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ABSTRACT 

Fuzzy set theory IS a recently developed field of  mathematics, that introduces 
sets of  objects whose boundaries are not sharply defined. Whereas in ordinary 
Boolean algebra an element is either contained or not contained m a given set, 
in fuzzy set theory the transition between membership and non-membership is 
gradual The theory aims at modehzmg situations described in vague or 
~mpreclse terms, or situations that are too complex or all-defined to be analysed 
by conventional methods This paper alms at plesentlng the basic concepts of  
the theory In an insurance framework. First the basic defimtlons of  fuzzy logic 
are presented, and applied to provide a flexible definmon of  a "preferred 
policyholder" in life insurance. Next, fuzzy decision-making procedures are 
dlustrated by a reinsurance apphcation, and the theory of fuzzy numbers is 
extended to define fuzzy insurance premmms. 
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l INTRODUCTION 

In 1965, ZADEtl published a paper entitled "Fu zzy  Sets" in a httle known 
journal, Information and Control, introducing for the first time sets of  objects 
whose boundaries are not sharply defined. This paper gave rise to an enormous 
interest among researchers, and mltiated the fulgurant growth of a new 
&sciphne of mathematics, fuzzy set theory. The number of papers related to 
the field exploded from 240 in 1975 (ZADEH et al.), to 760 m 1977 (GOPTA et 
al.), 2500 in 1980 (CHEN et al ), and 5000 m 1987 (ZIMMERMAN). Today, there 
are many more researchers in fuzzy set theory than in actuarial science, and 
they form a much more international group, with important contributions 
from China, Japan, and the Soviet Union. Two monthy scientific Journals 
publish new theoretical developments and applications, that are to be found m 
linguistics, risk analysis, artificial intelhgence (approxnnate reasoning, expert 
systems), pattern analysis and classification (pattern recognmon, clustering, 
image processing, computer vision), reformation processing, and declslon- 
making. In this paper we wdl explore some possible apphcations of  fuzzy set 
theory to Insurance. 
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In ordinary Boolean algebra, an element is either contained or not contained 
m a given set. the transition from membership to non-membership ~s abrupt. 
Fuzzy sets, on the other hand, describe sets of elements or variables whose 
limits are ill-defined or imprecise The transition between membership and 
non-membership is gradual: an element can " m o r e  or less" belong to a set 
Consider for instance the set of "young  drivers".  In Boolean algebra, it is 
assumed that any indlwdual either belongs or does not belong to the set of 
young drivers. This xmphes that the individual will move from the category of 
"young  drivers" to the complementary set of  "n o t  young drivers" overnight 
Fuzzy set theory allows for grades of  membership. Depending on the specific 
application, one might for instance decide that drivers under 20 are dei]nitely 
young, that drivers over 30 are definitely not young, and that a 23-year-old 
driver is " m o r e  or less" young, or is young with a grade membership of  0.7, on 
a scale from 0 to 1 

Fuzzy set theory thus alms at modehzmg imprecise, vague, fuzzy informa- 
tion, which abound in real world situations. Indeed, many practical problems 
are extremely complex and all-designed, hence difficult to modehze with 
precision To quote ZADEH, "as the complexity of a system increases, our 
ability to make precise and yet significant statements about its behavlour 
diminishes until a threshold is reached beyond which precision and slgmficance 
become almost exclusive characteristics" Computers cannot adequately handle 
such problems, because machine mtelhgence still employs sequential (Boolean) 
logic. The superiority of the human brain results from its capacity of handling 
fuzzy statements and decisions, by adding to logic parallel and simultaneous 
information sources and thinking processes, and by filtering and selecting only 
those that are useful and relevant to its purposes. The human brain has many 
more thinking processes available and has developed a far greater filtering 
capacity than the machine A group of individuals is able to resolve the 
command "tal l  people m the back, short people m the f ront" ,  a machine is 
not Fuzzy set theory explicitly introduces vagueness m the reasoning, hoping 
to provide decision-making procedures that are closer to the way the human 
brain performs. 

A clear distinction has to be made between fuzzy sets and probability theory. 
Uncertainty should not be confused with imprecision Probablhties are pri- 
marily intended to represent a degree of  knowledge about real entities, while 
the degrees of  membership defining the strength of participation of an entity m 
a class are the representation of  the degree by which a proposition is partially 
true Probability concepts are derived from considerations about the uncer- 
tainty of propositions about the real world Fuzzy concepts are closely related 
to the multlvalued logic treatments of issues of imprecision m the definition of 
entities Hence, fuzzy set theory provides a better framework than probablhty 
theory for modelling problems that have some inherent imprecision The 
traditional approach to risk analysis, for instance, IS based on the premise that 
probablhty theory provides the necessary and sufficient tools for dealing with 
the uncertainty and imprecision which underline the concept of risk in decision 
analysis The theory of  fuzzy sets calls Into question the valzdlty of  this 
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premise. It does not equate imprecision with randomness It suggests that much 
of the uncertainty which ~s mtrinsm m risk analysis is rooted m the fuzziness of 
the reformation which is resident in the data base and m the imprecision of  the 
underlying probabilities. Classical probability theory has its effectiveness 
limited when dealing with problems in which some of the prmc,pal sources of 
uncertainty are non-statistical in nature 

In the sequel we will present the basra principles of  fuzzy logic, fuzzy 
decision-making, and fuzzy arithmetics, while developing three lnSul'ance 
examples We will show that fuzzy set theory could provide demsmn procedures 
that are much more flexible than those originating from conventional set 
theory Indeed, insurance executives and actuarms, much better trained to deal 
with uncerta,nty than with vagueness, have often transformed m~preclsc 
statements into "a l l -or-nothing"  rules. For instance, Belgian insurers have 
used the fuzzy statistical evidence " Y o u n g  dr,vers provoke more automobile 
accidents" to set up the a posteriorl i'atmg rule "Dr,vers under 23 years of age 
will pay a $150 deductible if they provoke an accident". Hence '" young"  was 
equated with "unde r  23",  a definite &storslon of the initial statement As 
another example, Belgmn regulatory authorlt,es define, for statistical purposes, 
a "severely wounded person" as " a n y  person, wounded m an automobile 
accident, whose condmon requires a hospital stay longer than 24 hours" ,  a 
very arguable "de-fuzzlficatlon" of a fuzzy health condmon 

