnt that a 
hnear functional exceeds a given constant For solving one can apply results of 
the socalled infinite optimization theory. The reader ~s referred to the literature 
on this mathematical topic ( see e.g KRABS (1975)) Because of practical 
reasons one will take in addition the condition on b that 

b(u) is nonnegatlvc for all u and 
bounded by the amount  1. 
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One knows that the optimal b .  can be determined such that with a nonnegahve  
2 .  the tupel (b., 2 . )  is a saddlepomt  o f  the Lagrange- functmn 

L(t,, ~) = f f ~ ( b ) -  ,~" (s, A b ) - ~ , )  

with respect to all nonnega twe  b and 2 

In practice one does not know F but only knows the cor responding  empmca l  
d i s tnbu tmn  funcuon  Fro, defined w,th the known m past claims amounts  
Xi , X2 . . . . .  X,, acco rd ,ng '  

(:2) F,,,(~c) = • (number  o f  X, _~ x ) .  
? 

Then one clearly inserts F,, for F m the 1iF(b), a~ (b), yielding as results 

( l  2) J/F,,,(b) = b " X . . . .  
m , - t  

(13) a~(b) ( - - ~ ) " ~ '  '~ '  = (m Iron (i,J)-I"J)) x 
t=l J=l  

(') x b b (X,, 0+l ) -X, , ,  ,)'(Am ~j+l)--Xmj) 
?H 

with probabil i ty one. Here one uses that for cont inuous  F the ordered clauns 
are all different, l e 

(14) X., I < X,,, 2 < < X ....... 

with probablh ty  one. In case some ordered claims are equal, both expressions 
m (12), (13) have to be modified shghtly. Let us restrict exemplarily to the 
situation (14) In (12), (13) the asympto tm wmghtmg function b(u) appears  
only at the points u = t/m, where t runs from 1 to m One can calculate optimal 
values bt ,  b 2 , . . , b i n  for b(I/m), b(2/m), , b ( I )  by mlmmlzing 6~;,(b) with 
respect to the b(i/m) (with i = 1, 2, .. , m) under  the constraints  that  

tZro, (b) ~ I z  . 

and that  the b(dm) are nonnegat ive and bounded  by 1 This Is nothing but a 
s tandard  p roNem of  the (finite) opUmmzanon theory, whmh can be solved w~th 
the methods  o f  the quadratzc programming (see e g. KUNZl et al. (196"7)). 

Having calculated the optimal values b , (dm)= b, with t = 1 ,2 , .  ,m ,  
one likes to have also values b , ( u )  for the u unequal to the ~/m with 
~ =  1 , 2 , . . . , m  A pracucal  approach  might  the simply to interpolate and 
extrapolate the function b,(u) between and from the points u = ~/m with 
t =  1,2, . ,m ,  by using a suitable method of  the numerical mathematms.  
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S m c e  t he  m e t h o d s  o f  t he  q u a d r a t t c  p r o g r a m m m g  n o w a d a y s  w o r k  w t t h o u t  g r e a t  

p r o b l e m s  o n  e a c h  m o d e r n  c o m p u t e r ,  o n e  c a n  d e t e r m i n e  w i t h  t he  g iven  

p r o c e d u r e  a n  a p p r o x t m a t e  o p t i m a l  a s y m p t o t t c  w e i g h t i n g  f u n c t i o n  b .  in case  

o n e  h a s  the  e m p i r i c a l  d t s t r i b u t t o n  f u n c t i o n .  

C l e a r l y  t he  p r o b l e m  o f  g i v i n g  o p t i m a l  w e i g h t s  c,, ( i  = !, 2 . . . .  n, 
n = 1, 2 , . . )  o r  m o r e  c o n c r e t e l y  a n  o p t i m a l  a s y m p t o t i c  w e t g h t i n g  f u n c t i o n  b Is 

m a i n l y  o f  t h e o r e t t c a l  i n t e r e s t  In  p r a c t i c e  t he  r e i n s u r e r  c l ea r ly  will  n o t  loose  

t t m e  w i t h  c o m p u t i n g  s u c h  a n  " o p t i m a l "  r e i n s u r a n c e  t r e a t y  So  the  a u t h o r  

r e s t r i c t s  to  t he  a b o v e  s h o r t  d i s c u s s t o n  a n d  c loses  t he  p a p e r  
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P A R E T O  O P T I M A L  RISK E X C H A N G E S  A N D  A SYSTEM 
OF D I F F E R E N T I A L  E Q U A T I O N S '  A D U A L I T Y  T H E O R E M  

BY ERICH WYLER 

ETH Zitrtch, Switzerland 

A BSTRACT 

This article, based on a result of  BORCH and an extension of  BOHLMANN, gives 
a complete characterization of Pareto optimal risk exchanges by a system of  
differential equations hnking the denvate  of  agents contributions to their risk 
aversion coefficients. 

K E Y W O R D S  

Pareto optimal risk exchange; Bernoulli utility function, absolute risk aver- 
sion, system of  differential equations. 

1. I N T R O D U C T I O N  

This article extends a result of  BOHLMANN (1984) Starting from BORCH'S 
theorem (1960), Bf..JHLMANN found a system of  differential equations with a 
Pareto optimal risk exchange as the solution. Here we are starting from these 
differential equations and prove existence and uniqueness of  a solution without 
assuming any further condition. This solution depends on initial values which 
satisfy a certain clearing condition. It will turn out that it can be identified in a 
bijectwe way with the set of  Pareto optimal risk exchanges 

2. M O D E L  

We consider a risk pool with n participants. Participant i (1 _< i _< n) is 
characterized by 

r, : initial wealth 
X t . imtlal risk ( random variable defined on a probabihty space (£2, 9.1, P); we 

assume that the expected values E[X,] exists) 
u, : Bernoulh utility function (defined on R, increasing, strictly concave and 

twice dlfferenuable: u; < 0, u;' > 0) 
p, : absolute risk aversion (p, :=  -uT/u; .  Notice u; > 0 and R, > 0 i.e. the 

participants are risk averse; see PRATT (1964)). 

By a risk pool we mean any formal mutual agreement among the n participants 

to redistribute their total initial risk ~ X,. 
1=1 
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The lnUal risk vector X, 

x . =  ( x ~ ,  . , x , , ) ,  

is called risk vector before exchange whereas a risk vector Y, 

Y : =  (Yt,  -, Y.), 

defined on the same probablhty space (£2, ~ ,  P) and satisfying the clearing 
condition 

I = l  t - I  

is denoted as risk vector after exchange or briefly as risk exchange 
Fur thermore  a risk exchange Y* ' =  (Yi* . . . . .  Y,*) is called Pareto optimal if 

there does not exist another  risk exchange Y : =  (Y~, . , Y,) with 

E[u , ( r , -  Y,*)] < E [ u , ( r , -  Y,)] for all t 

E[u,o(r,o- Y*)] < E[u,o(r,o- Y,,)] for at least one t °. 

In the sequel we are interested in Pareto optimal risk exchanges 

REMARK The motivation of  a person for participating in a risk pool is to 
improve his initial expected utility E [ u ( r - X ) ]  Therefore a rusk exchange Y 
has to satisfy the individual rationality condition 

E[u , ( r , -X , ) ]  < E [ u , ( r , -  Y,)] for all l 

in addition to the pool condition of  Pareto optimality Unfortunately there are 
many Pareto optimal risk exchanges violating this condition. In order to 
preserve the beauty of the main result we drop the individual rationality 
condition and deal in this article with general Pareto optimal risk exchanges. 

In order to simplify our notation we introduce the sh,fted dlsutlhty functions v, 

v , ( x ) : = u , ( r , - x )  I =  1, . ,n  (v; < 0, v;' < 0) 

With W, we denote the range of  the derivative of  v, 

W , : =  { v ; ( x ) l x ~  ~} 

3. M A I N  R E S U L T  

Now we show the existence of a bqectlve mapping between the set of  Pareto 
optimal risk exchanges and the set of  solutions of  a system of differential 
equations sahsfylng a constrained boundary condition. 
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Let w, w ' =  (wl, . ,w . )~ IR" ,  be a vector with ~ w, = 0 

(0 Let (A) be the system of  differential equations 
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( l l )  

p, (r, - Y, (z)) 
(A) Y, ' ( z )  = t = 1, . , n  

,= ,  p, (r, - Y, (z))  

There exists a uniquely defined soluuon Y ( z )  = (YR (z)  . . . .  Y , ( z ) )  of (A) 
satisfying the boundary condition Y,(0) = w,, i = l , . . ,  n 

If  Y ( z )  = (Y i  (z)  . . . .  Y , ( z ) )  is the solution of  (A) with boundary con&- 
tlon Y,(0) = w , , t  = 1, ,n,  then 

is a Pareto optimal risk exchange. 

(iii) If  Y* ' =  (Yl* . . . .  Y*) is a Pareto optimal risk exchange then there exists 
a solution Y ( z )  = (Y i  (z )  . . . .  Y , ( z ) )  of (A) satisfying a umquely defined 

boundary condition Y,(O) = iv,, i = 1, . . . , n ,  2 w, = O, wlth 

almost surely. 

PROOF 

(1) Existence of a solut ion '  

Let f~ be the func t ion  h ( x )  = 
t= l  

- 1  
k l  . m  _ _  

Vt' (W,) 
on W 

> O. fk is a str,ctly decreasing and &fferentiable function defined 

W = ~ {xk,tx~W,} 
t = ]  

with range N (see Lemma I, Appendix). F u r t h e r m o r e f k ( - l )  = 0. (see Proof  
of  Lemma 1, Appendix) We have 

Y(z) =(Y~(z), , Y . ( z ) ) w l t h  y , ( z )=(v , )_~[  1 ( fk )_~(z ) ] , t=  I \ I, . , n ,  
I l k ,  
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- 1  
and k , ' -  - - ,  i =  1 . . . . .  n, l s a  solution o f ( A )  

v,' (w,) 

Umqueness of  the solution : 

Let ~'(z) = (:Yi (z) . . . .  Y , ( z ) )  be another  solution of  (A) satisfying the same 
boundary condition. We define differentmble functions g , ( z ) ,  i = 2 . . . . .  n: 

g,(z):= k,v~(?,(z))-k ,v , ' (? ,(z)) ,  z e ~  
We have g,(O) = 0 for all t and for the derivatives g[ ( z ) ,  i = 2 . . . .  , n, we get 

g : ( z )  = k,  v ( ' ( Y ' , ( z ) )  Y ( ( z ) - k , v , " ( ~ ' , ( z ) )  Y , ' ( z )  

k l V l " ( Y | ( z ) )  k , v , " ( ? , ( z ) )  

= p , ( r , -  :Yl(Z)) p , ( r , -  Y,(z)) (w,th (A)) 

j=l pj (r j - -  Y j ( z ) )  

g,(z) 
= , ZGG~. 

± l 
j=, pj(r~- ?,(z)) 

Because the homogeneous linear differential equations 

g,(z) t g , ( z ) =  , z e ~ ,  1 = 2 , .  ,n  
g l 
~=, p~(rj- ?j(z)) 

have only solutions of  the form 

g,(z)  = c, exp dt , c, e N ,  l =  2 , . . . , n  

we get together with g,(0) = 0: c, = 0 and therefore g,(z)  = 0 for all z ~ E and 
l =  2 , . . . , n .  

Th,s means 

k , v , ' ( f , ( z ) ) = k , v , ' ( Y , ( z ) )  fo ra l l  z e N  and l = 2  . . . . .  n. 

Because ~ Y,'(z) = 1 for all z e  R it follows together with the boundary 
t = l  

condition that ~ Y , ( z )  = z for a l l z e N  
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Because lP(z) and Y(z) satisfy both  the equat ions  (**) o f  L e m m a  2 (see 
A p p e n & x )  we conclude by uniqueness o f  the so luuon  that  

~(z) = Y(z)  for all z e ~ . 

(ii) Y(z ) :=  (Yt(z) . . . . .  Yn(z)) w,th Y,(z)=(v,')-' ( ~ ( f k ) - t ( z ) ) ,  , = l , . .  9 n 9 

- 1  
and k , : -  - -  , i =  1, . .  , n, is the umque  solution o f  (A) 

v,'(w,) 

satisfying the b o u n d a r y  condi t ion Y,(0) = w,, i = 1 . . . . .  n. Because this solu- 
uon  satisfies (**) o f  L e m m a  2, (see Appen&x) ,  it follows f rom BORCH'S 
theorem (see BORCH, (1960))that  Y(Z X',) is a Pare to  op t imal  risk exchange 

(ili) It follows f rom BORCH'S theorem (see BORCH, ( 1 9 6 0 ) )  that  there are 
strictly posit ive cons tan ts  k, ,  t -- I . . . .  , n, with 

k,v,'(Y,*) = klv((Yl*)  a lmost  surely for i = 2, . , n .  

Let 09 e .(2 be an e lement  of  ~ for  which the con&t ion  o f  BORCH is satisfied, k 
the vector  k . =  (k l ,  . . . ,  k ,)  a n d f k  the funct ion as defined above.  Becausefk  (x)  
Is defined for  x " =  k I v[ (Yl*(og)) 

(con&t ion  of  BORCH) 

~t follows ana logous ly  to L e m m a  1, (see Appen&x) ,  t h a t f k  is defined on some 
interval (a, b) with range JR. There fore  ( f k ) - I ( 0 )  exists. We define the vector  
w = (wl,  . , w , )  by 

( 1  ( f , ) - ' ( 0 ) ) i =  1, n w,'=  (v,')-I k, 

The  unique solut ion Y(z) = (Yi (z), . . . ,  Y,(z))  of  (A) with bounda ry  condi-  
t ion Y,(0) = w,, t = I . . . . .  n, satisfies the equat ions  (**) o f  L e m m a  2, i.e. 

Y,(z) = z for all z ~ Ilq 
t = l  

k , v ; ( Y , ( z ) ) = k l v ( ( Y l ( z ) )  for  t = 2  . . . . .  n and all z e ~ .  

We conclude by uniqueness of  the solut ion that  

a lmos t  sure ly .  
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REMARK' Because - l / k ,  is poss ib ly  not  in the range o f  v,' we canno t  

w, by w, ' ( - ' ) )  k: Q E D  

4 EXAMPLE 

W e  assume that  the pa r t i c ipan t s  are  using exponen t ia l  Utdlty funct ions,  l e. 
p , ( x )  = a ,  for all x ~ ~ and i = 1, .. , n, where p, denotes  the abso lu te  risk 
avers ion  o f  pa r t i c ipan t  t In this case the system o f  dif ferent ia l  equa t ions  (A) 
becomes  very s imple  

1 

(A) Y , ' ( z )  - - -  , ; = 1, . ,  n 

J~ l  a./ 

We therefore  have 

I 

( l  t 
Y , ( z )  - - -  z + E ,  

/=1 12.1 

where the fl,'s satisfy the c lear ing  cond i t ion  

~ ~,--0. 

i =  l , . . . , n ,  

F o r  fur ther  examples ,  e.g. for u t lh ty  funct ions  o f  the H A R A - t y p e ,  see 
LIENHARD, (1986). 

A P P E N D I X  

To conc lude  the two techmcal  Icmmas a l r eady  used In the p r o o f  o f  the main 
T h e o r e m  are  discussed.  

LEMMA 1 

Let w, w . =  (wl ,  . ,  w,) ~ ~n, be a vector  with ~ w, = 0 
t=l  

and k ,  k " =  ( k l  , 
- 1  

, k , , )  E R" the vector  with k, = > 0 
v,' (w,) 
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Then f~ (x)  .=  
t = l  

 vl)(x) ~, is a strictly decreasing and dffferenUable 

funct ion defined on W 

w~th range IR. 

W ' =  (~ {xk, l x e W , }  
t--I 

PROOF 

Obwously  W is an open interval W ~s not empty  because it contains - 1  

f k ( - I )  = ( v [ ) - '  - 1  (v,'l-I (v, (w,)) = w, 0 
t = l  t : l  t = l  

We denote  by (a,, b,) the open interval W, and by (a, b) that  o f  W We have 

a = a,k, 

and therefore 

hm f k ( x ) = h m  ~"~ ,~,, ,=, 

Ana loguous ly  we get 

for at least one 

l(X) 
~,~,~. k I 

= hm ( v ' ) - I  ( y ) =  oo. 
y ~ aj 

> a  I 

hm f k ( x ) =  - o o .  
x ~ b  

It follows that  the cont inuous  function )c k has range 
dlfferentlable on W with derivat ive 

A ' ( x )  = < o .  

v," (v, ' )-  1 

R Obvious ly  fk Is 

Q E D  

LEMMA 2 

Let w,w = (w I . . . . .  w,,)EIR", b e a  vector  with ~ w , =  0 
t = l  

and k, k . =  (kl . . . .  k ,)  e JR" the vector  with k, . -  
- 1  

v,'(w,) 
> 0 .  

Fu r the rmore  let (*) and (**) respccuvely denote  the system of  equauons  (m 
Y, (z) . . . . .  Y. (z)) 
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(*) z =fk(k,v,'(Y,(z))) i= i .... ,n.  

Y,(z) = z for all z~ lR  

k , v , ' (V , ( z ) )  = ~, v , ' (v , (~))  for 
(**) 

l ~ 2 ,  

Then Y(z):= (Yl(z) ..... Yn(z))with Yt(z) = (V;)-I ( ~(fk)-I(z) ) ,l 

. . , n .  

= !  n 

Is the umque  so luhon  of  (*) resp. (**). The functions Y,(z), i = 1 . . . . .  n, are 
strictly increasing and dlfferentiable They satisfy Y,(0) = w, for i = 1 . . . .  n 

PROOF 

F r o m  Lemma 1 it follows that  ( fk) -a  exists and is defined on ~. Therefore 
Y(z) is well defined, strictly increasing and &fferentiable. By reverting 
equat ion (*) we see that Y(z) is a solution and even the unique solution o f  (*) 
Obviously  Y(z) is also a solution o f  (**). 

Note  that  

Y,(z)  = A ( ( A ) - ' ( z ) )  = z 

k,v/(Y,(z)) = ( f k ) - '  (z) = k,v((Yt(z)) for t = 2 . . . . .  n .  

Fur the rmore  

Y,(O)=(v,')-11~7(-1)) = w ,  (see p r o o f  o f  Lemma I) 

Let Y ( z ) ' =  (Yl (z ) ,  . . . ,  Y,(z))  be another  solution o f  (**) Then we have 

,=l ,=, ~, v , ' (? ,  (z)) 

= A (k, v,' (? ,  (~))) = A (k, v / (? ,  (z))) 

But the solution o f  (*) is unique, so we have P(z )  = Y(z) for all z ~ [R. This 
completes the p roo f  

Q E D  
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ABSTRACT 

Fuzzy set theory IS a recently developed field of  mathematics, that introduces 
sets of  objects whose boundaries are not sharply defined. Whereas in ordinary 
Boolean algebra an element is either contained or not contained m a given set, 
in fuzzy set theory the transition between membership and non-membership is 
gradual The theory aims at modehzmg situations described in vague or 
~mpreclse terms, or situations that are too complex or all-defined to be analysed 
by conventional methods This paper alms at plesentlng the basic concepts of  
the theory In an insurance framework. First the basic defimtlons of  fuzzy logic 
are presented, and applied to provide a flexible definmon of  a "preferred 
policyholder" in life insurance. Next, fuzzy decision-making procedures are 
dlustrated by a reinsurance apphcation, and the theory of fuzzy numbers is 
extended to define fuzzy insurance premmms. 

KEYWORDS 

Fuzzy set theory; preferred pohcyholders in life insurance, optimal XL- 
retentions; net single premiums for pure endowment insurance 

l INTRODUCTION 

In 1965, ZADEtl published a paper entitled "Fu zzy  Sets" in a httle known 
journal, Information and Control, introducing for the first time sets of  objects 
whose boundaries are not sharply defined. This paper gave rise to an enormous 
interest among researchers, and mltiated the fulgurant growth of a new 
&sciphne of mathematics, fuzzy set theory. The number of papers related to 
the field exploded from 240 in 1975 (ZADEH et al.), to 760 m 1977 (GOPTA et 
al.), 2500 in 1980 (CHEN et al ), and 5000 m 1987 (ZIMMERMAN). Today, there 
are many more researchers in fuzzy set theory than in actuarial science, and 
they form a much more international group, with important contributions 
from China, Japan, and the Soviet Union. Two monthy scientific Journals 
publish new theoretical developments and applications, that are to be found m 
linguistics, risk analysis, artificial intelhgence (approxnnate reasoning, expert 
systems), pattern analysis and classification (pattern recognmon, clustering, 
image processing, computer vision), reformation processing, and declslon- 
making. In this paper we wdl explore some possible apphcations of  fuzzy set 
theory to Insurance. 
ASTIN BULLETIN, Vol 20, No I 
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In ordinary Boolean algebra, an element is either contained or not contained 
m a given set. the transition from membership to non-membership ~s abrupt. 
Fuzzy sets, on the other hand, describe sets of elements or variables whose 
limits are ill-defined or imprecise The transition between membership and 
non-membership is gradual: an element can " m o r e  or less" belong to a set 
Consider for instance the set of "young  drivers".  In Boolean algebra, it is 
assumed that any indlwdual either belongs or does not belong to the set of 
young drivers. This xmphes that the individual will move from the category of 
"young  drivers" to the complementary set of  "n o t  young drivers" overnight 
Fuzzy set theory allows for grades of  membership. Depending on the specific 
application, one might for instance decide that drivers under 20 are dei]nitely 
young, that drivers over 30 are definitely not young, and that a 23-year-old 
driver is " m o r e  or less" young, or is young with a grade membership of  0.7, on 
a scale from 0 to 1 

Fuzzy set theory thus alms at modehzmg imprecise, vague, fuzzy informa- 
tion, which abound in real world situations. Indeed, many practical problems 
are extremely complex and all-designed, hence difficult to modehze with 
precision To quote ZADEH, "as the complexity of a system increases, our 
ability to make precise and yet significant statements about its behavlour 
diminishes until a threshold is reached beyond which precision and slgmficance 
become almost exclusive characteristics" Computers cannot adequately handle 
such problems, because machine mtelhgence still employs sequential (Boolean) 
logic. The superiority of the human brain results from its capacity of handling 
fuzzy statements and decisions, by adding to logic parallel and simultaneous 
information sources and thinking processes, and by filtering and selecting only 
those that are useful and relevant to its purposes. The human brain has many 
more thinking processes available and has developed a far greater filtering 
capacity than the machine A group of individuals is able to resolve the 
command "tal l  people m the back, short people m the f ront" ,  a machine is 
not Fuzzy set theory explicitly introduces vagueness m the reasoning, hoping 
to provide decision-making procedures that are closer to the way the human 
brain performs. 

