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EDITORIAL 

Could A S T I N  do better? 

(Excerpts from Presidential Address, Tel Avlv, September 23, 1986) 

Article 2 of the rules of  our Association states that "ASTIN has as main objective 
the promotion of actuarial research, particularly in non-hfe insurance". From 
time to t~me the question "Is ASTIN doing well?" arises, either in the pages of 
this Bulletin or during our colloquia. This question is seldom answered. Indeed 
the greatest part of  our time during Committee meetings and General Assemblies 
is devoted to the day-to-day life of  our Association: finances, elections, Editors' 
reports, membership file, etc .. When the meeting is adjourned, no time is left 
to discuss more basic and far reaching problems. Yet, this is what we should all 
do, regularly. This ~s certainly what the Chairman of any association should do, 
when approaching his mid-term. I shall successively consider the evolution of 
ASTIN itself, its impact on teaching and its influence on actuarial research. 

In my opinion one of  the main achievements of ASTIN is simply its size, its 
continuous increase in membership. It seems obvious that the most necessary of 
all conditions to promote research, whatever that research may be, is that ~t 
should be accessible to the largest number of  people. So ~t is a very positive fact 
that our membership is about to exceed 1,500. I am also pleased to report that 
the number of external subscriptions to the ASTIN BULLETIN, stagnant for so 
many years, is now definitely on the rise. We can thus proudly affirm that the 
ASTIN BULLETIN is the actuarial journal that has, by far, the largest circulation. 
Without a permanent secretariat, with a Committee that meets at most once a 
year, with an annual budget that consists of only a small fraction of the income 
of  similar associations, the ASTIN section of  the International Actuarial Associa- 
tion has managed to develop an internationally renowned scientific journal; this 
is considered by many as a permanent miracle, for which all past and present 
Editors of our Bulletin have to be warmly thanked. 

This of course does not mean that we could not do much better. The number 
of external subscriptions, while increasing, remains at a low level; this indicates 
that our Bulletin is not sufficiently known outside actuarial circles. The member- 
ship is growing, but not evenly, only in selected countries, thanks to the efforts 
of some National Correspondents. In too many countries the number of members 
has not increased at all for many years; this means that the information transmis- 
sion channels from ASTIN to young actuaries have not worked efficiently in some 
parts of the world. 

This is an important point, which should be of concern to all of us: ASTIN 
needs to keep growing. We need to grow so that our Editors can keep telhng pro- 
spective authors: "by publishing your paper in the ASTIN BULLETIN you will en- 
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2 EDITORIAL 

sure the largest circulation to your ideas". We need to grow so that our member- 
ship and subscription fees will remain among the lowest. The membership dues 
have not been increased since July 1977! This can only go on If we continue to 
produce scale economies by becoming more numerous. Above all, we need to 
grow because there will never be enough of us to tackle the numerous research 
problems faced by non-life actuaries. 

Considering now the teaching of  non-life insurance, it ~s clear that we have 
witnessed a tremendous evolution m the last decade. Among our membership we 
have many young bright actuaries holding newly created Chairs in insurance. 
Many universities that had a degree m insurance have added a non-life position 
to their faculty; several countries that had been absent from the actuarial research 
scene for years are now flooding our actuarial journals with high quality papers. 

Besides, most of those newly appointed professors have rightfully recognized 
the need to work in close collaboration with the industry and frequently decide 
to spend several months working for a company. 

Another positive aspect is that those young stars not only teach excellent 
courses, they have also started writing textbooks. The time when we had only a 
handful of good books to recommend to our students is now gone, since every 
year several new textbooks appear. 

In view of  those favourable points, the question that arises for ASTIN is: what 
can we do to further enhance those developments? What can we do even to ac- 
celerate this trend, besides continuing to publish ASTIN BULLETIN and to offer 
a splendid forum for interaction, our colloquia? I think that maybe ASTIN has 
missed an opportunity to help the writing of textbooks. A look at the list of books 
written m the 80's will reveal that many of these have been published by small 
university presses or compames. While they certainly have to be congratulated for 
printing actuarial work, it is clear that they do not have the experience, the 
expertise of  a large publisher; so the promotion of the book is largely left to the 
unexperienced writer, whose ideas are consequently not going to be read as much 
as they deserve. Maybe ASTIN should have helped; maybe ASTIN should help 
in the future. Quite a few of our members have been through this strenuous pro- 
cess of writing a book (often m a language we only practise occasionally) and 
presentir.g it to a large publisher. This experience has largely been left unused. 
Yet ASTIN, as a powerful association, could initiate contacts with a publisher 
and use all of its power to convince him of the use of actuarial books. ASTIN 
could possibly start and endorse a new series of textbooks, thereby providing 
mutual reinforcement to the selected works and presenting them in a unified way. 
To promote the books that have appeared recently under the name "ASTIN 
Series" could only have been beneficial to ASTIN and all authors. Some other 
assocmtions are extremely efficient at sponsoring new books; often they manage 
to obtain the collaboration of the industry to solve financial problems. Shouldn't 
ASTIN think about it? At the very least the ASTIN BULLETIN, and possibly the 
IAA Bulletin, should develop their book review section and let the authors know 
that their books will be systematically and rapidly reviewed. 

A few words about research, to conclude. Again, at first sight, we can be 



EDITORIAL 3 

extremely proud of some of our achievements: the mathematics of motor in- 
surance, credibility theory, the theory of premium calculation principles, to name 
but a few, have been developed and stdl continue to be developed by our 
members. Yet, we could perform much better; I am not satisfied at all to notice 
that quite large areas of research are not being tackled at all by actuaries, and 
that they grow outside ASTIN. Deductible selection, design of optimal insurance 
policies, moral hazard, adverse selection, analysis of underwriting cycles, for 
instance, are areas currently developed by economists and financial analysts, in 
non-actuarial journals. Those subjects are of extreme practical importance: prac- 
titioners know that the selection of a deductible ~s very often the most crucial 
decision to be made when designing a new policy; they know that the profitability 
of health insurance is much more influenced by adverse selection than by the 
failure to introduce a significant variable in the rate-making process, for instance. 
Yet those vast areas of research are nowadays explored by others; I am sure the 
actuarial community could produce very interesting models in these domains. 

In this respect, 1 was pleased to notice that several of the papers presented at 
the Tel Aviv Colloquium tackle problems that are outside the traditional scope 
of  the works discussed during our meetings; hopefully, many of these papers will 
be published m the ASTIN BULLETIN, enlarging the range of the subjects dealt 
with in our association journal. 

A few thoughts and suggestions have been presented in this editorial. We 
should all try to think about other suggestions, other ways to develop further the 
activities of ASTIN. One such new idea came up two years ago, namely the 
organization of our first compemion for young researchers, which proved to be 
a tremendous success. Since there are nearly 1,500 of us, it would be very surpris- 
ing if no new suggestion comes up in the near future. 

Jean LEMAIRE 
Chairman 





IN M E M O R I A M  

MARCEL HENRY 

1900-1986 

L'InstltUt des Actuaires Francais est en deuil: son Pr6sident d ' H o n n e u r ,  
Monsieur  Marcel Henry,  est d6c~d6 le 14 octobre  1986, dans sa quatre vingt 
septi/~me ann6e. 

Marcel Henry 6tait n6 le 29 janvier 1900. Apr~s des ~tudes au Lycde Condorcet ,  
il fut re~u 5. l 'Ecole Poly techmque en 1918 et incorpor6 aussit6t comme canonier 
de 2~me classe. Revenu 5. l 'Ecole,  d/~s la fin des hostilit6s, il y accomplit  ses deux 
ann~es d '6tudes puis rejoint ensuite l 'Ecole d 'Appl ica t ion  d'Artil lerle 
Fontainebleau.  

Peu de temps apr~s Marcel Henry--d6j& attir~ par les applicatlons des soences  
math6matiques aux probl~mes (~conomiques et soc iaux- -en t re  ~ la Statistique 
G6n6rale de la France et participe alnsi 5. la naissance de l 'organisme qui devait, 
trente ans plus tard, devenir I ' INSEE.  

Apr~s quelques anndes consacr6es & la statistique, il se tourne vers l 'Assurance  
et entre 5. l 'Urbaine Cr6dit. 

II devient membre  dipl6m6 de l ' Insti tut  des Actuaires Francais en 1924. 
Mais dis 1936 il est fair appel h lui pour  mener la r6organisation de La Preser- 

vatrice, ~ laquelle contr ibue l 'ensemble de la Profession de I 'Assurance.  Il est 
admis comme membre agr6g6 de I ' I A F  en 1937. 

II devlent rapidement Directeur G6n~ral de La Pr~servatrice I A R D  et de La 
Pr6servatrice VIE. Son action et sa renomm6e au sein de la Profession comme 
parmi les Associations d 'Actuai res  ne vont cesser de s 'affirmer. 

En 1943, il est d~sign6 par ses coll~gues comme Secrdtaire G~n6ral de I ' I A F - -  
poste qu' i l  occupera  jusqu'5, la retraite du Pr6sident Auterbe.  Il est alors 61u 
Pr6sldent de I ' I A F  en 1958. 

II le restera jusqu 'en  1975, souhai tant  voir la Pr6sidence occup6e d~sormais par 
un coll~gue plus jeune. II est alors nomm6 President d ' H o n n e u r .  II continue 5. ce 
titre 5. si6ger au Bureau et assiste 5. ses s6ances avec une grande rdgularit6. II prend 
une part active ~ la vie de l ' Insti tut  auquel il n ' a  cess~ de manffester son int6r~t 
et son d~vouement depuis plus de 50 ans. 

Marcel Henry dtait Membre  d ' H o n n e u r  de l ' Inst i tute o f  Actuaries,  Membre  de 
l 'Associat~on des Actuaries Suisses, et de I 'Associat ion Royale des Actuaires 
Beiges. 

II a si6g6 pendant  plus de 30 ans 5. l 'Associat ion Actuarielle Internationale.  Il 
a 6t~ un des membres- fondateurs  de I ' A S T I N ,  aux travaux de laquelle i1 6tait tout 
particuli6rement attach6: c'est lm qui insista pour  que le premier Col loque de 
I ' A S T I N  se tienne 5. La Baule en 1955. 

Dans la Profession de l 'Assurance sa personnalit6, sa compdtence,  son sens de 
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6 IN MEMORIAM 

la mesure 6taient connus de tous. I1 fut Pr6sident du Groupement Technique 
Accident de 1957 h 1960, et Pr6sident de la Pr6vention Routl/~re. I1 prit une part 
active b. toutes les grandes r6formes du march6 de l'Assurance, au cours des 
ann6es d'apr~s-guerre. 

Marcel Henry 6trot Officier de la L6gion d 'Honneur  et Commandeur de 
L'Ordre National du M6rite. 

A toutes ses qualit6s professionnelles s'ajoutaient de tr~s grandes qualit6s 
humaines: dou6 d 'un sens de I 'humour qu'il aimait b. exercer avec talent en de 
nombreuses circonstances, il poss6dait une vaste culture et sa curiosit6 des 
hommes et des choses avait fait de lui un voyageur inlassable. 

Le souvenir du Pr6sident Marcel Henry restera toujours vivant parmi les 
Actuaires. 

JEAN LAMSON 



IN M EMOR IAM  

KARL HENRIK BORCH 

13th March 1919-2nd December 1986 

Karl Borch's life was eventful-- in its outer features adventurous. The realities 
behind were, however, not always lenient. His studies were interrupted by service 
in the Free Norwegian Forces in Great Britain during the war. This was a prelude 
to a cosmopohtan career. After he had received his actuarial degree from the 
University of  Oslo in 1947, he was affiliated to international organizations for a 
period of 12 years, first to the UN with tasks in the Middle East, South Asia and 
Africa, then to OEEC as head of the Productivity Measurement Advisory Service 
in Paris. He received his doctor 's  degree from the University of  Oslo in 1962. In 
1963 he was appointed professor of  insurance at the Norwegian School of 
Economics and Business Administration (NHH) in Bergen, a position he held 
until h~s untimely death just barely before reurement at pensionable age. In the 
course of  his career Karl Botch stayed at a number of  universities: as research 
associate in Chicago and Princeton, and as visiting professor in California, 
Vienna, Oxford, Ohio, Bonn, Stockholm, Ottawa and Texas. He died on 
December 2nd 1986--with his seven-league boots on - -  in Marbella, Spain. 

The written production of Karl Botch ~s extensive. His major  field of  interest 
is indicated by the title of  his book "The Economics of  Uncertainty" (Princeton 
University Press, 1968), which has become a modern classic. About one hundred 
and fifty of  his papers have been published in international journals. A selection 
of papers is collected m the book "The Mathematical Theory of Insurance" 
(Lexington, Mass., 1974). For his scientific work Karl Borch was awarded a 
number of  prizes and proofs of  honour.  

Among actuaries and econometricians Karl Botch gained world fame by his 
contributions to the theory of the economics of  uncertainty and, in particular, 
by invoking this theory in analyses of  insurance problems. His pioneering work 
on Pareto-optlmal risk exchanges in reinsurance opened a new area of  actuarial 
science, which has been m continuous growth since. This research field gives a 
deeper understanding of the atutudes and behaviour of  the parties in an 
insurance market. It is, therefore, of  great theoretical import and must, in the 
end, have a corresponding practical significance. The theory raises and answers 
problems that could not even be put into shape by traditional actuarial han- 
dicraft: how can risk be optimally shared between economic agents, how should 
insurance treaties be designed, and - -  ultimately - -  how should the insurance in- 
dustry be organized to best further social security and public welfare? 

Karl Borch never filled official posts in ASTIN, but he will be recognized as one 
of the most enthusiastic and influential personahties in the membership. No single 
person has contributed more to the columns of the ASTIN BULLETIN. 
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8 IN MEMORIAM 

Karl Borch will be remembered by colleagues and students at the N H H  and in 
many other places as a guide and a source of  inspiration, by successors in research 
as the character behind many key references, and by a multitude of  people all 
over the world as a gentle and considerate friend who was full of  concern both 
in their work and in their everyday life. 

RAGNAR NORBERG 



19th ASTIN C O L L O Q U I U M  
TEL AVIV ISRAEL 20th-24th SEPTEMBER 1986 

The 19th ASTIN Colloquium, which was held at the Hilton Hotel in Tel Aviv, 
was attended by some 175 participants, together with some 75 accompanying 
persons, from 23 countries. It began in the customary fashion with a welcoming 
cocktail party on the Saturday evening. 

The opening ceremony the following morning was presided over by the Chair- 
man of ASTIN, Jean LEMAIRE. After the ceremony, Professor Eitan BERGLAS 
of Tel Avw University gave a lecture on inflation, stabilization, the government 
budget and the capital market. Professor Berglas, besides being the Chairman of 
the Bank Hapoalim, was also one of  the chief architects of  the economic pohcy 
which had recently been introduced in Israel and which had led to a reduction 
In the year-on-year rate of  inflation, in the space of a year, from several hundred 
per cent to less than 20 per cent. As a professor of  economics who had been tack- 
ling a severely practical problem, so far with apparent success, he was hstened 
to with great interest 

Those colloquium papers which had been sent in sufficiently early had been 
assembled by the organizing committee in a single volume and distributed to the 
participants in advance of  the colloquium. Following the lecture by Professor 
Berglas, the whole of  the remainder of  that day was devoted to Subject 1: The 
company environment of  the non-life actuary. The papers were divided into three 
groups, as set out in the list at the end of this note, corresponding to the three 
working sessions. 

The first four papers considered ratemaking and related issues. 
HARWAYNE'S paper refers to ratemaking in the United States, in the sense of  

determlmng the overall level of  the rates to be charged for a class of  insurance 
business rather than determining the premium relativities for the various rating 
cells. Using an example based on worker 's  compensation insurance, he illustrates 
an approach based on projecting paid losses, as an alternative to using figures of  
incurred losses which include a large element of  subjective estimating. 

DE PR1L'S paper, in which he postulated a portfolio of  independent life 
assurance policies for which the distribution by amount  at risk is known and 
which is subject to known mortahty rates, developed recursive expressmns for 
computing the distribution of aggregate claims. The relevance of this paper to 
non-life insurance was not explained. 

The first of  SUNDT'S papers describes experimental work carried out in the use 
of  credibility regression models to derive results intended as an aid to the persons 
who have the task of classifying car models into groups for the purpose 
of  insurance rating. Although the paper contains a formidable array of 
mathematics,  the method was nevertheless over-simplified in that whilst it took 
account of  such factors as cubic capacity of  the engine, price, weight, etc., it did 
not incorporate any specific allowance for the interactions with other risk factors 
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10 19TH ASTIN COLLOQUIUM 

such as age of the car and the characteristics of  the policyholder or driver. In his 
second paper he discusses, in the context of  a credibility model, the extent to 
which data derived from the experience of earlier years may be used to yield 
improved estimators. 

Among the papers on reserving techniques, the one by GATH and LUBITCH 
relates to dental expenses insurance as practised in Israel. Reserving for claims 
for the basic forms of dental treatment does not present any problems since the 
claims arise quickly and are settled quickly. The paper describes the authors '  
approach to reserving for claims for prosthetic treatment, where, although the 
period from reporting to settlement is quite short, it is necessary to allow not only 
for claims incurred but not reported, but also for claims for which the treatment 
has been authorized but not yet carried out. 

STANARD, in his paper, describes the use of  simulated figures of claim costs by 
year of  accident and year of  development, with the aim of estimating the variance 
of  the errors in the estimates of  ultimate losses. The paper by FALLQUIST and 
JONES set out ways in which the data typically available in the form of a loss 
development triangle can be used to obtain derived figures which may be used in 
various methods of estimating reserves for outstanding claims and the expenses 
associated with them. 

The remaining two papers on Subject 1 related to profitability management and 
planning. BOHMAN and LEVY criticize the preoccupation, in insurance company 
accounting, with the single figure representing the purported profit or loss in the 
latest completed year, and advocate a form of presentation, at least for the infor- 
mation of management,  which acknowledges the stochastic nature of  the 
business. They illustrate their ideas by means of a much over-simplified model in 
which they separate the underwriting and investment aspects of  the insurance 
business. In TAPIERO'S paper, he describes a project to develop a computer 
expert system for insurance and reinsurance. Much of the paper is occupied with 
the author 's  comments on different forms of reinsurance treaty. 

On the Monday the working session was confined to the morning, for discus- 
sion of  the papers on Subject 2: Financial aspects of  general insurance. Again, 
these came under three main headings. 

In the first of  the papers on solvency, COUTTS and DEVITT advocate the use 
of  cash flow models for reporting on the financial strength of an insurance enter- 
prise, the models embodying probability distributions and sets of  decision rules 
defining future strategy. These two authors are also among those responsible for 
the paper by DAYKIN et al., which presents the approach developed by a 
working party which was set up to extend, in the context of  the solvency regime 
in the UK, the work carried out by the Finnish group of actuaries led by PEN- 
TIKAINEN and RANTALA. They recommend the simultaneous consideration of  
assets and liabilities, and put forward a case for a system of actuarial reporting 
on the financial strength of  insurance companies, so that the supervisory author- 
ity can have available, within a solvency regime based on crude mlrumum solven- 
cy margins, an assessment which reflects the level of  risk for the individual 
company.  
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There were two papers dealing with mathematical aspects of  reinsurance. The 
short paper by KASS, GOOVAERTS and BAUWELINCKX derives upper and lower 
bounds for stop-loss premiums in terms of the claim number distribution, the 
mean claim, the mean claim less than the retention, and the probability of  a claim 
less than the retention. LEMAIRE and QUAIRIERE generalize earlier work by 
Gerber on chains of  reinsurance, using a theorem of Borch. 

The miscellaneous group of papers on other financial aspects of  general in- 
surance includes two highly theoretical papers, one by BRIYS and the other by 
BRIYS, KAIqANE and KROLL, on optimal insurance demand by individuals. The 
paper by EDEN and KAHANE presents a model of  an insurance market with three 
players: an insured population, a local insurer and an international reinsurer, and 
discusses the allocation of risk among the three parties. MASTERSON presented 
the latest sets of  figures in his customary review of price indices in various coun- 
tries and indices of  the costs of  different types of  non-life insurance claims in the 
US. 

After lunch Mr. Gideon PATT, the Minister of  Science and Development, gave 
an address in which he vigorously supported current policies of  the Israeli 
government. 

The final working day was the Tuesday, starting with Subject 3: The actuarml 
treatment of catastrophe - -  target risks and special lines. 

ARIAV, KAHANE and TAPIERO discuss the possible advantages to a group of 
companies of  establishing a back-up computer centre, which might, for example, 
be owned by a separate company which would sell the services when required to 
the members participating in the pool. 

AJNE and WIDE discuss the question of defining catastrophe claims and assess- 
ing their expected cost. For their purpose, catastrophe claims are large individual 
claims, rather than large groups of claims arising out of  a single catastrophic inci- 
dent. The Pareto family of  curves was found to give the best fit to the claim 
distributions for the four classes of  business which were treated, and the paper 
includes comparisons between actual and expected numbers and amounts of  
catastrophe claims over a four-year period. 

KAHANE'S paper gives a wide-ranging survey of the problems of  insurance 
against earthquake risks, with particular reference to Israel, and sets out a 
number of  proposals as to how these problems should be tackled. 

Subject 3 was followed by the customary Speakers'  Corner session. Besides the 
presentations for which papers were submitted - -  these are listed at the end of this 
note - -  there were presentations by S. BENJAMIN on the reserving methods used 
at Lloyd's,  by E. KREMER on premium calculation for largest claims reinsurance 
covers and on robust premium principles, and by R. NORBERG on life insurance 
rating. 

The business proceedings ended with the General Assembly of ASTIN,  at 
which the plans were announced for the 20th Colloquium, to be held in Schev- 
eningen, Netherlands, 30th Augus t -3rd  September 1987. 

The Colloquium dinner was held on the Tuesday evening at the Hilton Hotel. 
An important feature of  any colloquium is the opportunity it gives for the par- 
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ticlpants to discuss matters of  mutual interest before and after the business 
meetings. The social arrangements provided by our Israeh hosts included a piano 
recital by David Levy, a talented young musician from the Royal Northern Col- 
lege of Music in Manchester; a visit to the Diaspora Museum, followed by a tour 
of  the old city of  Jaffa; and a full-day guided tour of  Jerusalem and Bethlehem. 
For those able to stay for a further day, there was a tour of  Galilee. 

The excellent arrangements for both the business meetings and the social events 
were a tribute to the organizing committee led by Yitzchak GOLDSTEIN and Eddy 
LEVY and the scientific committee led by Yehuda KAHANE. 

PETER JOHNSON 

LIST OF PAPERS 

Opening Lecture 
Prof. E. BERGLAS 

Inflation, stabilization, government budget and capital market. 

Subject 1: The Company Environment of the Non-Life Actuary 
Ratemaking and Related Issues 
F. HARWAYNE 

A comparison of practical ratemaking models: paid vs. incurred claims and 
claims adjustment expense experience. 

N. DE PRIL 
On the exact computat ion of the aggregate claims distribution in the indi- 
vidual life model. 

B. SUNDT 
Some credibihty regression models for the classification of individual 
passenger car models. 

B. SUNDT 
Credibility and old estimates. 

Reserving techmques 
Y. GATH and A. LUBITCH 

Reserving in dental insurance. 
J. N. STANARD 

Bootstrap estimation of  the variance of prediction errors of loss reserving 
methods. 

R. J. FALLQUIST and B. A. JONES 
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APPROXIMATIVE EVALUATION OF THE DISTRIBUTION FUNCTION 
OF AGGREGATE CLAIMS t 

BY T. PENTIKAINEN 

Helsinkt 

ABSTRACT 

A formula, originally presented by HALDANE (1938) 2, for the evaluation of the 
distribution of aggregate claims is examined and compared with some other ap- 
proaches. The idea is to apply a symmetrizing transformation to the original 
variable m order to make it suscepuble to be approximated by the normal 
distribution. 

KEYWORDS 

Aggregate claim distribution; approximate evaluation; NP method; Haldane 
approxImation; Wilson-Hilferty approximation 

1.  I N T R O D U C T I O N  

1.1. A problem frequently faced in application-orientated risk theory is the 
numerical evaluation of the distribution functxon F(X)  of the aggregate amount 
X of  claims. It is conventionally expressed by the formula 

(1.1) F ( X ) =  ~ pkS~*(X), 
k = O  

where pk is the probabihty that the number of claims is equal to k, S is the 
distribution function of the individual claim sizes and S k* its kth convolution (see 
BPP, p. 51; this and similar quotations in the sequel refer to the Risk Theory 
book by BEARD, PENTIKAINEN and PESONEN, 1984). 

The claim numbers are often assumed to follow a simple Poisson distribution 
(in order to define notations some well-known basic formulae are recapitulated) 

(1.2) pk(n) = e-"n~/k! 

where n, the Poisson parameter, is the expected number of claims. A more 
general approach is to adopt the mixed Poisson distribution (BPP, p.33): 

i~  (nq) k (1.3) pk(n) = e-nq k! dH(q). 
0 

1 Presented originally at the Risk Theory Seminar m Oberwolfach 1984 and m an extended form 
at the Risk Theory Seminar of the American Risk and Insurance Assocmuon m Nashvdle 1985 
2 J B S HALDANE (1892--1964) first studied mathematics and later became Professor of 
Biometrics at Umvers~ty College, London, before moving to Indm m 1957 
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The distribution function H introduces the so-called structure variation of the 
claim number probabilities into the model, indicating the time variation of the 
risk exposure, or the heterogeneity of  the risks inside the collective, or both. A 
popular H is the gamma function resulting in the negative binomial distribution 
(BPP, p. 40): 

where h is a shape parameter.  This alternative is usually called the P o l y a  case in 
distraction from the P o i s s o n  case (1.2). 

Note that for the approximanon formulae only the lowest moments of  H are 
necessary. Therefore, it is sufficient merely to estimate (or assume) them, not 
bothering about the analytic formulation of this function. 

1.2. Need to have approximation methods. The construction (1.1) is unfortunately 
so intricate that the direct computation of F i s  tractable only in special cases, even 
though the recently developed recursive methods (ADELSON, PANJER, GERBER, 
JEWELL & SUNDT, description of the method and references see BPP, Section 
3.8) as well as the Fourier t ransformation technique (BERTRAM, 1981) have 
made major  progress in solving this problem. Nevertheless, they have not 
removed the need also to have rapid and reasonably comfortable,  even though 
approximate,  approaches. This is due to the fact that the number of  the computa- 
tion steps needed for the recursive calculation grows quite massive in cases where 
the risk portfolio is large (as most insurer's portfolios are) and /o r  when the claim 
size distribution has a long tail. This can be a major handicap, in particular in a 
sophisticated problem complex such as the analysis of  long-term processes, 
simulations, etc. where the computation of F is needed frequently, say 1000, 
10000 or 100000 times for one single procedure. Then the problem is, above all, 
to minimize the computation time in terms of milliseconds (rather than in 
seconds?) to make the usual present day personal computers operational. 

Approximate methods can also have the merit of  providing an analytic, often 
perspicuous, relationship between the main variables controlling the processes. 

2. SOME EARLIER APPROACHES 

2.1. Normal approximation.  A classic approach,  based on the central limit 
theorem, is to approximate F ( X )  by the normal distribution: 

(2.1) F ( X )  = N ( x )  

where, denoting the mean and the standard devnation of  X by m x  and ax 

(2.2) x = ( X -  m x  ) /  ~x. 

This expression is asymptotically correct in the Poisson case but not generally, 
e.g. not in the Polya case. Its major  weakness is that it may crudely underestimate 
the risk of  large aggregate claims (see BPP, p.105). This is due to the fact that 
N as a symmetric function cannot successfully approximate any distribution 
which is notably skew. 
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2.2. Symmetrization. A way of overcoming the weakness of  the normal approx- 
imation is to transform the original variable X into an auxiliary variable Ynorm by 
using a suitably chosen function v 

(2.3) Ynorm = v(X) 

so that it makes the distribution (at least approximately) symmetric. Then pro- 
v~dlng that Ynorm IS standardized to have a zero mean and standard deviation 
unity, one can expect that it can be satisfactorily approximated by the normal 
distribution: 

(2.4) F(X)  =/~(Ynorm) = N(Ynorm). 

Depending on the choice of  the transformation v a family of  approximation 
methods is consmuted including those dealt with in this paper. An analysis of 
some of these transformations can be found for example in Box and COX (1964). 

2.3. NP approximation is obtained assuming v - I ( Y n o r m )  as a polynomial: 

(2.5) x= ( X -  mx)/ox = Ynorm + 'y(y2norm -- 1)/6 

where 'V = "yx ~s the skewness of  the original distribution (BPP, Chap. 3.11). 
The transformation (2.5) is applicable only for the long tail X >  mx of the 

distribution and therefore needs a modifying extension (BPP, Chap. 3.11) 
resulting m a three-piece formula. 

2.4. Other methods. There are a number of  approaches based on the principle 
of  replacing the original distribution by some suitable approximating function, 
which is conveniently computable.  Most of  them are obtained by equating the 
lowest moments, as is also the case in the above items 2.2 and 2.3. For instance the 
three-parameter gamma function P(ax + b, c) (BOHMAN and ESSCHER, 1964) or 
the Pearson functions (LAU, 1984) are suggested. OSCHWALD (1984) has recently 
presented an analogous transformation to (2.5) using the gamma function instead 
of the normal function. 

Unfortunately the range of applicability of  most of  these methods has been 
examined only by means of very few (and often "easy") examples, as yet. So far 
as is known, those methods which meet the demand of reasonable convenience 
and the requirement for computat ion speed, do not have the accuracy or the 
other merits which would not prevent the approaches to be dealt with in the 
sequel to be competitive. Further studies would be desirable, but are, however, 
beyond the scope of  this work. 

One of  the known approximations is stall worthy of special mention. ESSCHER 
(1932) introduced a method which makes use of  the whole range of the claim size 
distribution, not only of  some of  its moments.  BOHMAN and ESSCHER (1964) 
gave a number of  tests, which proved that the merits of  this method may not be 
very superior to those of  the gamma approximation.  However,  a recent (un- 
published) work of PUSA (1985) seems to indicate a good fit also in some cases 
where the other methods fail. A drawback of  the Esscher approach Is that it 
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employs an auxiliary variable h and the relevant quantitites F and X are available 
only as functions of this variable. To get the matching F and X it is necessary 
first to find the corresponding h, which seems to need an iteration process impair- 
ing the speed of the method. 

2.5. Moment problem. One should keep in mind the fact that most of the methods 
referred to above give, when applied to the mixed compound Poisson function, 
the same approximating function to all those original distributions, which have 
the same three (or four) lowest moments determined by the mean, standard devia- 
tion, skewness (and the kurtosis) of  the claim size distribution. However, these 
moments do not fully determine the flow a function, hence there is "a funnel of 
doubt"  [Fi (x), Fu(x)] inside which the values of  the original distribution func- 
tions F(x)  are positioned for varying x values. F~ and F~ are the upper and the 
lower envelope curve, respectively, of  all those original distribution functions 
which fulfil the specifications of  the problem setting concerned. If the funnel is 
large, then there are always cases which markedly devmte from the approximating 
values, whichever of  the methods is used. 

GOOVAERTS & KAAS (1986) have recently provided a meritorious method of 
evaluating the range of  the variation subject to the condition that the lowest 
moments are fixed and the variable x is limited to some interval, e.g. [0, b] .  Some 
examples showed that the range in which the permitted F(x)  values may be posi- 
tioned is rather wide, in fact reducing the prospects of  finding suitable approx- 
imations based on the moments.  Fortunately, this result does not wreck the pros- 
pects of  finding reasonably useful approximations,  if the basic condition is taken 
of fixing a sequence of  the moments of  the claim size functton S (not of  the 
aggregate distribution as Goovaerts and Kaas propose) and of limiting the claim 
size Z (not the aggregate X)  to some finite interval. In fact, this is the proper 
problem setting for the NP method as well as for the methods to be discussed in 
the sequel. We will return to the moment  problem in Section 6.9. 

3. HALDANE APPROXIMATION 

3.1. The idea. The approach we are going to deal with was originally presented 
by WILSON and HILFERTY (1931) for an approximate evaluation of the gamma 
function. HALDANE (1938) extended it to the function classes which have 
suitably convergent sequences of  cumulants. In what follows we apply the 
method to the mixed compound Poisson function specified in Section 1.1, even 
though the most part of  the derivation is valid more generally. 

The method makes use of  the symmetrization as described in Section 2.2 
above. Haldane first adopted a power expression 

y = ( X / m x  ) h 

where h is an auxiliary parameter.  Then (truncated) expansions are derived for 
the mean my, standard deviation oy and skewness my of y. The symmetrization is 
achieved by assigning for the auxiliary parameter  h a value which equates the 
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skewness yy with zero. Putting 

(3.1) Y . . . .  = ( y -  my)/Oy = [ ( X / m x )  h - m y ] / @  

the transformation aimed at, corresponding to v m (2.3), is obtained. 
The derivation of the Haldane formulae is notably laborious, even though 

rather elementary methods only are needed. Therefore, we shall not give more 
than some intermediate expressions in the chain of treatments in order to provide 
a conception of how the results are found, the more so because the Haldane 
derivations do not result in any strictly rigorous estimates for the accuracy of the 
approximations nor for clear rules of their applicability, but rather only justify 
the expectation that in a certain environment the procedure may lead to acceptable 
outcomes. In fact, the discussion about the appropriateness of the approach ~s 
mainly based on tests where a number of distributions are calculated exactly and 
in parallel, by using the approximations that will be presented in the subsequent 
sections. Readers who are mainly interested in the practical results may well skip 
over to Section 3.4, at least at the first reading. 

3.2. Derivation of the formula. We aim to preserve, as far as possible, the original 
procedures and notations of Haldane even though some of the results, e.g. the 
value of the parameter h, could be obtained by more straightforward ways. 

The technique to be assumed operates partially the so-called cumulants, which 
are, as is well known from textbooks on statistics (e.g. KENDALL and STUART,  

1979, Section 3.12), the coefficients in the expansion of the cumulant-generating 
function log ~p(t) In the terms of (it): xl(tt) + x2( t t )2 /2!  + . . . .  where ~p is the 
characteristic function and i the imaginary unit. For the convenience of the 
reader, we recall the connecting equations between the lowest cumulants and the 
more commonly applied central moments, denoted by #,(i  = 1 , 2 , . . . ) :  

x z  = mx,  x2 = # 2 ,  u 3  = ~ 3 ,  x 4  = p.4 - 3#2 2. 

Another auxiliary variable is introduced: 

(3.2) x '  = X -  x l 

and substituted into (3.1) after which expansions for the moments of y about 
zero, denoted by /3r, are obtained as follows 

[[(-1-X~lh]~ I (  "~ x~lrh 1 (3.3) 3 , =  E y ' =  E 1 = E 1 Xl] J ,It'l/) 

= 1 + f(r, 2)  #2 #3 + f ( r ,  3) - -  + f ( r ,  4) - -  2.ul  3!x~ 4!x 4 

where, for brevity, 

(3.4) f ( r , j ) = r h ( r h -  l ) ( r h - 2 )  . ( r h - j +  1) 

and the Taylor series of the power function 

( l + x )  h = l + h x + h ( h - l ) x 2 / 2 ! + . . .  

+ . . 
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was applied. The # 's  are moments  o f x '  and, according to (3.2), central moments  
o f  the original variable X as well. It is now useful to adopt  the cumulants  x o f  
X as the current characteristics instead o f  the moments  ~t, because they give an 
essentially better convergence behaviour to the expansions. By using the relations 
referred to above between these sets o f  characteristics, equation (3.3) Is 
t ransformed as follows: 

(3.5) 13r = 1 + f ( r ,  2) ~u--z 2 + f ( r ,  3) x---L + f ( r ,  4) 3xz + X4 
2xl  6x~ 24x~ 

~ 2 X 3  -I(2 3 + 
+ f ( r ,  5) - i ~  + f ( r ,  6) ~ . . .  

The sequence 

(3.6) p, = ~ , /  ~ l 

is assumed to be reasonably convergent  when i increases (in the Poisson case p, 
Is o f  order n - ' + 1 ,  c.f. Section 5.1). 

Finally, the central moments  o f  y are the characteristics which are necessary 
for the t ransformat ion  aimed at. They  are calculated by means of  the well-known 
general relationship between the central moments  and the moments  about  zero 
(#2 = 132 -/321, etc.). After  elementary but quite tedious operations,  and observing 
that the expression (3.5) can be expressed in terms of  the cumulant  ratios p,, the 
following expansions result: 

m y  = E y  = 1 + ~ h ( h  - 1)02 + ~ h ( h  - l ) ( h -  2)[403 + 3 ( h -  3)02] 

(3.7) + ,Xsh(h - l)(h - 2)(h - 3)[204 + 4(h - 4)0203 + (h - 4)(h - 5)023] 

#2(Y) = xz(y)  = oy 2 = h202  + ½ h E ( h  - l)[203 + (3h - 5)022 ] 

+ l ~ 2 h 2 ( h -  l ) [ ( 7 h -  l l ) p 4 + 4 ( h - 2 ) ( 7 h -  1 2 ) p E p 3 + 2 ( h - 2 ) ( 7 h E - 3 0 h + 3 2 ) p 2 3 ]  

kta(Y) = ~3(Y) = h3[03 + 3(h - 1)022] 

+ ½ h 3 ( h  - 1)[304 + 3(7h - 10)p203 + (17h 2 - 55h + 44)023] 

~4(y) = p..4 ( Y )  - -  3 / . t 2 2 ( y )  = h4104 + 12(h - 1)0302 + (h - l)(16h - 20)023]. 