In Section 2 we will present the bamc definitions of fuzzy Iogm and apply 
them to provide a more flexible defimtlon of  a "preferred policyholder'" than 
the one currently used by some American life insurers Section 3 Introduces the 
main concepts of  fuzzy decision-making, and uses them to select an optimal 
Excess of  Loss retentmn. Fuzzy anthmetms are presented m Section 4, and 
applied to compute the fuzzy prem,um of a pure endowment policy 

First, let us introduce our three examples. 

Problem 1 Deftmt,on of a preferred pohcyhoMer h7 hfe insurance 

Heavy competition between Amerman hfe insurers has resulted m a greater 
subdlvlson of  policyholders than in Europe U.S. insurers first began, in the 
mid 1960s, to award substantial discounts to nonsmokers purchasing a term or 
a whole life insurance. Then the "' preferred policyholder" category was further 
refined, and more discounts were granted to apphcants who met very stringent 
health reqmrements, such as a cholesterol level not exceeding 200, a blood 
pressure not exceeding 130/80, . For instance, one company offers a non- 
smoker bonus of 65 % more insurance coverage with no increase m premium if 
the apphcant has not smoked for 12 months prior to application A bonus of 
100% is offered if the applicant: 

- -  has not smoked for the past 12 months, and 
- -  has a resting pulse of 72 or below, and 
- -  has a blood pressure that does not exceed 134/80, and 
- -  has a total cholesterol reading not exceeding 200, and 



36 JEAN LEMA|RE 

does not engage in hazardous sports, and 
- -  rigorously follows a 3-tlmes-a-week exercise program of  at least 20 minutes, 

and 
- -  is within specified height and weight hmlts, and 
- -  has no more than one death in immediate family prior to 60 years of  age 

due to kidney or heart disease, stroke or diabetes 

Again this is a dlstors~on, or a least a very strict interpretation, of  the medical 
statement "Peop le  who exercise, who do not smoke, who have a low level of 
cholesterol, low blood pressure, who are neither overweight nor severely 
underweight . . . .  have a h~gher hie expectancy".  Insurers demand all conditions 
to be strictly met ,  the shghtest infringement leads to automatic  rejection of the 
preferred category For  instance, a cholesterol level of  201 implies that the 
preferred rates won' t  apply, even ~f the applicant meets all other requirements. 
A cholesterol level of  200 is accepted, a level of  201 is not! We will show that 
f u r y  set theory can be used to provide a more flexible definition of  a preferred 
policyholder, that allows for some form of  compensation between the selected 
criteria. 

Problem 2. Selection of  an optmval excess of  loss retentton 

Imprecise statements seem to be pervasive m reinsurance practlve, where vague 
recommendations and rules abound. " A s  a rule of  thumb, an excess of  loss 
(XL) retention should approximatively equal 1% of the premium income",  
" O u r  long-term relationship with our present reinsurer should in principle be 
mainta ined" ,  " W e  could accept those conditions prowdlng substantial retro- 
cessions are offered . . . . ,  A ball-park figure for the cost of  this reinsurance 
program is $10 null lon",  are fuzzy sentences frequently heard in practice. To 
illustrate fuzzy decision-making procedures, we shall consider the problem of 
the selection of  the optimal retention of a pure XL treaty, given the four 
following fuzzy goals and constraints. 

Goal  1: The ruin probabili ty should be substantially decreased, Ideally down 
to be neighbourhood of 10-5 

Goal  2: The coefficient of  varlatxon of the retained portfolio should be 
reduced; ~f possible it should not exceed 3 

Constraint  1. The reinsurance premium should not exceed 2 5 % of the line's 
premium income by much. 

Constraint  2. As a rule of  thumb, the retenuon should approxlmatlvely be 
equal to 1% of  the line's premium income 

Problem 3 Computation oJ the fuzzy premmm of a pure endowment pohcy 

Forecasting interest rates is undoubtedly one of the most complex modelling 
problems. Money market  interest rates seem to fluctuate according to monthly 
U.S. unemployment  and trade deficit figures, vague statements made by 
Mr Kohl or Mr Greenspan,  the markets '  perceptxon of Mr Bush's wllhngness 
to tackle the deficit problem, the mood of  the participants to an OPEC 
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meeting, etc. To compute insurance premiums over a 40-year span with a fixed 
Interest rate of  4.75 % then seems to be an exercise in futdlty. We will show 
that the Introduction of  fuzzy interest rates (and fuzzy survival probabilities) at 
least allows us to obtain a partial measure of  our ignorance. 

As illustrated by our examples, fuzzy set theory attempts to modehze 
imprecise expressions like " m o r e  or less young" ,  "nei ther  overweight nor 
underweight" ,  "in the nelghbourhood o f " ,  "in principle".  In retreating from 
precision in the face of  overpowering complexity, the theory explores the use of  
what might be called linguistic variables, that is, variables whose values are not 
numbers but words or sentences. In summary,  fuzzy set theory endorses 
Bertrand Russell's opinion that 

"Al l  traditional logic habitually assumes that precise symbols are being 
employed. It is therefore not applicable to this terrestrial life but only to an 
imagined celestial existence" 

and reJects Yves Le Dantec 's  aphorism 

" T h a t  only is science which deals with the measurable" .  

