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EDITORIAL

Could ASTIN do better?
(Excerpts from Presidential Address, Tel Aviv, September 23, 1986)

Article 2 of the rules of our Association states that “ASTIN has as main objective
the promotion of actuarial research, particularly in non-hfe insurance”. From
time to time the question “Is ASTIN doing well?” arises, either in the pages of
this Bulletin or during our colloquia. This question is seldom answered. Indeed
the greatest part of our time during Committee meetings and General Assemblies
is devoted to the day-to-day life of our Association: finances, elections, Editors’
reports, membership file, etc .. When the meeting is adjourned, no time is left
to discuss more basic and far reaching problems. Yet, this is what we should all
do, regularly. This 1s certainly what the Chairman of any association should do,
when approaching his mid-term. | shall successively consider the evolution of
ASTIN itself, its impact on teaching and its influence on actuarial research.

In my opinion one of the main achievements of ASTIN is simply its size, 1ts
continuous increase in membership. It seems obvious that the most necessary of
all conditions to promote research, whatever that research may be, is that 1t
should be accessible to the largest number of people. So 1t is a very positive fact
that our membership is about to exceed 1,500. I am also pleased to report that
the number of external subscriptions to the ASTIN BULLETIN, stagnant for so
many years, 1s now definitely on the rise. We can thus proudly affirm that the
ASTIN BULLETIN is the actuarial journal that has, by far, the largest circulation.
Without a permanent secretariat, with a Committee that meets at most once a
year, with an annual budget that consists of only a small fraction of the income
of similar associations, the ASTIN section of the International Actuarial Associa-
tion has managed to develop an internationally renowned scientific journal; this
is considered by many as a permanent miracle, for which all past and present
Edtitors of our Bulletin have to be warmly thanked.

This of course does not mean that we could not do much better. The number
of external subscriptions, while increasing, remains at a low level; this indicates
that our Bulletin is not sufficiently known outside actuarial circles. The member-
ship is growing, but not evenly, only in selected countries, thanks to the efforts
of some National Correspondents. In too many countries the number of members
has not increased at all for many years; this means that the information transmis-
sion channels from ASTIN to young actuaries have not worked efficiently in some
parts of the world.

This is an important point, which should be of concern to all of us: ASTIN
needs to keep growing. We need to grow so that our Editors can keep telling pro-
spective authors: “by publishing your paper in the ASTIN BULLETIN you will en-
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2 EDITORIAL

sure the largest circulation to your ideas”. We need to grow so that our member-
ship and subscription fees will remain among the lowest. The membership dues
have not been increased since July 1977! This can only go on 1f we continue to
produce scale economies by becoming more numerous. Above all, we need to
grow because there will never be enough of us to tackle the numerous research
problems faced by non-life actuaries.

Considering now the teaching of non-life insurance, it 1s clear that we have
witnessed a tremendous evolution 1n the last decade. Among our membership we
have many young bright actuaries holding newly created Chairs in 1nsurance.
Many universities that had a degree 1n insurance have added a non-life position
to their faculty; several countries that had been absent from the actuarial research
scene for years are now flooding our actuarial journals with high quality papers.

Besides, most of those newly appointed professors have rightfully recognized
the need to work in close collaboration with the industry and frequently decide
to spend several months working for a company.

Another positive aspect is that those young stars not only teach excellent
courses, they have also started writing textbooks. The time when we had only a
handful of good books to recommend to our students is now gone, since every
year several new textbooks appear.

In view of those favourable points, the question that arises for ASTIN is: what
can we do to further enhance those developments? What can we do even to ac-
celerate this trend, besides continuing to publish ASTIN BULLETIN and to offer
a splendid forum for interaction, our colloquia? I think that maybe ASTIN has
missed an opportunity to help the writing of textbooks. A look at the list of books
written 1n the 80’s will reveal that many of these have been published by small
university presses or companies. While they certainly have to be congratulated for
printing actuarial work, it is clear that they do not have the experience, the
expertise of a large publisher; so the promotion of the book is largely left to the
unexperienced writer, whose ideas are consequently not going to be read as much
as they deserve. Maybe ASTIN should have helped; maybe ASTIN should help
in the future. Quite a few of our members have been through this strenuous pro-
cess of writing a book (often i1n a language we only practise occasionally) and
presenting it to a large publisher. This experience has largely been left unused.
Yet ASTIN, as a powerful association, could initiate contacts with a publisher
and use all of its power to convince him of the use of actuarial books. ASTIN
could possibly start and endorse a new series of textbooks, thereby providing
mutual reinforcement to the selected works and presenting them in a unified way.
To promote the books that have appeared recently under the name “ASTIN
Series” could only have been beneficial to ASTIN and all authors. Some other
associations are extremely efficient at sponsoring new books; often they manage
to obtain the collaboration of the industry to solve financial problems. Shouldn’t
ASTIN think about it? At the very least the ASTIN BULLETIN, and possibly the
IAA Bulletin, should develop their book review section and let the authors know
that their books will be systematically and rapidly reviewed.

A few words about research, to conclude. Again, at first sight, we can be
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extremely proud of some of our achievements: the mathematics of motor in-
surance, credibility theory, the theory of premium calculation principles, to name
but a few, have been developed and still continue to be developed by our
members. Yet, we could perform much better; I am not satisfied at all to notice
that quite large areas of research are not being tackled at all by actuaries, and
that they grow outside ASTIN. Deductible selection, design of optimal insurance
policies, moral hazard, adverse selection, analysis of underwriting cycles, for
instance, are areas currently developed by economists and financial analysts, in
non-actuarial journals. Those subjects are of extreme practical importance: prac-
titioners know that the selection of a deductible 1s very often the most crucial
decision to be made when designing a new policy; they know that the profitability
of health insurance is much more influenced by adverse selection than by the
failure to introduce a significant variable in the rate-making process, for instance.
Yet those vast areas of research are nowadays explored by others; [ am sure the
actuarial community could produce very interesting models in these domains.

In this respect, 1 was pleased to notice that several of the papers presented at
the Tel Aviv Colloquium tackle problems that are outside the traditional scope
of the works discussed during our meetings; hopefully, many of these papers will
be published 1in the ASTIN BULLETIN, enlarging the range of the subjects dealt
with in our association journal.

A few thoughts and suggestions have been presented in this editorial. We
should all try to think about other suggestions, other ways to develop further the
activities of ASTIN. One such new idea came up two years ago, namely the
organization of our first competition for young researchers, which proved to be
a tremendous success. Since there are nearly 1,500 of us, it would be very surpris-
ing if no new suggestion comes up in the near future.

Jean LEMAIRE
Chairman






IN MEMORIAM

MARCEL HENRY
19001986

L’Institut des Actuaires Francais est en deuil: son Président d’Honneur,
Monsieur Marcel Henry, est décédé le 14 octobre 1986, dans sa quatre vingt
septiéme année.

Marcel Henry était né le 29 janvier 1900. Aprés des études au Lycée Condorcet,
il fut requ a I’Ecole Polytechnique en 1918 et incorporé aussitdt comme canonier
de 2éme classe. Revenu a I’Ecole, dés la fin des hostilités, il y accomplit ses deux
années d’études puis rejoint ensuite 1'Ecole d’Application d’Artillerie &
Fontainebleau.

Peu de temps aprés Marcel Henry—déja attiré par les applications des sciences
mathématiques aux problémes économiques et sociaux—entre a la Statistique
Générale de la France et participe ainsi a la naissance de I’organisme qui devait,
trente ans plus tard, devenir PINSEE.

Aprés quelques années consacrées 2 la statistique, il se tourne vers I’ Assurance
et entre & I’Urbaine Crédit.

Il devient membre diplomé de I'Institut des Actuaires Francais en 1924,

Mais dés 1936 il est fait appel a lui pour mener la réorganisation de La Preser-
vatrice, a laquelle contribue ’ensemble de la Profession de I’ Assurance. Il est
admis comme membre agrégé de I’ AF en 1937.

Il devient rapidement Directeur Général de La Préservatrice IARD et de La
Préservatrice VIE. Son action et sa renommeée au sein de la Profession comme
parmi les Associations d’Actuaires ne vont cesser de s’affirmer,

En 1943, il est désigné par ses colléegues comme Secrétaire Général de I’lAF—
poste qu’il occupera jusqu’a la retraite du Président Auterbe. Il est alors élu
Président de I’IAF en 1958.

Il le restera jusqu’en 1975, souhaitant voir la Présidence occupée désormais par
un collégue plus jeune. Il est alors nommé Président d’Honneur. 1l continue a ce
titre & siéger au Bureau et assiste a ses séances avec une grande régularité. [l prend
une part active a la vie de I'Institut auquel il n’a cessé de manifester son intérét
et son dévouement depuis plus de 50 ans.

Marcel Henry était Membre d’Honneur de I’ Institute of Actuaries, Membre de
I’Association des Actuaries Suisses, et de I’Association Royale des Actuaires
Belges.

Il a siégé pendant plus de 30 ans a I’Association Actuarielle Internationale. Il
a été un des membres-fondateurs de P ASTIN, aux travaux de laquelle il était tout
particulierement attaché: c’est lui qui insista pour que le premer Colloque de
I’ASTIN se tienne 2 La Baule en 1955,

Dans la Profession de I’ Assurance sa personnalité, sa compétence, son sens de
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6 IN MEMORIAM

la mesure étaient connus de tous. Il fut Président du Groupement Technique
Accident de 1957 a 1960, et Président de la Prévention Routiére. 11 prit une part
active a toutes les grandes réformes du marché de I’Assurance, au cours des
années d’aprés-guerre.

Marcel Henry était Officier de la Légion d’Honneur et Commandeur de
L’Ordre National du Mérite.

A toutes ses qualités professionnelles s’ajoutaient de trés grandes qualités
humaines: doué d’un sens de Phumour qu’il aimait a exercer avec talent en de
nombreuses circonstances, il possédait une vaste culture et sa curiosité des
hommes et des choses avait fait de lui un voyageur inlassable.

Le souvenir du Président Marcel Henry restera toujours vivant parmi les
Actuaires.

JEAN LAMSON



IN MEMORIAM

KARL HENRIK BORCH
13th March 1919-2nd December 1986

Karl Borch’s life was eventful—in its outer features adventurous. The realities
behind were, however, not always lenient. His studies were interrupted by service
in the Free Norwegian Forces in Great Britain during the war. This was a prelude
to a cosmopolitan career. After he had received his actuarial degree from the
University of Oslo in 1947, he was affiliated to international organizations for a
period of 12 years, first to the UN with tasks in the Middle East, South Asia and
Africa, then to OEEC as head of the Productivity Measurement Advisory Service
in Paris. He received his doctor’s degree from the University of Oslo in 1962. In
1963 he was appointed professor of insurance at the Norwegian School of
Economics and Business Administration (NHH) in Bergen, a position he held
until his untimely death just barely before retirement at pensionable age. In the
course of his career Karl Borch stayed at a number of universities: as research
associate in Chicago and Princeton, and as visiting professor in California,
Vienna, Oxford, Ohio, Bonn, Stockholm, Ottawa and Texas. He died on
December 2nd 1986—with his seven-league boots on — in Marbella, Spain.

The written production of Karl Borch 1s extensive. His major field of interest
is indicated by the title of his book “The Economics of Uncertainty” (Princeton
University Press, 1968), which has become a modern classic. About one hundred
and fifty of his papers have been published in international journals. A selection
of papers is collected 1n the book “The Mathematical Theory of Insurance”
(Lexington, Mass., 1974). For his scientific work Karl Borch was awarded a
number of prizes and proofs of honour.

Among actuaries and econometricians Karl Borch gained world fame by his
contributions to the theory of the economics of uncertainty and, in particular,
by invoking this theory in analyses of insurance problems. His pioneering work
on Pareto-optimal risk exchanges in reinsurance opened a new area of actuarial
science, which has been i1n continuous growth since. This research field gives a
deeper understanding of the attitudes and behaviour of the parties in an
insurance market. It is, therefore, of great theoretical import and must, in the
end, have a corresponding practical significance. The theory raises and answers
problems that could not even be put into shape by traditional actuarial han-
dicraft: how can risk be optimally shared between economic agents, how should
insurance treaties be designed, and — ultimately — how should the insurance in-
dustry be organized to best further social security and public welfare?

Karl Borch never filled official posts in ASTIN, but he will be recognized as one
of the most enthusiastic and influential personalities in the membership. No single
person has contributed more to the columns of the ASTIN BULLETIN.

ASTIN BULLETIN Vol 17, No |




8 IN MEMORIAM

Karl Borch will be remembered by colleagues and students at the NHH and in
many other places as a guide and a source of inspiration, by successors in research
as the character behind many key references, and by a multitude of people all
over the world as a gentle and considerate friend who was full of concern both
in their work and in their everyday life.

RAGNAR NORBERG




19th ASTIN COLLOQUIUM
TEL AVIV ISRAEL 20th—-24th SEPTEMBER 1986

The 19th ASTIN Colloquium, which was held at the Hilton Hotel in Tel Aviv,
was attended by some 175 participants, together with some 75 accompanying
persons, from 23 countries. It began in the customary fashion with a welcoming
cocktail party on the Saturday evening.

The opening ceremony the following morning was presided over by the Chair-
man of ASTIN, Jean LEMAIRE. After the ceremony, Professor Eitan BERGLAS
of Tel Aviv University gave a lecture on inflation, stabilization, the government
budget and the capital market. Professor Berglas, besides being the Chairman of
the Bank Hapoalim, was also one of the chief architects of the economic policy
which had recently been introduced in Israel and which had led to a reduction
in the year-on-year rate of inflation, in the space of a year, from several hundred
per cent to less than 20 per cent. As a professor of economics who had been tack-
ling a severely practical problem, so far with apparent success, he was listened
to with great interest

Those colloquium papers which had been sent in sufficiently early had been
assembled by the organizing committee in a single volume and distributed to the
participants in advance of the colloquium. Following the lecture by Professor
Berglas, the whole of the remainder of that day was devoted to Subject 1: The
company environment of the non-life actuary. The papers were divided into three
groups, as set out in the list at the end of this note, corresponding to the three
working sessions.

The first four papers considered ratemaking and related issues.

HARWAYNE’s paper refers to ratemaking in the United States, in the sense of
determining the overall level of the rates to be charged for a class of insurance
business rather than determining the premium relativities for the various rating
cells. Using an example based on worker’s compensation insurance, he illustrates
an approach based on projecting paid losses, as an alternative to using figures of
incurred losses which include a large element of subjective estimating.

DE PRIL’s paper, in which he postulated a portfolio of independent life
assurance policies for which the distribution by amount at risk is known and
which is subject to known mortality rates, developed recursive expressions for
computing the distribution of aggregate claims. The relevance of this paper to
non-life insurance was not explained.

The first of SUNDT’s papers describes experimental work carried out in the use
of credibility regression models to derive results intended as an aid to the persons
who have the task of classifying car models into groups for the purpose
of insurance rating. Although the paper contains a formidable array of
mathematics, the method was nevertheless over-simplified in that whilst it took
account of such factors as cubic capacity of the engine, price, weight, etc., it did
not incorporate any specific allowance for the interactions with other risk factors

ASTIN BULLETIN Vol 17, No 1



10 19TH ASTIN COLLOQUIUM

such as age of the car and the characteristics of the policyholder or driver. In his
second paper he discusses, 1n the context of a credibility model, the extent to
which data derived from the experience of earlier years may be used to yield
improved estimators.

Among the papers on reserving techniques, the one by GATH and LUBITCH
relates to dental expenses insurance as practised in Israel. Reserving for claims
for the basic forms of dental treatment does not present any problems since the
claims arise quickly and are settled quickly. The paper describes the authors’
approach to reserving for claims for prosthetic treatment, where, although the
period from reporting to settlement is quite short, it is necessary to allow not only
for claims incurred but not reported, but also for claims for which the treatment
has been authorized but not yet carried out.

STANARD, in his paper, describes the use of simulated figures of claim costs by
year of accident and year of development, with the aim of estimating the variance
of the errors in the estimates of ultimate losses. The paper by FALLQUIST and
JONES set out ways in which the data typically available in the form of a loss
development triangle can be used to obtain derived figures which may be used in
various methods of estimating reserves for outstanding claims and the expenses
associated with them.

The remaining two papers on Subject 1 related to profitability management and
planning. BOHMAN and LEVY criticize the preoccupation, in insurance company
accounting, with the single figure representing the purported profit or loss in the
latest completed year, and advocate a form of presentation, at least for the infor-
mation of management, which acknowledges the stochastic nature of the
business. They illustrate their ideas by means of a much over-simplified model in
which they separate the underwriting and investment aspects of the insurance
business. In TAPIERO’s paper, he describes a project to develop a computer
expert system for insurance and reinsurance. Much of the paper is occupied with
the author’s comments on different forms of reinsurance treaty.

On the Monday the working session was confined to the morning, for discus-
sion of the papers on Subject 2: Financial aspects of general insurance. Again,
these came under three main headings.

In the first of the papers on solvency, COUTTS and DEVITT advocate the use
of cash flow models for reporting on the financial strength of an insurance enter-
prise, the models embodying probability distributions and sets of decision rules
defining future strategy. These two authors are also among those responsible for
the paper by DAYKIN et al., which presents the approach developed by a
working party which was set up to extend, in the context of the solvency regime
in the UK, the work carried out by the Finnish group of actuaries led by PEN-
TIKAINEN and RANTALA. They recommend the simultaneous consideration of
assets and liabilities, and put forward a case for a system of actuarial reporting
on the financial strength of insurance companies, so that the supervisory author-
ity can have available, within a solvency regime based on crude minimum solven-
cy margins, an assessment which reflects the level of risk for the individual
company.
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There were two papers dealing with mathematical aspects of reinsurance. The
short paper by Kass, GOOVAERTS and BAUWELINCKX derives upper and lower
bounds for stop-loss premiums in terms of the claim number distribution, the
mean claim, the mean claim less than the retention, and the probability of a claim
less than the retention. LEMAIRE and QUAIRIERE generalize earlier work by
Gerber on chains of reinsurance, using a theorem of Borch.

The miscellaneous group of papers on other financial aspects of general in-
surance includes two highly theoretical papers, one by BRIYS and the other by
Briys, KAHANE and KROLL, on optimal insurance demand by mndividuals. The
paper by EDEN and KAHANE presents a model of an insurance market with three
players: an insured population, a local insurer and an international reinsurer, and
discusses the allocation of risk among the three parties. MASTERSON presented
the latest sets of figures in his customary review of price indices in various coun-
tries and indices of the costs of different types of non-life insurance claims in the
US.

After lunch Mr. Gideon PATT, the Minister of Science and Development, gave
an address in which he vigorously supported current policies of the Israeli
government.

The final working day was the Tuesday, starting with Subject 3: The actuarnal
treatment of catastrophe — target risks and special lines.

ARIAV, KAHANE and TAPIERO discuss the possible advantages to a group of
companies of establishing a back-up computer centre, which might, for example,
be owned by a separate company which would sell the services when required to
the members participating in the pool.

AJNE and WIDE discuss the question of defining catastrophe claims and assess-
ing their expected cost. For their purpose, catastrophe claims are large individual
claims, rather than large groups of claims arising out of a single catastrophic inci-
dent. The Pareto family of curves was found to give the best fit to the claim
distributions for the four classes of business which were treated, and the paper
includes comparisons between actual and expected numbers and amounts of
catastrophe claims over a four-year period.

KAHANE’s paper gives a wide-ranging survey of the problems of insurance
against earthquake risks, with particular reference to Israel, and sets out a
number of proposals as to how these problems should be tackled.

Subject 3 was followed by the customary Speakers’ Corner session. Besides the
presentations for which papers were submitted — these are listed at the end of this
note — there were presentations by S. BENJAMIN on the reserving methods used
at Lloyd’s, by E. KREMER on premium calculation for largest claims reinsurance
covers and on robust premium principles, and by R. NORBERG on life insurance
rating.

The business proceedings ended with the General Assembly of ASTIN, at
which the plans were announced for the 20th Colloquium, to be held in Schev-
eningen, Netherlands, 30th August—3rd September 1987.

The Colloquium dinner was held on the Tuesday evening at the Hilton Hotel.

An important feature of any colloquium is the opportunity it gives for the par-
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ticipants to discuss matters of mutual interest before and after the business
meetings. The social arrangements provided by our Israeli hosts included a piano
recital by David Levy, a talented young musician from the Royal Northern Col-
lege of Music in Manchester; a visit to the Diaspora Museum, followed by a tour
of the old city of Jaffa; and a full-day guided tour of Jerusalem and Bethlehem.
For those able to stay for a further day, there was a tour of Galilee.

The excellent arrangements for both the business meetings and the social events
were a tribute to the organizing committee led by Yitzchak GOLDSTEIN and Eddy
LEVY and the scientific committee led by Yehuda KAHANE.

PETER JOHNSON

LIST OF PAPERS
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APPROXIMATIVE EVALUATION OF THE DISTRIBUTION FUNCTION
OF AGGREGATE CLAIMS'

BY T. PENTIKAINEN
Helsink:

ABSTRACT

A formula, originally presented by HALDANE (1938)2, for the evaluation of the
distribution of aggregate claims is examined and compared with some other ap-
proaches. The idea is to apply a symmetrizing transformation to the original
variable 1n order to make it susceptible to be approximated by the normal
distribution.

KEYWORDS

Aggregate claim distribution; approximate evaluation; NP method; Haldane
approximation; Wilson—Hilferty approximation

1. INTRODUCTION

1.1. A problem frequently faced in application-orientated risk theory is the
numerical evaluation of the distribution function F(X') of the aggregate amount
X of claims. It is conventionally expressed by the formula

(1.1) F(X)= ki peSHH(X),
=0

where pi is the probability that the number of claims is equal to &, S 1s the
distribution function of the individual claim sizes and $** its kth convolution (see
BPP, p. 51; this and similar quotations in the sequel refer to the Risk Theory
book by BEARD, PENTIKAINEN and PESONEN, 1984).

The claim numbers are often assumed to follow a simple Poisson distribution
(in order to define notations some well-known basic formulae are recapitulated)

(1.2) pe(n)=e""n*/k!

where n, the Poisson parameter, is the expected number of claims. A more
general approach is to adopt the mixed Poisson distribution (BPP, p.33):

@ k
(1.3) pe(n) = SO e ‘LZ')— dH(q).

1 Presented originally at the Risk Theory Seminar in Oberwolfach 1984 and in an extended form
at the Risk Theory Seminar of the American Risk and Insurance Association in Nashville 1985

2 J B S HALDANE (1892-1964) first studied mathemaucs and later became Professor of
Biometrics at University College, London, before moving 1o India in 1957

ASTIN BULLETIN Vol 17, No |
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The distribution function H introduces the so-called structure variation of the
claim number probabilities into the model, indicating the time variation of the
risk exposure, or the heterogeneity of the risks inside the collective, or both. A
popular H is the gamma function resulting in the negative binomial distribution
(BPP, p. 40):

_ h k
(1.4 Prin) = (h-”/: l) <n-}:h) (nj—h)

where A is a shape parameter. This alternative is usually called the Polya case in
distinction from the Poisson case (1.2).

Note that for the approximation formulae only the lowest moments of A are
necessary. Therefore, it is sufficient merely to estimate (or assume) them, not
bothering about the analytic formulation of this function.

1.2. Need to have approximation methods. The construction (1.1) is unfortunately
so intricate that the direct computation of F'is tractable only in special cases, even
though the recently developed recursive methods (ADELSON, PANJER, GERBER,
JEWELL & SUNDT, description of the method and references see BPP, Section
3.8) as well as the Fourier transformation techmque (BERTRAM, 1981) have
made major progress in solving this problem. Nevertheless, they have not
removed the need also to have rapid and reasonably comfortable, even though
approximate, approaches. This is due to the fact that the number of the computa-
tion steps needed for the recursive calculation grows quite massive in cases where
the risk portfolio is large (as most 1nsurer’s portfolios are) and/or when the claim
size distribution has a long tail. This can be a major handicap, in particular in a
sophisticated problem complex such as the analysis of long-term processes,
simulations, etc. where the computation of F is needed frequently, say 1000,
10000 or 100000 times for one single procedure. Then the problem is, above all,
to minimize the computation time in terms of milliseconds (rather than in
seconds!) to make the usual present day personal computers operational.
Approximate methods can also have the merit of providing an analytic, often
perspicuous, relationship between the main variables controlling the processes.

2. SOME EARLIER APPROACHES

2.1. Normal approximation. A classic approach, based on the central limit
theorem, is to approximate F(X) by the normal distribution:

2.1 F(X)= N(x)
where, denoting the mean and the standard deviation of X by my and ox
(2.2) x=(X—-—mx)/ox.

This expression is asymptotically correct in the Poisson case but not generally,
e.g. not in the Polya case. Its major weakness is that it may crudely underestimate
the risk of large aggregate claims (see BPP, p.105). This is due to the fact that
N as a symmetric function cannot successfully approximate any distribution
which is notably skew.
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2.2. Symmetrization. A way of overcoming the weakness of the normal approx-
imation is to transform the original variable X into an auxiliary variable ynorm by
using a suitably chosen function v

(2.3) Ynorm = (X))

so that it makes the distribution (at least approximately) symmetric. Then pro-
viding that ynerm 15 standardized to have a zero mean and standard deviation
unity, one can expect that it can be satisfactorily approximated by the normal
distribution:

2.4) F(X)= F(}’norm) = N(¥norm).

Depending on the choice of the transformation v a family of approximation
methods is constituted including those dealt with in this paper. An analysis of
some of these transformations can be found for example in Box and CoX (1964).

2.3. NP approximation is obtained assuming v~ '(¥nom) as a polynomial:
(25) X=(X_mX)/UX=ynorm+'Y(yrzlorm_ 1)/6

where y = vx 1s the skewness of the original distribution (BPP, Chap. 3.11).