A clear distinction has to be made between fuzzy sets and probability theory. 
Uncertainty should not be confused with imprecision Probablhties are pri- 
marily intended to represent a degree of  knowledge about real entities, while 
the degrees of  membership defining the strength of participation of an entity m 
a class are the representation of  the degree by which a proposition is partially 
true Probability concepts are derived from considerations about the uncer- 
tainty of propositions about the real world Fuzzy concepts are closely related 
to the multlvalued logic treatments of issues of imprecision m the definition of 
entities Hence, fuzzy set theory provides a better framework than probablhty 
theory for modelling problems that have some inherent imprecision The 
traditional approach to risk analysis, for instance, IS based on the premise that 
probablhty theory provides the necessary and sufficient tools for dealing with 
the uncertainty and imprecision which underline the concept of risk in decision 
analysis The theory of  fuzzy sets calls Into question the valzdlty of  this 
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premise. It does not equate imprecision with randomness It suggests that much 
of the uncertainty which ~s mtrinsm m risk analysis is rooted m the fuzziness of 
the reformation which is resident in the data base and m the imprecision of  the 
underlying probabilities. Classical probability theory has its effectiveness 
limited when dealing with problems in which some of the prmc,pal sources of 
uncertainty are non-statistical in nature 

In the sequel we will present the basra principles of  fuzzy logic, fuzzy 
decision-making, and fuzzy arithmetics, while developing three lnSul'ance 
examples We will show that fuzzy set theory could provide demsmn procedures 
that are much more flexible than those originating from conventional set 
theory Indeed, insurance executives and actuarms, much better trained to deal 
with uncerta,nty than with vagueness, have often transformed m~preclsc 
statements into "a l l -or-nothing"  rules. For instance, Belgian insurers have 
used the fuzzy statistical evidence " Y o u n g  dr,vers provoke more automobile 
accidents" to set up the a posteriorl i'atmg rule "Dr,vers under 23 years of age 
will pay a $150 deductible if they provoke an accident". Hence '" young"  was 
equated with "unde r  23",  a definite &storslon of the initial statement As 
another example, Belgmn regulatory authorlt,es define, for statistical purposes, 
a "severely wounded person" as " a n y  person, wounded m an automobile 
accident, whose condmon requires a hospital stay longer than 24 hours" ,  a 
very arguable "de-fuzzlficatlon" of a fuzzy health condmon 

In Section 2 we will present the bamc definitions of fuzzy Iogm and apply 
them to provide a more flexible defimtlon of  a "preferred policyholder'" than 
the one currently used by some American life insurers Section 3 Introduces the 
main concepts of  fuzzy decision-making, and uses them to select an optimal 
Excess of  Loss retentmn. Fuzzy anthmetms are presented m Section 4, and 
applied to compute the fuzzy prem,um of a pure endowment policy 

First, let us introduce our three examples. 

Problem 1 Deftmt,on of a preferred pohcyhoMer h7 hfe insurance 

Heavy competition between Amerman hfe insurers has resulted m a greater 
subdlvlson of  policyholders than in Europe U.S. insurers first began, in the 
mid 1960s, to award substantial discounts to nonsmokers purchasing a term or 
a whole life insurance. Then the "' preferred policyholder" category was further 
refined, and more discounts were granted to apphcants who met very stringent 
health reqmrements, such as a cholesterol level not exceeding 200, a blood 
pressure not exceeding 130/80, . For instance, one company offers a non- 
smoker bonus of 65 % more insurance coverage with no increase m premium if 
the apphcant has not smoked for 12 months prior to application A bonus of 
100% is offered if the applicant: 

- -  has not smoked for the past 12 months, and 
- -  has a resting pulse of 72 or below, and 
- -  has a blood pressure that does not exceed 134/80, and 
- -  has a total cholesterol reading not exceeding 200, and 
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does not engage in hazardous sports, and 
- -  rigorously follows a 3-tlmes-a-week exercise program of  at least 20 minutes, 

and 
- -  is within specified height and weight hmlts, and 
- -  has no more than one death in immediate family prior to 60 years of  age 

due to kidney or heart disease, stroke or diabetes 

Again this is a dlstors~on, or a least a very strict interpretation, of  the medical 
statement "Peop le  who exercise, who do not smoke, who have a low level of 
cholesterol, low blood pressure, who are neither overweight nor severely 
underweight . . . .  have a h~gher hie expectancy".  Insurers demand all conditions 
to be strictly met ,  the shghtest infringement leads to automatic  rejection of the 
preferred category For  instance, a cholesterol level of  201 implies that the 
preferred rates won' t  apply, even ~f the applicant meets all other requirements. 
A cholesterol level of  200 is accepted, a level of  201 is not! We will show that 
f u r y  set theory can be used to provide a more flexible definition of  a preferred 
policyholder, that allows for some form of  compensation between the selected 
criteria. 

Problem 2. Selection of  an optmval excess of  loss retentton 

Imprecise statements seem to be pervasive m reinsurance practlve, where vague 
recommendations and rules abound. " A s  a rule of  thumb, an excess of  loss 
(XL) retention should approximatively equal 1% of the premium income",  
" O u r  long-term relationship with our present reinsurer should in principle be 
mainta ined" ,  " W e  could accept those conditions prowdlng substantial retro- 
cessions are offered . . . . ,  A ball-park figure for the cost of  this reinsurance 
program is $10 null lon",  are fuzzy sentences frequently heard in practice. To 
illustrate fuzzy decision-making procedures, we shall consider the problem of 
the selection of  the optimal retention of a pure XL treaty, given the four 
following fuzzy goals and constraints. 

Goal  1: The ruin probabili ty should be substantially decreased, Ideally down 
to be neighbourhood of 10-5 

Goal  2: The coefficient of  varlatxon of the retained portfolio should be 
reduced; ~f possible it should not exceed 3 

Constraint  1. The reinsurance premium should not exceed 2 5 % of the line's 
premium income by much. 

Constraint  2. As a rule of  thumb, the retenuon should approxlmatlvely be 
equal to 1% of  the line's premium income 

Problem 3 Computation oJ the fuzzy premmm of a pure endowment pohcy 

Forecasting interest rates is undoubtedly one of the most complex modelling 
problems. Money market  interest rates seem to fluctuate according to monthly 
U.S. unemployment  and trade deficit figures, vague statements made by 
Mr Kohl or Mr Greenspan,  the markets '  perceptxon of Mr Bush's wllhngness 
to tackle the deficit problem, the mood of  the participants to an OPEC 
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meeting, etc. To compute insurance premiums over a 40-year span with a fixed 
Interest rate of  4.75 % then seems to be an exercise in futdlty. We will show 
that the Introduction of  fuzzy interest rates (and fuzzy survival probabilities) at 
least allows us to obtain a partial measure of  our ignorance. 

As illustrated by our examples, fuzzy set theory attempts to modehze 
imprecise expressions like " m o r e  or less young" ,  "nei ther  overweight nor 
underweight" ,  "in the nelghbourhood o f " ,  "in principle".  In retreating from 
precision in the face of  overpowering complexity, the theory explores the use of  
what might be called linguistic variables, that is, variables whose values are not 
numbers but words or sentences. In summary,  fuzzy set theory endorses 
Bertrand Russell's opinion that 

"Al l  traditional logic habitually assumes that precise symbols are being 
employed. It is therefore not applicable to this terrestrial life but only to an 
imagined celestial existence" 

and reJects Yves Le Dantec 's  aphorism 

" T h a t  only is science which deals with the measurable" .  

2 FUZZY LOGIC AND FUZZY PREFERRED POLICYHOLDERS 

2.1. Basic definitions 

A fuzzy set is a class of  objects in which there is no sharp boundary between 
those objects that belong to the class and those that do not. More precisely, let 
X = {x} denote a collection of  objects denoted generically by x A fuzzy set A 
in X is a set of  ordered pairs 

A = {x, UA (x)}, x ~ X 

where UA(x) is termed the grade of membership o f x  in A, and UA:X ~ M is a 
function from X to a space M, called the membership space Hence a fuzzy set 
A on a referential set X can be viewed as a mapping UA from X to M. 
(Examples of  membership functions are presented in all figures). 

For our purposes It IS sufficient to assume that M is the interval [0, 1], wlth 
0 and 1 representing, respectively, the lowest and highest grade of membership 
The degree of membership of x in A corresponds to a " t ru th  va lue"  of  the 
statement " x  is a member  of  A ". When M only contains the two points 0 and 
1, A is nonfuzzy. 

Problem 1 

Let X be a set of  prospective policyholders, x =.,~ ( i t ,  t2, t3, t4). For  simplicity, 
assume that the requirements for the status o f "  preferred pol icyholder"  will be 
based on the values taken by 4 variables 

t~, the total level of  cholesterol in the blood, in mg/dl, 
t2, the systolic blood pressure, in mm of  Hg 
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t3, the ratio (in %) of the effective weight to the recommended weight, as a 
function of height and build 

&, the average consumption of cigarettes per day 

Using a classical approach, an insurance company would for instance define a 
preferred policyholder as a nonsmoker with a cholesterol level that does not 
exceed 200, and a blood pressure that does not exceed 130, and a weight that is 
comprised between 85% and 110% of his recommended weight. 

If a fuzzy set approach is to be used, membership functions have to be 
defined for all cnterm. 

National Institutes of Health nowadays recommend a level of less than 
200 mg of cholesterol per deciliter of  blood Levels between 200 and 240 mg/dl 
are considered to be borderhne high The fuzzy set A of the people with a low 
level of cholesterol can then 
UA (x, t~) 

1 

1 - 2 ( - - - -  

UA (x; tt) = 

2 / 240- t~ 

40 

.0 

be defined by the membership function 

l I ~ 200 

t l -  200 )2 
40 200 < t, ~ 220 

__)2 
220 < t~ ~ 2 4 0  

240 < t~ 

The normal systolic blood pressure is about 130 mm of mercury. People with a 
blood pressure greater than 170 are five times more likely to suffer from 
coronary heart &sease than indwiduals with normal blood pressures Hence the 
fuzzy set B of the people with an acceptable blood pressure can be defined by 
the membership funcuon U~(x, t2) 

1 t 2 =< 1 3 0  

I 2 ( t2 - -13012  - 1 3 0  < t2=< 1 5 0  
40 

U B ( x ,  t , )  = 

2 (  170-  tz ) 2 

4O 
150 < t2 =< 170 

.0  170 < t 2 

Overweight and underweight people have a shorter life expectancy, skinniness 
being less primordial than obesity. This is reflected in the asymmetric member- 
ship function Uc(x, t3) that characterizes the fuzzy set C of the people with 
adequate weight 
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0 

2 ( t 3 - 6 0 )  2 

- 2 5 -  

( 8 5 - t 3 )  2 
I - 2  - 25-- 

Uc(X, t3) = I 

1 - 2 (  t 3 -  110 ) 2 0  

2 ( 1 3 0 - t 3 )  2 2 0  

0 

13 ~ 60 

60 < 13 ~ 72.5 

72.5 < t 3 =< 85 

85 < t 3 =< 110 

110 < t 3 ~ 120 

120 < t 3 ~ 130 

1 3 0  < t 3 

Even hght smokers are more prone to suffer from cancer and car&ovascular 
dxseases than nonsmokers Hence they cannot be considered as "p re f e r r ed"  
and the set D of the nonsmokers is nonfuzzy 

1 t 4=O 
U o(X, /4) = 0 I4 > 0. 

The four selected membersh.p functions are represented m Figure 1. Admit- 
tedly, there ~s some arbitrariness m the defimton of these membership 
functmns, but fuzzy set theory contends that this is better than membership 
functions that abruptly jump from 1 to 0, m the classmal approach 

A fuzzy set is said to be normal lff Sup, UA(x) = 1 Subnormal fuzzy sets 
can be normalized by dwldmg each UA (x) by the factor Sup, UA (x) 

.,4 is said to be the complement of  A iff U,i(x) = I - U A ( x )  Vx. 
A fuzzy set Is contained m or is a subset of a fuzzy set B (,4 c B) iff 

UA(x) ~_ UB(X) V x. 
The umon of A and B, denoted A U B, is defined as the smallest fuzzy set 

contalmng both A and B Its membership function is gwen by 

UAuB(X) = max [UA(X), UB(X)] x ~ X  

The intersection of  A and B, denoted A f'l B, is defined as the largest fuzzy set 
contained m both A and B. Its membership functton ~s given by 

UAnR(X) = mm [gA(x),  gB(x)] x e X  

The nouon of intersection bears a close relation to the notion of  the connective 
" a n d " ,  just as the umon of A and B bears a close relatmn to the connectwe 
" o r " .  It can be shown that these definmons of fuzzy union and intersectmn are 
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the only ones that naturally extend the corresponding standard set theory 
notions, by satisfying all the usual requirements of  assoclatlwty, commutat lv-  
ity, ~dempotency and dlstributw~ty. 

Problem 1 

The fuzzy set E of  the nonsmoklng individuals with low cholesterol, acceptable 
blood pressure and adequate wexght ts the intersection of  the 3 fuzzy sets A, B, 
C, and the nonfuzzy set D. Its membership function is gwen by 

UE(X; tl , t2, t3, /4) = m m  [UA (x ;  tl), UB(x, t2), Uc(x; /3), UD(X; 14)] 

So an individual can only be a full member  of  E if he doesn ' t  smoke, has a 
cholesterol level not exceeding 200, a blood pressure not above 130, and a 
weight no less than 85 % and no more than 110 % of his recommended or ideal 
weight. Thts corresponds to the classical approach.  

A nonsmoker  x = x(210, 145, 112, 0) with a cholesterol level of  210, a blood 
pressure of  145, and who ts overwetght by 12% ts a member  of  E wtth a grade 
of  membership 

UE(x, 210, 145, 112, 0) = mm (0.875, 0.71875, 0 98, 1) = 0.71875. 

In other words, the " N "  operation assigns a grade of  membership that 
corresponds to the most severe of  the infringements to "per fec t ion" ,  m this 
case blood pressure. Cumulative effects and interactions between the criteria 
are ignored, which Js not realistic. Obwously,  the health consequences of  high 
blood pressure are worse when there Is also an excess of  weight and cholesterol. 
Also, since only the most  severe cond~tton ~s considered, tt ~s tmposs~ble to 
introduce compensations or trade-offs m decision rules. A mild excess of  
weight cannot  be compensated by ideal cholesterol and blood pressure 

2.2. Other definitions of the intersection 

The minimum operator  that charactenzes the intersection corresponds to the 
"logical  a n d "  Other definitions of  the intersection have been suggested, they 
correspond to " s o f t e r " ,  more flexible interpretations of  the connectwe " a n d  ". 
They all amount  to exactly the same in the conventional case of  degrees of  
membership restricted to 0 and 1. The selection of  a specific operator  wdl 
depend on ~ts posslbd|tJes to allow for cumulative effects, interactions, and 
compensations between the criteria. We wish the following properties to be 
satisfied. 

Property 1 (cumulative effects): Two infringements are worse than one. 

UAns(X) < m l n [ U A ( x ) , U s ( x ) ]  If UA(x) < 1 and Us(x) < 1. 

Property 2 (interactions between criteria). Assume UA (x) < Us(x) < 1. Then 
the effect of  a decrease of  UA(x) on UAnn(x) may depend on Ue(x) 
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Property 3 (compensations between crlterm): If UA(r) and Uo(x) < 1, the 
effect of  a decrease of  Ua(x) on UAnb(X) can be erased by an increase of 
Us(x)  (unless, of  course, Us(x)  reaches 1). 

The algebraic product F of  A and B is denoted AB and Is defined by 

gA~(x) = UA (x)" UB(x) 

The bounded difference G of A and B is denoted A O B and is defined by 

UAes(x )  = max [0, UA(x)+ UB(x ) -  1] 

The Hamacher operator H defines the intersection of two fuzzy sets A and B by 

UA (x)" U~(x) 
UP(x)  = o < p < l 

p + (I - p) [ UA (x)  + UB (x)  - u~ (x)  UB (x)] 

The Yager operator Y defines the mtersectmn of  two fuzzy sets A and B by 

U~(x) = I- -mm{I ,[( I - -UA(x))P+(I--UB(x))P] I1p} p ~ I 

Problem 1 

The generalized operators provide a more realistic way of modelling this 
specific problem because they explicitly allow for compensations and interac- 
tions between the selected criteria First consider the algebraic product. The 
grade of  membership of  individual x(210, 145,112,0) in the fuzzy set 
F = ABCD is 

UF(X; 210, 145, 112, 0) = (0 875) (0.71875) (0.98) (1) = 0 6163 

The effect of  high blood pressure is here amphfied by the presence of  a shght 
obesity and a cholesterol level mildly above normal This operator satisfies all 
three properties. 

The grade of membership of the same mdwldual m the fuzzy set 
G = A O B O C O D corresponding to the bounded difference operation is 

Ua(x; 210, 145, 112, 0) = max [0, 0 875+0.71875+0 98+ I - 3 ]  = 0 57375 

Hence the effects of  the cnterm are addltwe; no interactions are introduced, 
since the consequences of  cholesterol are the same whatever the blood pressure 
and the weight. This operator satisfies properties 1 and 3, but not 
property 2 

The minimum and algebrmc product operators model two extreme situa- 
tions. The minimum operator does not satisfy any property Compensations 
and interactions cannot be introduced. The algebraic product allows for 
compensation and maximum interaction, since the effect of one criterion fully 
impacts the others. The Hamacher and Yager operators model mtermedmte 
situations, wtth flexlblhty provided by the parameter p. 

The Hamacher operator reduces to the algebraic product when p = 1. For 
p < 1, the denominator Is less than 1 and UH(X) > UF(X): the producl~ 
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operator is " so f t ened" ;  this operator models weaker interactions It reduces 
the effect of combined infringements The reduction effect is greater for severe 
Infringements. Also, the lower the selected p, the greater the reduction effect 
Hence this operator can be used if it ~s considered that the combined effect of 
high cholesterol and high blood pressure is somewhat less than multlphcatlve 
Selecting p = 0.5 for our example, we obtain successwely 

UffZ(x, 210, 145) - (0 875) (0 . . . . . .  71875) = 0.6402 
0 5 + ( 1 - 0  5)[0.875+0.71875-(0.875)(0.71875)] 

Uff2(x, 210, 145, 112, 0) = uffZ(x, 210, 145, 112) 

(0 6402) (0 98) 
- -- 0 6296 

0.5+(1 - 0  5)[0 6402+0 9 8 - ( 0  6402) (0.98)] 

This operator satisfies all three properties. 
The Yager operator reduces to the bounded difference operator when p = 1, 

and to the mlmmum operator when p --, ~ .  UPr(x) is an Increasing funcnon of  
p. Hence all intermediate SltUatmns can be modelled, from the strongest to the 
weakest " a n d "  Selecting p = 2, we obtain 

U~,(x) = 1 - r a m  {1, [(1 -0 .875 )2+( I  - 0  71875)2+(I - 0  98)2] I/2} = 0.69157 

This operator satisfies all three properties, except in the case p = ~ .  

2.3. Selection of  a decision rule 

If  A is a fuzzy subset of  X, ItS a-cut A~ is defined as the nonfuzzy subset such 
that 

A~ = {x[U~(x)  > a} for 0 < a ~ I 

An a-cut can be interpreted as an error interval whose truth value is a. 

Problem 1 

The notion of  a-cut provides a flexible way of  defining preferred policyholders. 
The "classical"  approach corresponds to l-cuts such as E~ or F~. Lower 
values of a provide generahzatlons of  this defimtlon For instance preferrred 
customers could be defined as the members of E075 or F 06o- E075 IS the set of 
pohcyholders for whmh the grade of  membership attains at least 0 75 for each 
of  the selected criteria (for our specific membership functions, t~ < 214, 
tz ~_ 144, 76.2 < t 3 < 117.1, t4 = 0). Hence this amounts to relaxing all criteria 
in a uniform way 

F06o is the set of  policyholders for which the product of  the four grades of 
membership attains at least 0 60 The latter definmon is more realistic because 
it allows for interactions and compensatmns An excess of  blood pressure can 
for instance be compensated by normal or near-normal weight and cholesterol 
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levels Policyholder x(210, 145, 112, 0) is accepted as preferred using the second 
criterion. He is not accepted if the first criterion is used 

Similar decision rules can be constructed using the other operators, ~f 
medical considerations hint that they provide a better model of  the problem. 

2.4. Fuzzy operations 

The concept of  grades of  membership allows to define the following operations 
that have no counterpart  m ordinary set theory; they are uniquely fuzzy. 

Concentratton: A fuzzy set as concentrated by reducing the grade of  member- 
ship of all elements that are only partly in the set, m such a way that the less an 
element as in the set, the more its grade of  membershap as reduced The 
concentration of  a fuzzy set A as denoted CON (A) and defined by 

UCON~A)(X) = U ] ( x )  a > 1 

Ddatton: Dilation as the opposate of concentration A fuzzy set is dilated or 
stretched by increasing the grade of membership of all elements that are partly 
m the set. The dilation of a fuzzy set A as denoted D I L ( A )  and defined by 

UDILCA)(X) = U ~ ( x )  a < I 

a is called the power of  the operation. 