Terms only having the order three or less were accepted. (I am grateful to my col- 
league Mr. H. Simberg for the correct u4.) 

We are now enabled to fix the parameter  h. For the aimed at symmetrlzat ion 
o f  the t ransformed distribution its skewness should be made to vanish, or, what 
is the same, x3(y) should be equal to 0. For the sake of  computa t ional  conve- 
nience, only tts leading term will be equated to zero. Hence 

= jp3/Pz = 1 3 x  z . (3.8) h I -  I 2 xt~3 

3.3. Trans format ion  A. Haldane now states that, when the above value o f  h is 
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subst i tu ted into equat ions  (3.7), the s t andard ized  var iable  

(3.9) Ynorm = ~ -- m.v)/Oy 

is "a lmos t  no rma l ly  d i s t r ibu ted"  with a zero mean and s t anda rd  devia t ion  unity.  
Ha ldane  calls this f o rmu la  " T r a n s f o r m a t i o n  A "  as d is t inguished f rom another  
t r ans fo rma t ion  to be deal t  with shor t ly .  

3.4. Fo r  the risk theory appl ica t ions ,  where the mixed c o m p o u n d  Polsson func- 
t ion is to be a p p r o x i m a t e d ,  it is convenient  to take  the basic character is t ics  (see 
BPP ,  p.54):  

Mean = m x  = X l 

(3.10) S t anda rd  devia t ion  = ax = .]xz 

Skewness = "rx = ~3/ox 3 

of  the or iginal  d i s t r ibu t ion  as the entries of  the ca lcula t ions .  Accept ing  the terms 
o f  the o rde r  o f  at most  two and in t roducing  as an auxi l iary  quan t i ty  

(3.11) s = o x / r n x  

the H a l d a n e  a p p r o a c h  A can be writ ten in an opera t ive  form 

(3.12) h = i - ] ' y x / s  

my = 1 - ~h ( l  - h ) [ l  - ~ ( 2 -  h ) ( l  - 3h ) s2] s  2 

oy = hs,[[l - ~(1 - h ) ( l  - 3h)s  z] 

Y,o~,, = [(1 + x s )  h - my] /Oy  

F ( X )  = N(ynorm). 

The  lower case x refers to the s t andard ized  var iable  (2.2). The  third degree quan-  
tities u3 (and "/3) were e l iminated  for  compu ta t i ona l  convenience by using (3.8). 

Note  that  the m o m e n t  t~(.v) was not needed in this context .  It was derived in 
(3.7) because it will be useful in later  sections.  

The above  formulas  are fairly c o m f o r t a b l e  for c o m p u t e r  p rog ra mming .  Ex- 
amples  will be given la ter  and the app l i cabd l ty  discussed,  but  before  tha t  we will 
make  some further  remarks  and present  an extended version o f  the 
t r ans fo rma t ion .  

3.5. Negat ive  h values. Ha ldane  l imited the range o f  val idi ty  to posi t ive h values 
only.  Examples  show tha t  the fo rmula  also works  in cases where h turns  negative.  
However ,  negative values seem to appea r  m the area  where the skewness is 
excessive and the goodness  o f  fit is unsa t i s fac tory .  

3.6. The case h = 0. Special  a t ten t ion  is called to the case when h ~ 0. Then Ynorm 
has the limit 

(3.13) Ynorm = [ ln( l  + xs )  + ½s 2 - ~ $ 4 ] / [ s x / ( 1  - ½ s 2 ) ] .  
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3.7. Wilson and Hilferty applied, as mentioned already, essentially the same 
transformation as Haldane for the evaluation of  the gamma function and arrived 
at a constant value of 1/3 for the parameter h. On the other hand we know that 
the original distribution can be approximated by the gamma function which is ob- 
tained by equating the mean, standard deviation and skewness with the cor- 
responding characteristics of the distribution to be approximated. Hence we can 
expect that the Wilson-Hilferty formula may also approximate the original 
distribution. The result can be written as follows (see BPP, p.71) 

(3.14) F ( X )  = F(a  + x j a ,  c~) 

= N[c l  + c2(x  + c3)1/3] 

where x is the standardized variable (2.2) and 

el ~ 6 _ [ 2 \  2/3 2 
. . . .  6 3, c2= J ~ )  ; c 3 = - .  

This formula is very comfortable for computer programming as is also its in- 
verse. Therefore, it is tested m parallel with the Haldane and NP approximations 
in what follows. 

3.8. A link to Ihe NP formula can be found by expanding y . . . .  in (3.12) in terms 
of (xs)  as a Taylor series and then expressing h by means of ~: 

(3.15) 
ynorm = [(1 + XS) h -- my]/Oy 

= [1 + h x s +  ½ h ( h -  1 ) X 2 S 2  + . . .  - -  I - -  ~ h ( h -  l)s 2 -  . .  ] / ( h s -  . .) 

= X +  ½(h- 1)s(x 2 -  1 ) + . . .  

= x -  ~ v ( x  2 - 1 )  + . . .  

But this is just what is also obtained If y in (2.5) is expanded m the terms of x 
(see BPP, p. l l7, eq. (3.11.14)). Hence it can be expected that the Haldane and 
the NP formulas are close to each other at least in the area of the best con- 
vergence. This will be confirmed by examples given later. 

4. HALDANE'S TRANSFORMATION B 

Haldane also experimented with another formula, which is derived introducing 
two parameters  h and g (instead of only one, h, above). They are assigned values 
which minimize both the skewness and the kurtosis of  the transformed variable. 
The new parameter g is chosen so that the original variable X is first transformed 
to another variable which has g as its mean and consequently also as Xl: 

(4.1) X"  = X +  g -  x l .  

Then the transformation y = ( X / m x ) a  is replaced by 

(4.2) y = ( X " /  E[ X"  ] )h = [1 + ( X -  Xl ) /  g ] h 
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The t ransformat ion (4.1) does not affect higher cumulants than xi. Hence all the 
results are still valid, if Xl is replaced by g everywhere. 

The parameters h and g are now determined by equating the leading terms of  
~3 and x4. This implies that 

12x~x3 16x] - -  9U2X4 
(4.3) g = h - 

20u ~ - 9 X E X 4  ' 20u 3 2 - -  9 X E X 4  " 

By using the characteristics (3.10) and, in addit ion,  the kurtosis yzx 
( =  x4/o  4 = ~ / a  4 -  3) of  the original variable X and further introducing, for 
brevity, the auxiliary coefficients 

(4.4) b = ~s "yx - ] ' r2x / ' yx ;  c =  ~4yx- 3 y z x / ' g x  

the H a l d a n e  t r a n s f o r m a t t o n  B can be written as follows 

(4.5) 

h = c / b  

my = 1 - ½ c ( b -  c ) [ l  + ~ ( 2 b -  c ) ( 3 c -  b)] 

CrY = I CC[ "J[ 1 + ~-(b -- c)(3c - b)] 
..Vnorm = [(1 + b x )  h - m y ] / a y  

F ( X )  = N(Yno~m) 

where the lower case x again refers to the standardized aggregate claim (2.2). 
Haldane made some reservations concerning the applicability o f  this t ransfor-  

mation,  mainly providing for the posltlVlty of  h. If  the denominators  o f  (4.3) are 
vanishing, the formulas become invalid. 

5. ON THE A P P L I C A B I L I T Y  OF T H E  H A L D A N E  E X P A N S I O N  

5.1. General conditions for convergence of the expansions. Haldane assumed 
that the variable X is inherent f rom a collective, the risk volume of  which can 
be described by a parameter  n. In our  risk theory applications,  n can be just the 
expected number  o f  claims as provided in Section 1.1. Fur thermore,  Haldane 
assumed that the cumulants  x, for t =  1 ,2 ,3  and 4 are o f  the order  n when n 
grows large and that cumulants  for  i > 4 are o f  the order n ' -4  or less. Haldane 
states that the expansions concerned are asymptotical ly convergent when n is 
large enough,  i.e. the t ransformat ions  can be applied in large collectives. 

In the Poisson case the cumulants  are x, = na,,  a, being the ah  moment  about  
zero o f  the claim size variable. Hence, the Haldane condit ions are satisfied in so 
far as the moments  a, are finite. On  the other hand the asymptot ic  behaviour o f  
the Polya case does not fulfil the condit ions.  Moreover ,  the volume parameter  n 
is always finite, often rather small, in practical apphcat ions.  Then the Haldane 
criterion does not suit, because the convergence o f  the relevant expansions may 
be poor,  even though they may asymptotical ly converge. Furthermore,  one 
should appreciate that the convergence o f  the expansion itself does not  guarantee 
full accuracy because there are other,  deeper, aspects involved, e.g. those which 
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we already discussed prehminarily in Section 2.5 about the moment  problem. 
Fortunately, and unexpectedly, the tests given in the following sections seem to 
prove that the approximation outcomes are also fairly satisfactory in numerous 
cases where the convergence criterion would suggest failure. Therefore, we do not 
feel that it is useful to explore the problem of  the convergence of the Haldane 
expansions other than that a convergence indicator will be introduced in Section 
5.3 below. Otherwise the original paper is again referred to. 

5.2. Measures of  deviation from normality were suggested by Haldane, making 
use of the residue skewness and kurtosls which remain as they are reduced by the 
symmetrization procedure. Hence (cf. (3.7)) 

Measure I = "r' = x 3 ( y ) / a ]  
(5.1) 

Measure 2 = 3'~ = x 4 ( y ) / @  

where the value (3.8) is to be assigned to h. 
The same formulas are valid also for the transformation B, when h is taken 

from (4.3) and ~ is replaced by g; it is also obtained from (4.3). 
These measures will be illustrated by examples in Section 6. 

5.3. Cumulant ratios. A crucial condition for the convergence of the expansions 
(3.7) is a rapid convergence of the sequence of the cumulant ratios p,, defined by 
(3.6). Therefore, the author experimented with the indicator 

(5.2) 0 = P4/P3 

as an alternative measure for applicabil i ty. I f  0 is small, it implies that the higher 
cumulant ratios can be expected to be negligible. Values of  t9 are given in the con- 
text of  test examples and an overall view is provided by Figure A.7 (Appendix 2). 

6. EXAMPLES 

6.1. Tests. The approximation methods dealt with m the previous sections are 
tested by calculating a great number of  numerical examples on the one hand by 
using the exact recursive formula, and on the other hand the NP, Wilson-  
Hilferty (briefly WH), Haldane-A (HA) and the Haldane-B (HAb) approaches. 
Both the Poisson case and the Polya case, having differing shape parameters h, 
were examined experimentally. The claim size distribution was the truncated 
Pareto or log-normal or their mixtures or could also be freely chosen (and given 
manually to the computer).  Because the recursive technique (see details in BPP, 
Section 3.8) is applicable merely for discrete distributions, the claim sizes were 
discretized permitting only integer values Z - -  1 + td(l = 0, 1,2 . . . . .  I )  where d 
and I are freely eligible positive integer parameters.  

The tested distributions, 54 in total, were chosen to cover broadly the area that 
is usually applied in risk theory considerations, and also to provide comparisons 
between the approaches. Regretably, it is not possible to print all the data. 
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Typical cases only were picked for the tables and diagrams given in Appendixes 
1 and 2. A comprehensive collection of  the data will be deposited in the Library 
of the Actuarial Society of Finland (Address: Bulevardi 28, 00120, Helsinki 12). 
Copies are available upon request. 

6.2. Appendix l exhibits exact F values and the approximated ones in parallel. 
Numerical values for the convergence criterions proposed above are also given in 
the side column of each distribution box of each of the tables. Discussion of the 
outcomes will be deferred to Section 7. 

6.3. Figures A.1 and A.2 (Appendix 2) graphically present two of  the distribu- 
tions of Appendix 1 to provide a clearer illustration. The deviations between the 
relevant curves are so slight that they are scarcely discernible in cases where the 
distribution is not markedly skew. Therefore, the tails of Figure A. l(a)  are plot- 
ted in a magnified scale in Figure A.l(b).  

6.4. The effect of  discretization. The deviations between the exact and the ap- 
proximated values are partially due to the fact that the approximating functions 
always, more or less, deviate from the exact one and partially to the fact that the 
"exact" F is discrete but the approximating functions are continuous. This is 
clearly seen in Figure A.l(b).  In order to eliminate the effect of this discrepancy 
from the tabulated outcomes, such as given in Appendix 1, the discrete F curves 
were replaced by a broken line which connected the midpoints of the upward 
steps. If this kind of smoothing of the discrete results is not made the comparison 
deviations depend on where, for the purpose of comparison, the selected values 
of  the x variable are positioned on the x-axis. As seen in Figure A. l(b) the effect 
may be larger than the "genuine" deviations are, and depends on whether the test 
point happens to fall immediately before or after a step. 

Information about the steps of  F is provided in the last columns of  the tables 
of Appendix 1 where the half of the step height ( = dF070) is given. It proved to 
be mostly larger than the approximation errors in the preceding columns as long 
as the skewness remained moderate. It depends on the actual relevant problem 
setting as to whether or not it should be regarded as appropriate to add both the 
errors. 

Note that the discretization results in inaccuracy also if a continuous original 
claim size distribution, such the Pareto one, is replaced by a step function. This 
feature was discussed in BPP (Section 3.8c). Because both the exact method and 
the approximating methods were based on the same discretized claim size 
distribution, this inaccuracy did not appear in our tests. 

6.5. Figure A.2 represents an extreme case where the skewness is large. Then all 
the approximations turn out irregular and lose their applicability particularly at 
the tails of the curves. 

6.6. Figure A.3 attempts to provide a summarizing survey over a sample of 
distributions. The relative errors (dNP°/0, dWH%,  etc. in Appendix l) are 
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grouped according to different skewness ranges and argument  values x = - 2 ,  2 
and 3 respectively and then shown in the specified diagram boxes. For  example 
all the relative errors o f  the Haldane-A approximat ion for x = 3 and the skewness 
less than 0.3 are placed upon the "po in t "  HA-a  in the top-most  r ight-hand box. 
The points inherent f rom the same distribution are connected by the lines m 
between. 

This figure is meant to provide a rapid visual compar ison of  the tested ap- 
proaches.  A narrow bundle o f  the connecting lines indicates a good overall fit o f  
the formula  concerned.  

6.7. The measures of  deviation (5. I) are investigated in Figure A.4. This and the 
remaining figures are limited to the Haldane-A method only. 

The tested cases for x = - 2  and x =  3, respectively, are displayed in the 
diagram by using the measures 1 and 2 as coordinates.  The relatwe errors 
[ dHA°7° I are indicated by symbols,  as shown in the figure. 

As expected, the fit is good  for small measure values. Another  useful observa- 
tion ~s that the measure values are well correlated, i.e. the points are clustered at 
a straight line. This suggests that it is sufficient to use only one o f  the measures, 
preferably the measure 1. 

6.8. Convergence properties are studied in Figures A.5, A.6 and A.7. The tested 
cases were first placed in Figure A.5 by using the standardized x and the skewness 
as coordinates.  The tests were made only for a sequence of  discrete x 
values = - 2 ,  - 1.5, - 1 . . . .  ,4.  For  clarity, the points, such as in Figure A.4, 
were not plotted in the final diagram, but the zones where the errors [ d H A %  I 
having some specified magnitudes are positioned were used instead. For  example, 
in the area below the zone boundary  desxgnated by I only cases that have 
I dHA°/0 [ less than 1070 are found,  and below the 3-boundary  only cases having 
[ d H A %  [ less than 3o70, etc. More exactly, the points o f  the boundary  numbered 
by N ( N =  1 ,3 ,5 ,  10 or 25) were determined according to that sample case for 
which the relevant x-value had the error I dHA%I. . .> N %  and the lowest 
skewness. Note that cases having [ d H A %  I < N %  may be also found above the 
N-boundary ,  even though they are mainly clustered below. 

The fit is good  as long as the skewness is relatively small. This is a well-known 
feature about ,  for example, the applicability o f  the NP method (BPP,  Section 
3.1 lc). Note that l - F is very small for x > 3.5 if the skewness is not  excessive 
Hence the poor  relative accuracy In the lower right-hand corner is seldom 
harmful  m applications. 

The somewhat  zigzag course of  the zone boundaries is due to fact that the 
goodness o f  fit is sensitive to the selection o f  tested distributions. Of  course, if 
another  set o f  distributions were chosen, a more  or less differing course for the 
boundaries would result. However ,  the number  of  tests, 54, was already so large 
and the selections so variable that it is not likely that any very essential differences 
would appear.  

Figure A.6 represents the dependence o f  the error [ dHA°70 I on the measure 1 
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using the same display technique as Figure A.5. This diagram contains the same 
information as Figure A.4, but in another shape and extended to more x values. 

Finally, Figure A.7 describes the effect of  the cumulant ratio convergence 
depicted by the same technique as applied in Figures A.5 and A.6 and by using 
the ratio t9 (cf. (5.2)) as a measure candidate. 

6.9. The moment problem that was discussed m Section 2.5 was explored by 
varying the claim size distribution subject to the conditions that its mean, stan- 
dard deviation and skewness: 

(6.2) (1) mz,  oz, and 'yz are fixed, 
(2) the claim sizes are limited to integer values 1 . . . . .  Zmax and 
(3) the claim number distribution pk(n )  is fixed. 

These conditions determine a family of  the mixed compound distribution func- 
tions that all are approximated by one and the same NP, WH or HA. We 
illustrated the problem in Section 2.5 by saying that the functions to be approx- 
imated and fulfilhng the conditions (6.2) are spread in a more or less wide "funnel 
of doubt" confined by the upper and lower envelope curve. If the funnel is broad 
for the relevant argument values x, this implies that there is no single curve which 
could approximate well all of the original curves, i.e. the approximation problem 
based on the characteristics of (6.2) has no satisfactory solution despite the 
method used. Unfortunately, evaluation of  the envelope curves proved retrac- 
table. However, in order to get a grasp of  the magnitude of the funnel at the tails 
of the distribution a lower limit was experimented with as follows. 

Some of the test cases presented in Appendix 1 were chosen as examples. The 
values of the mixed compound Poisson function Fwere then calculated for those 
two distributions that fulfil the conditions (6.2) and have maximal and minimal 
kurtosis respectively, or what is an equivalent provision, maximal or mimmal 
fourth moment of the claim size distribution. Then also the kurtosis of the ag- 
gregate claim distribution is maximized and minimized respectively. It can be 
reasonably expected that these are the extreme distributions at the tails among all 
those permitted by the conditions. 

It proved that, m the exemplified cases, these distributions were the most 
dangerous and least dangerous respectively in the meaning defined by 
GOOVAERTS et al. (1984), Section 4.4 (suitably choosing their limit constant ~). 

Table 1 exhibits two examples, one connected to case 3 of  Table A.I  and 
another connected to case 7. Among all of the distributions having the same 
characteristics as the selected case those two that have the minimal and maximal 
kurtosis respectively were sought, and then the exact F was calculated for them 
also. 

It proved that the funnel of doubt is very narrow as long as the skewness is 
moderate and the individual claim sizes have a reasonably low upper limit. This 
confirms the earlier experience that the mixed compound Poisson distribution is 
robust under these provisos. On the other hand the funnel ~s rather large for large 
skewness values. This confirms the fact that there cannot be any approximation 
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TABLE I 

F(x) resp. I - F(x) 

x - 2  2 3 4 

Mm 0 01612 0 02881 0.00309 0 00021 
Case 3 0.01620 0 02880 0 00312 0 00022 ~x = 0.24 
Max 0.01632 0 02879 0.00318 0 00023 

Mm 0 00105 0 04327 0 01142 0 00243 
Case 7 0 00330 0 03758 0 01253 0.00417 ~x = I 08 
Max 0 00507 0 03089 0 01236 0 00571 

based on the three lowest characteristics (6.2) which would fit in all cases and for 
the whole relevant range of the variable x. 

Note that the three curves representing the parallel distributions, as given in the 
table, intersect each other. That means, for example, that the most dangerous 
curve is most dangerous only for rather high values of x. The requested funnel 
of doubt is obviously constituted as an area between the envelope curves in a 
rather complicated way. Further study of this interesting problem was deferred 
to a later date. 

The smoothing mentioned above in 6.4 has also some effect on the breadth of 
the funnel, although not an essential one. If for example the height of the step 
is regarded m the numbers of Table 1 for the case 3 and x = 4, the minimum and 
the maximum should be replaced by 0.00020 and 0.00024 respectively. Similarly, 
the numbers corresponding to x = 4 of the latter example should be replaced by 
0.00238 and 0.00580. 

7. DISCUSSION 

7.1. On accuracy. It would be, of course, highly desirable to find ways to deter- 
mine rigorously the accuracy of the proposed approximations. Unfortunately, 
this has not been tractable as yet. Therefore, we have to collect experience by 
testing various distributions. If a method turns out to have consistently accept- 
able accuracy in numerous and relevant areas of application well covered by the 
tests, then the use of the method may be justified m practical calculations. The 
Figures A .4 -A.7  are aimed to provide a survey in concentrated form of the 
expected accuracy. Three alternative indicators were introduced: the skewness, 
the Haldane's measure and the convergence of the cumulants. Obviously the 
skewness is most convenient, because it has to be calculated as one of  the entries 
of the approximation calculations. 

7.2. H o w  accurate should the method  be? In deeming the usefulness of  the ap- 
proximation one should also appreciate the fact that in many cases the basic data 
are highly uncertain. In particular this concerns the structure function H (1.3) 
and its parameters. These choices may have a great effect on the process to be 
evaluated. If  the initial data are inaccurate, then it is meaningless to demand 
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essentially greater accuracy from the calculation technique, at least if this can be 
done only at the cost of  greatly complicating the calculations. On the other hand, 
the collectives concerned are often fairly large and the top risks are cut away by 
reinsurance. Then the skewness may seldom exceed 0.1 or 0.2 and the inaccuracy 
involved with the approximation formulas obviously scarcely spoils the 
outcomes. 

The situation is different for problems where long chains of computations are 
needed, e.g. in the calculation of integrals having F in the lntegrant. Then one 
should beware of an accumulation of errors. 

7.3. An appropriate tool for simulations. Before proceeding further with the 
discussion about approximation methods attention is called to an attractive 
feature of the formula of type (2.4). It can be of  special benefit for simulations 
where random numbers are generated, which are distributed according to the 
mixed compound Poisson law. This is a problem frequently appearing in advanced 
model building. The approach is simply first to generate normally distributed ran- 
dom numbers r and then to transform them by the inverse of the symmetrizing 
function (2.3): X =  v- l(r) (see BPP, Section 6.8). 

The number of the necessary random numbers can be very great. Then it is 
important that the inverse transformation v - t  is convenient to program and is 
fast. We proposed the NP formula in BPP (Section 6.8.3). The present experience 
suggests either the WH or HA-A transformations. In particular the WH formula 
is very handy (which was already recognized in exercise 6.8.1 of  BPP). 

7.4. Observations. Appendix 1 and Figure A.3 are the most convenient for the 
evaluation and comparison of the four tested methods. 

If the skewness is moderate, i.e. no more than 0.3, and if an inaccuracy of 
some ± 2 per cent is tolerable, then all four methods are acceptable. However, 
the Haldane-B showed, by far, the narrowest range of the relative error, the 
Haldane-A being obviously the next best. 

The situation is greatly different for the skewness values 0.3-1.  Then the 
Haldane-B falls for x = 3 (note the different scale for the different lines of  Figure 
A.3!). By the way, a similar observation was also made when the long version 
of the NP formula was investigated (PENTIKAINEN, 1977). These approaches, 
which are based on four characteristics, kurtosis included, instead of three 
characteristics (mean, standard deviation and skewness), proved to have superior 
accuracy for slightly skewed distributions but do not tolerate markedly skewed 
cases. 

When the skewness exceeds unity, then all of  the methods already show great 
irregularities and soon turn out to be useless. The lower example of Table 1 
(Section 6.9) suggests that no method that is based only on the three lowest 
characteristics can be good for all greatly skewed distributions. 

A general observation is that the short tall (x < 0) shows considerably worse 
results than the long tail. 

For the reasons referred to above it seems doubtful whether the Haldane 
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variant B is useful, in particular regarding the fact that it is markedly more com- 
plicated than the A variant. Haldane himself also observed that it gives 
sometimes poorer results than the simpler A formula. 

Some rules of thumb are sometimes proposed to guide the use of the approx- 
imations (e.g., BPP, 3.11e). Our latest studies do not suggest any such simple 
rules. Instead, it is much more effective to use Figure A.5 (or Figures A.6 or A.7) 
as a kind of "map" where the possible accuracy can be evaluated, and just in the 
enwronment of  concern. If, for example, only positive x values are needed for 
some particular interval, then the area of applicability is wider than if negative 
x values are also needed. 

Note that even though the general shapes of  the error zones in Figures A.5, A.6 
and A.7 are similar, it does not imply a full similarity in the test outcomes. For 
instance, the 0 indicator would suggest a poor accuracy in case 4 of Appendix 
1, but the skewness and Haldane measures still indicate acceptability as seen in 
the side column of the table. 

'7.5. The Wilson-Hilferty formula ~s clearly simpler and also somewhat faster 
than the Haldane-A. However, its tolerance for medium size and large 
skewnesses is poorer, as seen from Figure A.3. If the skewness is moderate, this 
formula may be appropriate at least m cases where very great speed is necessary. 

7.6. The NP method has as its special merit the analytic form (2.5) for the long 
tail. It is of frequent use in many risk theory considerations (see e.g., BPP, 
Chapter 4). If only the long tail is of concern, then the NP method is the simplest 
and is also fairly competitive with the other methods concerning the accuracy, 
with the proviso that the distribution is not very skew. 

7.7. In conclusion we summarize our present conception about the usefulness of  
the studies' approaches by means of a diagram as follows: 

NP WH HA HAb 

Flnalyt ic I Long SIrnu- Whole 
formula l tall latlon range 

7.8. Finally let us note that the exact and approximate methods complement each 
other in a happy way. The exact methods (and possibly direct simulations, see 
BPP, p.239) are most appropriate for small collectives, and the approximate for- 
mulas for the large ones. 
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APPENDIX I 

E X A M P L E S  

n = Poisson pa ramete r .  
h = Po lya  pa ramete r .  
ha = Ha ldane  pa rame te r  (3.8). 

m, a, `7, 3'2 are the mean, standard 
deviation, skewness and kurtosis 
of  the aggregate claim X. 

r, (t = 1,2) is the risk indexes a , /a [  indicat ing the heterogenei ty  o f  the claim size 
d is t r ibu t ion  (see BPP,  p.54). 
F = d . f .  o f  X for x < 0  and I - F  for x >  0 (1.1). 
x = s t andard ized  aggregate  claim size (2.2). 
d F %  = ha l f  o f  the step o f  F i n  per cent at the points  where the discret ized p roba -  
bd i ty  mass is concen t ra ted  ( = 5 0 ~ [ F ( x + ) - F ( x - ) ]  divided by F ( x + )  or 
I - F ( x  - )). 
NP = F approximated by the NP formula, dNP% its deviation from F in per 
cent. WH, HA and HAb are the corresponding outcomes for the 
Wdson-Hilferty, Haldane A and Haldane B formulas 
Ln(.,. , .),  the log normal claim size distribution having the mean, standard devia- 
tion and the skewness given in parentheses. 
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Pareto(.) Pareto claim size distribution with index given in parentheses (see BPP, 
p.74). 
M is the greatest value o f  the discretized claim size and d is the interval between 
the consecutive non-zero points (see Section 6.1). 
IA and 2A are the measures of deviation defined by (5.1) for the Haldane A and 
1B and 2B for the Haldane B. 
v = ,o4/,03 = an indicator for the speed of convergence of the cumulant. 

Case  1 n h m o "r "r2 h a  r2 r j  

200 0 0 0 1998 4 145 9 0 080 0 007 0 633 I 07 I 25 

Ln(10, 3, 5) 

M =  3 1 , d =  I x F NP WH HA HAb dNP% dWH% dHA% dHAb% dF% 
I A = - 0 0 0 0 1  - 2 0  0.0205 00205 00205 00205 00205 - 0 1  01 - 0 0  - 0 0  0 9  
2A= +00009 - 1 5  00646 00646 00645 00646 00645 01 - 0 0  - 0 0  - 0 0  07  
I B = - 0 0 0 0 1  - 1 0  01586 01588 01586 01587 01586 01 - 0 0  0 0  - 0 0  05  
2 B = - 0 0 0 0 0  1.0 01586 01587 01586 01587 01586 0 0  - 0 0  0 0  - 0 0  05  
v = 0 0 0 6  20  00249 00249 00249 00249 00249 0 1 0 0  - 0 0  0 0  0 8  

3 0  00019 00019 00019 00019 00019 04  05  - 0 1  O0 10 
4 0  00001 00001 00001 00001 00001 10 17 - 0 5  0 0  12 

Case  2 n h m o 3' V2 ha  r2 r3 

100 0 100 0 787 1 116 9 0 224 0 071 0 497 I 21 I 72 

Mixture 

M = 3 1 , d =  1 x F NP WH HA HAb dNP% dWH% dHA% dHAb% dF% 
I A =  - 0 0 0 0 8  - 2 0  00164 00163 00164 00163 00164 - 0 5  03  - 0 3  - 0  I I 3 
2 A =  +00039 - 1  5 00599 00605 00599 00599 00599 0 9  - 0 0  - 0 0  - 0 0  10 
I B = - 0 0 0 0 2  - 1 0  01582 01597 01580 01583 01582 0 9  - 0 1  0 0  - 0 0  07  
2 B = - 0 0 0 0 0  10 01583 01587 01581 01583 01583 0 2  - 0 1  0 0  - 0 0  0 6  
u = 0 0 4 8  2 0  00284 00286 00284 00284 00284 05  0 0  0 0  0 0  0 9  

3 0 0 0029 0 0029 0 0030 0 0029 0 0029 0 4 0 8 - 0 4 0 I 1 1 

4 0  00002 0 0 0 0 2  0 0 0 0 2  00002 00002 - 0 3  2 9  - 1 3  01 13 

Case  3 n h m o "y "t2 ha  r2 r3 

1000 2000 141 3 194 0238 0 100 0424 1 39 359 

Pareto(3) 
M = 2 1 , d = l  x F NP WH HA HAb dNP% dWH% dHA% dHAb% dF% 
I A = - 0 0 0 2 3  - 2 0  00162 00159 00160 00160 00161 - 1 9  - 1  1 - 1 4  - 0 5  81 

2A= +00175 - I  5 00595 00601 00594 00594 00594 0 9  - 0 2  - 0 2  - 0 2  62  
1 1 3 = - 0 0 0 0 4  - 1 0  01578 01598 01580 01581 01577 12 01 0 2  - 0 1  4 3  
2 B = - 0 0 0 0 0  10 01579 01587 01581 01582 01578 0 4  01 01 - 0 1  36  
v = 0 0 5 8  20  00288 00289 00288 00288 00288 0 4  - 0  1 - 0  I - 0  I 47 

3.0 00031 00031 00031 00030 00031 - 2 1  - 1 7  - 2 3  - 0 3  60  

4 0  00002 00002 00002 00002 00002 - 8 2  - 5  1 - 7  2 - 0 4  6 4  
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Case 4 n h rn o 3.' "yz h a  r2 r3 

100 1500 500 179 0463 0279 0569 1 21 1 87 

Ln(5, 3,4) 
M = 2 1 , d =  I ~. F NP WH HA HAb dNPOTo dWH% dHA~o dHAb~o dFgTo 

I A =  - 0 0 1 3 3  - 2 0  00088 00097 00094 00080 00085 103 74  - 8 5  - 2 5  142 
2 A = + 0 0 2 1 4  - 1 5  00506 00532 00504 00499 00501 53  - 0 2  - 1 4  - 0 9  85  
I B = - 0 0 0 4 4  - 1 0  01572 01630 01558 01575 01570 37  - 0 9  0 2  - 0 2  53 
2 B = - 0 0 0 0 5  10 01576 01587 01566 01578 01574 07  - 0 6  01 - 0 1  37  

v = 0 2 1 5  20  00337 00343 00337 00338 00338 I 7 - 0 2  0 2  0 I 4 8  

3 0 00050 00051 00051 00049 00050 3 I 3 2 - 0 4  05  5 6 
4 0  00005 00006 00006 00005 00005 4 9  112 - 2 4  10 6 2  

Case 5 n h m o '7 "rz h a  r2 r~ 

I00 0 100 0 170 4 34 2 0 593 0 679 0 016 3 03 36 93 

Parelo(2) 
M = 6 1 , d = 3  x F NP WH HA HAb dNPOTo dWH~o dHAO/o dHAbO/o dF~o 
I A =  - 0 0 2 5 0  - 2 0  00078 00067 00059 00067 00071 - 1 4  1 -25  I - 1 4 4  - 9  1 62  
2 A =  +00582 - I  5 00456 00492 00,:1-43 00447 00447 79  - 2 8  - 2 0  - I  1 4 5 
I B =  +00196 - 1  0 0 1506 0 1658 0 1538 0 1522 0 1510 10 I 2 I I 1 03  2 9 
2 B = - 0 0 0 3 5  10 01529 01587 01554 01541 01529 38  16 08  0 0  0 9  
0 = 0 0 0 6  20  00362 00372 00361 00359 00358 28  - 0 1  - 0 6  - 0 9  23 

3 0  00,068 00064 00064 00066 00069 - 4 9  - 5 4  - 2 1  14 25  
4 0  00011 00009 00009 00010 00012 - 1 7 4  - 1 2 2  - 0 8  119 27  

C a s e  6 n h m a "~ "yz h a  rz r3 

25 0 20 0 47 6 17 5 0 779 0 976 0 297 2 15 13 25 

Pareto(2) 
M = 3 1 , d =  1 r F NP WH HA HAb dNPOTo dWH% dHA% dHAb% dFOTo 

I A =  - 0 0 0 9 2  - 2 0  00028 00035 00018 00020 00022 287 - 3 5 4  - 2 6 5  - 2 2 0  229 
2 A =  +00115 - I  5 00354 00434 00341 00344 00346 226 - 3 6  - 2 7  - 2 2  II 8 
I B = + 0 0 0 5 2  - 1 0  01478 01712 01495 01491 01489 159 12 0 9  08  65  
2 B = - 0 0 0 0 2  10 01526 01587 01533 01530 01528 39  0 4  02  01 33  
v = 0 0 0 6  2 0  00394 00411 00392 00391 00391 43  - 0 7  - 0 9  - I  0 4 I 

3 0 00084 00084 00083 00083 00083 I 0 - I  2 - 0 8  - 0 6  4 3 
4 0  00015 00014 00015 00016 00016 - 5 4  - 0 0  I 8 29  4 9  

Case 7 n h m o 7 'V2 h a  rz r~ 

750 750  1220 308 1082 2703 - 0 4 2 9  377 8437 

Parelo(2) 
M =  121,d=4 .~ F NP WH HA HAb dNP% dWH% dHA% dHAb% dF% 
I A =  +04175 - 2 0  00033 00009 00000 00006 00011 - 7 3  1 - 1 0 0 0  - 8 3  1 - 6 7  8 100 
2A= +05406 - I  5 00322 00342 00145 00209 00204 60  - 5 5 2  - 3 5  1 - 3 6 5  59  
t B =  +06058 - 1 0  01357 01834 01384 01307 01207 352 20  - 3 7  - I |  I 38  
2 B = - 0 2 4 0 5  10 01376 01587 01491 01419 01285 153 84  31 - 6 6  21 
u = 0 6 3 0  20  00376 00470 00431 00407 00379 25 1 147 83  07  19 

3 0  00125 00119 00112 00116 00139 - 4 9  - 1 0 4  - 7 3  11 3 1.6 

4 0  00042 00027 00028 00035 00068 - 3 5  5 - 3 4 0  - 1 6 5  63 7 1 9 
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Case 8 n h m a 7 "y2 h a  r2 r j  

250 500 427 166 I 628 5801 - 0 3 9 4  329 5461 

Pareto(2) 
M = 9 1 , d = 3  x F NP WH HA HAb dNP% dWH% dHA% dHAbOTo dFOTo 
] A =  +1 4047 - 2 0  00004 00000 00000 00000 00000 - 9 5 8  - 1 0 0 0  - 1 0 0 0  - 9 9 4  418 

2 A =  +10048 - 1 5  00178 00197 00000 00024 00026 107 - 1 0 0 0  - 8 6 5  - 8 5 5  162 
1 B = + 2 2 8 4 3  - 1 0  01190 02180 00950 00892 00702 832 - 2 0 1  - 2 5 0  - 4 1 0  89  
2 B = - I  5625 10 01280 01587 01399 01248 00983 240 93  - 2 5  - 2 3 2  37  
o = 1 3 8 7  20  00370 00562 00473 00395 00291 518 277 67  - 2 1 4  34  

3 0  0 0 1 4 0  0 0 1 8 4  0 0 1 5 8  00139 00119 3 1 4  126 - 0 9  - 1 4 7  24  
4 0  00069 00057 00053 00054 00065 - 1 8  1 - 2 4  1 -21 4 - 6 4  1 8 

APPENDIX 2 
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FIGURE A I(a) The case 3 of  Appendix 1 presented as a graph The step curve represents the exact 
F T h e  k e y  p a r a m e t e r s  a r e  n = 100, h = 200,  3' = 0 24 
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TWO CREDIBILITY REGRESSION A P P R O A C H E S  FOR THE 
C L A S S I F I C A T I O N  OF PASSENGER CARS IN A M U L T I P L I C A T I V E  

T A R I F F  1 

BY B JOR N S U N D T  

Storebrand Insurance Company Ltd, Oslo 

A B S T R A C T  

In the present paper we present two credibility regression models for the 
classification of passenger cars. As regressors we use technical variables like price, 
weight, etc. In both models we derive credibility estimators and find expressions 
for their estimation errors. Estimators for structure parameters are proposed.  A 
numerical example based on real data is given. The second model is hierarchical 
with a level for make of car. 