The transformation (2.5) is applicable only for the long tail X > myx of the
distribution and therefore needs a modifying extension (BPP, Chap. 3.11)
resulting 1n a three-piece formula.

2.4. Other methods. There are a number of approaches based on the principle
of replacing the original distribution by some suitable approximating function,
which is conveniently computable. Most of them are obtained by equating the
lowest moments, as is also the case in the above items 2.2 and 2.3. For instance the
three-parameter gamma function I'(ax + b, ¢) (BOHMAN and ESSCHER, 1964) or
the Pearson functions (LAU, 1984) are suggested. OSCHWALD (1984) has recently
presented an analogous transformation to (2.5) using the gamma function instead
of the normal function,

Unfortunately the range of applicability of most of these methods has been
examined only by means of very few (and often “easy”) examples, as yet. So far
as is known, those methods which meet the demand of reasonable convenience
and the requirement for computation speed, do not have the accuracy or the
other merits which would not prevent the approaches to be dealt with in the
sequel to be competitive. Further studies would be desirable, but are, however,
beyond the scope of this work.

One of the known approximations is sull worthy of special mention. ESSCHER
(1932) introduced a method which makes use of the whole range of the claim size
distribution, not only of some of its moments. BOHMAN and ESSCHER (1964)
gave a number of tests, which proved that the merits of this method may not be
very superior to those of the gamma approximation. However, a recent (un-
published) work of Pusa (1985) seems to indicate a good fit also in some cases
where the other methods fail. A drawback of the Esscher approach 1s that it
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employs an auxiliary variable # and the relevant quantitites F and X are available
only as functions of this variable. To get the matching F and X it is necessary
first to find the corresponding #, which seems to need an iteration process impair-
ing the speed of the method.

2.5. Moment problem. One should keep in mind the fact that most of the methods
referred to above give, when applied to the mixed compound Poisson function,
the same approximating function to all those original distributions, which have
the same three (or four) lowest moments determined by the mean, standard devia-
tion, skewness (and the kurtosis) of the claim size distribution. However, these
moments do not fully determine the flow a function, hence there is “a funnel of
doubt” [ Fi(x), Fu(x)] inside which the values of the original distribution func-
tions F(x) are positioned for varying x values. F, and F, are the upper and the
lower envelope curve, respectively, of all those original distribution functions
which fulfil the specifications of the problem setting concerned. If the funnel is
large, then there are always cases which markedly deviate from the approximating
values, whichever of the methods is used.

GOOVAERTS & KAAS (1986) have recently provided a meritorious method of
evaluating the range of the variation subject to the condition that the lowest
moments are fixed and the variable x is limited to some interval, e.g. [0, #]. Some
examples showed that the range in which the permitted F(x) values may be posi-
tioned is rather wide, in fact reducing the prospects of finding suitable approx-
imations based on the moments. Fortunately, this result does not wreck the pros-
pects of finding reasonably useful approximations, if the basic condition is taken
of fixing a sequence of the moments of the claim size function S (not of the
aggregate distribution as Goovaerts and Kaas propose) and of limiting the claim
size Z (not the aggregate X') to some finite interval. In fact, this is the proper
problem setting for the NP method as well as for the methods to be discussed in
the sequel. We will return to the moment problem in Section 6.9.

3. HALDANE APPROXIMATION

3.1. The idea. The approach we are going to deal with was originally presented
by WILSON and HILFERTY (1931) for an approximate evaluation of the gamma
function. HALDANE (1938) extended it to the function classes which have
suitably convergent sequences of cumulants. In what follows we apply the
method to the mixed compound Poisson function specified in Section 1.1, even
though the most part of the derivation is valid more generally.

The method makes use of the symmetrization as described in Section 2.2
above. Haldane first adopted a power expression

y=(X/myx)"

where A is an auxiliary parameter. Then (truncated) expansions are derived for
the mean m,, standard deviation g, and skewness v, of y. The symmetrization is
achieved by assigning for the auxiliary parameter A a value which equates the
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skewness v, with zero. Putting

3.1) ynorm=(y_my)/ay= [(X/m/\’)h_my]/ay

the transformation aimed at, corresponding to v in (2.3), is obtained.

The derivation of the Haldane formulae is notably laborious, even though
rather elementary methods only are needed. Therefore, we shall not give more
than some intermediate expressions in the chain of treatments in order to provide
a conception of how the results are found, the more so because the Haldane
derivations do not result in any strictly rigorous estimates for the accuracy of the
approximations nor for clear rules of their applicability, but rather only justify
the expectation that in a certain environment the procedure may lead to acceptable
outcomes. In fact, the discussion about the appropriateness of the approach 1s
mainly based on tests where a number of distributions are calculated exactly and
in parallel, by using the approximations that will be presented in the subsequent
sections. Readers who are mainly interested in the practical results may well skip
over to Section 3.4, at least at the first reading.

3.2. Derivation of the formula. We aim to preserve, as far as possible, the original
procedures and notations of Haldane even though some of the results, e.g. the
value of the parameter 4, could be obtained by more straightforward ways.

The technique to be assumed operates partially the so-called cumulants, which
are, as is well known from textbooks on statistics (e.g. KENDALL and STUART,
1979, Section 3.12), the coefficients in the expansion of the cumulant-generating
function log ¢(¢) 1n the terms of (ir): x,(1t) + x,(1t)%/2! + ..., where ¢ is the
characteristic function and / the imaginary unit. For the convenience of the
reader, we recall the connecting equations between the lowest cumulants and the
more commonly applied central moments, denoted by u,(i=1,2,...):

X1 =My, X2 = fl2, X3 = U3, X4 = jq — 3#%-
Another auxiliary variable is introduced:
3.2) x' ' =X—x

and substituted into (3.1) after which expansions for the moments of y about
zero, denoted by §3,, are obtained as follows

I (I ()

=1+ f(r,2) 2’5{% + f(r,3)

3?‘;? + f(r, 4) ﬁ +
where, for brevity,

(3.4) S, y=ra(rh=1)(rh=2) . (th—j+1)

and the Taylor scries of the power function

O+ xY'=14+hx+h(h-Dx¥2'+ ...
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was applied. The u’s are moments of x’ and, according to (3.2), central moments
of the original variable X as well. It is now useful to adopt the cumulants » of
X as the current characteristics instead of the moments x, because they give an
essentially better convergence behaviour to the expansions. By using the relations
referred to above between these sets of characteristics, equation (3.3) 1s
transformed as follows:

3)(2 + J(4

(3.5 Br=1+f(r,2) z+f(r,3)6 S W)

l

HaoX3

+f(r,5) 1227

+ f(r, 6)
The sequence

(3.6) D= ./ x|

is assumed to be reasonably convergent when / increases (in the Poisson case p,
1s of order n~'*!, c.f. Section 5.1).

Finally, the central moments of y are the characteristics which are necessary
for the transformation aimed at. They are calculated by means of the well-known
general relationship between the central moments and the moments about zero
(u2 = B2 — B3, etc.). After elementary but quite tedious operations, and observing
that the expression (3.5) can be expressed in terms of the cumulant ratios p,, the
following expansions result:

my=Ey=1+1h(h—Dpz + s h(h = 1)(h = 2)[4p3 + 3(h - 3)p3]
(3.7) + gyh(h = 1)(h = 2)(h — 3)[2pa + 4(h — A)p203 + (h — 4)(h = 5)p3)

p2(p) = x2(y) = 0f = h’p2 + 3% (h = 1)[ 203 + (31 — 5)p3]
+ L2 = D[ (Th = 11)ps + 4(h — 2)(Th — 12)p23 + 2(h = 2)(Th* = 30k + 32)p3]

w3 () = x3(y) = h*[p3 + 3(h — 1)p3]
+ 1h3(h = 1)[3pa + 3(Th = 10)p2p3 + (17h* = 55h + 44)p})

xa () = ) = 33 W) = h* [pa + 12(h = Dp3pz + (h = 1)(16h — 20)p3] .

Terms only having the order three or less were accepted. (I am grateful to my col-
league Mr. H. Simberg for the correct x4.)

We are now enabled to fix the parameter 4. For the aimed at symmetrization
of the transformed distribution its skewness should be made to vanish, or, what
is the same, x3(y¥) should be equal to 0. For the sake of computational conve-
nience, only 1ts leading term will be equated to zero. Hence

Hi1X3

(3.8) h=1-1ps/pi=1~

3x%’

3.3. Transformation A. Haldane now states that, when the above value of h is
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substituted into equations (3.7), the standardized variable
(3.9) Yrorm =y — my)/ oy

is “almost normally distributed” with a zero mean and standard deviation unity.
Haldane calls this formula “Transformation A” as distinguished from another
transformation to be dealt with shortly.

3.4. For the risk theory applications, where the mixed cbmpound Poisson func-
tion is to be approximated, it 1s convenient to take the basic characteristics (see
BPP, p.54):

Mean = my = x,

(3.10) Standard deviation = ox = Jx,
Skewness = X = 1(3/0,\3'

of the original distribution as the entries of the calculations. Accepting the terms
of the order of at most two and introducing as an auxiliary quantity

3.1D) s=ox/mx
the Haldane approach A can be written in an operative form
(3.12) h=1-1yx/s
my=1-=3%h(1-h)[1 - 52 =h)(1 - 3h)s?]s?
oy =hs{[1— 3(1 — h)(1 — 3h)s?]
Yaorm = [ (1 + x5)" —my]/ 0y
F(X)= N(¥norm).

The lower case x refers to the standardized variable (2.2). The third degree quan-
tities »3 (and v3) were eliminated for computational convenience by using (3.8).

Note that the moment uq(¥) was not needed in this context. It was derived in
(3.7) because it will be useful in later sections.

The above formulas are fairly comfortable for computer programming. Ex-
amples will be given later and the applicability discussed, but before that we will
make some further remarks and present an extended version of the
transformation.

3.5. Negative & values. Haldane limited the range of validity to positive 4 values
only. Examples show that the formula also works in cases where A turns negative.
However, negative values seem to appear in the area where the skewness is
excessive and the goodness of fit 1s unsatisfactory.

3.6. The case i = 0. Special attention is called to the case when A — 0. Then yuorm
has the limit

(3.13) Ynorm = [In(1 + xs) + £s% = 15*]/[sJ(1 - Ls%)).
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3.7. Wilson and Hilferty applied, as mentioned already, essentially the same
transformation as Haldane for the evaluation of the gamma function and arrived
at a constant value of 1/3 for the parameter 4. On the other hand we know that
the original distribution can be approximated by the gamma function which is ob-
tained by equating the mean, standard deviation and skewness with the cor-
responding characteristics of the distribution to be approximated, Hence we can
expect that the Wilson—Hilferty formula may also approximate the original
distribution. The result can be written as follows (see BPP, p.71)

(3.14) F(X)=T(a + xja, a)
= Nlai+c(x+c3)'?]
where x is the standardized variable (2.2) and

2/3
cl=l—§ C2=3(§> ; 03=Z.
6 Y

This formula is very comfortable for computer programming as is also its in-
verse. Therefore, it is tested in parallel with the Haldane and NP approximations
in what follows.

3.8. A link to the NP formula can be found by expanding ynorm in (3.12) in terms
of (xs) as a Taylor series and then expressing # by means of ~:

(.15)
Ynorm = [(1+ xs)h - my]/a}'

=[l+hxs+ L hth=Dx%*+ ... ~1=1hth—Ds*— .. 1/(hs— . )
x+ih-Ds(x*-D+ ...

=x-gy(x*- 1D+

But this is just what is also obtained if y in (2.5) is expanded 1n the terms of x
(see BPP, p. 117, eq. (3.11.14)). Hence it can be expected that the Haldane and
the NP formulas are close to each other at least in the area of the best con-
vergence. This will be confirmed by examples given later.

4. HALDANE’S TRANSFORMATION R

Haldane also experimented with another formula, which is derived introducing
two parameters h and g (instead of only one, &, above). They are assigned values
which minimize both the skewness and the kurtosis of the transformed variable.
The new parameter g is chosen so that the original variable X is first transformed
to another variable which has g as its mean and consequently also as x;:

4.1 X'=X+g-xi.
Then the transformation y = (X/myx )" is replaced by
4.2) y=X"/E[X"D"=[1+(X-x1)/egl".
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The transformation (4.1) does not affect higher cumulants than »,;. Hence all the
results are still valid, if », is replaced by g everywhere.

The parameters # and g are now determined by equating the leading terms of
x3 and x4. This implies that

1253x;3 16x3 — 9xaxq
4.3 = =2 rere
( ) g 20)(% - 9)(2)(4 20)(% - 9)(2)(4

By using the characteristics (3.10) and, in addition, the kurtosis vyax
(=x4/0* = paf® = 3) of the original variable X and further introducing, for
brevity, the auxiliary coefficients

(4.4) b=3vx— ivax/vx: c=3yx = 3vax/1x

the Haldane transformation B can be written as follows

h=c/b
my=1—1c(b-c)[1+L12b-c)(3c-b)]
(4.5) oy =|c|J[1+ }(b-c)3c—-b)]

Ynorm = [(1 + bx)h - my]/ay
F(X)= N(¥norm)

where the lower case x again refers to the standardized aggregate claim (2.2).

Haldane made some reservations concerning the applicability of this transfor-
mation, mainly providing for the positivity of h. If the denominators of (4.3) are
vanishing, the formulas become invalid.

5. ON THE APPLICABILITY OF THE HALDANE EXPANSION

5.1. General conditions for convergence of the expansions. Haldane assumed
that the variable X is inherent from a collective, the risk volume of which can
be described by a parameter n. In our risk theory applications, n can be just the
expected number of claims as provided in Section 1.1. Furthermore, Haldane
assumed that the cumulants x, for 1=1,2,3 and 4 are of the order » when n
grows large and that cumulants for i > 4 are of the order n'~* or less. Haldane
states that the expansions concerned are asymptotically convergent when n 1s
large enough, i.e. the transformations can be applied in large collectives.

In the Poisson case the cumulants are x, = na,, a, being the /th moment about
zero of the claim size variable. Hence, the Haldane conditions are satisfied in so
far as the moments g, are finite. On the other hand the asymptotic behaviour of
the Polya case does not fulfil the conditions. Moreover, the volume parameter »
is always finite, often rather small, in practical applications. Then the Haldane
criterion does not suit, because the convergence of the relevant expansions may
be poor, even though they may asymptotically converge. Furthermore, one
should appreciate that the convergence of the expansion itself does not guarantee
full accuracy because there are other, deeper, aspects involved, e.g. those which
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we already discussed preliminarily in Section 2.5 about the moment problem.
Fortunately, and unexpectedly, the tests given in the following sections seem to
prove that the approximation outcomes are also fairly satisfactory in numerous
cases where the convergence criterion would suggest failure. Therefore, we do not
feel that it is useful to explore the problem of the convergence of the Haldane
expansions other than that a convergence indicator will be introduced in Section
5.3 below. Otherwise the original paper is again referred to.

5.2. Measures of deviation from normality were suggested by Haldane, making
use of the residue skewness and kurtosts which remain as they are reduced by the
symmetrization procedure. Hence (cf. (3.7))

) Measure 1 =y’ = x3(y)/ gy
(5.1
Measure 2 = v3 = x4(y)/ 0y
where the value (3.8) 1s to be assigned to A.
The same formulas are valid also for the transformation B, when # is taken
from (4.3) and x, is replaced by g; it is also obtained from (4.3).
These measures will be illustrated by examples in Section 6.

5.3. Cumulant ratios. A crucial condition for the convergence of the expansions
(3.7) is a rapid convergence of the sequence of the cumulant ratios p,, defined by
(3.6). Therefore, the author experimented with the indicator

(5.2) 3 = pa/ p3

as an alternative measure for applicability. If & is small, it implies that the higher
cumulant ratios can be expected to be negligible. Values of J are given in the con-
text of test examples and an overall view is provided by Figure A.7 (Appendix 2).

6. EXAMPLES

6.1. Tests. The approximation methods dealt with 1n the previous sections are
tested by calculating a great number of numerical examples on the one hand by
using the exact recursive formula, and on the other hand the NP, Wilson—
Hilferty (briefly WH), Haldane-A (HA) and the Haldane-B (HAb) approaches.
Both the Poisson case and the Polya case, having differing shape parameters #,
were examined experimentally. The claim size distribution was the truncated
Pareto or log-normal or their mixtures or could also be freely chosen (and given
manually to the computer). Because the recursive technique (see details in BPP,
Section 3.8) is applicable merely for discrete distributions, the claim sizes were
discretized permitting only integer values Z=1+1d(=0,1,2,..., 1) where d
and 7 are freely eligible positive integer parameters.

The tested distributions, 54 in total, were chosen to cover broadly the area that
is usually applied in risk theory considerations, and also to provide comparisons
between the approaches. Regretably, it is not possible to print all the data.
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Typical cases only were picked for the tables and diagrams given in Appendixes
1 and 2. A comprehensive collection of the data will be deposited in the Library
of the Actuarial Society of Finland (Address: Bulevardi 28, 00120, Helsinki 12).
Copies are available upon request.

6.2. Appendix 1 exhibits exact F values and the approximated ones in parallel.
Numerical values for the convergence criterions proposed above are also given in
the side column of each distribution box of each of the tables. Discussion of the
outcomes will be deferred to Section 7.

6.3. Figures A.1 and A.2 (Appendix 2) graphically present two of the distribu-
tions of Appendix 1 to provide a clearer illustration. The deviations between the
relevant curves are so slight that they are scarcely discernible in cases where the
distribution 1s not markedly skew. Therefore, the tails of Figure A.1(a) are plot-
ted in a magnified scale in Figure A.1(d).

6.4. The effect of discretization. The deviations between the exact and the ap-
proximated values are partially due to the fact that the approximating functions
always, more or less, deviate from the exact one and partially to the fact that the
“exact” F is discrete but the approximating functions are continuous. This 1s
clearly seen 1n Figure A.1(b). In order to eliminate the effect of this discrepancy
from the tabulated outcomes, such as given in Appendix 1, the discrete F curves
were replaced by a broken line which connected the midpoints of the upward
steps. If this kind of smoothing of the discrete results is not made the comparison
deviations depend on where, for the purpose of comparison, the selected values
of the x variable are positioned on the x-axis. As seen 1n Figure A.1(J) the effect
may be larger than the “genuine” deviations are, and depends on whether the test
point happens to fall immediately before or after a step.

Information about the steps of F'is provided in the last columns of the tables
of Appendix 1 where the half of the step height (= dF%) is given. It proved to
be mostly larger than the approximation errors in the preceding columns as long
as the skewness remained moderate. It depends on the actual relevant problem
setting as to whether or not it should be regarded as appropriate to add both the
errors.

Note that the discretization results in inaccuracy also if a continuous original
claim size distribution, such the Pareto one, is replaced by a step function. This
feature was discussed in BPP (Section 3.8¢). Because both the exact method and
the approximating methods were based on the same discretized claim size
distribution, this inaccuracy did not appear in our tests.

6.5. Figure A.2 represents an extreme case where the skewness is large. Then all
the approximations turn out irregular and lose their applicability particularly at
the tails of the curves.

6.6. Figure A.3 attempts to provide a summarizing survey over a sample of
distributions. The relative errors (dNP%, dWH%, etc. in Appendix 1) are
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grouped according to different skewness ranges and argument values x = —2,2
and 3 respectively and then shown in the specified diagram boxes. For example
all the relative errors of the Haldane-A approximation for x = 3 and the skewness
less than 0.3 are placed upon the “point” HA-a in the top-most right-hand box.
The points inherent from the same distribution are connected by the lines 1n
between.

This figure is meant to provide a rapid visual comparison of the tested ap-
proaches. A narrow bundle of the connecting lines indicates a good overall fit of
the formula concerned.

6.7. The measures of deviation (5.1) are investigated in Figure A.4. This and the
remaining figures are Iimited to the Haldane-A method only.

The tested cases for x= —2 and x =3, respectively, are displayed in the
diagram by using the measures 1 and 2 as coordinates. The relative errors
|dHA% | are indicated by symbols, as shown n the figure.

As expected, the fit is good for small measure values. Another useful observa-
tion 1s that the measure values are well correlated, i.e. the points are clustered at
a straight line. This suggests that it is sufficient to use only one of the measures,
preferably the measure 1.

6.8. Convergence properties are studied in Figures A.5, A.6 and A.7. The tested
cases were first placed in Figure A.S by using the standardized x and the skewness
as coordinates. The tests were made only for a sequence of discrete x
values= -2, — 1.5, — 1, ...,4. For clarity, the points, such as in Figure A.4,
were not plotted in the final diagram, but the zones where the errors | dHA% |
having some specified magnitudes are positioned were used instead. For example,
in the area below the zone boundary designated by 1 only cases that have
| dAHA% | less than 1% are found, and below the 3-boundary only cases having
| dHA% | less than 3%, etc. More exactly, the points of the boundary numbered
by N(N=1,3,5,10 or 25) were determined according to that sample case for
which the relevant x-value had the error |dHA% | > N% and the lowest
skewness. Note that cases having | dHA% | < N% may be also found above the
N-boundary, even though they are mainly clustered below.

The fit is good as long as the skewness is relatively small. This is a well-known
feature about, for example, the applicability of the NP method (BPP, Section
3.11¢). Note that 1 — Fis very small for x > 3.5 if the skewness is not excessive
Hence the poor relative accuracy in the lower right-hand corner is seldom
harmful 1n applications.

The somewhat zigzag course of the zone boundaries is due to fact that the
goodness of fit is sensitive to the selection of tested distributions. Of course, if
another set of distributions were chosen, a more or less differing course for the
boundaries would result. However, the number of tests, 54, was already so large
and the selections so variable that it is not likely that any very essential differences
would appear.

Figure A.6 represents the dependence of the error | dHA% | on the measure 1
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using the same display technique as Figure A.5. This diagram contains the same
information as Figure A.4, but in another shape and extended to more x values.

Finally, Figure A.7 describes the effect of the cumulant ratio convergence
depicted by the same technique as applied in Figures A.5 and A.6 and by using
the ratio & (cf. (5.2)) as a measure candidate,

6.9. The moment problem that was discussed 1n Section 2.5 was explored by
varying the claim size distribution subject to the conditions that its mean, stan-
dard deviation and skewness:

(6.2) (1) mz, oz, and vz are fixed,
(2) the claim sizes are limited to integer values 1, ..., Znhax and
(3) the claim number distribution pi(n) is fixed.

These conditions determ.ine a family of the mixed compound distribution func-
tions that all are approximated by one and the same NP, WH or HA. We
illustrated the problem in Section 2.5 by saying that the functions to be approx-
imated and fulfilling the conditions (6.2) are spread in a more or less wide “funnel
of doubt” confined by the upper and lower envelope curve. If the funnel is broad
for the relevant argument values x, this implies that there is no single curve which
could approximate well all of the original curves, i.e. the approximation problem
based on the characteristics of (6.2) has no satisfactory solution despite the
method used. Unfortunately, evaluation of the envelope curves proved intrac-
table. However, in order to get a grasp of the magnitude of the funnel at the tails
of the distribution a lower limit was experimented with as follows.

Some of the test cases presented in Appendix 1 were chosen as examples. The
values of the mixed compound Poisson function F were then calculated for those
two distributions that fulfil the conditions (6.2) and have maximal and minimal
kurtosis respectively, or what is an equivalent provision, maximal or mimimal
fourth moment of the claim size distribution. Then also the kurtosis of the ag-
gregate claim distribution is maximized and minimized respectively. It can be
reasonably expected that these are the extreme distributions at the tails among all
those permitted by the conditions.

It proved that, in the exemplified cases, these distributions were the most
dangerous and least dangerous respectively in the meaning defined by
GOOVAERTS ef al. (1984), Section 4.4 (suitably choosing their limit constant 3).

Table 1 exhibits two examples, one connected to case 3 of Table A.l1 and
another connected to case 7. Among all of the distributions having the same
characteristics as the selected case those two that have the minimal and maximal
kurtosis respectively were sought, and then the exact F was calculated for them
also.

It proved that the funnel of doubt is very narrow as long as the skewness is
moderate and the individual claim sizes have a reasonably low upper limit. This
confirms the earlier experience that the mixed compound Poisson distribution is
robust under these provisos. On the other hand the funnel 1s rather large for large
skewness values. This confirms the fact that there cannot be any approximation
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TaBLE 1
F(x) resp. 1 — F(x)

x -2 2 3 4

Min 001612 002881 0.00309 0 00021

Case 3 0.01620 0 02880 000312 0 00022 yx =0.24
Max 0.01632 0 02879 0.00318 0 00023

Min 0 00105 0 04327 001142 0 00243

Case 7 000330 003758 001253 0.00417 yx =108
Max 0 00507 0 03089 001236 0 00571

based on the three lowest characteristics (6.2) which would fit in all cases and for
the whole relevant range of the variable x.

Note that the three curves representing the parallel distributions, as given in the
table, intersect each other. That means, for example, that the most dangerous
curve is most dangerous only for rather high values of x. The requested funnel
of doubt is obviously constituted as an area between the envelope curves in a
rather complicated way. Further study of this interesting problem was deferred
to a later date.

The smoothing mentioned above in 6.4 has also some effect on the breadth of
the funnel, although not an essential one. If for example the height of the step
is regarded in the numbers of Table 1 for the case 3 and x =4, the minimum and
the maximum should be replaced by 0.00020 and 0.00024 respectively. Similarly,
the numbers corresponding to x = 4 of the latter example should be replaced by
0.00238 and 0.00580.

7. DISCUSSION

7.1. On accuracy. It would be, of course, highly desirable to find ways to deter-
mine rigorously the accuracy of the proposed approximations. Unfortunately,
this has not been tractable as yet. Therefore, we have to collect experience by
testing various distributions. If a method turns out to have consistently accept-
able accuracy in numerous and relevant areas of application well covered by the
tests, then the use of the method may be justified in practical calculations. The
Figures A.4—A.7 are aimed to provide a survey in concentrated form of the
expected accuracy. Three alternative indicators were introduced: the skewness,
the Haldane’s measure and the convergence of the cumulants. Obviously the
skewness is most convenient, because it has to be calculated as one of the entries
of the approximation calculations.