Intensification: A fuzzy set can be antensafied by increasing the grade of 
membership of  all the elements that are at least half m the set and decreasing 
the grade of  membership of  the elements that are less than half m the set The 
intensification of  a fuzzy set as denoted INT (A) and is defined by 

{2U~(x) 0 <U(x)__<05 
Uir~'r~A)(x) = I - 2 [ l - U A ( x ) ]  2 0 5  < U ( x ) <  1 

Fuzztfication. A fuzzy set can be fuzztfied or de-mtensffed by increasing the 
extent of  its fuzziness. There are several ways of achaeving this. 

Problem 1 

The operations of  concentrataon and dilation roughly approximate the effect of 
the llngmstic mo&fiers " v e r y "  and " m o r e  or less". They are used whenever 
the different crlterm have to be weaghted. The presentataon of  problem 1 so far 
implicitly assumes that each criterion has the same importance. If for me&cal 
reasons this is not desirable, fuzzy operahons can be used. Suppose that 
cholesterol level is the better predictor of future heart problems, while the 
importance of  blood pressure has to be downgraded. This can be reflected by 
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assigning powers of  2 and 0.5 to the two criteria. The modified fuzzy set E, 
corresponding to the minimum operator,  is characterized by 

UR(x; t l ,  t2, /'3, /'4) = min [U2A (x, /'1), UsI/2(x;/'2), Uc(X; 13), UD(X;/'4)] 

The modified fuzzy set FP, corresponding to the algebraic product, has the 
membership function 

Up(X; /'1, /'2, /'3, /'4) = U2A( X, /'1) UBI/2(X; 12) Uc(x; 13) UD(X; /'4) 

Prospective pohcyholder x (210, 145, 112, 0) has a grade of membership of  

mm [(0.875) 2, (0.71875) t/2, 0 98, 1] = 0.7656 

in ~7, and of  

(0.875)2-(0 71875) ~/2 (0.98) (1) = 0 6361 

in F. He is now accepted as a preferred customer under each of the two crlterm 
of Section 2 3, since x(210, 145, 112,0) is included in both E07s and if060. 

3 D E C I S I O N - M A K I N G  WITH FUZZY GOALS AND CONSTRAINTS 

AND FUZZY R E I N S U R A N C E  

In the classical approach to decision-making, the principal ingredients of  a 
decision problem are (a) a set of  alternatives, (b) a set of  constraints on the 
choice between different alternatwes, and (c) an objective function which 
associates with each alternative its evaluation. There is however an intrinsic 
similarity between objective functions and constraints, a similarity that 
becomes apparent  when for instance Lagrangian multipliers are introduced 

This s lmdanty is made explicit m the formulation of  a decision problem m a 
fuzzy environment Let X = {x} be a given set of  alternatives. A fuzzy goal G m 
X, or simply a goal G, is expressed and identified with a given fuzzy set G in X 
In other words, a fuzzy goal is an objectwe which can be characterized as a 
fuzzy set m the space of  alternatives In the classical approach,  the objectwe 
function serves to define a linear ordering on the set of  alternatives. Clearly the 
membership function Uc(x)  of  a fuzzy goal serves the same purpose, and may 
even be derived from a given objective function by normalization, which leaves 
the hnear ordering unaltered Such normalization provides a common denom- 
inator for the various goals and constraints and makes ~t possible to treat them 
alike. A fuzzy constraint C in X, or smaply a constraint C, is similarly defined 
to be a fuzzy set C m X. An important  aspect of  those definitions is thus that 
the notions of  goal and constraint both are defined as fuzzy sets in the space of  
alternatives. Hence they can be treated identically m the decision process Since 
we want to satisfy (optimize) the objcctwe function as well as the constraints, a 
decision m a fuzzy environment is defined as the selection of  activities which 
simultaneously satisfy objective functions and constraints. A decision can 
therefore be viewed as the intersection of  fuzzy constraints and fuzzy objective 
function(s) The relationship between constraints and ob.lectwe functions in a 
fuzzy environment is therefore fully symmetric 
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Assume we are given a fimte set of alternatives X = {xj, x2 . . . . .  x,,}, a set of 
goals G~ . . . .  Gp, characterized by their respectwe membership functions 
Uc,(x) ,  ., Uo~(x), and a set of constraints Ci . . . .  Cq, characterized by their 
respective membership functions Uc (x)  . . . . .  Uc (x). Finiteness is assumed for 
expository purposes only and can be easily rela~ed. 

A decision is a choice or a set of choices drawn from the available 
alternatives, satisfying the constraints and the goals. The constraints and goals 
combine to form a demsmn D, which ~s naturally defined as the mtersecUon of 
the fuzzy sets G's and C's. 

D = Gi {7 G2 f'l ... C1GpN Ci ["l C2 N ... ~ Cq 

Consequently a decision D is a fuzzy set in the space of  alternatives whose 
membership function ~s 

U p ( r )  = mm[Ua, (x ) ,  ., Ueo(x), Uc.(.v), ., Uc~(X)] 

This decision membership funcuon can be interpreted as the degree to wh,ch 
each of the alternatives satisfies the goals and constraints As m example 1, 
concentrations and dilations can be performed to reflect unequal importances 
of the goals and constraints, and other intersection operators can be used. 

Let K be the (nonfuzzy) set consisting of all the alternatives for which Up(X)  
reaches its maxmaal value K is called the optimizing set, and any alternative in 
K is an optnnal decision. The decision-maker simply selects as best alternative 
the one that has the maxmmm value of  membership m D 

This decision-making procedure is essentially a maxlmln technique, similar 
to the selectmn of  an optimal strategy in noncooperative game theory. For 
each alternative the minimum possible grade of membership of all the goals 
and constraints is computed to obtain D Then the maximuln value over the 
alternatives m D is selected 

Problem 2 

Gwen the formulation of the problem, a reinsurance program is characterized 
by its XL deductible, and evaluated by means of 4 different variables 

tl = probability of rum (x 104 ) 

tz = coefficient of  variation of the retained portfolio 

reinsurance premium 
13 = (in %) 

cedent's premium income 

deductible 
t4 = (m %) 

cedent's premium income 

Assume the reinsurer offers 10 different XL deductibles, arranged m increasing 
order (x = 1,2, .  , 10). The values taken by the selected variables are pro- 
vlded m Table 1 



FUZZY INSURANCE 47 

TABLE 1 

CIIARACIERIST[CS OF THE [0 XL REINSURANCE PROGRAMS 

Program I 2 3 4 5 6 7 8 9 10 

61 tl 339 280 200 200 313 339 360 388 419 465 
G2 t2 2 98 3 00 3 03 3 07 3 12 3 19 3 28 3 52 3 80 4 20 
Ch t3 3 20 3 00 2 85 2 73 2 64 2 57 2 52 2 48 2 45 2 43 
C2 t4 4 6 8 9 10 I I 12 14 16 18 

The following membership funchons have been chosen They are represented 
m Figure 2 

Goal 1 (probablhty of rum) 

U~, ( x ,  t l)  = 

"1 

1 - 2 ( t l - ' 0 0 0 0 2 )  2 . 0 0 0 0 8  

(.0001-t~ )2 
2 -- 

00008 

t l ~ .00002 

.00002 < l I ~ .00006 

00006 < t~ < .0001 

.0 0001 < t~ 

Goal 2 (coefficient of varlahon) 

UG2(X, t2) = . l - - t  2 

Constraint 1 (reinsurance premium) 

I 

I - 2  
t3- 2.5 

06 

3061-t3 )2 

2 

Uc, ( x ,  t3) = 2( 
.0 

t2 < 3-1 = 

3.1 < t2=<41  

4 1 < t 2  

13 ~ 2.5 

2 5 < t 3 ~ 2.8 

2.8 < t~ N 31 

3.1 < t '  3 
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C o n s t a n t  2 (deduct ib le)  

= ftl4+0'l 
Uc2(X;/4) ~ 20.65- 1.5t 4 

Given  those member sh ip  funct ions,  the grades  o f  me mbe r sh ip  for all a l te rna-  
tives are easily compu ted .  They  are  presented  in Tab le  2. 

T A B L E  2 

GRADES OF MEMBERSHIP OF THE [0 DIFFERENT PROGRAMS 

0 < t 4 < 0 9  

0 9 < t 4 = < 1 1  

I 1 < t4 =< 1.7667 

1 7667 < 14 

Program I 2 3 4 5 6 7 8 9 l0 

Gi 94 98 1 1 96 94 92 89 85 78 
G2 1 I I I I 91 82 58 30 0 
Ct 0 0 06 35 71 89 97 998 I I 
C2 5 7 9 I 1 1 85 55 25 0 

The  m e m b e r s h i p  funct ion Up(X) of  the d e o s l o n  D is ob ta ined  by s imply  
t ak ing  the m i n i m u m  o f  the U's, for each a l ternat ive ,  as shown in Tab le  3 

TABLE 3 
MEMBERSIIIP I'UNCTION O1" D 

Program 1 2 3 4 5 6 7 8 9 I 0 

Uo(.x) 0 0 06 35 7t 89 82 55 25 0 

N o t e  that  no a l te rna t ive  has full member sh ip  m D:  fuzzy set D is subno rma l  
This  o f  course  reflects the fact that  the specified goals  and cons t ra in t s  confl ict  
with one ano the r ,  rul ing out  the existence o f  an a l te rna t ive  which fully satisfies 
all o f  them 

In ou r  case, when all goals  and  cons t ra in t s  are  cons idered  to be o f  equal  
impor t ance ,  the ruin p robab i l i t y  cr i te r ion  is m o p e r a t w e ,  it does  not  inf luence 
the decision.  The  m e m b e r s h i p  funct ion o f  D is based on the first cons t r a in t  for 
a l te rna t ives  1 to 6, on the second goal  for a l te rna t ive  7, and  on the second 
cons t r a in t  for a l te rna t ives  8 to 10 

The  op t ima l  decis ion Js p rog ram 6, co r r e spond ing  to a re tent ion  o f  1 1% o f  
the cedent ' s  p r emium income.  This  a l t e rna twe  fully satisfies the second 
cons t ra in t ,  given our  selection o f  member sh ip  funct ions.  The  o ther  cons t ra in t  
and  the two goals  are  conf l ic t ing and canno t  be fully satisfied The  wors t  
in f r ingement  is the re insurance  p remium,  cons idered  to be too  high. 

Assume  now that ,  af ter  reviewing the preceding analysis ,  the ma na ge r  o f  the 
re insurance  d e p a r t m e n t  dec~des that  the first cons t ra in t  Ct is o f  p a r a m o u n t  
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importance, and accordingly assigns it a higher weight. A concentration of the 
fuzzy set Ci ,  with a = 2, is then performed:  the values of  Uc~(x, tO are smaply 
squared. This has the effect of  decreasing the membership function of that 
important  constraint and making it more influential in the determination of D. 
It is easily seen that the optimal decision becomes program 7. This illustrates 
an inherent weakness of  fuzzy decision-making the sensitivity of  the optimal 
solution to the particular selection of membership functions. And it is difficult 
to avoid an important  element of  subjectivity in the determination of those 
functions (see, however, CIVANLAR and TRUSSEL (1986) and DISHKANT (1981) 
for at tempts to construct membership functions using statistical data) 

The preceding analysis used the " h a r d "  definition of the connective '" and ", 
since the minimum operator  was used as intersection. As illustrated in 
Example 1, this excludes all forms of compensations and interactions between 
the goals and constraints In some managerml problemes the decision maker 
might wish to be less restrictive. For instance, he might not really want to 
actually maximize the objective function, but rather reach some aspiration 
level, which might not even be definable crisply (his objective might be to 
" improve  the present cost situation considerably",  for instance). Or the " < " 
sign m a constraint m~ght not be meant in the strict mathematical sense, but 
small violations might be acceptable, especially if an important improvement m 
the objectwe function results (effective expendlturcs might slightly exceed a 
budget constraint, for instance) Hence in many cases ~t is more appropriate  to 
use a " s o f t e r "  aggregation operator  than the minimum, like the bounded 
difference or the Yager operator.  A decision ms then defined as the confluence 
of  goals and constraints 

Uo(x) = Uo, (x)* . . .  * Uo,(x)* Uc,(x) * Uc,(x),  

where * is the selected operator.  
It is easily checked, for instance, that if the algebraic product is used instead 

of  the minimum operator,  program 6 is the opttmal solution of problem 2, with 
program 5 a close second. 

4. FUZZY ARITHMETICS AND I'UZZY INSURANCE PREMIUMS 

DEFINITIONS. A fuzzy number is a fuzzy subset of  the real line whose highest 
membership values are clustered around a given real number. The membership 
function is monotonic on both sides of  this real number More precisely, a 
fuzzy number  A is a fuzzy subset of  the real line R whose membership function 
U A(X) = U A ( X ; a l , a 2 , a 3 , a 4 )  IS'  

(i) a continuous mapping from R to the closed interval [0, 1] 
(il) zero on the interval ( - o r ,  at] 
(in) strictly increasing on the interval [al ,  a2] 
(,v) one on the interval [a2, aj] 
(v) strictly decreasing on the interval [a~, a4] 
(Vl) zero on the interval [a4, ~ ) ,  
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where al < a2 < a3 < a4. (Examples of membership functions of  fuzzy num- 
bers are presented in Figure 3). The increasing part of UA(x), on interval 
[al, az], is denoted UAi (X), the decreasing part of UA (x), on interval [a3, a4], 
is denoted UA2(x). Alternatively, the inverse functions of UAi (x) and UAz(X), 
U~ ~(y) and U ~  t (y )  can be used; they are denoted VAz (y)  and VA2(y ). 

If a~ = a 2 = a3 = a4, A ~s an ordinary real number. 
A fuzzy number A is said to be positive ff a I > 0. It is negative ff d, 4 < 0 

Let A and B be two fuzzy numbers with membership functions 
UA(x) = U,4(x;al,a2,a3,a4) and UB(.v) = UB(.v;bl ,b2,b3,b4).  The mem- 
bership function of the sum C of A and B, denoted A • B, is defined as 

Uc(z) = max mln[UA(x),  Us(y) ]  ( x , y , z ) ~ R  -~ 

= max mm [UA(x), U , ( z - x ) ] .  

It can be shown (see for instance DuBols and PRADE (1978) and (1980)) that 
the sum of fuzzy numbers is associative and commutative, and that 

O) Uc(z) = 0 z~(-c .v ,  a l + b l ]  U[a4+b4, ~] 

(n) Uc(z) is strictly increasing in [al+bl,a2+bz], and strictly decreasing in 
[a 3 + b 3 , a4 + b4] 

(ui) Uc(z) = I z~[a2+b 2,a3+b3] 

(,v) Uc~(Z)=[UZ' (z )+UZ' (z )] - '  or Vc,(Z)= VA,(z)+Ve,(z) 

Uc2(Z) = [U.~(z)+OZ'(z)]  -' or V~(z) = V/2(z)+ V~(z). 

The product D of A and B. denoted A Q) B, IS defined by 

Uo(z) = max rain [UA(X), UB(Y)] (assuming al ,  bl > 0) 

It can be shown that D is a fuzzy number, with dl = albl, d2 = a2b2, 
d3 = a3b3, d4 = a4 b4, 

Uo,(z)- -[UZJ(z)  U Z ' ( z ) ] - '  or V~,(z)= VAl(z) Vel(z) 

Uoz(z) = [ U ~ ' ( z )  UB2'(z)]- '  or V~2(z)= G2(z) V~2(z). 

The product is associative and commutative, and distributive on G. The It th 

power of  A is naturally recursJvely defined as 

A" = A Q) A"-I  

The only reference deahng with finance apphcatlons of  fuzzy arithmetics seems 
to be BUCKLEr (1987), who defined the fuzzy extensions of the notions of 
present and accumulated value, and annumes, and showed how to compare 
fuzzy cash flows by means of extended net present value and internal rate of  
return methods. Problem 3 is a straightforward generahzat~on of that paper to 
an insurance problem 



52 J E A N  L E M A I R E  

Problem 3 

Let us compute  the net single premium o f  a $1000, 10-year pure endowment  
policy, on a life aged (55), where p = ioPss is 0.87. The interest rate i is fuzzy 
and assumed to be approximate ly  equal to 6 % ,  as modehzed by 

U,(x) 

: 0  x <  103 

U,l(x)= 5 0 x - 5 1 5  103 < x <  105 

1 1.05 < x _ <  1 0 7  

U,7(x) = 5 4 . 5 - 5 0 x  1.07 < x __< 1.09 

,. 0 1.09 < x 

(see Figure 3, upper left). As shown by the definitions o f  • and O ,  it is easter 
to use the inverse funcnons  

V,~(y) = 1 0 3 + 0 . 0 2 y  and V,2(y ) = 1 . 0 9 - 0 0 2 y .  

The present value PV(S,n) of  a positive fuzzy amoun t  S, n periods m the 
future, if the fuzzy interest rate Is i per period, can be defined as 

PV(S, n) = S Q) (1 (~ i ) - "  

This defimtlon makes sense given the assoclatlvlty and the dlstrlbutlvlty 
properties o f  O Note  however  that, generally, PV(S, n) 0 (I q) t)" wll[ not be 
equal to S. Since the face value and the survival probabil i ty are nonfuzzy,  the 
single fuzzy p remmm A of  the policy, 

A -- 1000.0 87-(1 (~ t) -w ,  

is defined by the membership  function 

0 

UAl(x) or  VAl(y) 

UA (x) = 1 

UA2(x) or  VA2(y) 

0 

where 

and 

VAi(Y) = 870(I . 0 9 - 0  02)0  - '0  

x < 367 50 

367.50 < x < 442.26 

442 26 < x < 534.10 

53410 < x ~ 6 4 7 3 6  

647 36 < x 

VA2(Y ) = 870(1 0 3 + 0 . 0 2 y )  - l°  (0 =< y =< 1) 

This function ts represented in Figure 3, upper  right 
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Next assume that p = ~0P55 is also fuzzy, with membership funcUon 

t 
0 (x < 0 77) U(x > 0.97) 

Up(x) = 1 0 x - 7 . 7  0.77 < x ~ 0 87 

[, 9 . 7 -  10x 0.87 < x < 0.97 

and inverse functions Vpl(y) = 0 . 7 7 + 0 0 1 y  and Vp2(y ) = 0 9 7 - 0 . 0 1 y  (see 
Figure 3, lower left). 

The membership funcUon of the premmm A now becomes 

0 

UAi(x) or VAl(y) 

U,4 (x) = ~  1 

L UA2(x) or VA2(y) 

0 

x < 325.26 

325 26 < x < 442.26 

442 26 < x <  534 10 

534 10 < x < 721.77 

721.77 < x 

where 

VAj(y ) = IO00"Vpj(y)'[l+V,,3_j(y)] -'° j =  1,2 

VAi(y) = 1000(0 7 7 + 0 . 1 y )  (1 09--0.02y)-~0 

VA2(Y ) ---- 1000(0 .97-0  l y ) (1  03+0 .02y )  -~° 

This membership function, represented in the lower right part of  FIgure 3, 
reflects the increased fuzziness. 

It is also possible (see BUCKLEr (1987)) tO fuzzlfy the number of periods n. 

5 FUZZY SETS LITERATURE 

The literature about fuzzy sets is abundant and highly speclahzed. A good 
introductory textbook is ZIMMERMANN (1987), despite the zmportant number 
of  misprints. More speclahzed textbooks are KAUFMANN (1975) and DuuoIs 
and PRAOE (1980). The seminal papers about fuzzy decision-making are 
BELLMAN and ZADEH (1970) and YAGER and BESSON (1976). Fuzzy graph 
theory, fuzzy hnear and dynamic programming and extensions of  other 
operations research methods are surveyed m ZIMMERMANN (1985) and (1987). 
Reference papers for apphcaUons of fuzzy set theory to staUstlcs are HESH- 
MATY and KANDER (1985), BUCKLEY (1985) and JAJUGA (1986). Topmcs of  
interest for actuaries where fuzzy applications have been developed include 
game theory (AuBIN (1981), BUTNARIU (1978, 1980)), economics 
(CHANG (1977), CHEN et al (1980)), and utility theory (MATmEU- 
NICOT (1986)) 
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A B S T R A C T  

Using Laplace transforms and the notion of  a pseudo compound Polsson 
distribution, some risk theoretical results are revisited A well-known theorem 
by FELLER (1968) and VAN HARN (1978) on infinitely divisible distributions IS 
generalized. The result may be used for the efficient evaluation of  convolutions 
for some distributions. In the particular arithmetic case, alternate formulae to 
those recently proposed by DE PRIL (1985) are derived and shown more 
adequate in some cases. The individual model of  rlsk theory is shown to be 
pseudo compound Po~sson. It is thus computable using numerical tools from 
the theory of integral equations m the continuous case, a formula of  Panjer 
type or the Fast Fourier transform in the arithmetic case. In particular our 
results contain some of  DE PR1L'S (1986/89) recurslve formulae for the 
individual life model with one and multiple causes of  decrement. As practical 
illustration of  the continuous case we construct a new two-parametric family of  
claim size density functions whose corresponding compound Polsson distribu- 
tions are analytical fimte sum expressions. Analytical expressions for the fimte 
and infinite time ruin probabfliues are also derived. 

K E Y W O R D S  

Pseudo compound Polsson, integral equation,  infinite divisibility; multiple 
decrement model,  ruin probability. 

| .  P S E U D O  C O M P O U N D  P O I S S O N  D I S T R I B U T I O N S  

In order to investigate probability density " f u n c t i o n s "  such as 

f (x)  = exp ( - 2 )  6 ( x ) + ( l - e x p  ( - 2 ) ) / 1  exp ( - ~ x ) ,  

2, # > 0, O(x) the Dirac function, 

we need the theory of "generalized funct ions"  or "d i s t r ibu t ions"  m the sense 
of L. SCHWARTZ (1950/51/65/66). In this paper we refer to the presentation by 
DOETSCH (1976) (English translation is available) To avoid a conflict of  
terminology between Function Theory and Statistics we use the term general- 
Ized function. This is a hnear and continuous functional on the space of  
infinitely dlfferentlable functions on [R with compact  support  In this paper 
generalized functions are usually written without argument as f ,  g, Some- 
times and especially m applications we will abuse notation and write f (x)  
ASTIN BULLETIN, Vol 20, No I 
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instead o f f ,  e.g. we write J ( x )  for the Dlrac function instead of  6. Integrals are 
always understood in the Lebesgue sense. 