I.  BACKGROUND 

In Norway there is no common passenger car tariff for all insurance companies, 
and thus there are several different tarrlffs in the market.  However, most of them 
seem to have about the same structure as the one used by Storebrand to be 
described below, but with different parameter values. 

In this paper we are going to discuss vehicle damage insurance for passenger 
cars. The tariff structure is multiplicative with factors for bonus-malus,  
mileage/distr ict ,  deductibles, age of car, and car model. We shall concentrate on 
the factor for car model. There are 65 classes numbered from 30 to 94, and the 
factor for class c is equal to 1.04 c-a°. 

Until the present research was started, the classification of mdwidual  car 
models was performed rather subjectively. There was one person classifying new 
car models. When a new car model appeared on the market,  he looked at its 
specifications and tried to find out to which cars it was comparable.  Then he 
looked at the factors for these cars, both by Storebrand and by the competing 
companies. When the car had been in the market for some time and clmms 
statistics had become available, the rating factor was reassessed, taking into 
account the observed claims ratio, the observed volume of exposure (premium), 
the old factor, and the premiums of the competing companies. This reassessment 
was also performed m a rather subjective way, but not by the same person who 
had made the initial classification of the car. 

The procedure described in the previous paragraph has obvious advantages 
compared to an objectxvely based statistical procedure. It would be ~mpossible to 
build into a mathematical model all the experience, knowledge, and intuition of  
a skilled person. How could the model incorporate,  say, the person's  opinion of 

~Paper presented at the XIXth ASTIN Col loqmum, Tel Avw, 20-24 September 1986 

ASTIN BULLETIN Vol 17, No I 
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the importance of the shape of the car (a limousine and a coupd are bought by 
quite different sorts of  people)? And even if one should succeed in creating a 
model which to a great extent incorporated the knowledge of the skilled person, 
this model would probably be too complicated for practical use. However, the 
advantage of the subjective procedure is also a disadvantage. The procedure is 
too dependent on the person performing it. As it is impossible to build the 
knowledge of the skilled person Into a statistical model, it is also impossible to 
give an adequate documentation of  the procedure. And what then zf the person 
leaves the company? 

This was the background that motivated the present research. One wanted an 
objective method for classification of cars, and in this paper we are going to 
describe the models and methods that were considered. We are also going to com- 
ment upon the difficulties that occurred during the work. As should be well 
known to everyone who has worked on modelling insurance data, these data are 
very seldom what you want them to be. 

When the project was started, it was decided that this time we should concen- 
trate only on the determination of the factor for car model. Ideally, one should 
of  course have developed models and methods for simultaneous determination of 
all the factors in the multiplicative model, but that would have been a much more 
ambitious and time-consuming project. It was discussed whether one should con- 
centrate only on the classification of new car models, for which we have no claims 
data, but in the present author 's opinion, classification of new models is only a 
special case of reclassification (i.e. the case with exposure volume equal to zero). 
It would therefore be unnatural not to treat these two situations together, and 
it was decided to follow this line. 

As was argued above, the subjective approach has great advantages compared 
to a statistically based procedure, and it would be wrong to throw this system 
away completely. It is the author 's  intention that the methods presented in this 
paper should not replace the skilled person, but rather be an aid to him. The 
system proposes a class to the person, but he should himself decide whether to 
follow this proposal or not. In particular, this is important for reclassification of  
cars that have already been in the market for some time, and for which we know 
the rating of  the competitors. It would be too ambitious to build a model that 
also incorporates the premiums of  competing companies. For marketing reasons, 
it could also be desirable to make smaller changes by the reclassification than 
those proposed by the statistical procedure. 

Furthermore, in the statistxcal investigations it became clear that some car 
models behaved so strangely, relative to the model studied, that they ought to be 
considered as outliers in the present context. For such cars one should not use 
the factor suggested by the system, and perhaps even more important, these cars 
should be left out when estimating the model parameters. The most striking 
example in our investigations was Volkswagen Golf GTI, and the parameter 
estimates changed considerably when this car was taken out of the estsmation 
procedures. It is important that the person doing the classification identifies such 
cars and sees to it that they are left out of the statistical analysis. One could of 
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course argue that  the model  a s sumpt ions  should  also embrace  such cars,  but  it 
is the op in ion  o f  the present  au thor  that  it is p re fe rab le  to have a relat ively s imple 
model  giving sa t i s fac tory  results for " n o r m a l "  cars,  than a compl ica ted  model  
that  could be used for all cars.  In par t icu la r ,  as he believes that  in pract ice  the 
"ou t l i e r s"  would usual ly  be easy to ident i fy .  

For  the numerica l  compu ta t i ons  we used the p rog ra m package  SAS,  which m 
par t i cu la r  was very convenient  for the matr ix  calculus.  

2. PRELIMINARIES 

2. I. Opt imahty  Criterion f o r  Est tmators 

Let m be a r andom var iable .  We  shall say that  an es t imator  m ~t~ of  m is bet ter  
than ano ther  es t imator  m ~z) if 

E ( m { l ) - m )  2 < E ( m  (2) - m)  2, 

that  is, we use the quadra t i c  loss funct ion.  
Let m = (m~ . . . . .  ms)' be an unknown random vector and m (~) = (ml ~) . . . . .  m}l)) ' 

and m (2) = (ml  2) . . . . .  m}2)) ' two es t imators  o f  m.  Then we shall say that  m (t) is 
a bet ter  e s t ima tor  o f  m than m (2) if 

E(m,  (l) - m,) 2~<E(m,  ¢z)- m,) 2 i=  I . . . .  s 

with strict inequal i ty  for at least one c 
We implici t ly  assume that  s econd-o rde r  moments  exist for all r a n d o m  var iables  

to be considered.  

2.2. Credtbthty Est tmators  

Let x and m be r a n d o m  vectors ,  x observable  and m unknown.  We shall call rh 
a l inear e s t ima tor  o f  m (based on x)  if  rh may  be writ ten in the form rh = a + Ax ,  

where a is a n o n - r a n d o m  vector  and A a n o n - r a n d o m  matr ix .  The  credibi l i ty  
e s t ima tor  o f  m (based on x)  is defined as the best l inear es t imator  o f  m. We sum- 
mar ize  some results abou t  c red ib ih ty  es t imators  in the fol lowing theorem.  

THEOREM 2. I.  (1) There always exists a unique credibihty estimator o f  m. 

0i) Let Fn be a hnear esttmator o f  m. Then th is a credtbihty esttmator o f  m 
t f  and only t f  m sattsfies the two condtt lons 

(2.1) Erh = E m  

(2.2) Cov(rn, x ' )  = Coy(m,  x ' ) .  

(ii0 Let th be the credtbihty esttmator o f  m. Then we have 

(2.3) Coy(m,  rh ' )  = Cov(th,  m ' )  = Cov( th)  = Cov(m)  - Cov(m - rh). 

For  p r o o f  o f  (i) we refer to DE VYLDER (1976), for p r o o f  o f  (i0 to SUNDT 
(1980), and for p r o o f  o f  (ill) tO SUNDT (1981). 
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3. i .  M o d e l  

3. A NON-HIERARCHICAL APPROACH 

Cons ide r  a g roup  o f  K different  car  models .  These could  be all passenger  cars 
(statxon wagons  included)  that  are ra ted in S to reb rand ,  or a well-defined 
subgroup  o f  these (e.g. diesel cars,  cars with four-wheel  drive,  all Volkswagen 
models ,  all cars p roduced  af ter  1982, etc.).  For  the pa rame te r  es t imat ion  des- 

cr ibed in Subsect ion  3.3 ~t could be reasonable  to take  a representa t ive  sample  
f rom the g roup  considered.  

For  car  model  k we have observed Ix risk units (policies).  Let X, ,  be the total  
clmm a m o u n t  in the exposure  t ime for unit ~ o f  model  k, and let pk, be the earned 
p remium.  We want  to use earned p remium as a measure  o f  risk volume,  but  this 
p r emium also conta ins  the car  model  factor  which we are going to reassess, and  
this old value should  not  be included in the risk measure .  Hence,  let 

(3.1) wk, = Pk,/fk, 

where fk is the old factor ,  be our  measure  of  risk volume.  We assume that  for 
fixed k, the X k , ' s  are independen t  o f  the co r re spond ing  da ta  f rom other  car  
models ,  and that  X k ~ , . . . , X k l ~  are cond i t iona l ly  independent  gwen Ok, a 
r a n d o m  p a r a m e t e r  charac ter iz ing  car  model  k. It is assumed that  01, . , OK are 
independen t  and  ident ical ly  d is t r ibuted .  

Let 

It lS assumed that  

Yk,  = X k , /  wk, .  

E [ Y k , [ O k ]  = ink(Ok) 

(3.2) Var m k ( O k ) =  X 

(3.3) Var [  Yk, [ Ok] = S Z ( O k , ) / V k ,  

with Vk, = Wk, (the reason for in t roduc ing  vk, will become clear in subsect ion 3.6, 
where we m o d i f y  the present  assumpt ions) ,  and 

#k = E m k ( O k )  = X l ~ ,  

where Xk is a known q x 1 design vector  based on the technical  da t a  o f  the car  
and /3 is an unknown q x 1 regression vector.  We fur ther  in t roduce  

(3.4) 

O=Es2(O~) x =¢/X 
IA Ik I,  

xk=Zx,, ok=Z  , w,=Zwk, 
t=l t=l t = l  

Yk = X k /  Wk. 

We note that  in the special case when 

E m k ( @ k  ) = Iz, 
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independent o f  k, the condit ions o f  the B u h l m a n n - S t r a u b  model (BUHLMANN 
and STRAUB (1970)) are satisfied. 

It is also interesting to relate our  present model to HACHEMEISTER'S (1975) 
regression model.  In that model one assumes that 

E [ Yk, I Ok ] = xLb  (Ok), 

wherex~, is a known q x 1 design vector and b is a q x 1 vector function. To cor- 
respond to our  present set-up we assume that Xk,=Xe independent o f  t. We 
introduce 

and get 

A = Coy b(Ok) B = Eb(Ok)  

Var E [  Yk, [ Ok] = X~-AXk. 

Thus this variance would typically vary between car models whereas m (3.2) we 
have assumed it to be constant .  Let us now assume that the first element o f  Xk 
is equal to one, which will usually be the case. Then we obtain our  present model 
by assuming that only the first element o f  b(Ok) is random,  which makes all 
elements o f  A except the (1,1) element equal to zero. We note that this A is not 
positive definite. 

3.2. Credtbdtty Est tmatton o f  ms(OD 

Let Jh5 be the credibihty estimator of  m~(@~) based on the observed Y~,'s. We also 
introduce the estimation error 

~b~ = E(ms(O~) - ths) z 

of  ph~ From Theorem 2.1 we get 

( 3 . 5 )  ,~7, = ~-,Y, + (1 - ~s)~, 

~ ,  = 4V (v ,  + x )  = X( l  - f , )  

with 

~, = v s / ( v ,  + u) .  

3.3. Parameter EstimaUon 

The structure parameters  ~, X, and 13 will in practical applications be unknown 
and have to be estimated. 

We have that 
Ij, 

(3.6) 4 ~ = ( I k - - I )  -1 ~ Vk,(Yx,-- y~)2 
I=1 
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satisfies E [ ~  I Ok] = sZ(Ok), and thus 

K 
~*= ~ uk~,~ 

t = l  

is an unbiased estimator o f  ~ for all weights u~ ( ~ f = l u k  = 1). In an earlier 
version o f  the paper we suggested that one should simply apply uk = K-  1. This 
choice has been criticized by Ragnar  Norberg,  who suggests that one should apply 

uk = ( lk - 1 lr - . 

An optimal choice o f  weights is difficult, involving four th-order  moments  (cf. 
e.g. NORBERG (1982)), and it was not within the scope of  the present research to 
per form a p ro found  analysis of  this problem. Both our choice and Norberg ' s  
choice can be criticized; our  choice because it gives too much weight to cars with 
low exposure; Norberg ' s  choice because if Is is much greater than the other Ik'S 
for some s, then the value of  Os will have a too dominant  influence on the 
estimate o f  ~. The present discussion also applies to the analogously weighted 
estimators in subsections 3.6 and 4.3. We note that in the special case 
It = / 2  . . . . .  IK Norberg ' s  choice and our  choice are equal, and m this case 4~* 
is equal to the est imator proposed by BUHLMANN and STRAUB (]970) for the 
B u h l m a n n - S t r a u b  model.  

We introduce 

Y = (Y1 . . . . .  YK) '  X = (Xl . . . . .  XK)'  
K 

v = ~ Ok D = d i a g ( v z / v  . . . . .  VK/V) 
k = l  

and get 
E Y =  X 3  

(3.7) Cov Y =  ( 4 ~ / v ) D - '  + M r  

with I x  denoting the K × K identity matrix. It is assumed that X has rank q. 
We trivially have that 

= ( X ' D X ) - ' X ' D Y  

is an unbiased estimator of/3.  It seems reasonable to base an estimator o f  k on 
the statistic 

(3.8) Q = ( Y -  X ~ ) ' D ( Y -  X~),  

and we therefore want to find the expectation o f  Q. In the deduction we use that 
for an r ×  s matrix A and an s ×  r matrix B we have 

(3.9) t r (AB) = tr(BA ), 

where "tr"  denotes the trace o f  a quadratic matrix (i.e. the sum of  its diagonal 
elements); this result is easily proved. We have 

E Q  = E ( Y -  X 3 ) ' D ( Y -  X 3 )  = t r [ D  E(Y - X ~ ) ( Y -  X 3 ) '  I 
= tr [ D Cov(Y - X3)  ] 
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as  

E ( Y -  xt~) = 0. 

We fur ther  get 

E Q  = t r (D Cov [ [ I K -  X ( X ' D X ) -  ~X'D] Y] ) = 
t r (D[  IK - X ( X ' D X )  - ~ X ' D ]  (Cov Y)[ IK - D X ( X ' D X )  - I X }  ), 

and insert ion o f  (3.7) gives 

EQ = Xzl + (oh~ v )7"2 (3. I 0) 

with 

(3.11) 

and 

(3.12) 

r~ = tr(D[l~¢ - X ( X ' D X ) - ~ X ' O ]  [ IK - D X ( X ' D X ) - ~ X  ' ])  

rz = t r (D[IK - X ( X '  D X ) - I X '  D I D  - l  [lu - D X ( X '  D X ) - t X  ' } ). 

F r o m  (3.11) we get 

(3.13) r~ = t r  D - t r [ D X ( X ' D X ) - t X ' D }  - t r [ D ~ X ( X ' D X )  -~X '  ] 
+ tr { D X ( X '  D X )  - ~X' D ZX (X '  D X  ) - ~X' ]. 

By repeated use o f  (3.9) we see that  the three last terms in (3.13) are all equal  to 
t r [ ( X ' D X ) - ~ X ' D Z X } ,  and as in add i t i on  tr D =  1, we get 

(3.14) 7.1 = 1 - tr{ ( X ' D X ) - I X ' D 2 X ] .  

From (3.12) we ob ta in  

rz = t r ( [ lK - D X ( X '  D X )  -~X '  } [1K - D X ( X '  D X )  -~X '  } ) 
= tr I K -  t r [ D X ( X ' D X ) - ~ X  ' } = t r l K -  tr[ ( X ' D X )  - ~ X ' D X ]  = tr I K -  tr Iq, 

and as the trace o f  an idenu ty  matr ix  is equal  to its d imens ion ,  we get 

(3.15) r2 = K - q. 

F rom (3.8), (3.10), (3.14), and  (3.15) we get that  

= [ ( Y -  X ~ ) ' D ( Y -  X ~ )  - (K - q )4 )* / v ] / [1  - tr{ ( X ' D X ) - ~ X ' D Z X ] ]  

is an unbiased  es t ima tor  o f  k. It has,  however ,  the d i sadvan tage  that  it can take 
negat ive values whereas k is a lways non-negat ive .  There fo re  we replace it by 

k* = m a x ( 0 , k ) .  

However ,  by this ad3ustment  we lose the unbmsedness .  For  s imphci ty ,  in the 
fol lowing we proceed as if k* > 0; the adap t ion  to the case ~.* = 0 is trivml. To 
avoid  having to take  special  care o f  the case k* = 0, one could  ins tead o f  put t ing  
k* equal  to zero when ~, ~< 0, put  k* equal  to some small  posi t ive number ;  one 
possible  choice would be e / K  for some small  e, as we would then have a sympto t i c  
unbiasedness  when K goes to infinity. 
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If Cov Y were known, the best linear unbiased estimator of fl would be 

~J= {X'(Cov Y)-xX}- lX ' (cov  y ) - l y ,  

and as Yz . . . .  YK are independent, 

/3= xk(Var Y~)-Ix~ ~] Xk(Var Yk)-lYk 
k = l  k = l  

= XkV~(O+ XV~)-IXl ~ XkVk(q~+ XVk)-'Yk 
k = l  k = l  

= flcXkXl~ Z fXXlk Yk, 
k = l  k = l  

and we propose to estimate/3 by 

w~th 

~*= ~'txkx~ ~ ~'txkYk 
k = l  k = l  

~'t=Vk/(Ve+x*) X* =6*/X*. 
It should be noted that in the Buhlmann-Straub model the estimators X* and/3* 
reduce to the estimators studied by BUHLMANN and STRAUB (1970). 

3.4. Determinatton of  the Tariff Class 

By inserting the estimators ~'~ and B* in (3.5) we get the empirical credibihty 
estimator 

- ~  • 
m, = f~*Y~ + (1 - ~',)/.zs 

with 
#5 =x5/3 . 

The estimation error ¢,, is estimated by 

~,* = X*(l - ~':*). 

The estimator rhs* cannot yet be used as the proposed rating factor for car 
model s; it still needs to be adjusted by some scaling factor. The approach used 
m our numerical invesugations was to determine the scaling factor such that the 
total premium for the portfoho used for the estimations would be the same with 
the new values of the model factor as with the old ones. 

Let y* be our scaling factor. Then the new model factor will be 

ps =31 ms, 

and thus the total "new" premium will be ~*~eK=~ wkm~-* whereas the "old" 
premium is ~ = z  Pk with 

I ,  

pk = ~ Pkt. 
t = ]  
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As these two p remiums  should  be equal ,  we get 

"y = P k  W k m k  . 
k = l  

In a d d m o n  to our  e s t ima tor  for the class, we also want  a confidence interval  
for the "co r rec t "  factor ,  by which we mean 7m,(O,), where 3, denotes  the mean 
o f  3,*. To get such a confidence interval  we need some a d d m o n a l  a s sumpt ion ,  and  
for s implici ty  we assume that  the cond i t iona l  d i s t r ibu t ion  o f  m,(Os) given the 
observa t ions  is normal  with mean th, and var iance  ~ks. This a s sumpt ion  seems 
highly unreal is t ic ,  in par t i cu la r  for cars with low exposure ,  but  we really did  not  
need an exact confidence interval ,  only  some measure  o f  the uncer ta in ty  o f  the 
es t ima tor ,  and  for this pu rpose  the a s sumpt ion  seems adequate .  As a i -e  con- 
fidence interval  (in the Bayesian sense, cf. e.g.  DEGROOT (1970, subsect ions  
11.5-6))  for  the fac tor  we obta in  Ms-+ g~-~/2,[-f,, where g~-c/2 denotes  the 
1 - e / 2  fracti le  in the s t andard  no rma l  d i s t r ibu t ion  N(0 ,  1) and by insert ion o f  
es t imators  for unknown  pa ramete r s  we finally get the es t imated  confidence inter-  
val p,* _+ 3, gl-c/2x~s*. 

From the e s u m a t o r  and the confidence interval  of  the model  fac tor ,  we can 
t rwmlly  derive an estxmator and  a confidence interval  for the model  class (cf. 
Section 1). 

When  a new car model  t, for which we have no da ta ,  is to be classified, we have 
vt = ~'* = 0, which gives 

Pt = ' y  #t = ~ x l ~ 8  

that  is, 

q 

(3.16) p* = x/ct* ~ * = tXj X o 
j = l  

with 

* ( * ) '  
Ot = O~ , . . . , O ~ q  = ~  

Thus,  (3.16) is the fo rmula  to be used to find the model  fac tor  for car  model  t. 
Let us for  a momen t  call o*, given by (3.16), O*(0) to stress that  this is the 

factor  es t imate  wi thout  exposure .  When  we get an observed  exposure ,  we get the 
fac tor  

Or*(1) = ~r*V* Y, + ( I  - ~'t*)o~(O), 

that  ~s, a weighted mean o f  the initial fac tor  es t imate  and the empir lca l  fac tor  
-,,,* Y,. We also note that  with no exposure  we have ~k, = X and ~b* = X*. 

3.5. Chotce of Regressors 

In subsect ion 3.1 we said that  xk should  be a design vector  based on the technical  
da ta  o f  car  model  k wi thout  giving any fur ther  ind ica t ion  o f  which regressors one 
should  use. In our  numerica l  invest igat ions  we registered for each car  model  in 
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our test sample the four basic variables engine power, cylinder volume, weight, 
and price. Diesel cars and cars with four-wheel drive were not included in our 
sample; otherwise it would have been appropriate to include (O,l)-variables for 
these characteristics. As interesting regressors we concentrated on the four basic 
variables and ratios between them. 

It should be noted that the estimator ~* of ~ does not depend on the chosen 
regressors. For X* and B* we made several computations using different 
regressors. In each design we of course included a constant term, that is, the first 
element of xk being equal to 1. 

As 

X = E ( m k ( O k )  --  Xk/3) 2, 

X measures how close the prior mean Is to mk(Ok), and it was therefore felt that 
one should use a set of  regressors making X* small. This is also consistent with 
our choice of the quadratic loss function; one could think of all the possible 
regressors being studied as included in a huge design, but that for most of them 
we estimate the corresponding element of B by zero. 

An important point when choosing regressors is that we know something 
about monotoniclty. To motivate this, let us look at an example. At an early stage 
of  our research we wanted to classify some new car models for which the prices 
were still unknown. A design giving small X* under these circumstances was 
(l power/weight weight/power) '  For two of the cars we got the following 
results: 

Car Weight Power Class 
l 1200 kg 63 HP 59 
2 1227 kg 86 HP 42 

This seems of course very unreasonable. Car 2 has a slightly higher weight and 
a much higher power than Car 1, but should be rated lower! 

In accordance with our opinion about monotonicity, several sets of regressors 
were rejected when looking at/5*. It should be noted that the more regressors we 
include, the more difficult it would be to control that our opinion about 
monotonicity is satisfied as the different regressors could be strongly correlated; 
even if we mean that the factor should be increasing with cylinder volume, it need 
not be disturbing to get a negative coefficient for this regressor if engine power 
has a positive coefficient, as cylinder volume and engine power are strongly 
correlated. Under these considerations we conclude that q should not be too 
large, say, at most 4-5.  

It should be noted that the monotonicity secured by the choice of regressors 
is not necessarily sansfied for the posterior estimates r~* with positive exposures. 
This is reasonable as we then have more information apart from the technical 
data; the monotonicity is important only when we base the factor on only the 
technical data. 

One should be aware that in one respect price Is different from the other basic 
variables considered, as the price may change whereas the car model is still the 
same, 
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We conclude this subsection by briefly recapitulating the criteria that should be 
taken into consideration by the choice of regressors: 

(i) small k*; 
(ii) monotonicity; 

(iii) small q. 

3.6. Some Practical Modifications 

In subsection 3.3 we described how we would have estimated 4~ if we had had 
the necessary data. Unfortunately, we did not have them. From (3.6) we see that 
for each policy we had to match the exposure with the total amount of  the claims 
occurred during the exposure period. At present, the data of Storebrand are 
organized such that for each calendar year we have one claims file and one policy 
riffle. The claims file contains data for all claims reported during the year. As stated 
above, we really wanted the claims occurred during the year, but this does 
not seem to be a serious problem. The policy file contains data from the middle 
of  the year. The registered premium is the premium at the latest renewal prior 
to the middle of the year, which means that these renewals range from the middle 
of the previous year until the middle of  the present year. Thus a match between 
claims and policies would be awkward. We also have the problem that the total 
registered premium for a fixed car model is not really the premmm we wanted 
it to be, but we decided to use it as an approximation. If the premium volume 
of  the car model is relatively stable over time, this approximation should be 
acceptable. However, if the premmm volume is growing, we would register too 
low a value for the exposure volume. This will in particular be the case when a 
new car model is introduced, most extremely for cars introduced m the second 
half of the year, for which we may have claims, but no premium. Such cars 
should not be included in the parameter estimation. 

The following additional model assumptions and estimation method were 
applied. Let Nk, be the number of claims from risk unit t of  car model k, and 
let Zku denote the claim amount of the jth of these claims. Then 

N~, 

X~, = ~ Zkv. 
J = l  

We assume that given Ok, the Zkv'S are conditionally independent and identically 
distributed and conditionally independent of the Nk,'s. It is further assumed that 
N,, IS conditionally Poisson distributed with parameter Wk,r~(Ok) given Ok. It is 
well known that under these conditions 

Var[Xk, I Ok] = wk,rk(Ok)tk(Ok) 

with 

tk(Ok) = E[ Z~,jI Ok], 

and by using (3.3) we obtain 

('1 17~ ~2(f::'h-] = r t . ( O t - ] t ~ ( O ~ L  
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We now have that 

satisfies E[ ¢~ l Ok l = s2 (Ok ), and thus 
K 

k = !  

is an unbiased estimator of  4~ for all weights us. (We stress that the quantities 4~- 
and 4~* defined in the present subsection are not the same as the quantities defined 
m subsection 3.3, hoping that this abuse of notation wdl not present any prob- 
lems to the reader.) 

The author ~s not quite happy with the mtroducnon of the present compound 
Poisson assumption in our model. From (3.17) we see that the functions rs and 
tk depend on k whereas their product Js independent of  k. And rs really should 
depend on k as an independence assumpnon would imply that technical data have 
no influence on the number of  claims, which seems very unrealistic. 

The fact that in our test sample ~ was strongly correlated with the four basic 
technical variables, could be a consequence of the issue discussed in the prevJous 
paragraph. Let as denote the engine power of car model k. From our test sample 
consisting of 62492 policies distributed on 90 different car models, we found the 
correlations displayed in Table 3.1 by using a correlation procedure in SAS. As 
is seen from the table, the correlations become considerably lower if we divide 
0~ by ak. Therefore we replace assumpnon (3.3) by 

Var [ Yk, I Ok] = aks2(Os) /wk,  = s 2 ( O k ) / U k ,  

with Vk,= Wk,/ak. Under this assumption (3.17) should be replaced by 

sZ(Ok) = r~(Ok)tk(Ok)/as. 
We get that 

4,~ = ~ z~,~ (akwk,) 
t J = l  

satisfies E[¢,~ I Os] = s2(Os), and thus 
K 

6*= ~ uke,7 
S = !  

T A B L E  3.1 

CORRELATION OF ~bt~ AND q)~/Clk WITH THE FOUR BASIC RISK VARIABLES 

~k/a~- 
unwelghted weight Wk unwelghted weight v~ 

Weight 0 249 0 445 - 0  009 0.078 
Power 0 337 0,499 0 041 0 083 
Cyhnder volume 0 346 0 509 0 063 0 106 
Price 0 286 0 486 0 060 0 187 
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is an unbiased estimator of 4~ = Es2(Ok)  for all weights u~; in the numerical 
example in Section 6 we applied Uk = K- l .  

The reason that we introduced a v~, in subsection 3.1 should now be clear: The 
derivations made in the previous subsections are still valid under our revised 
assumptions; we have only changed the definition of some of  the quantities. 

3.7. lntroduct ton o f  Subject tve Assessment  

Classification of individual car models by credibility has also been treated by 
CAMPBELL (1986). He computes a model factor by a pure Buhlmann-Straub 
model, that IS, he makes no regression assumption about the technical attributes 
of the car. However, before performing the credibility analysis, he divides the 
cars by using cluster analysis into groups of cars that are similar with respect to 
technical attributes. The credibility analysis is then performed within each group 
of car models. Roughly speaking, one could say that in our set-up the regression 
assumption plays the role of the cluster analysis in Campbell 's set-up. 

After the Buhlmann-Straub analysis has been performed, Campbell lets the 
final value of the model factor be a weighted mean of the value found by the 
Buhlmann-Straub analysis and a subjecuve estimate based on a technical assess- 
ment of the car. 

Let us now see how one could incorporate a subjective estimator in our model. 
We assume that when car model k is initially classified, a skilled person proposes 
a class Ck. His proposal IS based on a technical assessment of the car. From the 
class Ck we find the factor 

ffk = 1.04 C~-30 

This factor is not yet comparable to mk(Ok) as it is differently scaled (cf. sub- 
section 3.4). From (3.1) and (3.4) we get 

Yk = ( X k /  pk )fk,  

which motivates the scaling factor 

N = Xk Pk, 
k=l 

and we introduce the rescaled model factor 

A k = NFk.  

We now assume that A ,  is independent of  the data from the other car models, 
that it is conditionally independent of Ykl . . . . .  Yk~, given Ok, and that 

E [ A k l O k ]  = mk(Ok) E V a r [ A k [ O k ]  =T. 

Now let ~ ,  be the credibility estimator of m(Os) based on Y,l . . . .  Ys/,, and 
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As and let 

From Theorem 2.1 we get 

with 

We have that 

~k~ = E(rn~(O~)  - rhs) 2. 

r~,=(v,Y,+eAs+ x~s)/(v,+e+ x) 

¢,=~l(v~+e+ x) 

e= O/r. 

K 

~ =  ~ u k l ( Y k - - A k ) Z - - 4 ~ * / V k J  
k = l  

is an unbmsed esumator of r for all weights Uk, but as ~" can take negauve values, 
we propose to estimate r by r* = max(T, 0). 

We can of course still estimate k and fl by the estimators prevaously found, but 
af we also want to include the Ak's in the estimation, we can easily modify the 
estimators presented in subsection 3.3 by using the following trick: We simply 
transform the subjective estimator A k  tO an artaficlal risk unit I ,  + 1 with "risk 
volume" 

(3.18) Vk.i,+ 1 = e 

and "claim amount" 

(3.19) X k . l ,  + ~ = e A k .  

By adding the new risk umts X~.i,+~ , . . ,  XK, i~+~ to the statasncs data, we can 
estimate k and ~ in exactly the same way as in subsection 3.3. In (3.18) and (3.19) 
we estimate e by 

e* = 4~* / r*.  

This author is for two reasons a bit reluctant about the introduction of the 
subjective estimator As in the credibility estimator rhs. Both reasons really have 
as a consequence that the model assumptions made about the Ak's are not fulfill- 
ed in practice. 

Firstly, the person performing the assessment will probably gradually adapt 
himself to the statastacal model. He will get a feeling of what class the statistical 
model wall propose, and thus his assessment as no longer independent. Thas does 
not seem to be an important objection, but it means that after a while the attitude 
of  the person is apt to change, and thus one should frequently update the estimate 
of r. 

The second objection is more serious. In a competitive market like the 
Norwegian one, not only the risk level of the car will influence the person 
performing the assessment, but also the classification of similar cars, not only by 
Storebrand, but also by the competing compames. 
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Thus this author ~s more attracted by the opinion expressed in Section 1, that 
the subjective assessment should be influenced by the statistical method instead 
of influencing the method itself. 

4. A HIERARCHICAL APPROACH 

4.1. Model  

The make of the car is a characteristic that we have not mentioned yet, but it 
could contain valuable information about the risk of a car; the information that 
the car is a Mercedes Benz, may contain information about both the car and its 
driver that is not contained in characteristics like price, power, etc. It should be 
noted that make differs from the characteristics studied in subsection 3.5 in one 
important respect; whereas those characteristics were quantitative, make ~s 
quahtattve, and thus we cannot directly include make in the set-up of  Section 3. 
One possible approach would be to extend the regression analysis of Section 3 
to a covariance analysis. Instead of following that line we are going to extend the 
non-hierarchical regression model of  Section 3 to a hierarchical model with a new 
level representing the make of the car. 

Consider a group of  N different makes. For make n we have observed K.  
different car models, and for model k of these we have observed l .k risk units. 
Let X.~, denote the total claim amount in the exposure time for unit i of model 
k of make n, and let p.k, be the earned premium. We introduce 

W.k, = P.k, /  f .k , 

where f.~ denotes the old factor for make of car. 
We assume that claim amounts from cars of different makes are independent, 

and that from within one make n, claim amounts from different car models are 
conditionally independent given a random parameter H. (capital Greek eta) 
characterizing make n. Within car model k of make n, the claim amounts from 
different risk units are assumed to be conditionally independent given (O.k, H.),  
where @.k is a random parameter characterizing car model k of make n. It is 
assumed that e.~ . . . . .  O.K. are conditionally independent and identically 
distributed given H., and that their common conditional distribution depends on 
the make only through the value of H.. We further assume that Hi . . . .  , HN are 
independent and identically distributed. 

Let 

It is assumed that 

Ynk~ = X , k , /  W,k,. 

E[ Y.k, I @.k, H.] = m.k(O.k ,  H.) 

EVar[m.~(O.k ,  H.)[ H.] = k 

Var[ Y.k, [ O.k, H.]  = S2(Onk, Hn)/Unkt 
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with v.k, = w.k,/a.k,  where a.k is a known quanti ty which could be equal to one, 
engine power (cf. subsection 3.6), or something else. We further assume that 

(4.1) E[m.k(O~k, H.)I  H~] = x~kb(H.) ,  

where x.k is a known,  non- random q × 1 design vector based on the technical data 
o f  the car and b is a q x 1 vector function.  We introduce 

4~ = EsZ(O.k, H.)  /~ = Eb(H.)  

(4.2) ~ = C o v  b ( H . )  

x = 6 1 X  

I,k Ink Ink 
xok = Z x .k ,  = Z o,,., = Z w.k, 

1=1  t = l  t = l  

Y.k = X . k /  W.k. 

We note that for E = 0, the model reduces to the non-hierarchical model 
studied in Section 3. 

4.2. Credibtlity Estimators o f  mr(Ors, Hr) 

Let rhrs and /~r denote the credibility estimators o f  mrs(Ore, Hr) and b(Hr) based 
on the observed Y.k,'s. We introduce the estimation errors 

4'r~ = Var(mrs(er~, Hr) - Zms) YL = Cov(b(Hr)  -/~r).  

Then we have the following result. 

T H E O R E M  4.1.  W e  have 

mrs  : ~'rs Yr~ + (1 - ~'rs)x/sbr  

¢rs = (1 --  ~rs)[  ~ "q" ( 1  - -  ~rs)X~sFlrXrs} 

(4.3) 

(4.4) 

wtth 

~'rs = Vr,/(Vrs + ~ ) .  

PROOF AS the coefficients o f  credibility estimators depend on only first- and 
second-order  moments ,  it is sufficient to prove the result for a special case having 
the same first- and second-order  moments  as the general case. It is convenient to 
consider mult inormal  distributions as it is well-known that in that case the Bayes 
estimators are linear, and hence they are equal to the credibility estimators. 

Let 

W . k ,  = V.k,~21 Y .k ,  - m . k ( O . k ,  H.)I 

Unk = m.k(O.k,  H. )  - X,;kb(H.). 

We assume that the W.k,'s are independent and identically distributed N(0, ~) ,  
the U.k'S are independent and ldenucally distributed N(0,  k), the b(Hn) 's  are 
independent and identically distributed N(B,  Y.,), and that the W.k,'S, the U.k'S, 
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and the b ( H . ) ' s  are independent.  It is obvious that we have the same first- and 
second-order  moments  as in the distribution-free model.  Fur thermore ,  we have 

E[mrs(Ors, Hr)[ b(Hr),  Y,k,v(k, i)] = ~'rsY,, + (1 - ~',,)x,~sb(H,) 

as under the condit ional  probabil i ty measure gwen b(H,)  we have the same first- 
and second-order  moment  structure for make r as in subsection 3.1 (cf. formula  
(3.5)). We get 

rh,s = E[m~,(Ors, Hr)] Y.k,V(n, k, t)] 

= E[ E[ m~s(Ors, H~)lb(Hr), Y.k,V(n, k, 0 ] l  Y.~,V(n, k, t)] 

= E[E[mrs(Ors ,  H,)[ b ( H r ) ,  Yrg, V(k,  t )] lY.k ,v(n,  k, t)] 

as different makes are independent,  and thus 

F~Irs : frsYrs -4- (1 - ~s)x/sf[  b(Hr)l Y.k, V (n, k, i)] 

= ~rsYrs+ (1 - ~'rs)x;sbr, 

which proves (4.3) 
For  firs we apply the same way of  reasoning and get 

firs = E Var [m,,(@rs, H~)[ Y,~,v(n, k, 0]  

= E Vat [rnr,(@~,, H~)[ b(Hr),  Y,k,v(n,  k, i)1 

+ E Var [E[m~s(Or,, H~)[ b(H~), Y,k,V(n, k, 1)11 Y,k,v (n, k, i)] 

= X(l - ~'~s) + (1 - f~s)2xL(Cov[b(H~)l Y,k,v(n,  k, t)] xrs 

= (l - ~~,)[ X + (l - f~s)x/slI~xM, 

which proves (4.4). 
This completes the p roof  o f  Theorem d.1. Q.E .D.  