7.2. How accurate should the method be? In deeming the usefuiness of the ap-
proximation one should also appreciate the fact that in many cases the basic data
are highly uncertain. In particular this concerns the structure function A (1.3)
and its parameters. These choices may have a great effect on the process to be
evaluated. If the initial data are inaccurate, then it is meaningiess to demand
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essentially greater accuracy from the calculation technique, at least if this can be
done only at the cost of greatly complicating the calculations. On the other hand,
the collectives concerned are often fairly large and the top risks are cut away by
reinsurance. Then the skewness may seldom exceed 0.1 or 0.2 and the inaccuracy
involved with the approximation formulas obviously scarcely spoils the
outcomes.

The situation is different for problems where long chains of computations are
needed, e.g. in the calculation of integrals having F in the integrant. Then one
should beware of an accumulation of errors,

7.3. An appropriate tool for simulations. Before proceeding further with the
discussion about approximation methods attention is called to an attractive
feature of the formula of wype (2.4). It can be of special benefit for simulations
where random numbers are generated, which are distributed according to the
mixed compound Poisson taw. This is a problem frequently appearing in advanced
model building. The approach is simply first to generate normally distributed ran-
dom numbers r and then to transform them by the inverse of the symmetrizing
function (2.3): X = v~ '(r) (see BPP, Section 6.8).

The number of the necessary random numbers can be very great. Then it is
important that the inverse transformation v~ ' is convenient to program and 1s
fast. We proposed the NP formula in BPP (Section 6.8.3). The present experience
suggests either the WH or HA-A transformations. In particular the WH formula
is very handy (which was already recognized in exercise 6.8.1 of BPP).

7.4. Observations. Appendix 1 and Figure A.3 are the most convenient for the
evaluation and comparison of the four tested methods.

If the skewness is moderate, i.e. no more than 0.3, and if an inaccuracy of
some *2 per cent is tolerable, then all four methods are acceptable. However,
the Haldane-B showed, by far, the narrowest range of the relative error, the
Haldane-A being obviously the next best.

The situation is greatly different for the skewness values 0.3~1. Then the
Haldane-B fails for x = 3 (note the different scale for the different lines of Figure
A.3!Y). By the way, a similar observation was also made when the long version
of the NP formula was investigated (PENTIKAINEN, 1977). These approaches,
which are based on four characteristics, kurtosis included, instead of three
characteristics (mean, standard deviation and skewness), proved to have superior
accuracy for slightly skewed distributions but do not tolerate markedly skewed
€asces.

When the skewness exceeds unity, then all of the methods already show great
irregulanities and soon turn out to be useless. The lower example of Table 1
(Section 6.9) suggests that no method that 1s based only on the three lowest
characteristics can be good for all greatly skewed distributions.

A general observation is that the short tail (x < 0) shows considerably worse
results than the long tail.

For the reasons referred to above it seems doubtful whether the Haldane
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variant B is useful, in particular regarding the fact that it is markedly more com-
plicated than the A variant. Haldane himself also observed that it gives
sometimes poorer results than the simpler A formula.

Some rules of thumb are sometimes proposed to guide the use of the approx-
imations (e.g., BPP, 3.11e). Our latest studies do not suggest any such simple
rules. Instead, it is much more effective to use Figure A.5 (or Figures A.6 or A.7)
as a kind of “map” where the possible accuracy can be evaluated, and just in the
environment of concern. If, for example, only positive x values are needed for
some particular interval, then the area of applicability is wider than if negative
x values are also needed.

Note that even though the general shapes of the error zones in Figures A.5, A.6
and A.7 are similar, it does not imply a full similarity in the test outcomes. For
instance, the ¢ indicator would suggest a poor accuracy in case 4 of Appendix
1, but the skewness and Haldane measures still indicate acceptability as seen in
the side column of the table.

7.5. The Wilson—Hilferty formula 1s clearly simpler and also somewhat faster
than the Haldane-A. However, 1ts tolerance for medium size and large
skewnesses is poorer, as seen from Figure A.3. If the skewness is moderate, this
formula may be appropriate at least 1n cases where very great speed is necessary.

7.6. The NP method has as its special merit the analytic form (2.5) for the long
tail. It is of frequent use in many risk theory considerations (see e.g., BPP,
Chapter 4). If only the long tail is of concern, then the NP method 1s the simplest
and is also fairly competitive with the other methods concerning the accuracy,
with the proviso that the distribution is not very skew.

7.7. In conclusion we summarize our present conception about the usefulness of
the studies’ approaches by means of a diagram as follows:

NP WH HA HAD

'
' {
/ ' .
_ \J
Analytic Lang Stmu- Whole
formula tail [ation range

7.8. Finally let us note that the exact and approximate methods complement each
other in a happy way. The exact methods (and possibly direct simulations, see
BPP, p.239) are most appropriate for small collectives, and the approximate for-
mulas for the large ones.
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APPENDIX |
EXAMPLES
n = Poisson parameter. m,o, v, y2 are the mean, standard
h =Polya parameter. deviation, skewness and kurtosis
ha = Haldane parameter (3.8). of the aggregate claim X.

r; (1= 1,2) is the risk indexes @,/ ai indicating the heterogeneity of the claim size
distribution (see BPP, p.54).

F=d.f.of Xfor x<0Oand 1 — Ffor x>0 ((1.1).

x = standardized aggregate claim size (2.2).

d F% = half of the step of Fin per cent at the points where the discretized proba-
bility mass 1s concentrated (=50% [ F(x+)— F(x—)] divided by F(x+) or
1- F(x-)).

NP = F approximated by the NP formula, dNP% 1ts deviation from F in per
cent. WH, HA and HAb are the corresponding outcomes for the
Wilson—Hilferty, Haldane A and Haldane B formulas

Ln(.,.,.), the log normal claim size distribution having the mean, standard devia-
tion and the skewness given in parentheses.
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Pareto(.) Pareto claim size distribution with index given in parentheses (see BPP,

p.74).

M is the greatest value of the discretized claim size and & is the interval between
the consecutive non-zero points (see Section 6.1).
1A and 2A are the measures of deviation defined by (5.1) for the Haldane A and
1B and 2B for the Haldane B.
v = pa/p3 = an indicator for the speed of convergence of the cumulant.

Case ) n h m o ¥ ¥2 ha r I5)
2000 00 19984 1459 (0080 0007 0633 107 125
Ln(10,3,5)
M=13l,d=1 X F NP WH HA HAb dNP% dWH% dHA% dHAb% dF%
IA=-00001 -20 00205 00205 00205 00205 00205 -0 01 -00 -00 09
2A=+00009 -15 00646 00646 00645 00646 00645 01 -00 -00 -00 07
1B=-00001 -10 01586 01588 0158 01587 01586 01 ~00 00 -00 05
2B = —0 0000 1.0 01586 01587 01586 01587 01586 00 -00 00 -00 0s
v=0 006 20 00249 00249 00249 00249 00249 01 00 -00 00 08
30 00019 00019 00019 00019 00019 04 0s -01 00 10
40 00001 00001 00001 00001 00001 10 17 -05 00 12
Case 2 n h m o ¥ 72 ha ra r
1000 1000 7871 1169 0224 0071 0497 2] 172
Mixture
M=31,d=1 X F NP WH HA HAb dNP% dWH% dHA% dHAb% dF%
IA=-00008 -20 00164 00163 00164 00163 00164 -0S5§ 03 -013 -01 13
2A=+00039 -15 00599 00605 00599 00599 00599 09 -00 -00 -00 10
I1B=-00002 -10 01582 01597 01580 01583 01582 09 -01 00 -00 07
2B = —0 0000 10 01583 01587 01581 O 1583 O 1583 02 -01 00 -00 06
v=0 048 20 00284 00286 00284 00284 00284 05 00 00 00 09
30 00029 00029 00030 00029 00029 04 08 -04 0t 11
40 00002 00002 00002 00002 00002 -03 29 -13 o0l 13
Case 3 n h m o Y ¥2 ha r r
1000 2000 1413 194 0238 0100 0424 139 359
Pareto(3)
M=21,d=1 X F NP WH HA HAb dNP% dWH% dHA% dHAb% dF%
IA=-00023 -20 00162 00159 00160 00160 00161 -19 =11 -14 -05 81
2A= +00175 -15 00595 00601 00594 00594 00594 09 -02 -02 ~-02 62
1B=—-00004 -10 01578 01598 01580 O 1581 01577 12 01 02 -01 43
2B = — 0 0000 10 01579 01587 01581 01582 01578 04 01 01 -01 36
v=0 058 20 00288 00289 00288 00288 00288 04 ~-01 -01 -01 47
3.0 00031 00031 00031 00030 0003t -21 -17 -23 -03 60
40 00002 00002 00002 00002 00002 -82 -51 -72 -04 64
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Case 4 n h m [+ ¥ T2 ha r r
100 1500 500 179 0463 0279 0569 121 187
Lngs,3,4)
M=2l,d=1 \ F NP WH HA HAb dNP% dWH% dHA% dHAb% dF%
IA=-00133 -20 00088 Q0037 00094 00080 00085 103 74 —-85 ~25 142
2A=+00214 -—15 00506 00532 00504 00499 00501 53 -02 ~-14 -09 85
IB=~00044 -10 01572 01630 01558 Q1575 Q1570 37 -09 02 -02 53
2B = -0 0005 10 01576 01587 01566 01578 01574 07 -06 01 -01 37
v=0215 20 00337 00343 00337 00338 00338 17 -02 02 01 48
30 00050 00051 000S! 00049 00050 31 32 -04 0s 56
40 00005 00006 00006 00005 00005 49 12 -24 10 62
Case § n h m o Y 2 ha r r
1000 1000 1704 342 0593 0679 0016 303 36 93
Pareto(2)
M=61,d=3 X F NP WH HA HAb dNP% dWH% dHA% dHAb% dF%
IA=-00250 ~-20 00078 00067 00059 00067 00071 ~-141 =251 -14 4 -9 62
2A=+00582 -15 00456 00492 00443 00447 0 0447 79 -28 -20 -11 45
IB=+00196 -10 01506 01658 01538 01522 01510 101 21 11 03 29
2B = -0 0035 10 01529 01587 01554 01541 01529 38 16 08 00 09
v=0006 20 00362 00372 00361 00359 00358 28 -01 ~06 ~09 23
30 00068 00064 00064 00066 00069 -49 -54 -21 14 25
40 0001} 00009 00009 00010 OOQO12 —-174 -122 -08 119 27
Case 6 n h m [+ ¥ Y2 ha r r
250 200 476 175 0779 0976 0297 215 13 25
Pareto(2)
M=31,d=1 4 F NP WH HA HAb dNP% dWH% dHA% dHAb% dF%
1A=-00092 -20 00028 00035 00018 00020 00022 287 -354 -265 -220 229
2A=+00115 —-15 00354 00434 00341 00344 00346 226 ~-36 -27 -22 118
1B=+00052 -10 01478 01712 01495 0 1491 0 1489 159 12 09 08 65
2B = -0 0002 10 01526 01587 01533 01530 01528 39 04 02 01 33
v=10006 20 00394 00411 00392 00391 00391 43 -07 -09 -10 41
30 00084 00084 00083 00083 00083 10 ~12 -08 -06 43
40 0QO00IS 00014 00015 00016 00016 -54 -00 18 29 49
Case 7 n h m a ¥ ¥2 ha r ry
750 750 1220 308 1082 2703 -042% 377 84 37
Paretof2)
M=121,d=4 X F NP WH HA HAb dNP% dWH% dHA% dHAb% dF%
1A=+04175 -20 00033 00009 00000 00006 Q0011 -731 -1000 -—831 -678 100
2A=+05406 —-15 00322 00342 00145 00209 00204 60 -552 =351 -365 59
IB=+06058 -10 01357 Q1834 (1384 01307 ¢ 1207 352 20 -37 -1 38
2B = -0 2405 10 01376 01587 01491 0 1419 0 1285 153 84 31 -66 21
v=10630 20 00376 00470 00431 00407 @ 0379 251 147 813 07 19
30 00125 00119 00112 00116 00139 -49 -104 ~-73 13 1.6
40 00042 00027 00028 00035 00068 -355 ~-340 -165 637 19
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Case 8 n h m o ¥ 72 ha r2 ry

250 500 427 16 6 1 628 5801 -0139% 329 54 61
Pareto(2)
M=91,d=3 X F NP WH HA HAb dNP% dWH% dHA% dHAbD% dF%
JA=+14047 -20 00004 00000 00000 00000 00000 -958 —-1000 -—-1000 -994 418
2A=+10048 —15 00178 00197 00000 00024 00026 107 -1000 -85 -85S 16 2
IB=+22843 10 01190 02180 00950 00892 00702 832 -201 =250 -410 89
2B = -~ 15625 10 01280 01587 01399 012483 00983 240 93 =25 -232 37
v=1 387 20 00370 00562 00473 00395 00291 518 271 67 -214 34

30 00140 00184 00158 00139 00119 314 126 -09 -147 24

40 00069 00057 00053 00054 00065 —181 ~-241 =214 -64 18

APPENDIX 2
FIGURES
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FiGURE A 1(a) The case 3 of Appendix 1 presented as a graph The step curve represents the exact

F The key parameters are n =100, A=200, y=024
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FIGURE A 2 The case 7 of Appendix 1 The key parameters are n =75, h=75, y=1 08
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FIGURE A 5 The zones of the relative errors | dHA% | according to the argument x and the skewness
For explanations see Section 6 8
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FIGURE A 6 The zones of the relative errors | dHA % | according to the argument x and the measure 1
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TWO CREDIBILITY REGRESSION APPROACHES FOR THE
CLASSIFICATION OF PASSENGER CARS IN A MULTIPLICATIVE
TARIFF!

BY BJ@RN SUNDT

Storebrand Insurance Company Litd, Oslo

ABSTRACT

In the present paper we present two credibility regression models for the
classification of passenger cars. As regressors we use technical variables like price,
weight, etc. In both models we derive credibility estimators and find expressions
for their estimation errors. Estimators for structure parameters are proposed. A
numerical example based on real data is given. The second model 1s hierarchical
with a level for make of car.

1. BACKGROUND

In Norway there is no common passenger car tariff for all insurance companies,
and thus there are several different tarnffs in the market. However, most of them
seem to have about the same structure as the one used by Storebrand to be
descnibed below, but with different parameter values.

In this paper we are going to discuss vehicle damage insurance for passenger
cars. The tariff structure 1s multiplicative with factors for bonus-malus,
mileage/district, deductibles, age of car, and car model. We shall concentrate on
the factor for car model. There are 65 classes numbered from 30 to 94, and the
factor for class ¢ is equal to 1.04°7%,

Until the present research was started, the classification of individual car
models was performed rather subjectively. There was one person classifying new
car models. When a new car model appeared on the market, he looked at its
specifications and tried to find out to which cars it was comparable. Then he
looked at the factors for these cars, both by Stor¢brand and by the competing
companies. When the car had been in the market for some time and claims
statistics had become available, the rating factor was reassessed, taking into
account the observed claims ratio, the observed volume of exposure (premium),
the old factor, and the premiums of the competing companies. This reassessment
was also performed 1n a rather subjective way, but not by the same person who
had made the initial classification of the car.

The procedure described 1n the previous paragraph has obvious advantages
compared to an objectively based statistical procedure. It would be impossible o
build 1nto a mathematical model all the experience, knowledge, and intuition of
a skilled person. How could the model incorporate, say, the person’s opinion of

'Paper presented at the XIXth ASTIN Colloquium, Tel Aviv, 20~24 September 1986
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the importance of the shape of the car (a limousine and a coupé are bought by
quite different sorts of people)? And even if one should succeed 1n creating a
model which to a great extent incorporated the knowledge of the skilled person,
this model would probably be too complicated for practical use. However, the
advantage of the subjective procedure 1s also a disadvantage. The procedure is
too dependent on the person performing it. As it is impossible to build the
knowledge of the skilled person into a statistical model, it is also impossible to
give an adequate documentation of the procedure. And what then if the person
leaves the company?

This was the background that motivated the present research. One wanted an
objective method for classification of cars, and in this paper we are going to
describe the models and methods that were considered. We are also going to com-
ment upon the difficulties that occurred during the work. As should be well
known to everyone who has worked on modelling insurance data, these data are
very seldom what you want them to be.

When the project was started, it was decided that this time we should concen-
trate only on the determination of the factor for car model. Ideally, one should
of course have developed models and methods for simultaneous determination of
all the factors in the multiplicative model, but that would have been a much more
ambitious and time-consuming project. It was discussed whether one should con-
centrate only on the classification of new car models, for which we have no claims
data, but in the present author’s opinion, classification of new models is only a
special case of reclassification (i.e. the case with exposure volume equal to zero).
It would therefore be unnatural not to treat these two situations together, and
it was decided to follow this line.

As was argued above, the subjective approach has great advantages compared
to a statistically based procedure, and it would be wrong to throw this system
away completely. It is the author’s intention that the methods presented in this
paper should not replace the skilled person, but rather be an aid to him. The
system proposes a class to the person, but he should himself decide whether to
follow this proposal or not. In particular, this is important for reclassification of
cars that have already been in the market for some time, and for which we know
the rating of the competitors. It would be too ambitious to build a model that
also incorporates the premiums of competing companies. For marketing reasons,
it could also be desirable to make smaller changes by the reclassification than
those proposed by the statistical procedure.

Furthermore, in the statistical investigations it became clear that some car
models behaved so strangely, relative to the model studied, that they ought to be
considered as outliers in the present context. For such cars one should not use
the factor suggested by the system, and perhaps even more important, these cars
should be left out when estimating the model parameters. The most striking
example in our investigations was Volkswagen Golf GTI, and the parameter
estimates changed considerably when this car was taken out of the estimation
procedures. It is important that the person doing the classification identifies such
cars and sees to it that they are left out of the statistical analysis. One could of
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course argue that the model assumptions should also embrace such cars, but it
is the opinion of the present author that it 1s preferable to have a relatively simple
model giving satisfactory results for “normal” cars, than a complicated model
that could be used for all cars. In particular, as he believes that in practice the
“outliers” would usually be easy to identify.

For the numerical computations we used the program package SAS, which in
particular was very convenient for the matrix calculus.

2. PRELIMINARIES

2.1. Optimality Criterion for Estimators

Let 7 be a random variable. We shall say that an estimator m*‘" of m is better
than another estimator m® 1f

Em®Y —m)* < Em® —m)?,

that is, we use the quadratic loss function.

Let m = (rm, ..., ms)’ be an unknown random vector and m® = (m{®, ..., m&y’
and m@ =(m®, ..., m*)" two estimators of m. Then we shall say that m" is
a better estimator of m than m® if

EmP —m)* < Em®P -m)? i=1,. .,s

with strict inequality for at least one 1.
We implicitly assume that second-order moments exist for all random variables
to be considered.

2.2. Credibility Estimators

Let x and m be random vectors, x observable and m unknown. We shall call
a linear estimator of m (based on x) if #i7 may be written in the form ri1 = a + Ax,
where a is a non-random vector and 4 a non-random matrix. The credibility
estimator of m (based on x) 1s defined as the best linear estimator of m. We sum-
marize some results about credibility estimators in the following theorem.

THEOREM 2.1. (1) There always exists a unique credibility estimator of m.
(1) Letr m be a linear estimator of m. Then m is a credibility estimator of m
1f and only if m satisfies the two conditions

2.0 Em=FEm
.2) Cov(m, x') = Cov(m, x').
(i) Let m be the credibility estimator of m. Then we have
2.3) Cov(m,m') = Cov(m,m') = Cov(ri) = Cov(m) — Cov(m — r1).

For proof of (i) we refer to DE VYLDER (1976), for proof of (i1) to SUNDT
(1980), and for proof of (in) to SUNDT (1981).
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3. A NON-HIERARCHICAL APPROACH
3.1. Mode!

Consider a group of K different car models. These could be all passenger cars
(station wagons included) that are rated in Storebrand, or a well-defined
subgroup of these (e.g. diesel cars, cars with four-wheel drive, all Volkswagen
models, all cars produced after 1982, etc.). For the parameter estimation des-
cribed in Subsection 3.3 1t could be reasonable to take a representative sample
from the group considered.

For car model k& we have observed I risk units (policies). Let X4, be the total
claim amount in the exposure time for unit : of model k, and let px, be the earned
premium. We want to use earned premium as a measure of risk volume, but this
premium also contains the car model factor which we are going to reassess, and
this old value should not be included in the risk measure. Hence, let

3.D Wit = Dii/ Sk,

where fr is the old factor, be our measure of risk volume. We assume that for
fixed k, the X,’s are independent of the corresponding data from other car

models, and that Xki,..., X% are conditionally independent given O, a
random parameter characterizing car model k. It is assumed that ©,, . ,©Og are
independent and identically distributed.
Let
Y = Xk./ Wki.

It 1s assumed that

E[Yi|Ok] = mx (k)
3.2) Var mg(Ox) = N
(3.3) Var[ Yi | Ox] = 5*(Ox)/ vk

with vk = wy, (the reason for introducing vi, will become clear in subsection 3.6,
where we modify the present assumptions), and

pk = Emg(Ok) = x4 8,

where x, is a known g X 1 design vector based on the technical data of the car
and B8 is an unknown ¢ % 1 regression vector. We further introduce

¢=Es*(0k)  x=¢/\

1 Ii I
Xe= 2 Xu Uk= Q) Ukt Wk = 2 W
t=1

=1 1=1
(3.4) Yi= Xk/ Wi,
We note that in the special case when

Emk(ek) =K,
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independent of 4, the conditions of the Buhlmann—Straub model (BUHLMANN
and STRAUB (1970)) are satisfied.

It is also interesting to relate our present model to HACHEMEISTER'S (1975)
regression model. In that model one assumes that

E[ Yk: l ek] =xélb(ek)!

where x, is a known g X 1 design vector and b 1s a g X 1 vector function. To cor-
respond to our present set-up we assume that xi, = xx independent of /. We
introduce

A =Cov b(By) 8= Eb(O)
and get
Var E[ Yk, l Gk] =xLAxk.

Thus this variance would typically vary between car models whereas 1n (3.2) we
have assumed 1t to be constant. Let us now assume that the first element of xx
is equal to one, which will usually be the case. Then we obtain our present model
by assuming that only the first element of 4(8«) is random, which makes all
elements of A except the (1,1) element equal to zero. We note that this A is not
positive definite.

3.2. Credibility Estimation of ms(6;)

Let #1, be the credibility estimator of m,(9;) based on the observed Yy,’s. We also
introduce the estimation error

Vs = E(my(8,) — m15)?
of ;s From Theorem 2.1 we get
(3.5) =Y+ (1= $us
s=¢/ (s +x) =Ml = §5)
with

$s=Us/ (Vs + x).

3.3. Parameter Estimation

The structure parameters ¢, \, and 8 will in practical applications be unknown
and have to be estimated.
We have that
IA

(3.6) dr=Uek=1)"" D vi(Yii— Ya)?

=1
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satisfies E[¢x | Ox] = s2(Ox), and thus
K

% = 2, wdk
k=1
is an unbiased estimator of ¢ for all weights ux (D f=iux=1). In an earlier
version of the paper we suggested that one should simply apply ux = K~'. This
choice has been criticized by Ragnar Norberg, who suggests that one should apply

K
ue = (I — 1)/(2 I,—K).

An optimal choice of weights 1s difficult, involving fourth-order moments (cf.
e.g. NORBERG (1982)), and it was not within the scope of the present research to
perform a profound analysis of this problem. Both our choice and Norberg’s
choice can be criticized; our choice because it gives too much weight to cars with
low exposure; Norberg’s choice because if /s is much greater than the other /i’s
for some s, then the value of ©; will have a too dominant influence on the
estimate of ¢. The present discussion also applies to the analogously weighted
estimators in subsections 3.6 and 4.3. We note that in the special case
I,= L= ...= IxNorberg’s choice and our choice are equal, and in this case "
is equal to the estimator proposed by BUHLMANN and STRAUB (1970) for the
Buhimann—Straub model.
We introduce

Y=(1,...,Yx) X=(x1,...,xk)’
K
v= D, wk D =diag(v,/v, ...,vx/v)
and get k=t
EY=XB
3.7 Cov Y= (¢/v)D~' + Nk

with Ix denoting the K X K identity matrix. It is assumed that X has rank g.
We trivially have that

B=(X'DX)'X'DY
1s an unbiased estimator of 8. It seems reasonable to base an estimator of \ on
the statistic
(3.8) Q= (Y- XB)' D(Y - XB),
and we therefore want to find the expectation of Q. In the deduction we use that
for an r X s matrix 4 and an s X r matrix B we have
(3.9) tr(AB) = tr(BA),

where “tr” denotes the trace of a quadratic matrix (i.c. the sum of its diagonal
elements); this result is easily proved. We have

EQ=E(Y-XB)'D(Y-XB)=tr(D E(Y - XB)(Y - XB)'}
=tr{D Cov(¥ — XB)}
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as
E(Y - XB)=0.
We further get

EQ=tr(D Cov|[{Ix— X(X'DX) 'X'D)Y])=
tr(D{ Ix — X(X'DX) ' X' D} (Cov Y){Ix — DX(X'DX)"'X}),

and insertion of (3.7) gives

(3.10) EQ= N1+ (¢/ V)72

with

G.11)  n=trDUx- XX'DX)'X'D}{Ix - DX(X'DX)"'X"'})

and

(3.12) m=t(D{Ik—X(X'DX)'X' DD '{Ix - DX(X'DX)"'X"}).
From (3.11) we get

(3.13) m=tr D-tr{DX(X'DX)™'X'D} —tr{D*X(X'DX)™'X"}
+u{DX(X'DX)”'X'D*X(X'DX)"'X'}.