2 FUZZY LOGIC AND FUZZY PREFERRED POLICYHOLDERS 

2.1. Basic definitions 

A fuzzy set is a class of  objects in which there is no sharp boundary between 
those objects that belong to the class and those that do not. More precisely, let 
X = {x} denote a collection of  objects denoted generically by x A fuzzy set A 
in X is a set of  ordered pairs 

A = {x, UA (x)}, x ~ X 

where UA(x) is termed the grade of membership o f x  in A, and UA:X ~ M is a 
function from X to a space M, called the membership space Hence a fuzzy set 
A on a referential set X can be viewed as a mapping UA from X to M. 
(Examples of  membership functions are presented in all figures). 

For our purposes It IS sufficient to assume that M is the interval [0, 1], wlth 
0 and 1 representing, respectively, the lowest and highest grade of membership 
The degree of membership of x in A corresponds to a " t ru th  va lue"  of  the 
statement " x  is a member  of  A ". When M only contains the two points 0 and 
1, A is nonfuzzy. 

Problem 1 

Let X be a set of  prospective policyholders, x =.,~ ( i t ,  t2, t3, t4). For  simplicity, 
assume that the requirements for the status o f "  preferred pol icyholder"  will be 
based on the values taken by 4 variables 

t~, the total level of  cholesterol in the blood, in mg/dl, 
t2, the systolic blood pressure, in mm of  Hg 
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t3, the ratio (in %) of the effective weight to the recommended weight, as a 
function of height and build 

&, the average consumption of cigarettes per day 

Using a classical approach, an insurance company would for instance define a 
preferred policyholder as a nonsmoker with a cholesterol level that does not 
exceed 200, and a blood pressure that does not exceed 130, and a weight that is 
comprised between 85% and 110% of his recommended weight. 

If a fuzzy set approach is to be used, membership functions have to be 
defined for all cnterm. 

National Institutes of Health nowadays recommend a level of less than 
200 mg of cholesterol per deciliter of  blood Levels between 200 and 240 mg/dl 
are considered to be borderhne high The fuzzy set A of the people with a low 
level of cholesterol can then 
UA (x, t~) 

1 

1 - 2 ( - - - -  

UA (x; tt) = 

2 / 240- t~ 

40 

.0 

be defined by the membership function 

l I ~ 200 

t l -  200 )2 
40 200 < t, ~ 220 

__)2 
220 < t~ ~ 2 4 0  

240 < t~ 

The normal systolic blood pressure is about 130 mm of mercury. People with a 
blood pressure greater than 170 are five times more likely to suffer from 
coronary heart &sease than indwiduals with normal blood pressures Hence the 
fuzzy set B of the people with an acceptable blood pressure can be defined by 
the membership funcuon U~(x, t2) 

1 t 2 =< 1 3 0  

I 2 ( t2 - -13012  - 1 3 0  < t2=< 1 5 0  
40 

U B ( x ,  t , )  = 

2 (  170-  tz ) 2 

4O 
150 < t2 =< 170 

.0  170 < t 2 

Overweight and underweight people have a shorter life expectancy, skinniness 
being less primordial than obesity. This is reflected in the asymmetric member- 
ship function Uc(x, t3) that characterizes the fuzzy set C of the people with 
adequate weight 
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0 

2 ( t 3 - 6 0 )  2 

- 2 5 -  

( 8 5 - t 3 )  2 
I - 2  - 25-- 

Uc(X, t3) = I 

1 - 2 (  t 3 -  110 ) 2 0  

2 ( 1 3 0 - t 3 )  2 2 0  

0 

13 ~ 60 

60 < 13 ~ 72.5 

72.5 < t 3 =< 85 

85 < t 3 =< 110 

110 < t 3 ~ 120 

120 < t 3 ~ 130 

1 3 0  < t 3 

Even hght smokers are more prone to suffer from cancer and car&ovascular 
dxseases than nonsmokers Hence they cannot be considered as "p re f e r r ed"  
and the set D of the nonsmokers is nonfuzzy 

1 t 4=O 
U o(X, /4) = 0 I4 > 0. 

The four selected membersh.p functions are represented m Figure 1. Admit- 
tedly, there ~s some arbitrariness m the defimton of these membership 
functmns, but fuzzy set theory contends that this is better than membership 
functions that abruptly jump from 1 to 0, m the classmal approach 

A fuzzy set is said to be normal lff Sup, UA(x) = 1 Subnormal fuzzy sets 
can be normalized by dwldmg each UA (x) by the factor Sup, UA (x) 

.,4 is said to be the complement of  A iff U,i(x) = I - U A ( x )  Vx. 
A fuzzy set Is contained m or is a subset of a fuzzy set B (,4 c B) iff 

UA(x) ~_ UB(X) V x. 
The umon of A and B, denoted A U B, is defined as the smallest fuzzy set 

contalmng both A and B Its membership function is gwen by 

UAuB(X) = max [UA(X), UB(X)] x ~ X  

The intersection of  A and B, denoted A f'l B, is defined as the largest fuzzy set 
contained m both A and B. Its membership functton ~s given by 

UAnR(X) = mm [gA(x),  gB(x)] x e X  

The nouon of intersection bears a close relation to the notion of  the connective 
" a n d " ,  just as the umon of A and B bears a close relatmn to the connectwe 
" o r " .  It can be shown that these definmons of fuzzy union and intersectmn are 
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the only ones that naturally extend the corresponding standard set theory 
notions, by satisfying all the usual requirements of  assoclatlwty, commutat lv-  
ity, ~dempotency and dlstributw~ty. 