We now want an expression for/~r. To reduce the dimension of  the problem we 
first prove the following lemma. 

LEMMA 4.1. The credibthty esnmator !~ depends on the Ynk,'S only through 
Y~l . . . .  Y~K,. 

PROOF Let b} l) be credibdity esnmator  of  b(Hr) based on Yr~ . . . . .  Yrx,. 
Then by Theorem 2.1(il) 

E/~} Z) = Eb(Hr)  

Cov(br (1), Yrk) = C o v ( b ( H ~ ) ,  Yrk). 

As 

for all (k, s, t), we get 

k = l  . . . .  K~ 

Cov(Y~, Y~,,)= Cov(Y~,, Y~,) 

Cov(b(H~), Y~k,) = Cov(b(H~),  Y~k) 

Coy(b} l), Y.k,) = Cov(b(Hr), Yrk,). 
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Furthermore,  as different makes are independent, we have 

Cov(/~r O), Ynk,) = Cov(b(Hr),  Y,k,) = 0 

for all n ~ r, and thus Lemma 4.1 follows from Theorem 2.1(ii). 

We want to find a matrix expression for br and introduce 

Zr = diag(~'rl . . . . .  g'rg,) 

X r :  (Xrl . . . . .  XrKr) t Yr : (Yr l ,  . ,  YrKr) ' .  

We write /~ as 

From (2.1) we get 

that is, 

From (2.2) we obtain 

(4.5) 

We easily get 

br = ~r @ PrYr .  

• y, = ~ - l"rXrO, 

br : r r ( Y r  - X r ~ )  + ~.  

I 'r  Cov Y, = Cov(b(Hr),  YI). 

Cov Yr = k Z 7  1 + X ~ X l  Cov(b(Hr) ,  Y~)= ~Xr' ,  

and insertion in (4.5) gwes 

(4.6) r r ( k Z 7 1  -t- X r ~ X ~  ) -~- ~ X r  t . 

We multiply (4.6) by ZrXr  from the right to obtain 

r r X ~ ( X l q  + ~ X ;  Z r X r )  = ~ X ~  ZrXr ,  

which gwes 

(4.7) 

From (4.6) we get 

(4.8) 

that is, 

Insertion of  (4.7) gives 

r r X r  = ~Xr '  Z r X r ( X I q  + ~ X /  Z r X r ) -  1. 

P A z ; -  ~ = (lq - P r X , ) Z X ; ,  

Fr = X -  1 (lq -- P r X r ) ~ X r  ¢ mr. 

Pr  = (~[q + ~ X ~  Z r X r ) -  l ~ x ~  Zr. 

If  X ;  ZrXr  is non-singular, we introduce 

br = ( X / Z r X r ) - I x ~  ZrYr .  

Q.E.D. 
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Then we have 

t --I  I PrY, = (~,lq + ~ x / Z r X r ) - ' ~ X / Z r Y r  = (~klq + E X / Z r X r )  ~ X ;  Z r X ,  b, 

= ~ X / Z r X r ( X l q  + ~ X / Z r X r ) -  lbr = ~rbr, 

where we have in t roduced  the credibi l i ty  mat r ix  

~ ,  = E X / Z r X r ( X l q  + ~ X / Z r X r ) -  l, 

and we get 

We still have to find an expression for the es t imat ion  error  mat r ix  Hr. By 
Theorem 2.1(ili) we get 

I'I, = Coy  b(Hr)  - Coy  b,  = ~ - l " , (Cov Y,)I ' /  = ~ - l"r(XZ7 1 + X,~x / ) r ' ; .  

We insert (4.6) and ob ta in  

[Ir = ~ -- ~ x / r /  ~- ~ ( l q  - x ] r / ) ,  

that  IS, 

n, = ~(4 - a/) = (t~ - a,)E, 

the last equah ty  because  Hr and ~ are symmetr ic .  
We now have expressions  for all the quant i t ies  tha t  we need for the c o m p u t a -  

t ion o f  rhr~ and ¢,5. 

4.3. Parameter Esttmatton 

Cor r e s pond ing  to (3.6) we in t roduce  

¢,*,k = ( l .k  - ! ) -  
InA 
Z v,,~,(r,,k,- Y.k) 2, 

/ = l  

for  which we have 

E[~,*,~ I O,,k, H.]  = s2(O.k, H. )  

if  v.k, = w.k,, and in that  case 
N K.  

~*= Z X u.,0:k 
n = l  k = l  

is an unbiased  es t ima tor  o f  ~b for all weights U . k ( ~ J = l  ~ j  U.X)= I. 
It should be obvious  how one could  generahze  the a s sumpt ions  and es t imators  

in t roduced  in subsec tmn 3.6 to the  hierarchical  model ,  and  we shall  not  go any 
fur ther  into detai ls  on that  mat te r .  

In the fol lowing we just  assume that  we have got  an unbiased  es t ima tor  $* o f  
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4~, and  the fol lowing der iva t ions  do  not  depend  on whether  v.k, = w.k, or not.  
Fo r  the es t imat ion  o f  X, ~,  and ~ we shall also assume that  X .  has full rank 

q for all n. In pract ice ,  this will mean that  we exclude da ta  f rom makes  for which 
we have observed only a few car models ,  f rom the es t imat ion  procedures .  It is 
o f  course  quesuonab le  not  to uuhze  these da ta ,  but the es t imat ion  procedures  
become much s impler .  

We  in t roduce  

On = 

D n -~ 

b n  = 

K~ N 

Zv°k v=Zv.  
k = l  . = 1  

vYldiag(v . i  . . . . .  V.K.) 

( X / , D . X . ) - ~ X g D .  Y..  

A n a l o g o u s  to what we did in subsect ion 3.3, we get 

E ( Y ~ - X J J . ) ' D . ( Y . - X . b . ) = X [ I - t r l  ' - ~ ,  2 ( X . D . X . )  X . D . X . ] ]  + ( K .  - q ) 6 / v . ,  

and thus 
= 1  ~ vn(Yn - X , , b n ) ' D n ( Y .  - X .bn )  - (K.  - q)$ 

, - ( X n D . X . )  X . D . X .  } v =l 1 tr[  ' -~ , 2 

is an unbiased  es t ima tor  o f  h. As X may  take negative values,  we proceed as in 
subsect ion 3.3 to const ruct  a modif ied  e s u m a t o r  X* which is non-negat ive  or  
posi t ive.  In the fol lowing,  we assume for s implici ty  that  X* is posiuve.  

Let 

) W n  - - - -  X / Z r X r  Xt~ Z n X .  
r=l  

= w . G .  = x"  z . x .  x~  z .  Y..  
n = l  n=[ n = l  

It seems reasonable  to base our  e s t ima tor  o f  ~, on 

N 

a = ~ W . ( b .  - f l ) (b .  - ~ ) ' .  
/'I=1 

We have 
N N 

E Q =  Z Wn E(bn - ~)(Gn - ~ ) '  = Z W,, Cov( /~  - fl) 
n = l  t i l l  

N 

= ~ w~[Cov Go- c o v ( £ , , B ' ) - C o v ( B , £ ~ ) +  Coy ,~] 
n = l  

N 

w .  [ Coy G. - Coy(B, t~,~ )1, 
n = l  

that  is, 

N 

(4.9) E Q =  ~ W n ( l q -  
n=l  

w,,) Coy/L.  
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For all n we have 

COV bn ---- (X/, ZnXn ) -  I x n  Z n ( C o v  Y. )Z .X. (X,~ Z . X . ) -  i 

= (Xn Z n X n ) -  Ixn  Z r t ( X Z ;  l ..1_ X~ ~Xn)ZnXn(X t~  Z n X t , ) -  1 _- ~k(Xn Z n X n )  - l  -.~ ~ ,  

and insertion m (4.9) gives 

E Q =  TX + ( ~-] W n ( l q  
\ n=  I 

with 

that is, 

and 

N 
T = E  

n=] 

N 

w.(lq- w.)(x,',z.x.)-'= Z (lq- w.)w.(x,',z.x.)-' 
n=l 

= (lq -- W. )  X / Z r X r  = ( N  - I ) X / Z  rXr 
\ n  = I \ r  = [ 

E Q = ( N -  I X / Z X  k +  I u -  ~ ~,, 
r= l  

In= , _ <N_ '  'zrxrj  
is an unbiased estimator of  E. However,  as E is symmetric whereas E does not 
in general have this property,  we replace ~' by 

= (~ + ~ ' ) / 2 .  

When estimating X, we had the problem that X was not necessarily positive. The ^ 
analogous problem when estimating ,7, is that E is not necessarily positive semi- 
definite. As ,~ is symmetric,  it can be written as 

=A'TA, 

where A is an orthonormal q × q matrix (i.e. A'A = lq) and 

T = diag(Tj ..... Tq), 

where z~ . . . .  Zq denote the eigenvalues o f  ~,. Let 

r ° = m a x ( T , , 0 )  I = l , .  , q  

T o = diag (z ° . . . . .  zg). 

It can be shown (cf. BUNKE and GLADITZ (1974),RAO (1965)) that 

~* ,TOA 

satisfies 

v' (~* - ~, )v ~< v' ( P -  ~) v 
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for all q x 1 vectors v and all positive semi-definite q × q matrices P, and hence 
it seems reasonable to replace ~- by ~-* to get a positive semi-definite estimator. 
To avoid having to take special care of the case when E* is not strictly positwe 
definite, one could instead of replacing negative eigenvalues by zero, replace them 
by some small positive number; one possible choice would be e / N  for some e as 
we would than have asymptotic unbiasedness when N goes to infinity. 

The computation of ~-* from ~, involving the construction of A and T, may 
seem complicated. However, xn SAS we had standard procedures for the com- 
putation of A and T. 

The procedure for estimation of ~. depends on the parameters ~ and ),, which 
were assumed to be unknown, and we therefore insert the estimators ~* and ~,* 
for these parameters. 

We have that 

(4.10) /3*= a. ~ a.tL 
n = l  n = l  

is the best hnear unbiased estimator of /3. As /3" depends on the unknown 
parameters ~, ~, and E, we insert the estimators ~*, k*, and ~* for these 
parameters in (4.10). 

We have now found estimators for all the unknown parameters involved in the 
credibility estimators presented m subsection 4.2, and we are therefore able to 
construct empirical versions of these credibility estimators. 

4.4. A Disadvantage of  the Hierarchical Model 

For a new car model s of make r (i.e. Wr, = 0) we have 

Mrs = x~sbr. 

In the non-hierarchical model the corresponding formula was 

rhrs = xg/3. 

In subsection 3.5 on the choice of  regressors, we said that we have some prior 
opinion on monotonicity, and that the regressors should be chosen such that this 
monotomcity was preserved. This was not too complicated in the non- 
hxerarchical model. In the hierarchical model it is much more difficult. Whereas 
in the non-hierarchical model we could just look at the sign of the elements of 
/3, in the hierarchical model we have to look at the elements of br for all r. 

In a parametric empirical Bayes analysis we could solve the problem by restric- 
ting the support of  the distribution of  b(Hr) to a set ~ for which the mono- 
tonicity is preserved. Then of course also the posterior mean of b(Hr) would be 
contained in ~ .  However, such a parametric model would presumably be 
complicated to handle, and we would probably have to leave the hnearity of the 
estimators. 

If our statistical models should be used as proposed m Section 1, that is, not 
as giving the final answer, but as an aid for the person who finally makes the 
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decision, this author would recommend that this person receives the estimates 
from both the hierarchical and the non-hierarchical models, using the same 
regressors in both models. In his decision he should be aware that the hierarchical 
model utdizes information about the make of the car, information that is not 
used in the non-hierarchical model. On the other hand, for the assessment of new 
car models, the non-hierarchical model will preserve some monotonicity proper- 
ties, which may be violated in the hierarchical model. 

4.5. A Modi f i ed  Approach  

When the author gave a seminar on the present research, Ragnar Norberg 
suggested a modified approach that avoids the monotonicity problem discussed 
in the previous subsection. We replace the assumptions (4.1) and (4.2) by 

E [ m . k ( O . k ,  H.)I Hn] = M . k ( H . )  E M . k ( H . )  = X~kfl Var M . k ( H . )  = ~. 

One could say that these assumptions are more consistent with the assumptions 
made in the non-hierarchical model whereas (4.1) and (4.2) are more m line with 
HACHEMEISTER'S (1975) regression model. 

Under these new assumptions we obtain 

(4.11) 

with 

r~,~ = ~'r, Y,, + ( 1 - ~'r~) (XA# + D,)  

Dr= ~ ~ ~'rp(Yro-X/vfl) X+/~ ~ ~rp • 
pHI p=l 

It is interesting to compare (4.11) to (3.5). We see that the only formal difference 
is that we have added a correction term Dr to the prior mean xA~. For the case 
with no exposure for car model s this property is very attractive. We then get 

I~lrs : XA~  q" Dr,  

that ~s, we compute the prior mean xA~ based on the technical data and add a 
correction term Dr as the car IS of make r. 

We hope to return to the present model in a subsequent paper. 

5. SOME CARS ARE MORE EQUAL THAN OTHERS 

As is well known, there are often several variants of  one car model. In a 
Norwegian price list from 1984 (OPPLYSNINGSRADET FOR VEITRAFIKKEN (1984)) 
we found for instance 9 entries for Volkswagen Golf and 28 for Opel Ascona. 
The technical differences between such variants may be number of doors, engine, 
shape (coup6/sedan), etc. Such differences will of course in most cases also 
influence the price. In our investigations we have considered each variant as a 
separate model. However, variants of a car model usually have very much m 
common, and ,t is tempting to try to utihze this informaton in the estimation of 
the model factors. 
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One possible soluuon would be to extend our two-level hierarchical model 
(make, model) to three levels (make, model, variant) (for multi-level hierarchical 
models, cf. e.g. SUNDT (1980),NORBERG (1985)). This would be a more compli- 
cated model, and we would have to estimate more parameters. 

Another possibihty would be to drop the make level m the three-level hierar- 
chical model to obtain a two-level model with levels for model and variant. For 
this model we could make the same assumptions as in Section 4, but the grouping 
of the cars would be different. 

A third approach would be simply to consider different variants as one model. 
Then we have the difficulty that the different variants do not have the same 
technical specifications, but as design vector we could use a weighted mean of the 
design vectors for the different variants with weights proportional to the observed 
exposures. In this set-up, possible differences in risk characteristics of the varmnts 
now pooled together would be incorporated in s2(Ok) (to use the notation of the 
non-hierarchical model). The present approach should be used with care as there 
exist variants with risk characteristics so different from other variants of the same 
model that they should definitely not be pooled together; a striking example is 
Volkswagen Golf GTI. Usually, one would be able to identify such "outliers" 
already before one obtains the risk statistics. However, this need not always be 
the case, and one should therefore, even if the variants are pooled together, 
always register the variant of each car in the statistics data so that one is able to 
detect an "outlier" and revise the pooling if necessary. 

6 NUMERICAL EXAMPLE 

6.1. The Data 

We have already mentioned our numerical studies a couple of tImes. Our first 
studies were based on data from Storebrand for the year 1983, and in subsection 
3.6 we presented some results based on these data. When our first studies had 
been performed, data from 1984 became available, and in our investigations on 
these data, we included a greater number of makes and car models than in our 
1983 studies. In the present section we shall display figures found m our 1984 
study; the 1983 data were analysed in the same way. 

For each car model included in the study, we registered the technical varmbles 
weight, engine power, cylinder volume, and price. The price was the price given 
in a list from April 1984 (OPPLYSNINGSRADET FOR VEITRAFIKKEN (1984)), and 
we only included car models that were found in this list. This imphes that we 
excluded car models that were no longer produced or imported to Norway. If one 
should also include older car models, one would have had to use older prices, 
which would have had to be adjusted to the price level of 1984. At the present stage 
of the development of models and methods, we decided to leave out this problem, 
but ~t is further discussed in SUNDT (1986). As already mentioned, for simplicity 
we also excluded diesel cars and cars with four-wheel drive. 

In the following presentation we use the codes of Storebrand for make and 
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TABLE 6 I 
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Code Name K. Rnsk umts v. 

11 Audl 7 1112 9050 
14 BMW 11 2754 15117 
15 Cltroen 10 I 190 10429 
16 Ftat 7 782 9541 
17 Ford, British 7 2322 22326 
18 Ford, German 24 13107 115557 
24 Lancta 1 58 942 
25 Mercedes Benz 7 1561 7444 
31 Opel 33 8860 67880 
33 Peugeot 14 1467 13017 
34 Renault 1 950 13771 
37 SAAB 6 3382 21261 
39 Skoda 2 248 2549 
45 Volkswagen I 1 3145 35722 
46 Volvo 19 3946 29881 
47 Dalhatsu 2 105 1555 
53 Subaru 6 349 3076 
54 Mitsublshl 14 1844 17962 
66 Talbot 6 507 4976 
93 Lada 5 3490 28800 
94 Honda 9 3823 29963 
96 Toyota 16 4034 35365 
97 Nlssan 14 3653 33067 
98 Mazda 21 8069 69041 

Total 253 70758 598290 

model .  In Table  6.1 we give some summary  policy data  for our  sample.  For  the 

headings o f  the table we have used the no ta t ion  o f  Section 4, and in the fol lowing 

we use v,k = w,k/(engine power).  As we see f rom the table, we have applied data  
f rom in all 253 different car models  distrsbuted on 24 dlfferent makes.  We applied 

no such pool ing o f  car models  as described in Section 5. 

It would obvsously be too  much to present the results for all 253 car models ,  

and we therefore  restrict ourselves to give more  detaded data for a representat ive 

sample o f  25 car models  found by including each tenth model  f rom our  

total sample,  ordered by the codes for make  and model .  In Table  6.2 we display 
the exposure  and the techmcal  variables engine power ,  weight,  price, and 

pr ice /weight .  Prices are given in NOK and weights in kg. 

We est imated ch by the procedure  described in subsect ion 3.6 and found 
~* = 651.1. 

6 2. The Non-hierarchical Approach 

For the non-hierarchtcal  model  we computed  f rom the 1983 data for several 
different sets o f  regressors the est imates k* and fl* as descrtbed m subsection 3.3. 

Accord ing  to the crtteria gwen in subsectton 3.5, it seemed reasonable  to use the 

two regressors cylinder vo lume and p r i ce /we igh t ,  giving q = 3. However ,  it was 
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T A B L E  6.2 

Make Model Name Power Wetght Prtce Price/weight Rtsk umts v,,, 

14 541 BMW 320 1 125 1105 162540 147 10 173 928 
15 313 Citroen Visa GT 80 830 79200 95 42 35 288 
16 321 Flat Panda 45 45 670 48400 72 24 179 3251 
17 328 Ford Escort 1 6 L 79 880 87560 99 50 738 6,:137 
18 451 Ford SJerra 2 0 105 1095 102100 93 24 77 628 
18 741 Ford Sxerra I 6 75 1100 109260 99 33 19 206 
25 504 Mercedes Benz 190 E 122 1100 199560 181 42 185 1043 
31 327 Opel Corsa I 2 ST Sedan 55 775 67270 86 80 144 1747 
31 347 Opel Kadett 1 2 S Comb1 60 870 72620 83 47 269 2770 
31 421 Opel Rekord 2 0 S 100 1140 118290 103 76 2879 18532 
33 354 Peugeot 305 GLS 74 930 88020 94 65 249 2146 
33 892 Peugeot 505 Break 100 1295 146580 113 19 50 372 
39 323 Skoda 120 GLS 58 910 50627 55 63 74 877 
45 523 Volkswagen Santana 1 9 GX 115 1100 138810 126 19 17 120 
46 506 Volvo 240 GLT B23A 129 1330 178900 134 51 21 110 
46 907 Volvo 240 GLE B23 129 1300 178400 137 23 10 52 
53 349 Subaru 1600 GL Swing-Back 71 885 74800 84 52 48 374 
54 396 Mltsublshl Galant 16,00 GL 75 1065 99900 93 80 206 2188 
93 411 Lada 1600 S 78 1040 54570 52 47 716 5669 
94 417 Honda Prelude EX 106 985 181400 184 16 36 306 
96 433 Toyota Carma Coup6 75 1060 94000 88 68 321 2790 
97 321 N~ssan Stanza I 6 GL 81 970 93800 96 70 49 408 
97 832 Nissan Bluebird I 8 GL 88 1150 108300 94 17 327 2804 
98 353 Mazda 626 1 6 GLX Sedan 81 1035 93900 90 72 153 1351 
98 474 Mazda 929 2 0 DX St Wagon 90 1200 108400 90 33 350 2835 

argued that cylinder volume and engine power were strongly correlated, and that 
diesel cars and petrol cars were more comparable with respect to engine power 
than with respect to cylinder volume. Therefore it was felt that if we should later 
include also diesel cars in the analysis, it would be better to replace the regressor 
cylinder volume by engine power. We did this and got only a slightly higher 
value o f  k*. With the 1984 data we therefore concentrated on the design 
(1 power price/weight).  We obtained 

k* = 0.2063 

8" = ( - 0 . 4 1 8 3  0.01238 0.01007)',  

and from the values of  6" and X* we found 

* X* x =~b*/ =3156 .  

In Table 6.3 we have displayed the observed Yk, the estimated prior mean/z~,  
the empirical credibility weight g'~, and the estimated estimation error ¢,,~ for each 
o f  the car models. 

We see that Volkswagen Santana 1.9 GX and Volvo 240 GLE B23 have rather 
extreme values of  Yk. However,  as these cars also have low exposure, ~ does 
not differ much from #~. 

We also computed estimates for tariff classes as described in subsection 3.4. 
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TABLE 6 3 
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Make Model Yk ~ ,h~ ~'~ ff~ 

14 541 3 336 2 610 2 775 0 2272 0 1595 
15 313 0 502 1 533 I 447 0 0836 0 1891 
16 321 2.283 0 866 1 585 0 5075 0 1016 
17 328 I 465 1 561 1 497 0 6711 0 0679 
18 451 5 628 I 820 2.452 0 1660 0 1721 
18 741 0 147 1 510 I 426 00614 0 1937 
25 504 2 075 2 919 2 709 0 2485 0 1551 
31 327 0 844 1136 1 032 0 3563 0.1328 
31 347 I 135 I 165 I 151 0 4675 0 1099 
31 421 1 644 1 864 I 676 0 8545 0 0300 
33 354 0 954 1 451 I 250 0 4048 0 1228 
33 892 3 043 1 959 2 073 0 1054 0 1846 
39 323 I 301 0.860 0 956 0 2175 0.1615 
45 523 10 904 2 276 2 591 0 0365 0 1988 
46 506 1 556 2 533 2 500 0 0337 0 1994 
46 907 0.000 2 560 2 519 0 016t 0.2030 
53 349 I 307 1 312 1 311 0 1060 0 1845 
54 396 1 230 1 455 1 363 0 4094 0 1219 
93 411 1133 I 076 1 112 0 6424 0 0738 
94 417 3046 2 748 2 774 0 0883 0 1881 
96 433 1 811 1 403 1 594 0.4693 0 1095 
97 321 0 862 1 558 1 478 0 1145 0 1827 
97 832 | 749 1 619 I 680 0 4705 0 1092 
98 353 I 243 1 498 1.422 0 2998 0 1445 
98 474 1 186 1 605 1 407 0 4732 0 1087 

A f t e r  h a v i n g  c o m p u t e d  ~ * ,  w e  c o m p u t e d  e s t i m a t e s  f o r  t h e  c l a s s e s  b a s e d  o n  b o t h  

t h e  c r e d i b d i t y  e s n m a t e s  a n d  b a s e d  o n  t h e  p r i o r  m e a n s .  F o r  t h e  e s t i m a t e s  b a s e d  

o n  p r i o r  m e a n s ,  t h e  d e v i a t i o n s  f r o m  t h e  c l a s s e s  t h a t  w e r e  a c t u a l l y  u s e d  in 1984,  

w e r e  in m o s t  c a s e s  q u i t e  s m a l l ;  f o r  t h e  e s t i m a t e s  b a s e d  o n  t h e  c r e d i b i h t y  

e s t i m a t e s ,  t h e  d e v i a t i o n s  w e r e  s o m e w h a t  l a r g e r .  T h e  e x p l a n a t i o n  is p r o b a b l y  t h a t  

o n e  h a s  b e e n  a b i t  r e l u c t a n t  t o  a l t e r  t h e  c l a s s  o f  a c a r  m o d e l .  F o r  t h e  a c t u a l  r a t i n g ,  

o n e  m i g h t  feel  t h a t  t h e  p r o c e d u r e  is t o o  s e n s i t i v e  t o  t h e  r a n d o m  v a r i a b l e  Yk, a n d  

o n e  s h o u l d  p a y  a t t e n t i o n  to  t h i s  in t h e  f inal  s u b j e c t i v e  d e t e r m i n a t i o n  o f  t h e  c l a s s ;  

t h e  statisncal p r o c e d u r e s  d o  n o t  m a k e  political c o n s i d e r a t i o n s .  

6 .3 .  The Hterarchical Approach 

A l s o  f o r  t h e  h i e r a r c h i c a l  m o d e l  w e  u s e d  t h e  d e s i g n  (1 p o w e r  p r i c e / w e i g h t ) ' .  T h e  

p a r a m e t e r s  X, ~ ,  a n d  fl w e r e  e s t i m a t e d  as  d e s c r i b e d  in s u b s e c t i o n  4 .3 .  

F o r  k w e  f o u n d  t h e  e s t i m a t e  

X* = 0 . 1 9 1 3 ,  

f r o m  w h i c h  w e  o b t a i n e d  

x = q~*/X* = 3404 .  



68 BJORN SUNDT 

It is r e a s o n a b l e  t h a t  t he  v a l u e  o f  ;~* ~s l o w e r  t h a n  in t he  n o n - h i e r a r c h i c a l  m o d e l .  

W h e n  e s t i m a t i n g  ,7,, we o b t a i n e d  

• - 2 9 9 6 5 0  - 3 1 1 3  4724  '~ 

I -3113 75 
\ 4724  - 18 

T h i s  m a t r i x  is o b v i o u s l y  no t  p o s i t i v e  de f in i t e .  It h a s  o n e  n e g a t i v e  e i g e n v a l u e ,  a n d  

by  r e p l a c i n g  th i s  e i g e n v a l u e  by  1 0 - 6 / g =  4 . 1 0  -8 as d e s c r i b e d  in s u b s e c t i o n  4 .3 ,  

we a r r i v e d  at  

/ 0 .0488  - 2 . 1 6 7 8  1.351 ) 

~ * ' 1 0 5 =  I - 2 . 1 6 7 8  107.385 66 .820  
\ 1.3511 6 6 . 8 2 0  4 1 . 7 0 9  . 

As  t he  v a l u e  o f  X* was  o n l y  s l igh t ly  l o w e r  t h a n  in t h e  n o n - h i e r a r c h i c a l  m o d e l  

w h e r e a s  the  d i f f e r e n c e  b e t w e e n  ~ a n d  ~ *  IS c o n s i d e r a b l e ,  we p r e s u m e  t h a t  for  

p r a c t i c a l  p u r p o s e s  we w o u l d  c h o o s e  the  n o n - h i e r a r c h i c a l  m o d e l ,  b u t  we sha l l  go  

o n  p r e s e n t i n g  s o m e  r e su l t s  fo r  t h e  h i e r a r c h i c a l  m o d e l  for  i l l u s t r a t i ve  p u r p o s e s .  

W e  m e n t i o n  t h a t  c o m p u t a t i o n s  m a d e  o n  t he  s a m e  d a t a  w i th  the  m o d i f i e d  m o d e l  

d e s c r i b e d  in s u b s e c t i o n  4.5 ,  gave  m u c h  m o r e  r e a s o n a b l e  resu l t s .  

F o r  fl we f o u n d  

fl* = ( - - 0 . 0 5 8 7  0 .01228  0 . 0 0 6 8 7 ) ' .  

TABLE 6 4 

II - 0  05086 0 01078 0 00762 
14 - 0 05181 0 05778 - 0 02127 
15 - 0  05134 0 03461 - 0  00683 
16 - 0 05132 0 03384 -000638  
17 - 0  05091 0 01332 000631 
18 - 0  05102 0 01853 000276 
24 - 0 05090 0 01263 000662 
25 - 0 05058 -000309  0 01623 
31 - 0 05065 000014 0 01424 
33 - 0 05059 - 000233 0 01643 
34 - 0.05100 0 01753 0.00355 
37 - 0  05078 0 00707 0 01019 
39 - 0 05093 0 01407 000577 
45 - 0 05106 0 02029 000170 
46 - 0 05043 - 0  01066 0 02107 
47 - 0  05086 0 01094 0 00775 
53 - 0 05093 0 01400 0 00575 
54 - 0 05071 0 00327 0.01236 
66 - 0 05091 0 01307 0 00630 
93 - 0 05082 000877 0 00905 
94 - 0 05070 000284 0 01290 
96 - 0 05083 000927 0 00862 
97 - 0 05079 000733 0 01003 
98 - 0 05078 000682 0 01037 

Make b~' 
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In Table 6.4 we have displayed the empirical credibility estimate b~* for the 24 
makes included in the study. The table illustrates the problem discussed in 

x , ~ b ,  will be decreasing in subsection 4.4; we see that for makes 25, 33, and 46 ' "* 
engine power, and for makes 14, 15, and 16 It will be decreasing in price/weight. 

As examples of the values found for IL* we display the value for one make with 
low exposure (Skoda) and one with high exposure (Opel). We found 

{ 0.0211 -7.9151 4.979 ) 
Ill* 39"102= ~-7.9151 39.063 24.483 

\ 4.9790 24.483 15.463 

/ 0.0071 -0.095 0 .0 6 8 )  
I I ~ ' 1 0 5 =  ~-0 .0954 4.459 3.114 

\ 0.0678 3.114 2.255 . 

Table 6.5 is the hierarchical analogue to Table 6.3. The quantities displayed in 
the last three columns are the estimates of the quantities 

¢',,k = (1 - ~',k)[ X + (1 - ~,k)x/,i, II,x,,~,] 

i~ (make) nk = X + X~kFlnXn~c 

@,~°k~ = X + X,~kEX, k. 

TABLE 6 5 

Make Model Y,k x,,~:b, m,k ~',,~ x,~fl* ~*~ ~,*,t~ mnke) ff~k °) 

14 541 3 336 4 042 3 891 0 2141 
15 313 0 502 2 066 1 944 0 0779 
16 321 2 283 1 010 1 632 0 4885 
17 328 I 465 I 629 I 522 0 6541 
18 451 5 628 2 152 2 693 0 1558 
18 741 0 147 I 613 I 529 0.0572 
25 504 2 075 2 517 2 413 0 2346 
31 327 0.844 1 193 1 075 0 3391 
31 347 1 135 1 146 1 141 0 4486 
31 421 1 644 1 441 I 612 0 8448 
33 354 0 954 1 332 1 186 0 3867 
33 892 3 043 1 576 1 721 0 0985 
39 323 1 301 1,086 I 130 0 2049 
45 523 10 904 2 497 2 782 0 0339 
46 506 1 556 I 408 1 413 0 0313 
46 907 0 0 0 0  1 466 1 444 0 0150 
53 349 1 307 1 430 I 417 0 0990 
54 396 I 230 I 354 I 306 0 3912 
93 411 1 133 1 108 I 124 0 6248 
94 417 3 046 2 625 2 660 0 0824 
96 433 1 811 1 409 1 590 0 4505 
97 321 0862  1.513 1443 0 1071 
97 832 1 749 1 539 I 634 0 4517 
98 353 I 243 I 442 I 385 0 2841 
98 474 1186 1.499 1 357 0 4544 

2 495 
1 587 
0 998 

603 
880 
553 
694 
221 
260 
890 
5O8 
955 
044 
229 
458 

2.477 
I 402 
I 515 
I 268 
2 517 
1.480 
1 609 
I 677 
I 567 
1 675 

0 1911 0 2573 I 4167 
0.2366 0 2621 0 6572 
0 0994 0 1973 0 1975 
0 0798 0 3050 0 5152 
0 1882 0 2288 2 5677 
0 1871 0 1989 0 3889 
0 1666 0 2258 0 3189 
0 1296 0.1987 0.2013 
0 1072 0 1969 0 2688 
0 0307 0 2336 1 5493 
0.1294 0 2235 0 4459 
0 2666 0 3072 1 1428 
0 2863 0 4036 0 7804 
05712 06053 1 6357 
0 2641 0 2753 2 4120 
0 2641 0 2692 2 2515 
0 3058 0.3557 0 5623 
0 1290 0 2252 0 4975 
0.0827 0 2688 2 3997 
0 2420 0.2703 0 3121 
0 1137 0 2199 0 6209 
0 2003 0 2283 0 6666 
0 1268 02641 1 1276 
0 1460 0 2089 0 8462 
0 1142 0 2244 I 4243 
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The quan t i ty  ff,,k has a l ready  been defined as the es t imat ion  error  o f  the credibi l-  
n(make) 

Xnkbn ity e s t ima tor  rh.k. We have that  v/ , ,k would  be the es t imat ion  error  of  ' " 
as e s t ima tor  of  rnnk , (O .k , ,H . )  for a car  model  k '  with the same technical  
specif icat ions as car  model  k, but  for which we have no exposure.  (To say that  
~(,,,~k~) ~S the es t imat ion  er ror  of  ' " x.kb. considered as es t imator  o f  m,,k(O,,~, H . )  
would  be wrong as t~,, conta ins  claims da ta  f rom car model  k.)  Similar ly ,  , t0)  ~nk 
would be the es t imat ion error  of  X,~kB considered as es t imator  of  m.,k,(O.,~', H., )  
for a car  model  k '  o f  make  n ' ,  for which we have no exposure .  

As a consequence  o f  the fact that  the value o f  ~* was lower in the present  model  
than m the non-h ie ra rch ica l  model ,  we see that  the values o f  ~'~*k are also lower.  
This Is intui t ively reasonable  as/~.k in the hierarchical  model  would conta in  more  
i n fo rma t ion  than  B in the non-hierarchica l  model .  
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THE LINEAR MARKOV PROPERTY IN CREDIBILITY THEORY 

BY THOMAS W I T T I N G  

E T H  Z u r i c h  

ABSTRACT 

We study the linear Markov property, ~.e. the possibility of  basing the credibility 
estimator on data of the most recent time period without loss of  accuracy. 
Necessary and sufficient conditions are derived generally. The meaning of the 
linear Markov property is also discussed in different experience rating and loss 
reserving models. 

KEYWORDS 

Linear Markov property; linear sufficiency; credibility. 

1. INTRODUCTION 

A fundamental question in credibihty theory is that of upon which statistic of the 
available data the credibility estimator should be based. A very general treatment 
of  this problem and a survey of other approaches can be found in NEUHAUS 
(1985). We consider the special case of  data ordered with respect to time. Is it 
then possible to reduce the data to those of the last time period without 
diminishing the accuracy of the credibility estimator? If this is the case, then we 
have defined the linear Markov property. This principle is introduced generally 
and discussed in some important models of risk theory. We give some sufficient 
and necessary conditions which are useful in situations when the linear Markov 
property is not obvious. In most cases the linear Markov property results in a 
considerable reduction of  the number of normal equations which it is necessary 
to solve to derive the credibility estimator explicitly. 

This paper is in a way a summary of  the first part of the author 's  PhD thesis 
which ~s taken sometimes as a reference. A copy of  this thesis can be obtained 
from the author. 

2. CREDIBILITY ESTIMATION AND LINEAR MARKOV PROPERTY 

2.1.  G e n e r a l  A s s u m p t t o n s  a n d  N o t a t t o n  

In the present paper it is generally assumed that random variables are square m- 
tegrable, i.e. all (mixed) second moments exist and are finite. The transpose of  
a matrix ..4 is A T. (Random) vectors are in boldface and have to be interpreted 
as column vectors, i.e. x =  (x ,  . . . .  , x , )  r is a vector with n components. 

ASTIN BULLETIN Vol 17, No 1 
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I, is the n × n-unit matrix and cSu the Kronecker symbol. 
For random vectors X=(X~,  ,Xn) T and Y=(Y1 . . . .  y,,)r we use the 

following symbols and terminology: 

Px for the probability distribution of X. 
Vxlr=y for the conditional probabihty distribution of X gwen [ Y = y ]  
and Pxlv for the corresponding stochastic kernel. 
E[X] = (El X1 ] . . . . .  E[ Xn ] ) r for the expected value of  X. 
E[X] Y] =(E[Xi  I Y] . . . . .  E[X~ I y])T for the conditional expected 
value of  X given Y. 
C[X, Y] = E[ ( X -  E[X] ) ( Y -  E[ Y] )r] for the joint covariance matrix 
of  X and Y. 
C[X] = C[X, X] for the covariance matrix of  X. 