By repeated use of (3.9) we see that the three last terms in (3.13) are all equal to
tr{(X'DX)”'X’ DX}, and as in addition tr D=1, we get

(3.14) n=1-tr{(X'DX) 'X'D*X}.
From (3.12) we obtain

r2=tr({Ix = DX(X'DX)™'X'} {Ix — DX(X'DX)™'X"})
=tr Ixk —tr{DX(X'DX)"'X"} = trlx — tr{(X'DX) ~'X' DX} =tr Ix —tr I,

and as the trace of an identuty matrix is equal to its dimension, we get
(3.15) n=K-gq.
From (3.8), (3.10), (3.14), and (3.15) we get that

A= (Y- XB)' D(Y-XB)~ (K~-q)¢"/v}/[1=-tr{(X'DX)™'X'D*X}]

is an unbiased estimator of A. It has, however, the disadvantage that it can take
negative values whereas A is always non-negative. Therefore we replace it by

* = max(0, \).

However, by this adjustment we lose the unbiasedness. For simplicity, in the
following we proceed as if \* > 0; the adaption to the case \* = 0 is trivial. To
avoid having to take special care of the case \* = 0, one could instead of putting
\* equal to zero when A < 0, put \* equal to some small positive number; one
possible choice would be €/ K for some small ¢, as we would then have asymptotic
unbiasedness when K goes to infinity.
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If Cov Y were known, the best linear unbiased estimator of 8 would be

B=(X'(Cov N'X}"'X'(cov Y)Y,

and as Y., .. , Yk are independent,
K

K -1
B = (Z xx(Var Yk)—'x,;> > xk(Var Yi)7 'Yy

k=1 k=1

K 1 K
= (Z XUk (¢ + )\vk)"xé) Z Xk Uk (@ + )\vk)"lYk
k=1 k=)

K
= (Z ?kaX/Q>

k=1
and we propose to estimate 8 by

K
g = (kZ r/’i‘xkxk')
=1

1K
2 Caxe Ya,
K=1

1 K
> tExe Y
k=1
with
tE =/ (e + %) xF =0/

It should be noted that in the Buhlmann—Straub model the estimators \* and g*
reduce to the estimators studied by BUHLMANN and STRAUB (1970).

3.4, Determination of the Tariff Class

By inserting the estimators {x and 8* in (3.5) we get the empurical credibility
estimator

mt =Y+ (1= ¢

with

The estimation error y; is estimated by
vE= 2\ = ).

The estimator /) cannot yet be used as the proposed rating factor for car
model s; it still needs to be adjusted by some scaling factor. The approach used
in our numerical investigations was to determine the scaling factor such that the
total premium for the portfolio used for the estimations would be the same with
the new values of the model factor as with the old ones.

Let v* be our scaling factor. Then the new model factor will be

* * %

pS==7 ﬂ%,
and thus the total “new” premium will be y*Zf:l wititf whereas the “old”
premium is 2,f-; px with

I
Pk =2, Pk
1=1
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As these two premiums should be equal, we get
" K K .
Yy = (Z m)/Z Wkl .
k=1 k=1

In addition to our estimator for the class, we also want a confidence interval
for the “correct” factor, by which we mean ym;(0;), where y denotes the mean
of v*. To get such a confidence interval we need some additional assumption, and
for simplicity we assume that the conditional distribution of my(©;) given the
observations is normal with mean /1, and variance ;. This assumption seems
highly unrealistic, in particular for cars with low exposure, but we really did not
need an exact confidence interval, only some measure of the uncertainty of the
estimator, and for this purpose the assumption seems adequate. As a 1-e con-
fidence interval (in the Bayesian sense, cf. e.g. DEGROOT (1970, subsections
11.5-6)) for the factor we obtain #i; + gi-¢/2[s, where gi_c,» denotes the
1 — ¢/2 fractile in the standard normal distribution N(0, 1) and by insertion of
estimators for unknown parameters we finally get the estimated confidence inter-
val pf £ v*gi_cJUF.

From the estimator and the confidence interval of the model factor, we can
trivially derive an estimator and a confidence interval for the model class (cf.
Section 1).

When a new car model ¢, for which we have no data, is to be classified, we have
vi= ¢ =0, which gives

o =v"ul = yx/ B*,
that is,

q
(3.16) ol =xia* =2, ' x,
J=1

with
a*=(af,...,a0) =v"B".
Thus, (3.16) is the formula to be used to find the model factor for car model ¢.
Let us for a moment call p*, given by (3.16), p;(0) to stress that this 1s the

factor estimate without exposure. When we get an observed exposure, we get the
factor

pr (1)=& Yo+ (1= £l (0),

that 1s, a weighted mean of the initial factor estimate and the empirical factor
+*Y,. We also note that with no exposure we have ¥, = X and ;" = \*.

3.5. Choice of Regressors

In subsection 3.1 we said that x4 should be a design vector based on the technical
data of car model k& without giving any further indication of which regressors one
should use. In our numerical investigations we registered for each car model in
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our test sample the four basic variables engine power, cylinder volume, weight,
and price. Diesel cars and cars with four-wheel drive were not included in our
sample; otherwise it would have been appropriate to include (0, })-variables for
these characteristics. As interesting regressors we concentrated on the four basic
variables and ratios between them.

It should be noted that the estimator ¢* of ¢ does not depend on the chosen
regressors. For A\* and 8* we made several computations using different
regressors. In each design we of course included a constant term, that is, the first
element of xx being equal to 1.

As

A= E(m(Ox) — xkB)%,

X\ measures how close the prior mean 1s to m,(O«), and 1t was therefore felt that
one should use a set of regressors making A\* small. This is also consistent with
our choice of the quadratic loss function; one could think of all the possible
regressors being studied as included in a huge design, but that for most of them
we estimate the corresponding element of 8 by zero.

An important point when choosing regressors is that we know something
about monotonicity. To motivate this, let us look at an example. At an early stage
of our research we wanted to classify some new car models for which the prices
were still unknown. A design giving small \* under these circumstances was
(1 power/weight weight/power)’. For two of the cars we got the following
results:

Car Weight Power Class
1 1200 kg 63 HP 59
2 1227 kg 86 HP 42

This seems of course very unreasonable. Car 2 has a slightly higher weight and
a much higher power than Car 1, but should be rated lower!

In accordance with our opinion about monotonicity, several sets of regressors
were rejected when looking at 8*. It should be noted that the more regressors we
include, the more difficult it would be to control that our opinion about
monotonicity is satisfied as the different regressors could be strongly correlated;
even if we mean that the factor should be increasing with cylinder volume, 1t need
not be disturbing to get a negative coefficient for this regressor if engine power
has a positive coefficient, as cylinder volume and engine power are strongly
correlated. Under these considerations we conclude that ¢ should not be too
large, say, at most 4-S5.

It should be noted that the monotonicity secured by the choice of regressors
is not necessarily satisfied for the posterior estimates s with positive exposures.
This is reasonable as we then have more information apart from the technical
data; the monotonicity is important only when we base the factor on only the
technical data.

One should be aware that in one respect price 1s different from the other basic
variables considered, as the price may change whereas the car model is still the
same.
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We conclude this subsection by briefly recapitulating the criteria that should be
taken into consideration by the choice of regressors:

(i) small \*;
(ii) monotonicity;
(ii1) small g.

3.6. Some Practical Modifications

In subsection 3.3 we described how we would have estimated ¢ 1f we had had
the necessary data. Unfortunately, we did not have them. From (3.6) we see that
for each policy we had to match the exposure with the total amount of the claims
occurred during the exposure period. At present, the data of Storebrand are
organized such that for each calendar year we have one claims file and one policy
file. The claims file contains data for all claims reported during the year. As stated
above, we really wanted the claims occurred during the year, but this does
not seem to be a serious problem. The policy file contains data from the middle
of the year. The registered premium is the premium at the latest renewal prior
to the middle of the year, which means that these renewals range from the middle
of the previous year until the middle of the present year. Thus a match between
claims and policies would be awkward. We also have the problem that the total
registered premium for a fixed car model is not really the premium we wanted
it to be, but we decided to use it as an approximation. If the premium volume
of the car model is relatively stable over time, this approximation should be
acceptable. However, if the premium volume is growing, we would register too
low a value for the exposure volume. This will in particular be the case when a
new car model is introduced, most extremely for cars introduced 1n the second
half of the year, for which we may have claims, but no premium. Such cars
should not be included in the parameter estimation.

The following additional model assumptions and estimation method were
applied. Let Ni, be the number of claims from risk unit 7 of car model %, and
let Zx,, denote the claim amount of the yth of these claims. Then

Ny,

Xkl = Z Zku-
J=1

We assume that given O, the Z,,’s are conditionally independent and identically
distributed and conditionally independent of the Nk,’s. It is further assumed that
N, 15 conditionally Poisson distributed with parameter wg,rx(O) given O. It is
well known that under these conditions

Var[ Xz, | Bx] = wirx (81 )t (Ox)
with
Ok = E[ Z}, | ©k],
and by using (3.3) we obtain
(1N () = r (0 Wi (Oy).
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We now have that

Iy Ny,
6i-(2 % zf,,)/wk
t=1 y=1
satisfies E[¢x | O«] = s*(6«), and thus
K
o = 2 wok
k=1
is an unbiased estimator of ¢ for all weights ux. (We stress that the quantities ¢
and ¢* defined in the present subsection are not the same as the quantities defined
1n subsection 3.3, hoping that this abuse of notation will not present any prob-
lems to the reader.)

The author 1s not quite happy with the introduction of the present compound
Poisson assumption in our model. From (3.17) we see that the functions r¢ and
1 depend on k whereas their product 1s independent of k. And r, really should
depend on & as an independence assumption would imply that technical data have
no influence on the number of claims, which seems very unrealistic.

The fact that in our test sample ¢x was strongly correlated with the four basic
technical variables, could be a consequence of the issue discussed in the previous
paragraph. Let ax denote the engine power of car model k. From our test sample
consisting of 62492 policies distributed on 90 different car models, we found the
correlations displayed in Table 3.1 by using a correlation procedure in SAS. As
is seen from the table, the correlations become considerably lower if we divide
éx by ax. Therefore we replace assumption (3.3) by

Var [ Yi, | Ok] = axs?(Oi)/ Wie = $2(O1)/ vk
with vk, = wi/ ar. Under this assumption (3.17) should be replaced by

52(Bx) = re(®x )k (O )/ ax.
We get that

Iy Ny
o = (z 5 zz,,>/<akwk,>
=1 4=1
satisfies E[¢i | O«] = s2(6¢), and thus
K
" = 2, ukodi

k=1

TABLE 3.1
CORRELATION OF g% AND @i /@ WITH THE FOUR BASIC RISK VARIABLES

ok ox/ ax
unweighted weight wi unweighted weight vk
Weight 0249 0 445 -0009 0.078
Power 0337 0 499 0 041 0 083
Cylinder volume 0 346 0 509 0 063 0 106

Price 0 286 0 486 0 060 0187
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is an unbiased estimator of ¢ = Es*(0x) for all weights wu; in the numerical
example in Section 6 we applied ux = K~ '.

The reason that we introduced a vy, in subsection 3.1 should now be clear: The
derivations made in the previous subsections are still valid under our revised
assumptions; we have only changed the definition of some of the quantities.

3.7. Introduction of Subjective Assessment

Classification of individual car models by credibility has also been treated by
CAMPBELL (1986). He computes a model factor by a pure Buhlmann—Straub
model, that 15, he makes no regression assumption about the technical attributes
of the car. However, before performing the credibility analysis, he divides the
cars by using cluster analysis into groups of cars that are similar with respect to
technical attributes. The credibility analysis is then performed within each group
of car models. Roughly speaking, one could say that in our set-up the regression
assumption plays the role of the cluster analysis in Campbell’s set-up.

After the Buhlmann—Straub analysis has been performed, Campbell lets the
final value of the model factor be a weighted mean of the value found by the
Buhlmann—Straub analysts and a subjective estimate based on a technical assess-
ment of the car.

Let us now see how one could incorporate a subjective estimator in our model.
We assume that when car model 4 is initially classified, a skilled person proposes
a class Cx. His proposal 1s based on a technical assessment of the car. From the
class Cx we find the factor

Fre=1.04%730,

This factor is not yet comparable to m,(Bx) as it is differently scaled (cf. sub-
section 3.4). From (3.1) and (3.4) we get

Yk = (Xk/pk)fkv

which motivates the scaling factor

N= (i Xk)/él Pe

k=1

and we introduce the rescaled model factor
Ar = NFg.

We now assume that Ay is independent of the data from the other car models,
that it is conditionally independent of Yk, ..., Y, given O, and that

E[Ax|Ok] =mi(©k)  E Var[Ax| 6] =7.

Now let 7i1; be the credibility estimator of m(6;) based on Yy, . ., Y, and
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As and let
¥s = E(ms(05) — i)’
From Theorem 2.1 we get
s = (UsYs + €As + xps)/ (Us + €+ x)
Vs=0¢/(Us+ e+ x)
with
e=9¢/T.
We have that

K
P= 2wl (Ye— A0* - 6%/ ui)
=1

is an unbiased estimator of 7 for all weights ux, but as 7 can take negative values,
we propose to estimate 7 by 7 = max(7, 0).

We can of course still estimate X and 8 by the estimators previously found, but
if we also want to include the Ag’s in the estimation, we can easily modify the
estimators presented in subsection 3.3 by using the following trick: We simply
transform the subjective estimator Ay to an artificial risk unit 7, + 1 with “risk
volume”

(3.18) Uk, e+1 =€

and “claim amount”

(3.19) Xie.1o+1= €Ak

By adding the new risk umts X 5,+1,. ., Xk 1.+1 to the statistics data, we can

estimate N and B8 in exactly the same way as in subsection 3.3. In (3.18) and (3.19)
we estimate € by
et ="/

This author is for two reasons a bit reluctant about the introduction of the
subjective estimator A; in the credibility estimator #1;. Both reasons really have
as a consequence that the model assumptions made about the Ax’s are not fulfill-
ed in practice.

Firstly, the person performing the assessment will probably gradually adapt
himself to the statistical model. He will get a feeling of what class the statistical
model will propose, and thus his assessment 1s no longer independent. This does
not seem to be an important objection, but it means that after a while the attitude
of the person is apt to change, and thus one should frequently update the estimate
of 7.

The second objection is more serious. In a competitive market like the
Norwegian one, not only the risk level of the car will influence the person
performing the assessment, but also the classification of similar cars, not only by
Storebrand, but also by the competing companies.
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Thus this author 1s more attracted by the opinion expressed in Section |, that
the subjective assessment should be influenced by the statistical method instead
of influencing the method itself.

4. A HIERARCHICAL APPROACH

4.1. Model

The make of the car is a characteristic that we have not mentioned yet, but it
could contain valuable information about the risk of a car; the information that
the car is a Mercedes Benz, may contain information about both the car and its
driver that is not contained in characteristics like price, power, etc. It should be
noted that make differs from the characteristics studied in subsection 3.5 in one
mimportant respect; whereas those characteristics were quantitative, make 1s
qualitative, and thus we cannot directly include make in the set-up of Section 3.
One possible approach would be to extend the regression analysis of Section 3
to a covariance analysis. Instead of following that line we are going to extend the
non-hierarchical regression model of Section 3 to a hierarchical model with a new
level representing the make of the car.

Consider a group of N different makes. For make n we have observed K,
different car models, and for model k of these we have observed I, risk units.
Let X« denote the total claim amount in the exposure time for unit i of model
k of make n, and let p.« be the earned premium. We introduce

Waki = pnkn/fnk,

where fnx denotes the old factor for make of car.

We assume that claim amounts from cars of different makes are independent,
and that from within one make n, claim amounts from different car models are
conditionally independent given a random parameter H, (capital Greek eta)
characterizing make n. Within car model k& of make n, the claim amounts from
different risk units are assumed to be conditionally independent given (©.x, H,),
where O, is a random parameter characterizing car model £ of make n. It is

assumed that ©,i,...,0.x, are conditionally independent and identically
distributed given H,, and that their common conditional distribution depends on
the make only through the value of H,. We further assume that H,,. .., Hy are
independent and identically distributed.
Let
Yllkl = Xnkl/ Waki.

It is assumed that
E[ Ykt | ©nky Hnl = Mk (Onk, Ha)
EVar[mu(©n, Hp)| Ha) = N
Var [ Y| Onk, Hnl = 5*(©nk, Hn)/ vk



56 BJORN SUNDT

With Unk: = Waii/ dnk, Where anx is a known quantity which could be equal to one,
engine power (cf. subsection 3.6), or something else. We further assume that

4.1) E[mn(Onx, Hn)|Hn] = xnxb(Hy),

where xq« is a known, non-random g X 1 design vector based on the technical data
of the car and b is a g X 1 vector function. We ntroduce

¢ = Es*(Onk, Hn) B8 =Eb(H,)
(4.2) Z = Cov b(H,)
x=¢/\

1

Tk Tnx nk
Xok= 2, Xk Unk = 2 Unki Wak = 0, Waki
=1

1 =1 1=1

Yok = X/ Wak.

—

We note that for = =0, the model reduces to the non-hierarchical model
studied in Section 3.

4.2. Credibility Estimators of m;(8, H,)

Let #71,; and b, denote the credibility estimators of m,s(©.s, H,) and b(H,) based
on the observed Y.«.’s. We introduce the estimation errors

\Lrs = Var(mrs(ers, Hr) - r.nrs) I, = COV(b (Hr) - Br)
Then we have the following result.

THEOREM 4.1. We have

(43) s = g-rsyrs + (1 - g-rs)xr’sl;r
(44) ‘pr: = (1 - g-rs)l A+ (l - Shrs)xr'snlxr:l
with

Ers = Urs/ (Urs + x).

PROOF As the coefficients of credibility estimators depend on only first- and
second-order moments, it is sufficient to prove the result for a special case having
the same first- and second-order moments as the general case. It 1s convenient to
consider multinormal distributions as it is well-known that in that case the Bayes
estimators are linear, and hence they are equal to the credibility estimators.

Let

Wk = Unk:l/ll Yoki — mnk(enk, H,))
Unk = Max(Onk, Hn) — xncb (Hy).

We assume that the Wy,'s are independent and identically distributed N(0, ¢ ),
the U,’s are independent and identically distributed N(0Q, \), the b(H,}'s are
independent and identically distributed N(8, ), and that the Wy,’s, the Uni’s,
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and the b(H,)’s are independent. It is obvious that we have the same first- and
second-order moments as in the distribution-free model. Furthermore, we have

E[ms(Or, Hr) b(H,), YraV (K, )] = $rsYos + (1 = $rs)x/sb(H)

as under the conditional probability measure given b(H,) we have the same first-
and second-order moment structure for make r as in subsection 3.1 (cf. formula
(3.5)). We get

Wys = E[mMs (O, Hy)| YoV (1, k, 1))
= E[E[m:(Ors, H)|bH,), YoV (1, k, 1)]| Yari ¥ (1, k, 1)]
= E[E[mrs(Ors, Ho)| bH:), YraV (K, 1)]| Yo ¥ (1, K, 1)]
as different makes are independent, and thus
rs = ErsYrs + (1 = Ers)XSE[D(HA)| YoV (0, k1))
= ¢rsYps + (1 = $rs)xishr,
which proves (4.3)
For i, we apply the same way of reasoning and get
Yrs = E Var[mys(Ors, H)| Yok ¥ (1, k,1)]
= E Var(m,s(O, H)| 8(H,), Yar ¥V (1, k, )]
+ E Var [E[mys(Ors, H)| BH,), Yera ¥ (1, k, D1 YuraV (1, &, D)]
=N = Ere) + (1 = $rs) x7(Cov [B(HR)| YoV (1, K, 1)) Xrs
= =) IN+ (0 = ) XAl xr],

which proves (4.4).
This completes the proof of Theorem 4.1. Q.E.D.

We now want an expression for 4,. To reduce the dimension of the problem we
first prove the following lemma.

LEMMA 4.1. The credibility estimator b, depends on the Yux,'s only through
Yl‘la L} YrK,-
PrROOF Let b be crediblity estimator of b(H,) based on Y.i,..., ¥k,
Then by Theorem 2.1(j1)
Eb{V = Eb(H,)
Cov(biV, Y ) = Cov(b(H,), Yr). k=1, .., K,

Cov(Yrs, Yrii) = Cov(Yrs, Yei)

Cov(b(H,), Yr) = Cov(b(H,), Yu)
for all (k,s,1), we get
Cov(biV, Yu:) = Cov(b(H,), Yrii).
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Furthermore, as different makes are independent, we have
Cov(bf?, Ynu) = Cov(b(H,), Yar,) =0

for all n = r, and thus Lemma 4.1 follows from Theorem 2.1(ii).

We want to find a matrix expression for b, and introduce
Z,=diag({r, - -5 $ek))
Xe=(Xr, ..., Xrk,)' Yi=(Yn, .,Ywx).
We write b, as
b=~ +T,Y,.
From (2.1) we get
v =8-T.X8,
that is,
b, =T,(Y,— XB) +B.
From (2.2) we obtain
(4.5) I': Cov Y, =Cov(b(H,), Y/).
We easily get
Cov Y, =\Z/ '+ X,EX/ Cov(b(H,), Y)) = EX/,
and insertion in (4.5) gives
(4.6) T/(\Z '+ X, EX/) = EX!.
We multiply (4.6} by Z,X, from the right to obtain
X, (N, + EX!Z,X,)= EX; Z,X,,

which gives

4.7 X, =E2XZ.X,(\,+EX!Z.X,)"".
From (4.6) we get

4.8) T\Z ' =, - T.X)EX!,

that is,

r= Ny -T'X)EX! Z,.
Insertion of (4.7) gives
T, =0\, +EX!Z,X)" 'EX! Z,.
If X;Z.X, is non-singular, we introduce
b.=(X!Z.X,)"'X!Z,Y..

Q.E.D.
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Then we have
TY,=(\N, +EX!Z,X,) 'EX,Z.Y,= (\I, + EX} Z.X,) 'EX} Z,X/b,
= EX! Z:X,(NMy + EX! Z,X,)"'b, = Ab;,
where we have introduced the credibility matrix
Ar=EXZX Mg+ EX!Z,X)7",
and we get
b= Ab,+ (I, — A)B.

We still have to find an expression for the estimation error matrix I1,. By
Theorem 2.1(i1i) we get

I, = Cov b(H,) - Cov b, =& —T'.(Cov ¥)I'! =& —-T,(Z\Z; ' + X,EX)T,.
We nsert (4.6) and obtain
I, =E-EX/T/ =B, - X/T}),
that 1s,
O,=E(,-A!)=(,— A)E,

the last equality because I, and Z are symmetric.
We now have expressions for all the quantities that we need for the computa-
tion of m,, and Y.

4.3. Parameter Estunation

Corresponding to (3.6) we introduce

Iny
¢;.;k = (lnk - l)_l Z Unkl(Ynkl - Ynk)z’
=1

for which we have
E[d):k l Our, Hpl = Sz(enk, Hn)

if Unke = War,, and in that case
N K,
* x
d’ = Z Z UnkDnk
n=1 k=1

is an unbiased estimator of ¢ for all weights un(Dh=1 Dbz, up) = 1.

It should be obvious how one could generalize the assumptions and estimators
introduced in subsection 3.6 to the hierarchical model, and we shall not go any
further into details on that matter.

In the following we just assume that we have got an unbiased estimator ¢* of
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¢, and the following derivations do not depend on whether vax, = W, Or not.
For the estimation of A\, 8, and £ we shall also assume that X, has full rank
g for all n. In practice, this will mean that we exclude data from makes for which
we have observed only a few car models, from the estimation procedures. It is
of course questionable not to utilize these data, but the estimation procedures
become much simpler.
We introduce

K,
= D Unk v= 2, Un
k=1

D, = v; \diag(vai, . . ., Unk,)
bn=(XnDnXn) ' XaDpYn.
Analogous to what we did in subsection 3.3, we get
E(Yp = Xubn)' Da(Yn = Xubn) = N1 = 1 {(XaDuX0)™ ' X3 DiXa}} + (Kn — )/ Un,

and thus

A=

1 fl Un(Yn = Xubn)' Dn(¥n = Xubn) = (Ko = )3
- L —tr {(XaDuXa)"'Xs DX}
is an unbiased estimator of \. As A may take negative values, we proceed as in
subsection 3.3 to construct a modified estimator A* which is non-negative or
positive. In the following, we assume for simplicity that \* is positive.

Let

N -1
W, = (Z X; zrx,) X, Zn X,

r=1

. N . N -1 N
B=2 Wibn= (Z X"'znxn) D XiZaY,
n=1 n=1

n=1

It seems reasonable to base our estimator of Z on
N .
Q=2 Walba—B)(6.-B)".
n=1\

We have

n=1

N N
EQ= 3, Wi Ebi~B)6.~B) = 3, W Covibn—B)

I
M=

W, [Cov b, - Cov(l;n,ﬁ’) ~ Cov(8, 5,’,) + Cov B)

1

3
[

1
M=

W,[Cov b, — Cov(B, b:)],

3
L}

N
(4.9) EQ= Y, W,(,— W,) Cov b,.
n=1
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For all » we have
CoV bn= (X} ZnXn) ' X4 Zn(CoV Y)ZnXn(Xi ZnXn) ™!
= (XnZnXn) ' Xn ZnO\Zi ' + X5 EX0)ZnXn(XnZnX0) ' = N X0 ZnXn)"' + E,

and insertion in (4.9) gives

N
EQ=Tx+ (Z W.l, — W,.))E
n=1

with

N

N
T=3 Wol;— W)(XnZnXn) "= 25 (g — Wo)Wa(Xi ZnXn) ™"

n=1 n=1
N N -1 N -1
= (Z U, - Wn)) (Z X/ ZrX,) =(N- 1)(2 X;Z,X,)
n=1 r=1 r=1

that is,

N 1 N
EQ=(N- 1)<Z x;zx,) N+ <1,,— Y Wﬁ)z,
r=1 r=1

and

—
o
=

N -l N N -
(lq— 2 W3> {Z Wby~ YB)(bu— YB) — (N - 1)(2 X,’Z,X,) '"x}
n=1 r=1

n=1

is an unbiased estimator of E. However, as Z is symmetric whereas = does not
in general have this property, we replace £ by

A=(E+E') 2.