Problem 1 

The fuzzy set E of  the nonsmoklng individuals with low cholesterol, acceptable 
blood pressure and adequate wexght ts the intersection of  the 3 fuzzy sets A, B, 
C, and the nonfuzzy set D. Its membership function is gwen by 

UE(X; tl , t2, t3, /4) = m m  [UA (x ;  tl), UB(x, t2), Uc(x; /3), UD(X; 14)] 

So an individual can only be a full member  of  E if he doesn ' t  smoke, has a 
cholesterol level not exceeding 200, a blood pressure not above 130, and a 
weight no less than 85 % and no more than 110 % of his recommended or ideal 
weight. Thts corresponds to the classical approach.  

A nonsmoker  x = x(210, 145, 112, 0) with a cholesterol level of  210, a blood 
pressure of  145, and who ts overwetght by 12% ts a member  of  E wtth a grade 
of  membership 

UE(x, 210, 145, 112, 0) = mm (0.875, 0.71875, 0 98, 1) = 0.71875. 

In other words, the " N "  operation assigns a grade of  membership that 
corresponds to the most severe of  the infringements to "per fec t ion" ,  m this 
case blood pressure. Cumulative effects and interactions between the criteria 
are ignored, which Js not realistic. Obwously,  the health consequences of  high 
blood pressure are worse when there Is also an excess of  weight and cholesterol. 
Also, since only the most  severe cond~tton ~s considered, tt ~s tmposs~ble to 
introduce compensations or trade-offs m decision rules. A mild excess of  
weight cannot  be compensated by ideal cholesterol and blood pressure 

2.2. Other definitions of the intersection 

The minimum operator  that charactenzes the intersection corresponds to the 
"logical  a n d "  Other definitions of  the intersection have been suggested, they 
correspond to " s o f t e r " ,  more flexible interpretations of  the connectwe " a n d  ". 
They all amount  to exactly the same in the conventional case of  degrees of  
membership restricted to 0 and 1. The selection of  a specific operator  wdl 
depend on ~ts posslbd|tJes to allow for cumulative effects, interactions, and 
compensations between the criteria. We wish the following properties to be 
satisfied. 

Property 1 (cumulative effects): Two infringements are worse than one. 

UAns(X) < m l n [ U A ( x ) , U s ( x ) ]  If UA(x) < 1 and Us(x) < 1. 

Property 2 (interactions between criteria). Assume UA (x) < Us(x) < 1. Then 
the effect of  a decrease of  UA(x) on UAnn(x) may depend on Ue(x) 
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Property 3 (compensations between crlterm): If UA(r) and Uo(x) < 1, the 
effect of  a decrease of  Ua(x) on UAnb(X) can be erased by an increase of 
Us(x)  (unless, of  course, Us(x)  reaches 1). 

The algebraic product F of  A and B is denoted AB and Is defined by 

gA~(x) = UA (x)" UB(x) 

The bounded difference G of A and B is denoted A O B and is defined by 

UAes(x )  = max [0, UA(x)+ UB(x ) -  1] 

The Hamacher operator H defines the intersection of two fuzzy sets A and B by 

UA (x)" U~(x) 
UP(x)  = o < p < l 

p + (I - p) [ UA (x)  + UB (x)  - u~ (x)  UB (x)] 

The Yager operator Y defines the mtersectmn of  two fuzzy sets A and B by 

U~(x) = I- -mm{I ,[( I - -UA(x))P+(I--UB(x))P] I1p} p ~ I 

Problem 1 

The generalized operators provide a more realistic way of modelling this 
specific problem because they explicitly allow for compensations and interac- 
tions between the selected criteria First consider the algebraic product. The 
grade of  membership of  individual x(210, 145,112,0) in the fuzzy set 
F = ABCD is 

UF(X; 210, 145, 112, 0) = (0 875) (0.71875) (0.98) (1) = 0 6163 

The effect of  high blood pressure is here amphfied by the presence of  a shght 
obesity and a cholesterol level mildly above normal This operator satisfies all 
three properties. 

The grade of membership of the same mdwldual m the fuzzy set 
G = A O B O C O D corresponding to the bounded difference operation is 

Ua(x; 210, 145, 112, 0) = max [0, 0 875+0.71875+0 98+ I - 3 ]  = 0 57375 

Hence the effects of  the cnterm are addltwe; no interactions are introduced, 
since the consequences of  cholesterol are the same whatever the blood pressure 
and the weight. This operator satisfies properties 1 and 3, but not 
property 2 

The minimum and algebrmc product operators model two extreme situa- 
tions. The minimum operator does not satisfy any property Compensations 
and interactions cannot be introduced. The algebraic product allows for 
compensation and maximum interaction, since the effect of one criterion fully 
impacts the others. The Hamacher and Yager operators model mtermedmte 
situations, wtth flexlblhty provided by the parameter p. 

The Hamacher operator reduces to the algebraic product when p = 1. For 
p < 1, the denominator Is less than 1 and UH(X) > UF(X): the producl~ 
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operator is " so f t ened" ;  this operator models weaker interactions It reduces 
the effect of combined infringements The reduction effect is greater for severe 
Infringements. Also, the lower the selected p, the greater the reduction effect 
Hence this operator can be used if it ~s considered that the combined effect of 
high cholesterol and high blood pressure is somewhat less than multlphcatlve 
Selecting p = 0.5 for our example, we obtain successwely 

UffZ(x, 210, 145) - (0 875) (0 . . . . . .  71875) = 0.6402 
0 5 + ( 1 - 0  5)[0.875+0.71875-(0.875)(0.71875)] 

Uff2(x, 210, 145, 112, 0) = uffZ(x, 210, 145, 112) 

(0 6402) (0 98) 
- -- 0 6296 

0.5+(1 - 0  5)[0 6402+0 9 8 - ( 0  6402) (0.98)] 

This operator satisfies all three properties. 
The Yager operator reduces to the bounded difference operator when p = 1, 

and to the mlmmum operator when p --, ~ .  UPr(x) is an Increasing funcnon of  
p. Hence all intermediate SltUatmns can be modelled, from the strongest to the 
weakest " a n d "  Selecting p = 2, we obtain 

U~,(x) = 1 - r a m  {1, [(1 -0 .875 )2+( I  - 0  71875)2+(I - 0  98)2] I/2} = 0.69157 

This operator satisfies all three properties, except in the case p = ~ .  