Let ',~ be the space of  all locally mtegrable functions on [0, ~ )  0.e. integrable 
xn every fimte subinterval of  [0, ~ ) ) ,  and let r/ be the space of all generahzed 
functions on [lq. F o r f ~ ' / ,  s E C, the Laplace transform o f f ( x )  Is defined to be 

Lf(s )  = exp ( - s t )  f ( t )  dt. 
0 

This mathematical  object is extended as follows to an appropriate  subspace of 
fY (see DOETSCH, § 12). Let D k, k = 1, 2 . . . . .  be the k-th derivative operator  
acting on the space 9 .  A generalized function f is said to be of finite order k if 
f = Dkh(x )  for a continuous function h ( r )  defined on ~, and k is the smallest 
integer with th~s property. For example, the Dirac function 

J = D2h(x) ,  h (x )  = I O, x < 0 
( x, x > O  

is of  order 2. Restrict now f/ to the subspace f/o of  generalized functions of  
finite order whose associated continuous functions h(x)  satisfy the con&- 
tions 

h(x)  = 0 for x < 0, 

Lh(s)  converges absolutely for Re(s) > a,  

a dependent on h. 

For  f = Dkh ( x ) ~  f/o, s e C, the Laplace transform is defined to be 

(1.1) Lf ( s )  = s k Lh(s)  

and is an analytical function for Re(s)  > a. The space ' /  is embedded in r / a s  
follows. The generalized function defined by r e ' /  is the functional 

i oo f ( x )~p (x )dx ,  ~0(x) infinitely dffferentiable on R with compact  support.  

--03 

A function f ~ ' /  with a Laplace transform in the classical sense has the same 
Laplace transform m the generalized sense (DoETSCH, Satz 12.2). Moreover  the 
inverse of  the Laplace transform is unique up to a zero (generahzed) function 
m both the classical and generalized sense (DOETSCH, Satz 5.1, and p 72) Here 
the zero function z (x )  in '/ is a function such that 

I ' z ( x ) d x  = 0, for all t > 0. 
0 

The convolution operator  on ~/o is defined as follows. I f  f =  D " h ( x ) ,  
g = D ' k ( x ) ,  then 

f , g  = Dm+"(h* k) (x ) .  
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The operahons on the classical Laplace transform extend to the generahzed 
case Some operations used m this paper  are summarized m the next Table 

( Generahzed) fum tlon Laplace transform 

f, g Of(s), Lg(s) 
af+bg, a, b ~ R aLf(~)+bLg(s) 
f * g  Lf(s)  Lg(v) 
.~f - (dido) Lf  (Q 
exp ( - a . ~ ) f ,  a ~  R Lf(.~+a) 
f '  (x) sLf(~) - f (O + ) 
d(x)  (DIrac funcuon) 1 

To dlustrate the consistency of the Table with definmon (1.1) we derive the 
formula for the Laplace transform of the n-th denvatwe f ( " )  of a function 
f e  ' / .  From the theory of  generahzed functions (e.g. DOETSCH, § 14) one knows 
that 

D " f = f ( " ) +  f c " - O ( O + ) 6  + . . + f ( 0 ~ ) O  C"-I) 

Since Ldtk) (s) = s k it follows with (1.1) that 

s" L f ( s )  = L D " f ( s )  

= L f ( " ) ( s ) + f ( "  I)(0+) + ...  + f ( O + ) s  " - I ,  

which provides after rearrangement the desired formula. The differential rule 
for a generahzed funcUon f e  ~'o looks somewhat different, namely 

LD" f ( s )  = s" LJ (s) .  

From now on our main concern ~s probabdlstic. The set of  locally integrable 
probabdlty density functions f e ' /  is denoted by ' f  P The dls tnbuhon corre- 
sponding to f ( x )  is 

l 
i t  

F ( x )  -- f ( t )  dt .  
o 

It s well-known that Panjer 's recurswe formula plays an Important  role in 
computat ional  risk theory. For  r e ' ~  P we are interested in the analogous 
integral equation 

i 
X" 

(1 2) x f ( x )  = 2 y h ( y )  f ( x - y ) d y ,  2 e N ,  
0 

where h e 7  is not necessardy posmve In applications of  risk theory the 
assumption 0 < F(O) < 1 is almost always fulfilled. We consider therefore the 
subset ~/Po of  all funchons f e  7" P with 0 < F(O) < 1 and for which there is a 
umque solutmn h e ' /  with 
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I ~ h ( x ) d x  = 1, 
0 

such that (1.2) is almost everywhere fulflled From results by STEUTEL (1970) 
and VAN HARN (1978) the set ' / P o  contains all mfimtely diwslble densities on 
(0, oo) (see Corollary 2). It has been shown m the arithmetic case that there are 
interesting non-lnfimtely divisible distributions on IN for which the arithmetic 
version of  (1.2) is fulfilled, e.g. the mdwldual model of risk theory with 
multxple causes of decrement (HORLIMANN (1989b)) Are there analogous 
continuous candidates in ' / Po  and what is exactly this set? A practical answer 
~s postponed to the end of th~s Section. From a mathematical point of  wew, the 
set ': Po, gwen that ~t contains non-infinitely dlws~ble distributions, is appeal- 
ing, since ~t leads to a natural generahzatJon of the characterization by FELLER 
(1968) and VAN HARN (1978) of infinitely davisible distributions with non- 
vanishing zero-probability. 

THEOREM 1 L e t f ( x )  be m the class ':" Po. Then m the space :1'o the following 
representation holds almost everywhere 

f ( x )  = ~ e x p ( - 2 )  2k/k! h*k(x) 
k = 0  

where h*° (x )=  6(x),  2 = - In{F(0)}  and h(x)  is almost everywhere the 
umque solution of  the integral equation 

I (1.3) x f ( x )  = 2 y h ( y )  f ( x - y )  dy. 
0 

PROOF. The integral equation (1 3) can be rewritten as 

x f ( x )  = 2 ( f *  u ) ( x )  with u(x)  = xh(x) .  

Applying the Laplace transform we get 

(d/dO Lf(s)  = 2 Lf(s)" (d/ds) (Lh(s)) 

It follows that 
Lf  (s) = c" exp (2 Lh (s)). 

By Laplace mversxon in the space ::o we get almost everywhere 

f ( x )  = c ~ 2~/k! h*k(x). 
,~=0 

In th~s formula we see that p = f - c 6 ~  :/o comes from a function p c'," 
By integration 

F(x)  = c + p( t )  dt, 
0 
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which shows that c = F(0). Put 2 = - I n  tF(0)} to get the result. 
The above result suggests the following defimtlon. 

DEFINITION. A probablhty density function f ( x )  defined on (0, c~) is said to 
be of  pseudo compound Potsson type i f f e  7 Po. We call the associated h (x) a 
pseudo density. 

INTERPRETATION In risk theory and when it is actually non-negative the 
functton h(x) plays the role of  claml size density 

The following equivalent formulation of  Theorem 1 can be more adequate 
for practical evaluations In particular it generahzes the result by 
STROTER (1985) 

COROLLARY 1. Let f ( x )  be pseudo compound Polsson with parameter  2 and 
pseudo density h(x) D e f i n e p ( x )  = f ( x ) - e x p ( - 2 ) d ( x ) .  

Then p(x)  satisfies the integral equation 

(l 4) xp (x) = 2 ex p ( - 2) xh (x) + 2 yh (y)  p (x - y) dy 
0 

PROOF. Introduce f ( x ) =  exp ( - 2 ) f i ( x ) + p ( x ) i n  the integral equation (I.3) 
to obtain immediately (1 4). 

In view of  its importance both in theory and practice (see eg .  STEUTEL 
(1979)) we recall the definition of mfimte divisibility. 

DEFINITION. A random variable X, taking values in ~, is called mfinitely 
dtvt~ble if for every n~/N there exist independent, identically distributed 
random variables Yi,,, . . . ,  Y,,., such that the following equality in distrlbuuon 
is valid • 

d 
X= YI.. + • - + Y,,,,," 

Equivalently P(z) l l '=  E[zX] I/", Lf(s)  I / '= E[exp ( - sX)]  '/'' or rp(t) ' / ' ' =  
E[exp(ttX)] '/'' is respectively a probabihty generating function, a Laplace 
transform or a characteristic function for every n e IN The associated proba- 
blhty density and distribution are also called infinitely divisible 

The special case of  Theorem I for infinitely divisible distributions on [0, co) 
has been identified in other forms by STEUTEL (1970) and VAN HARN (1978) m 
the general and KATTI (1967) and FELLER (1968) in the arithmetic case 

COROLLARY 2. Let X be a random variable defined on [0, m)  with locally 
lntegrable dens l tyf ( ,c )  such that 0 < F(0) < 1. Then the following conditions 
are eqmvalent • 
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(a) 
(b) 

(c) 

W HORLIMANN 

X Is mfimtely divisible; 
X is compound Poisson with parameter 2 and jump density h (x) and f (x)  
is soluUon of  the integral equataon (1.3); 
The solution h(x) of the integral equataon (1.3) is positive 

PROOF. In the arithmetic case the equivalence of (a) and (c) has been shown by 
KATTI (1967) (other proof  by STEUTEL (1970, p. 83)) The eqmvalence of (a) 
and (b) was shown by FELLER (1968, VOI. I, 3rd edition, p. 290) (other proof  
by GERBER and VALDERRAMA OSPINA (1987)). In the continuous case the 
equivalence of (a) and (b) as due to VAN HARN (1978, theorem I 6.6) for the 
compound Poisson representation and STEUTEL (1970) (see also VAN HARN, 
Corollary 1 6.3) for the integral equation representauon. The equivalence of (b) 
and (c) follows from Theorem 1. 

Next we display a subclass of," Po which is big enough for our apphcauons. 
In partacular we will show by constructaon an Sectaon 4 that the class ' / P o  
contains more functions than the infinitely dtvaslble ones. 

THEOREM 2. Let / P' be the subclass of / P consisting of functaonsf(x)  which 
satisfy the following condiuons:  

0) 0 < F(0) < 1. 
(n) The associated generahzed function f - F ( O)d  ~ "/o comes from a contin- 

uous functaonf(x)-F(O)d(x) defined on [0, ~ ) .  

Then '," P' is contained m / Po. 

PROOF Let f e ' / P ' .  The function p(x) = f ( x ) - F ( O ) J ( x )  is by assumption 
continuous on [0, m) Consider the Volterra integral equation of the second 
kind 

a(x) = 2-  e x p ( 2 ) x p ( x ) - e x p ( 2 )  a( y) p ( x -  y) dy, 2 = - In{F(0)} .  
0 

Smcep(x~-y and xp (x )  are contmous on {0 _< x _< a, 0 _< y _< x} respcctwely 
{0 < x < a}, this equation can be solved umquely for a(x) (see e g JERR1 
(1985), p. 194 and p 201) Set h(x) = a(x)/x'. After algebraic mampulatlon 
one sees that h(x) is the unique solution of  the integral equation (1.4). Since 
f(,x) = F(O) J(x)+p(x),  one checks easily that h(x) is also the unique 
solution of  the integral equation (1.3). Provided that 

I ~ h(x)dx = I, 
0 

we have shown that f ~ /  Po. This point is proved as follows. Since h(x) Js 
solution of (1 3) one shows that 
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i ~o h ( x )  dx  = c < oz 

0 

Then 71(x) = h(x)/c is the umque solution of  the integral equation 

x f ( x )  = ~,c y h ( y )  f(x-),)dy. 
0 

Since It(x) dx = I one has f e  / Po. But from Theorem 1 one has then 
0 

2c = - I n  {F(0)}. 

By definition of  2 above one has indeed c = I. 

R E M A R K S  

(I) In Theorem I and Corollary 2 the condition F(0) > 0 is necessary. The 
infinitely divisible exponential d e n s i t y f ( x )  = / t  exp ( - l t x )  leads to the solution 

h(x) = exp(-i lx)/x ,  but h(x)dx = ~ .  This density is not compound 
0 

Polsson, but the weak hmlt of  the compound Polsson densities f~(x) = exp 
( - 2 )  d ( x ) + ( I - e x p  ( - 2 ) ) / t e x p  ( - p x )  as 2 ~ oo, with claim size densities 
h~ (x) = exp ( - / i x )  ( 1 - e x p  (-ax))/2x, a = (exp ( 2 ) - I ) ; u .  This result will be 
derived m Section 4. In general p(x) with P(0) = 0 is Infinitely divisible if and 
only i f f~ (x )  = exp ( - 2 ) d ( x ) + ( I - e x p  ( - 2 ) ) p ( x ) i s  mfimtely divisible with 
F(0) = e x p ( - 2 )  and p(x) is the weak limit of  the f~'s as 2 ~ oz. (FELLER 
(1968), vol 2, 2nd edition, p. 303). 

(2) In the arithmetic case the integral equation (1.3) is to be replaced by the 
well-known Panjer recurslve formula 

(1.5) k p ( / , )  = ,:o ~ sh(,s)p(k-s) 
s--I  

An independent and more elementary proof  of  the results m this mathemati-  
cally simpler case in presented m HfJRLIMANN (1989a, 1989b). Observe that 
Laplace transforms are to be replaced by the geometric transform ( =  proba- 
bility generating function m case of  arithmetic distributions, see GI~-HN (1975) 
for fundamentals)  

(3) Methods to solve integral equauons can be found m all parts of  Applied 
Mathematics.  Transform theory (see WIDOE~ (1971)), especmlly Laplace 
transforms, is a powerful tool to get closed analytical results An illustration is 
given m Section 4. Numerical methods were extenswely studied by BAKER 
(1977) and more recently equation (I 4) has been solved in the insurance 
context by STROTER (1985). It is worthwfle to mention that the Laplace 
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transform approach simplifies the derivation of  Theorem 1 1. of the latter 
author, which uses the method of  successive approximation. 

(4) Theorem 1 can be interpreted as a duality assertion. There is a duality 
between integrable densities on [0, ~ )  and pseudo densities, where the pseudo 
compound Polsson representation realizes this duality The subclass of infi- 
nitely divisible densities is just dual to the ordinary densities. 

(5) Theorem I suggests many (also difficult) applications. It can be useful for 
the computational evaluation of convolutions (see next Section), as well as for 
the study of  other properties of  exact sampling distributions. A statistical 
application is given in HORLIMANN (1989a). 

(6) With more technical refinements it should be possible to extend the results 
to arbitrary one-sided unbounded intervals [a, ~ ) ,  a > - ~ ,  (see VAN HARN 
(1978) for the case of infimtely dwlsible distributions). It would be of  great 
interest to generalize Theorem I, if possible, to the whole real hne and 
especially obtain a single characterizing functional equation vahd on ~. 
Unfortunately, even for infinitely divisible distributions, the latter requirement 
is still an open problem, as reported by VAN HARN (1978), p. 189. 

2. CONVOLUTIONS OF DISTRIBUTIONS 

Let X~, X2, .  , Xn be n mutually independent random variables on [0, co) with 
a common lntegrable density f ( x )  such that 0 < F(0) < I. In probability and 
statistical theory one is interested in the exact sample distribution of  the mean. 
It is a straightforward rescahng of  the distribution of the sum 

X = X i + . . . + X , ,  

whose density is given by the n-fold convolution 

f ( x )  = f*"  (x). 

The evaluation of  this function uses the recurslve formula 

I f*(~+l)(x ) = f ( y ) f * k ( x - y ) d y ,  
0 

which is very time-consuming for large values of n, especially when / (x) is not 
a simple function 

Using Theorem I and the various methods for solving integral equations, an 
alternative general approach to this problem follows immediately. In the 
following we will often use g(x) = 2h(x) instead of h ( r )  

COROLLARY 3. Let the X, be defined on [0, m) with 0 < F(0) < I. Assume 
f e ' /  Po. Let g(x)  be the solution of the integral equation 
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i 
v 

(2.1) xf(x)  = yg(y)  f ( x - y )  dy 
0 

Then the n-fold convolution f ( x )  is solution of the integral equation 

(2 2) xf (x)  = n yg(y)  f ( x - y )  dy 
0 

PROOF. In the proof  of  theorem 1 we have seen that 

Lf(s) = F(0) exp (Lg (s)), 

and thus 

Lf(s) = r(o)" exp (nLg (s)). 

Therefore f ( x )  IS pseudo compound Polsson with parameter  n2 and pseudo 
density g(x)/2. The affirmation follows from Theorem !. 

Let us have a look to the special arithmetic case. The n-fold convolution 
fi(x) = p*"(x) can be evaluated using the recursive Panjer formula 

f ~(0) =p(0)" (2.3) k 

kfi(k) n 2 sg(s)f i (k-s)  
s = l  

where g(s) is itself computed recurslvely by 

~ - I  

(2.4) sg(s)p(O) = sp(s) - 2 ig( i)p(s- t )  
t = l  

At first sight it might appear  that this two-stage nested recursive algorithm is 
computat lonally less efficient than the recursive formula proposed by DE PRIL 
(1985), Theorem I 

t~ (0) = p (0)" 
(2 5) k 

kfi(k)p(O) = 2 [(n+ l ) s - k ] p ( s ) f i ( k - s )  

In some cases it might be that only g(k) is known and p(k) must be computed 
recursively using Pan ler's formula (1.5). Then the formula (2.3) Is simpler and 
more direct than formula (2.5) 

EXAMPLES. The choice 

p. F(a+ k -  I)c k-I  
(2.6) g(k) = F(a)k! ( l + c )  a+k-t  ' k = 1,2 . . . .  , p  > 0, c > 0, a > 0 

leads to Hoffmann/Thyr ion ' s  family proposed as claim number  d lsmbut lon by 
KESTEMONT and PARIS (1985/87). A similar choice would be the ETNB 
distribution 
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(2.7) g ( k )  . . . . . .  k =  1,2 . . . . .  - 1  < a < 0 , 0 < f l ~  1, 
r ( a ) k !  [(1 - /~ ) - " - ' ]  ' 

studied as probabili ty denslty (however) by WILLMOT (1988). In these examples 
it is more direct to apply formula (2 3) to compute exact n-fold convolutions 
than to use De Prd's formula (2.5). 

3. T H E  I N D I V I D U A L  M O D E L  OF RISK T H E O R Y  

Consider n mutually Independent random variables Xi, X2, ., X, ,  not neces- 
sarily identically distributed as in Section 2 Suppose each X, has a range 
contained in the interval [0, oo), which may be arithmetic or not. In risk theory 
the sum 

X = X i 4 - X  2 -t- . .  -k- X n ,  

called individual model, can be interpreted as the aggregate claims m a finite 
period on a portfolio of  n independent contracts. Let F ( x )  = P r ( X  < x), 
F , ( x )  = Pr(X,  < x ) ,  l =  1,2, . ,n ,  and assume that 0 < F,(0) < 1 for all i. 

THEOREM 2. Assume the probabihty densmesf ,  e / P o ,  t = 1, . , n Then thc 
individual model of  risk theory is pseudo compound Polsson with parameter  

2 =  - I n { F ( 0 ) } =  - ~ In{F,(0)}, 
t= l  

(3.1) 

and pseudo density 

(32) h ( x ) =  (f,_l g , ( x ) ) / 2 ,  

where each g , ( x )  is unique solution of the integral equation 

I (3.3) ~,Z(x) = yg , (y )  f , ( x - y )  dv 
0 

PROOF Clearly f = f j  * [2 * *.£,. In the proof  of  Theorem 1 we have seen 
that 

LJ,(s) = F,(0) exp ( L g , ( s ) ) ,  t = 1, 2, . , n 

It  follows that 
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Taking inverse Laplace transforms in the space :/o tile result follows Imme- 
diately 

For  slmphclty restrict the following d~scuss~on to the arithmetic case First of 
all formulae for g,(x)  must be obtained, or the g,(x) must be computed by 
other means, using for example Panjer's recurs~ve formula (3.3). Then the 
probablhty density function of the mdw~dual model can be computed using 
Panjer's recurslon, vahd in the generalized case 

x = o ,  

(3.4) f(x) 
(-ln{f(O)}/x) ~, yh(v) f ( x - y ) ,  x>  O. 

y = l  

Compared to the collective model of risk theory the extra cost for preparing 
h(x) may be substantml since many values o fg , (x ) ,  z = 1, 2 , . . ,  are revolved 
m the computation. A souqd procedure would be to approximate the pseudo 
density, as suggested by DE PRIL (1987/89) (see Example 1 below), by a more 
tractable function h* (x) and compute the approxmlate densfly 

t= l  

(3.5) f * ( x )  
(-ln{f(o)}/x) ~ yh*(y) f * ( x - y ) ,  x > 0 

Another possibility to reduce the computational effort is to apply the Fast 
Fourier Transform, inverting the Fourier transform of the pseudo compound 
Poisson representation according to the formula 

/7 = {f(0)/n} F F T -  (exp (FFT + (~))) 

Here F F T  +, {l/n} F F T -  denote Fast Fourier Transform, respectwely the 
reverse transform, and n is the size of  the vectors 7, g associated to the 
functions f(x),  g(x). Since one has to take into accout a relatwely long 
support of h(x), the FFT-method has been shown supenol to Panjer's 
recurslon m many cases (cf BOHLMANN (1984)), and the error bound in the 
distribution as well as in assocmted stop-loss prcmlums are controllable 
(BUHLMANN (1984), HURLIMANN (1986)) 

EXAMPLE 1. The smaplest mdwldual life model has been considered by DE 
PRIL (1986/87). Let n,i be the number of pohcles with amount  at risk i and 
mortahty rate q/, t =1 ,  . . , a , j  = 1, ,b  Let 1): = I-% the corresponding 

a 

survwal probablht~es, n j - -  Z n,/ the number of  policies with mortahty 
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rate qj, n = E nj the total number  of  policies, and m = i-n U the 
J - I  /= l  J ~ l  

maximum possible amount  of  aggregate claims. Furthermore let X,j be the 
random variable representing the claim produced by a policy with amount  at 
risk i and mortali ty rate qj. Its probablhty density function is given by 

pj, x = O  

(3.6) f , j (x)  = qj, x = t 

0, else 
Following the device given by the arithmetic version of Theorem 2 we search 
for unique functions g,j(x) such that 

xf~j(x) = ~ ygu(y) f , j ( x -y )  
y = l  

In the lemma below they are shown to be 

( -  1) k- '/k" (ql/p~) ~ , 
(3.7) gy(x)  = O, 

It follows that this individual model is 
parameter  

and pseudo density 

x = i k ,  k = 1,2 . . . .  

else 

pseudo compound Polsson with 

with 

Insert these formulae in (3.4). Then one has 

b 

f (O) = H ( P)" 
j - I  

For  x > 0 one obtains with y = tk" 
mm (a,x} [~/~1 

(3.8) xf(x)  = E E A (i, k) f ( x - , k ) ,  
t=l  k - I  

b 

h(x) = 1/2 E nvg'j(x)" 
l--I 1=1 

x = 1,2, . , m  

b 

A(i,k) = ( - - l ) k + l i  E nu(qJ/PJ )k" 
j = l  

This has been derived differently by DE PR~L (1986). For  computat ional  
reasons REIMERS (1988) has proposed to reverse the order of  summat ion '  

b 

2 = - E n j ln (p j )  = - ln{f(O)} 
j - I  
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mm (a, [~/kl) 

(3.9) x f ( x )  = Z A (t, k)  f ( x -  ik) 
k ~ l  t=¿  

To save c o m p u t e r  t ime it is adv isab le  to t runca te  the first s u m m a t m n  tak ing  
only  4-5 terms as p r o p o s e d  by DE PRIL and VANDEN~ROEK (1987). An  analysis  
o f  the m a g m t u d e  o f  e r ro r  involved m this app rox~ma uon  step is gwen by DE 
PRIL (1988). 