When estimating A, we had the problem that A\ was not necessarily positive. The
analogous problem when estimating £ 1s that & is not necessarily positive semi-
definite. As E is symmetric, it can be written as

Z=A'TA,

where A is an orthonormal ¢ X ¢ matrix (i.e. A'A=1,) and

T =diag(n, ..., 7¢),
where 71, .., 7q denote the eigenvalues of 5. Let
70 =max(r,0) 1=1,. ,q

T = diag (77, ..., 79).
It can be shown (cf. BUNKE and GLADITZ (1974),RA0 (1965)) that
E¥=A4'T%A
satisfies

VE*-EwSv(P-E)v
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for all g x 1 vectors v and all positive semi-definite ¢ X ¢ matrices P, and hence
it seems reasonable to replace Z by Z* to get a positive semi-definite estimator.
To avoid having to take special care of the case when Z* 1s not strictly positive
definite, one could instead of replacing negative eigenvalues by zero, replace them
by some small positive number; one possible choice would be ¢/ N for some € as
we would than have asymptotic unbiasedness when N goes to infinity.

The computation of £* from Z, involving the construction of 4 and T, may
seem complicated. However, in SAS we had standard procedures for the com-
putation of 4 and T.

The procedure for estimation of £ depends on the parameters ¢ and \, which
were assumed to be unknown, and we therefore insert the estimators ¢* and \*
for these parameters.

We have that

N -1 N .
(4.10) g* = (Z An> 2. Axb,
n=1 n=1

is the best linear unbiased estimator of B. As 8* depends on the unknown
parameters ¢, A, and Z, we nsert the estimators ¢*, \*, and E* for these
parameters in (4.10).

We have now found estimators for all the unknown parameters involved in the
credibility estimators presented in subsection 4.2, and we are therefore able to
construct empirical versions of these credibility estimators.

4.4. A Disadvantage of the Hierarchical Model

For a new car model s of make r (i.e. w,; =0) we have
Mirs = X/sb,.

In the non-hierarchical model the corresponding formula was
Mips = X/sB.

In subsection 3.5 on the choice of regressors, we said that we have some prior
opinion on monotonicity, and that the regressors should be chosen such that this
monotonicity was preserved. This was not too complicated in the non-
hierarchical model. In the hierarchical model it is much more difficult. Whereas
in the non-hierarchical model we could just look at the sign of the elements of
B, in the hierarchical mode! we have to look at the elements of &, for all r.

In a parametric empirical Bayes analysis we could solve the problem by restric-
ting the support of the distribution of #(H,) to a set & for which the mono-
tonicity is preserved. Then of course also the posterior mean of b(H;) would be
contained in @ . However, such a parametric model would presumably be
complicated to handle, and we would probably have to leave the linearity of the
estimators.

If our statistical models should be used as proposed 1n Section 1, that is, not
as giving the final answer, but as an aid for the person who finally makes the
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decision, this author would recommend that this person receives the estimates
from both the hierarchical and the non-hierarchical models, using the same
regressors in both models. In his decision he should be aware that the hierarchical
model utilizes information about the make of the car, information that 1s not
used in the non-hierarchical model. On the other hand, for the assessment of new
car models, the non-hierarchical model will preserve some monotonicity proper-
ties, which may be violated in the hierarchical model.

4.5. A Modified Approach

When the author gave a seminar on the present research, Ragnar Norberg
suggested a modified approach that avoids the monotonicity problem discussed
in the previous subsection. We replace the assumptions (4.1) and (4.2) by

E[Muk(Onk, Ha)| Hal = Mk (Hp) EMnx (Hn) = xacB Var M (Hp) = £.

One could say that these assumptions are more consistent with the assumptions
made in the non-hierarchical model whereas (4.1) and (4.2) are more 1n line with
HACHEMEISTER’s (1975) regression model.

Under these new assumptions we obtain

“.1 s = s Yos + (1 = $rs)(X5sB + D)

with
K, K,
D, = {g Zl {,p(er—x,’pB)I / (x + £ Zl 5“,,,).
p= p=

It is interesting to compare (4.11) to (3.5). We see that the only formal difference
is that we have added a correction term D, to the prior mean x/8. For the case
with no exposure for car modcl s this property is very attractive. We then get

rhrs = xrlsB + Dh

that 1s, we compute the prior mean x/; based on the technical data and add a
correction term D, as the car 1s of make r.
We hope to return to the present model in a subsequent paper.

5. SOME CARS ARE MORE EQUAL THAN OTHERS

As is well known, there are often several variants of one car model. In a
Norwegian price list from 1984 (OPPLYSNINGSRADET FOR VEITRAFIKKEN (1984))
we found for instance 9 entries for Volkswagen Golf and 28 for Opel Ascona.
The technical differences between such variants may be number of doors, engine,
shape (coupé/sedan), etc. Such differences will of course in most cases also
influence the price. In our investigations we have considered each variant as a
separate model. However, variants of a car model usually have very much in
common, and it is tempting to try to utilize this informaton in the estimation of
the model factors.
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One possible solution would be to extend our two-level hierarchical model
(make, model) to three levels (make, model, variant) (for multi-level hierarchical
models, cf. e.g. SUNDT (1980),NORBERG (1985)). This would be a more compli-
cated model, and we would have to estimate more parameters.

Another possibiiity would be to drop the make level in the three-level hierar-
chical model to obtain a two-level model with levels for model and variant. For
this model we could make the same assumptions as in Section 4, but the grouping
of the cars would be different.

A third approach would be simply to consider different variants as one model.
Then we have the difficulty that the different variants do not have the same
technical specifications, but as design vector we could use a weighted mean of the
design vectors for the different variants with weights proportional to the observed
exposures. In this set-up, possible differences in risk characteristics of the varnants
now pooled together would be incorporated in s2(Ox) (to use the notation of the
non-hierarchical model). The present approach should be used with care as there
exist variants with risk characteristics so different from other variants of the same
model that they should definitely not be pooled together; a striking example is
Volkswagen Golf GTI. Usually, one would be able to identify such “outliers”
already before one obtains the risk statistics. However, this need not always be
the case, and one should therefore, even if the variants are pooled together,
always register the variant of each car in the statistics data so that one is able to
detect an “outlier” and revise the pooling if necessary.

6 NUMERICAL EXAMPLE
6.1. The Data

We have already mentioned our numerical studies a couple of times. Our first
studies were based on data from Storebrand for the year 1983, and in subsection
3.6 we presented some resuilts based on these data. When our first studies had
been performed, data from 1984 became available, and in our investigations on
these data, we included a greater number of makes and car models than in our
1983 studies. In the present section we shall display figures found in our 1984
study; the 1983 data were analysed in the same way.

For each car model included in the study, we registered the technical variables
weight, engine power, cylinder volume, and price. The price was the price given
in a list from April 1984 (OPPLYSNINGSRADET FOR VEITRAFIKKEN (1984)), and
we only included car models that were found in this list. This implies that we
excluded car models that were no longer produced or imported to Norway. If one
should aiso include older car modelis, one would have had to use older prices,
which would have had to be adjusted to the price level of 1984. At the present stage
of the development of models and methods, we decided to leave out this problem,
but 1t is further discussed in SUNDT (1986). As already mentioned, for simplicity
we also excluded diesel cars and cars with four-wheel drive.

In the following presentation we use the codes of Storebrand for make and
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TABLE 61
Code Name Ka Risk units Un

11 Audi 7 1112 9050
14 BMW 11 2754 15117
15 Citroen 0 1190 10429
16 Fiat 7 782 9541
17 Ford, Briush 7 2322 22326
18 Ford, German 24 13107 115557
24 Lancia 1 58 942
25 Mercedes Benz 7 1561 7444
31 Opel 33 8860 67880
33 Peugeot 14 1467 13017
34 Renault 1 950 13771
37 SAAB 6 3382 21261
39 Skoda 2 248 2549
45 Volkswagen 11 3145 35722
46 Volvo 19 3946 29881
47 Daihatsu 2 105 1555
53 Subaru 6 349 3076
54 Mitsubishi 14 1844 17962
66 Talbot 6 507 4976
93 Lada 5 3490 28800
94 Honda 9 3823 29963
96 Tovota 16 4034 35365
97 Nissan 14 3653 33067
98 Mazda 21 8069 69041

Total 253 70758 598290

model. In Table 6.1 we give some summary policy data for our sample. For the
headings of the table we have used the notation of Section 4, and in the following
we use unpx = wpk/ (engine power). As we see from the table, we have applied data
from in all 253 different car models distributed on 24 different makes. We applied
no such pooling of car models as described in Section 5.

It would obviously be too much to present the results for all 253 car models,
and we therefore restrict ourselves to give more detailed data for a representative
sample of 25 car models found by including each tenth model from our
total sample, ordered by the codes for make and model. In Table 6.2 we display
the exposure and the technical variables engine power, weight, price, and
price/ weight. Prices are given in NOK and weights in kg.

We estimated ¢ by the procedure described in subsection 3.6 and found
¢* =651.1.

6 2. The Non-hierarchical Approach

For the non-hierarchical model we computed from the 1983 data for several
different sets of regressors the estimates \* and 8* as described 1n subsection 3.3.
According to the criteria given in subsection 3.5, it seemed reasonable to use the
two regressors cylinder volume and price/ weight, giving ¢ = 3. However, it was
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TABLE 6.2
Make Model Name Power Weight Price  Price/weight  Risk unis Unk
14 541 BMW 320 1 125 1105 162540 147 10 173 928
15 313 Ciroen Visa GT 80 830 79200 95 42 s 288
16 321 Fiat Panda 45 45 670 48400 7224 179 3251
17 328 Ford Escort 1 6 L 79 880 87560 99 50 738 6437
18 45) Ford Sierra 20 105 1095 102100 93 24 77 628
18 741 Ford Sierra 1 6 75 1100 109260 99 33 19 206
28 504 Mercedes Benz 190 E 122 1100 199560 181 42 185 1043
31 327 Opel Corsa 1 2 ST Sedan 55 775 67270 86 80 144 1747
31 347 Opel Kadett 1 2 S Comb: 60 870 72620 83 47 269 2770
31 421 Opel Rekord 20 S 100 1140 118290 103 76 2879 18532
33 354 Peugeot 305 GLS 74 930 88020 94 65 249 2146
33 892 Peugeot 505 Break 100 1295 146580 113 19 50 32
39 323 Skoda 120 GLS 58 910 50627 55 63 74 877
45 523 Volkswagen Santana 1 9 GX 115 1100 138810 126 19 17 120
46 506 Volvo 240 GLT B23A 129 1330 178900 134 51 24 110
46 907 Volvo 240 GLE B23 129 1300 178400 137 23 10 52
53 349 Subaru 1600 GL Swing-Back 7 885 74800 84 52 48 374
54 396  Mutsubishi Galant 1600 GL 75 1065 99900 93 80 206 2188
93 411 Lada 1600 S 78 1040 54570 5247 716 5669
94 417 Honda Prelude EX 106 985 181400 184 16 36 306
96 433 Toyota Carina Coupé 75 1060 94000 88 68 321 2790
97 321 Nissan Stanza | 6 GL 81 970 93800 96 70 49 408
97 832 Nissan Bluebird 1 8 GL 88 1150 108300 94 17 327 2804
98 353 Mazda 626 1 6 GLX Sedan 81 1035 93900 90 72 153 1351
98 474 Mazda 929 2 0 DX St Wagon 90 1200 108400 90 33 350 2835

argued that cylinder volume and engine power were strongly correlated, and that
diesel cars and petrol cars were more comparable with respect to engine power
than with respect to cylinder volume. Therefore it was felt that if we should later
include also diesel cars in the analysis, it would be better to replace the regressor
cylinder volume by engine power. We did this and got only a slightly higher
value of \*. With the 1984 data we therefore concentrated on the design
(1 power price/ weight). We obtained

A\ =0.2063
g* = (—0.4183 0.01238 0.01007)",

and from the values of ¢* and \* we found
" =%/ \F =3156.

In Table 6.3 we have displayed the observed Y, the estimated prior mean uk,
the empirical credibility weight ¢, and the estimated estimation error yx for each
of the car models.

We see that Volkswagen Santana 1.9 GX and Volvo 240 GLE B23 have rather
extreme values of Yx. However, as these cars also have low exposure, #1x does
not differ much from ug.

We also computed estimates for tariff classes as described in subsection 3.4.
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TABLE 63
Make Model Yi e e o s
14 541 3336 2610 2775 02272 0 1595
15 313 0 502 1533 1 447 0 0836 0 1891
16 321 2.283 0 866 1 585 0 5075 01016
17 328 1 465 1561 1 497 06711 0 0679
18 451 5628 1820 2.452 0 1660 01721
18 741 0147 1510 1 426 0 0614 01937
25 504 2075 2919 2 709 0 2485 0 1551
3l 327 0 844 1136 1032 0 3563 0.1328
31 347 1135 1165 1151 0 4675 0 1099
3l 421 1 644 1 864 1 676 0 8545 0 0300
33 354 0 954 1 451 1 250 0 4048 01228
33 892 3043 1959 2073 0 1054 0 1846
39 323 1301 0.860 0956 02175 0.1615
45 523 10 904 2276 2 591 0 0365 0 1988
46 506 1556 2533 2 500 0 0337 0 1994
46 907 0.000 2 560 2519 0 0161 0.2030
53 349 1307 1312 1311 0 1060 0 1845
54 396 1230 1 455 1 363 0 4094 01219
93 411 1133 1076 1112 0 6424 00738
94 417 3 046 2748 2774 0 0883 0 1881
9 433 1811 1403 1 594 0.4693 0 1095
97 321 0 862 1 558 | 478 0 1145 0 1827
97 832 1 749 1619 1 680 0 4705 0 1092
98 353 b 243 1 498 1.422 0 2998 0 1445
98 474 1186 1 605 1 407 0 4732 0 1087

After having computed y*, we computed estimates for the classes based on both
the credibility estimates and based on the prior means. For the estimates based
on prior means, the deviations from the classes that were actually used in 1984,
were in most cases quite small; for the estimates based on the credibility
estimates, the deviations were somewhat larger. The explanation is probably that
one has been a bit reluctant to alter the class of a car model. For the actual rating,
one might feel that the procedure is too sensitive to the random variable Yk, and
one should pay attention to this in the final subjective determination of the class;
the statistical procedures do not make political considerations.

6.3. The Hierarchical Approach

Also for the hierarchical model we used the design (1 power price/weight)’. The
parameters X\, =, and 8 were estimated as described in subsection 4.3.
For A we found the estimate

A =0.1913,
from which we obtained

x* =™/ \* =3404.
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It 1s reasonable that the value of \* 1s lower than in the non-hierarchical model.
When estimating &, we obtained

A — 299650 -3113 4724
E-10° = —3113 75 18
4724 —18 -33

This matrix is obviously not positive definite. It has one negative eigenvalue, and
by replacing this eigenvalue by 1078/ N =4-107% as described in subsection 4.3,
we arrived at

0.0488 -2.1678 1.351
E*¥-10°= {-2.1678 107.385 66.820
1.3511 66.820 41.709

As the value of \* was only slightly lower than in the non-hierarchical model
whereas the difference between = and £* 1s considerable, we presume that for
practical purposes we would choose the non-hierarchical model, but we shall go
on presenting some results for the hierarchical model for illustrative purposes.
We mention that computations made on the same data with the modified model
described in subsection 4.5, gave much more reasonable results.

For 8 we found

8" = (—0.0587 0.01228 0.00687)".

TABLE 6 4
Make by
11 ~0 05086 001078 0 00762
14 -0 05181 005778 -0 02127
15 -0 05134 0 03461 -0 00683
16 ~005132 0 03384 -0 00638
17 ~0 05091 001332 0 00631
18 ~0 05102 001853 0 00276
24 -~ 0 05090 001263 0 00662
25 -0 05058 -0 00309 001623
31 —0 05065 000014 001424
33 -0 05059 -0 00233 0 01643
34 -0.05100 001753 0.00355
37 -0 05078 0 00707 0 01019
39 -0 05093 001407 0 00577
45 -0 05106 0 02029 0 00170
46 —0 05043 -0 01066 0 02107
47 -0 05086 001094 0 00775
53 -0 05093 001400 0 00575
54 -0 05071 0 00327 0.01236
66 -0 05091 001307 0 00630
93 -0 05082 0 00877 G 00905
94 -0 05070 0 00284 001290
96 —0 05083 0 00927 0 00862
97 -0 05079 0 00733 0 01003

98 -0 05078 0 00682 001037
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In Table 6.4 we have displayed the empirical credibility estimate b, for the 24
makes included in the study. The table illustrates the problem discussed in
subsection 4.4; we see that for makes 25, 33, and 46 x.«b, will be decreasing in
engine power, and for makes 14, 15, and 16 1t will be decreasing 1n price/ weight.

As examples of the values found for IT) we display the value for one make with
low exposure (Skoda) and one with high exposure (Opel). We found

-7.9151
39.063
24.483

1'[3‘1 : 105 =

I3 - 10° =

0.0211
—7.9151
4.9790

0.0071
-0.0954
0.0678

—-0.095 0.068
4.459 3.114
3.114 2.255

4.979
24.483
15.463

Table 6.5 is the hierarchical analogue to Table 6.3. The quantities displayed in
the last three columns are the estimates of the quantities

1//nk = (1 - {nk\[)\ + (1 - g‘nk)xrllknnxnk]

Pk = \ 4 Tk

Ui = N+ Xk EX k.

TABLE 6 5
Make  Model Yok Xiwby Pt tm g Y Ymnke) i
14 541 3336 4 042 3 891 02141 2495 01911 Q02573 1 4167
15 313 0502 2 066 1 944 00779 1 587 0.2366 02621 06572
16 321 2283 1010 1632 0 4885 0998 0 0994 01973 01975
17 328 I 465 1 629 1522 0 6541 1 603 0 0798 0 3050 Q5152
18 451 5628 2152 2 693 0 1558 1 880 0 1882 02288 2 5677
18 741 0147 1 613 1 529 0.0572 1 553 01871 0 1989 0 3889
25 504 2075 2517 2413 0 2346 2 694 0 1666 0 2258 03189
31 327 0.844 1193 1075 03391 1221 01296 0.1987 0.2013
31 347 1135 1 146 1141 0 4486 1 260 01072 0 1969 0 2688
3t 421 1 644 1 441 1612 0 8448 1 890 0 0307 02336 1 5493
33 354 0954 1 332 1 186 0 3867 1 508 0.1294 0 2235 0 4459
33 892 3043 1 576 1721 0 0985 1955 0 2666 03072 1 1428
39 323 1301 1.086 1130 0 2049 1 044 0 2863 0 4036 07804
45 523 10 904 2 497 2782 00339 2229 05712 0 6053 1 6357
46 506 1 556 1 408 1413 00313 2458 0 2641 02753 24120
46 907 0 000 1 466 1444 00150 2.477 0 2641 0 2692 2 2515
53 349 1307 { 430 1417 0 0990 1 402 0 3058 0.3557 05623
54 396 1 230 1 354 1306 0 3912 1518 0 1290 0 2252 0 4975
93 411 1133 1108 1124 0 6248 1 268 0.0827 0 2688 2 3997
94 417 3046 2 625 2 660 0 0824 2517 02420 0.2703 03121
96 433 1 811 1 409 1 590 0 4505 1.480 0 1137 02199 0 6209
97 321 0 862 1.513 1 443 01071 1 609 0 2003 02283 0 6666
97 832 1 749 1539 1 634 04517 1677 0 1268 0 2641 11276
98 353 1 243 1 442 1385 0 2841 1567 0 1460 0 2089 0 8462
98 474 1 186 1.499 1357 0 4544 1675 01142 02244 1 4243
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The quantity Y.« has already been defined as the estimation error of the credibil-
ity estimator ... We have that ¢{P**® would be the estimation error of x.cbn.
as estimator of mu(©nk, Hy) for a car model k' with the same technical
specifications as car model k, but for,which we have no exposure. (To say that
Y make) 1o the estimation error of x«b, considered as estimator of Mk (Om, Ha)
would be wrong as b, contains claims data from car model £.) Similarly, ¢,‘,2)
would be the estimation error of x,«f considered as estimator of m, x (©n 4+, Hy)
for a car model k' of make »', for which we have no exposure.

As a consequence of the fact that the value of \* was lower in the present model
than 1n the non-hierarchical model, we see that the values of {:k are also lower.
This 1s intuitively reasonable as b, in the hierarchical model would contain more
information than g8 in the non-hierarchical model.
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THE LINEAR MARKOV PROPERTY IN CREDIBILITY THEORY

BY THOMAS WITTING
ETH Zurich

ABSTRACT

We study the linear Markov property, 1.e. the possibility of basing the credibility
estimator on data of the most recent time period without loss of accuracy.
Necessary and sufficient conditions are derived generally. The meaning of the
linear Markov property is also discussed in different experience rating and loss
reserving models.

KEYWORDS

Linear Markov property; linear sufficiency; credibility.

1. INTRODUCTION

A fundamental question in credibility theory is that of upon which statistic of the
available data the credibility estimator should be based. A very general treatment
of this problem and a survey of other approaches can be found in NEUHAUS
(1985). We consider the special case of data ordered with respect to time. Is it
then possible to reduce the data to those of the last time period without
dimimishing the accuracy of the credibility estimator? If this is the case, then we
have defined the linear Markov property. This principle is introduced generally
and discussed in some important models of risk theory. We give some sufficient
and necessary conditions which are useful in situations when the linear Markov
property is not obvious. In most cases the linear Markov property results in a
considerable reduction of the number of normal equations which it is necessary
to solve to derive the credibility estimator explicitly.

This paper is in a way a summary of the first part of the author’s PhD thesis
which 1s taken sometimes as a reference. A copy of this thesis can be obtained
from the author.

2. CREDIBILITY ESTIMATION AND LINEAR MARKOV PROPERTY

2.1. General Assumptions and Notation

In the present paper it is generally assumed that random variables are square 1n-
tegrable, i.e. all (mixed) second moments exist and are finite. The transpose of
a matrix 4 is A7. (Random) vectors are in boldface and have to be interpreted
as column vectors, i.e. x ={(x, .. .,x,,)T is a vector with n components.

ASTIN BULLETIN Vol 17, No 1
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I, is the n X n-unit matrix and §, the Kronecker symbol.
For random vectors X =(X;, . ,X,)7 and Y=(Y1, .., Y.)T we use the
following symbols and terminology:

Px for the probability distribution of X.

Px|y=y for the conditional probability distribution of X given [V = y]
and Px|y for the corresponding stochastic kernel.
E[X]=(E[X1],...,E[Xn])T for the expected value of X.
E[X|Y]=(E[X:|Y],...,E[X.|Y])T for the conditional expected
value of X given Y.

C[X, Y] =E[(X=E[X])(¥Y-E[Y])T] for the joint covariance matrix
of X and Y.

Cl[X] =C[X, X] for the covariance matrix of X.

It is generally assumed that all symmetric covariance matrices C{X] appearing
in the text are positive definite, i.e. the inverse C{X] ™" exists. The regularity of
C[X] is equivalent to linear independence of the “vectors” 1, Xy, ..., X, in the
linear space L;(R) of all square integrable real random variables. For a proof see
e.g. WITTING (1986). In particular all random variables appearing in the text are
not degenerate. All equations between random variables should be understood in
the sense of L;-equivalence.

2.2. Credibility Estimation

We want to estimate the real random variable Y with help of the n-dimensional
random vector X which represents the available data. It 1s well known that
gXX)=E] Y| X] 1s the opimal estimator in the sense of minimizing the
expected squared loss E[(g(X) — Y)?] in the class of all measurable functions
g(x). Because E[Y| X] can be calculated explicitly by a closed formula only in
a few special cases the estimation problem is simplified: we look for the optimal
estimator of Y only in the class of (inhomogeneous) linear estimators

n
g(X)= ap + Z a, X,
=1

This optimal estimator exists, is uniquely determined and interpreted as the or-
thogonal projection of Y onto the n + 1-dimensional subspace of Lz(R) which
1s generated by 1, X1, ..., Xa Therefore we denote it E[ Y| X]. E[ Y| X] is call-
ed the credibility estimator of Y given X.

The orthogonal principle can be formulated in a probabilistic manner as
follows:

E[E[Y|X]] =E[Y]

O ClY-E[Y|X],X] =0.

If the credibility estimator is written in the form

ElY|X]=a+ ) aX
=1
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(1) is equivalent to

a0=E[Y] - 2’1; alE[Xl]
@ a

>, a, Cov(X,, Xx) =Cov(Y, Xi) k=1,...,n.

1=1
This linear system of normal equations for determining the coefficients
do, ay, ..., a, has a unique solution because of our general assumption that
C[X] is positive definite. There is no guarantee for being able to calculate
C[X] ~!explicitly although this may be useful in theoretical situations. However,
a recursive algorithm for the inversion of C[X] exists always (see e.g. NORBERG
(1985)).