2.3. Selection of  a decision rule 

If  A is a fuzzy subset of  X, ItS a-cut A~ is defined as the nonfuzzy subset such 
that 

A~ = {x[U~(x)  > a} for 0 < a ~ I 

An a-cut can be interpreted as an error interval whose truth value is a. 

Problem 1 

The notion of  a-cut provides a flexible way of  defining preferred policyholders. 
The "classical"  approach corresponds to l-cuts such as E~ or F~. Lower 
values of a provide generahzatlons of  this defimtlon For instance preferrred 
customers could be defined as the members of E075 or F 06o- E075 IS the set of 
pohcyholders for whmh the grade of  membership attains at least 0 75 for each 
of  the selected criteria (for our specific membership functions, t~ < 214, 
tz ~_ 144, 76.2 < t 3 < 117.1, t4 = 0). Hence this amounts to relaxing all criteria 
in a uniform way 

F06o is the set of  policyholders for which the product of  the four grades of 
membership attains at least 0 60 The latter definmon is more realistic because 
it allows for interactions and compensatmns An excess of  blood pressure can 
for instance be compensated by normal or near-normal weight and cholesterol 
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levels Policyholder x(210, 145, 112, 0) is accepted as preferred using the second 
criterion. He is not accepted if the first criterion is used 

Similar decision rules can be constructed using the other operators, ~f 
medical considerations hint that they provide a better model of  the problem. 

2.4. Fuzzy operations 

The concept of  grades of  membership allows to define the following operations 
that have no counterpart  m ordinary set theory; they are uniquely fuzzy. 

Concentratton: A fuzzy set as concentrated by reducing the grade of  member- 
ship of all elements that are only partly in the set, m such a way that the less an 
element as in the set, the more its grade of  membershap as reduced The 
concentration of  a fuzzy set A as denoted CON (A) and defined by 

UCON~A)(X) = U ] ( x )  a > 1 

Ddatton: Dilation as the opposate of concentration A fuzzy set is dilated or 
stretched by increasing the grade of membership of all elements that are partly 
m the set. The dilation of a fuzzy set A as denoted D I L ( A )  and defined by 

UDILCA)(X) = U ~ ( x )  a < I 

a is called the power of  the operation. 

Intensification: A fuzzy set can be antensafied by increasing the grade of 
membership of  all the elements that are at least half m the set and decreasing 
the grade of  membership of  the elements that are less than half m the set The 
intensification of  a fuzzy set as denoted INT (A) and is defined by 

{2U~(x) 0 <U(x)__<05 
Uir~'r~A)(x) = I - 2 [ l - U A ( x ) ]  2 0 5  < U ( x ) <  1 

Fuzztfication. A fuzzy set can be fuzztfied or de-mtensffed by increasing the 
extent of  its fuzziness. There are several ways of achaeving this. 

Problem 1 

The operations of  concentrataon and dilation roughly approximate the effect of 
the llngmstic mo&fiers " v e r y "  and " m o r e  or less". They are used whenever 
the different crlterm have to be weaghted. The presentataon of  problem 1 so far 
implicitly assumes that each criterion has the same importance. If for me&cal 
reasons this is not desirable, fuzzy operahons can be used. Suppose that 
cholesterol level is the better predictor of future heart problems, while the 
importance of  blood pressure has to be downgraded. This can be reflected by 
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assigning powers of  2 and 0.5 to the two criteria. The modified fuzzy set E, 
corresponding to the minimum operator,  is characterized by 

UR(x; t l ,  t2, /'3, /'4) = min [U2A (x, /'1), UsI/2(x;/'2), Uc(X; 13), UD(X;/'4)] 

The modified fuzzy set FP, corresponding to the algebraic product, has the 
membership function 

Up(X; /'1, /'2, /'3, /'4) = U2A( X, /'1) UBI/2(X; 12) Uc(x; 13) UD(X; /'4) 

Prospective pohcyholder x (210, 145, 112, 0) has a grade of membership of  

mm [(0.875) 2, (0.71875) t/2, 0 98, 1] = 0.7656 

in ~7, and of  

(0.875)2-(0 71875) ~/2 (0.98) (1) = 0 6361 

in F. He is now accepted as a preferred customer under each of the two crlterm 
of Section 2 3, since x(210, 145, 112,0) is included in both E07s and if060. 

3 D E C I S I O N - M A K I N G  WITH FUZZY GOALS AND CONSTRAINTS 

AND FUZZY R E I N S U R A N C E  

In the classical approach to decision-making, the principal ingredients of  a 
decision problem are (a) a set of  alternatives, (b) a set of  constraints on the 
choice between different alternatwes, and (c) an objective function which 
associates with each alternative its evaluation. There is however an intrinsic 
similarity between objective functions and constraints, a similarity that 
becomes apparent  when for instance Lagrangian multipliers are introduced 