LEMMA The Pan je r  recurrence re la t ion equa t ions  

x f ( x )  = ~ y g ( y )  f ( x - y )  
y=l 

where 

f 
p, x = 0  

f ( x )  = q, x = t, 

0, else 

have the unique so lu t ion  

0 < q <  l, p + q =  l ,  

( -  I)k-J/k'(q/p) k, x = tk, 

g (x )  = 0,  else 

k =  1 , 2 , . .  

PROOF One uses induct ion.  F o r  this rewrite the recurrence equa t ions  in 
form (2.4): 

: - - I  

xg(x )  f(O) = x f ( x )  - Z Yg(Y)  f ( x - y ) .  
y = I 

F o r  x = I . . . . .  t - I  one o b t a i n s g ( x )  = 0 F o r  x = i t h e  e qua tmn  reads  

lg(t)p = tq. 

Hence  one has g(i)  = q/p. Let now x > t and  assume the fo rmula  for g ( y )  
correc t  for all y < x. I f  x = ik is a mul t ip le  o f  i, then the r igh t -hand  side o f  the 
equa t ion  gives a con t r i bu t i on  only  for x - y  = i, tha t  is y = ( k - 1 ) i .  The  
equa t Ion  reads 

ikg(x)p  = - ( k -  I) t g ( ( k -  I) i)q 

and the correc t  value o f  g(x)  is checked by induct ion  assumpt ion .  W h e n  x is 
not  a mul t ip le  o f  t the r igh t -hand  side vanishes and hence g(x )  = O. 

EXAMPLE 2. Cons ide r  the ind iv idua l  hfe mul t ip le  dec rement  model  which has 
a p p h c a t i o n s  in pension theory  for  example  (see BOWERS et al. (1986)). Let  m be 
the number  o f  causes o f  dec remen t  and  let the vector  s = (st, . . . ,  s,,) represent  
a m o u n t s  at  risk, sj being a sum at risk due to c a u s e j .  The  vector  s_ is assumed 
to take values m a f imte set A c 2~'". Let n~k be the number  o f  pohcles  with risk 
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sum structure s and 

j = l  . . . . .  m , k = l ,  

probablht les  o f  decrement  q(k j) due to cause, j ,  

, b  Let p ~ ) =  1 - ~  q~J) be the survival probabi l i ty  
/--I  

due to all causes of  decrement  Denote  by n~ = E n~_k the number  of  poh-  
s e A  

b 

oes  w~th survival probabi l i ty  p~) and by n = E nk the total numbe r  of  
k = l  

policies The  m a x i m u m  possible a m o u n t  o f  aggregate  claims is denoted by M 
and is equal  to 

b 

g max 
= I 2 g j s g m  - 

Moreove r  let the r andom variable X~k represent  the claim produced by a policy 
with risk sum structure s and probabih t les  o f  decrement  q~J), j = 1 . . . . .  m, 
k = 1, . , b Its probabi l i ty  density function, denoted by f s k ( x ) ,  is given by 

{ p~, x = o 
(3.10) f~k(x)  = q~'), x = sj, j = I . . . .  m, 

0, else 

Evalua te  now the probabi l i ty  density function of  aggregate  claims using 
Panjer ' s  recurslve formula  (3.4). We have clearly 

b 

/ ( 0 )  = H (P~'))"'" 
k = l  

For x > 0 it is necessary to evaluate first in a recurslve manner the functions 
g~ (x)  such that 

Y g , k ( Y )  g k ( x - Y ) ,  s e A ,  k = 1 . . . .  b.  
y - - I  

( 3 . 1 1 )  xf,~(x) = 

Then 

(3.12) 
s ~ - A  k = l  

= - In { f ( 0 ) } ,  

is in t roduced in the recurs~ve fo rmula  (3.4). It is impor t an t  to note that  the 
p roposed  a lgor i thm requires a two-stage nested recurslve computa t ion .  Up  to 
the m a x i m u m  possible a m o u n t  of  aggregate  claims M prepare  for each 
y = 1, 2, . , M the finite number  of  elements  g~k(Y)  recursively solving (3.11) 
such that  
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v - I  

Then apply Panjer 's  recursive formula  (34)  comput ing  h ( y )  using for- 
mula (3.12) As many  of  the values f~k(Y) indeed vamsh the summat ion  m 
(3.13) extends over at most  m terrr~s. To illustrate consider the double-  
decrement  model with m = 2, for example death and withdrawal or  death and 
&sablhty  as causes o f  decrement.  Use for brevity the notat ion s = ( l , j )  with 
A = {1 < t, j _< a} Assuming i < j (the other  cases t = j and t > j are similar) 
the elements gs~(x) are computed  more efficiently by the recurslve formulae 

0, If  x ~ { 1 ,  . , t - l }  or  

x E { t +  1 . . . . .  j - 1  Ix not multiple o f  l} 

( _  i ) r - I / r .  (q(O/p~¢))r If x = ri =f j, 

r ~ {1, . ,  [ j / t ] )  

(3 14) q~k(x) = <| g(Z)/p~T), If x = j Is not  multiple o f  t 

q(Z)/p~¢)+(_ i)r-i /r .  (q~,)/p(¢))~, if 

x = j  = rl for r e i N ,  

- [ ( x - j )  g ~ k ( x - j )  q~2) + 

+ (X--t)g~k(X--l)q~l)]/(xp(k~)), If X > J  

An alternative derivation and a d d m o n a l  formulae concerning the indivIdual 
model o f  risk theory can be found m DE PRIL (1989) 

4 PARAMETRIC AGGR E GAT E  CLAIMS MODELS 

It is well-known that the c o m p o u n d  Polsson g a m m a  and the c o m p o u n d  
negative binomial exponential  distr ibutions can be expressed as analytical 
series, the latter one as a fimte sum. Other  cases are less well-known. For  many  
practical purposes It is most  desirable to have tractable parametr ic  functions 
model ing aggregate claims. The classical approach  to this problem uses 
asymptot ic  approximate  formulae as Normal ,  Normal -Power ,  Wflson-Hflferty,  
three-parameter  gamma,  Haldane,  Esscher t ransforms and others These 
a p p r o x l m a h o n s  are at tached with approximat ion  errors which are usually 
dltfficult to control  Fur the rmore  the structure o f  the claim size density has been 
lost m these models Since it ~s often necessary to study claims frequency and 
claim size separately, parametr ic  aggregate claims models with explicit struc- 
ture o f  claim number  and claim size dls t r lbuhon are o f  interest This can be 
achieved solving analytically integral equat ions o f  the form (14).  The method 
is illustrated at a simple new case, namely a modified two parameter  g a m m a  
aggregate claims model. 

L e t f ( x )  be an aggregate claims density such that 0 < F(0) = exp ( - 2 )  < 1. 
This assumpt ion  is m particular fulfilled for a Polsson claim number  model 
with parameter  2 and when there are no claims o f  a m o u n t  ~ 0 More  generally 
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this can be assumed for infinitely divisible aggregate claims distributions 
defined on [0, oo) (see Corollary I). Rewrite the density as 

(4.1) f ( x )  = exp ( - 2 )  J (x )+g(x )  

The derivative (d/ds)Lf(s) of  a Laplace transform is denoted for short by 
L' f (s)  Solving the integral equation (1 4) is equivalent to solving a &fferential 
equation in the Laplace space and taking reverse Laplace transforms The 
differential equation reads 

(4 2) L'g(s) = 2Lg(s) L'h(s)+ 2 exp ( - 2 )  L'h(s) 

Given the function h(x) its general solution is 

(4.3) Lg (s) = c. exp (2Lh (s)) - exp ( - 2). 

where c is a constant. We have gained nothing since this ~s eqmvalent to the 
pseudo compound Poisson representation and is difficult to handle analytically. 
However  specifying the function g(x) it might be easier to find h(x) according 
to the formula 

(4.4) L'h(s) = exp (2) L'g(s)/[2(l + e x p  (2) Lg(s))] 

For  the mo&fied two-parameter  gamma aggregate claims model, the task is to 
find the pseudo density h(x) which corresponds to 

(4 .5 )g(x)  = ( l - e x p ( - 2 ) ) l l c ' x a - l  exp(-i~x)/F(a),  a > 1, I1 > 0 

Setting oJ = 1 - e x p  ( - 2 )  one gets 

(4.6) Lg(s) = co(l +s/tl) -~, L'g(s) = - ( aeJ /p )  (1 +silo -'~- t 

After straightforward calculation ~t follows that 

(4.7) L' h (s) = - aa"/[2 (s + p) ((s + It)" + a~)], 

where a is the positive a-th root defined by 

(4.8) a ~ = (exp ( 2 ) -  I ) p  ~ 

Inverse Laplace transformation yields 

5 (4.9) h(x) = exp( - t l x ) /2x  L-I[aa~/(a~+s")](y)dy 
0 

We show now that for integer values a -- n = 1, 2, 3, . the function h(x) has 
a finite closed form. Using properties of  the Laplace transform it suffices to 
invert the functions 

(4.10) L'~(s) = - l /[s( l+s")]  = s"-~/(l+s")-I /s ,  n = 1,2 . . . .  

Set 7~(x)= ~l(x)+~z(x)  with L '~ l ( s )= - I / s ,  L'~-,(s)= s"-I/(l+s"). It 
follows that 7~j (x) = I/x, x > 0, and hz(x) = - ( I / x ) ' L  -I[s" I/(I +s")] (x), 
x > 0. To find the latter reverse Laplace transform expand the rational 
function as a partml fraction (e.g. DOETSCH (1976), p. 89): 
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n - I  

(4.11) s"-'/(l+s") = l/n ~ l/(s-exp(t(2k+l)lr/n)) 
k=0  

and re-group the complex conjugate terms. As n Is odd or not one obtains two 
different formulae  summarized as follows: 

(4.12) s"-l/(l +s")  = ( l / n )  I(1 - - ( - 1 ) " ) / [ 2 ( 1  +s ) ]  + 

[n/2l- t 

+ 2 2(s--ak,,,)/(sZ--Zak,,,S+ 1)] 
k=0  J 

where ak., = COS [ ( 2 k +  l)z~/n]. For  later use set ilk.,, = I sin [ ( 2 k +  l)zr/n]l. 
F rom a table o f  Laplace t ransforms (e.g. DOETSCH (1976)) one has 

L -I  [ l / ( s 2 -  2 a s +  I)] (x)  = (l/fl) exp (a_~) sm (fix).  

It follows that 

(4.13) L-1[(2s-2a)/(sZ-2as+l)](x) = 2 e x p ( a x ) c o s ( f l x )  

whenever az+fl 2= 1. Using these results one gets after some algebraic 
mampula t ion  the pseudo density m form of  a fimte sum" 

(4.14) h(x) = (exp (-/ix)/2x) I n - ( I  - ( -  l)")  exp (-ax)/2 - 

[n/2]- I " 3  

- ~[] 2 exp (ae.,ax) cos (flk,,,ax)l 
k=0  J 

with a = ( e x p ( 2 ) - l ) l / " / l .  In partJcular for lower dnmensions one has the 
pseudo densities 

n = 1: h(x) = exp ( - / i x )  ( I - e x p  (-ax))/(2x), 
a = /i (exp ( 2 ) -  I), 

(4 15) n = 2: h (x )  = 2 exp ( - / i x )  ( l - c o s  (ax))/(2x), 

a = /i ~exp  ( 2 ) -  1, 

n = 3: h(x) = [exp (-/ix)/(2x)] [ 3 - e x p  ( -ax )  - 

- 2 exp (ax/2) cos {(x /3 /2)ax  }], 

a = /i ~exp ( 2 ) -  1 

We apply now Corol lary  2. For  n - - 1 , 2  we have h(x)> 0 and the 
corresponding model  (4.1) is mfimtely divisible and thus compound  Poisson 
For  n = 3 one may have h(x) < 0. Hence (4.1) ls not infinitely divisible and 
thus only pseudo compound  Poisson In part icular  we have shown that the 
classe '~ P'  is bigger than the class o f  infinitely divisible probabdl ty  denszty 
functions defined on (0, oo) As known to the au thor  the present model n = 1 
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is among the few examples of compound Polsson models allowing f imte 
analytical sum expresswns for the mare risk theoreucal quantities of interest. In 
particular at as comparable  to the Poisson exponential aggregate claams model 
concerning mathematical  samphctty. 

Fur thermore analytical expressaons for the finite and lnfimte time ruin 
probabilities can be derived. We have computed the simple case n = 1 (details 
of  calculation m appendax). Assume a s tauonary evoluuon of the portfoho. In 
thas context P = (1 + 0)2rn represents the premmms recewed continuously per 
unit of  time, wath 0 the security loading, m the expected claim size, and 2 
measures the expected number of  claims per umt of  time Then the probabdaty 
of  rum ~(x ,  t) before tame t given the initial reserves x is 

(4.16) ~(0,  t) = 1/(1 + 0 ) - ( I  - e x p  ( - 2 t ) )  exp ( - I I P t ) / ~ P t ) ,  

and for x > 0, 

(4.17) ~u(x,t) = ( I - e x p ( - 2 t ) )  e x p ( - / l ( x + P t ) )  + 

+ 0/(1 + 0)- exp ( -  ~x)-  [4/(4 + PlO - 

- exp ( -  ~P t ) .  {1 - exp ( - 2t)" PIt~(2 + P~)}] + 

k - I  

+ e x p ( - ~ ( x + P t ) )  ( - 2 0 k / k !  ~ l/j. 
k=2 / - I  

Taking hmits as t ~ oo it follows that the infimte time ruin probabdmes are 

(4.18) ¢(0)  = 1/(1+0), 

~,(x) = O / ( l+O) . e x p ( - i t x ) . 2 / ( 2+P#) ,  ~ > O. 

The obtained results wall practacally be more useful ff one fits the claam size 
density by a linear combination of  densities as follows: 

(4 19) h(x)  = ~ c,h,(x), el + . . .  + c, = 1, 

h,(x) = exp ( - I t ,  x)" {1 - e x p  ( - a , x ) } / 2 x ,  

a, = (exp ( 4 ) -  1) lz,. 

From the proof  of  Theorem 1 we know that the aggregate claams densaty 
f ( x ,  t) up to tame t satisfies the Laplace representataon 

(Lf)  (s) = exp ( -  2t) exp (2tLh (s)) = ILl exp ( -  2c, t)-  exp (2c, tLh, (.s)). 
t --I  

D e f i n e r ( x ,  t) as solutmn of  the Laplace equation 

(L[~) (s) = exp ( - 2 c ,  t ) .  exp (Zc, tLh, (s)). 

As we have shown, one obtains by reversion 

(4.20) f , ( x , t )  = e x p ( - 2 c , )  J ( x )  + ( l - e x p ( - 2 G t ) ) . a ,  e x p ( - , u , x ) .  
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The direct calculation of the convolutmns 

f ( x ,  t) = fl  (x, t) * 

yields the formula (use induction): 

• . .  * L ( x ,  t )  

r 

(4.21) f ( x , t )  = e x p ( - 2 t ) ~ ( x )  + E ( I - e x p ( - 2 c ,  t)) x 
t = l  

x ~u, exp ( -~u,x)  

In this model the net stop-loss premiums to the priority M can be expressed as 
finite analytical sums, namely 

I ± (4.22) SL(F, M) = ( x - M )  f ( x ,  t ) d x =  ( 1 - e x p  ( - 2 c ,  t)) x 
M t = l  

x exp (-~u,M)/~,  

Analytical formulae for the finite and infinite time ruin probablhtles can also 
be derived 

A P P E N D I X  ' 

C A L C U L A T I O N  O F  R U I N  P R O B A B I L I T I E S  

Assume an aggregate claims distribution function up to time t of  the form 

F(x, t) = 1 - ( 1  - e x p  ( - 2 t ) ) . e x p  ( - / 2 x ) .  

Then the probability of survival to time t, denoted by U(x, t) = l -~u (x ,  t), 
can be calculated using Seal's formulae (e.g GERBER (1979)). 

S g(0, t) = 0/(I +O)+(1/Pt) ( I - F ( z ,  t)) dz 
Pt 

I' g(x ,  t) = F(~c+Pt, I ) - P  g ( o , t - w )  f ( x + P w ,  w)dw 
0 

One obtains 

U(O, t) = 0/(1 + O) + (1 - exp ( - 2t))- exp ( - lzPt)/(l~Pt). 

Further calculate 
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V(x, t) -- 1 - ( l - e x p  ( - 2 t ) ) - e x p  ( - l u ( x + e t ) )  - 

I' - P [ 0 / ( l + 0 ) + ( l - e x p ( - 2 ( t - w ) )  x 
0 

x exp ( - / I P ( t -  w)) / ( l lP( t -  w))] x 

x [exp ( -  2w) 6 (x + Pw) + (1 - exp ( -  2w)) x 

x exp ( - / ~ ( x +  Pw))] dw. 

Since x+  Pw > 0 for w e (0, t) the term in 6 ( x +  Pw) does not contr ibute  to the 
integral. For  clearness write 

U (x, t) = 1 - ( I - exp ( - 2 t ) ) .  exp ( - I~ (x + P¢)) + II + h ,  

with 

S' 
I l = - P  0/(1 +0)'(1--exp(--2w)) x 

0 

x /1 exp ( - - F l ( x +  Pw)) dw, 

I' h = - P  ( 1 - e x p ( - 2 ( t - w ) ) ) - ( l - e x p ( - 2 w ) )  x 
0 

x exp ( - - l l ( x +  P t ) ) / ( P ( t -  w)) .dw 

The evaluat ion o f  the first integral gives 

I I' Ii = O/(l + O ) ' e x p ( - I t x ) "  -PI2 e x p ( - t 2 P w ) d w  + 
o 

I' 1 + P u e x p ( - ( 2 + P u ) w ) d w  
o 

= 0 / ( 1 + 0 )  e x p ( - ~ u x )  [ e x p ( - / i P t )  - 

- 1 + PI1/(2 + P ~ )  (1 - exp ( - (2 + P/i) t))] 

= 0/(1 + 0 )  e x p ( - , u x ) . [ e x p ( - / ~ P t )  x 

x { 1 - exp ( - At)- P u/(2 + P~)} - 2/(2 + PIO] 

To evaluate the second integral expand the first exponential  function m a 
Taylor  series to get 

12 = - e x p ( - / l ( x + P t ) )  ~" ( - - l ) k 2 k + l / ( k + l ) !  
/ , - 0  

j " ( l - e x p ( - 2 w ) )  ( t - -w)kdw 
o 
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By induction one shows the recursive relation 

I ' e x p ( - 2 w )  ( t -w )  k dw 
0 

I' = tk/2-k/2 e x p ( - 2 w )  X ( t -w)~-ldw,  k > O, 
0 

with starting value 

i t exp ( - 2 w )  dw = (1 - e x p  ( - 2 t ) ) / 2 .  
0 

It follows that 

I ' (1 - e x p  ( - 2 w ) ) . ( t -  w) k dw = tk+t/(k+ 1 ) - k !  
0 

k 

[ e x p ( - ~ / ) / ( - 2 ) k + l  - j=02 l)/J'(--'~)k+l-J l 

Introduced above one obtains 

77 

12 = exp ( - / t  (x + Pt))" [Si + $2 + $3] 

wtth 

But one has 

S~ = ~ {I/(k+l)}'(-At)k+I/(k"l -I)!, 
k=O 

S2 ; - ~ l / (k+ I) ( -Xt)J / j  w, 
k = 0  j = 0  

2 ' $3 = l / ( k + l )  2 ( -2 ty / j ! .  
k=O j=O 

s,+s2+s3--- ~ ~/¢k+l) ~ ¢-~,)J/j, 
k = 0  j = k + 2  

(-2t)J/J! 2 l/k, 
J = 2  k = l  

the last equality being obtained by interchanging the order of  summation 
Therefore formula (4.17) is shown. 



78 W HURL1MANN 

AC KNOW L E DGE M E NTS 

This work was done at the Department of  Statistics of  the University of  
Toronto during the academic year 1988/89. The author thanks Prof. D. 
ANDREWS for the opportunity to teach and make research in Actuarial Sclcnce 
at his Department Furthermore the author ~s grateful to the referees for 
pointing out several errors and for making suggestions for improvements. 