If a random vector Y=(Y,, ..., Y,,,)T has to be estimated, we define

E[Y|X]=(E[Y1|X]),.. ,E[Ywm|X])" and confirm the property

ELEYIX]I-TE[Y|X] - Y)] =min E[(g(X)- V) (g(X) - Y)].
8

The mimimum is taken over the class of all functions g(x)=a+ Ax with
m-dimensional vector a and m X n-matrix A. The generalization of (1) to this case
is obvious. Finally we get the well-known formula

3) E[Y|X]=C[Y,X]IC[X]~"(X—E[X])+E[Y].

2.3. Linear Sufficiency

We consider again the problem of estimating ¥ by means of X. For many
statistical problems one can restrict the mnvestigation to decision functions which
depend only through a “sufficient” statistic 7(x) on the original observation x.
Here we call a statistic T'(x) sufficient if

4) Pyix = Prirn

This corresponds with the Bayesian definition of sufficiency 1f ¥ is interpreted as
a “prior variable”.

In the credibility situation one should manage only with linear statistics and the
knowledge of second-order moments. This fact suggests a slight change of the
meaning of sufficiency in our case.

DEFINITION: The linear statistic 7(x) (which is formally a linear mapping
T:R"™— R" with r < n) is called linear sufficient if

) ElY|X])=E[Y|T(X)).

_REMARKS: (i) By comparing the system (X, ¥) with the corresponding system
(X, Y) which is normally distributed with the same second-order moment struc-
ture it can be proved that for linear statistics T(x) the implication (4) = (5) is
vahd.
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(ii) We can restrict the investigation to homogeneous linear mappings 7(x),
because a possible inhomogeneous part has to be adapted anyway afterwards
when £[Y| T(X)] is calculated.

(iii) The concept of linear sufficiency has been already introduced into statistical
literature, but only in the context of estimation for linear models; e.g. DRYGAS
(1983, 1985).

LEMMA 1. Let r < nand A a full rank r x n-matrix. The statistic T(x) = Ax is
finear sufficient if, and only if

ClY,X|(I,- AT(AC[X]1AT)"'4C[X]) =0.

PROOF. Without loss of generality we may assume E[X] =0, E[Y] =0. Then
it follows that 7'(x) is linear sufficient.

& E[Y]|X]=ClY,TX)CIT(X)]"'T(X)
b ClY-CLY, TX)ICIT(X)] ™ 'T(X),X] =0

(6) e ClY,X] =C[Y,T(X)IC[T(X)] " 'CIT(X), X]
o ClY,X]=C[Y,X1AT(AC[X]1AT)Y 'AC[X]. QED

EXAMPLE. (r=m=1).
Let A be the 1 X n-matrix and E the n X n-matrix whose elements are all equal
to 1. We assume that the random variables X, .., X, are exchangeable relative
toY,i.e. Py, ...y x. 3= PXuay - - - Xum, v) fOr all permutations wof 1, .., n.

In SUNDT (1979), Theorem 1, it is shown that this condition implies the linear
sufficiency of the statistic 7(x) = Ax = Zx,. This implication can also be derived
from Lemma 1, for it follows from the exchangeability condition with appro-
priate constants ¢, d and e that:

ClX) =d(E+cly), C[Y, X] = eA.

This implies together with the simple relationships EE=nE, AE=nA and
ATA =E that:

AC[X1AT=dn(n+c¢c), ATAC[X] =d(n+c)E.
From this follows
CIY,X){I,— AT(AC[X]AT) 'AC[X]) = eA(I, = 1/nE)=e(A— A) = 0.

2.4. Linear Markov Property

In the present paper we consider mainly a special case of linear sufficiency, name-
ly the linear Markov property.
Now, there are given n information vectors of dimension /

X=X, .., X)) Xe=Xiny . Xin)T
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from which the random vector Y =(Y1,...,Yn)" shall be estimated. We
patch the complete information together to the # X /-dimensional vector
X=x", ,x.O"

DEFINITION. The sequence X, ..., Xn, Y is called linear Markovian (I.M.} if
ElY|X]=ElY]|X4]).

The linear Markov property is equivalent to the linear sufficiency of the statistic
T(x) = x, and makes it possible to reduce the complete information to the infor-
mation of the last period.

In the language of NEUHAUS (1985) it means that the secondary statistic
X)7, ..., Xs—17) may be excluded from the basic statistic X without loss. The
linear Markov property can be characterized by a relation between the second-
order moments:

LEMMA 2. The sequence X\, ..., X,, Y is LM. if, and only if
7 ClY,X]=ClY,X,]C[X,]"'C[Xn, X.] fori=1,. .,n—1.

The proof follows as special case from Lemma 1 with 7(x) = x,, because (6) is
then equivalent to (7).
Now we define the linear Markov property also for processes:

DEFINITION. Let X, be a /-dimensional random vector for all i€ N. The
stochastic (vector-)processes (X, ).en is called linear Markovian (I.M.) if the se-
quences X1, .,Xn, Xn+x are .M. for all n, k€ N.

REMARKS. (i) We consider a 1-dimensional process (X, )en.
Then (X\)env is 1.M. 1f, and only if the following relation 1s valid with
ik = Cov( Xy, Xk):

(8) Cn+k Cnn= Cn+k ,nCn, for ,k,ne N with ¢ < n.

FELLER (1966) shows that the ordinary Markov property 1s characterized by
(8) for a Gaussian process (X)).e~. In this special case the ordinary and the
linear Markov property do coincide.

PAPOULIS (1965) shows the corresponding result for the optimal homogeneous

linear estimation. In that case we would have to define £[ Y| X1, ..., Xn] as an
orthogonal projection from Y onto the linear subspace generated by X1, ..Xa.
Then (8) is valid with ¢, x = E[ X, X«].
(i) For a standard normal variable Z and arbitrary i.i.d. variables Z,, Z; it follows
that the sequence X;= Z2? X, = Z, Y= Z*1s Markovian in the ordinary sense
but not I.M. The sequence X1 =2, Xa=2Z1+ Z,, Y= 2, Z; is ].M. but not
Markovian in the ordinary sense.

These two examples show that the ordinary Markov property does not imply
the linear Markov property and vice versa.
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The following lemma gives some helpful necessary and sufficient conditions to
detect the linear Markov property directly by inspection of the covariance struc-
ture of the process.

LEMMA 3. The following conditions (7)', (9) and (10) are equivalent to the
linear Markov property of the process (X,)ien:
(7)’ C[Xn+k,X:] =C[Xn+kyXn]C[Xn]_lC[Xle]

for i, k,n€ N with 1 < n.
There exists a sequence (A,).cn of regular [ X I-matrices with

J
©) ClX,X]= ( II Ak)C[X:] Sfor 1 < .
k=1+1

There exist sequences (A,).en and (B )ien of regular | x I-matrices with
(10) ClX, X =8A Jor 1 < .
where

il Cn C forr<m

Cr:=
k]:—-'[r * [ 1 for r> m.

PROOF. Because of Lemma 2 the linear Markov property of the process
(X))~ 1s equivalent to condition (7)'. Therefore 1t suffices to show:

9 =10 =(T) =)
(9) implies (10) with

8= 11 Acand 4, (kHl Ak>_lc:[x.];
(10) implies (7)’ by means of the relation
ClXnsk» Xn] C[Xn] "'C[X», X\] = Barx AnAy ' By 'BaA,
=BnikA
= C[Xn+k, Xi];
(7)’ implies (9) with Ax = C[ Xk, Xi=11C[Xk-1]1"", for it follows with 1 < j:

C[XJ,X.](:,C[XJ,XJ-I]C[Xj-a] “CIX -1, X

=AC[X -1, X!]
=A,. .. Ay 1 CLX))
(induction) QED

NOTATION. The sequence of /x I-matrices (A4,).en in (10) is called a /. M.-
Sacror. A, is fixed uniquely to the extent of multiplication from the left of a /x /-
matrix independent of .
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Analogously with the segment (10) = (7)' 1n the proof of Lemma 3 the follow-
ing result for finite sequences can be shown:

LEMMA 4. Let (10) be valid for 1 <1< j<n whereby A, .,Anr is the
beginning of the {.M.-factor and also

an ClY,X\) =BA, for 1 £i< n with alx/[l-matrix B.
Then the sequence X, ..., X, Yis .M.

2.5. Componentwise Linear Markov Property

We use the same notation as in 2.4.

DEFINITION. The sequence X,,. .,Xn Y is called componentwise linear
Markovian (c.I.M.) if the sequences Xk, ..., Xxn, YarelL.M. forallk=1, ..,L

If the components, i.e. the rows of the / X n-matrix (X, ., X,), are indepen-
dent, it holds that:

Xi,. . , Xo,YisIM. e Xy,...,X,, Yis c.IM.

This equivalence is evident by Lemma 2, because in the case of independence the
matrices C[X,] ™! and C[X,, X,] in (7) are diagonal.
Generally no direction of this equivalence is valid, for it holds with two
independent real random variables Z; and Z;:
The sequence Xi=(0,Z2)", X2 =(Z1+ Z5,0)", Y= 2Z, is c.l.M. but not
.M.
The sequence Xy =(Z,,Z2)", X2=(2Z2,Z,)T,Y=Z, + Z> is 1.M. but not
c.l.M.
In the situation of insurance the independence of components 1s not always ful-
filled. As an example one should imagine the components to be claim numbers
and totals of claims. Reflecting on the better handling of the ¢.l.M.-property we
are looking for an additional condition that the c.l.M.-property implies the
I.M.-property even in the case of dependent components.
To solve this problem we consider two vector valued components. So let
X, =T, N7 with /,-dimensional random vector Z, and />-dimensional ran-
dom vector Nyand 1+ h=1({ i< n).

LEMMA 5. Let the following four conditions be valid:

The sequence Z,, .. ,Z,, Y i1s .M.

The sequence Ny,. ,Nn, Y is I M.
The sequence Z,, ..,Z,, N, s .M.
The sequence Ny, ..,N,, Z, 15 I.M.

Then the sequence X, ..,Xn, Y is .M.

To prove this lemma condition (7) has to be checked with help of inversion of
the matrix C[X,]. This is somewhat tedious and can be found 1n WITTING
(1986), p.33-36.
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3. THE LINEAR MARKOV PROPERTY IN SOME EXPERIENCE RATING MODELS

In the following models our starting point 15 always a real stochastic process
(Y, hen with covariance structure given by ¢, x = Cov(Y,, Y« ), k € N). Thereby
Y, may be interpreted as claim number or total of claims during the period /. At
the end of period n the net premium P,., for the next period will be fixed by
Priii=E[Yne1| Y1, ,Yal. Let (X))en be a “linear cumulated transform” of
the process (Y, )en, i.€

X,= Z akYk
k=1
with appropriate coefficients a;, ..., a, (1€ N).

Let us further assume that the process (X, ).e~ has the covanance structure given
by

(12) Cov(X,, X)) =g+ fif, for 1 <y with g, >0 and fi+ - fi #0.

With help of the multiplicative decomposition criterion (10) of Lemma 3 the
following equivalence can easily be verified:

a3 (X, e~ is .M. & The quotient f,/ g, is independent of :.

Indication of the proof of the “ = ” part: From (10) it follows that the fractions
gt hfs o4 1tU/8),
g1+ 1/, 1+ (/g

do not depend on /. This can only be true if fi/ g, is independent of i/ because of
our assumption in (12) that f, depends on j.

3.1. The Model of Jewell

JEWELL (1975) considers the covariance structure given by ¢, x = duyk + otk
with appropriate numbers yx > 0 and o, = 0 (1, k € N). This covariance structure
is shown by Jewell to yield an explicit solution of the normal equations (2). Under
which conditions has the transformed process (X,),e~ the inear Markov prop-
erty? In Jewell’s model we have

! 1 J
Cov(X, X)) = Z a,znym+ (Z a,,,am)(Z akdk)-
k=1

m=1 m=1

So (12) is fulfilled with
&= Z a,z,,y,,, and f,= Z AmQm.
ms=1

m=1

We conclude:

i

Z AmQtm

(X)en1s LM, ® 2215 independent of 1.
13
(13) Z a[zn_ym

m=]

(14) o 2™ is independent of m.
AmYm
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Therefore in Jewell’s model the statistic Z (ax/ v« )y« is linear sufficient and the
premium becomes

Pn+|=E[YnH\ > Yk] :

k=1 Yk

3.2. The Classical Credibility Model

It is obvious that the classical Buhlmann—Straub model (BUHLMANN and
STRAUB, 1970) in the ordinary formulation is a special case of Jewell’s model
with known numbers a., and yx. We choose a cumulative view onto the model.
Considering one risk unit we denote by

X, the cumulated total of claims up to the end of period ¢;
©, arandom risk parameter describing the unknown characteristics of the risk
unit;
pi, a known cumulated measure of volume up to period 1.
It is assumed that for given [O =] the process (X;),e~ has independent incre-

ments, and E[ X, |6 = 6) = u(6)p, with a measurable function p(.) independent
of 1. From these assumptions it follows that:

Cov (X, X;))=E[Var[X,]8]] + p:p,Var{p(8)] for i < j.
With (13) we conclude:

(15) (XDew is LM. & E[\/T[I))'(,Te_]] is independent of 1.
In this case the 1.M.-factor is (p,).

It should be mentioned that (15) is fulfilled in the classical credibility model of
Buhlmann and Straub.

3.3. The Model of Shur

SHUR (1972) considers the following model. The variables Yi, Y2, . have all
the same expected value ¢ and the same variance ¢2, and the covariance structure
is given by

(16) cr=pl' Mg with 0<p < 1.

Hence the correlation between the total losses of two different periods decreases

geometrically with the number of periods separating them. By inversion of the
matrix

1 p 0? o
.
) ik=1= p Lo - P a?
pn—l pn—2 ]
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and application of (3) one gets the credibility formula
(17) Pror=pYn+ (1 -pp.
Of course, this formula implies the linear Markov property of the process
(Y))ien. But this fact can already be detected directly from (16), because
¢, =Cov(Y,Y)=p 'p'a” for1 <

fulfils the multiplicative decomposition criterion (10).
Following this way the inversion of the matrix (¢, x) becomes unnecessary for
the calculation of formula (17).

3.4, A Model with Clmim Numbers and Individual Claim Amounis
Let us consider one risk unit with the following notations:

N, is the cumulative number of claims up to the end of period /.
Z is the amount of the kth individual claim. (It 1s assumed that these claims
are numbered according to their order of occurrence.)

Nl
X,= Y, Z is the cumulative total of claims up to the end of period i.
k=1
O denotes a random risk parameter describing the unknown characteristics of
the risk unit.
We make the following assumptions:
(A1) Given [© =6] the random variables zZM®, z® . areid.
(A2) Given [© =0] the stochastic processes (N,).e~y and (ZFNYeen are
independent.

PROBLEM. Which are sufficient conditions such that the process (X)),en resp.
the 2-dimensional process ((X., M) )~ is 1.M.? This would simplify the

premium
Pov1 =E[ Xpi1 — Xn| Xy, ..., Xa]resp.
Pos1=E[ Xnsr — Xa| X1y ooy Xny N1y ooy Ni]
as usual, namely
Pri1=E[ Xne1— Xu| Xn] resp. Ppoi=E{Xns1— Xu| Xu, Nal.
ConNDITION I. Given [© =8] (N.).e~ is an inhomogeneous Poisson process,

A, g(6) being the Poisson parameter of N,. Thereby g(.) 1s a measurable function
independent of 1.

NOTE. It 1s not required in assumptions (A1)-(A2) and condition I that claim
numbers and claim amounts are independent. They have only to be conditionally
independent.

We get from assumptions (Al) and (A2) and Condition I: (X)).en iS @ process
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with conditional independent increments (given ©), and
E[X,]0] =\g(®)E[Z2™V 8], Var[ X,|©] = \g(O)E[Z™)?| 8],

Therefore condition (15) is valid with p, =\, and the process (X.).en (and
also the process (N, )ien) 18 LM, with [.M.-factor ()\,). It remains to prove the
I M.-property of the 2-dimensional process ((X;, N,)T Jicn. Because of Lemma 5
it suffices to check two 1-dimensional conditions (for fixed n):

(18) The sequence Xy, ., X, N,is .M.
(19) The sequence Ny, ..., Np, Xu1s LM,
It is true for 1 </ < » that:
Cov( X, Np) = Cov(N,, X,)

N, N,
=E[Cov<E Z“",N,,\6>] +COV(E[Z z‘*>qe],E[N"|e])
k=1 k=1

=E[E[ZM]O]Var[N,|0]] + A, Cov(E[Z1M | ©]g(O), 2(0))
(A1)(A2)

=N{ELE[Z™M]0]8(8)] + M Cov(E[Z"]|©12(0), £(8)))

cond |
=\, X term which is independent of i.

Because each of the processes (X,),e~ and (N, )en has the 1.M.-factor (\,) we get
(18) and (19) by application of Lemma 3 (criterion (10)) and Lemma 4. The pro-
cess ((Xi, Ni)7 )en is actually 1.M.

Now we replace the Poisson assumption (condition I) by the hypothesis that
the counting process (N, )en 1s .M. and claim numbers and claim amounts are
independent (level-2 assumption):

CONDITION 1.
(A3) (N~ is LM, with 1.M.-factor (E[ N,]).
(A4) (N))e~v and O are independent.

REMARKS. (i) We have lost the convenient property that the increments of the
process (N )ien resp.( X, )ien are independent given ©. Therefore it 1s not possible
to apply the classical credibility model and condition (15) any longer.

(i) Condition I implies (A3).
We need the further notation:
vz=E[Var[Z"|6]] and wz=Var[E[Z"]|O]].
Then we get from the assumptions (Al)-(A4):
COV(Xl, X_/) = E[COV(XI, XJ | 9) (Nk)kEN)]

+ Cov(E[ X | ©, (Ni)ken], EL X, | ©, (Ni)ken])
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=E[N, Var[Z?"|©]] + Cov(N.E[Z" |B]1, NE[Z?V|8])
(A1),(A2)

= E[N.]vz + Cov(N,, N)){wz + mz?} + E[N,JE[ N, wz
(A4)

= E[ N,] x factor which depends only on j (and not on i) (i < j).
(A3),(10)

Applying criterion (10) again we obtain that the process (X, )ien 1s .M. with
1.M.-factor (E[ N.,)). Furthermore it is true for 1 < n:

Cov(X,, Np) = Cov(N,, X,) = Cov(N,, E[ X | O, (Nk)ken])

= CoV(N,, N.E[ZV|©1) = Cov(N,, Na)mz
(A(AD) (A%)

= E[N,] X factor independent of /.

Analogously with condition I the 1.M.-property of the process ((X:, N7 )ien
follows.

4. THE LINEAR MARKOV PROPERTY IN SOME LOSS-RESERVING MODELS

The problem of estimating the ultimate loss reserve will not be presented with full
rigour. Our only aim is to indicate the role of the [.M.-property in the most
important loss-reserving models with credibility character.

The usual loss-reserving terminology is assumed to be known. Let Y,, be the
total of claims of accident year j which is reported during the development year
1. Thereby we assume that each individual claim of accident year j is settled at
its full amount immediately, i.e. there are no IBNER-claims resp. the IBNER-
part is already contained in Y), as estimation.

The statistician considers each of the processes (Y, ),en up to a certain time
n(j). For constituting the reserve he has to estimate the random variable

Ry=Yay+1.+ ... + Yo

Because of the usual assumption of independent accident years it remains to
evaluate

R,=E[R,| Y1, .. ,Yny).,] for each j.

Modelling the development process (Y )en, different well-known experience
rating models can be used.

4.1. The Model of de Vylder

DE VYLDER (1982) bases the development process on a special case of the
(noncumulative) classical credibility model of Buhimann—Straub. Therefore the
covariance structure 1s contained in the model of Jewell. As described in Section
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3.1 one may gain by linear transformation of the development process a process
(Xy)een Which is .M. That is, the reserve estimation becomes R, = E[R,| Xa¢).,] .

4.2. The Model of Norberg

NORBERG (1985) constructs a micro-model with claim numbers and individual
claim amounts similar to the experience rating model in Section 3.4 with condi-
tion I. However, the distribution of the individual claim amounts may also de-
pend on the reporting year. The resulting covariance structure of the development
process becomes too complicated for calculating the theoretical credibility
estimator up to an explicit formula. Therefore Norberg proposes numerical
evaluation of the credibility estimator. In Norberg’s model the cumulated claim
number process is 1.M. because of the Poisson assumption. This fact caused the
present author to consider credibility estimators for the IBNR-claims in a
distribution-free loss-reserving model where the Poisson assumption 1s replaced
by the linear Markov property. This assumption is shown to be natural if the
delay distribution does not depend on the hidden risk characteristics of the acci-
dent year (WITTING, 1986).

4.3. The Model of Kramreiter and Straub

Let us consider for fixed s the process (X, ).en~ of the cumulative burning costs.
KRAMREITER and STRAUB (1973) discuss the optimal unbiased homogeneous
linear estimator of R, with given statistical basis Xy, . .., Xu(,),, in a distribution-
free model. “Optimal” means that the expected squared loss 1s minimized. This
estimator exists and is uniquely determined. Kramreiter and Straub write the
covariance structure in the form Cov(X,, X)) = ¢im/ p;, whereby p, is a known
volume measure of accident year J.

The most general covariance structure given by Kramreiter and Straub for
which explicit calculation of the optimal homogeneous linear estimator remains
possible is

nt
em=0 ] M for i € m,
k=i1+1
where (\,).en iS a real sequence.
Because of criterion (9) 1n Lemma 3 this 1s exactly the inear Markov property
of the process (X,)ien, Which appears now as the actual assumption of the
Kramreiter—Straub model.

General Remark on the Linear Markov Property

In the present paper we have only treated the case of a stochastic process ordered
with respect to time. One may imagine the linear Markov property also with
respect to other orders. An example for that is the recent paper of BUHLMANN
and JEWELL (1986), who have used the linear Markov property for recursive
calculation of the credibility estimator 1n a general hierarchical model.
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WORKSHOP
THE SOLVENCY OF A GENERAL INSURANCE COMPANY
IN TERMS OF EMERGING COSTS

By C. D. DAYKIN, G. D. BERNSTEIN, S. M. CouTTs, E. R. F. DEVITT,
G. B. HEy, D. I. W. REYNOLDS AND P. D. SMITH'

ABSTRACT

The authors challenge the traditional balance sheet concept of the solvency of a
general insurance company and put forward an emerging costs concept, which
enables the true nature of the assets and liabilities to be taken into account,
including their essential variability. Simulation is suggested as a powerful tool for
use in examining the financial strength of a company. A simulation model is then
used to explore the resilience of a company’s financial position to a variety of
possible outcomes and to assess the probability that the assets will prove adequate
to meet the liabilities with or without an assumption of continuing new business.
This suggests the need for an appropriate asset margin assessed individually for
each company. The implications for the management and supervision of general
insurance companies are explored. The suggestion 1s made that the effectiveness
of supervision based on the balance sheet and a crude solvency margin require-
ment is hmited. More responsibility should be placed on an actuary or other
suitably qualified professional individual to report on the overall financial
strength of the company, both to management and to the supervisory authorities.

KEYWORDS

Solvency; financial strength; asset margin; emerging costs; simulation;
professional report.

1. THE NATURE OF SOLVENCY

1.1. The financial position of a general insurance company is normally disclosed
through annual accounts for shareholders and through returns to relevant super-
visory authorities. Solvency is demonstrated by showing that the assets exceed the
liabilities. To a large degree the bases are chosen by the company. For supervisory
purposes it 1s not just a question of the assets exceeding the liabilities. The assets
must normally exceed the liabilities by a specified margin.

1.2. In life assurance there is a report by the actuary on the valuation of the
liabilities. By contrast the basis on which general insurance liabilities have been
assessed 1s not usually stated. Furthermore, whereas in life assurance actuaries
take account of the assets and effectively advise on the total financial strength of
the company, there is no one with this role in a general insurance company. It
is frequently the case that no specific account is taken of the suitability of the

'Solvency Working Party of the General Insurance Study Group of the Institute of Actuaries
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assets to match the expected liabihties nor of the resilience of the balance sheet
position disclosed to the inherent uncertainty in both assets and liabilities.

1.3. In principle, the balance sheet represents no more than the Directors’
opinion about the financial position of the company. There 1s considerable uncer-
tainty about the true amount of the liabilities and the realizable value of the
assets. The auditors may place some restraints on how the Directors present the
position but their role is largely confined to ensuring that what the Directors have
done is reasonable.

1.4. There is in fact no single correct value that can be ascribed to either assets
or liabilities. Different values may be appropriate according to one’s perspective.
Shareholders want a “true and fair” view, authorities want a cautious assessment
of the position and tax authorities want as little as possible to be offset against
taxable profits, to name but three interested parties. A balance sheet which shows
a solvent position should reflect an expectation that the assets will be adequate,
but 1t may, either deliberately or inadvertently, present a misleading picture. It
certainly does not give any idea of the probability that the assets may prove to
be inadequate to meet the liabilities.

1.5. In most countries a general insurance company is permitted by the super-
visory authority to carry on writing business only if it has some specified excess
of the value of the assets over the liabilities. This clearly increases the probability
that the assets will prove sufficient to meet the liabilities, but most solvency
margin requirements pay little or no attention to the differing degrees of uncer-
tainty inherent in different types of business, nor do they distinguish adequately
between the risks of running off the claims payments on the existing portfolio of
business and the risks involved in continuing to write further business.

1.6. Reserving standards are frequently ill-defined or non-existent and do not
require special provision to be made to cover the effects of changes in the value
of assets on their adequacy to meet the liabilities. Problems may arise from some
or all of the following:

adverse run-off of existing business;
poor underwriting experience;

failure to recover from reinsurers;
falls in asset values;

excessive expenses;

mismanagement, negligence or fraud.

A more extended description of the factors affecting solvency and a discussion
of the interaction between solvency margin requirements and standards for
technical provisions may be found in a paper by DAYKIN et al. (1984).