This s lmdanty is made explicit m the formulation of  a decision problem m a 
fuzzy environment Let X = {x} be a given set of  alternatives. A fuzzy goal G m 
X, or simply a goal G, is expressed and identified with a given fuzzy set G in X 
In other words, a fuzzy goal is an objectwe which can be characterized as a 
fuzzy set m the space of  alternatives In the classical approach,  the objectwe 
function serves to define a linear ordering on the set of  alternatives. Clearly the 
membership function Uc(x)  of  a fuzzy goal serves the same purpose, and may 
even be derived from a given objective function by normalization, which leaves 
the hnear ordering unaltered Such normalization provides a common denom- 
inator for the various goals and constraints and makes ~t possible to treat them 
alike. A fuzzy constraint C in X, or smaply a constraint C, is similarly defined 
to be a fuzzy set C m X. An important  aspect of  those definitions is thus that 
the notions of  goal and constraint both are defined as fuzzy sets in the space of  
alternatives. Hence they can be treated identically m the decision process Since 
we want to satisfy (optimize) the objcctwe function as well as the constraints, a 
decision m a fuzzy environment is defined as the selection of  activities which 
simultaneously satisfy objective functions and constraints. A decision can 
therefore be viewed as the intersection of  fuzzy constraints and fuzzy objective 
function(s) The relationship between constraints and ob.lectwe functions in a 
fuzzy environment is therefore fully symmetric 
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Assume we are given a fimte set of alternatives X = {xj, x2 . . . . .  x,,}, a set of 
goals G~ . . . .  Gp, characterized by their respectwe membership functions 
Uc,(x) ,  ., Uo~(x), and a set of constraints Ci . . . .  Cq, characterized by their 
respective membership functions Uc (x)  . . . . .  Uc (x). Finiteness is assumed for 
expository purposes only and can be easily rela~ed. 

A decision is a choice or a set of choices drawn from the available 
alternatives, satisfying the constraints and the goals. The constraints and goals 
combine to form a demsmn D, which ~s naturally defined as the mtersecUon of 
the fuzzy sets G's and C's. 

D = Gi {7 G2 f'l ... C1GpN Ci ["l C2 N ... ~ Cq 

Consequently a decision D is a fuzzy set in the space of  alternatives whose 
membership function ~s 

U p ( r )  = mm[Ua, (x ) ,  ., Ueo(x), Uc.(.v), ., Uc~(X)] 

This decision membership funcuon can be interpreted as the degree to wh,ch 
each of the alternatives satisfies the goals and constraints As m example 1, 
concentrations and dilations can be performed to reflect unequal importances 
of the goals and constraints, and other intersection operators can be used. 

Let K be the (nonfuzzy) set consisting of all the alternatives for which Up(X)  
reaches its maxmaal value K is called the optimizing set, and any alternative in 
K is an optnnal decision. The decision-maker simply selects as best alternative 
the one that has the maxmmm value of  membership m D 

This decision-making procedure is essentially a maxlmln technique, similar 
to the selectmn of  an optimal strategy in noncooperative game theory. For 
each alternative the minimum possible grade of membership of all the goals 
and constraints is computed to obtain D Then the maximuln value over the 
alternatives m D is selected 

Problem 2 

Gwen the formulation of the problem, a reinsurance program is characterized 
by its XL deductible, and evaluated by means of 4 different variables 

tl = probability of rum (x 104 ) 

tz = coefficient of  variation of the retained portfolio 

reinsurance premium 
13 = (in %) 

cedent's premium income 

deductible 
t4 = (m %) 

cedent's premium income 

Assume the reinsurer offers 10 different XL deductibles, arranged m increasing 
order (x = 1,2, .  , 10). The values taken by the selected variables are pro- 
vlded m Table 1 
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TABLE 1 

CIIARACIERIST[CS OF THE [0 XL REINSURANCE PROGRAMS 

Program I 2 3 4 5 6 7 8 9 10 

61 tl 339 280 200 200 313 339 360 388 419 465 
G2 t2 2 98 3 00 3 03 3 07 3 12 3 19 3 28 3 52 3 80 4 20 
Ch t3 3 20 3 00 2 85 2 73 2 64 2 57 2 52 2 48 2 45 2 43 
C2 t4 4 6 8 9 10 I I 12 14 16 18 

The following membership funchons have been chosen They are represented 
m Figure 2 

Goal 1 (probablhty of rum) 

U~, ( x ,  t l)  = 

"1 

1 - 2 ( t l - ' 0 0 0 0 2 )  2 . 0 0 0 0 8  

(.0001-t~ )2 
2 -- 

00008 

t l ~ .00002 

.00002 < l I ~ .00006 

00006 < t~ < .0001 

.0 0001 < t~ 

Goal 2 (coefficient of varlahon) 

UG2(X, t2) = . l - - t  2 

Constraint 1 (reinsurance premium) 

I 

I - 2  
t3- 2.5 

06 

3061-t3 )2 

2 

Uc, ( x ,  t3) = 2( 
.0 

t2 < 3-1 = 

3.1 < t2=<41  

4 1 < t 2  

13 ~ 2.5 

2 5 < t 3 ~ 2.8 

2.8 < t~ N 31 

3.1 < t '  3 
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FIGURE 2 Membership functions Problem 2 
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C o n s t a n t  2 (deduct ib le)  

= ftl4+0'l 
Uc2(X;/4) ~ 20.65- 1.5t 4 

Given  those member sh ip  funct ions,  the grades  o f  me mbe r sh ip  for all a l te rna-  
tives are easily compu ted .  They  are  presented  in Tab le  2. 

T A B L E  2 

GRADES OF MEMBERSHIP OF THE [0 DIFFERENT PROGRAMS 

0 < t 4 < 0 9  

0 9 < t 4 = < 1 1  

I 1 < t4 =< 1.7667 

1 7667 < 14 

Program I 2 3 4 5 6 7 8 9 l0 

Gi 94 98 1 1 96 94 92 89 85 78 
G2 1 I I I I 91 82 58 30 0 
Ct 0 0 06 35 71 89 97 998 I I 
C2 5 7 9 I 1 1 85 55 25 0 

The  m e m b e r s h i p  funct ion Up(X) of  the d e o s l o n  D is ob ta ined  by s imply  
t ak ing  the m i n i m u m  o f  the U's, for each a l ternat ive ,  as shown in Tab le  3 