It is generally assumed that all symmetric covariance matrices C[X] appearing 
m the text are positive definite, i.e. the inverse C[X]-1 exists. The regularity of  
C[X] is equivalent to hnear independence of the "vectors" 1, X1 . . . . .  X ,  in the 
linear space Lz(R) of all square integrable real random variables. For a proof  see 
e.g. WITTING (1986). In particular all random variables appearing in the text are 
not degenerate. All equations between random variables should be understood in 
the sense of  L2-equivalence. 

2.2. Credibthty Estimation 

We want to estimate the real random variable Y with help of  the n-dimensional 
random vector X which represents the available data. It is well known that 
g * ( X ) = E [ Y I X ]  Is the optimal estimator in the sense of  minimizing the 
expected squared loss E[  (g(X) - y)2]  in the class of  all measurable functions 
g(x). Because E[ YI X] can be calculated explicitly by a closed formula only in 
a few special cases the estimation problem is simplified: we look for the optimal 
estimator of  Y only in the class of  (inhomogeneous) linear estimators 

g(X)=ao+ ~ a,X,. 
r = l  

This optimal estimator exists, is uniquely determined and interpreted as the or- 
thogonal projection of Y onto the n + 1-dimensional subspace of L2(R) which 
is generated by 1, X~ . . . . .  X,.  Therefore we denote it E[ YI X] .  E[ YI X] is call- 
ed the credibility estimator of Y given X. 

The orthogonal principle can be formulated in a probabilistic manner as 
follows: 

E [ £ [  YIX]  ] = E [  Y] 

(1) C[ Y -  ~ [  Y] X ] , X ]  = 0. 

If  the credibility estimator is written in the form 

I~[ YI X] = a o +  ~ a,X, 
1 =1  
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(1) is equivalent to 

ao = E[ Y] - 2.~ a,E[X,] 
(2) ,= i 

~ a, Cov(X,, XR) = Coy(Y, Xk) k = 1 . . . . .  n. 
1=1 

This linear system of normal equations for determining the coefficients 
ao, a z , . . . ,  an has a unique solution because of our general assumption that 
C[X]  is positive definite. There is no guarantee for being able to calculate 
C[X]  - i explicitly although this may be useful in theoretical situations. However, 
a recurswe algorithm for the inversion of C[X]  exists always (see e.g. NORBERG 
(1985)). 

If a random vector Y = ( Y ~  . . . . .  y,,,)r has to be estimated, we define 
E [Y]  X] = (~7[ Yt lX]  . . . .  ~ [  y,,, i X  ] ) r  and confirm the property 

E [ ( t ~ [ Y I X ]  - Y ) r ( ~ [ Y I X ]  - Y)] = min E [ ( g ( X ) -  Y ) r ( g ( X ) -  Y)]. 
g 

The mimmum is taken over the class of  all functions g ( x ) = a +  A x  with 
m-dimensional vector a and m x n-matrix A. The generalization of (1) to this case 
is obvious. Finally we get the well-known formula 

(3) 12[ r l  X] = C [ Y , X ] C [ X ] -  l ( x -  E [ X ] )  + E[ Y]. 

2.3. Linear Sufficiency 

We consider again the problem of  estimating Y by means of X. For many 
statistical problems one can restrict the investigation to decision functions which 
depend only through a "sufficient" statistic T(x) on the original observation x. 
Here we call a statistic T(x) sufficient if 

(4) Prlx = PrlT(X) 

This corresponds with the Bayesian definition of  sufficiency ff Y is interpreted as 
a "prior varmble".  

In the credibility situation one should manage only with linear statistics and the 
knowledge of second-order moments.  This fact suggests a slight change of the 
meaning of sufficiency m our case. 

DEFINITION: The linear statistic T(x) (which is formally a linear mapping 
T: R n -> R r with r < n) is called linear sufficient if 

(5) ~7[ y[ X] = E[  Y[ T(X)] .  

REMARKS: (i) By comparing the system (X, Y) with the corresponding system 
(,,~, Y) which is normally distributed with the same second-order moment  struc- 
ture it can be proved that for linear statistics T(x) the implicauon (4) = (5) is 
vahd. 
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(ii) We can restrict the investigation to homogeneous  linear mappings T(x) ,  
because a possible inhomogeneous  part has to be adapted anyway afterwards 
when t [  YI T(X)]  is calculated. 
(iii) The concept  o f  linear sufficiency has been already introduced into statistical 
literature, but  only in the context o f  estimation for linear models; e.g. DRYGAS 
(1983, 1985). 

LEMMA 1. Let  r < n and A a f u l l  rank  r × n-matrix .  The statistic T(x) = A x  is 
linear suff ictent if, and  only t f  

C[ Y , X ]  I I n -  A r ( A C [ X ]  A r ) -  ~ A C [ X ] }  = O. 

PROOF. Without  loss o f  generality we may assume E [ X ]  = O, E [  Y] = O. Then 
it follows that T ( x )  is linear sufficient. 

. 1~[ YI X]  = C[ Y, T ( X ) I C [ T ( X ) ]  - ' T ( X )  
(3) 

¢~ C[  Y -  C[  Y, T(X)]  C[ T(X)]  - ~T(X) ,  X]  = 0 
(1) 

(6) ¢~ C [ Y , X ]  = C [ Y ,  T ( X ) ] C [ T ( X ) ] - ~ C [ T ( X ) , X ]  

¢~ C[ Y , X ]  = C[ Y , X ] A T ( A C [ X ]  A T ) -  ~ A C [ X ] .  QED 

EXAMPLE. (r = m = 1). 
Let A be the 1 x n-matrix and E the n x n-matrix whose elements are all equal 
to 1. We assume that the random variables Xz, . . ,  X ,  are exchangeable relative 
to Y, i.e. P(x,. • • •, x.. r) = P(x .~ ,  • • . ,  x.~.~, r) for all permutat ions 7r o f  1 . . . .  n. 

In SUNDT (1979), Theorem 1, it is shown that this condit ion implies the linear 
sufficiency of  the statistic T(x )  = A x  = Ex, .  This implication can also be derived 
f rom Lemma 1, for it follows f rom the exchangeability condit ion with appro-  
priate constants c, d and e that: 

C [ X ]  = d ( E  + c I , ) ,  C[ Y, X] = eA .  

This implies together with the simple relationships E E = n E ,  A E = n A  and 
A TA = E  that: 

A C [  X]  A T= dn(n  + c),  A r A C [  X]  = d(n + c)E.  

From this follows 

C[ Y, X] [ In - A T(AC[X] A r ) -  ~ A C [  X]] = eA ( I ,  - l i n E )  = e ( A  - A )  = O. 

2.4. Linear  M a r k o v  Proper ty  

In the present paper we consider mainly a special case o f  hnear sufficiency, name- 
ly the linear Markov  property.  

Now, there are given n informat ion vectors o f  dimension / 

X1 = (Xlt  . . . .  Xll)  r, . . . .  X .  = (Xl . . . . .  Xt.)  r 
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from which the random vector 
patch the complete information 
X = ( X i  r, ,Xnr )  r. 

Y = ( Y ~  . . . . .  Ym) r shall be estimated. We 
together to the n x l-dimensional vector 

DEFINITION. The sequence X~, . . ., X , ,  Y is called hnear Markov tan  (I.M.) if 
~ [ r l x ]  = E [ Y I X , , ] .  

The linear Markov property is equivalent to the linear sufficiency of the statistic 
T(x)  = xn and makes it possible to reduce the complete information to the infor- 
mation of the last period. 

In the language of  NEUHAUS (1985) it means that the secondary statistic 
(Xz r, . . . ,  X~- i r)  may be excluded from the basic statistic X wRhout loss. The 
hnear Markov property can be characterized by a relation between the second- 
order moments: 

LEMMA 2. The sequence X~ . . . . .  X , ,  Y is I.M. if, and only if 

(7) C [ Y , X , ]  = C [ Y , X ,  I C [ X , ] - ~ C [ X , , X , ]  f o r i = l , . . , n - I .  

The proof follows as special case from Lemma 1 with T ( x ) =  xn, because (6) is 
then equivalent to (7). 

Now we define the linear Markov property also for processes: 

DEFINITION. Let X, be a /-dimensional random vector for all iF N. The 
stochastic (vector-)processes (X,),EN is called hnear Markov tan  (I.M.) if the se- 
quences Xt, . , X n ,  Xn+k are I.M. for all n, k E N .  

REMARKS. (i) We consider a l-dimensional process (XI)t(N. 
Then (X,),~N is I.M. tf, and only if the following relation ts valid with 
c,,~ = Coy(X,, Xk):  

(8) Cn+k.,Cn.n = Cn+~.,C,., for t, k, n ~ N with t < n. 

FELLER (1966) shows that the ordinary Markov property Is characterized by 
(8) for a Gaussian process (X,),~N. In this special case the ordinary and the 
linear Markov property do coincide. 

PAPOULIS (1965) shows the corresponding result for the optimal homogeneous 
linear estimation. In that case we would have to define ~[  YI X~ . . . . .  Xn] as an 
orthogonal projection from Y onto the linear subspace generated by X~, .. Xn. 
Then (8) is vahd with c,,k = E [ X ,  X k ] .  
(ii) For a standard normal variable Z and arbitrary i.i.d, variables Zt, Z2 it follows 
that the sequence X~ = Z 2, X2 = Z, Y= Z 2 is Markovlan in the ordinary sense 
but not I.M. The sequence Xz = Z~, 22 = Zi + Z2, Y= Zi • Z2 is I.M. but not 
Markovlan in the ordinary sense. 

These two examples show that the ordinary Markov property does not imply 
the linear Markov property and vice versa. 
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The following l emma gives some helpful necessary and sufficient condit ions to 
detect the linear M a r k o v  proper ty  directly by inspection of  the covar iance struc- 
ture of  the process.  

LEMMA 3. The following condttions (7)', (9) and (10) are equivalent to the 
linear Markov property o f  the process (X,),~u: 

(7) '  C[X,+k ,X ,]  -= C[Xn+k,  X n ] C [ X n ] - l c [ x n ,  x t ]  

for  i, k, n E N wtth t < n. 
There extsts a sequence (A,),~N of  regular l X I-matrtces wtth 

(9) C[Xs 'X ']  = ( k = , + t  ~ A k ) C [ X , ]  f o r l ~ j .  

There exist sequences (A,),EN and (B,),~N o f  regular I x I-matrtces with 

C[Xs, X,] = BjA, for  t ~< j .  (10) 

where 

Ck:= I C" Cr for r ~< rn 
k=r [ It for  r > m. 

PROOF. Because o f  L e m m a  2 the hnear  Markov  proper ty  of  the process 
(X,),~N is equivalent  to condit ion (7) ' .  There fore  it suffices to show: 

(9) = (10) = (7) '  = (9); 

(9) implies (10) with 

B~ = Ak and A, = Ak C [ X , ] ;  
k= l  k=l 

(10) implies (7) '  by means o f  the relation 

C[Xn+k, 9(.] C[X.]  - IC[X. ,  X,] = B . + k A . A Y  IB~ LB.A, 

= B,+kA, 

= C [ X . + k , X , ] ;  

(7) '  implies (9) with Ak = C[Xk,  X k - 1 ] C [ X ~ - i ] - i ,  for it follows with t < j :  

c [ x j ,  x , ]  = c [ x j ,  x j _ ,  ] c [ x ~ _ ,  ] - l c [ x j _ , ,  x , ]  
(7)' 

= A j C  [ X j -  i , X ,  ] 

= A j . . . A , +  i C [ X , ]  

(mducuon) QED 

NOTATION. The sequence of  l × / - m a t r i c e s  (A,),~N in (10) is called a I.M.- 
factor. A,  is fixed uniquely to the extent o f  mult ipl icat ion f rom the left o f  a l × l- 
matr ix  independent  o f  ~. 
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Ana logous ly  with the segment  (10) = (7) '  in the p r o o f  o f  L e m m a  3 the fol low- 
ing result  for finite sequences can be shown:  

LEMMA 4. Let  (10) be vahd f o r  l~< t~< j~< n whereby A z, . , A ,  ts the 
b e g m m n g  o f  the I .M.-factor and also 

(11) C[ Y ,X , ]  = BA,  f o r  1 ~< i ~< n with a I× l-matrix B. 

Then the sequence Xl  . . . . .  X~, Y is 1.M. 

2.5. Componen tw i se  Lmear  M a r k o v  Property  

We use the same no ta t ion  as in 2.4. 

DEFINITION. The  sequence X j , . . , X ~ ,  Y is called componen twise  hnear 
Marko  vian (c./. M. ) i f t he sequences Xk I . . . . .  X k n ,  Y are I .M. for all k = 1 . . . .  I. 

If  the componen t s ,  i .e. the rows o f  the / × n -mat r ix  (Xt,  . ,  X~), are indepen-  
dent ,  it holds  that :  

Xl  . . . . .  Xo, Y is l.M. ¢~ Xi . . . . .  Xo, Y is c.I.M. 

This equivalence is evident  by L e m m a  2, because  in the case o f  independence  the 
matr ices  C [ X , ] -  1 and C [ X ~ , X , ]  in (7) are d iagona l .  

Genera l ly  no d i rec t ion  o f  this equivalence is vahd,  for it holds with two 
independen t  real r a n d o m  variables  Zi and Z2: 

The  sequence X~ = (0, Zz)T, Xz  = (ZL + Zz, O) r, Y =  Z~ is c . l .M,  but  not  
l .M.  
The sequence Xl  = (Z t ,  z2 ) r ,  x 2  = (Z2, Z j )  r, Y =  Zi + Zz is I .M. but  not  
c . l .M.  

in the s i tua t ion  of  insurance  the independence  of  componen t s  is not  a lways ful- 
filled. As an example  one should  imagine  the comp one n t s  to be claim numbers  
and totals  o f  claims.  Reflecting on the bet ter  handl ing  of  the c . l . M . - p r o p e r t y  we 
are looking  for an add i t iona l  cond i t ion  that  the c . I . M . - p r o p e r t y  implies the 
I .M. -p rope r ty  even in the case o f  dependen t  componen t s .  

To solve this p rob lem we cons ider  two vector  valued componen t s .  So let 
X, = ( z , r , N ~ r )  r with / i -d imens iona l  r a n d o m  vector  Z, and /2-dimensional  ran-  
d o m  vector  Nj and II + Ix = l (l  ~< i ~< n).  

LEMMA 5. Let  the fo l lowtng  f o u r  condit tons be vahd." 

The sequence Zi  . . . .  Zo, Y ts l.M. 
The sequence N~, . , N~, Y ts I.M. 
The sequence Zi ,  . . ,  Z~, No ts I.M. 
The sequence NI,  . . ,  No, Z~ is I.M. 

Then the sequence X i  . . . .  Xn, Y is l.M. 
To prove  this l emma condi t ion  (7) has to be checked with help o f  invers ion o f  
the matr ix  C[X~] .  This is somewha t  tedious  and can be found  in WITTING 

(1986), p . 3 3 - 3 6 .  
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3. THE LINEAR MARKOV PROPERTY IN SOME EXPERIENCE RATING MODELS 

In the following models our starting point ~s always a real stochastic process 
(Y,),EN with covariance structure given by C,.k = Coy(Y,, Yk)0, k E N). Thereby 
Y, may be interpreted as claim number or total of claims during the period 1. At 
the end of period n the net premium P,+i for the next period will be fixed by 
P,+ 1 = ~[  Y,+ 11 Yl, , Y,]. Let ( X I ) I E N  be a "linear cumulated transform" of 
the process (Y,),~N, i.e 

X ,=  ~ akYk 
k = l  

w~th appropriate coefficients aj, . . . ,  a, (t ~ N).  
Let us further assume that the process (X,),~ has the covanance structure given 
by 

(12) Cov(X, ,Xj)=g,+ fJ) for l~<jwith g,>Oand ~ + l - f f i ~ O .  

With help of the multiphcative decomposition criterion (10) of Lemma 3 the 
following equivalence can easily be verified: 

(13) (X,),~N is I.M. ~ The quotient f , /g,  is independent of I. 

Indication of the proof of the " = " part: From (10) it follows that the fractions 

g , + f d )  and 1 + ( f d g , ) J )  
gl + f l f j  1 + ( f l / g l ) f s  

do not depend on j. This can only be true if ~ / g ,  is independent of  i because of  
our assumption in (12) that fs depends on j. 

3.1. The Model of  Jewell 

JEWELL (1975) considers the covariance structure given by c,.k = 8,k~g + ce,c~ 
with appropriate numbers 7k > 0 and a, ~ 0 (l, k E N).  This covarmnce structure 
is shown by Jewell to yield an explicit solution of  the normal equations (2). Under 
which conditions has the transformed process (X,),~,v the hnear Markov prop- 
erty? In Jewell's model we have 

Cov(X, ,XJ)=m~=l  a,2nTm + (n,~_ 1 a,,,Otm) (g=~ akoLk). 
So (12) is fulfilled with 

gx= ~ 2 + 
am3',n and f~ = z.a amOtm. 

m =  l r n = l  

We conclude: 

amO:m 
(X,')I~N IS I.M. ¢~ .... 1 

H3) ~ 2 a m"ym 
ltll = 1 

is independent of 1. 

~m 

am~m 
(14) ~ is independent o f  m. 
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Therefore in Jewell's model the statistic ~(Otk/3"k)yk is linear sufficient and the 
premmm becomes 

3.2. The Classical Credlblfity Model 

It is obvious that the classical Buhlmann-Straub model (BUHLMANN and 
STRAUB, 1970) in the ordinary formulation is a special case of Jewell's model 
with known numbers ~,, and 3'k. We choose a cumulative view onto the model. 
Considering one risk unit we denote by 

X,, the cumulated total of claims up to the end of period t; 
O, a random risk parameter describing the unknown characteristics of the risk 

unit; 
p,, a known cumulated measure of volume up to period t. 

It is assumed that for given [@ = 0] the process (X,),~N has independent incre- 
ments, and E [ X , I  O = 0] = ~(O)p, with a measurable function #(.) independent 
of t. From these assumptions it follows that: 

Cov (X,, Xj) = E [ V a r [ X ,  [O] ]  + p,psVar [~(O)] for i ~< j. 

With (13) we conclude: 

(15) (X,),~,v is I.M. ~ P' is independent of  t. 
E[Var[ S,  [ O]]  

In this case the l.M.-factor is (p,). 
It should be mentioned that (15) is fulfilled in the classical credibility model of 

Buhlmann and Straub. 

3.3. The Model o f  Shur 

SHUR (1972) considers the following model. The variables Y~, Y2, . have all 
the same expected value iz and the same variance o 2, and the covarlance structure 
is given by 

(16) c , .k=p l ' -~ la  2 w i t h  0 ~ . p  <~ I .  

Hence the correlation between the total losses of two different periods decreases 
geometrically with the number of periods separating them. By inversion of the 
matrix 

(i c ~ 1 p pn-2 
( ,,k ),,~ : l = ~2 

-1 n-2 i P .. / 
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and application of (3) one gets the credibility formula 

(17) P.+ i = pY~ + (1 - o)tz. 

Of course, this formula implies the linear Markov property of the process 
(Y,),~N. But this fact can already be detected directly from (16), because 

c,.j = Coy(Y,, Yj) = p- 'pJcr 2 for t ~< j 

fulfils the multiplicative decomposition criterion (10). 
Following thxs way the inversion of the matrix (C,.k) becomes unnecessary for 

the calculation of  formula (17). 

3.4. A Model w~th Claim Numbers and lndtvidual Claim Amounts 

Let us consider one risk unit with the following notations: 

N, is the cumulative number of  clazms up to the end of period i. 
Z <k) is the amount of the k'th individual claim. (It is assumed that these claims 
are numbered according to their order of occurrence.) 

N, 
X, = ~ Z ~k) is the cumulative total of claims up to the end of period i. 

k = l  

@ denotes a random rssk parameter describing the unknown characteristics of 
the risk unit. 

We make the following assumptions: 
(A1) Given [O = 0] the random variables Z °), Z Cz), .. are i.i.d. 
(A2) Given [ O = 0 ]  the stochastic processes (N,),~u and (Ztk))k~U are 
independent. 

PROBLEM. Which are sufficient conditions such that the process (Xz),~N resp. 
the 2-dimensional process ((X,,N,)r),~N is [.M.? This would simplify the 
premium 

Pn+l = ~[Xn+l  - Xn[ Xi . . . . .  X~] resp. 

Pn+l = ~[X~+l  - Xn[ Xl . . . . .  Xn, N1 . . . . .  Nn] 

as usual, namely 

Pn+l = E [ X n + ! -  Xn[ Xn] resp. P~.l = E [ X ~ + i -  X,[ Xn, Nn]. 

CONDITION I. Given [O = 0] (N,),EN is an mhomogeneous Poisson process, 
X,g(O) being the Poisson parameter of  N,. Thereby g(.) is a measurable function 
independent of t. 

NOTE. It IS not required in assumptions (A1)-(A2) and condztion I that claim 
numbers and claim amounts are independent. They have only to be conditionally 
independent. 

We get from assumptions (AI) and (A2) and Condition I: (X,),~u is a process 
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with conditional independent increments (given 0 ) ,  and 

E [ X , I  O] = k,g(O)E[Z(~) I O],  Var[X,I  O] = k,g(O)E[Z(t))21 O].  

Therefore condition (15) is vahd with p , =  k, and the process (X,),~N (and 
also the process (N,),~N) is I.M. with I.M.-factor (k,). It remains to prove the 
1 M.-property of  the 2-dimensional process ((X,, N,) r),~,v. Because of Lemma 5 
it suffices to check two l-dimensional conditions (for fixed n): 

(18) The sequence Xt, ., X,,  N, is I.M. 

(19) The sequence N, . . . . .  N,,  X,, is I.M. 

It is true for 1 ~< t ~< n that: 

Coy(X,, Am) = Coy(N,, X, )  
N, 

= E [ E [ Z  (~)1 O]Var [N, I  @] ] + X,X. Co v (E[Z  (~) I O]g(@),  g(@)) 
(AI),(A2) 

= ~,IE[E[Z~')IO] g(@)] + Xn Cov(E[Z~) I O] g ( 0 ) ,  g(O))} 
cond [ 

= k, × term which is independent of i. 

Because each of the processes (X,),~N and (N,),~N has the I.M.-factor (k,) we get 
(18) and (19) by application of Lemma 3 (criterion (10)) and Lemma 4. The pro- 
cess ( (X,  N~)r),~N is actually I.M. 

Now we replace the Poisson assumption (condition I) by the hypothesis that 
the counting process (N,),~N Is I.M. and claim numbers and claim amounts are 
independent (level-2 assumption): 

CONDITION II. 

(A3) (N,),~N is I.M. with l.M.-factor (E[ N,] ). 
(A4) (N,),~N and O are independent. 

REMARKS. (i) We have lost the convenient property that the increments of the 
process (N,),~N resp.(X,),~N are independent given O. Therefore it ~s not possible 
to apply the classical credibdity model and condition (15) any longer. 
(ii) Condition I implies (A3). 
We need the further notation: 

vz = E [ V a r [ Z  (I)] O] ] and Wz = V a r [ E [ Z  °) I O] ]. 

Then we get from the assumptions (A1)-(A4): 

Coy(X,, Xj) = E[Cov(X, ,  Xj] O, (Nk)k~N)] 

+ Cov(E[X, lO, (Nk)k~N],E[Xj] O. (Nk)k~N]) 
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=E[N,  Var[Z(t )  10 ] ] + Cov(N,E[Z(I)[o] ,  NjE[Z(t) IO ]) 
(AI),(A2) 

= E[ N,] vz + Cov(N,, N:)[ Wz + mz 2 } + E[ N,] E[ Nj] wz 
(A4) 

= E [ N , ]  x factor which depends only on j (and not on i) (i ~< j ) .  
(A3),(10) 

Applying criterion (10) again we obtain that the process (X,),~N IS I.M. with 
l .M.-factor (E [N , ] ) .  Furthermore it is true for t ~  n: 

Coy(X,, Nn) = Coy(N,, X . )  = Cov(N, ,E[X, , IO,  (Nk)k~U]) 

= Cov(N,, NnE[ Zfl) ] 0 ]  ) = Coy(N,, N.)mz  
(A 1 ~,(A2) (A4) 

= E[N , ]  × factor independent of  i. 

Analogously with condition I the l .M.-property of  the process ((X,, N,)r),~N 
follows. 

4. THE LINEAR MARKOV PROPERTY IN SOME LOSS-RESERVING MODELS 

The problem of estimating the ultimate loss reserve wall not be presented wtth full 
rigour. Our only aim is to indicate the role of  the l .M.-property in the most 
important loss-reserving models with credibility character. 

The usual loss-reserving terminology is assumed to be known. Let Y,~ be the 
total of  claims of accident year j which is reported during the development year 
~. Thereby we assume that each individual claim of accident year j is settled at 
its full amount  immediately, i.e. there are no IBNER-claims resp. the IBNER- 
part is already contained in Yv as estimation. 

The statistician considers each of the processes (Yv),~N up to a certain time 
n( j ) .  For constituting the reserve he has to estimate the random variable 

Rj = Y.CJ)+',~ + ' . .  + Y®J" 

Because of the usual assumption of independent accident years it remains to 
evaluate 

/~, = E[Rj[  YI~ . . . .  Yntj).j] for each j .  

Modelling the development process (Y,j),~N, different well-known experience 
rating models can be used. 

4.1. The Model o f  de Vylder 

DE VYLDER (1982) bases the development process on a special case of  the 
(noncumulative) classical credibility model of  Buhlmann-St raub .  Therefore the 
covanance structure ~s contamed in the model of  Jewell. As described in Section 
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3.1 one may gain by linear t ransformation of the development process a process 
(X~j),~N which is l.M. That is, the reserve estimation becomes/~j = ~ [Rj I  Xnol.~] • 

4.2. The Model o f  Norberg 

NORBERG (1985) constructs a micro-model with claim numbers and individual 
claim amounts similar to the experience rating model in Section 3.4 with condi- 
tion I. However, the distribution of the individual claim amounts may also de- 
pend on the reporting year. The resulting covariance structure of  the development 
process becomes too complicated for calculating the theoretical credibility 
estimator up to an explicit formula.  Therefore Norberg proposes numerical 
evaluation of the credibihty estimator. In Norberg 's  model the cumulated claim 
number process is I.M. because of the Poisson assumption. This fact caused the 
present author to consider credibihty estimators for the IBNR-claims in a 
distribution-free loss-reserving model where the Poisson assumption is replaced 
by the linear Markov property. This assumption is shown to be natural if the 
delay distribution does not depend on the hidden risk characteristics of  the acci- 
dent year (WITTING, 1986). 

4.3. The Model o f  Kramreiter and Straub 

Let us consider for fixed j the process (X,j),~N of the cumulative burning costs. 
KRAMREITER and STRAUB (1973) discuss the optimal unbiased homogeneous 
linear estimator of  Rj with given statistical basis XIj . . . . .  Xnc~),j in a distribution- 
free model. "Opt imal"  means that the expected squared loss ~s minimized. This 
estimator exists and is uniquely determined. Kramreiter and Straub write the 
covariance structure in the form Cov(X,j, Xmj) = C,m/pj, whereby pj is a known 
volume measure of accident year j .  

The most general covariance structure given by Kramreiter and Straub for 
which explicit calculatmn of the optimal homogeneous linear estimator remains 
possible is 

c,m=c, ~'I Xk for i~<m, 
k=t+¿  

where (k,),,N is a real sequence. 
Because of criterion (9) in Lemma 3 this is exactly the linear Markov property 

of  the process (X,j),~,v, which appears now as the actual assumption of the 
Kramrei ter -St raub model. 

General Remark on the Linear Markov Property 

In the present paper we have only treated the case of  a stochastic process ordered 
with respect to time. One may imagine the linear Markov property also with 
respect to other orders. An example for that is the recent paper of  BUHLMANN 
and JEWELL (1986), who have used the linear Markov property for recursive 
calculation of the credibihty estimator in a general hierarchical model. 
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THE SOLVENCY OF A GENERAL INSURANCE COMPANY 

IN TERMS OF EMERGING COSTS 
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ABSTRACT 

The authors challenge the traditxonal balance sheet concept of  the solvency of a 
general insurance company and put forward an emerging costs concept, which 
enables the true nature of  the assets and liabilities to be taken into account, 
including their essential variability. Simulation is suggested as a powerful tool for 
use in examining the financial strength of a company. A simulation model is then 
used to explore the resilience of a company's  financial position to a variety of 
possible outcomes and to assess the probability that the assets will prove adequate 
to meet the liabilities with or without an assumption of continuing new business. 
This suggests the need for an appropriate asset margin assessed individually for 
each company. The implications for the management and supervision of general 
insurance companies are explored. The suggestion ~s made that the effectiveness 
of supervision based on the balance sheet and a crude solvency margin require- 
ment is hmlted. More responsibility should be placed on an actuary or other 
suitably qualified professional individual to report on the overall financial 
strength of the company, both to management and to the supervisory authorities. 

KEYWORDS 

Solvency; financial strength; asset margin; emerging costs; simulation; 
professional report. 

1. THE NATURE OF SOLVENCY 

1.1. The financial posttion of a general insurance company is normally disclosed 
through annual accounts for shareholders and through returns to relevant super- 
visory authormes. Solvency is demonstrated by showing that the assets exceed the 
liabilities. To a large degree the bases are chosen by the company. For supervisory 
purposes it is not just a question of the assets exceeding the liabilities. The assets 
must normally exceed the liabilities by a specified margin. 
1.2. In life assurance there is a report by the actuary on the valuation of the 
liabilities. By contrast the basis on which general insurance liabilities have been 
assessed xs not usually stated. Furthermore, whereas in life assurance actuaries 
take account of  the assets and effectively advise on the total financial strength of 
the company, there is no one with this role in a general insurance company. It 
is frequently the case that no specific account is taken of the suitability of the 

~Solvency Working Party of the General Insurance Study Group of the Insmute of Actuaries 
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assets to match the expected liabihties nor of the resilience of the balance sheet 
position disclosed to the inherent uncertainty in both assets and liabilities. 
1.3. In principle, the balance sheet represents no more than the D~rectors' 
opinion about the financial position of  the company. There ~s considerable uncer- 
tainty about the true amount of the liabilities and the realizable value of the 
assets. The auditors may place some restraints on how the Directors present the 
position but their role is largely confined to ensuring that what the Dxrectors have 
done is reasonable. 
1.4. There is in fact no single correct value that can be ascribed to either assets 
or liabilities. D~fferent values may be appropriate according to one's perspectwe. 
Shareholders want a "true and fair" view, authorities want a cautious assessment 
of the position and tax authorities want as little as possible to be offset against 
taxable profits, to name but three interested parties. A balance sheet which shows 
a solvent position should reflect an expectation that the assets will be adequate, 
but ~t may, either deliberately or inadvertently, present a misleading picture. It 
certainly does not give any idea of the probability that the assets may prove to 
be inadequate to meet the liabilities. 
1.5. In most countries a general insurance company is permitted by the super- 
visory authority to carry on writing business only if it has some specified excess 
of  the value of the assets over the liabilities. This clearly increases the probability 
that the assets will prove sulfficient to meet the liabilities, but most solvency 
margin requirements pay little or no attention to the differing degrees of uncer- 
tainty inherent in different types of business, nor do they d~stinguish adequately 
between the risks of running off the claims payments on the existing portfoho of 
business and the risks involved in continuing to write further business. 
1.6. Reserving standards are frequently ill-defined or non-existent and do not 
require special provision to be made to cover the effects of changes in the value 
of  assets on their adequacy to meet the liabilities. Problems may arise from some 
or all of the following: 

adverse run-off of existing business; 
poor underwriting experience; 
failure to recover from reinsurers; 
falls in asset values; 
excessive expenses; 
mismanagement, negligence or fraud. 

A more extended description of  the factors affecting solvency and a discussion 
of the interaction between solvency margin requirements and standards for 
technical provisions may be found in a paper by DAYKIN et aL (1984). 
1.7. The object of  a statutory solvency margin is two-fold. It reduces the 
probability that the assets w~ll prove inadequate to meet the liabilities and it pro- 
vides a buffer against further deterioration in a company's  financial position 
which can occur in the period before its authorization to write new business can 
be withdrawn. The effect of a statutory minimum requirement ~s in practice also 
to set a somewhat higher formal standard in the market place. 
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1.8. A solvency margin is not required of other trading companies, but this can 
be said to reflect not only the nature of the business but also the extent of  the 
insured's interest in the continued viabihty of the company. In many cases the 
insured can be exposed to quite serious liabilities in the event of the insurer failing 
to meet a claim. He cannot limit his liability in the way that he can with a trading 
company. 
1.9. A company can carry on writing business only if the supervisory authority 
says that it meets the solvency requirements (cf. STEWART, 1971). The way in 
which they lay down requirements for this purpose will differ from the criteria 
which would be used by a Court in determining whether a company should be 
wound up. It is in fact relatively rare for insurance companies to be wound up 
by the Courts. It is more normal for the existing business to be run off to 
extmct~on or be transferred to another company. The latter procedure is more 
common in some countries than others. 

2. BREAK UP OR GOING CONCERN9 

2.1. The concern with safeguarding the position should the company cease 
trading is pecuharly the preserve of  the supervisory authority. It arises because 
one of the mare weapons available to the supervisory authority is the possibility 
of preventing a company from writing any further business. The supervisory 
authority will be subject to criticism if they stop a company from taking on any 
further business only when the position has been reached that the company can- 
not even meet its liabilities in respect of business already on its books. The conse- 
quence of this is that the supervisory authority will seek to close a company to 
new business when it can stdl be expected that the run-off of the existing liabilities 
will give rise to a surplus of assets, in other words the company is de facto 
solvent. 
2.2. In order to achieve their objective of a "satisfactory" run-off, the super- 
visory authority is hkely to take the view that outstanding claims provisions 
should be sufficient to enable all claims to be met with a reasonably htgh degree 
of probability. Fadure to maintain an additional solvency margin over and above 
the outstanding claims provisions would not then imply that the company is 
unable to meet its existing liabilities, but that it does not have sufficient free 
resources to satisfy the supervisory authority that it should be permitted to con- 
tmue writing business. Supervisory authorities using this approach are using what 
might be termed a "break-up" basis, i.e. it is assumed that no further business 
is written but existing business is run off to extinction. 
2.3. In the EEC a two-stage solvency margin trigger has been adopted. The 
higher level is referred to as the required solvency margin and the lower ,s termed 
the guarantee fund. The origins of the EEC requirements have been described by 
DAYKIN (1984). If an insurer fails to maintain its required solvency margin it 
must provide to the supervisor a plan for the restoration of a sound financial 
position, which may include demonstration that on a properly drawn up business 
plan, and with realistic assumptions about profitability, the solvency margin will 
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be res tored within a reasonable  shor t  space of  t ime.  Only  if the c o m p a n y  fails to 
ma in ta in  the guaran tee  fund,  set at one- th i rd  o f  the solvency margin ,  with a 
specified m i n i m u m  in abso lu te  terms,  is tmmedia te  ac t ion to inject  add i t iona l  
capi ta l  requtred in o rder  to stave off wi thdrawal  of  au tho r t zanon .  
2.4. Thts a p p r o a c h  is in pract ice not very different  f rom one whtch assesses the 
c o m p a n y  on a "going  concern"  basis.  Theore t ica l ly ,  the main  differences will be 
in re la t ion to the provis ions  for ou t s t and ing  claims,  where a "going  concern"  
basis might  include less of  a marg in  than a " b r e a k  up"  basis,  and the provis ion 
for expenses,  where a strict "b reak  up"  basis,  would require  a technical  provis ion 
to be made  to cover  all the costs o f  running off the existing business.  On a "going  
conce rn"  basis these costs may  be set against  the cont inu ing  business o f  the com- 
pany and it is p robab le  that  the past  l iabiht ies  may  be able to be run off for a 
lesser sum than on the break  up basis.  Yet ano the r  possible  basis o f  assessment  
would  be a "wind ing -up"  basis,  in which the assets are divided up and d is t r ibuted  
on the basis o f  an es t imate  o f  the habi l ines .  This requires the assets to be realized 
at an early date ,  which in pract ice  may  have the effect o f  depressmg marke t  
values.  A s u m m a r y  o f  the mare  features  o f  the different  bases o f  assessment  is 
given in Table  1. 
2.5. A key objec t ive  of  the managemen t  o f  an insurance  c o m p a n y  is to ensure 
that  it does  not  have to cease t rading.  The  accounts  p repared  for shareholders  
will reflect this by being p repared ,  as is the no rma l  convent ion ,  on a going con- 
cern basis.  Whtlst  cont inu ing  solvency is also a concern  o f  the shareholders ,  m 
most  cases this will be taken  for g ran ted ,  and  the objec t ive  o f  the accounts  should 
be to provide  a true and fair view of  the financial  pos i t ion  o f  the company .  For  
this purpose ,  technical  provis ions  should  not  be overes t imated  or  conta in  
cautxous margins  and any adverse  deve lopmen t  o f  ou t s t and ing  claxms will emerge 
in due course and affect fu ture  prof i tabi l i ty .  In spite o f  the differences in the pur-  
poses for whtch the provis ions  are required,  however ,  most  companies  adop t  the 
same provis ions  for their  accounts  as they do  for  thetr  s t a tu to ry  returns.  
2.6. Whe the r  seen f rom the v iewpoint  o f  the supervisory  au thor i ty ,  f rom that  
o f  the shareholder  or  f rom that  o f  an outs ide  analyst ,  a c o m m o n  p rob lem is the 
uncer ta in ty  as to the s t rength of  the technical  p rovismns .  This mtght  be helped 

TABLE 1 

COMPARISON OF ASSESSMENT BASES 

A s s e s s m e n t  basis 

Assumption Going concern Break up Winding-up 

New business Indefinite None None 

Expenses Claims settlement All run-off All expenses 
expenses only expenses of winding-up 

Assets Market or book values Market value Reahzauon value 

Llablhlles Best estimate Cauuous estimate Best estimate of current 
value 
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by more clearly defined reserving standards and by more disclosure of the basis 
for the provisions, but there is still the fundamental weakness that the assets and 
the liabiliues are not being valued on consistent bases and variability is not taken 
into account. 
2.7. The division of a company's  resources into technical provisions and "free" 
assets ~s not necessarily helpful from the point of view of  establishing the true 
financml strength of the company. Most of the so-called surplus or "asset 
margin" (the excess of  assets over habilit~es) may in fact be needed to reduce the 
probability of  being unable to meet the liabilities to an acceptably low level, 
particularly if the provisions are only "best estimates". To examine financial 
strength, all of the resources of the company need to be brought into 
consideration. 