1.7. The object of a statutory solvency margin is two-fold. It reduces the
probability that the assets will prove inadequate to meet the liabilities and it pro-
vides a buffer against further deterioration in a company’s financial position
which can occur in the period before its authorization to write new business can
be withdrawn. The effect of a statutory minimum requirement 1s in practice also
to set a somewhat higher formal standard in the market place.
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1.8. A solvency margin is not required of other trading companies, but this can
be said to reflect not only the nature of the business but also the extent of the
insured’s interest in the continued viability of the company. In many cases the
insured can be exposed to quite serious liabilities in the event of the insurer failing
to meet a claim. He cannot limit his liability in the way that he can with a trading
company.

1.5. A company can carry on writing business only if the supervisory authority
says that it meets the solvency requirements (cf. STEWART, 1971). The way in
which they lay down requirements for this purpose will differ from the criteria
which would be used by a Court in determining whether a company should be
wound up. It is in fact relatively rare for insurance companies to be wound up
by the Courts. It is more normal for the existing business to be run off to
extinction or be transferred to another company. The latter procedure is more
common in some countries than others.

2. BREAK UP OR GOING CONCERN?

2.1. The concern with safeguarding the position should the company cease
trading is pecuharly the preserve of the supervisory authority. It arises because
one of the main weapons available to the supervisory authority is the possibility
of preventing a company from writing any further business. The supervisory
authority will be subject to criticism if they stop a company from taking on any
further business only when the position has been reached that the company can-
not even meet its liabilities in respect of business already on its books. The conse-
quence of this 1s that the supervisory authority will seek to close a company to
new business when it can still be expected that the run-off of the existing liabilities
will give rise to a surplus of assets, in other words the company is de facto
solvent,

2.2. In order to achieve their objective of a “satisfactory” run-off, the super-
visory authority is hikely to take the view that outstanding claims provisions
should be sufficient to enable all claims to be met with a reasonably high degree
of probability. Failure to maintain an additional solvency margin over and above
the outstanding claims provisions would not then imply that the company is
unable to meet its existing liabilities, but that it does not have sufficient free
resources to satisfy the supervisory authority that it should be permitted to con-
tinue writing business. Supervisory authorities using this approach are using what
might be termed a “break-up” basis, i.e. it is assumed that no further business
is written but existing business is run off to extinction.

2.3. In the EEC a two-stage solvency margin trigger has been adopted. The
higher level is referred to as the required solvency margin and the lower 1s termed
the guarantee fund. The origins of the EEC requirements have been described by
DAYKIN (1984). If an insurer fails to maintain its required solvency margin it
must provide to the supervisor a plan for the restoration of a sound financial
position, which may include demonstration that on a properly drawn up business
plan, and with realistic assumptions about profitability, the solvency margin will
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be restored within a reasonable short space of time. Only if the company fails to
maintain the guarantee fund, set at one-third of the solvency margin, with a
specified minimum in absolute terms, is immediate action to inject additional
capital required in order to stave off withdrawal of authorization.

2.4. This approach is in practice not very different from one which assesses the
company on a “going concern” basis. Theoretically, the main differences will be
in relation to the provisions for outstanding claims, where a “going concern”
basis might include less of a margin than a “break up” basis, and the provision
for expenses, where a strict “break up” basis, would require a technical provision
to be made to cover all the costs of running off the existing business. On a “going
concern” basis these costs may be set against the continuing business of the com-
pany and it is probable that the past liabilities may be able to be run off for a
lesser sum than on the break up basis. Yet another possible basis of assessment
would be a “winding-up” basis, in which the assets are divided up and distributed
on the basis of an estimate of the habilities. This requires the assets to be realized
at an early date, which in practice may have the effect of depressing market
values. A summary of the main features of the different bases of assessment is
given 1n Table 1.

2.5. A key objective of the management of an insurance company is to ensure
that it does not have to cease trading. The accounts prepared for shareholders
will reflect this by being prepared, as is the normal convention, on a going con-
cern basis. Whilst continuing solvency is also a concern of the shareholders, 1n
most cases this will be taken for granted, and the objective of the accounts should
be to provide a true and fair view of the financial position of the company. For
this purpose, technical provisions should not be overestimated or contain
cautious margins and any adverse development of outstanding claims will emerge
in due course and affect future profitability. In spite of the differences in the pur-
poses for which the provisions are required, however, most companies adopt the
same provisions for their accounts as they do for their statutory returns.

2.6. Whether seen from the viewpoint of the supervisory authority, from that
of the shareholder or from that of an outside analyst, a common problem is the
uncertainty as to the strength of the technical provisions. This might be helped

TABLE |
COMPARISON OF ASSESSMENT BASES

Assessment basis

Assumption Going concern Break up Winding-up
New business Indefinite None None
Expenses Claims settlement All run-off All expenses
expenses only expenses of winding-up
Assets Market or book values Market value Realization value
Liabifities Best estimate Cautlous estimate Best estimate of current

value
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by more clearly defined reserving standards and by more disclosure of the basis
for the provisions, but there is still the fundamental weakness that the assets and
the liabilities are not being valued on consistent bases and variability is not taken
into account.

2.7. The division of a company’s resources into technical provisions and “free”
assets 1s not necessarily helpful from the point of view of establishing the true
financial strength of the company. Most of the so-called surplus or “asset
margin” (the excess of assets over liabilities) may in fact be needed to reduce the
probability of being unable to meet the liabilities to an acceptably low level,
particularly if the provisions are only “best estimates”. To examine financial
strength, all of the resources of the company need to be brought into
consideration.

3 EMERGING COSTS

3.1. Although the current market value of the investments 1s increasingly com-
ing to be disclosed in shareholders’ accounts, at least in the UK, and is required
by supervisory authorities for the statutory returns, its advantages are mainly in
relation to its objectivity as a value to be placed on the company’s investments,
rather than in relation to its relevance to the ability of the company to meet its
liabilities, even in the context of the break up basis.

3.2. The assets will not in practice have to be realized on a particular date and,
I any case, by the time the accounts or returns have been prepared, the market
value at the date to which those accounts relate is a matter of no more than
historical interest. What is important is whether the proceeds of the assets, both
capital and income, will prove sufficient to meet the liabilities as they emerge.
This is true solvency.

3.3. The concept of projecting the emerging costs of the lhabilities to which an
enterprise is subject and placing them alongside the expected pattern of income
is one which is familiar to actuaries in the life assurance and pensions contexts
and is also fundamental to investment appraisal by economists in many other
spheres of industry. However, little work seems to have been done on the applica-
tion of the concept to general insurance companies.

3.4, There has been some theoretical consideration from the viewpoint of finan-
cial economics by KAHANE (1979) and KAHANE and BIGER (1977) which may not
be widely known among actuaries. Actuarial concepts of locking at the company
as a whole were applied to general insurance in a paper by BENJAMIN (1980) and
the use of emerging costs was implicit in papers by RYAN (1980, 1984) on the use
of simulation techniques in general insurance. COUTTS et al. (1984) set out
more fully the fundamental concepts of the emerging costs of a general insurance
company and a practical example was presented in a paper by DAYKIN and
BERNSTEIN (1985) on run-off and asset risks.

3.5. The concept is a simple one. It involves analysing the inflows and outflows
of actual cash in each successive year. The inflows may consist of some or all of
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the following:

premium income;

interest and dividends on assets;

maturity proceeds of assets;

reinsurance recoveries in respect of claims.

The outflows may consist of the following:

claims settled or amounts paid on account;
reinsurance premiums;

expenses;

tax;

dividends.

3.6. The effect of the various items in each year will be either a net amount
available for investment or a shortfall. In the latter case assets need to be sold
to meet the deficit. So long as there are sufficient assets available to enable all the
outflows to be met as they arise, the company is solvent in an absolute sense,
whatever the balance sheet may have shown. If all the assets have been realized
but net liabilities still remain, the situation is one of de facto insolvency.

3.7. An emerging costs analysis should be carried out on the totality of the
assets and liabilities of the company. For this purpose the dividing line between
technical provisions and asset margin is of no real importance although estimates
of future claims payments are necessary. The uncertainties of general insurance
are such that it will not generally be sufficient to use deterministic values for the
liabilities and the assets. Some measures of variability need to be introduced.
However, this should not be allowed to detract from the essential simplicity of
the concept. It only means that some or all of the items lhisted above should be
treated as random variables. To handle this the emerging costs can be examned
using simulation.

3.8. A single simulation is one realization of a random process in which each
of the required quantities 1s assigned a value. By examining a large number of
simulations a picture can be obtained of the likely pattern of development
resulting from the interaction of the various variables. Simulation permits the use
of stochastic models for the investment processes and allows the uncertainty in
the outstanding claims and in the profitability of new business to be taken into
account. The approach has much in common with the ideas developed by the Fin-
nish Solvency Working Party (PENTIKAINEN and RANTALA, 1982) and extended
to cover run-off risk by PENTIKAINEN and RANTALA (1986), although they did
not use a stochastic approach for the investments.

3.9. In practice the various elements may be modelled in a variety of different
ways. For some purposes very complex models may be desirable; for others a
simpler model may suffice, although any model which is going to give a
reasonably realistic representation of the real world is bound to be fairly
complex. The important principle 1s that the totality of the company’s operations
is being considered.
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3.10. The procedure is very flexible. It might enable, for example, questions to
be asked about the impact of alternative strategies for premium rating or invest-
ment and about the effect of possible adverse claims development or failure to
recover from reinsurers. It provides a management tool and also seems to offer
a way forward for more rational supervision. This would involve the submission
to the authorities of a report on total financial strength by an actuary or other
suitably qualified expert, as a supplement to minimum balance sheet require-
ments. The result would be a system much better able to take account of the true
position of each company, having regard to the specific risks to which it is subject
and the inherent uncertainties of both assets and liabilities.

4. THE SIMULATION MODEL

4.1. General Structure

4.1.1. In order to demonstrate the potential of the emerging costs approach we
present here a model which provides a representation of the dynamics of a general
isurance operation. In order to be reasonably realistic the model is quite com-
plex but, however complicated the model, it is essential that the concepts should
be capable of being put across in a straightforward way and the results must be
capable of being presented in ways that can be directly related to management
concerns such as corporate strategy and decision-making.

4.1.2. At its most basic, the model is a projection of cash flow, bringing
together income from premiums and from assets and outgo in respect of
expenses, tax, dividends and claims, determining the net balance for each year,
investing or disinvesting as the case may be and proceeding similarly for as many
years 1nto the future as one wishes. It may be considered more fully in terms of
three separate components:

habilities arising from existing business;
future premiums and the liabilities resulting from the risks underwritten;
asset returns and asset value movements.

4.1.3. A mathematical formulation of the model is given 1n Appendices 1 and
2 and a description of the computer program in Appendix 3.

4.2. Existing Liabilities

4.2.1. The existing liabilities, as shown in the balance sheet, consist of estimates
of outstanding claims, including IBNR, and unearned premium reserves (in-
cluding any additional amount for unexpired risks). Unearned prermums can be
dealt with along similar lines to new written premiums (see Section 4.3) since the
uncertainty includes uncertainty about the adequacy of premium rates in relation
to events which have not yet occurred.

4.2.2. As far as outstanding claims are concerned, there 1s uncertainty about the
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amounts of claims and about when they will be settled. The model needs to pro-
vide an adequate representation of this uncertainty. We make the simplifying
assumption that the variability in rates of settlement can be subsumed into a
variation in the amount of claims settled in each period.

4.2.3. The first stage is to estimate the expected claims payments in each suc-
cessive year for each year of origin. In order to do this, fixed settlement patterns
have to be specified in constant money terms. The model permits different run-off
patterns to be assumed for different types of business. Inflation then has to be
allowed for. Future inflation is generated by a stochastic model and this is com-
bined with the expected settlements 1n constant money terms to give the expected
development of claim amounts. The inflation model is an integral part of the
models used for the assets (see Paragraph 4.4.4).

4.2.4. The variability of claim amounts payable in each period can be dealt with
in a variety of ways. In an earlier paper describing the application of a similar
model to a run-off situation, DAYKIN and BERNSTEIN (1985) proposed that the
actual outstanding claims settled in each year in respect of each year of origin
should be varied. They assumed that each separate entry in the run-off triangle
was distributed about the mean estimate of claims settled at that particular dura-
tion for that year of origin in accordance with a log normal distribution. This was
attractive as a means of simulating the interaction between different years of
origin and different classes of business, but it resulted in a somewhat lengthy
simulation process.

4.2.5. In order to simplify the model and allow account to be taken of different
sizes of company, the model presented here uses an aggregate approach, whereby
the amount that is varied is the total amount of claims settled in a particular
period, for all years of origin combined. This aggregate figure is assumed to vary
according to a normal distribution with a standard deviation of the type:

aX+b. X

where X is the mean estimate of total claim payments in the year and a and b
are suitably chosen constants. We understand that a similar formula is used by
the Finnish supervisory authority for their statutory minimum solvency margin
(see Appendix 5 for discussion of this formula which can be considered to be an
approximation to the formula derived by BUCHANAN and TAYLOR, 1986).
4.2.6. The amounts payable in future years in respect of risks arising from
future written premiums and from unearned premium reserves are included with
the amounts payable in respect of existing liabilities before applying the overall
variability formula. The extent of the assumed variability can be adjusted by
varying the constants @ and b in the formula above. For a standard basis we have
assumed that they take the values 0.15 and 75 respectively, with claims amounts
being expressed in £ sterling. The amounts payable in successive years are
assumed to vary independently of each other. The variability is intended to cover
not only stochastic variability of claim amounts, but also uncertainty about the
expected run-off model in constant money terms. Uncertainty about future
inflation is dealt with separately.



THE SOLVENCY OF A GENERAL INSURANCE COMPANY 93

4.2.7. Two typical run-off patterns have been assumed, characterized as short
and long-tailed. Details are given in Appendix 3. In order to place a value on the
technical provisions which would be established at the outset in respect of the
outstanding claims, it has been assumed that inflation would be allowed for at
5% a year and that the resulting outstanding claims would not be discounted.
(For further discussion on the interaction between the reserving basis and the
solvency margin, see Paragraph 5.2.)

4.2.8 In practice an actual outstanding claims portfolio could be used as the
basis for the input to the model in respect of existing liabilities. It would need
to be expressed as an expected run-off in constant money terms. For illustrative
purposes, however, we have assumed that the outstanding claims have been
generated in a similar way to the liabilities in respect of future written premiums,
by specifying a rate of real premium growth and claim ratios. For the purpose
of generating the outstanding claims at the base date no variability was assumed
in the historic claim ratios, in contrast to the process described in Section 4.3. In
conjunction with the specified run-off patterns and the inflation model, the
liabilities generated 1n this way give rise to estimates of outstanding claims
payable 1n each future year in respect of each past year of origin.

4 3. Future Written Premiums

4.3.1. Future premiums are generated from an assumed 1nitial premium level
and an assumed real annual growth rate. The effects of inflation are then built
in explicitly. Although the existing portfolio of business is generated by assuming
a past pattern of premium growth, as described in Paragraph 4.2.8 above, a dif-
ferent growth rate assumption may be made for the future. The proportions of
written premiums which are assumed to relate to different types of business can
be specified. The written premiums are taken to be net of commission and initial
expenses.

4.3.2. For each year for which additional premiums are assumed to be written,
a ratio of claims to premiums net of commission and expenses is generated for
each type of business. The ratio 1s assumed to be normally distributed with mean
and standard deviatton to be specified. The resulting ratio is applied to the
assumed net written premiums to produce an initial estimate of total claims in
respect of that business, without any allowance for future inflation or for dis-
counting. This ratio is such that a value of 100% implies break-even if future in-
vestment income exactly balances inflation. The assumed proportions of c¢laims
settled in each future year are then applied to obtain uninflated estimates of
expected claims payments, Future inflation, as generated by the model described
below (Paragraph 4.4.5), is incorporated when the expected claim payments in
terms of constant money have been aggregated with the corresponding estimates
in respect of the existing habilities. The combined estimates are then varied as
described in Paragraph 4.2.5 above.

4.3.3. Since the claim ratios generated are ratios of claims to written premiums
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net of commisston and expenses, no explicit allowance needs to be made for these
items of outgo. Expenses of claims settlement are assumed to be included in the
costs of settled claims.

4.3.4. This relatively simple approach has been used as a practical expedient in
view of the complexity of the underlying risk process. An alternative approach,
described by BEARD et al. (1984) and developed in the Report to the Finnish
Solvency Working Party (PENTIKAINEN and RANTALA, 1982), would be to treat
the basic claims process as a Poisson process and then build on a series of
“structure variables” to take account of:

trends of claims frequency;
long term variations in premium rate adequacy;
year to year fluctuations in mean claims frequency.

Further assumptions then have to be made about the claims size distribution.
4.3.5. Whilst it is clearly possible to specify a model which takes explicit
account of each of these, the added complexity can only be justified if the
parameters of the model can be satisfactorily determined. We have not as yet
been able to assemble data in a suitable form for calibrating such a model. The
problem of calibration still arises with the simpler model, but 1t is intuitively more
accessible and enables judgement to be applied in the area which is probably of
the greatest importance, i.e. changes in the relationship between premium levels
prevailing 1n the market and the underlying risk premium. This 1s the factor
described as “long-term cycles” by PENTIKAINEN and RANTALA (1982).

4.3.6. Although the adequacy of premium rates does exhibit the characteristics
of a business cycle, experience seems to show that the variation does not have a
regular periodicity or a constant amplitude. A considerable degree of judgement
is needed to decide where in the “cycle” the industry finds itself at any particular
moment. Our model allows for the user to give explicit consideration to this and
requires the mean claim ratio for the next couple of years to be estimated. If the
model were to be used to examine the effects of future written premiums over a
longer period than 2 years, further consideration would need to be given to
modelling this component. The assumption of a normal distribution of claim
ratios about the mean is a not unreasonable approximation, bearing in mind the
large numbers of claims involved.

4.4. Asset Varwability

4.4.1. The variability inherent in the asset portfolio of a company depends on
the nature and distribution of the assets. The realizable value of many assets will
vary from day to day as market conditions change. In our model, the initial
distribution of the assets by category has to be specified and the various com-
ponents of the asset distribution are then analysed separately, simulating the
income generated and the capital value of each type of asset for each future year,
Rules need to be specified for investment and disinvestment.
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4.4.2. Three different types of asset are assumed: cash, irredeemable Govern-
ment securities and ordinary shares. A more realistic model would replace invest-
ment in irredeemable Government securities with short, medium and long-dated
securities. In practice, however, short-dated securities behave somewhat like cash
and long-dated securities like irredeemables, so the model can be regarded as a
tolerable proxy and gets round the problem of the reducing life of dated stocks
over time. Allowance has not been made for a proportion of the assets being
effectively non-interest-bearing (e.g. agents’ balances) but this could easily be
done.

4.4.3. The development of the various components of the asset distribution has
been represented by a series of interrelated stochastic processes, suggested by
WILKIE (1984, 1986) which generate future scenarios for the values of different
types of asset and the income from them. Although Wilkie's models were not
originally intended to be used for relatively short-term simulations such as those
with which we are concerned, we have adopted them as a readily available and
coherent model of asset movements and inflation. Further work is needed on
suitable asset models and the sensitivity of the results to the particular models
used. Our results show that this 1s a most important aspect of the whole simula-
tion model.

4.4.4. The models are described in detail in Appendix 2. In addition to the
models of asset returns and asset values, the Wilkie models include a model for
inflation and this has been used where it 15 needed in the simulation of the
liabilities.

4 4.5. The initial asset mix is based on assets covering the technical provisions
and assets representing the asset margin. Different distributions may be specified
for each. A varicty of different investment and disinvestment strategies may be
applied to the total funds.

4.5. Results of the Simulations

4.5.1. The number of potential combinations of variables is vast, even allowing
each variable to take only three or four different values. We have limited our con-
siderations by adopting a standard set of parameters and normally varying only
one parameter at a time.

4.5.2. The simulation process involves sampling scenarios from an infinite set
and the results are necessarily subject to statistical error. For any particular case
which is of interest more simulations can be carried out in order to improve the
accuracy of the estimate. In order to illustrate the results on a large number of
scenarios, we have limited our considerations to 1000 simulations for each. For
each parameter combination the same 1000 sets of random numbers are used, so
that the comparisons are not significantly affected by any bias in the particular
sets of random numbers chosen.

4.5.3. Figure | shows, for illustrative purposes, the results of 100 simulations,
assuming no new business. This demonstrates the general shape of the results,
which 1s common to all the scenarios, although the variability differs greatly. The
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FIGURE | Run-off of assets assuming no new business (100 simufatons)

graph shows the assets of the model company year by year throughout the run-off
of the business.

4,5.4. When a line goes below the x-axis, this implies that all the assets have
been exhausted on that particular simulation. If that should occur before the end
of the run-off, true insolvency has occurred. In describing the results of the
simulations, 1nsolvency 1s used in this sense, without regard to the way in which
the financial position of the company might be presented in the accounts or
statutory returns at the base date or at any later date.

4.5.5. We thus define:;

an insolvency occurs when the assets run out before all the liabilities have been
met (on an emerging costs basis).

In the simulations a realization which runs into insolvency is allowed to continue
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TABLE 2
DISTRIBUTION OF ASSETS AT END OF RUN-OFF FROM 1000 SIMULATIONS ON
STANDARD BASIS

Number of cases

Rematning assets' as % 2 years’ new
of net written premiums? Pure run-off business

Less than 0 8 50
0-20 31 34
20-40 67 62
40-60 128 65
60-80 124 81
80-100 136 78
100-120 128 93
120-140 104 91
140-160 69 84
160 and over 205 362
Mean 112 144

1 Deflated to the date of assessment using the retail prices index
2 Premiums net of commission and 1nitial expenses

by borrowing (at the rate of interest on cash plus a margin of 3%); this permits
one to see how insolvent 1t becomes.

4.5.6. On the standard basis, insolvency in this sense occurred in 8 cases out of
1000 with no new business and 50 cases with 2 years’ new business. The distribu-
tion of assets at the end of the run-off, deflated to the date of assessment using
the retail prices index, is summarized in Table 2. The written premiums 1n ques-
nion are those in the year before the base date. It should be recalled that the
written premiums are net of commission and expenses. Results expressed as
percentages of net written premiums can be rated down (say, by applying a factor
of 75% or 80%, depending on the type of business) to obtain comparable results
in terms of gross written premiums. The mean level of remaining assets for the
1000 simulations was 112% of net written premiums with no new business and
144% with 2 years’ new business, with standard deviation of 70% and 109%
respectively of net wrnitten premiums.

4.5.7. Full details of the assumptions underlying the standard basis are given in
Appendix 4. However, we will return to the results after commenting on the
application of the model.

4.6. Application of the Model

4.6.1. A simulation model of the insurance company, based on the emerging
costs concept, provides a powerful and flexible tool for examining the dynamics
of an insurer’s operation, for exploring the effects of uncertainty and for develop-
ing the financial aspects of corporate strategy within a logical framework. This
should be of value both to management and to the supervisory authorities.
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Crucial to this process‘ would be the presence of a suitably qualified actuary or
other expert within the company, or acting as consultant, who could develop a
suitable model and apply the necessary judgement to the use of the model in the
circumstances of the particular company. The responsible expert would report to
management on the financial strength of the company, taking all relevant factors
into account,

4.6.2. The simulation approach would also enable the actuary to advise
management on the potential effects of different new business and investment
strategies, the risks involved and the return on capital which might be expected
if additional capital is injected to enable a particular strategy to be adopted.
4.6.3. A report on the financial strength of the company could accompany the
statutory returns to the supervisory authorities. The actuary would be answerable
to the supervisor on the details of this report. One could envisage this leading to
an informed dialogue between the supervisory authority and the company under
scrutiny on the nature of the proposed corporate strategy, whether in relation to
investment policy, growth or premium levels. The supervisor could then ask for
an assessment of the effect of alternative strategies and seek agreement with the
company on appropriate changes to its strategy as a condition for being permitted
to continue writing business.

5. SOLVENCY CONSIDERATIONS

5.1. The results of the simulations can be presented in terms of numbers of
insolvencies out of a given number of simulations. This is an estimate of the
probability of ruin. Each result derives from an assumption about the excess of
assets over technical provisions (the “asset margin”) and a specified basis for
calculating the latter. Given a basis for the technical provisions, the process can
be used to derive the required initial asset margin in order to achieve a specified
probability of ruin in a particular case.

5.2. The required asset margin will clearly differ according to differing defini-
tions of the technical provisions. Table 3 illustrates this point. The table shows
the technical provisions on the standard basis described above and the technical
provisons on alternative bases as to inflation and discounting, but for the same
set of outstanding claims. The table shows what asset margins would be
necessary, expressed both as a percentage of technical provisions and as a
percentage of net written premiums, in order to achieve the same degree of
overall security as the technical provisions on the standard basis. Technical provi-
sions on the standard basis are calculated assuming 5% inflation and no discount-
ing. Thus if the reserves do not allow for any future inflation, or have been
discounted using a rate of interest equal to the assumed rate of inflation, an asset
margin of 21% of net written premiums or 9% of technical provisions would be
needed to produce the same level of total assets as the technical provisions alone
on the standard basis. The figures in this table underline the arbitrary nature of
a statutory solvency requirement unless standards of technical provisions can be
adequately specified.
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TABLE 3
TECHNICAL PROVISIONS AND ASSET MARGINS

Asset margin to achieve same security as

standard
Reserving basis
(net 1nflation Techmnical % of net written % of technical
assumed) %o provisions ' premums? provisions
~5 20450 39 19
0 22264 21 9
5 24364 0 0
10 26805 —-24 -9
15 29656 —53 - 18

1 Based on 40% long tail business and 60% short tail
2 Premwums net of commission and miual expenses

5.3. First we give some results for a pure run-off, i.e. with no future premiums
assumed to be written. The outstanding claims and unexpired risks are allowed
to emerge and the adequacy of the total assets (technical provisions and asset
margin) is examined. Table 4 shows the number of insolvencies and the mean
assets remaining at the end of the run-off and the standard deviation of the assets
remaining on some alternative bases. Table 5 gives a similar set of results with
the inclusion of 2 further years’ written premiums. Appendix 4 gives details of
all the assumptions and a full set of results.