REFERENCES 

BAKER, T H (1977) The numerwal treatment o f  integral equattons Oxford, Clarendon Press 
BELLMAN, R and ROTll, R S (1984) The Laplace Treansform World Scientific 
BOWERS, N L .  GERBt;R, H U ,  HICKMAN, J C,JONCS, D A and NESBrrr, C J (1986) Actuarial 
Mathematics Society of Actuaries, hasca,  IL 
BOHLMANN, H (1984) Numerical evaluation of the compound Po~sson dlstrlbuuon recurs~on or 
fast Fourier transform') Scand Aetuartal J .  116 126 
DE PRIL, N (1985) Recurs~ons for convolutions of arithmetic dzstnbutlons A S T I N  Bulletin 15, 
135 -139 
Dr. PRIL, N 0986) On the exact computa tmn of the aggregate claims distribution m the lndwldual 
hl~z model A S T I N  Bulletin 16, 109 112 
DE PRtL, N and V^NDENBROEK, M (1987) Recurstons for the dtstnbution of  a life portfolio a 
numerical comparison Bull oJ the Royal Avsoctatlon oJ Belgtan Actuarte~ 
DE PRtL, N (1988) Improved approximations for the aggregate claims d ls tnbuuon of a hfe 
insurance portfoho Stand Actuartal J 
DE PRIL, N (1989) The aggregate clmms distribution m the mdwldual model with arbitrary posmve 
clmms A S T I N  Bulletin 19, 9 24 
DOETSCI-I, G (1976) Emfuhrung m Theorte und Anwendang der Laplace Transformatton, 3te Auflage 
Birkhauser Verlag Basel and Stuttgart (Enghsh translatmn (1974) by Springer Verlag) 
FEELER, W (1968) An mtroductton to probabthty rhea O, attd tt~ apph~atton.s, vol 1 and 2 New York 
John Wiley 
GERBER, H U (1979) An mtroducttoa to mathemattcal RtTk Theory Huebner Foundatmn for 
Insurance Educatmn, Untvers~ty of Pennsylvanm 
GERBER, H U and VALDERRAMA OSPINA, A (1987) A simple proof of  Feller's charactcrtzatlon of  
the compound Po*sson distributions Invurance Mathemattca and Economtcs 6, 63- 64 
G ivvts, W C (1975) Transform techmques for  probabday modehng Academic Press 
HtRSCitMAN, I 1 and WIDDER, D V (1965) La tranvformatton de convolutton Pans Gauthter- 
Vfllars 
H,gRLIMANN, W (1986) Error bounds for stop-loss premmms calculated with the fast Fourier 
transform Scand Actuartal J ,  107- 113 
HORLIMANN, W (1989a) On maxHnum likelihood estimation for count data models Appears tn 
bl~urance Mathemattcs and Economics 
H ~ R LIMANN, W (I 989b) On hnear ~ ombmatton of  random vartablea arrd rtsk theory 14 Symposium 
on Operations Research, Ulm, Scptembcr 1989 
JERRI, A J (1985) bltroductton to integral equatton.s with apph~attons Monograph~ arid textbook~ m 
Pure and Apphed Matheman~,  vol 93 New York and Basel Marcel Dekker 
KA^S, R ,  VAN HZERWAARDEN, A E and GOOVA~RTS, M J (1988) Between mdwidual and 
collechvc model for the total claims A S T I N  Bullettn 18 
KATTt, S K (1967) Infimtc dtvlslbfltty of  mtegcr-valucd random variables Annala of  Mathematical 
Statt~ttc~ 38, 1306 1308 
KESTEMONT, R - M  and PARIS, J (1985) SuE I',uustement du nombrc de smlstres Bulletin o f  the 
Aa~oclatton of  Swts~ Actuarte.~ 85, 157 164 
KESTEMONT, R -M and PARIS, J (1987) On ~ompotald Pot~ort lawa Paper presented at the meeting 
on Risk Theory m Oberwolfach, West Germany 
PANJER, H H (1981) Recurswe evaluauon of a family of  compound dls lnbut lons ASTIN  Bulletin 
12, 22-26 



PSEUDO COMPOUND POISSON DISTRIBUTIONS IN RISK THEORY 79 

PANJER, H H and WILLMOT, G E (1984) Models for the d l s tnbuuon of aggregate claims m risk 
theory Tran~actton; of the Soctety of Actuarter 36, 39%446 
REIMERS, L (1988) Letter to the Editor ASTIN Bulletin 18 
SCIIWARTZ, L (1966) Th~orte de~ dtwributton.~ Nouvelle 6dltlon, Hermann, Parle 
STEUTE[., F (1970) Preservatton of ii~qmte dtt,tstbthty under mt ~'mg and related reaults Math Centre 
Tracts 33 Amsterdam Mathemaucal  Centre 
STEUTEt., F (1979) Infinite divisibility m theory and practlce Scandmavtan Journal of Statzvttc~ 6, 
57-64 
STROTER. B (1985) The numerical evaludUon of the aggregate claim density function vm integral 
equations Blatter der Deutwhen Gewllschaft filr Verstcherungsmathemattk, I-L3 
SUNDT, B and JEWELL, W (1981) Further results on recurs~ve evaluation of compound distr~bu- 
tmns ASTIN Bulletin 12, 27-39 
TIIYRION, P (1969) Extension of  the collective risk theory Skandmavlvk AktuartetMskr~t 52 
(Suppl.), 84.-98 
VAN HARN, K (1978) Clcav~vmg aoqmtelv dlvl~tble dt~trlbutton~ by functtonal equatton~ Math 
Centre Tracts 103 Amsterdam Mathematical Centre 
WIDDER, D V (1971) An mtroductton to transform theory New York and London Academic 
Press 
WILLMOT, G E (1988) Sundt and Jewell's family of &screte distributions ASTIN Bullettn 18, 
17-29 

W E R N E R  H 0 R L I M A N N  

Al lgemelne  M a t h e m a t l k ,  W m t e r t h u r - L e b e n ,  C H - 8 4 0 0  Wmter lhur ,  Swt tzer land.  





DISTRIBUTIONS IN LIFE I N S U R A N C E  

BY JAN DHAENE 

In~'tttuut roar Actuartele Wetenschappen, 
K.U. Leuven, Belgmm 

A B S T R A C T  

In most textbooks and papers that deal with the stochastic theory of life 
contingencies, the stochastic approach is restricted to the computation of 
expectanons and higher order moments. For a wide class of  insurances on a 
single life, we derive the dlstnbutmn and the probability density function of the 
benefit and the loss functions. Both the continuous and the &scrctc case arc 
considered. 

K E Y W O R D S  

Single life contingencies, benefit funcnon, loss funcuon, stochasnc approach. 

I I N'I'RODUC'FION 

In the two recent actuarial textbooks of  GERBER (1986) and BOWERS et al 
(1987) the theory of hfe contingencies is built up in function of  the stochastic 
remmmng life time of the insured. 

This stochastic approach permits to define two important kinds of  stochastic 
functions for an insurance: the benefit function and the loss function at a 
certain time. The benefit function of an insured of age x at pohcy issue ~s 
defined as the discounted wtlue of  all the benefits to be paid by the insurer over 
the random future hfeume T, of the insured. The loss function at time s, given 
the insured ts alive at that tmle, is the discounted value of all the benefits to be 
paid by the insurer over the random future llfemne T, +~ of the insured less the 
discounted value of all the premmms to be pazd by the insured over the same 
period 

Most results of the tradmonal deterministic theory are obtained by consider- 
mg only the expected value of  the above defined functions. The net single 
premmm is defined as the expectanon of the benefit function The equivalence 
principle Js the reqmrement that the expected loss at time 0 equals 0. From this 
reqmrement the net premmms can be computed The net premmm reserve at 
Ume s is defined as the expectanon of  the loss function at ume s. 

BOWERS et al (1987) state that the probabdlsuc approach of hfe contingen- 
cies "admits  a rich field of  random variable concepts such as &strlbution 
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funcuon,  probability density function, expected value, variance and moment  
generating function" Nevertheless, the hterature on this probabdlStlC 
approach is mostly restricted to the computatmn of  moments  of  the benefit and 
the loss functions, see e.g. POLLARD and POLLARD (1969), WOLTHUtS and VAN 
HOEK (1984), GERBER (1986) and BOWERS et al (1987) 

DE PRIL (1989) gives a survey o f  the distribution functions (d.f.) and the 
probabdlty density functions (p.d f.) o f  the benefit function o f  most c o m m o n  
hfe insurances and annuities. 

In this paper we will consider the benefit and loss functions of  a "general 
msurance",  by which we mean a combmat lon  of  the commonly  used hfe 
insurances, endowment  insurances and life annuities It will be shown that 
these functions are random varmbles o f  a specml type The d f. and the p.d.f, o f  
a random variable o f  this type will then be derived. For completeness both the 
contmuous  and discrete case wtll be treated. 

2. C O N T I N U O U S  D E S C R I P T I O N  O F  S I N G L E  L I F E  C O N T I N G E N C I E S  

Let T, --- T be a contmuous  nonnegatwe random vartable representing the 
future lifetime o f  a hfe-aged-x 

Using the c o m m o n  actuarml notation, the d.f. o f  T can be written as 

(2 I) FT(t) = P r o b ( T  < t )  = / 0 t < 0 

t Iq~ = 1 - 1 p ~  t > 0 

T A B L E  1 

CONSTANTS I OR TIlE CONTINUOUS ACTUARIAL ]-UNCTIONS 

L ! = Life Insurance, E l = Endowment Insurance, L A = Life  A n n m t y  

Name Notatton a b c m n 

whole L I /T~ 0 1 0 0 oo 

n-year term L I /7~ . 7  0 I 0 0 n 

m-year deferred L 1 ,.1"4, 0 1 0 m m 

nl-year deferred ,hi ..T~ . 7  0 I 0 m n 
n - y e a r  term L I 

n - y e a r  p u r e  E I / t ,  ~ ~ 0 0 v" 0 n 

n-year E I .4x .-q 0 I v" 0 n 

m - y e a r  d e f e r r e d  ., A~ . 7  0 1 v '~+" m n 
n-year E 1 

whole L A d .  I /~  - 1/6 0 0 oo 

n - y e a r  t e m p o r a r y  L A d~ . 7  I/~ - I/~5 d,, 7 0 n 

m-year deferred whole L A ,,, ¢i~ i /" /3 - 1]6 0 m ov 

m - y e a r  d e f e r r e d  ,n l i e .  1 vml ~ - I]6 v m 6 . 7  m n 

n-year lemporary L A 
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with o q x =  0 and hm tq, = 1. 

The  p d . f  o f  T l s  given by 

(2 2) f T ( t )  = F~-(t) = I 0 t < 0 
( tP, /t~+l t > 0 

w h e r e / ~ ,  deno tes  the force o f  mor t a l i t y  o f  a life aged x 
F r o m  Tab le  1 it can be seen that  the benefit  funct ion o f  the c o m m o n  life 

insurances ,  e n d o w m e n t  insurances  and life annui t ies  on a single life aged x at  
pol icy  issue can be wri t ten as a s tochas t ic  var iable  o f  the form 

f 
O 0_< T < m  

(2.3) S = a + b v  r m < T < m + n  

c T > m + n  

where a, b and c are real numbers  and m and n are nonnega t lve  integers.  
Fu r the r ,  v = 1/(1 + t )  is the present  value fac tor  related to the annua l  va lua t ion  
rate  o f  interest  t. 

In Tab le  1 the fo l lowing no ta t ion  is used .  d = I n ( l + / )  is the force o f  
interest  assoc ia ted  with the va lua t ion  rate o f  Interest  t and  6,, ~ = (1 - ¢')/6 is a 
c on t i nuous  n-year  t e m p o r a r y  annu i ty  cer ta in  

A general  con t inuous  insurance  on a single life aged x at pol icy Issue is 
def ined as a c o m b i n a t i o n  o f  the hfe insurances,  e n d o w m e n t  insurances  and hfe 
a n n u m e s  cons idered  m Tab le  1 and where the p r e m i u m s  are pa id  by a 
c o m b i n a t i o n  o f  the hfe annmt ies  and pure  e n d o w m e n t  insurances  o f  
Tab le  I 

The  s tochas t ic  var iab le  descr ib ing  the benefit  funct ion o f  a general  cont in-  
uous  insurance  is a hnear  c o m b i n a t i o n  o f  r a n d o m  var iables  o f  the form (2 3) 
So it fol lows immedmte ly  that  this s tochas t ic  var iable  can be wri t ten as 

(2.4) S = a , + b ,  v r m ( i -  1) < T < h i ( I ) ,  I = 1, , n 

with T=-  T , ,  a, and b, ( i =  I . . . .  n) real numbers  and re ( t )  ( 7 =  0 . . . . .  n) 
nonnega twe  integers sat isfying 

(2.5) 0 ~ m(0)  < r e ( l )  < < re(n) ~ ~:~ 

It is easy to see that  the loss funct ion at  t imes s (s > 0), given survival  o f  the 
insured at that  hme,  can also be descr ibed by a s tochas t ic  varmble  o f  the 
form (2.4) with T - -  T ,+ ,  

The  p .d . f  o f  a r a n d o m  var iable  o f  the form (2.4) will be der ived in the 
fo l lowing theorem The  de l t a - funchon  will be deno ted  by A ( x )  to avoid  
confus ion  with the symbol  6 for the force o f  interest .  F o r  a s tudy o f  the 
de l t a - func t ion  see e g. PAPOUClS (1962) 
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T h e o r e m  1. Let  S be the s t o c h a s t i c  v a r i a b l e  d e f i ned  m (2 4) wi th  T -= 
De f ine  for  l = 1, . , n  

(2.6) m(t ) -  = a , + m l n  (b, v "'<' t~, b, v '''~0) 

(2 7) m(t) + = a , + m a x  (b, v ' ' ( ' -  I), b, v ' '~')) 

T h e  p.d. f ,  o f  S is g iven  by  

(2.8) f ( s )  = ~ G,(s) 
l = l  

with  for  t = 1 , . .  , n  

f A(s-a,)( , , , i ,  I )P : - -m0)P : )  " b , = 0  

(2.9) G,(s) = rc,)P= lU=÷rV)/IJ(s-a,)l 

0 

w h e r e  r(t) is g w e n  by  

I ( s-a, ) s-a, 
(2.10) r(i) = - In > 0 

3 b, b, 

: b, 4 : 0  a n d  m(t ) -  < s < m(t) + 

e l sewhere  

Proof .  U s i n g  the L a w  o f  T o t a l  P r o b a b l h t y  the  p d f. o f  S can  be wr i t t en  m the 
f o r m  (2 8) wi th  

G,(s) = f ( s [ m ( i - 1 )  < T < m(t))Prob ( m 0 - 1 )  < T < re(i)) 

F o r  b, = 0 ~t fo l lows  t ha t  

f ( s l m ( t - 1 )  < T < r e ( t ) )  = A ( s - a , ) .  

C o n s i d e r  n o w  the case  b, 4 : 0  W e  o b t a i n  

~fr(r(O)/(6(s--a,)) b, > O, a,+b, v '''(') < s < a,+b, v ''(' ,I 
I 

O,(.s) = ~fT(r(O)/(g(a,--s))  b, < O, a,+b, v '''° Ii < s < a,+b, v '''l') 

Lo • e l s e w h e r e .  

wi th  r(t) de f ined  m (2 10) 
So it fo l lows  t ha t  G,(s) 1s g w e n  by  (2 9). 

T h e  d f o f  S is d e r i v e d  in the next  t h e o r e m  T h e  f o l l o w i n g  n o t a n o n  will be 
used  : 

a n d  

( x ) +  = m a x  (0, x )  

0 x < O  

H ( Y )  = I • x ~ 0 
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Theorem 2. The d.f of  the random vartable S defined m (2 4) with T ~- T: is 
gwen by 

(2 12) F(s) = ~ (~o}q.--~o)q:)+ K,(s) 

where a(t)  and fl(t) (i = 1 . . . . .  n) are given by 

f S-- a t 
max O, m,n toO), ~ ~ -  

(2 13) a(i) = 

m0) 

F m ( l -  1) 

(214) f l( t)= ~ m a x { m ( t - l ) , - }  In(  s - a t  ) 3  bt ) 

[ m(t) 

Finally, Kt(s) (t = 1 . . . . .  n) is defined as 

H ( s -  at) 
(215) Kt(s) = 1 

b t < 0 ,  s < a t 

elsewhere 

bt<O 

b, > O, .~ > a, 

b t > O, s < a t 

b t = 0  

b , - ¢ 0  

Proof. Using the Law of Total Probability we find that 

(2.16) F(s) = ~ Prob (at+bt v r <- s and re(i-  1) < T < re(t)) 
t = l  

It follows that 

Prob (a,+bt v r _<s and m ( i -  1) < T < re(t)) 

"H(s-at) Prob (re(t-  1) < T < m(i)) 

 rob(max{m,,  
= 0 

Or 

< T < re(t)) 

Prob (m( i -  I) _< T < m(l))  

( I ' ' ( '  Prob re(i-  1) _< T < rain toO), 3 

" b , = O  

. b, > O, s > a, 

• b , >  O, s _ < a ,  

b , < 0 ,  s>_a, 

' b t < 0,  s < a~ 

Prob (a,+b, I 2T __<S and t o O -  1) _< T < toO)) = (.{,}q~-/~(oq:)+ K,(s) 
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with a(t) and ,8(i) defined In (2 13) and (2.14). 
N o w  (2.12) is obtained with the help of  (2.16) 

The p.d.f, and the d.f. o f  the benefit function o f  the insurances and annuities 
considered m Table  1 can be written m a simpler form as Is proven in the 
following corollary.  

Corollary 1. Let S be the stochastic variable defined m (2.3) with T ~ T , .  
Define 

(2.17) m -  = a + m i n ( b  v "', by ''+'') 

(2 18) m + = a + m a x  (b v m, b v m+'') 

The  p.d f. o f  S is given by 

(2.19) f ( s )  = mq, A (s)+ G(s) + m+,,P~ A (S-- c) 

where G(s) is defined as 

f A ( s - a )  (mP,-,,+,P~) : b = 0 
(2.20) G(s) = rPx lZ~+r/16(s-a)l " b 4= 0 and m -  < s < m + 

0 elsewhere 

with 

(2.21) r = - In - - - -  > 0 
d b b 

The d.f. o f  S Is gwen by 

(2.22) F(s) = mq, n(s)+(~q,-l~q~)+ g(s)+ m+,,p, H ( s - c )  

with 

(2.23) a = f  m a x { 0 '  m .n{  

[ , m +  n 

m+n, - - I n  " b < 0 ,  s < a  

elsewhere Im{ 
(2.24) fl = max 

t..m+n 

I 
m ,  - - -  In  

6 

(s;)} b_<O 

b > O , s > a  

b > O , s < a  
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(2.25) K ( s )  = I H ( s - a )  " b = 0 

t l . h # o  

Proof .  The  r a n d o m  varmble  S def ined m fo rmula  (2.3) is a specml case o f  the 
r a n d o m  var iab le  def ined by (2.4) with the cons tan t s  n = 3, al  = 0, bl = 0, 
a 2 = a, b2 = b ,  a 3 = c,  b 3 = 0, m(0)  = 0, m(1)  = m, m(2)  = m + n ,  
m ( 3 )  = ~ a n d  T ~ T , .  

Using  T h e o r e m s  1 and 2, af ter  some s t r a igh t fo rward  ca lcu la t ion  one ob ta ins  
fo rmulae  (2.19) and  (2.22). 

The  d.f. and  the p d.f. o f  all the con t inuous  Insurances and annui t ies  
considered In DE PRIL (1989) can be obtained by using Table 1 and Corol lary  1 

T A B L E  2 

CONSTANTS FOR THE DISCRETE ACTUARIAL FUNCTIONS 

L I = Life Insurance,  E I = E n d o w m e n t  Insurance .  L A = Life A n n m t y  

N a m e  Nota t ion  a b c m n 

whole L I A ~ 0 I 0 0 

n-year  te rm L 1 A~ .7  0 I 0 0 n 

m-year  deferred L 1 ,. A,  0 I 0 m 

m-year  deferred ml A~ ,,7 0 I 0 m n 
n-year  t e rm L I 

n-year  pure  E 1 A .  ,~7 0 0 v" 0 n 

n-year  E I A,  . 7  0 1 v" 0 n 

m-year  deferred .,i A,  ,,7 0 I v "+~ rn n 
n-year  E 1 

whole  L A due a ,  I / d  - l i d  0 0 oo 

whole L A ~mmedlate a~ Il l  - I / d  0 0 oo 

n-year  t e m p o r a r y  L A due a~ nn l i d  - l i d  a . 7  0 n 

n-year  t e m p o r a r y  L A a ,  47 I/t - I / d  a .  7 0 n 
l m m e d m t e  

m-year  deferred whole  L A ,,, a~, vm/d - l i d  0 m co 

due 

m-year  deferred ,,,lay vm/t - l / d  0 m 

whole L A immedia te  

m-year  deferred ,,, aT nn v ' / d  - I / d  v " a . 7  m n 
n-year  t e m p o r a r y  L A due  

m-year  deferred 
n-year  t e m p o r a r y  L A ,11 a ,  . 7  v ' / t  - 1/d v m a . 7  m n 
~mmedmte 
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3. DISCRETE DESCRIPTION OF SINGLE LIFE CONTINGENCIES 

Let K -= Kx be a nonnegat~ve r a n d o m  var iable ,  represent ing the number  o f  full 
years  to dea th  o f  a hfe-aged-x  

The  d i s t r ibu t ion  o f  K can then be wri t ten  as 

(31 )  F K ( k ) =  P r o b ( K < k ) =  k+lq, = I - - ~ + t p  ~ k = 0 , 1 , 2 ,  . 

with hm kq, = I 
k~oc 

The  p .d . f  o f  K is given by 

(3.2) f x ( k )  = kP,~--~+lP, = A q~ k = 0, 1,2, 

The  benefi t  funct ions  o f  the c o m m o n  dxscrete hfe insurances,  e n d o w m e n t  
insurances  and hfe annui t ies  on a single hfe aged x at  pol icy issue can be 
def ined as s tochas t ic  var iables  o f  the form 

f! • K = 0 , 1  . . . . .  m - I  
(3.3) S = + b v  K+l : K =  m , m +  l, , m + n - I  

• K =  m + n , m + n + l , .  . 