3 EMERGING COSTS 

3.1. Although the current market value of the investments ~s increasingly com- 
ing to be disclosed in shareholders' accounts, at least in the UK, and is required 
by supervisory authorities for the statutory returns, its advantages are mainly in 
relation to its objectivity as a value to be placed on the company's  investments, 
rather than in relation to its relevance to the ability of the company to meet its 
liabilities, even in the context of the break up basis. 
3.2. The assets will not in practlce have to be realized on a particular date and, 
m any case, by the time the accounts or returns have been prepared, the market 
value at the date to which those accounts relate is a matter of no more than 
historical interest. What is important is whether the proceeds of the assets, both 
capital and income, will prove sufficient to meet the liabilities as they emerge. 
This is true solvency. 
3.3. The concept of projecting the emerging costs of the habilit~es to which an 
enterprise is subject and placing them alongside the expected pattern of income 
is one which is familiar to actuaries in the life assurance and pensions contexts 
and is also fundamental to investment appraisal by economists in many other 
spheres of industry. However, little work seems to have been clone on the apphca- 
uon of the concept to general insurance companies. 
3.4. There has been some theoretical consideration from the viewpoint of  finan- 
cial economics by KAHANE (1979) and KAHANE and BIGER (1977) which may not 
be widely known among actuaries. Actuarial concepts of looking at the company 
as a whole were apphed to general insurance in a paper by BENJAMIN (1980) and 
the use of emerging costs was implicit in papers by RYAN (1980, 1984) on the use 
of simulation techniques in general insurance. COUTTS el al. (1984) set out 
more fully the fundamental concepts of the emerging costs of a general insurance 
company and a practical example was presented m a paper by DAYKIN and 
BERNSTEIN (1985) on run-off and asset risks. 
3.5. The concept is a simple one. It involves analysing the inflows and outflows 
of  actual cash in each successive year. The inflows may consist of some or all of 
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the following: 

premium income; 
interest and dividends on assets; 
maturity proceeds of assets; 
reinsurance recoveries in respect of claims. 

The outflows may consist of  the following: 

claims settled or amounts paid on account; 
reinsurance premiums; 
expenses; 
tax; 
dividends. 

3.6. The effect of the various items in each year will be either a net amount 
available for investment or a shortfall. In the latter case assets need to be sold 
to meet the deficit. So long as there are sufficient assets available to enable all the 
outflows to be met as they arise, the company is solvent in an absolute sense, 
whatever the balance sheet may have shown. If all the assets have been realized 
but net liabilities still remain, the situation is one of de facto insolvency. 
3.7. An emerging costs analysis should be carried out on the totality of the 
assets and liabilities of the company. For this purpose the dividing line between 
technical provisions and asset margin is of no real importance although estimates 
of  future claims payments are necessary. The uncertainties of general insurance 
are such that it will not generally be sufficient to use deterministic values for the 
liabilities and the assets. Some measures of variability need to be introduced. 
However, this should not be allowed to detract from the essential simplicity of 
the concept. It only means that some or all of the items hsted above should be 
treated as random variables. To handle this the emerging costs can be examined 
using simulation. 
3.8. A single simulation is one realization of a random process in which each 
of the required quantities is assigned a value. By examining a large number of 
simulations a picture can be obtained of the likely pattern of development 
resulting from the interaction of the various variables. Simulation permits the use 
of stochastic models for the investment processes and allows the uncertainty in 
the outstanding claims and in the profitability of new business to be taken into 
account. The approach has much in common with the ideas developed by the Fin- 
nish Solvency Working Party (PENTIKAINEN and RANTALA, 1982) and extended 
to cover run-off risk by PENTIKAINEN and RANTALA (1986), although they did 
not use a stochastic approach for the investments. 
3.9. In practice the various elements may be modelled in a variety of different 
ways. For some purposes very complex models may be desirable; for others a 
simpler model may suffice, although any model which is going to give a 
reasonably realistic representation of the real world is bound to be fairly 
complex. The important principle is that the totality of the company's operations 
is being considered. 
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3.10. The procedure is very flexible. It might enable, for example, questions to 
be asked about the impact of alternative strategies for premmm rating or invest- 
ment and about the effect of possible adverse claims development or failure to 
recover from reinsurers. It provides a management tool and also seems to offer 
a way forward for more rational supervision. This would involve the submission 
to the authorities of a report on total financial strength by an actuary or other 
suuably quahfied expert, as a supplement to minimum balance sheet require- 
ments. The result would be a system much better able to take account of the true 
position of each company, having regard to the specific risks to which it is subject 
and the inherent uncertainties of both assets and liabilities. 

4. THE SIMULATION MODEL 

4.1. General Structure 

4.1.1. In order to demonstrate the potential of the emerging costs approach we 
present here a model which provides a representation of the dynamics of a general 
insurance operation. In order to be reasonably realistic the model is quite com- 
plex but, however complicated the model, it is essential that the concepts should 
be capable of being put across in a straightforward way and the results must be 
capable of being presented in ways that can be directly related to management 
concerns such as corporate strategy and decision-making. 
4.1.2. At its most basic, the model is a projection of  cash flow, bringing 
together income from premiums and from assets and outgo in respect of 
expenses, tax, dividends and claims, determining the net balance for each year, 
investing or d~smvesting as the case may be and proceeding similarly for as many 
years into the future as one wishes. It may be considered more fully in terms of 
three separate components: 

habihtles arising from existing business; 
future premiums and the liabilities resulting from the risks underwritten; 
asset returns and asset value movements. 

4.1.3. A mathematical formulation of the model is given m Appendices 1 and 
2 and a description of  the computer program in Appendix 3. 

4.2. Existing Llabdtttes 

4.2.1. The existing liabilities, as shown in the balance sheet, consist of estimates 
of  outstanding claims, including 1BNR, and unearned premium reserves (in- 
cluding any additional amount for unexpired risks). Unearned premiums can be 
dealt with along similar lines to new written premiums (see Section 4.3) since the 
uncertainty includes uncertainty about the adequacy of premium rates in relation 
to events which have not yet occurred. 
4.2.2. As far as outstanding claims are concerned, there is uncertainty about the 
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amounts of claims and about when they will be settled. The model needs to pro- 
vide an adequate representation of this uncertainty. We make the simplifying 
assumption that the variabihty in rates of settlement can be subsumed into a 
variation in the amount of claims settled in each pertod. 
4.2.3. The first stage is to estimate the expected claims payments in each suc- 
cessive year for each year of origin. In order to do thxs, fixed settlement patterns 
have to be specified in constant money terms. The model permits different run-off 
patterns to be assumed for different types of  business. Inflation then has to be 
allowed for. Future inflation is generated by a stochastic model and this is com- 
bined with the expected settlements m constant money terms to give the expected 
development of claim amounts. The inflation model is an integral part of the 
models used for the assets (see Paragraph 4.4.4). 
4.2.4. The variability of claim amounts payable in each period can be dealt with 
in a variety of ways. In an earher paper describing the application of a similar 
model to a run-off situation, DAYKIN and BERNSTEIN (1985) proposed that the 
actual outstanding claims settled in each year in respect of  each year of origin 
should be varied. They assumed that each separate entry in the run-off triangle 
was distributed about the mean estimate of  claims settled at that particular dura- 
tion for that year of origin in accordance with a log normal distribution. This was 
attractive as a means of simulating the interaction between different years of 
origin and different classes of business, but it resulted in a somewhat lengthy 
simulation process. 
4.2.5. In order to simplify the model and allow account to be taken of different 
sizes of company, the model presented here uses an aggregate approach, whereby 
the amount that is vaned is the total amount of claims settled m a partxcular 
period, for all years of origin combined. This aggregate figure ~s assumed to vary 
according to a normal distribution with a standard deviation of  the type: 

a X  + b,. X 

where X is the mean estimate of total claim payments in the year and a and b 
are suitably chosen constants. We understand that a simdar formula is used by 
the Finnish supervisory authority for their statutory minimum solvency margin 
(see Appendix 5 for discussion of  this formula which can be considered to be an 
approximation to the formula derwed by BUCHANAN and TAYLOR, 1986). 
4.2.6. The amounts payable in future years in respect of  risks arising from 
future written premiums and from unearned premium reserves are included w~th 
the amounts payable in respect of existxng liabilities before applying the overall 
variability formula. The extent of the assumed variabihty can be adjusted by 
varying the constants a and b in the formula above. For a standard basis we have 
assumed that they take the values 0.15 and 75 respectxvely, with claims amounts 
being expressed m £ sterling. The amounts payable in successive years are 
assumed to vary independently of  each other. The variability is intended to cover 
not only stochastic variabihty of claim amounts, but also uncertainty about the 
expected run-off model in constant money terms. Uncertainty about future 
inflation is dealt w~th separately. 
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4.2.7. Two typical run-off patterns have been assumed, characterized as short 
and long-tailed. Details are given in Appendix 3. In order to place a value on the 
techmcal provisions which would be established at the outset in respect of  the 
outstanding claims, it has been assumed that inflation would be allowed for at 
5°-/o a year and that the resulting outstanding claims would not be discounted. 
(For further discussion on the interaction between the reserving basis and the 
solvency margin, see Paragraph 5.2.) 
4.2.8 In practice an actual outstanding claims portfolio could be used as the 
basis for the input to the model in respect of  existing liabilities. It would need 
to be expressed as an expected run-off in constant money terms. For illustratIve 
purposes, however, we have assumed that the outstanding claims have been 
generated in a similar way to the habihties in respect of  future written premiums, 
by specifying a rate of real premium growth and claim ratios. For the purpose 
of generating the outstanding claims at the base date no variability was assumed 
in the historic claim ratios, in contrast to the process described in Section 4.3. In 
conjunction with the specified run-off patterns and the inflation model, the 
habilities generated m this way give rise to estimates of  outstanding claims 
payable m each future year in respect of  each past year of  origin. 

4 3. Future Written Premiums 

4.3.1. Future premiums are generated from an assumed initial premium level 
and an assumed real annual growth rate. The effects of  inflation are then built 
in explicitly. Although the existing portfolio of  business is generated by assuming 
a past pattern of  premium growth, as described in Paragraph 4.2.8 above, a dif- 
ferent growth rate assumption may be made for the future. The proportions of  
written premiums which are assumed to relate to d~fferent types of business can 
be specified. The written premiums are taken to be net of  commission and initial 
expenses. 
4.3.2. For each year for which additional premiums are assumed to be written, 
a ratio of  claims to premiums net of  commzssion and expenses is generated for 
each type of business, The ratio ~s assumed to be normally distributed with mean 
and standard deviation to be specified. The resulting ratio is applied to the 
assumed net written premmms to produce an initial estimate of  total claims in 
respect of  that business, without any allowance for future inflation or for dis- 
counting. This ratio is such that a value of 100°70 implies break-even if future m- 
vestment income exactly balances inflation. The assumed proportions of  claims 
settled in each future year are then apphed to obtain uninflated estimates of  
expected claims payments, Future inflation, as generated by the model described 
below (Paragraph 4.4.5), is incorporated when the expected claim payments in 
terms of constant money have been aggregated with the corresponding estimates 
in respect of the existing hab~lities. The combined estimates are then varied as 
described in Paragraph 4.2.5 above. 
4.3.3. Since the claim ratios generated are ratios of  claims to written premiums 
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net of  commission and expenses, no explicit allowance needs to be made for these 
items of outgo. Expenses of claims settlement are assumed to be included in the 
costs of  settled claims. 
4.3.4. This relatively simple approach has been used as a practical expedient in 
view of the complexity of the underlying risk process. An alternative approach,  
described by BEARD et al. (1984) and developed in the Report to the Finnish 
Solvency Working Party (PENTIKAINEN and RANTALA, 1982), would be to treat 
the basic claims process as a Poisson process and then build on a series of  
"structure variables" to take account of: 

trends of  claims frequency; 
long term variations in premium rate adequacy; 
year to year fluctuations in mean claims frequency. 

Further assumptions then have to be made about the claims size distributzon. 
4.3.5. Whilst it is clearly possible to specify a model which takes explicit 
account of  each of these, the added complexity can only be justified if the 
parameters of  the model can be satisfactorily determined. We have not as yet 
been able to assemble data in a suitable form for calibrating such a model. The 
problem of calibration still arises with the simpler model, but ~t is intuitively more 
accessible and enables judgement to be applied in the area which is probably of 
the greatest importance, i.e. changes in the relationship between premium levels 
prevailing m the market and the underlying risk premium. This xs the factor 
described as "long-term cycles" by PENTIKAINEN and RANTALA (1982). 
4.3.6. Although the adequacy of premium rates does exhibit the characteristics 
of  a business cycle, experience seems to show that the variation does not have a 
regular periodicity or a constant amplitude. A considerable degree of judgement 
is needed to decide where in the "cycle" the industry finds itself at any particular 
moment .  Our model allows for the user to give explicit consideration to this and 
requires the mean claim ratio for the next couple of  years to be estimated. If  the 
model were to be used to examine the effects of  future written premiums over a 
longer period than 2 years, further consideration would need to be given to 
modelling this component.  The assumption of a normal distribution of clmm 
ratios about the mean is a not unreasonable approximation,  bearing in mind the 
large numbers of  claims involved. 

4.4. Asset Varlabihty 

4.4.1. The variability inherent in the asset portfolio of a company depends on 
the nature and distribution of the assets. The realizable value of many assets will 
vary from day to day as market conditions change. In our model, the initial 
distribution of  the assets by category has to be specified and the various com- 
ponents of  the asset distribution are then analysed separately, simulating the 
income generated and the capital value of each type of  asset for each future year. 
Rules need to be specified for investment and disinvestment. 
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4.4.2. Three different types of asset are assumed: cash, irredeemable Govern- 
ment securities and ordinary shares. A more realistic model would replace invest- 
ment in irredeemable Government securities with short, medium and long-dated 
securities. In practice, however, short-dated securities behave somewhat like cash 
and long-dated securities like irredeemables, so the model can be regarded as a 
tolerable proxy and gets round the problem of the reducing life of dated stocks 
over time. Allowance has not been made for a proportion of  the assets being 
effectively non-interest-bearing (e.g. agents' balances) but this could easily be 
done. 
4.4.3. The development of the various components of  the asset distribution has 
been represented by a series of interrelated stochastic processes, suggested by 
WILKIE (1984, 1986) which generate future scenarios for the values of  different 
types of asset and the income from them. Although Wilkie's models were not 
originally intended to be used for relatively short-term simulations such as those 
with which we are concerned, we have adopted them as a readily available and 
coherent model of asset movements and inflation. Further work is needed on 
suitable asset models and the sensitivity of the results to the particular models 
used. Our results show that this is a most important aspect of  the whole simula- 
tion model. 
4.4.4. The models are described in detail in Appendix 2. In addition to the 
models of asset returns and asset values, the Wilkle models include a model for 
inflation and this has been used where it is needed in the simulation of the 
liabilities. 
4 4.5. The initial asset mix is based on assets covering the technical provisions 
and assets representing the asset margin. Different distributions may be specified 
for each. A variety of  different investment and dislnvestment strategies may be 
applied to the total funds. 

4.5. Results of  the Stmulattons 

4.5. I. The number of potential combinations of variables is vast, even allowing 
each variable to take only three or four different values. We have limited our con- 
siderations by adopting a standard set of parameters and normally varying only 
one parameter at a time. 
4.5.2. The simulation process involves sampling scenarios from an infinite set 
and the results are necessarily subject to statistical error. For any particular case 
which is of interest more simulations can be carried out in order to improve the 
accuracy of the estimate. In order to illustrate the results on a large number of 
scenarios, we have limited our considerations to 1000 simulations for each. For 
each parameter combination the same 1000 sets of random numbers are used, so 
that the comparisons are not significantly affected by any bias in the particular 
sets of random numbers chosen. 
4.5.3. Figure 1 shows, for illustrative purposes, the results of  100 simulations, 
assuming no new business. This demonstrates the general shape of the results, 
which is common to all the scenarios, although the variability differs greatly. The 



96 DAYKIN, BERNSTEIN, COUTTS, DEVITT, HEY, REYNOLDS AND SMITH 

39 

36 

33 

30 

27 

24 

21 

18 

15 

12 

9 

6 

3 

0 
Anger,, (£m) 

-I 

-9 

-15 

-21 

-24 

-27 

-30 

-33 

-36 

I m  i_ 

-39 ................. ~ ......... ~ ......... ~ ......... ~ ................. i ....... ~ ......... ~ . . . . . . . .  

y o a r o  

FIGUR~ I Run-off of assets assuming no ne~ business (100 s~rnulattons) 

10 

graph shows the assets o f  the model  c o mpa ny  year by year throughout the run-off 
o f  the business.  
4 .5 .4.  When a hne goes below the x-axis,  this implies that all the assets have 
been exhausted on that particular s imulat ion.  If that should occur before the end 
o f  the run-off,  true insolvency has occurred. In describing the results o f  the 
s imulat ions ,  insolvency ~s used in this sense, without  regard to the way in which 
the financial posit ion o f  the company  might be presented in the accounts or 
statutory returns at the base date or at any later date. 
4 .5 .5.  We thus define: 

an insolvency occurs when the assets run out before all the liabihties have been 
met (on an emerging costs basis). 

In the s imulat ions a reahzatlon which runs into insolvency is al lowed to cont inue 
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TABLE 2 
DISTRIBUTION OF ASSETS AT END OF RUN-OFF FROM I000 SIMULATIONS ON 

S-[ ANDARD BASIS 

Number of cases 

Remamlng assets j as % 2 years' new 
of net written premiums 2 Pure run-off business 

Less than 0 8 50 
0-20 31 34 

20-40 67 62 
40-60 128 65 
60-80 124 81 

80-100 136 78 
100-120 128 93 
120-140 104 91 
140-160 69 84 

160 and over 205 362 

Mean 112 144 

1 Deflated to the date of assessment using the retad prices rode\ 
2 Premmms net of commission and initial expenses 

by borrowing (at the rate of xnterest on cash plus a margin of  3%); this permits 
one to see how insolvent at becomes. 

4.5,6. On the s tandard basis, insolvency in this sense occurred in 8 cases out of 
1000 with no new business and 50 cases with 2 years'  new business. The distr ibu- 
tion of assets at the end of the run-off ,  deflated to the date of assessment using 
the retail prices index, is summarized in Table  2. The written premiums in ques- 
t ion are those in the year before the base date. It should be recalled that  the 
written premmms are net of  commission and expenses. Results expressed as 

percentages of net written premiums can be rated down (say, by applying a factor 

of  75°70 or 80%, depending on the type of business) to ob ta in  comparable  results 
in terms of  gross wrttten premiums.  The mean level of remaining  assets for the 
1000 s imulat ions was 1 12°70 of net written premiums with no new business and 
144070 with 2 years '  new business, with s tandard  deviat ion of  7007o and 109070 
respectively of net written premiums.  
4.5.7. Full details of  the assumpt ions  under lying the s tandard  basis are given in 
Appendix  4. However,  we will return to the results after comment ing  on the 
apphcat ion  of  the model.  

4.6. Apphcation of the Model 

4.6.1. A s imulat ion model of the insurance company,  based on the emerging 

costs concept,  provides a powerful  and flexible tool for examining the dynamics  
of an insurer 's  operat ion,  for exploring the effects of uncer ta inty  and for develop- 
ing the financial aspects of corporate  strategy within a logical f ramework.  This 
should be of value both to managemen t  and to the supervisory authorit ies.  
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Crucial to this process' would be the presence of a suitably qualified actuary or 
other expert within the company,  or acting as consultant, who could develop a 
suitable model and apply the necessary judgement to the use of the model in the 
circumstances of  the particular company.  The responsible expert would report to 
management  on the financial strength of  the company,  taking all relevant factors 
into account. 
4.6.2. The simulation approach would also enable the actuary to advise 
management on the potential effects of different new business and investment 
strategies, the risks involved and the return on capital which mxght be expected 
if additional capital is injected to enable a particular strategy to be adopted. 
4.6.3. A report on the financial strength of the company could accompany the 
statutory returns to the supervisory authorities. The actuary would be answerable 
to the supervisor on the details of  this report. One could envisage this leading to 
an informed dialogue between the supervisory authority and the company under 
scrutiny on the nature of  the proposed corporate strategy, whether in relation to 
investment policy, growth or premium levels. The supervisor could then ask for 
an assessment of  the effect of alternative strategies and seek agreement with the 
company on appropriate changes to its strategy as a condition for being permitted 
to continue writing business. 

5. SOLVENCY CONSIDERATIONS 

5.1. The results of  the simulations can be presented in terms of  numbers of  
insolvencies out of  a given number of simulations. This is an estimate of  the 
probability of  ruin. Each result derives from an assumption about the excess of  
assets over technical provisions (the "asset margin") and a specified basis for 
calculating the latter. Given a basis for the technical provisions, the process can 
be used to derive the required initial asset margin in order to achieve a specified 
probability of  ruin in a particular case. 
5.2. The required asset margin will clearly differ according to differing defini- 
txons of the technical provisions. Table 3 illustrates this point. The table shows 
the technical provisions on the standard basis described above and the technical 
provisons on alternative bases as to inflation and discounting, but for the same 
set of  outstanding claims. The table shows what asset margins would be 
necessary, expressed both as a percentage of techmcal provisions and as a 
percentage of  net written premiums, in order to achieve the same degree of 
overall security as the technical provisions on the standard basis. Technical provi- 
sions on the standard basis are calculated assuming 5% inflation and no discount- 
ing. Thus if the reserves do not allow for any future inflation, or have been 
discounted using a rate of  interest equal to the assumed rate of  inflation, an asset 
margin of 210/0 of  net written premiums or 9% of  technical provisions would be 
needed to produce the same level of  total assets as the technical provisions alone 
on the standard basis. The figures in this table underline the arbitrary nature of  
a statutory solvency requirement unless standards of  technical provisions can be 
adequately specified. 
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TECHNICAL PROVISIONS AND ASSET MARGINS 
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Asset  m a r g i n  to  ach ieve  s a m e  secur i ty  as 
s t a n d a r d  

Rese rv ing  basis  
(net inf la t ion Techn ica l  °7o o f  net wr i t t en  e/0 o f  technica l  
a s s u m e d )  % p rov i s ions  ~ p r e m i u m s  2 p rov i s ions  

- 5  20450 39 19 
0 22264 21 9 
5 24364 0 0 

10 26805 - 24 - 9 
15 29656 - 53 - 1 8  

1 Based  o n  4 0 %  long  tall bus iness  a n d  60°70 s h o r t  t ad  
2 P r e m i u m s  net o f  c o m m t s s l o n  a n d  init ial  expenses  

5.3. First we give some results for a pure run-off, i.e. with no future premiums 
assumed to be written. The outstanding claims and unexpired risks are allowed 
to emerge and the adequacy of the total assets (technical provisions and asset 
margin) is examined. Table 4 shows the number of  insolvencies and the mean 
assets remaining at the end of the run-off and the standard deviation of  the assets 
remaining on some alternative bases. Table 5 gives a similar set of  results with 
the inclusion of 2 further years' written premiums. Appendix 4 gives details of 
all the assumptions and a full set of results. 
5.4. Tables 6 and 7 show the asset margins required to achieve a probability of 
ruin of 1 in 100 for each of the combinations of assumptions in Tables 4 and 5 
respectively, assuming that the technical provisions are established on the stand- 
ard basis of 5% inflation and no discounting. The asset margins are shown in 
terms of both net written premiums in the year before the base date and as a 
percentage of technical provisions at the base date. The results can be expressed 
in terms of  net written premiums even for the pure run-off case, since these are 
the premiums in the year before the base date when premiums are assumed to 
cease. As described in Paragraph 4.2.8, we have in fact generated the outstanding 
claims from past premiums. The difference between Tables 6 and 7 provides a 
measure of the additional capital needed in order to go on writing business for 
two more years. 
5.5. It is clear that the results obtained depend critically on the models used and 
the parameters assumed. More work is needed on a number of  different aspects. 
However, the results presented do appear consistent and sensible and variations 
in relation to changing parameter values conform with general reasoning. 
5.6. It is difficult from these results to draw conclusions about an appropriate 
level of  a minimum statutory solvency margin. In fact we have avoided using the 
term solvency margin m this section because of its special significance in statutory 
terms and have referred to the necessary margin as the asset margin. Our asset 
margins relate to particular assumptions about the basis for the technical provi- 
sions and provide a defined degree of  security in relation to specified scenarios 
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T A B L E  4 

SUMMARY OF RESULTS FOR PURE RuN-OFF OF BUSINESS (WITH 1000 SIMULATIONS) 

No of  Mean assets S tandard  devia t ion  of  
A s s u m p t i o n s  insolvencies  r emain ing  ~ (o7o) assets r emain ing  ~ (O7o) 
S tandard  basis  8 112 70 

2 I Net wri t ten  p remiums  
(a) £1m a year 20 113 75 
(b) £10m a year (s) 8 112 70 
(c) £100m a year 6 112 69 

2 P ropor t ion  of  long-tai led business 
(a) 20°7o of  net wri t ten p remiums  2 3 94 55 
(b) 4007o of  net wri t ten p remiums  2 (s) 8 112 70 
(c) 60°7o of  net wri t ten  p r e m m m s  2 13 130 85 

3 lmt la l  asset d~strtbutton 
Cash Gdts  Equtt~es 

(a) TP  + AM - -  - -  3 95 53 
(b) - -  TP + AM - -  20 120 98 
(c) - -  - -  TF + AM 49 136 115 
(d) ~TP ~TP AM (s) 8 112 70 

4 In)tlal asset margin .  
(a) 0o7o of net wri t ten p remiums  2 134 52 55 
(b) 20o/o of  net wrtt ten p remtums  2 36 83 62 
(c) 40°7o o f  net wri t ten p remiums  2 (s) 8 112 70 
(d) 60°7o of  net wri t ten  p remiums  z 2 147 80 
(e) 80% of  net wNtten p r e m m m s  2 0 180 90 

5 Asset  selhng rules 
(a) Equi t ies ,  gdts;  cash 9 102 66 
(b) Cash;  gilts;  equ ines  7 123 79 
(c) In p ropor t ion  to ho ld ings  (s) 8 112 70 
(d) Sell best pe r fo rmer  first 14 108 70 

I Deflated to the date  of  assessment  using the retad prices index and expressed as a percentage  of  
net wri t ten p remiums  2 m the year before  the date  o f  assessment  (see Append ix  3 6 8) 

2 P r e m i u m s  net of  commiss ion  and expenses  
(s) indicates  the a s sumpt ion  made  for the s tandard  basis  

on the basis of our model. A statutory solvency margin, in the sense in which it 
is usually used, provides a general level of security, independent of  the parucular 
circumstances of  the company,  against all possible future scenarios, including the 
effect of  unquantifiable risks such as fraud, mismanagement and the failure of  
reinsurers. 
5.7. A starting point for consideration of an appropriate level of  statutory 
solvency margin might be to look at the asset margin for a company with a fairly 
standard distribution of business, a moderate growth rate and investment entirely 
in cash. In our view the resulting margin ought to be in two parts: 

a percentage of the technical provisions at the assessment date; 
a percentage of written premiums. 

The former represents the margin required in respect of  the run-off risks and the 
latter the margin required in respect of  writing up to two years' further new 
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SUMMARY OF RESULTS WITH 2 FURTHER YEARS' BUSINESS (WITH 1000 SIMULATIONS) 
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No of  Mean assets S tandard  dev ia t ion  of  
A s s u m p t i o n s  insolvencies  remain ing  ~ (070) assets r ema in ing  ~ (%)  
S tandard  basis  50 144 109 

1 Net wri t ten p remiums '2  
(a) £1m a year 61 144 117 
(b) £10m a year (s) 50 144 109 
(c) £100m a year 43 144 107 

P ropo r t i on  of  long- taded  business 
(a) 20070 of  net w r m e n  p r e m m m s  2 48 120 91 
(b) 40070 of  net wri t ten  p r e m m m s  2 (s) 50 144 109 
(c) 60°7o of  net wri t ten p r e m m m s  2 52 168 130 

Real g rowth  rate (past and  future) '  
(a) -20070 a year 53 171 134 
(b) No growth  (s) 50 144 109 
(c) +50070 a year 83 144 121 

Mean c la im rano  a (shor t - taded)  
(a) 80070 of  net wri t ten p remiums  2 7 187 117 
(b) 100% of net wrt t ten p r e m m m s  2 (s) 50 144 109 
(c) 125070 of  net wri t ten p r e m m m s  2 165 90 103 

Var lab lh ty  of  c la im ra t io  (shor t - taded)  
(a) S tandard  dev ianon  5o7o N W P  z 49 144 109 
(b) S tandard  devia t ion  10070 N W P  2 (s) 50 144 109 
(c) S tandard  devia t ion  15070 N W P  2 48 14,4 I 11 

Mean c la im ra t io  s ( long-tai led)  
(a) 80°7o of  net wri t ten p r e m m m s  2 17 163 106 
(b) 100070 of  net wri t ten p remmms2(s )  50 144 109 
(c) 125070 of  net wri t ten  p r e m m m s  2 105 120 114 

V a n a b d l t y  of  c la im ra t io  ( long-tai led) .  
(a) S tandard  devmt lon  10070 N W P  2 50 144 109 
(b) S t anda rd  devia t ion  15070 N W P  z (s) 50 14.̀ 4 109 
(c) S tandard  devmtlon 20070 N W P  2 49 14,4 I I 0  

Init ial  asset d~str ibunon 
Cash Gil ts  Equ ines  

(a) TP + AM - -  - -  46 118 86 
(b) - -  TP + AM - -  79 155 152 
(c) - -  - -  TP  + AM 86 181 172 
(d) }TP ~TP AM (s) 50 144 109 

l n m a l  asset marg in  
(a) 0 %  of  net wri t ten p r e m i u m s  2 196 74 98 
(b) 40% of  net wri t ten p remiums  2 (s) 50 144 109 
(c) 80070 of  net wri t ten p r e m m m s  2 11 216 133 

1 Deflated to the date  of  assessment  using the retail  prices index and expressed as a percentage  of  
net wri t ten p r e m m m s  2 m the year before  the date  of  assessment  (see A p p e n d i x  3 6 8) 

2 P remiums  net of  commiss ion  and expenses  
3 Rat io  of  c la ims ( including c lmms set t lement  expenses),  wi thout  a l lowance  for fu ture  inflat ion or 

for d i scount ing ,  to p r e m i u m s  net of  c o m m i s s m n  and expenses (see P a r a g r a p h  4 3 2). 
(s) re&cares the a s s u m p n o n  made  for the s t andard  basis 



102 D A Y K I N ,  B E R N S T E I N ,  COUTTS,  DEVITT,  HEY,  R E Y N O L D S  A N D  S M I T H  

T A B L E  6 

ASSET MARGINS REQUIRED TO ACHIEVE 1 / 1 0 0  PROBABILITY OF RUIN --  NO FUTURE NEW BUSINESS 

Asset  margin  Asset marg in  as % of 
Assumpt ions  as 070 of  N W P  j techmcal  provis ions  
S tandard  basis  40 15 

I 1 Net wri t ten  p r e m i u m s  
(a) £1m a year  55 25 
(b) £10m a year (s) 40 15 
(c) £100m a year 35 15 

2 P r o p o r t i o n  of  long- ta i led bus iness '  
(a) 20070 of  net w r m e n  p r e m m m s  ~ 30 15 
(b) 40070 of  net wru ten  p r e m i u m s '  (s) 40 15 
(c) 60% of  net wri t ten p r e m i u m s  ~ 45 15 

3 Ini t ial  asset d~stnbut~on 
Cash Gdts  Equi t ies  

(a) TP  + AM - -  - -  30 10 
(b) - -  TP  + AM - -  60 25 
(c) - -  - -  TP + AM 80 35 
(d) ~TP ~TP AM (s) 40 15 

4 Asset  selling rules 
(a) Equi t ies ;  gil ts ,  cash 40 15 
(b) Cash,  gilts,  equmes  35 15 
(c) In p ropor t ion  to hold ings  (s) 40 15 
(d) Sell best pe r fo rmer  first 55 25 

1 P remiums  net o f  commiss ion  and expenses 
(s) indicates  the a s sumpt ion  made  for the s t andard  basis  

busmess. To the new business margin might be added a contingency loading to 
cover other unquantifiable risks. 
5.8. This would provide a basic safety net for an average company,  assuming 
that technical provisions were at least up to the standard envisaged. Statutory 
reserving standards might be necessary to achieve this, since it has to be recog- 
nized that a solvency margin requirement based on technical provismns has a 
similar weakness to one based on written premiums. I f  the provisions are under- 
stated the requirement is reduced, whereas it should in fact be higher. 
5.9. Alongside such a basic solvency requirement would be a requirement for 
a report by an actuary or other expert on the overall financial strength of the 
company.  This would transcend the arbitrary dwiding hne between technical 
provisions and solvency margin and would take specific account of  the nature of  
the business written by the company,  the p r o p o m o n s  of different types of 
business, the assets held, and all other relevant factors, mcludmg the nature of  
and the security of  the reinsurance programme. 
5.10. If a requirement for an actuarial report is not introduced, then further 
consideratmn would need to be given to whether the solvency margin requirement 
should include components relating to the assets held and the reinsurance 
recoveries expected. Regard should also be had to the nature of  the outstanding 
claims portfolio and the type of business bemg written. However, such a solution 
would be far from ideal. 