TABLE 3 
MEMBERSIIIP I'UNCTION O1" D 

Program 1 2 3 4 5 6 7 8 9 I 0 

Uo(.x) 0 0 06 35 7t 89 82 55 25 0 

N o t e  that  no a l te rna t ive  has full member sh ip  m D:  fuzzy set D is subno rma l  
This  o f  course  reflects the fact that  the specified goals  and cons t ra in t s  confl ict  
with one ano the r ,  rul ing out  the existence o f  an a l te rna t ive  which fully satisfies 
all o f  them 

In ou r  case, when all goals  and  cons t ra in t s  are  cons idered  to be o f  equal  
impor t ance ,  the ruin p robab i l i t y  cr i te r ion  is m o p e r a t w e ,  it does  not  inf luence 
the decision.  The  m e m b e r s h i p  funct ion o f  D is based on the first cons t r a in t  for 
a l te rna t ives  1 to 6, on the second goal  for a l te rna t ive  7, and  on the second 
cons t r a in t  for a l te rna t ives  8 to 10 

The  op t ima l  decis ion Js p rog ram 6, co r r e spond ing  to a re tent ion  o f  1 1% o f  
the cedent ' s  p r emium income.  This  a l t e rna twe  fully satisfies the second 
cons t ra in t ,  given our  selection o f  member sh ip  funct ions.  The  o ther  cons t ra in t  
and  the two goals  are  conf l ic t ing and canno t  be fully satisfied The  wors t  
in f r ingement  is the re insurance  p remium,  cons idered  to be too  high. 

Assume  now that ,  af ter  reviewing the preceding analysis ,  the ma na ge r  o f  the 
re insurance  d e p a r t m e n t  dec~des that  the first cons t ra in t  Ct is o f  p a r a m o u n t  
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importance, and accordingly assigns it a higher weight. A concentration of the 
fuzzy set Ci ,  with a = 2, is then performed:  the values of  Uc~(x, tO are smaply 
squared. This has the effect of  decreasing the membership function of that 
important  constraint and making it more influential in the determination of D. 
It is easily seen that the optimal decision becomes program 7. This illustrates 
an inherent weakness of  fuzzy decision-making the sensitivity of  the optimal 
solution to the particular selection of membership functions. And it is difficult 
to avoid an important  element of  subjectivity in the determination of those 
functions (see, however, CIVANLAR and TRUSSEL (1986) and DISHKANT (1981) 
for at tempts to construct membership functions using statistical data) 

The preceding analysis used the " h a r d "  definition of the connective '" and ", 
since the minimum operator  was used as intersection. As illustrated in 
Example 1, this excludes all forms of compensations and interactions between 
the goals and constraints In some managerml problemes the decision maker 
might wish to be less restrictive. For instance, he might not really want to 
actually maximize the objective function, but rather reach some aspiration 
level, which might not even be definable crisply (his objective might be to 
" improve  the present cost situation considerably",  for instance). Or the " < " 
sign m a constraint m~ght not be meant in the strict mathematical sense, but 
small violations might be acceptable, especially if an important improvement m 
the objectwe function results (effective expendlturcs might slightly exceed a 
budget constraint, for instance) Hence in many cases ~t is more appropriate  to 
use a " s o f t e r "  aggregation operator  than the minimum, like the bounded 
difference or the Yager operator.  A decision ms then defined as the confluence 
of  goals and constraints 

Uo(x) = Uo, (x)* . . .  * Uo,(x)* Uc,(x) * Uc,(x),  

where * is the selected operator.  
It is easily checked, for instance, that if the algebraic product is used instead 

of  the minimum operator,  program 6 is the opttmal solution of problem 2, with 
program 5 a close second. 

4. FUZZY ARITHMETICS AND I'UZZY INSURANCE PREMIUMS 

DEFINITIONS. A fuzzy number is a fuzzy subset of  the real line whose highest 
membership values are clustered around a given real number. The membership 
function is monotonic on both sides of  this real number More precisely, a 
fuzzy number  A is a fuzzy subset of  the real line R whose membership function 
U A(X) = U A ( X ; a l , a 2 , a 3 , a 4 )  IS'  

(i) a continuous mapping from R to the closed interval [0, 1] 
(il) zero on the interval ( - o r ,  at] 
(in) strictly increasing on the interval [al ,  a2] 
(,v) one on the interval [a2, aj] 
(v) strictly decreasing on the interval [a~, a4] 
(Vl) zero on the interval [a4, ~ ) ,  
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where al < a2 < a3 < a4. (Examples of membership functions of  fuzzy num- 
bers are presented in Figure 3). The increasing part of UA(x), on interval 
[al, az], is denoted UAi (X), the decreasing part of UA (x), on interval [a3, a4], 
is denoted UA2(x). Alternatively, the inverse functions of UAi (x) and UAz(X), 
U~ ~(y) and U ~  t (y )  can be used; they are denoted VAz (y)  and VA2(y ). 

If a~ = a 2 = a3 = a4, A ~s an ordinary real number. 
A fuzzy number A is said to be positive ff a I > 0. It is negative ff d, 4 < 0 

Let A and B be two fuzzy numbers with membership functions 
UA(x) = U,4(x;al,a2,a3,a4) and UB(.v) = UB(.v;bl ,b2,b3,b4).  The mem- 
bership function of the sum C of A and B, denoted A • B, is defined as 

Uc(z) = max mln[UA(x),  Us(y) ]  ( x , y , z ) ~ R  -~ 

= max mm [UA(x), U , ( z - x ) ] .  