The  sui t ing values  for a, b, c, m and n are  given m Tab le  2 
The  fo l lowing no ta t ion  is used .  d = l - v ,  ~,,-~ = ( 1 - v " ) / d  is a discrete 

n-year  t e m p o r a r y  annu i ty  due and a,, ~ = (1 - v")/i is a discrete n-year  t empo-  
rary  annu i ty  immedia te .  

A general  discrete insurance  on a single l i fe-aged-x is def ined as a combina -  
t ion o f  the insurances  defined in Tab le  2 The  p remiums  are pa id  by a 
c o m b i n a t i o n  o f  the ]xfe annui t ies  and  pure  e n d o w m e n t  insurances  o f  
Tab le  2. 

The  benefi t  funct ion and the loss funct ion o f  a general  dIscrete insurance can 
be descr ibed  by a s tochas t ic  var iable  S o f  the form 

(3.4) S =  a , + b , v  g+l m ( t - l ) _ <  K < m( t ) ;  I = l , . . . , n  

with K - =  K,  for  the benefi t  funct ion and K - =  K,+,  for the loss funct ion at  
t ime s. Fu r the r ,  a, and b, (t = 1, . , n )  are real numbers  and m ( t )  
(i = 0, 1 . . . .  n)  are nonnega t lve  integers sausfy lng  

(3 5) 0_< m(0)  < r e ( l )  < .. < re(n)  < co 

In the fol lowing theorems  the p.d.f,  and the d.f. o f  S are  derwed.  

Theorem 3. The  p.d.f,  o f  the var iable  S def ined in (3 4) where K -= K z is given 
by 

(3.6) f ( s )  = ~ G,(s)  
i=l 



D I S T R I B U T I O N S  IN LIFE I N S U R A N C E  89 

where for i = I, . , n  the functions G,(s) are given by 

f (m(,-t~Pz--,,,(,)P=) A (s--a , )  . b, = 0 

(3.7) G, (s) . . . .  (,~-I 
2 kq:A(s-a,-b'v~+l) " b,-~O 

k=m(t- 1) 

Proof. For  r e ( t - l )  < K <  re(t)  and b, = 0 we gct that  S =  a, or  

f (slmO-1) _< g < re(t)) = A(s-a,) 
I f  m 0 -  I) < K < re(t)  and b, ~ 0 the possible values for S arc 

a,+b,v k+l k = m 0 - 1 )  . . . . .  m 0 ) - I  

with respectwe probabiht ies  
ktq,/Prob(m(t-I) < K < m( i ) )  

So we find for b, ~ 0 

f ( s lm( t - I )  < K < m(l)) Prob ( r e ( t - I )  < g < re(t)) 
m 0 3 -  I 

= Z kl q ' Z l ( S - a ' - b ' v k + l )  
k=mO- I) 

By using the Law o f  Total  Probabil i ty we obtain formula (3.6). 

Theorem 4. The d f. o f  the r andom variable S defined m (3 4) where K =- K. is 
given by 

(3 8) F(s) = ~ (~oN-.-~(,)q:)+ K,(s) 
t = l  

where for 1 = I . . . .  n the funct ioms a(t) ,  fl(t) and K,(s) are Dven by 

(3.9) a(t) = 
fm x{0 m°Im'   E 1 

m (z) 

' b, < 0, s < a, 

elsewhere 

(3 10) fl(t) = f 
ro(i- I) I 

'El 
b,<O 

• b , < O ,  s > a ,  

• b , > O ,  s < a ,  
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(3.11) K,(s) = I H(s-a,) . b, = 0 
( 1 b , ~ 0  

For a real number x, ]x[ denotes the smallest integer greater than or equal to x 
and [x] denotes the greatest integer less than or equal to x. 

Proof. For  m 0 -  1) < K < m(t) we find 

Prob(a,+b,v r+l <_ s and m ( i -  1) _< K < re(t)) 

I H(s-a,) Prob (m(i-  I) _< K < re(t)) b, = 0 ( (so )I} ) 
rob m a x { r e ( i - l ) ,  - In - 1  _ <K <m (O  b,>O,s>a, 

= b,>O,s<_a, 

I P r o b ( m ( i - l )  < K <  re(t)) b,<O,s>_a, 

( [  'n(S rob m ( i - l ) < K < m i n  mO), bl " b , < 0 ,  s < a ,  

Or 

Prob (at+b,  v x+l <_ s and m ( t -  1) < K < m0 ) )  = (~¢,)q:-B(,)q:)+ K,(s) 

with a(t),  fl(i) and K,(s) defined in (3.9), (3.10) and (3 II). 
By using the Law of  Total Probahlity we obtain the desired result. 

The p.d f and the d.f. of  the benefit function of  the discrete insurances and 
annuities considered in Table 2 can be written m a simpler form which is 
derived in the next corollary. 

Corollary 2. Let S be the stochastic variable defined in (3.3) with K z K, 
The p.d.f, o f  S is given by 

f (s)  = mq., A (s) + G (s) + m +,P~ A (s-  c) (3.12) 

with 

{ (mp,-m+,p.,)A(s-a) 

(3.13) G(s) = m+,-I 

Z kl qxA(s-a-bvk+l)  
k -  In 

T h e d . f  of  S i s  given by 

: b = O  

: b ~ O  

(3.14) F(s) = mq, H(s)+(~q~--~q,)+ K(s)+ m+,,p~ H(S-C) 
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w~th 

{ { E' f m a x  0, mm m + n ,  - j l n  b 

(3.15) ~2 
/ 
k m  + n 

b < 0 ,  S < ¢ I  

: elsewhere 

f m { l  
(3.16) f l =  max m, - 

( m + n  

, 
: b < 0  

: b > O , s > a  

: b > 0 ,  s<_a 

(3.17) K(s)  = I H ( s - a )  " b = 0 
( 1 b 4 : 0  

Proof. The proof  follows immediately from Theorems 3 and 4. 

The p d f and the d f. of  the discrete insurances and annuities considered in 
DE PRIL (1989) can be derlved with the help of  Table 2 and Corollary 2. 

4. EXAMPLE 

A person aged x purchases a combination benefit consisting of a n-year term 
hfe insurance of  I payable immediately on his death and a n-year deferred 
whole life annuity of  J per annum payable continuously while he survives 
beyond age x +  n 

Let the benefit functions of  the insurances and annuities defined m Table 1 
be denoted by adding a tilde to the usual deterministic symbols. The benefit 
function of the continuous general insurance defined above is then given by 

S =  I A , n T + J , , d ~  

By using (2.3) and Table I this benefit function can be written as a variable of  
the form (2.4) with T -  T~ : 

I v  T " O < T < n  f 
S 

V n - -  i~T 

L J - -  " T > _ n  
J 

From Theorem l it follows that the p.d f of  S is given by 

f ( s )  = Gi ( s )+G2(~)  
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with  

and 

{ r(I)P~, /l,+r(l)/(~S) 
GI(~)  = 0 

Gz(S)  = t ,(2)P_, / t , + r ( 2 ) / ( J v " - ~ s )  

t 0 

: Iv n < s < I 

elsewhere 

• 0 < s < Jv"/6 

: e l s ewhere  

r ( l )  = - - ( I / o  ~ ) l n ( s / I )  

r (2 )  = -- (1/~) [n ( v " -  (~ s ) / J )  

The d.f. o f  S fol lows from Theo rem 2 

F(s) = ( , q ~ - / ~ q , ) +  + ( ~ q , - , , q ~ ) +  

wJth 

a = / m a x  {0, r(2)} s < J v"/6 

oO .~ > J v"/~ 

{n • s < 0  
f l =  

max{0, r(1)} " s >  0 
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P R E D I C T I N G  IBNYR EVENTS AND DELAYS 

II. Discrete T~me 

BY WILLIAM S. JEWELL 

Engineering Systems Research Center 
Umverslly of Caltforma at Berkeley 

A B S T R A C T  

An IBNYR event ~s one that occurs randomly during some fixed exposure 
interval and incurs a random delay before it is reported. A previous paper 
developed a continuous-time model of  the IBNYR process m which both the 
Po~sson rate at which events occur and the parameters of the delay distribution 
are unknown random quantmes; a full-distributional Bayesian method was 
then developed to predict the number of unreported events Using a numerical 
example, the success of th~s approach was shown to depend upon whether or 
not the occurrence dates were avadable in addmon to the reporting dates. This 
paper considers the more usual practical s~tuatmn in which only &screhzed 
epoch reformation is available, this leads to a loss of predictive accuracy, 
which IS investigated by consldenng various levels of quantlzatlon for the same 
numerical example. 

K E Y W O R D S  

Incurred But Not Reported (IBNR) models; reporting delays; Bayesmn 
estimation and prediction; Bayesian approximations; &screte-tlme models. 

1. I N T R O D U C T I O N  

An Incurred But Not Yet Reported claim m insurance is an event whose 
occurrence during some fixed exposure interval is not known until some later 
date because of random reporting delays. These claims, plus the Incurred But 
Not Fully Reported claims, which have been reported but whose cost 
development is incomplete, form the Incurred But Not  Reported (IBNR) 
portfolio for a given pohcy exposure mterwd The accurate predlchon of the 
total number and the ultunate costs of such clamls is a critical and recurring 
problem m many insurance hnes 

In JEWELL (1989), hereinafter referred to as IBNYR-I,  the author developed 
a continuous-time model for pre&ctlng the number of unreported 1BNYR 
events, under the assumptions that the random (Polsson) rate of event 
occurrence as well as the parameters of  the delay distribution are unknown 

ASTIN BULLETIN, Vol 20, No 
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Examination of  the hkehhood revealed not only a coupling between the 
unknown parameters  for the number of  occurrences and their associated 
random delays, but a strong dependence upon the type of epoch data available, 
for example, having only reporting dates but not occurrence dates led to 
predictions with wider variances than when both dates were available A 
Bayesian development was then used to obtain a full predictive distribution 
and, from it, the interesting point predictors; natural conjugate priors were 
used for simplicity, although extensions to empirical priors are immediate. 
Either way, the key computat ional  issue is the evaluation of the ratio of  two 
integrals, for which various good approximation techniques are available. So 
predictive means, variances, and tall probablhtles for IBNYR events are now 
easily obtained under continuous-time assumptions 

However,  m most firms, exact epoch data is difficult to obtain, is unrehable, 
or, possibly, is dismissed as being unimportant  For instance, most models in 
the IBNR literature use quant~zed reporting intervals that are one year long, 
the same length as the usual exposure period While this may give satisfactory 
results for the long-duration cost evohmon of  many casualty claims, reporting 
delays may be shorter than or comparable  to the exposure interval, so that 
gross &scretlzat~on can, as we shall see, lead to a slgmficant loss in predictive 
power. Exceptions might be claims for Industrial diseases (such as asbestosls) 
or for product liability, both of  which may take a long time to develop 

The model we develop below is parallel to that of  IBNYR-I ,  except that the 
reporting of  dates Js dlscretlzed into intervals equal to, or a submultlple of, the 
basic exposure interval We model the eqmvalents of  the first two cases of  
epoch data described in IBNYR-[  (reporting dates always observed, occurrence 
dates may or may not be reported), since we know that both classical and 
Bayesian predictions are already bad m the other continuous cases where only 
occurrence dates, or only counts-to-date are available To compare the effects 
of  changing from continuous to quantlzed data, we consider the same 
numerical example as in the first paper 

Impor tant  references on the IBNR problem were given in IBNYR-I ;  
supplemented by those below, they together give an overview of research in this 
area, most of  which emphasizes point estimates for discrete-time cost-evolution 
models. Our results wdl not parallel these other efforts until a planned third 
paper on the " I B N R  tr iangle" appears, in which the effect of  collateral 
discrettzed data from several exposure periods ms analyzed. As discussed in 
IBNYR-I ,  we believe that it is Important  to understand thoroughly the effect of  
various modelling assumptions upon event prediction before adding on the 
dynamics of  random cost evolution 

2 T H E  M O D E L  

As m IBNYR-I ,  we assume that, during an exposure mterval  (0, T], a random 
number of  events, ~, occurs according to a Poisson process with parameter  2T 
This lmphcs that, given ~ = n, the occurrence epoch~ (Y~, f fz,  . Y,,) of the 
events are, a prlort, independent and uniformly distributed over (0, T]. 
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Associated with each event indexed k is a r andom reporting delay, ~Vk, so that 
the actual observation or reporting epochs are fix =-~'k+~va (k = I, 2 . . . .  n) 
Each delay is assumed to be i.i.d with a c o m m o n  probablh ty  denslty, f ( w l  0), 
that  depends upon one or more  parameters,  0. It follows that, is gwen 0, each 
event pmr (£k, Yk) is l.l.d, with joint  density" 

1 
(2.1) p(x,  ylO) = f ( y - x l O )  (0 < x < T, x < y < oo) 

T 

over the semHnf imte  wedge-shaped region shown in Figure 1, and zero 
elsewhere. If  we observe the report ing dates o f  the I B N Y R  events over some 
observatwn interval (0, t ] ,  it Is clear that  only those pairs with Yk -< t will 
actually be reported,  so that  the total number  o f  reported events will be some 
number  R less than n 

As before, we assume that 2 and 0 are ou tcomes  o f  the unknown  random 
quan tmes  2 and 0, respectively, for convenience a prtort independent  with 
known prior densmes, p(2) and p(O). Suppose that epoch data ;'/~ is observed 
for each of  the R reported events. Given these priors and the total data, 
r/ = {R, U 9~}, the parameter esttmatton problem ns to determine p(2,  0l f / )  
and the event predlctton problem IS to determine p(ul r/) ,  where t5 = f i -  R is the 
unknown number  o f  unobserved I B N Y R  events still outs tanding 

To introduce the effects o f  dlscrete-tmae reporting, we imagine that the time 
axis is p a m t l o n e d  into equal reporting intervals, / t  = ( ( l -  l ) d , / d ]  
( / =  I, 2, . ), thus ,4 < T i s  the c o m m o n  length o f  the report ing intervals, and 
the precise values o f  any dates within that interval are lost. We assume that A is 
a submulnple  o f  T, so that I = T/A, the quanttzatton level, is a posmve  integer 
In practice, T is usually one year, and I = I, 2, 4, or  12. The observatmn 
interval (0, t] can now only be, say, t = JA, with J = 1,2, . . 

We now consider two cases o f  quantized epoch report ing that  correspond to 
the cont inuous  data types I and II analyzed m I B N Y R - I .  

2.1. Type lq Data. Quantized Occurrence and Reporting Dates 
In th~s case, the cont inuous- t ime epoch data  (x k,),~) for an observed event 
indexed k is mapped  into "/~ = (ia,.la), two positive integers mdmatmg the 
report ing intervals, vlz (i , j)  =- (xE 6 )  f'l (3'~ / j ) .  Obviously,  (1 < l < I)  and 
(d > i) always Figure I, which shows the joint  part i t ioning of  the allowed 
region for I = 4 and t = 4.0, gives a " t d m g "  that helps us to wsuahze the 
quant lza t ion Most  o f  the tiles are squares with sxdes A, but, if x and y are m 
the same interval, then (J,J) IS reported m a m a n g u l a r  region, since x < y 
always 

The probabl lmes  associated with each tile can be expressed most  easily with 
the md of  the funct ion:  

1 ~'~/ 
(2 2) q~/,(0) = - -  F(wl  0) dw (h = 1, 2, .) 

T v(/,- 1),~ 

(q~0(0) = 0), which ,s mono ton ic  over the integers and approaches  1 -I  for 
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8 = 

x / /  

4 • 3 2 

a 1 • 5 

2 • 4 4 1 2 .  1 i I 

1 2 

T 
1 2 3 4 5 6 

1 1 1 I I 1 
r = [ 2  1 8 6 11 7 

[ a 8  

2 

14 7 5 6 4 6 . . .  ] 

/ / / / / /  

1 2 1 1 2 1 1 

1 2 2 2 2 1 2 

1 2 1 1 2 

2 2 I 2 2 1 ! 
. ~ y 

J t 
7 8 9 10 11 12 , 3  14 15 16 

I 1 
5 6 . . . ]  

I'IGURE 1 Reg tons  o f  d e f i n m o n  o f  qudnt lTed o c c u r e n c e  a n d  r e p o r t i n g  da tes ,  s h o w i n g  the 
d ~ s t n b u t m n  o f  74 o f  the 100 events  gene ra t ed  wHh 0 = 0 5 yea r  -~, for  1 = 4 a n d  J = 16 

every 0 as h + oo. Letting ~z,j(O)=.-'5 {~/k = (t,J)lO} (any k) be the mass 
assomated with tile O,J), we find from (2 I) that" 

(2 3) 2z,j(O) = cb;_,+,(O)-q~,_,(O) (1 <_ i <_ l ) ( j  >_ t). 

In other  words,  the mass o f  each cell a long the " d m g o n a l s "  with constant  
h = j - t + l  (h = 1, 2, .) is the same, which might be expected from first 
prmctples Thin is the discrete eqmvalent  o f  a hkehhood  that depends only on 
w = y - x  (w > 0), as in the Type I contmuous- t tme  data  models ,  m fact, tf 
( / ' - t )  = w and a ~ 0, (23)  approaches f (wlO)AZ/T,  so that events with about  
the same w carry the same reformation m the hmlt 

Suppose a total o f  R events were reported during the observat ton mterval 
(0, Jz:l]; this includes only events for whmh j < t/A Rather  than repor tmg the 
discrete dates (t,j) for each event k, we can lmagme that the epoch data 
represents a dmrtbutton of  the R events into % events for each tile (t,j), 
fo l lowmg a mult lnomial  law with probabthttes  equal to g,j(O), normalized by 
dwldmg by the sum of  probabthttes  over all cells in the observat ton interval. 
However ,  because o f  the structure o f  (2.3), the {%} can be accumulated over 
cells o f  equal mass on each dmgonal ,  reducing them to the suffictent stattstws 
for  Type Iq data" 

mm(/  J+  I -h}  

(2 4) Sh = 2 r, ,~h I (h = 1,2, J )  
i=1 

The comphca ted  upper  ltmlt restricts the length o f  the observable " d i a g o n a l "  
elements as h approaches  J and if J < I. 

Figure 1 shows how the 74 counts  for J =  16 and I =  4 m the numerical 
example are distributed over the cells. We find easily that s = [3, 8, 14, 7, 5, 6, 
4, 6, 5, 6, 5, 2, 2, 1, 0,  0_] r, but  note that, because o f  (2.4), if we decide to 
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increase J, then the last (underhned)  1 -  1 numbers  would have to be increased 
by any new counts  on their diagonals  I 

If  we express the probabl lmes  (2 3) m terms of  

(2 5) ~Ph (0) = q~h ( 0 ) -  q~, , (0) (h = I, 2 , . .  ), 

the multulomlal  condutonal data hkehhood, given R and 0, is 

(2.6) p ( U  ~/alR, 0) = [~oh(0)] '~ mm (I, J +  l - l )  q~(0) , 
• ~" h -  I 

where ,~ = [ s l , s 2 , . . , ~ j ] T  iS defined over the discrete simplex, 0 < s h < R, 

Xsh = R Note  how the total no rmahzmg  mass requires a weighted sum o f  all 
the {~ph(0)t to account  for the fewer tiles near h = J 

2.2. Type Ilq Data. Quantized Reporting Dates 

The situation is somewhat  simpler with only report ing epochs, "/~ = (j~), 
given for each event, which means that all event counts  and probabilities are 
merged Ill each " c o l u m n  " o f  ceils in Figure t. Thus,  the suffwient stattstw~Jor 
Type l lq  data are r = [rl ,  r 2 , . .  r j] T, where.  

mm (I,j) 

(2 7) r / =  2 % ( j  = 1 ,2 , .  J ) .  
t - - I  

This g ive s r  = [2, 1 , 8 , 6 ,  1t, 7, 5, 6, 6, 5, 5, 5, 2, 1 , 4 , 0 ]  T from Figure I (2 7) 
can also be thought  o f  as the result o f  a mul tmomm[ sorting o f  R events, this 
time with probablht ies  

mm (j ,  /)  

(2.8) ~j (0) = Z %(0)  = q~j ( 0 ) -  q,,_ ,(0) ( / = I, 2 . . . .  ),  
t - - I  

where the second term vanishes l f j  < I 
Thus,  for Type l lq epoch data,  (2 6) is replaced by.  

(2 9) p ( U  "-' ~1 R, 0) = [re, (0)1 ~, ~zl(0 ) , 
r 

with r defined over the discrete R-smaplex Here the norrnahzmg mass is 
simpler because each rcj(0) is already the sum of  mdwldual  tile probab, lmes  m 
each column.  