103 THE SOLVENCY OF A GENERAL INSURANCE COMPANY 

TABLE 7 

ASSET MARGINS REQUIRED TO ACHIEVE 1/100 PROBABILITY OF RUIN -- Two YEARS' NEW BUSINESS 

Excess asset margin as 
Asset margin compared to run-off 

Assumptions as %o of NWP I (as 070 of NWP ~) 
Standard basis 90 50 

1 Net written premiums ~ 
(a) £1 a year 100 45 
(b) £10m a year (s) 90 50 
(c) £100m a year 80 45 

Proportion of long-taded business 
(a) 2007o of net written premmms ~ 80 50 
(b) 40070 of net written premmms t (s) 90 50 
(c) 60o70 of net wrmen premmms ) 95 50 

Real growth rate (past and future). 
(a) -20%o a year 100 35 
(b) No growth (s) 90 50 
(c) +50% a year 115 85 

Mean claim rauo 2 (short-tatled) 
(a) 80o70 of net written premmms t 30 0 
(b) 100oT0 of net written premtums i (s) 90 50 
(c) 125°/0 of net written premmms ~ 125 75 

Varmbfl~ty of claim rauo (short-taded) 
(a) Standard devmt~on 5o70 NWP ~ 80 45 
(b) Standard devmuon 10o70 NWP ~ (s) 90 50 
(c) Standard devmtton 15% NWP ~ 85 45 

Mean claim rauo ~ (long-tmled) 
(a) 80% of net written premmms ~ 50 20 
(b) 100% of net written premmms I (s) 90 50 
(c) 125070 of net written premmms t 115 60 

Vanabdlty of claim ratto (Iong-taded)' 
(a) Standard devmuon 10o70 NWP ~ 85 50 
(b) Standard devmtton 15o/0 NWP ] (s) 90 50 
(c) Standard devmtmn 20070 NWP 1 90 50 

Inmal asset dlstrJbuuon: 
Cash Gilts Equines 

(a) TP + AM - -  - -  85 55 
(b) - -  TP + AM - -  110 50 
(c) - -  - -  TP + AM 135 55 
(d) ~ TP ~TP AM (s) 90 50 

1 Premiums net of commission and expenses 
2 Ratio of clmms (including claims settlement expenses), wtthout allowance for future mflauon or 

for discounting, to premmms net of commission and expenses (see Paragraph 4 3 2) 
(s) indicates the assumption made for the standard basis 

6. REINSURANCE 

6 .1 .  R e i n s u r a n c e  b u s i n e s s  a c c e p t e d  m a y  be  r e g a r d e d  as  a n o t h e r  c l a s s  o f  

b u s i n e s s ,  w h i c h  is o f t e n  p a r t i c u l a r l y  vo l a t i l e  a n d  u n p r e d i c t a b l e .  A p p r o p r i a t e  

r e s e r v i n g  levels  f o r  c a s u a l t y  r e i n s u r a n c e  b u s m e s s  a r e  l ike ly  to  p r e s e n t  p a r t i c u l a r  
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problems, since it can take many years for the liablhties (including IBNR) to 
develop fully. Solvency margins certainly ought to have regard to this uncer- 
tainty. In principle there seems no reason why the simulation approach should 
not also provide some insights in th~s area of an insurers' portfolio. 
6.2. Much more difficult to handle in the context of  the assessment of  financial 
strength is the security of  reinsurance cessions. Many insurers are critically 
dependent on their ability to recover from reinsurers, since the size of  the risks 
they write is such as to bankrupt or cripple them if they had to bear the liability 
alone. One safeguard against reinsurance failure ,s to spread reinsurance cessions 
widely, so that there is not any great dependence on particular reinsurers. 
However, this does not remove the need to look carefully at the security of  
individual reinsurers chosen for the programme.  
6.3. From the reserving point of  view, a decxslon has to be made on the extent 
to which reinsurance recoveries can be relied on. Extreme caution might point 
towards reserving for the full gross hability but thIs is not a practical commercml 
possibility m most cases. Clearly recoveries from reinsurance companies already 
known to be in trouble should be ignored or heavily discounted, but it is more 
difficult to know what should be done when there are no specific known prob- 
lems. In accounting terms it may be difficult to set up a provision against an 
unseen and unquantifiable possibility of  reinsurance failure. On the other hand 
the accountancy concept of prudence would preclude taking credit in advance for 
receipts which are uncertain, so it wouId be possible to justify taking only partial 
credit for reinsurance recoveries, depending on an assessment of the viability of  
the reinsurers. 
6.4. The issue is of  partxcular importance in considering the overall financial 
strength of the company.  Thxs would be one aspect which the actuary would need 
to cover in h~s report. Different approaches may be acceptable in different cir- 
cumstances but simulation does seem to offer a promising way forward. Further 
work is clearly needed in this area to develop ways of modelling reinsurance 
recoveries. It has been assumed in our model that all claims are net of  rein- 
surance. This may be good enough for many companies, with relatively little 
dependence on reinsurance. However, it will be far from adequate for other com- 
panies for which the possibility of  failure to recover from reinsurers is a significant 
one and the potential impact disastrous in solvency terms. Some tentative ~deas 
of  a possible way of tackling this are set out in Appendxx 6. 
6.5. A detailed examination of the reinsurance programme can hardly be 
practicable for the supervisory authoriues and here again it seems that an ac- 
tuary 's  report would help. No general solvency requirement can be a substitute 
for this. The practice adopted for the EEC solvency margins of reducing the 
solvency margin requirement calculated on the basis of  gross written premiums 
to allow for reinsurance based on actual recoveries in the past three years, but 
with a maximum reduction of 50%, is a very rough and ready solution and does 
not have any regard to the actual dependence on reinsurers for future recoveries. 
With non-proportional reinsurance the premium can be very small in relation to 
the potentml liability, so no sxmple percentage of premium is likely to make sense 
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as a solvency margin. A percentage of  anticipated recoveries from reinsurers 
would have a stronger rationale, but it would be difficult to find a logical basis 
for any particular percentage. 

7. CONCLUSIONS 

7.1. We have outlined the weaknesses m the traditional balance sheet concept 
for describing the true financial strength of a general insurance company.  Assets 
and liabilities should not be treated as independent aspects and much more atten- 
tion needs to be focused on the uncertainties and on the company ' s  resilience in 
the face of  such uncertainties. Appropriate  techniques have been developed by 
actuaries for dealing with these problems in the life and pensions areas and 
slmdar principles can be used to begin to tackle the general insurance problem. 
The parallels are drawn out in a paper by COUTTS and DEVITT (1986). 
7.2. However, there are also differences, arising mainly from the greater 
volatility of  claim amounts in general insurance. The problem of variability can 
be explored by means of simulation. A simulation model of  a general insurance 
company provides a powerful tool for analysing the impact of  all types of  uncer- 
tainty and assessing the true financial strength of  the company.  
7.3. A solvency margin requirement expressed in terms of a simple percentage 
of  written premmms (or in terms of a percentage of technical provisions, which 
might be more appropriate to cover the run-off risk) cannot have proper regard 
to the risk to w h i c h  each company is subject, whether as regards the assets or 
liabilities. It must, therefore, be seen as a general underlying safety net, providing 
a margin against the effects not only of stochastic variations but also of  
mismanagement,  fraud or simply error, and permitting the statutory authority to 
operate a satisfactory control system. 
7.4. Despite our strong belief that the solvency margin should relate to the 
various risks affecting the financial position of  an insurance company,  we 
acknowledge that there will be interest in the use of  our mode[ to provide a 
rationale for a minimum statutory solvency margin. Time has so far prevented 
us from carrying out sufficient simulations to explore the full implications of the 
assumptions made and, in particular, the response of  the Wilkie model to changes 
in parameters.  We have also only shown the results for a probability of  ruin of  
I% and this level is of  course crucial to the resulting asset margins. 
7.5. Nevertheless at this level of  security Table 6 shows that, for a moderate 
sized company,  writing £100m of net premiums but otherwise on our standard 
basis, the margin necessary to cover the run-off risks would be 15°70 of  technical 
provlsons, assuming that the provisions for outstanding claims are set up on an 
undiscounted basis with allowance for inflation at 5°70 (the mean value used in 
the Wllkie model). The margin might be reduced to 10% if all the investments 
are assumed to be held in cash. Such a margin may be over-stringent as a 
minimum for larger companies but Table 6 indicates that it should be higher for 
small companies. A similar standard to a 10% margin would be obtained for the 
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mix of business considered here by setting up provisions for outstanding claims 
allowing for inflation at 10O7o with no discounting. 
7.6. Care has to be taken in interpreting the extra margin implied to be 
necessary to allow for the risks contingent on writing new business for two years. 
The margins to cover the run-off risk have been expressed for this purpose in 
terms of net written premium and these margins (for the respective sets of  
assumptions) have then been subtracted from the margins obtained assuming two 
further years in business. It could be argued that if the rlsks of  new business and 
run-off are to be provided for independently, then the model should be run with 
no past business in order to assess the appropriate margin for new business risks. 
We have not done this as we do not believe that the two issues are independent, 
there being interactions in regard to both assets and the variability of  the run-off 
o f  claims. Assuming that the margins expressed as a percentage of  net written 
premiums are additive, Table 7 indicates a margin of a 5 0 0  premium net of  com- 
mission and expenses for a £100m company,  otherwise on our standard basis 
apart from investment being entirely in cash. This might be equivalent to 35-40% 
of actual gross written premiums. 
7.7. Such a solvency margin requirement appears rather high and it is worth 
considering briefly some of the major  factors which give rise to it. A significant 
part arises from the effect of simulated future inflation and the possibility that 
returns on cash will not be adequate to compensate for ~t. This suggests that the 
risks might be reduced with greater use of  index-linked stocks. 
7.8. Much of  it also arises from the assumption on the standard basis of  a mean 
claim ratio of  100070 of net written premiums. As described in Paragraph 4.3.2, 
this implies break-even if future investment income exactly balances inflation. 
Thus the assumption is that business is written on a basis where the only profit 
on an expected value basis is to the extent that a positive real rate of  return can 
be obtained. This might be perceived as too stringent for a mimmum solvency 
margin requirement, although it is not unrealistic in current conditions. The re- 
quirement could be reduced by about 1070 of actual written premiums for every 
percentage point by which the expected claim ratios are reduced below 100o70. 
7.9. Any general solvency requirement will have its limitations. Apart  from the 
points mentioned in Paragraph 7.3, there is also the problem of relating the re- 
quirement to written premiums or to technical provisions, which may themselves 
be more adequate for some companies than for others. The adequacy of the 
technical provisions is of  particular importance (cf. Paragraph 5.2), since they 
determine what assets are apparently available as a margin. There is, therefore, 
a need for consistent standards to be applied in setting technical provisions, sug- 
gesting that there would be considerable advantages in requiring the provisions 
to be established on the basis of  advice from an actuary or other claims reserving 
expert, acting within the framework of  an approprmte professional standard. 
However, it has to be acknowledged that there is always likely to be some uncer- 
tainty about the strength of technical provisions. 
7.10. We have also argued that a crude minimum solvency margin requirement 
cannot adequately have regard to the true level of  risk for a particular company.  
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The supervisory authority is not well-placed to assess each company's  risk situa- 
tion in detail on an individual basis and the answer would seem to be to rely on 
an appointed actuary or other slmi|arly qualified person within the company (or 
acting as a consultant to the company). The actuary would be responsible for 
reporting both to management and to the supervisory authority on the financial 
strength of the company, taking all relevant factors into account. A summary of 
the actuary's report could appear in the statutory returns, with full details being 
available to the supervisory authority on request. The supervisory authority 
would be able to question the actuary on the effects of  alternative assumptions 
and could then discuss with management an appropriate strategy for reducing the 
risk profile to an acceptable level. 
7.11. The actuary would need to use simulation techniques in performing his 
duties. There is plenty of scope for developing appropriate simulation models for 
this task and one such model is presented here as an example of what can be done. 
Apart from providing a framework for analysing the existing position of the 
company, such models could be powerful tools for answering a wide variey of 
"what if?" questions, such as: 

what changes do there need to be to premium rates to make a particular line 
of business worth writing? 

is the investment strategy too risky with the present asset margin? 
what additional capital would be needed to pursue a particular strategy? 
will the strategy give a reasonable expected return on the additional capital? 
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APPENDIX I 
DESCRIPTION OF SIMULATION MODEL OF GENERAL INSURANCE COMPANY 

A I . I .  In standard risk theory the year to year transition formula is of the form: 

, 5 U = B + I - X - C - T  

where 
zXU is the change in the solvency margin U; 

B is the earned premium income, including safety and expense 
loadings; 

I is the net income from investments; 
X is incurred claims; 
C ~s the cost of administration, reinsurance etc.; 
T is dividends, tax, etc. 
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By implication, incurred claims includes changes to estimates of outstanding 
claims generated in previous years and included in the technical provisions at the 
start of the year in question. This formulation is also deficient in that changes 
in the values of investments are ignored. 

A1.2. General Formula 

More generally, we define: 

A A ( j ) =  A ( j ) -  A ( j -  1) 

= ~ Ak(J)  - ~ A k ( j -  1) 
k k 

where 

= Z A k ( j -  1 ) [ 1 1 + y k ( J - -  l ) l l l  + gk(J-- 1)} -- 1] 
k 

+ I B ( J ) - C ( j ) - T ( j ) - , ~ < ~ j  x( i ; j )]  

A (j) is the total value of the assets at the end of year j; A k ( j )  is the total 
value of component k of the asset portfolio at the end of year j (in our 
model k =  1 for cash, 2 for irredeemable government securities, 3 for 
ordinary shares); 

Yk(J) is the y~eld on asset component k at the end of the year j. In 
particular, in our model: 

y t (J )  = c ( j ) -  0.01 
y2(s) = c(j)  
Y3(J) = Y(J)  
where c( j )  is the yield on 2.5% Consols; 

y ( j )  is the dividend yield on the Financial Times Actuaries All- 
Share Index; 

gk(d) iS the proportionate change an capital values between the end of  
years j and ( j +  1). In particular, in our model: 

g l ( j )  = 0  

c(j)  gz( j )  - - -  
c(J + 1) 

d ( j  + l )y ( j )  g3(j)  - 
d ( j ) y ( j  + !) 

where d ( j )  IS an index of share dividends ( = &vldend yield × price 
index) corresponding to y ( j ) ;  
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B(j) is the written premium income in year j including safety and expense 
loadings; 

C(j) is the cost in year j o f  administrat ion,  commission,  reinsurance etc.; 

T(j) is the amount  paid out in dividends and tax in year j ;  

X(i;j) is the amount  settled in year j in respect o f  claims arising in year t. 

We now define B'(j)(  = B(j) - C(j)) as the written premiums in year j net o f  
commission and all expenses other than claims settlement expenses and X(1; j) 
as including claims settlement expenses. 

AI .3 .  Asset and lnflatton Models 

The asset components  Ak(j) can be defined in a variety o f  ways relative to the 
total ~ A k ( j ) .  For example, If investment or dlsinvestment is propor t ional  to 
the value o f  assets brought  forward to the end of  the year f rom the previous year- 
end, 

Ak(J) -  A(j____~) A~:(j- 1). 
A ( j -  1) 

If  propor t ions  pk(~kPk = 1) are specified such that pk o f  any new investment is 
Invested in componen t  k: 

Ak(J )=Ak( j - - l ) l l  + y k ( J - - l ) } l l  + g x ( J -  1)l 

+ p k I B ( j ) - C ( J ) -  T ( j ) -  ~<~j X(i;j)l .  

We also define q(j) as the retail price index at the end o f  year j and r(j) as the 
price growth in year j :  

r ( j ) =  q(J) 1. 
q ( j -  1) 

The variables q(j), d(j), y( j)  and c(j) are defined by an interrelated set o f  
autoregresswe models,  described m detail in Appendix 2. 

A I.4. Tax and Divtdends Model 

The dividends and tax term is expressed in terms of  the investment income and 
an input parameter  t, representing the propor t ion  o f  investment income 
absorbed by tax and dividends paid to shareholders,  by the following: 

T(j) = t ~ Ak(J-- l )yk(J - -  1). 
k 
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A 1.5. Model o f  Clatms Generation Process 

We define written premiums in the year prior to the date of assessment (taken as 
the time j = 0) as B(O) and the rate of  growth of  written premmms before and 
after that date as et and e2. Then: 

B'( j )  = B'(0)(I  + e~) j 

= B' (0)(1 + e2Y 

and 

( j  < 0) 

( j /> 0) 

B~( j )= fkB ' ( j )  for k =  1,2,3 

where fk is the proportion of written premiums in respect of type of business k 
(k = I for short-tailed, 2 for long-tailed and 3 for very long-tailed). 

Claims are assumed to be generated from written premiums by means of a 
variable claims ratio and specified proportions settled m each year of the run-off. 
Thus the estimated payment in year j in respect of premiums written in year i is 
given by: 

J 
X( i ; j )=~Sk ( j )Rk ( l )Bk ( i )  ~ [ l + r ( / ) ]  

k /=/+1 

where 

Rk(t) Is the umnflated, undiscounted claims ratio tn year t assumed to be 
normally distributed with mean Rk and standard deviation ark. For t ~< 0, 
Rk(t) = Rk. 

sk(j)  ~s the proportion of uninflated, undiscounted claims from type of 
business k that are assumed to be settled m development year j.  

A1.6. Model o f  Claims Settlement 

Claims settled in each year of development are aggregated from all the separate 
years of origin, whether before or after the date of assessment. The total amount 
of  claims settled in year j, X(j) ,  is assumed to be normally distributed with mean 
X ( j )  and standard deviaton aX( j )  + b~.'X(j) where a and b are specified con- 
stants and .~(j)  is defined as: 

J 
X ( J ) =  ~ ~ s k ( j - i ) R ~ ( t ) B ~ ( i )  1~ [ l + r ( l ) J .  

I~J k I=t+l  

A 1.7. Technical Reserves 

The technical reserves, TR(0), at the date of  assessment are calculated from the 
estimates of claims to be settled in future years arising from premiums earned 
prior to the date in question. They allow for inflation at a spemfied rate, r, and 
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d iscount ing  at a specified rate,  d. They can be expressed as fol lows:  

20 

TR(O) = ½ ~ Bi(O)Rk ~ s k ( j ) ( 1  + r)g(1 + d) -J 
k j=0  

- l 2 0  

+IRk Z nk(,) ~ skCJ)(l+ry(l+d) -~+½n~(0). 
k , r =  - 2 0  j =  - I 

The initial solvency marg in ,  SM(O), is defined as a funcnon  o f  wri t ten p r e m m m s  
m the year  before  the da te  o f  assessment:  

SM(O) = ebB' (0). 

The imtml assets are thus gwen by: 

A (0) = TR(0) + SM(0).  

APPENDIX 2 
DESCRIPTION OF STOCHASTIC MODELS USED FOR ASSETS AND INFLATION 

A2.1.  The  inves tment  and inflat ion models  used are those p roposed  by WILKIE 
(1984, 1986). A s u m m a r y  o f  the specif icat ion o f  the model  is given below. The 
var iables  used are: 

q(t) The UK retail  prices index. 
d(t) An index o f  share dividends .  
y ( t )  The d iv idend yield on these same share indices, that  is, the d iv idend 

index at the specified da te  d ivided by the share price index at that  date .  
c ( t )  The yield on 2.5o70 Consols  ( i r redeemable) ,  which is taken  as a measure  

o f  the general  level of  fixed interest  yields in the marke t .  

A2.2.  The model  used for q(t) is: 

V In lq ( t )}  = #q + c~q[7 l n [ q ( t -  1)1 - #q] + aqZq(t) 

where the backwards  difference o p e r a t o r  ~7 is defined by 

vx(t) = x ( t )  - x ( t  - 1) 

and zq(t) is a sequence o f  independen t  ident ical ly  d i s t r ibu ted  unit  normal  
var ia tes .  The values adop ted  for the pa ramete r s  are: 

#q = 0.05, O~q = 0.6, oq = 0.05. 

A2.3.  The model  for y(t) is: 

where 

l n l y ( / ) }  = ooyV l n l q ( t ) }  + y,(t)  

y,(t) = In(re) + Cey[y,(t - 1) - In(#;)] + ayZy(t) 

and zy(t) is a sequence o f  independen t  ident ical ly  d is t r ibuted  umt  no rma l  
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variates.  The values adopted  for the parameters  are: 

#y = 0.04, oey = 0.6, O v = 1.35, Oy = 0.175. 

A2.4. The  model  for  d(t) is: 

( ~a ) V l n l q ( t ) l + a a  Vln[q( t ) l  V l n { d ( t ) l = w a  1 - ( 1 - 6 a ) t ~  

+ 13aayzy(t - 1) + aaza(t) + "ya craZa(t - I) 

where the backwards  step opera to r  B Is defined by 

~x(t)  = x ( t -  l) 

and hence 

B"x(t) = x(t  - n) 

and za(t) is a sequence o f  independent  ldent~cally distr ibuted unit normal  
variates.  

The term in parentheses above  involving 6d represents an infinite series of  lag 
effects, with exponent ial ly  declining coefficients: 

~#, 

¢5a(1 - 6a), 

¢5a(1 - ~Sa) 2, etc. 

The  sum o f  these coefficients is umty,  so this part  o f  the formula  represents the 
lagged effect o f  inflation, with unit gain. This means that  if retail prices rise by 
1070 this term will also, eventually,  rise by 1°70. We can al ternatively describe it 
as the "carr ied fo rward"  effect o f  inflation m(t),  where 

m(t) = ad V ln{q( t ) ]  + (1 - 6e )m( t -  1), 

f rom which we see that  the amoun t  that  enters the dividend model  each year is 
6a times the current  inflation rate, plus (1 - ~Sa) times the amoun t  brought  forward  
f rom the previous year,  and that  this total  is then carried forward  to the next 
year.  The  values adopted  for the paramete rs  are: 

ooe= 0.8, 6e=  0.2, Ud= 0.2, 13d= --0.2,  

~a = 0.375, ad = 0.075. 

A2.5. The  model  for c(t) is: 

e ( t ) =  coc ( - 1 -  ( : &  6c)B) v l n l q ( t ) ] +  n(t), 

where 

ln ln( t )}  = I n ( k )  + (o~cB +/3cB z + W/~ 3) [ ln ln( t )}  - I n ( k ) ]  + OOcOvZy(t) + a~( t ) ,  

where zc(t) is a sequence of  independent  identically distr ibuted unit normal  
variates.  
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The  term in parentheses  in 6c has a s imilar  form to the 6d term in the d iv idend 
model ,  though  the pa rame te r  value ~s different .  It represents  the current  value o f  
expected future  inf la t ion as an exponent ia l ly  weighted moving  average  o f  past  
rates o f  inflat ion.  The  values adop t ed  for the pa ramete r s  are: 

~oc = 1.0, 6c = 0.045, ~ = 0.035, ~¢ = 1.20, 

/3c = - 0.48, Tc = 0.20, 4~c = 0.06, ac = 0.14. 

A2.6.  In teres ted readers  are referred to WILKIE (1986) for in te rpre ta t ion  o f  
what  the model  implies  and  how it can be used. A fuller descr ip t ion  o f  the der iva-  
t ion o f  the model  is given in WILKIE (1984). 
A2.7.  There  is no specific provis ion  in Professor  Wi lk ie ' s  model  for cash as an 
investment .  We have assumed that  the re turn on cash for any year  is the Consols  
yield at the s tar t  o f  the year  less one percentage  point .  

APPENDIX 3 
THE SIMULATION PROGRAM 

A3.1.1.  In o rder  to s imula te  the run-of f  o f  an insurance  c o m p a n y  it is 
necessary to make  decis ions in regard  to many  paramete rs .  F u r t h e r m o r e  it is not  
easy,  ab inmo, to select sensible values for many  o f  them.  The  p rog ra m is wri t ten 
in such a way as to al low for a range o f  values o f  each o f  the pa ramete rs .  As there 
are at least 20 pa rame te r s  or  values that  may  vary,  and several  may  have up to 
8 or  9 values,  ~t is imposs ib le  to provide  for every possible  c o m b i n a u o n  o f  values 
o f  the parameters .  Not  only would  the p rog ram take  too  long to run but  the 
vo lume o f  ou tpu t  would  be too  great  to comprehend .  
A3.1.2 .  The  p rog ram is wri t ten,  therefore ,  to a l low each o f  the pa ramete r s  to 
vary in turn over  its whole range,  whilst  the others  are kept  cons tan t  at a 
" n o r m a l "  or  s t anda rd  level. It also permits  an analysis  by two pa ramete r s  at a 
t ime,  for every possi-ble c o m b i n a t i o n  o f  the var ious  levels o f  those two 
paramete rs .  

A3.1.3 .  For  each pa rame te r  c o m b i n a t i o n  the same 1000 sets o f  r a n d o m  
numbers  are used, so that  the compar i sons  are not  s ignif icant ly affected by any 
bias in the par t icu la r  sets o f  r a n d o m  numbers  chosen.  

The Basts o f  the Stmulattons 

A3.2.1.  The p r o g r a m  works  f rom a series o f  wri t ten p remiums ,  going back 
sufficiently far into the past  to include every year  for which claims are still to be 
run off. Provis ion  is made  for three a l ternat ive  bases for  the future.  

1. A wind-up  - -  an assumed re turn  o f  the unearned  p remium reserve (UPR)  
as the po l icyholders  claim on the l iqu ida tor  for the unearned  par t  o f  their  
p remiums .  

2. A run-off  - -  the U P R  is t rans la ted  into a pa t te rn  o f  fu ture  claims payments  
and  included with payments  in respect o f  the ou t s t and ing  claims and IBNR.  
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3. A continuing business - -  the future period of writing premiums can be 
selected and after that there is a run-off as in 2 above. 

A3.2.2. It is necessary to generate claim ratios for each type of business and for 
provision to be made for the claims ratios to vary stochastically. The classes of 
business are characterized by the length of run-off period and settlement pattern 
and the proportions of  business written in each category of tail are set by three 
parameters. 
A3.2.3. The investment model is that given by WILKIE (1986). The investment 
mix may be varied according to the nature of the business and the initial invest- 
ment mix is specified separately for the technical provisions and asset margin. The 
rules for selling and buying investments may be selected. Buying is likely to occur 
where there is a continuing business and written premiums are growing but it can 
also arise in the later years of a run-off where the income from the assets is large, 
particularly in the case of larger initial asset margins. 
A3.2.4. The volume of written premiums may be allowed to grow or diminish 
over the years since this affects the ratio of outstanding claims to the latest year's 
written premiums and also the relative importance of income and outgo in respect 
of future business where this is assumed. 
A3.2.5. Corporation tax is payable by a general insurance company in the UK 
on its profits, which include capital gains as well as income and exclude any 
allowance for indexation of the purchase price of securities. However, such 
"income" is not subject to tax if it is used to pay claims and expenses, and it 
seems likely that with a company that is in any danger of becoming insolvent 
there will be past losses carried forward, as well as future claims outgo, that will 
probably absorb most, if not all, of  the income. This will mean that the effective 
rate of tax,on interest will be very low. Provision is made for notional rates of  
tax for the first five years, at rates well below the current rates of corporation tax. 
The "tax" is assumed also to include the payment of dividends to shareholders. 
This wdl result in an overstatement of the outcome in scenarios where the 
company remains solvent, but this is not the main feature of the results with 
which we are concerned. The tax treatment in the model could clearly be made 
more sophisticated. 

The Investment Model 

A3.3. The Wdkie model has been used, notwithstanding the author 's warning 
that it was not developed for short-term forecasting. Wilkie's own view is that 
its use in these simulations can be justified. We have examined the output from 
the model over several hundred simulations of 30 years and have satisfied 
ourselves that the varmtions in the values do not appear unreasonable in the light 
of experience over recent years. However, this includes the possibility of a col- 
lapse in the market such as occurred in 1974 and it might be thought that such 
a collapse would require special dispensations allow the majority of insurers to 
continue to write business. Care should, therefore, be exercised in interpreting the 
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results in so far as they depend upon the impact of  temporary abrupt falls in 
market values. 

Future Statutory Solvency 

A3.4.1. For a continuing company it is necessary to examine the financial 
position at the end of each year, if not more often. Accounts and returns have 
to be presented and a simulation of the future development of the company for 
management purposes would need to have regard to how the position might 
appear in presentational terms at each future reporting date. 
A3.4.2. For a company that is already being run-off or to test what would 
happen in such circumstances, the reporting constraint is less relevant and our 
aim has been to look at "true" solvency, rather than the position as constrained 
by reporting conventions. The model simply looks at the adequacy of  the assets 
to meet the liabilities as they are simulated to arise during the run-off. It does not 
check the solvency position as it might be reported to shareholders or to the 
supervisory authority at points during the run-off. Such a factor could be intro- 
duced if a procedure for deciding on appropriate bases for the technical pro- 
visions in future years were to be defined. 

The Choice o f  Parameters and Thetr Values 

A3.5. Every parameter is allowed to have at most 9 values, but need not be 
given more than 1. The parameters are numbered 1 to 13 and their levels 1 to 9. 
The value for level 5 is the standard and a value must be inserted for this 
parameter in every case, even if it is not included in the list of parameters to be 
analysed, since the program requires a value to be assigned for every parameter. 
A detailed list of the parameters and the factors underlying their choice is given 
below: 

1. Wrttten premiums.  The values used are £1,000,000, £10,000,000 and 
£100,000,000 a year. For a larger amount of  business the purely stochastic 
variation would be negligible in comparison with other variability, so that the 
results would be unlikely to differ significantly from those for £100,000,000 a 
year. The written premiums are taken as being net of initial expenses and 
commission. 
2. Clatm ratto - -  very long. This is the claim ratio for future business of  a very 
long-tailed nature, ~.e. w~th a run-off period of 20 years. So far no such 
business has been included in the simulations. Claim ratios are assumed to 
include the expenses of claim settlement with actual claim costs but they are 
related to written premmms net of commission and expenses (cf. Paragraph 
4.3.2). 
3. S tandarddevlat ton - -  very long. This is the standard deviation of the above 
claim ratio. 
4. Clatm ratto - -  long This is the claim ratio for future business of a long- 
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tailed nature, i.e. with a run-off period of 10 years. We have used values of  
80o7o, 100oTo, 125O7o and 150o7o. 
5. S t a n d a r d  d e v i a t i o n  - -  long.  We have used 5°7o, 1007o, 15o7o, 20°7o and 25°7o 
of written premiums. 
6. C l a i m  ra t to  - -  s h o r t .  This is the claim ratio for future business of  a short- 
tailed nature. We have used 80°7o, 100o7o, 125% and 150°7o here also. 
7. S t a n d a r d  d e v i a t i o n  - -  s h o r t .  We have used 5°70, 10070, 15°70 and 20°70 of 
written premiums. 
8. G r o w t h  rates .  Separate real growth rates may be assumed before and after 
the assessment date. Rates varying from 0.8 to 1.5 have been used and the ef- 
fect of  zero real growth up to the date of  assessment and positive or negative 
growth thereafter, and vice versa, have been examined. Inflation is auto- 
matically allowed for in the program so that the growth assumptions relate to 
growth in real terms. 
9. P r o p o r t i o n s  o f  bus iness .  These are the proportions of written premiums 
represented by very long-tailed business, long-tailed business and short-taded 
business. Only the first two are given: the program calculates the short-taded 
and checks that it is not negative. 
10. A s s e t  m i x  - -  s o l v e n c y  m a r g i n .  The proportions of  equities and gilts are 
given separately. The proportion of "cash" is calculated and checked to see 
that it is not negative. 
11. A s s e t  m i x  - -  t e c h n i c a l  p r o v t s t o n s .  As above (10). 
12. A s s e t  m a r g i n .  This is expressed as a percentage of the net written 
premiums in the last year before the date of  assessment. This margin is allowed 
to range from nil to 120o70. The normal value has been taken as 40°7o. Different 
reserving strength, arising from the assumptions made in calculating the 
outstanding claims, allowing for inflation and for discounting, can be studied 
by looking at different asset margins (cf. Paragraph 5.2). On the standard basis 
the technical provisions are established using 5°7o inflation and no discounting. 
13. Se l l i ng  rules .  There are 8 alternative rules, namely: 

(a)  Sell equities until they are exhausted, then gilts and finally cash. 
(b) Equities, cash, gilts. 
(c) Gilts, equities, cash. 
(d) Gilts, cash, equities. 
(e) Cash, gdts, equities. 
(f)  Cash, equities, gdts. 
(g) Sell rateably (i.e. in proportion to the current value of holdings). 
(h) Sell each year whatever has performed best since the start of  the run- 

off. 
Investment (where there is a surplus of  income over outgo) is always done 
rateably. It is also necessary to specifiy: 

1. The number of  future years. This ~s limited to the range 1 to 10 but the 
parameter  can take the values 0 or - I meaning that we are assuming no new 
business written and that we have either a run-off (0) or a wind-up ( -  1). 
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2. The number of  simulations. 
3. The number of parameters to be analysed, that is 1 or 2. 
4. The existence of  the very long-tailed class. This was included as an option 
to avoid having very long loops which are not needed where there is no such 
class. It was merely a program-writing device. 

The Program Plan 

A3.6. The program has been written to permit it to be run on FORTRAN IV 
(otherwise known as FORTRAN 66). In particular we have avoided the use of  
negative values in arrays. For this purpose we have assumed that the past is 
represented by years 1 to 20 and the future by years 21 to 46. Whilst this means 
that some arrays have to be larger than they would otherwise need to be, the 
simplification is worthwhile. The program is divided into sections: 
1. Imtialization. This sets out the values of the parameters, dimensions the ar- 
rays and sets some initial values. The values of the parameters could be inserted 
by lead cards if preferred. This section also includes the values of: number of 
future years, number of parameters, very long-tailed option and the number of  
simulations. This section also contains some data manipulation and checking to 
avoid time-consuming operations later in the program. 
2. The random number generator. This generates the necessary number of 
random normal variates and stores them in an array for use by the later stages 
of the program. This ensures that the same numbers are used for every variation 
within a single simulation. They are recalculated for each further simulation. The 
random number generator of the machine has been used to generate uniform 
random variates in the range 0 to 2. After subtracting 1 these are used in 
Marsaglia's polar method to generate the corresponding random normal varlates. 
This method requires pairs of uniform randoms and produces normal variates if, 
and only if, the sum of the squares of  the two vanates is less than 1. The program 
counts the number of  useful pairs and stops when it has enough to fill the array. 

We have tested this process and found that a distribution of 3 million variates 
was very closely normal, using 9-figure tables of the normal integral for the test. 
This however does not test that they come in a random order and we have further 
tested them to count the number of cases where there is a run of  1 increase or 
2 increases and so on up to 7 increases. It is not difficult to calculate theoretically 
the expected number of such runs both upwards and downwards and their 
expected size. The results are within expected limits. The methods will be des- 
cribed m detail in a paper to be written by two of the authors of this report, 
together with notes on the times taken to make the calculations. These seem to 
vary considerably from one method to another. It is perhaps worth mentioning 
that what we require are representative sequences rather than purely random 
ones. Kendall and Babington Smith noted in 1938 that a sequence of 10 l°'° ran- 
dom numbers is almost certain to contain a sequence of a million zeros (or, for 
that matter any other sequence you care to specify). This might be a random 
sequence but it is not very useful in practice. 
3. Investment values. The program now calculates the investment values for up 
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to 26 future years, depending on the particular run-off period involved. The 
values are of: 

1. The retail price index. 
2. Equity dividends. 
3. Equity yield. 
4. Gilt yield. 
5. Equity price. 
6. Gilt price. 
7. Cash yield. 
8. Borrowing rate. 
9. A net income multiplier (see below). 

10. An equity price ratio. 
l l. A gilt price ratio. 
12. A mean retail price index. 

The reason for a "cash" yield is that gilts are assumed to relate to medium or long 
term, whilst cash is either cash on deposit or very short term gilts. It is assumed 
that the cash yield is 1 o70 below that of gilts and that when cash becomes negative 
and we have to borrow, it is at a rate 2% higher than the gilt rate. The gilt and 
equity yields have a minimum of 0.5%. The equity price ratio is the square root 
of  the ratio of  the equity price at the end of  the relative year to its value at the 
start of  the year. Its purpose is to revalue equities from the year-end value, on 
which the income is based, to the mid-year value at which it is assumed that sales 
take place or purchases are made. After the mid-year transactions the remaining 
values of gilts and equities are updated to the year-end by a further multiplication 
by the equity (or gilt) price ratio. Although interest is calculated on the values at 
the start of the year, allowance is made for the loss of income on selling during 
the year by multiplying the net outgo by a factor of 1 plus half the average yearly 
yield on the investments. Whilst this assumes that the values of all three classes 
are equal, the effect of  differences is likely to be too small to be of  any conse- 
quence in practice. 
4. Best investment. The next section is really a continuation of section 3 in that 
it calculates which of the three classes of investment has performed best since the 
start of year 21 and stores this information for use later in the program. 
5. Outstanding clatms. The program now calculates the outstanding claims at the 
end of year 20. For each earlier year the program calculates the clmms according 
to the mean claim ratios and then, using the run-off rates shown in Table A3. !, 
calculates the amounts, in constant money terms, which it expects to pay out in 
each future year. 

These are stored in an array by year of expected payment and the total is 
accumulated, allowing for 5O7o future inflation, in a variable TOTOS which is the 
total provision for claim amounts outstanding at the end of year 20. By using 
these run-offs we have automatically taken into account the IBNR claims. If we 
have a wind-up situation then TOTOS is the technical provision. If we are con- 
sidering a run-off or a continuing business then we must add 50% of the written 
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T A B L E  A3 I 

F r o m  A b b o t t ,  et a l ,  1981 

D u r a u o n  f r o m  P r o p o r u o n  o f  c la ims  sett led (%)  
yea r  o f  or ig in  S h o r t - t a d  Long- t a t l  

0 6 1 2  5 6  
I 24  1 2 5 3  
2 5 2  1 8 7  
3 3 7  1 3 2  
4 2 7  10.4 
5 2 2  7 9  
6 0 9  6 4  
7 - -  4 6  
8 - -  3 8  
9 - -  3 0  

10 - -  I I  

I 0 0 0  I 0 0 0  

premium for year 20 into TOTOS as the unearned premium reserve. This figure 
for technical provisions, together with the asset margin obtained from the 
product of the assumed asset margin percentage and the written premiums for 
year 20, enable us to calculate the initial amounts of each type of asset using the 
specified proportions. This is the initial investment portfolio. 
6. Future premiums. We next add into the arrays of future payments the 
expected contribution to claims outgo arising from future written premiums and 
from the unearned premium reserve for the last year, to give the expected claims 
outgo in constant money terms. 
7. Emerging costs. The program now has the information to enable it to calculate 
the expected payments in each future year. The claims outgo is adjusted for infla- 
tion according to the Wilkie model and is allowed to vary stochastically. We 
assume a normal distribution and a formula of 0 .15X= 75,iX as the standard 
deviation for the total claim outgo in any year. The square root factor is 
dominant for the smaller amounts and the smaller companies but for the larger 
companies the stochastic variation is negligible and it is only realistic to assume 
some sort of overall secular variation (see Appendix 5). 