It can be shown (see for instance DuBols and PRADE (1978) and (1980)) that 
the sum of fuzzy numbers is associative and commutative, and that 

O) Uc(z) = 0 z~(-c .v ,  a l + b l ]  U[a4+b4, ~] 

(n) Uc(z) is strictly increasing in [al+bl,a2+bz], and strictly decreasing in 
[a 3 + b 3 , a4 + b4] 

(ui) Uc(z) = I z~[a2+b 2,a3+b3] 

(,v) Uc~(Z)=[UZ' (z )+UZ' (z )] - '  or Vc,(Z)= VA,(z)+Ve,(z) 

Uc2(Z) = [U.~(z)+OZ'(z)]  -' or V~(z) = V/2(z)+ V~(z). 

The product D of A and B. denoted A Q) B, IS defined by 

Uo(z) = max rain [UA(X), UB(Y)] (assuming al ,  bl > 0) 

It can be shown that D is a fuzzy number, with dl = albl, d2 = a2b2, 
d3 = a3b3, d4 = a4 b4, 

Uo,(z)- -[UZJ(z)  U Z ' ( z ) ] - '  or V~,(z)= VAl(z) Vel(z) 

Uoz(z) = [ U ~ ' ( z )  UB2'(z)]- '  or V~2(z)= G2(z) V~2(z). 

The product is associative and commutative, and distributive on G. The It th 

power of  A is naturally recursJvely defined as 

A" = A Q) A"-I  

The only reference deahng with finance apphcatlons of  fuzzy arithmetics seems 
to be BUCKLEr (1987), who defined the fuzzy extensions of the notions of 
present and accumulated value, and annumes, and showed how to compare 
fuzzy cash flows by means of extended net present value and internal rate of  
return methods. Problem 3 is a straightforward generahzat~on of that paper to 
an insurance problem 
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Problem 3 

Let us compute  the net single premium o f  a $1000, 10-year pure endowment  
policy, on a life aged (55), where p = ioPss is 0.87. The interest rate i is fuzzy 
and assumed to be approximate ly  equal to 6 % ,  as modehzed by 

U,(x) 

: 0  x <  103 

U,l(x)= 5 0 x - 5 1 5  103 < x <  105 

1 1.05 < x _ <  1 0 7  

U,7(x) = 5 4 . 5 - 5 0 x  1.07 < x __< 1.09 

,. 0 1.09 < x 

(see Figure 3, upper left). As shown by the definitions o f  • and O ,  it is easter 
to use the inverse funcnons  

V,~(y) = 1 0 3 + 0 . 0 2 y  and V,2(y ) = 1 . 0 9 - 0 0 2 y .  

The present value PV(S,n) of  a positive fuzzy amoun t  S, n periods m the 
future, if the fuzzy interest rate Is i per period, can be defined as 

PV(S, n) = S Q) (1 (~ i ) - "  

This defimtlon makes sense given the assoclatlvlty and the dlstrlbutlvlty 
properties o f  O Note  however  that, generally, PV(S, n) 0 (I q) t)" wll[ not be 
equal to S. Since the face value and the survival probabil i ty are nonfuzzy,  the 
single fuzzy p remmm A of  the policy, 

A -- 1000.0 87-(1 (~ t) -w ,  

is defined by the membership  function 

0 

UAl(x) or  VAl(y) 

UA (x) = 1 

UA2(x) or  VA2(y) 

0 

where 

and 

VAi(Y) = 870(I . 0 9 - 0  02)0  - '0  

x < 367 50 

367.50 < x < 442.26 

442 26 < x < 534.10 

53410 < x ~ 6 4 7 3 6  

647 36 < x 

VA2(Y ) = 870(1 0 3 + 0 . 0 2 y )  - l°  (0 =< y =< 1) 

This function ts represented in Figure 3, upper  right 
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Next assume that p = ~0P55 is also fuzzy, with membership funcUon 

t 
0 (x < 0 77) U(x > 0.97) 

Up(x) = 1 0 x - 7 . 7  0.77 < x ~ 0 87 

[, 9 . 7 -  10x 0.87 < x < 0.97 

and inverse functions Vpl(y) = 0 . 7 7 + 0 0 1 y  and Vp2(y ) = 0 9 7 - 0 . 0 1 y  (see 
Figure 3, lower left). 

The membership funcUon of the premmm A now becomes 

0 

UAi(x) or VAl(y) 

U,4 (x) = ~  1 

L UA2(x) or VA2(y) 

0 

x < 325.26 

325 26 < x < 442.26 

442 26 < x <  534 10 

534 10 < x < 721.77 

721.77 < x 

where 

VAj(y ) = IO00"Vpj(y)'[l+V,,3_j(y)] -'° j =  1,2 

VAi(y) = 1000(0 7 7 + 0 . 1 y )  (1 09--0.02y)-~0 

VA2(Y ) ---- 1000(0 .97-0  l y ) (1  03+0 .02y )  -~° 

This membership function, represented in the lower right part of  FIgure 3, 
reflects the increased fuzziness. 

It is also possible (see BUCKLEr (1987)) tO fuzzlfy the number of periods n. 

5 FUZZY SETS LITERATURE 

The literature about fuzzy sets is abundant and highly speclahzed. A good 
introductory textbook is ZIMMERMANN (1987), despite the zmportant number 
of  misprints. More speclahzed textbooks are KAUFMANN (1975) and DuuoIs 
and PRAOE (1980). The seminal papers about fuzzy decision-making are 
BELLMAN and ZADEH (1970) and YAGER and BESSON (1976). Fuzzy graph 
theory, fuzzy hnear and dynamic programming and extensions of  other 
operations research methods are surveyed m ZIMMERMANN (1985) and (1987). 
Reference papers for apphcaUons of fuzzy set theory to staUstlcs are HESH- 
MATY and KANDER (1985), BUCKLEY (1985) and JAJUGA (1986). Topmcs of  
interest for actuaries where fuzzy applications have been developed include 
game theory (AuBIN (1981), BUTNARIU (1978, 1980)), economics 
(CHANG (1977), CHEN et al (1980)), and utility theory (MATmEU- 
NICOT (1986)) 
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