As J - - ,  0, (2.8) reduces to A times the usual pl 'obabdlty for cont inuous  
Type II data,  that is, [ F ( t l O ) - F ( ( t - T )  + 10)] A/T.  Of course, when I = I and 
J = T, the distraction between discrete Cases lq and llq vanishes, since 
~j = rj = I i j ,  and ~pl(O) = ~1(0) = ~zu(O ) 
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3. D A T A  L I K E L I H O O D S  A N D  MLE E S T I M A T E S  

In the next two sections, we assume that Type Ilq data is available, however, 
all formulae in which {r~} and {zt:(0)} are used can be changed to Type Iq 
simply by replacing them with {sh} and '~0h(0)}, respectively Our first step is to 
uncondmon (2.6) and (2.9) on R by noting that, given n and 0, n can be 
considered as being partitioned blnomlally into /~' and t7. At this point, it is 
useful to introduce the continuous cumulative probability function defined m 
IBNYR-I : 

/ / / ( t [ O ) =  TI I'<,-T)" F(u.!O) dw = E = E ln in( l ,J+ (3.1) 

wlth t = JA and T = IA, as before Thus, 171(JA I0) IS the mass associated wlth 
R, and each event is unreported wlth probabil i ty I - / I ( J A [ 0 )  The total data 
comhttonal hkelihood becomes the multmomml'  

/ (")H (3.2) p(</IO, n) = [~zj(O)l~,[l_H(j310)], R 
r n - R  I - i  

Let r = mln (T, t) = .J mln (I, J). Then, gwen 2, the total number of  evems 
generated (but not necessarily observed) in (0, r] follows the Poisson law wlth 
parameter 2r. Setting u -- n -  R in (3 2) and marglnahzmg over all values of u, 
we obtain the final data hkehhood in terms of  the under[ylng parameters 

J 
I 

(3 3) p ( < / 1 2 , 0 )  = H( t l ! )  I - I  [~j(o)]r'(~.r)R e )rll(J.J O) 

(The first term is uninformative, and may be dropped) (3.2) should be 
compared with (4 2) in IBNYR-I (where R was written r), It might, In fact, be 

~ 

arguest directly from it. The last term m (3 3) reflects the coupling bctween 2 
and 0 induced by the data. so that, even if they are a priori independent, they 
will become a postertort dcpcndent 

Assuming 0 represents a single delay ^parameter, the traditional point 
estimates of  the parameters, the MLEs (2, 0), are found from'  

(3.4) ( ) . r ) L ~ , ( 0 ) =  R- E d%(O0)[ r' - R I = 0 .  
dO ~j (O) 2:n~ (O) 

(All sums are over observed intervals only) The second equauon can be used 
to find 0 numerlcally, which IS then used in the first equatlon to glve 2 The 
M L predictor would then be ii = f i r - R .  

4, BAYI'S/AN FORMULAT/ON 

AS argued in IBNYR-I,  we beheve that a Bayesian formulation is the natural 
one for |BNYR problems, since in most applications there will always be 
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rather good prior opmmn and relevant experience data about the likely values 
of ~. (which will be hnked to the number of risk contracts in the portfolio), and 
about the parameter(s) of the delay distribution (which reflects claim filing 
delays, administrative flow, adJustment procedures, e tc ,  that are common to 
all claims m similar lines m each company) No actuary makes estimates in a 
complete vacuum. The Bayesmn approach also has the great advantage of 
giving a complete pedicttve dtstrthutton, which is essentml for setting aside 
portfoho fluctuation reserves. 

For consistency with IBNYR-i.  we again assume that ~t and 0 are, a priori. 
independent, with p(2) a 4,, ........ (a, h) density For the rest of  this section, we 
shall leave J ( 1 0 )  and p(O) m general  form, later specmhzmg to exponential 
delays and another Gamma prior for 0. As m IBNYR-I, these assumptions do 
not simpl,fy the joint posterior-to-data denstty, p(2, 01 :/), because of the 
coupling term, exp[-2rl l (JA 10)]. However, when predicting the number of 
unreported events, ti = f i -  R, we can follow the development m IBNYR-I and 
show that tL given (2, 0), is PoBson with parameter 2 [ T -  rH( t l  0)], because of 
a fortuitous cancellation of the coupling term Thus, the predtcttl,e denstty 
factors into a product of two shapmg/'actors" 

(4.1) p(ul ' / )  ~ h:(ul "/)ho(ul '" ), 

with 

(4 2) r(a+R+u) V T 1" T" 2R+" e~ )r p(2)d2 oc 
h~ (u I :" ) = u! u t Lo + TJ 

with a ~, .......... (a, b) prior, and 

(4  3 )  ho(ul : / )  = [n , (O ) ]  r, 1 - l l ( t l O )  p(O) dO 
- T 

for Type llq data, with a similar form for Type lq. Note that the first shaping 
factor depends only on R and p(2), while (4.3) depends only on r or s and p(O) 
As m IBNYR-I, we refer to the term involving u in (4.3) as the kernel, 
K(O). 

Computation of the predictive distribution is most easily accomplished using 
the recurslve form: 

(4.4) p ( u + l l ' / )  = ( a + R + u ) (  T ) ( h o ( u + l l : / ) ) ,  

p(ul ' / )  u+ 1 b+ T ho(ul :, ) 

calculated by starting w l t h p ( 0 l ' / )  = l, then normahzmgwhen fimshed With 

no data, the marginal (prepostenor) predlct,ve density is simply a /,,,,,,/ 
(a, T/(h+ T)) density As .n IBNYR-I. (4 4) also provides a Bayesian point 
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estmlator, the pre&cttve mode, h("/),  as the smallest mteger not less than the 
value tt* that satisfies" 

(4.5) u* + 1 = T 
b + T ho (u* I ' / )  

Note that only the ratios of  h o are needed m (4.4), whmh means that sunple 
approx~matmns to the integrals wdl gwe qmte accurate predmtwe densities 
(TIERNEY & KADANE, 1986), (KASs, TIERNEY & KADANE, 1988) We now 
consider how these integrals might be approxm~ated ff the delay d~stnbutmn 
were exponentml. 

5 EXPONENTIAL DELAY DISTRIBUTION 

Following the example m IBNYR-I, we set f(wiO) = 0 e x p ( - 0 w )  ( w >  0), 
and recall that 

(5.1) H(tlO) = ( 1 -  ~u(0r) e "), 
T 

where the properties of the useful function ~(v)  = [ 1 - e  
that paper 

Then, from (2 2), we find 

(5.2) ~j, = I -  I ( 1 - ~ (OA) e- ih- I) oa) 

and the Type lq probabdmes from (2 5) are 

(53) ~o,,(O)={l-'[1-q/(OA)] ( h =  1) } 
I I[OA ~ 2 ( 0 A ) e  (h 2)oJ] (h = 2 , 3 ,  ) 

']/v were gwen In 

(/7 = 1 , 2 , . . ) .  

The shghtly more comphcated Type llq data probab]lmes are found from (2 8) 
a s '  

(5 4) gj (0) = { 'I[]-~-I(OZI)£'(/I)O,] ( J =  l 9 .. 1) } ,  _, . 

1 l[OTq/(OA)~(OT)e (j / I)0,)] ( / =  I + 1 , 1 ÷ 2 , .  

Rewriting ho as in I BNYR-I.  

(5.5) h°(ul ' / )  = I L(O]'/)[K(O)]"p(O)dO, 

the epoch data hkehhood, L(0), Is then expressed for Type |q data as 

I 

(5 6) /.(01 ' ,  ) = I [  Dh(0)]'" .~ [t - ~(0A)]', [0A ~u2(0A)] R ', e ,1 ,,, 
h I 
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where umnformatlve constants have been dropped,  and M, is the moment :  

J 

(5.7) M s =  Z ( h - Z )  sh. 
h=2 

In other words, with exponential delays, (s~, R, Ms) becomes the reduced set of  
sufficient stausucs for Type Iq data. Remember  that, with each new value of  J, 
the I -  1 most recent values of  s have to be recomputed from (2.4), otherwise, 
there ~s nothing specml about  the choice of  J relative to 1. 

For  Type Ilq data, assuming J > I :  

J / 

(5.8) L ( 0 1 ~ )  = H [nJ (0)]~'°c H [l--~(OA) e-(J-')O~lr' 
j = ]  j=l 

x [0T gt (0A) ~U (0 T)] nj e -  Mr 0~f, 
where uninformative constants have been dropped, and 

J J 

(5 9) Rj= Z rj, Mr= E ( J - l - I ) r j "  
j = l +  I j = l +  I 

In this case, (r~, r 2 . . . .  r l ;  R j ;  M r )  become the sufficient statlst~cs I f J  < /, the 
product term i n  ( 5 . 8 )  has an upper limit of  J, the terms on the second hne are 
dropped s i n c e  R j  = M~ = 0, and the sufficient statistics revert to (r~, r2, . . r j ) .  

In contrast  to lq data, once all of  the values m r are computed for a given I. 
they can be used for any J 

6 N U M E R I C A L  E X A M P L E  A N D  D A T A  A N A L Y S I S  

To facihtate comparison with pre&ct~on using continuous data, we will use the 
same basic data and assumptions as m IBNYR-I ,  namely, that 2 has a 

~, ........ (2, 0.02) prior density and T = 1, so that the no-data (marginal) 

pre&ctlon density is .d,d~,,/(2, 1 02-1), with m e a n /  {~q} = 100 events, mode 
= 49, and fractlles n05 = 165, n25 = 47.0, n75 = 134.5, and n95 = 238 1 

The delay is assumed to be exponentially distributed, with a ~4 .......... (4,6) prior 
density on 00, so that the prior mean delay is # {0-~} = 2.0 years, with 
7 {0 -I} = 8.0 years 2 

For  the purposes of  simulation, we "s tacked the deck"  by using the same 
100 samples (xt,yt) as IBNYR-I ,  where the xk were drawn from a uniform 
distribution over (0,1), and the delays, w k = y k - x t ,  were drawn from an 
exponential density with true parameter 0 = 0 5 years-~ As shown m Table 1 
of  IBNYR-I ,  this gave continuous delay samples from 0 163 to 12.402 years, 
with a sample average delay of 2 35 years, somewhat  larger than the true mean 
Thus, our experiment assumes accurate but not too precise prior knowledge, so 
that the behawor below shows primarily the effects of  quantlzatlon and the two 
different data types Clearly, with vaguer pmor information, we would see a 
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further  degradat ion o f  the predictive power for the smaller values o f  t ( J ) .  
Figure 1 shows the individual cell counts  for this sample when zI = 0.25 years 
( / =  4), and t = 4.0 years (J = 16). The values for the stahstlcs s and r were 
given above in Section 2. 

As the effects o f  quant lzat lon are the mare interest o f  this paper, computa -  
tions were carried out for many  different values o f  I, with I = I, 2, 4, and 8 
finally chosen as representative, with complete pre&ct~ve densities computed  
for observat ion intervals t = 0 ( 0 5 )  10.0, except when 1 = 1, when only 
t = 0(1 0)10 0 is possible. Approx imat ions  for the shaping factor Integral h o 
were computed  using the G a m m o l d  method outhned xn I B N Y R - I ,  in which a 
numerical search for the mode, 0, o f  the c o m b i n a h o n  L(O] r / ) p ( O )  is made, 
and the ummoda l  curve then approximated  at the mode by a curve o f  the form 
g(O) = (AO) c e - ° °  Since, t~ a good  approximat ion ,  the kernel K(O) ~ e -~° in 
the ne ighborhood  o f  this mode,  the integral (4.3) can be computed  exactly, 
g~vlng a final recurswe relat~onshlp like that in (10.1) o f  I B N Y R - I  Initially, the 
mode  was chosen from the prior density as 0 = 0.5, f rom two to five iterations 
were then necessary to find the true value o f  the mode, which ranged from 0 46 
to 1.98 in the cases examined. For  smaller values o f  t and I, p (u I -~/) is heavy in 
the tails, so, to obtain stable means, the recurslon (10.1) was c a m e d  out  over 
the range [0,1000], and, m a few cases, [0,2000]. As the no-data  (t = 0) case is 
known analytically, a total o f  2×  ( 1 0 + 3  × 20) = 140 complete densities, 
p (ul ~/), were computed  for Figures 3-6 below This task took 5-10 seconds per 
density on a PC-AT.  The densities themselves look much like Figures 5 and 6 
m I B N Y R - I ,  and are not shown. But f rom these, the means, modes,  and 
fractiles shown in the figures below were computed  for the total count  
n = R + u  

Our  s tandard  o f  compar i son  will be the cont inuous  data  predictions, the 
results for which are reproduced from I B N Y R - I  m Figures 2a & 2b; for short,  
we shall refer to these as the Ic and Ilc results, respectively For  ease in 
compar ison,  we keep the same vertical scale in all plots against the observat ion 
interval, t ( J ) .  

Figures 3a & 3b show the Types lq and llq results for a fine quant lzat lon 
level, I = 8 At this level, it is practically maposslble to see the effects o f  
discrete reporting, as the only differences are a few percent m the upper  
fractiles m the interval 1.5 < t < 2 5 

When we coarsen the quant izat lon level to I = 4, as shown in Figures 4a & 
4b, there begins to be a noticeable increase m the Case Iq upper fractfles and 
the pre&ct~ve mean m the interval [I.0, 3 0], but still less than 4 %  in the worst 
case. However,  the degradat ion o f  Type llq predictions is noticeably worse, 
wzth increase m the fractfles, the mean, and the mode  m the region [0.5, 3.5], 
up to 11% m the worst cases It should be remembered that I = 4 means that 
the report ing interval IS one-eighth the mean delay, which IS already more 
frequent than many  implementat ions encountered in practice 

Then, with I = 2, Figures 5a & 5b both show the instability in the interval 
l1 0, 3 5] that  before was characteristic o f  only Type II data.  In fact, the 
Type  Iiq predictions in the unstable region are now so bad as to be unrehable 
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unless no other est imates  are available.  Even the region t > 4.0, which 
heretofore had given s~mdar results for both types o f  data because over 74 % of  
the counts  were reported,  now s h o w s  s o m e  "'bobbling around"  due to the 
changing aggregation o f  data. 

Finally,  we have the case I = 1 in which Cases lq and l lq coalesce .  To  
illustrate the extreme degradation m this case, we have chosen to plot the 
results In Figure 6 on the same vertical scale as previous graphs,  rather than 
changing the scale to show all the results For t = 2.0 (t = 1.5 cannot  be 
computed) ,  the miss ing predlctwe mean count  is 481 1, the m o d e  ~s 430, and 
the upper fractiles are 575 and 763, respectlvelyV Clearly, the use o f  a 
quant lzat lon interval that ~s one-half the mean delay ~s much too  coarse when 
1.0 _< t < 6 0 Admit ted ly ,  the region above  that ~s reasonable,  but that ~s 
prediction with at least 93 % of  the events  already reported! 

Figures 7a & 7b give a "cross - sec t iona l"  impress ion o f  the changing level o f  
quant izat ion,  m the case for t = 2 0, which is In the region o f  instability with 
4 6 %  o f  the events  reported. The vertical scale has now been doubled,  so that 
one may now clearly see how bad the cases I = 1 and 1 = 2 truly are. In my 
opinion,  one  should pick at least / = 4 m Case Iq and / = 8 m Case l lq  to get 
" g o o d "  predictions,  which means  that, given a mean delay o f  2.0 years, one 
must  have semi-annual  or quarterly data, respectively!  
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FIGURES 7a & 7b Pred~ctwe mean, mode, and fractdes versus I 
for Types lq and llq quantJzed data (t = 2 0) 
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7. DISCUSSION AND SUMMARY 

We should perhaps emphasize once more that the results obtained with 
changing levels of  quantization (for a fixed observatxon interval) are due solely 
to changes In ,4 and data type upon the epoch data likelihood L ( O l f / ~  in 
(5.5). This is because the part  of  the prediction that depends upon 2 is 
unaffected by changing `4; R reflects all of the relevant information we can 
obtain about  the event rate for the purposes of  predtctmn: On the other hand, 
(3.3) shows that the computat ion of the joint estimates of 2 and 0 will be much 
more difficult 

The effect of  quantlzatlon upon the epoch data hkehhood can be visualized 
In Figures 8a & 8b, which show this function when t = 2.0 for 1 - -  
(continuous data), 4, 2 and 1, for the two different data types Although the 
mean and mode shift somewhat  as I decreases from ~ towards 2, the 
predominant  effect is an increased spread in the likelihood These likelihoods 
are multlphed by the prior density (dotted line), the results approximated by a 
Gammold ,  and then used with the kernel to find the shaping factors ho(u[f~),  
and, from the recurslon (4.4), the final predictive density. Note  that Type l lq 
data likelihoods, although converging faster with finer quantizatlon, do not 
shift the mode as much as Type lq;  since the true value of 0 is 0.5 (mode of 
pNor density), this means that Type IIq data will give less accurate predictions. 
The case I = 1 is, well, hopeless. 

Keeping in mind the summary observations that were already made in 
IBNYR-I  about  the continuous-data prediction problem, the main lessons to 
be drawn from this paper a re '  

(I)  The introduction of quantized reporting of epochs into the IBNYR model 
requires no new concepts and only a modest increase m algebra and 
computat ional  effort. 

(2) Case IIq data (no occurrence dates reported) continue to give poorer 
predictions than Case Iq (both occurrence and reporting epochs known) 
and the predictions degrade more quickly with coarser quantlzatlon. 

(3) The predlcUve accuracy of  these &screte-ume models, m comparison with 
the continuous case, declines dramatically as A increases from, say, 
one-sixteenth the mean delay to one-quarter  the mean delay. A tentative 
rule-of-thumb seems to be to choose ,4 to be at least one-eighth the mean 
delay wlth lq data and one-sixteenth the mean delay with Ilq data, if at all 
possible. 

(4) The case 1 = 1 (,4 is one-half  the mean delay), while coalescing the two data 
types and simplifying the sufficient statistics, is so poor  as to be unusable in 
the region of  interest. 

Admittedly, it is dangerous to extrapolate from one numerical example to 
practice For instance, one may be able to be much more precise a prtori about  
the parameters  of  the delay distribution; this narrower prior will, to some 
extent, counteract the imprecise data likelihoods obtained with coarse quantl- 
zatlon. And, as always, the final predictive spreads can be greatly reduced if we 
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EPOCH LIKELIHOOO$ & PRIOR - TYPE I DATA 
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FIGURES 8a & 8b Epoch Data Likehhood, L(OL', ), and Prior Density, p(O), versus 0 
for Types Iq and llq quantlzed data (t = 2 0) 
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can provide better prior information about the occurrence rate, perhaps by 
incorporating the underlying business volume Into the model 

With this understanding of  the potentml hazards of  quantized reporting, our 
next paper will consider the question of  whether or not cohort data from an 
IBNR traingle can sharpen our estimation o f  the unknown delay distribution 
and improve our predictions o f  the unreported events 

] would like to thank M. LIN for her substantial computational  and proofing 
assistance in developing these results Any comments  or crtticisms on this paper 
are welcome,  as are suggestions for making the basic model more realistic and 
useful. 
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SHORT CONTRIBUTIONS 

R U I N  PROBABILITY FOR T R A N S L A T E D  C O M B I N A T I O N  
OF E X P O N E N T I A L  CLAIMS 

BY BEDA CHAN 

Umver~tty o f  Toronto. Canada 

A B S T R A C T  

An alternative expression for the coefficients in the rum probablhty for the clas- 
sical rum model with translated combination of exponential clmms is derived 

K E Y W O R D S  

Probablhty of  rum; translated combmahon of  exponenhals 

In a compound Polsson claim process with claim amounts distributed as a 
mixture of  exponentials 

tl 

p(x) = y '  A,p,e-P" 
i=1  

for x > 0 where all A, > 0 and ~ A, = 1, it is well known that the rum 

probablhty is also a linear combmaUon of exponenuals 

~u (u) = ~ C, e --"" 
/ = l  

where {r t , . . ,  r,,} are soluUons to the adjustment coeffic,ent equation 

M x ( r  ) - 1 
(1 +O) pl - 

r 

and {C~ . . . .  Cn} are determined by the partlal fractions of  

M x ( r ) -  1 

C, r, 0 r 

,=~ r , - r  1 + 0  M x ( r ) -  I 
(1 +O) p~ 

r 

See BOWERS et al. (1986), § 12 6 for details. This result was later extended by 
DUFRESNE and GERBER (1989) tO the case when the clmm dlstnbuuon is a 
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translated (density function moved by r to the left) combination of  exponen- 
tials. (Note that the A,'s need not be positive) They found that the coeMclents 
C,'s are the solution to the system" 

(I)  ~ fl' Ck 1, l 1, n, 
k -  I f i t - -  r~ 

and gave Ck exphcltly. In this note we give an alternative expression for the 
solution for ( l ) :  

(2) Ck= ff I r ,  ~ i  fl,--r~ 
I#k r t -  r k t=l fit 
I = l  

To verify (2), consider 

C ,  = I - 1 1  
x rl ( x  --  fll ) 

, - I  x - - r ,  ,=1 f l , ( x - - r , )  

where the two sides are different expressions for the same rational function of 
(degree n/degree n) which has simple poles {r t . . . . .  rn} and takes the value I at 
x = fll . . . .  ,ft ,  and the value 0 at x = 0. Multiply by x - r  k and let x = r k to 
obtain (2). 

Two different expressions for Ck, (49) and (54) in DUFRESNE and GERBER 
(1989), arise naturally when a more detailed problem Including the severity of  
ruin ts studied These two expressions can be obtained from summing (9) and 
(22) in DUERESNE and GERBER (1988) o v e r j  respectively 
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BOOK REVIEWS 

W R HEILMANN (1988). Fundamentals of Rtsk Theory. Verlag fiir Verslche- 
rungswlrtschaft, Karlsruhe, 288 pages, 36 DM. 

This book is essentially an English translation of the book " G r u n d b e g n f f e "  by 
the same author. Our readers are therefore referred to the book review of  
"Grundbegr l f f e"  published m the ASTIN Bulletm 18, vol 1, 115-116. 

IBR. lnternattonal Bibhography of Reinsurance 9th edition 1989/90 Copyright 
and edited by. Bayensche Rtickverslcherung Aktlengesellschaft, Sederanger 
4-6, Tucherpark, D-8000 Mfinchen 22. 

The present bJbhography which appeared for the first time m 1962 documents 
some 4'800 titles m reinsurance literature going back to 1912. Earher books 
and articles have been included only If of historical value or of  perenmal 
fundamental importance. 

In the present nmth edmon the new publlcahons of 1987 and 1988 have been 
included. The closing date for inclusion was 31st December 1988. 

IBR has remained a handy reference book which as was already mentioned 
m the preface of the first edition " is  intended to serve the purposes of practical 
insurance by helping those working on a reinsurance problem to turn to 
account the experiences, considerations and proposed solutzons as reported in 
pubhcat~ons". Because ~t is compded simultaneously m two languages--  
German and Enghsh - - the  IBR can be sure to find a large and international 
readership. 
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