We take the values of assets at the beginning of the year and calculate the 
income on each type of  asset, reducing the total income for the year by the tax 
factor where appropriate. We then have the outgo, adjusted to allow for inflation 
and stochastic variation, less the income and less any written premiums for a 
continuing business. As mentioned in A3.6.3 we adjust for the loss of part of the 
year's investment income as a result of net selling during the year (or vice versa 
m a net buying situauon). Investment or dlsmvestment ~s assumed to take place 
at mid-year values. If there ~s net investment, it is assumed to be made propor- 
tionately to the existing values of the three classes of investment. Where there is 
net outgo, the specified selling rule is applied. 
8. Final assets. This process continues until the last year's claims outgo has been 
paid. The final assets are in the currency of the final year as a result of the applica- 
tion of the investment model which revalues the assets, combined with the models 
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for income and outgo in each year which allow implicitly for future inflation. In 
order to bring the final asset value into the currency of the start of the run-off, 
it is divided by the ratio of the retail price index in the final year to that at the 
date of assessment. The result is then expressed as a percentage of the written 
premiums in year 20 (the year before the date of assessment). These values from 
the 1000 simulations are grouped into ranges and output as a distribution, 
together with their mean and standard deviation. 

APPENDIX 4 

RESULTS OF SIMULATION 

Full details of  the results of 1000 simulations on a variety of different bases are 
set out in Tables A4.1 to A4.4. Tables A4.1 and A4.2 show summary distribu- 
tions of the simulations by the assets remaining at the end, as well as the number 
of  insolvencies and the mean and standard deviation of the d~stributions. Results 
are also given for a few additional variants not tabulated in Tables 4 and 5. 
Tables A4.3 and A4.4 also include a number of additional variants and 
Table A4.4 shows the addiuonal asset margin required in the case of 2 years' new 
business as compared to the pure run-off with the same assumptions (m so far 
as these are apphcable). 

The tables show the standard basis at the top and also m each of the groups 
of  alternative assumptions (marked (s)). The variants examine the effect of vary- 
ing the one assumption referred to, whilst leaving all the other assumptions the 
same as in the standard basis. 

The assumptions underlying the standard 

Net written premiums ~ 
Proportion of long-tailed business 
Past growth 
Future growth 
Mean claim ratio 2 (short-tailed) 
Standard deviation of CR 2 

(short-tailed) 
Mean claim rauo z (long-tailed) 
Standard devmtion of CR 2 

(long-tailed) 
Imtial asset distribution 

Asset selling rule 
Asset margin (for Tables A4.1 

and A4.2) 

1 Premiums net of commission and expenses 

basis are as follows: 

£10m a year 
4007o of net written premiums 
In line with inflation 
In line with inflation 
100070 of  net written premmms ~ 

1007o of net written premiums 1 
10007o of net written premiums ~ 

1507o of net written premiums 1 
Technical provisions: 

50°7o cash; 5007o gilts 
Asset margin: 10007o equities 
Proportionate to holdings 

40°70 of net written premiums 

2 Ratio of claims (including claims settlement expenses), without allowance for future inflation or 
for discounting, to premiums net of commission and expenses (see Paragraph 4 3 2) 



TABLE A4 1 

SUMMARY OF RESULTS FOR PURE RuN-OFF OF BUSINESS (WITH 1000 SIMULATIONS) 

-t 
2~ 
r'rl 

O 
I'- < 

Assumptions 

Standard basis 

No of 
No of simulations with remaining assets ~ of. 

insolvencies 0%-40% 40%-80% 80%-120% 120%-160% Over 160% 

8 98 252 264 173 205 

Standard Z 
deviation ,.< 

Mean assets of assets O 
remaining ~ remaining ~ -~ 

% o7o > 

112 70 cn Z 
m 

I Net written premiums.2 
(a) £1m a year 
(b) £10m a year (s) 
(c) £100m a year 

2 Proportion of long-tailed business- 
(a) 20o70 of net written premiums 2 
(b) 40% of net written premiums 2 
(c) 60°70 of net written premiums 2 

3 Initial asset distribution 
Cash Gilts 

(a) T P  + A M  
(b) -- TP + AM 
( c )  - -  - -  

(d) ~TP ~TP 
(e) ' ' ~ AM ~TP + j A M  ½TP+ 
(f) ½TP + ~AM -- 

(g) TP - -  

20 119 227 250 171 213 113 75 
8 98 252 264 173 205 112 70 
6 93 258 275 164 204 112 69 

3 126 321 293 153 104 94 55 
8 98 252 264 173 205 112 70 

13 88 197 230 184 288 130 85 

Equities 
- -  3 128 303 295 162 109 95 53 
- -  20 159 220 208 142 251 120 98 

TP + A M  49 124 182 181 149 315 136 115 
AM (s) 8 98 252 264 173 205 112 70 

- -  14 127 260 255 150 194 107 72 
½TP + ½AM 12 85 222 278 184 219 118 72 

AM 3 93 283 312 176 133 102 54 

> 
t -  

7 _  
Car/ 
c 
~o 
> 

63 

63 
0 
"E 
> 
z 



TABLE A4 1 (Continued) ~.~ 
to 

Standard 
devlauon 

No. of simulations with remaining assets i of Mean assets of assets 
No of remalnlng~ remalnlngl 

Assumptions insolvencies 0%-40o7o 40o70-80o7o 80%-120o70 120o70-160o7o Over 160% o70 o7o 

Standard basis 8 98 252 264 173 205 112 70 

> 

Z 

4. Initial asset margin 
(a) 0% of net written premiums + 134 336 292 138 58 44 52 55 
(b) 20o70 of net written premiums 2 36 210 312 222 ll7 102 83 62 
(c) 40~0 of net written premiums 2 (s) 8 98 252 264 173 205 112 70 
(d) 60g/0 of net written premiums 2 2 34 149 244 212 360 147 80 
(e) 80o70 of net written premmms 2 0 12 74 184 211 519 180 90 
(f) 100o70 of net written premiums 2 0 4 34 117 186 659 212 100 

5 Asset selling rules: 
(a) Equities, gilts, cash 9 133 285 262 152 159 102 66 
(b) Eqmtles, cash, grits 16 142 233 241 143 225 113 81 
(c) Gdts, equines, cash 5 123 246 285 181 160 105 61 
(d) Gilts, cash, equities 3 67 249 314 201 166 111 58 
(e) Cash; gilts, equities I I 134 212 237 168 238 120 83 
(f) Cash, equines, gdts 7 78 245 244 185 241 123 79 
(g) In proportion to holdings (s) 8 98 252 264 173 205 112 70 
(h) Sell best performer first 14 131 239 268 158 190 108 70 

0 
C 

m 

m 

m 

Z © 

I Deflated to the date of assessment and expressed as a percentage of net written premiums 2 m the year before the date of assessment (see Appendix 3 6 8) 
2 Premiums net of commission and expenses 
(s) indicates the assumption made for the standard basis 

~D 

> 
Z 



TABLE A4 2 

SUMMARY OF RESULTS WITH 2 FURTHER YEARS' BUSINESS (WITH 1000 SIMULATIONS) 

Assumptions 

Standard basis 

No of  
insolvencies 

50 

No of simulations with remaining assets ~ of'  

007a-40~o 40070-80070 80~o-120070 120o7o-160O7o Over 16007o 

96 146 171 175 362 

Mean assets 
remaining 

07o 

144 

Standard 
devmuon 
of assets 

remaining ~ 
070 

109 

/-/-1 

© 

< 

z 
1. Net wrmen premiums 2 

(a) £1m a year 61 106 144 155 161 373 144 117 ..~ 
(b) £10m a year (s) 50 96 146 171 175 362 144 109 © 
(c) £100m a year 43 96 144 181 172 364 144 107 "~ 

2 Proportion of long-tailed business' 0 
(a) 10070 of net written premmms 2 52 136 217 220 164 211 108 83 zt'rl 
(b) 20070 of net written premiums 2 48 116 190 212 159 275 120 91 m 
(c) 40070 of net written premiums 2 (s) 50 96 146 171 175 362 144 109 >. 
(d) 60070 of net written premiums 2 52 83 120 141 159 445 168 130 t- 
(e) 80070 of net written premiums 2 53 77 99 117 126 528 191 151 
(f) 90070 of net written premiums 2 58 71 93 106 118 554 203 162 

70 
3 Future real growth rate (in constant 

money terms). Z 
(a) -20070 a year (real past growth m 

-20070 p a ) 53 78 118 143 144 464 171 134 
(b) No growth (no real past growth) (s) 50 96 146 171 175 362 144 109 0 
(c) + 500//o a year (real past growth 

+50°70 p a ) 83 94 139 149 155 380 144 121 
(d) +30070 a year (no real past growth) 66 93 131 144 151 415 155 127 'Z 
(e) +5007o a year (no real past growth) 86 80 122 130 137 445 164 141 

4 Mean clmm ratio s (short-taded) 
(a) 8007o of net written premiums 2 7 47 105 129 177 535 187 117 
(b) 10007o of net written premmms 2 (s) 50 96 146 171 175 362 144 109 
(c) 125070 of net written premmms 2 165 167 177 168 120 203 90 103 
(d) 150070 of net written premiums 2 380 158 183 110 67 102 35 102 



T A B L E  A4 2 (Continued) ~a 
SLMMARY OF RESULTS WITH 2 FURTHER YEa.RS' BUSINESS (WITH 1000 SIMULATIONS) 

Assumpt ions  

S tandard  basis 

No of s imula t ions  with r ema in ing  assets ~ of  
No of  

insolvencies 0 % - 4 0 %  40%-80%0 80~0-120070 1 2 0 % - 1 6 0 %  Over 160% 

50 96 146 171 175 362 

Mean assets 
remain ing  J 

% 

144 

S tandard  
deviat ion 
of  assets 

remain ing  
% 

109 

Z 

7~ 
Z 
t ~  

5. Vanabd l ty  of  c la im rat io  (shor t - ta i led)  
(a) S tandard  devia t ion  5070 N W P  2 49 
(b) S tandard  devia t ion  10%0 N W P  2 (s) 50 
(c) S tandard  devia t ion  15% N W P  z 48 
(d) S tandard  devia t ion  20Wo N W P  2 52 

6 Mean claim ra t io  ~ ( long-tai led) 
(a) 80% of  net writ ten p remiums  2 17 
(b) 100% of  net writ ten p remiums  2 (s) 50 
(c) 125% of  net wrttten p r e m m m s  2 105 
(d) 150% of  net written p remiums  2 195 

7 Variabi l i ty  of  c la im rat io  ( long-faded)  
(a) S tandard  deviat ion 5% N W P  z 49 
(b) S tandard  deviat ion 10% N W P  z 50 
(c) S tandard  deviat ion 15% N W P  z (s) 50 
(d) S tandard  devia t ion  20% N W P  2 49 
(e) S tandard  devia t ion  25% N W P  z 50 

8 Imtla l  asset d is t r ibut ion  
Cash Gilts Equi t ies  

(a) T P  + A M  - -  - -  46 
(b) - -  TP + AM - -  79 
(c) - -  - -  TP + A M  86 
(d) }TP ] T P  AM (s) 50 
(e) ½ T P + } A M  } T P + } A M  - -  61 
(f) }TP + ~AM - -  }TP + }AM 43 
(g) TP - -  A M  41 

97 142 178 170 364 144 109 
96 146 171 175 362 144 109 
96 148 168 173 367 144 111 
94 144 170 172 368 145 112 

62 136 161 195 429 163 106 
96 146 171 175 362 144 109 

139 155 160 138 303 120 114 
139 164 143 119 240 97 120 

84 159 172 171 365 144 109 
89 156 172 168 365 144 109 
96 146 171 175 362 144 109 

101 137 176 176 361 144 110 
104 135 174 172 365 144 I11 

130 186 204 173 261 118 86 
121 141 147 124 388 155 152 
91 112 131 113 467 181 172 
96 146 171 175 362 144 109 

120 162 159 163 335 136 113 
77 141 174 159 406 152 112 
97 166 208 182 306 128 87 

t'rl 
77 

0 
C 

m 

z 
© 

> 
z 

- t  
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Initial asset margin 
(a) 0070 of net written 9remlums 2 
(b) 2007o of net written 
(c) 40070 of net written 
(d) 60070 of net written 
(e) 80% of net written 
(f) 100% of net written 

Asset selhng rules 
(a) Equities, gilts, cash 
(b) Equities, cash, gilts 
(c) Gilts; equities; cash 
(d) Gilts, cash, equities 
(e) Cash, gilts, equities 
(f) Cash; equities, gilts 
(g) In proportion to holding (s) 
(h) Sell best performer first 

196 204 197 154 97 151 74 98 
9remlums 2 103 148 197 167 140 244 109 105 
9remlums 2 (s) 50 96 146 171 175 362 144 109 
Jremlums 2 24 54 I 15 151 158 497 180 123 
9remlums 2 11 29 75 127 140 619 216 133 
~remlums-' 3 18 45 88 128 718 252 144 

t'rl 
56 120 161 175 150 338 136 113 
63 103 156 169 138 371 144 120 © 
51 106 154 165 181 343 137 103 < 
35 87 141 192 197 348 142 99 

Z 
41 76 143 173 173 394 154 116 
52 90 144 153 168 393 151 119 
50 96 146 171 175 362 144 109 © 
58 I01 154 164 159 364 142 114 

I Deflated to the date of assessment and expressed as a percentage of net written premiums 2 in the year before the date of assessment (see Appendix 3 6 8) 
2 Premiums net of commission and expenses 
3 Ratio of claims (including claims settlement expenses), without allowance for future inflation or for discounting, to premiums net of commission and 

expenses (see Paragraph 4.3.2) 
(s) indicates the assumption made for the standard basis 

O 
t"rl 
Z 
I'rl 

> 
I'- 

Z 

c 

z 

0 

> 
z 



T A B L E  A4 3 

ASSET MARGINS REQUIRED TO ACHIEVE 1/100 PROBABILITY OF RUIN - -  NO FUTURE NEW BUSINESS 

Asset  marg in  Asset  marg in  as 070 of  
A s s u m p t i o n s  as 070 of  N W P  I technical  provis ions  

S tandard  bas is  40 15 

1 Net wri t ten p r e m m m s '  
(a) £1m a year 55 25 
(b) £10m a year (s) 40 15 
(c) £100m a year 35 15 

2 P r o p o r t i o n  of  long- ta i led business 
(a) 2007o of  net wri t ten  p r e m i u m s  ~ 30 15 
(b) 40070 of  net wri t ten p remiums  ~ (s) 40 15 
(c) 60070 of  net wri t ten p remiums  I 45 15 

3. Ini t ial  asset d i s t r ibu t ion  
Cash  Gil ts  Equi t ies  

(a) TP + AM - -  - -  30 10 
(b) - -  TP + AM - -  60 25 
(c) - -  - -  TP + AM 80 35 
(d) ~TP ~TP AM (s) 40 15 
(e) ~TP + ~AM ~TP + ½AM - -  50 20 
(f) ~TP + ~AM - -  ~TP + ~AM 45 20 
(g) TP  - -  AM 30 l0  

4. Asset  selling rules: 
(a) Equi t ies ;  gilts;  cash 40 15 
(b) Equi t ies ,  cash;  gil ts  50 20 
(c) Gil ts ,  equit ies;  cash 35 15 
(d) Gdts ,  cash,  equi t ies  30 l0  
(e) Cash;  gil ts ,  equit ies  35 15 
(f)  Cash ,  equit ies;  gilts 45 20 
(g) In p ropor t ion  to ho ld ings  (s) 40 15 
(h) Sell best pe r fo rmer  first 55 25 

1. P r e m i u m s  net o f  commiss ion  and expenses  
(s) indicates  the a s sumpt ion  made  for the s t andard  basis  

T A B L E  A4 4 

ASSET MARGINS REQUIRED TO ACHIEVE 1/100 PROBABILITY OF RUIN - -  T w o  YEARS NEW BUSINESS 

Assumpt ions  

S tandard  basis 

Excess asset margin  
as compared  

Asset  margin  to pure run-off  
as 070 of  N W P  t (as 070 of  N W P  I) 

90 50 

Net wri t ten p remiums  * 
(a) £1m a year 
(b) £10m a year (s) 
(c) £100m a year 

P r o p o r t i o n  of  long-tai led business 
(a) 10070 of  net wri t ten p r e m i u m s  1 
(b) 20070 of  net wri t ten p r e m m m s  1 
(c) 40070 of  net w r m e n  p r e m i u m s  I (s) 
(d) 60070 of  net w r m e n  p r e m i u m s  * 
(e) 80070 of  net w r m e n  p remiums  * 
(f) 90070 of  net wri t ten p remiums  ~ 

100 45 
90 50 
80 45 

75 45 
80 50 
90 50 
95 50 

100 40 
105 40 



T A B L E  A4 4 (Contmued) 
ASSET MARGINS REQUIRED TO ACHIEVE 1/100 PROBABILITY OF RUIN - -  T~O YEARS' NEW BUSINESS 

Assumpt ions  

S tandard  basis  

Excess asset marg in  
as compared  

Asset  marg in  to pure run-off  
as 07o of  N W P  ~ (as 070 of  N W P  j) 

90 50 

3 Future  g rowth  rate (m cons tant  money  terms) 
(a) -20°//0 a year  (real past g rowth  -20070 p.a ) 100 35 
(b) No growth  (no real past  g rowth)  (s) 90 50 
(c) +50070 a year (real past g rowth  +500/0 p a.) 115 85 
(d) +30070 a year (no real past g rowth)  100 65 
(e) +500/0 a year (no real past  g rowth)  120 85 

4 Mean  c lmm r a u o  (shor t - taded)  
(a) 80°70 of  net wri t ten p r e m m m s  ~ 30 0 
(b) 100070 of  net wri t ten p r e m m m s  ~ (s) 90 50 
(c) 125070 of  net wri t ten  p r e m m m s  I 125 75 
(d) 150070 of  net wri t ten p r e m m m s  ~ 180 115 

5 V a n a b l h t y  of  c la im rano  (short- ta i led)  
(a) S tandard  devia t ion  5O/o N W P  ~ 80 45 
(b) S tandard  devia t ion  10070 N W P  I (s) 90 50 
(c) S tandard  dev lauon  15070 N W P  ~ 85 45 
(d) S t anda rd  dev lanon  20070 N W P  t 90 50 

6 Mean c lmm ra tm 2 ( long-tai led)  
(a) 80070 of  net w r m e n  p r e m m m s  ~ 50 20 
(b) 100070 of  net wri t ten p r e m m m s  ~ (s) 90 50 
(c) 125070 of  net wri t ten p remiums  ~ 115 60 
(d) 150°7o of  net wri t ten p r e m m m s  ~ 150 85 

7 Varmbih ty  of  c lmm rano  ( long-tai led)  
(a) S tandard  devmuon  5070 N W P  ~ 80 45 
(b) S t anda rd  devmuon  10% N W P I  85 50 
(c) S tandard  devJatmn 15070 N W P  ~ (s) 90 50 
(d) S tandard  dev lauon  20O7o N W P  t 90 50 
(e) S t anda rd  dev iauon  2507o N W P  ~ 90 50 

8 Inmal  asset d i s t r ibu t ion  

Cash Gil ts  Equines  

(a) TP + AM - -  - -  85 55 
(b) - -  TP + AM - -  110 50 
(c) - -  - -  TP + AM 135 55 
(d) ~TP ~TP AM (s) 90 50 
(e) ~ T P + ~ A M  ~ T P + ~ A M  - -  90 55 
(f) ~zTP + ~AM - -  I T P + I A M  90 45 
(g) TP - -  AM 75 45 

9 Asset selhng rules 
(a) Equi t ies ,  g~hs, cash 95 55 
(b) Eqmt les ;  cash; gilts 95 45 
(c) Gdts ;  equines ;  cash 90 55 
(d) Grits, cash,  equ ines  70 40 
(e) Cash ,  gilts,  equines  85 50 
(f) Cash,  equines ,  gilts 95 50 
{g) In p ropor t ion  to ho ld ings  (s) 90 50 
(h) Sell best pe r fo rmer  first 95 40 

1 P r e m m m s  net o f  commiss ion  and expenses 
2 R a n o  of  c lmms ( including c lmms set t lement  expenses),  wi thout  a l lowance  for future  mf lauon  or 

for d~scountmg, to p r e m m m s  net of  c o m n u s s m n  and expenses  (see Pa rag raph  4 3 2) 
(s) indicates  the a s s u m p n o n  made  for the s t andard  bas~s 
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APPENDIX 5 
VARIABILITY OF CLAIMS OUTGO 

A5.1. In DAYKIN and BERNSTEIN (1985) it was assumed that the amount of  the 
payments made m each development year for each year of origin varied log- 
normally. This meant that a payment amount that was to be varied stochastically 
was multiplied by exp(RS + M)  where R is a random normal variate, S the 
standard deviation and M the mean. In order that the overall mean should be 
correct the value of M has to be equal to minus half the square of the standard 
deviation. This formula is suitable for a single payment, but in most cases the 
payment amounts considered were the totals of several or many individual 
amounts. Furthermore different values would need to be adopted for funds of 
different sizes if account was to be taken of  the fact that variation is not the same 
for a small fund as for a large one. 
A5.2. This was cumbersome and not entirely satisfactory, so an alternative 
approach was sought. The formula should reflect the number of payments in- 
volved and, if possible, the ratio of the standard deviation to the mean (the 
coefficient of varmtion). Consideration was given to the estimation of the 
numbers of claims (or claim payments) m each year's totals. We were unable to 
obtain any figures from actual portfolios but information from returns to the 
supervisory authority and from other sources suggested that for short-tailed 
business an average payment rising from £500 in the year of occurrence by 
multiples of 2 to £16,000 in the last year of development was not unreasonable. 
For long-tailed business the average payments rose over 10 years from £800 to 
£15,000. 
A5.3. We assumed that coefficients of variation were in the range of 2 to 10, 
increasing at later durations as fewer, larger claims are settled. We were then able 
to estimate both the numbers of claims and their average amounts for different 
mixes of business by year of development. For this purpose it was assumed that 
claims were identical with payments, and whilst this is clearly not the case, it ~s 
not thought that it would make much difference if we were able to make more 
detailed assumptions. These calculations suggested that the formula for standard 
deviation should be a multiple of the square root of  the number of claims, or its 
deemed equivalent, the total amount of payment. For convenience we used the 
amount of money, even though inflation would involve a change in the multiplier 
over time. 
A5.4. It must be reahzed that precision was out of the question since we could 
not take into account all the possible variations in the make-up of a portfolio. 
It was also necessary to have regard to the fact that the bulk of  the outstanding 
claims are paid in the first two or three years of run-off and relate primarily to 
the latest two or three years' business. Calculations showed that out of total 
outstandings of  £1 million about one-half was paid in the first year and a quarter 
m the next year. By year 7 the payments were under £20,000, so that variation 
in these later years was less significant in the overall context. What is more, for 
many insurers the later payments, if they turn out to be large, may well be 
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recoverable from reinsurers and so not form part of the problem for net run-off 
patterns. It simply moves the problem to another area. Further consideration 
would need to be given to the variability of the tail in the case of a company with 
a lot of long-tailed business and relatively high retentions. 
A5.5. Experiment suggested that a multiplier of about 50 to 100 times the 
square root of the amount (in pounds sterling in 1986) was of the right order of 
magnitude. However, it was clear that whilst this gave a reasonable amount of 
variation for the smaller insurer it was wholly inadequate for a large one. In 
present conditions most of the variation for the larger fund arises from secular 
change and this is more likely to be proportional to the actual amount to be paid 
than to its square root. The problem is to choose a multiplier to give a realistic 
variation. Experience over recent years suggests that it must be at least 0. l, to give 
a variation of 2007o in 95°7o of all cases. We finally adopted the formula 

SD = aX + b~X 

using values of 0.15 for a and 75 for b. 
A5.6. This formula is similar to one which we understand was introduced by 
the Finnish supervisory authority in 1952. Whilst we are well aware of  the 
approximations and assumptions involved in its derivation, we think it is 
adequate for the purpose, although it can be considered as simply one of a class 
of possible formulae. It also greatly simplifies the calculations. As indicated 
above, the earlier paper calculated the outgo for each future year for each year 
of occurrence and for each length of  tail separately and applied the stochastic fac- 
tor to each such amount. The main effect of this was to reduce the overall varia- 
tion compared with applying the same formula to the total and this effect can be 
achieved by adjusting the overall level of the variation. It was decided, therefore, 
to calculate the total outgo in each year, including that from future business 
where appropriate, and apply the variability factor to the total. 
A5.7. It is interesting to compare the values produced by the formula with those 
from the exponential basis. The comparisons, with values of  R corresponding to 
the 5°70, 25070 and 50070 points, are shown in Table A5.1. The correspondence 

TABLE A5 I 

STOCHASTIC MULTIPLIER (I + RS) FOR DIFFERENT VALUES OF R AND STANDARD DEVIATION (S) 

log-normal 
S = 0 3  
S = 0 5  

square root formula 
(S= 0 15X+ 75,'X) 

X =  100,000 
S = 1,000,000 
X =  10,000,000 

Random normal varlate (R) 

024 074 1 0 1 26 1.76 
0.56 0.85 I 0 1 15 1.44 
0 66 0 88 I 0 1.12 1 34 

- 1  96 - 0 6 7 5  0 0675 I 96 

0 53 0 78 0 96 I 17 1.72 
0 33 0 63 0 88 1.24 2 35 
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between the two formulae, coupled with the size of variation by insurer, suggests 
that the new formula is m line with the old but more realistic in its relation to 
the actual amounts of payments. 

APPENDIX 6 
POSSIBLE APPROACH TO SIMULATING REINSURANCE RECOVERIES 

A6.1. It is not possible to simulate reinsurance recoveries in our model m any 
very precise way, firstly because it is too complicated and secondly because the 
model simulates claims only in aggregate. It would in principle be possible to 
think in terms of a specified number of reinsurers, each bearing a share of the 
anticipated reinsurance recoveries, and find a way to model the failure of rein- 
surers. Rather easier, and probably no less realistic, would be to go directly to 
the proportion recovered. One way of approaching the problem is set out below. 
A6.2. Reinsurers would be allocated to say, three categories - -  strong, average 
and weak. For any class of business the proportion of reinsurance recoveries 
anticipated from each of the three categories of reinsurer would be input as data. 
The model would then be to apply a process, defined separately for each category, 
to determine the proportion not recovered in respect of any particular year's 
estimated gross claim payments. There remains, of  course, the problem of 
estimating gross claims payments and simulating their out-turn, so that there 
would be considerable practical problems in implementing an approach of this 
sort. 

A6.3. The probability of recovery would be related to the gross claims out-turn. 
This could be done by taking the estimate of gross claims paid in the year in 
question to be the mean estimate of claims paid, based on proportions expected 
to be settled in the year, the rate of  inflation assumed in setting the technical 
provisions and, in the case of  claims arising from future business, the mean claim 
ratio. There would then be a set of formulae, one for each category of reinsurer, 
to define the proportion of gross claims paid in the year which is assumed not 
to be recovered, based on the ratio of gross claims out-turn to estimated gross 
claims for the year. For year j we might, for example, define the proportion not 
recovered, Y ( j ) ,  by: 

Weak  

k(j) 
Y ( j )  = 0 < k ( j )  < 200 

2OO 

A verage 

Y ( j )  = 

Strong 

Y ( j )  = 

k ( j )  - 50  

5O0 

k ( j ) -  ]00 
800 

50 < k ( j )  < 550 

100 < k ( j )  < 900 



THE SOLVENCY OF A GENERAL INSURANCE COMPANY 13l 

where 

k ( j )  _ X ( j )  
l + - -  

lO0 Z 20:j)  

X ( j )  = actual  total  gross claims settled in year  j 

and  

,.~'(~ : j )  = expected gross claims se t t lement  in year  j in respect o f  year  
t~<j 

of  origin t on basis of  mean claims ra t io ,  assumed set t lement  pa t te rn  and 
expected inflat ion.  

In terms of  the no ta t ion  of  A p p e n d i x  l :  

,Y(t; j )  = ~ s k ( J  - l ) R k B ~ ( i ) ( l  + r y - ' .  
k 

A6.4.  The fo rmulae  can obvious ly  be adap ted  to reflect one ' s  ideas o f  a plausi-  
ble model  for re insurance  recoveries.  The general  pr inciple  o f  these i l lustrat ive 
fo rmulae  is that  one would  expect  higher p ropo r t i ons  not  recovered for  weaker  
reinsurers  and that ,  above  a cer tain th reshold ,  higher claims relat ive to the 
expected level o f  claims imply a higher  p r o p o r t i o n  not  recovered.  These fo rmulae  
do  not  a t t empt  to dis t inguish between high claims as a result  o f  high initial  loss 
rat ios ,  high inflat ion and adverse  deve lopment .  In pr incip le  one could  also 
develop some form of  cumula twe  tr igger so that  fai lure to recover  increased with 
a series o f  high claims payments  ra ther  than s imply  on the basis o f  a single year.  
A6.5.  Cons ide ra t ion  would  also need to be given to whether  to app ly  the 
fo rmulae  to all classes together  or each class separa te ly .  Poss ib ly  the most  
realist ic would be to app ly  it to the total  claims on those classes o f  business where 
significant amoun t s  are re insured.  
A6.6.  The  s imple a p p r o a c h  suggested here may  not be sufficiently realist ic for 
some companies  for whom re insurance  recovery ~s a m a j o r  issue. Fu r the r  
deve lopmen t  o f  these ideas is c lear ly needed.  However ,  it is suggested that  it may  
be possible  to ob ta in  a useful indica t ion  o f  the role of  re insurance  in a par t i cu la r  
case by the use o f  s t r a igh t fo rward  models .  
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BOOK REVIEWS 

H. U. GERBER (1986). Lebensverslcherungsmathematik. Springer Verlag, Berlin 
etc.; Vereingung Schweizerischer Verstcherungs-mathematiker, Zurtch. XIII,  
125 pages, DM 98.00. 

In the past decades there has been - -  and to a certain extent still is - -  a gap 
between practitioners on the one hand and researchers in the field of actuarial 
mathematics on the other, at least in Germany. While many mathematicians at 
the umversities have been inclined almost to ignore actuarial apphcations, people 
from insurance companies have had the impression that stimulating and 
innovatwe new ideas for their business were not to be expected from scientists 
working in the ivory-tower of a university. These facts need to be kept in mind 
when a new book on life insurance mathematics has to be assessed, written m 
German by a leading expert in the fields of actuarial mathematics and risk theory. 

It ~s true that for the techniques of hfe insurance elementary deterministic 
models based on the calculation of interest suffice and will still suffice for the 
foreseeable future, at least in the mass business. Nevertheless, these traditional 
models are unsatisfactory because they do not take into account the random 
character of  insurance processes on the one side nor do they take advantage of 
data-processing and modern computers on the other. 

This ~s the starting point of  the present monograph: mortality tables are 
replaced by stochastic models based on a random variable Tdenoting the residual 
life time of a person, and tabulations of commutation functions and the like are 
supplanted by algorithms, especially recursions. Compared with this, the topics 
of the individual chapters are fairly conventional. 

Chapter 1. Calculation o f  Interest. Indispensable preliminaries, presented 
concisely and elegantly. 
Chapter2. The Future Life Ttme o f  a Person Aged x. The stochastic model - -  
the life time variable and distribution m and related notation. 
Chapter 3. Capttal Assurances. Discussion of  the cash value of a capital. Since 
this is a random varmble by definition, not only the net single premium - -  the 
expected value - -  but also the variance of the cash value is of interest. 
Chapter 4. Ltfe Annuitzes. Calculation of cash values and net single premiums. 
Chapter 5. Net Premtums. Derivation of well-known formulae for various types 
of insurance. 
Chapter 6. Net Level Premium Reserves. Again, standard results as well as 
results appearing in the stochastic model only, are proved, e.g. Hattendorf 's  
theorem. 
Chapter 7. Several Causes o f  Decrement. Inclusion of  an additional random 
variable describing the cause of  decrement. 
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Chapter 8. Joint Ltfe Assurance. Here the advantages of  the stochastic model 
are particularly obwous, and analogies with reliability theory are made (joint life 
status/series structure, last-survivor status/parallel structure). 
Chapter9. Aggregate Claims of  a Collective. Risk theoretic considerations, 
especially the development and numerical treatment of  the distribution function 
of the aggregate clmms. 
Chapter lO. lncluston of Expenses. Incorporation of the third base of  
calculation. 
Chapter 11. Estimatton of Probabdtttes of  Death. Classical methods and pro- 
cedures from mathematical statistics. 
Appendtx A Commutatton Values 
Appendix B. Stmple Interest. 

The present monograph thus has as many chapters as the first volume of 
Saxer's standard work. Regarding the contents, the amount  of overlap is about 
sixty per cent. The book is written clearly, precisely and elegantly. As in his 
pioneering book on risk theory, the author succeeds brilliantly in bridging the gap 
between intuition and rigour. 

Compared with this, there are only a few minor points to be criticized. First 
of  all, the use of  stochastic models appears to be a bit half-hearted now and then, 
especially so with respect to their connections with reliabihty theory. Symp- 
tomatically, in the Foreword a probability space (fl ,A,P) is mentioned in pass- 
ing, whereas in the text the symbol Pr, which is never defined exphcitly, is used 
whenever probabilities are represented - -  even 'probabilit ies '  of  the type 
Pr(t < T< t + dt). 

Naturally, the practical needs of  an actuary over and above the technical and 
mathematical aspects, e.g. statement of  accounts, are not met by the present 
book. However,  practitioners from life assurance m~ght be interested by the 
material presented in Chapter 9 under the topic of  reinsurance. 

These objections, however, cannot detract from the substantial merits of  
Gerber 's  excellent book for which success both with practitioners and theorists 
can be predicted without any risk whatsoever. 

W.-R. HEILMANN 

BJORN SUNDT (1984). An Introduction to Non-Life Insurance Mathemattcs. 
Veroffentlichungen des Instituts fur Versicherungswissenschaft der Universitat 
Mannheim, Vol. 28, Verlag Versicherungswirtschaft, Karlsruhe. 168 pages, 
DM 24.00. 

In his foreword to the book the editor writes: "Textbooks in Non-Life Insurance 
Mathematics are rare. So it is a pleasure for me that Dr. Sundt was willing to 
write down his lectures given at Mannheim during the summer of 1983." A prac- 
titioner might be deterred by these introductory sentences, since lectures for 
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students of  mathematics in Germany usually are filled with abstract theories and 
complicated proofs.  Dr. Sundt 's  book,  however, is well suited as an introduction 
for practitmners into methods of modern risk theory. Abstract theories are 
avoided whenever possible (e.g. credibdity estimators are derived without any 
Hilbert space theory), and complicated proofs are substituted by informal deduc- 
tions (e.g. Edgeworth expansions are introduced without mentioning Cram6r 's  
condition on the underlying characteristic function). Abstract models are 
motwated and explained using realistic actuarial problems, thus demonstrating 
that the mathematics presented in the book is in fact applicable. This can best 
be seen in the chapters on experience rating containing a nice introduction to 
credibility theory. On the other hand, rigorous proofs are given whenever they 
are informative, short and easy. So the practitioner will be enabled and 
encouraged to build his own model when models presented m the book do not 
fit has actuarial problem. 

The main chapters of  the book are credibility theory, bonus systems, the risk 
process, the accumulated claim distribution, claims reserves, and utility theory. 
These subjects include the most interesting and promising subjects of  recent 
research in risk theory. In the chapter on credibility theory, the simple standard 
model as well as the Bfihlmann-Straub model and the Hachemeister regression 
model are presented. The bonus malus chapter is concerned with the computat ion 
of  the premium for each bonus class when the transition rules are fixed. In the 
chapter on the risk process, the claim number process ~s modelled by a general 
non-homogeneous counting process, while for the accumulated claims process, 
a homogeneous compound Poisson process is used. Ruin probabilities and the 
adjustment coefficient are introduced, and the optimal reinsurance results of  
Waters are presented. The chapter on the accumulated claim distribution includes 
stop loss inequalities, recursive algorithms of Pan jet, Edgeworth expansions and 
normal power approximations,  and solvency control problems solved using nor- 
mal power approximations.  In the claims reserves chapter we find the indispen- 
sable chain ladder method as well as Taylor ' s  separation method and Straub's  
burning cost model. The chapter on utility theory is concerned with inequahties 
between zero utility premiums and between expected utilities with different com- 
pensation functions, and the definition of Pareto-optimality.  

The whole book is clearly written and easy to understand. Perhaps due to 
personal taste, I do not believe in normal power approximations,  I prefer 
approximations by compound Polsson distributions. Sundt 's  statement ". . . in 
practxcal applications the NP-approximat ion seems to perform very well" can be 
criticized. Approximations are needed only in those cases in which the exact com- 
putation is impossible, e.g. for large portfolios. The performance of an approxi- 
mation can, however, be checked only if one can compare the exact values and 
the approximations,  or if theoretical error bounds are available. For the normal 
power approximation,  no theoretical error bounds exist (not even for the simple 
case of  identically distributed risks). Theoretical error bounds exist for the 
approximation with compound Po~sson distributions. Nevertheless, normal 
power approximations are frequently used in practice. 
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This book by Dr. Sundt can be recommended as an introductory textbook into 
modern risk theory for students as well as practitioners. Risk theory is a young 
and rapidly growing discipline with possible applications in life and non-hfe 
insurance, and in non actuarial branches. I think that Dr. Sundt's book will pave 
the way for the future application of new methods in risk theory like hierarchical 
credibility models or the estimation of accumulated claims distributions. 

In his preface Dr. Sundt reports on the way his book was created. The preface 
is written in a very modest manner. There is not enough space to include the first 
paragraph of  the preface here but in brief it states that the book was created by 
pure chance. I am pleased that this rare event actually happened, and all readers 
of the book will be pleased, too. 

CHRISTIAN HIPP 
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