5.4, Tables 6 and 7 show the asset margins required to achieve a probability of
ruin of 1 1n 100 for each of the combinations of assumptions in Tables 4 and 5
respectively, assuming that the technical provisions are established on the stand-
ard basis of 5% inflation and no discounting. The asset margins are shown in
terms of both net written premiums in the year before the base date and as a
percentage of technical provisions at the base date, The results can be expressed
in terms of net written premiums even for the pure run-off case, since these are
the premiums in the year before the base date when premiums are assumed to
cease. As described in Paragraph 4.2.8, we have in fact generated the outstanding
claims from past premiums. The difference between Tables 6 and 7 provides a
measure of the additional capital needed in order to go on writing business for
two more years.

5.5. ltis clear that the results obtained depend critically on the models used and
the parameters assumed. More work is needed on a number of different aspects.
However, the results presented do appear consistent and sensible and variations
in relation to changing parameter values conform with general reasoning.

5.6. It is difficult from these results to draw conclusions about an appropriate
level of a mimmimum statutory solvency margin. In fact we have avoided using the
term solvency margin in this section because of its special significance in statutory
terms and have referred to the necessary margin as the asset margin. Our asset
margins relate to particular assumptions about the basis for the technical provi-
sions and provide a defined degree of security in relation to specified scenarios
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TABLE 4
SUMMARY OF RESULTS FOR PURE RUN-OFF OF BUSINESS (WITH 1000 SIMULATIONS)

No of Mean assets Standard deviation of

Assumptions insolvencies remaimng' (%)  assets remaimng’ (%)

Standard basis 8 112 70
1 Net written premiums >

(a) £1m a year 20 113 75

(b) £10m a year (s) 8 112 70

(c) £100m a year 6 112 69
2 Proportion of long-tailed business

{a) 20% of net written premiums? 3 94 55

(b) 40% of net written premiums? (s) 8 112 70

(¢) 60% of net wnitten premiums? 13 130 8s
3 Imual asset distribution

Cash Gilts Equities

(a) TP + AM — — 3 95 53

(b) — TP + AM — 20 120 98

(c) — — TP + AM 49 136 115

(d) TP ;TP AM (s) 8 112 70
4 Imtal asset margin.

(a) 0% of net written premiums? 134 52 55

(b) 20% of net written premiums? 36 83 62

(c) 40% of net written premiums? (s) 8 112 70

(d) 60% of net written premiums? 2 147 80

(e) 80% of net written premiums? 0 180 90
5 Asset selling rules

(a) Equities, gilts; cash 9 102 66

(b) Cash; gilts; equities 7 123 79

(¢) In proporuion to holdings (s) 8 112 70

(d) Sell best performer first 14 108 70

1 Deflated to the date of assessment using the retail prices index and expressed as a percentage of
net written premiums> 1n the year before the date of assessment (see Appendix 3 6 8)

2 Premums net of commission and expenses

(s) indicates the assumption made for the standard basis

on the basis of our model. A statutory solvency margin, 1n the sense in which it
is usually used, provides a general level of security, independent of the particular
circumstances of the company, against all possible future scenarios, including the
effect of unquantifiable risks such as fraud, mismanagement and the failure of
reinsurers.

5.7. A starting point for consideration of an appropriate level of statutory
solvency margin might be to look at the asset margin for a company with a fairly
standard distribution of business, a moderate growth rate and investment entirely
in cash. In our view the resulting margin ought to be in two parts:

a percentage of the technical provisions at the assessment date;
a percentage of written premiums.

The former represents the margin required in respect of the run-off risks and the
latter the margin required in respect of writing up to two years’ further new
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TABLE §

SUMMARY OF RESULTS WITH 2 FURTHER YEARS' BUSINESS (WITH 1000 SIMULATIONS)

No of

Mean assets

Standard deviauion of

Assumptions insolvencies remalnmgl (%) assets remaining' (%)
Standard basis 50 144
Net written premiums:?
(a) £1m a year 61 144 117
(b) £10m a year (s) 50 144 109
(c) £100m a year 43 144 107
Proportion of long-tailed business
(a) 20% of net written premiums? 48 120 9]
(b) 40% of net written premiums? (s) 50 144 109
(c) 60% of net written premiums? 52 168 130
Real growth rate (past and future)-
(@) —20% a year 53 171 134
(b) No growth (s) 50 144 109
(c) +50% a year 83 144 121
Mean claim ratio® (short-tailed)
(a) 80% of net written premiums?® 7 187 117
(b) 100% of net wntien prermums? (s) 50 144 109
(¢) 125% of net written premiums? 165 90 103
Variability of claim ratio (short-tailed)
(a) Standard devianon 5% NWP? 49 144 109
(b) Standard deviauon 10% NWP? (s) 50 144 109
(c) Standard deviauon 15% NWP? 48 144 111
Mean claim rano? (long-tailed)
(a) 80% of net written premiums? 17 163 106
(b) 100% of net written premiums?(s) 50 144 109
(©) 125% of net written premiums? 105 120 114
Vanability of claim ratio (long-tailed).
(a) Standard deviation 10% NWP? 50 144 109
(b) Standard deviation 15% NWP? (s) 50 144 109
(c) Standard deviaton 20% NWP? 49 144 110
Inminial asset distribution

Cash Gilts Equities
(a) TP + AM — — 46 118 86
(b) — TP + AM — 79 155 152
(c) — — TP + AM 86 181 172
(@ TP TP AM (s) 50 144 109
Ininal asset margin
(a) 0% of net written premiums? 196 74 98
(b) 40% of net written premiums? (s) 50 144 109
(c) 80% of net written premiums 11 216 133

Deflated to the date of assessment using the retail prices index and expressed as a percentage of
net written premiums? in the year before the date of assessment (sece Appendix 3 6 8)
Premiums net of commission and expenses
Rauo of claims (including claims settlement expenses), without allowance for future inflation or
for discounting, to premums net of commission and expenses (see Paragraph 4 3 2).

(s) inchcates the assumpnion made for the standard basis
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TABLE 6
ASSET MARGINS REQUIRED TO ACHIEVE 1/100 PROBABILITY OF RUIN — NO FUTURE NEw BUSINESS

Asset margin Asset margin as % of

Assumptions as % of NwWpP' technical provisions

Standard basis 40 15
1 Net wntten premiums '

(a) £1m a year 55 25

(b) £10m a year (s) 40 15

(c) £100m a year 35 15
2 Proportion of long-tailed business:

(a) 20% of net wniten premiums’ 30 15

(b) 40% of net writen premiums' (s) 40 15

(c) 60% of net written premiums’ 45 15
3 Imtal asset distribution

Cash Gilis Equities

{a) TP+ AM — — 30 10

(b) — TP + AM — 60 25

(<) — — TP + AM 80 35

(d)y ;TP \TP AM (s) 40 15
4 Asset selling rules

(a) Equities; gilts, cash 40 15

(b) Cash, gilts, equines 35 15

() In proportion to holdings (s) 40 15

(d) Sell best performer first S5 25

1 Premiums net of commission and expenses
(s) indicates the assumption made for the standard basis

business. To the new business margin might be added a contingency loading to
cover other unquantifiable risks.

5.8. This would provide a basic safety net for an average company, assuming
that technical provisions were at least up to the standard envisaged. Statutory
reserving standards might be necessary to achieve this, since it has to be recog-
nized that a solvency margin requirement based on technical provisions has a
similar weakness to one based on written premiums. If the provisions are under-
stated the requirement is reduced, whereas it should in fact be higher.

5.9. Alongside such a basic solvency requirement would be a requirement for
a report by an actuary or other expert on the overall financial strength of the
company. This would transcend the arbitrary dividing line between technical
provisions and solvency margin and would take specific account of the nature of
the business written by the company, the proportions of different types of
business, the assets held, and all other relevant factors, including the nature of
and the security of the reinsurance programme.

5.10. If a requirement for an actuarial report is not introduced, then further
consideration would need to be given to whether the solvency margin requirement
should include components relating to the assets held and the reinsurance
recoveries expected. Regard should also be had to the nature of the outstanding
claims portfolio and the type of business being written. However, such a solution
would be far from ideal.
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TABLE 7
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ASSET MARGINS REQUIRED TO ACHIEVE 1/100 PROBABILITY OF RUIN — Tw0 YEARS' NEW BUSINESS

Assumptions

Asset margin
as % of NWP'

Excess asset margin as
compared to run-off
(as % of NWP")

Standard basis 90 50
1 Net written premiums’

(a) £1 a year 100 45

(b) £10m a year (s) 90 50

(c) £100m a year 80 45
2 Proporuon of long-tailed business

(a) 20% of net written premiums' 80 50

(b) 40% of net written premiums' (s) 90 50

(c) 60% of net wrnitten premiums' 95 50
3 Real growth rate (past and future).

(a) —20% a year 100 35

(b) No growth (s) 90 50

(c) +50% a year 115 85
4 Mean claim ratio? (short-tailed)

(@) 80% of net written premums' 30 0

(b) 100% of net written premiums’ (s) 90 50

(¢) 125% of net written premiums’ 125 75
5 Vanability of claim ratio (short-tailed)

(a) Standard deviation 5% NWP' 80 45

(b) Standard deviation 10% NWP' (s) 90 50

(¢) Standard dewviation 15% NWP' 85 45
6 Mean claim ratio? (long-tailed)

(a) 80% of net written premiums’ 50 20

(b) 100% of net written premiums’ (s) 90 50

(c) 125% of net written premiums’ 115 60
7 Variabihty of claim ratio (long-tailed):

(a) Standard deviation 10% NWP! 85 50

(b} Standard deviation 15% NWP! (s) 90 50

(c) Standard deviation 20% NWP'! 90 50
8 Imual asset distribution:

Cash Gilts Equities

(a) TP + AM — — 85 55

(b) — TP + AM — 110 50

(c) — — TP + AM 135 55

@ TP yTP AM (s) 90 50
1 Premiums net of commission and expenses
2 Rauo of claims (including claims settlement eapenses), without allowance for future inflation or

(s) indicates the assumpution made for the standard basis

6

1.

for discounung, to premiums net of commission and expenses (see Paragraph 4 3 2)

6. REINSURANCE

Reinsurance business accepted may be regarded as another class of

business, which is often particularly volatile and unpredictable. Appropriate
reserving levels for casualty reinsurance business are likely to present particular
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problems, since it can take many years for the liabilities (including IBNR) to
develop fully. Solvency margins certainly ought to have regard to this uncer-
tainty. In principle there seems no reason why the simulation approach should
not also provide some insights in this area of an insurers’ portfolio.

6.2. Much more difficult to handie in the context of the assessment of financial
strength is the security of reinsurance cessions. Many insurers are critically
dependent on therr ability to recover from reinsurers, since the size of the risks
they write is such as to bankrupt or cripple them if they had to bear the liability
alone. One safeguard against reinsurance failure 1s to spread reinsurance cessions
widely, so that there is not any great dependence on particular reinsurers.
However, this does not remove the need to look carefully at the security of
individual reinsurers chosen for the programme.

6.3. From the reserving point of view, a decision has to be made on the extent
to which reinsurance recoveries can be relied on. Extreme caution might point
towards reserving for the full gross hability but this is not a practical commercial
possibility in most cases. Clearly recoveries from reinsurance companies already
known to be in trouble should be ignored or heavily discounted, but 1t is more
difficult to know what should be done when there are no specific known prob-
lems. In accounting terms it may be difficult to set up a provision against an
unseen and unquantifiable possibility of reinsurance failure. On the other hand
the accountancy concept of prudence would preclude taking credit in advance for
receipts which are uncertain, so it would be possible to justify taking only partial
credit for reinsurance recoveries, depending on an assessment of the viability of
the reinsurers.

6.4. The issue is of particular importance in considering the overall financial
strength of the company. This would be one aspect which the actuary would need
to cover in his report. Different approaches may be acceptable in different cir-
cumstances but simulation does seem to offer a promising way forward. Further
work is clearly needed in this area to develop ways of modelling reinsurance
recoveries. It has been assumed in our model that all claims are net of rein-
surance. This may be good enough for many companies, with relatively little
dependence on reinsurance. However, it will be far from adequate for other com-
panies for which the possibility of failure to recover from reinsurers is a significant
one and the potential impact disastrous in solvency terms. Some tentative 1deas
of a possible way of tackling this are set out in Appendix 6.

6.5. A detailed examination of the reinsurance programme can hardly be
practicable for the supervisory authorities and here again it seems that an ac-
tuary’s report would help. No general solvency requirement can be a substitute
for this. The practice adopted for the EEC solvency margins of reducing the
solvency margin requirement calculated on the basis of gross written premiums
to allow for reinsurance based on actual recoveries in the past three years, but
with a maximum reduction of 50%, is a very rough and ready solution and does
not have any regard to the actual dependence on reinsurers for future recoveries.
With non-proportional reinsurance the premium can be very small in relation to
the potential liability, so no simple percentage of premium is likely to make sehse
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as a solvency margin. A percentage of anticipated recoveries from reinsurers
would have a stronger rationale, but it would be difficult to find a logical basis
for any particular percentage.

7. CONCLUSIONS

7.1.  We have outlined the weaknesses 1n the traditional balance sheet concept
for describing the true financial strength of a general insurance company. Assets
and liabilities should not be treated as independent aspects and much more atten-
tion needs to be focused on the uncertamties and on the company’s resilience in
the face of such uncertainties. Appropriate techniques have been developed by
actuaries for dealing with these problems in the life and pensions areas and
similar principles can be used to begin to tackle the general insurance problem.
The parallels are drawn out in a paper by COUTTS and DEVITT (1986).

7.2. However, there are also differences, arising mainly from the greater
volatility of claim amounts in general insurance. The problem of variability can
be explored by means of simulation. A simulation model of a general insurance
company provides a powerful tool for analysing the impact of all types of uncer-
tainty and assessing the true financial! strength of the company.

7.3. A solvency margin requirement expressed in terms of a simple percentage
of written premiums (or in terms of a percentage of technical provisions, which
might be more appropriate to cover the run-off risk) cannot have proper regard
to the risk to which each company 1s subject, whether as regards the assets or
liabilities. It must, therefore, be seen as a general underlying safety net, providing
a margin against the effects not only of stochastic variations but also of
mismanagement, fraud or simply error, and permitting the statutory authority to
operate a satisfactory control system.

7.4. Despite our strong belief that the solvency margin should relate to the
various risks affecting the financial position of an insurance company, we
acknowledge that there will be interest in the use of our model to provide a
rationale for a minimum statutory solvency margin. Time has so far prevented
us from carrying out sufficient simulations to explore the full implications of the
assumptions made and, in particular, the response of the Wilkie model to changes
in parameters. We have also only shown the results for a probability of ruin of
1% and this level is of course crucial to the resulting asset margins.

7.5. Nevertheless at this level of security Table 6 shows that, for a moderate
sized company, writing £100m of net premiums but otherwise on our standard
basis, the margin necessary to cover the run-off risks would be 15% of technical
provisons, assuming that the provisions for outstanding claims are set up on an
undiscounted basis with allowance for inflation at 5% (the mean value used in
the Wilkie model). The margin might be reduced to 10% if all the investments
are assumed to be held in cash. Such a margin may be over-stringent as a
minimum for larger companies but Table 6 indicates that it should be higher for
small companies. A similar standard to a 10% margin would be obtained for the
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mix of business considered here by setting up provisions for outstanding claims
allowing for inflation at 10% with no discounting.

7.6. Care has to be taken in interpreting the extra margin implied to be
necessary to allow for the risks contingent on writing new business for two years.
The margins to cover the run-off nisk have been expressed for this purpose 1n
terms of net written premium and these margins (for the respective sets of
assumptions) have then been subtracted from the margins obtained assuming two
further years in business. It could be argued that if the risks of new business and
run-off are to be provided for independently, then the model should be run with
no past business in order to assess the appropriate margin for new business risks.
We have not done this as we do not believe that the two issues are independent,
there being interactions in regard to both assets and the variability of the run-off
of claims. Assuming that the margins expressed as a percentage of net written
premiums are additive, Table 7 indicates a margin of a 50% premium net of com-
mission and expenses for a £100m company, otherwise on our standard basis
apart from investment being entirely in cash. This might be equivalent to 35—-40%
of actual gross written premiums.

7.7. Such a solvency margin requirement appears rather high and it is worth
considering briefly some of the major factors which give rise to it. A significant
part anises from the effect of simulated future inflation and the possibility that
returns on cash will not be adequate to compensate for 1t. This suggests that the
risks might be reduced with greater use of index-linked stocks.

7.8. Much of it also arises from the assumption on the standard basis of a mean
claim ratio of 100% of net written premiums. As described in Paragraph 4.3.2,
this implies break-even if future investment income exactly balances inflation.
Thus the assumption is that business is written on a basis where the only profit
on an expected value basis is to the extent that a positive real rate of return can
be obtained. This might be perceived as too stringent for a mintmum solvency
margin requirement, although it is not unrealistic in current conditions. The re-
quirement could be reduced by about 1% of actual written premiums for every
percentage point by which the expected claim ratios are reduced below 100%.
7.9. Any general solvency requirement will have its limitations. Apart from the
points mentioned in Paragraph 7.3, there is also the problem of relating the re-
quirement to written premiums or to technical provisions, which may themselves
be more adequate for some companies than for others. The adequacy of the
technical provisions is of particular importance {cf. Paragraph 5.2), since they
determine what assets are apparently available as a margin. There is, therefore,
a need for consistent standards to be applied in setting technical provisions, sug-
gesting that there would be considerable advantages in requiring the provisions
to be established on the basis of advice from an actuary or other claims reserving
expert, acting within the framework of an appropriate professional standard.
However, it has to be acknowledged that there is always likely to be some uncer-
tainty about the strength of technical provisions.

7.10. We have also argued that a crude minimum solvency margin requirement
cannot adequately have regard to the true level of risk for a particular company.
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The supervisory authority is not well-placed to assess each company’s risk situa-
tion in detail on an individual basis and the answer would seem to be to rely on
an appointed actuary or other similarly qualified person within the company (or
acting as a consultant to the company). The actuary would be responsible for
reporting both to management and to the supervisory authority on the financial
strength of the company, taking all relevant factors into account. A summary of
the actuary’s report could appear in the statutory returns, with full details being
available to the supervisory authority on request. The supervisory authority
would be able to question the actuary on the effects of alternative assumptions
and could then discuss with management an appropriate strategy for reducing the
risk profile to an acceptable level.

7.11. The actuary would need to use simulation techniques in performing his
duties. There is plenty of scope for developing appropriate simulation models for
this task and one such model is presented here as an example of what can be done.
Apart from providing a framework for analysing the existing position of the
company, such models could be powerful tools for answering a wide variey of
“what if?” questions, such as:

what changes do there need to be to premium rates to make a particular line
of business worth writing?

1s the investment strategy too risky with the present asset margin?

what additional capital would be needed to pursue a particular strategy?

will the strategy give a reasonable expected return on the additional capital?
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APPENDIX 1
DESCRIPTION OF SIMULATION MODEL OF GENERAL INSURANCE COMPANY

Al.l. In standard risk theory the year to year transition formula is of the form:

AU=B+I1-X-C-T
where

AU is the change 1n the solvency margin U;

B 1s the earned premium income, including safety and expense
loadings;

I is the net income from investments;
X 1s incurred claims;
C 1s the cost of administration, reinsurance etc.;
T is dividends, tax, etc.
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By implication, incurred claims includes changes to estimates of outstanding
claims generated in previous years and included in the technical provisions at the
start of the year in question. This formulation is also deficient in that changes
in the values of investments are ignored.

Al.2. General Formula

More generally, we define:

where

AA(N)=AU)-AU-1)

"—-; Ak(./)_; Ar(J=-1)
=; A= DT+ e = DT+ gy = D) ~ 1]

+ {B(n—cm—r(n— )y x(i;n}

1</

A(J) is the total value of the assets at the end of year ;; Ax(J) is the total
value of component k of the asset portfolio at the end of year ; (in our
model k=1 for cash, 2 for irredeemable government securities, 3 for
ordinary shares);

yi(J) is the yield on asset component k at the end of the year ;. In
particular, in our model:

»()=c(j)-0.01

y2(1)=c(y)

y;(2)=y{)

where ¢(y) is the yield on 2.5% Consols;

y(j) is the dividend yield on the Financial Times Actuaries All-
Share Index;

gk () is the proportionate change 1n capital values between the end of
years 7 and (/ + 1). In particular, in our model:

g1(j)=0

c(J)
c(y+1)
diy+ y()
d(yly(u+1)

where d(/) 1s an index of share dividends ( = dividend yield x price
index) corresponding to y(});

&(j)=

g(Jj)=
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B(y) is the written premium income in year y including safety and expense
loadings;
C(J) is the cost in year j_c_>f administration, commission, reinsurance etc.;
T(J) is the amount paid out in dividends and tax in year J;
X (i; ) is the amount settled 1n year y in respect of claims arising in year 7.

We now define B'(y)}(= B(y) — C(y)) as the written premiums in year ; net of
commission and all expenses other than claims settlement expenses and X(i; /)
as including claims settlement expenses.

Al.3. Asset and Inflation Models

The asset components Ax(y) can be defined 1n a variety of ways relative to the
total D« Ax(j). For example, 1f investment or disinvestment is proportional to
the value of assets brought forward to the end of the year from the previous year-
end,

A()
AGuy-1

If proportions pk(zkpk = 1) are specified such that px of any new investment is
invested in component k:

Ac())=Ac(G =D+ (G- D} + g (G - D]}

« o BU)-COI-T0)- T X},

Ar()) = Ae(J=1).

We also define g(y) as the retail price index at the end of year y and r(y) as the
price growth in year j:

__ay)
"I=505D

The variables q(Jj), d(y), y(j) and c¢(/) are defined by an interrelated set of
autoregressive models, described in detail in Appendix 2.

Al.4. Tax and Dividends Model

The dividends and tax term is expressed in terms of the investment income and
an input parameter !, representing the proportion of investment income
absorbed by tax and dividends paid to shareholders, by the following:

T() =1t ; Ay = Dy = 1)
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Al.5. Model of Claims Generation Process

We define written premiums in the year prior to the date of assessment (taken as
the time j = 0) as B(0) and the rate of growth of written premiums before and
after that date as e, and e;. Then:

B'(j))=B'(0)(1+e) (j<0)
=B'0O(+e) (=20

and
Bi(j)= fuB'(y) for k=1,2,3

where fi is the proportion of written premiums in respect of type of business k
(k =1 for short-tailed, 2 for long-tailed and 3 for very long-tailed).

Claims are assumed to be generated from written premiums by means of a
variable claims ratio and specified proportions settled 1n each year of the run-off.
Thus the estimated payment in year j in respect of premiums written in year / is
given by:

J
X)) = ; s¥())Rk(1)BL () IH (I+r())

=i+1
where

Rk (1) 1s the uninflated, undiscounted claims ratio 1n year i assumed to be
normally distributed with mean Rx and standard deviation ¢. For / €0,
Rk (1) = Rk.

s¥(7) 1s the proportion of uninflated, undiscounted claims from type of
business & that are assumed to be settled 1n development year J.

Al.6. Model of Claims Settlement

Claims settled in each year of development are aggregated from all the separate
years of origin, whether before or after the date of assessment. The total amount
of claims settled in year j, X (), is assumed to be normally distributed with mean
X (/) and standard deviaton aX(y) + b{X(y) where a and b are specified con-
stants and X(/) is defined as:

X=2 ; s¥(s = DR ()BL() [IJI {1+ r()}.

1<) =41

Al.7. Technical Reserves

The technical reserves, TR(0), at the date of assessment are calculated from the
estimates of claims to be settled in future years arising from premiums earned
prior to the date in question. They allow for inflation at a specified rate, r, and
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discounting at a specified rate, d. They can be expressed as follows:
20

TR(0) =} ; Bi(ORx 2 sk +r)Y (1 +d)™

J=0
-1 20

+%}Rk >0 By 2 sf(A +r)( +d) T+ 1Bi0).
1= =20 J=-1

The 1nitial solvency margin, SM(0), is defined as a function of written premiums
1n the year before the date of assessment:

SM(0) = aB’(0).
The init1al assets are thus given by:

A (0) = TR(0) + SM(0).

APPENDIX 2
DESCRIPTION OF STOCHASTIC MODELS USED FOR ASSETS AND INFLATION

A2.1. The investment and inflation models used are those proposed by WILKIE
(1984, 1986). A summary of the specification of the model is given below. The
variables used are:

g(?) The UK retail prices index.

d(t) An index of share dividends.

y(t) The dividend yield on these same share indices, that is, the dividend
index at the specified date divided by the share price index at that date.

c(t) The yield on 2.5% Consols (irredeemable), which 1s taken as a measure
of the general level of fixed interest yields in the market.

A2.2. The model used for g(z) is:
VIn{q(N)} =pq + g [VIn{g(t — 1)} — pg] + 0424 (1)
where the backwards difference operator Vis defined by
Vx(t)=x()-x(t~-1)

and z,(t) is a sequence of independent identically distributed unit normal
variates. The values adopted for the parameters are:

g =0.05, og=0.6, o, =0.05.
A2.3. The model for y(¢) 1s:
Infy()} =wVintg()} + ya(0)
where
yu(t) =1n(w) + [ yn(t — 1) — In(y)] + 0y2y (2)

and z,(¢/) is a sequence of independent identically distributed unit normal
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variates. The values adopted for the parameters are:
w =0.04, o, = 0.6, wy,=1.35, 0,=0.175.
A2.4. The model for d(t) 1s:

10l d)) = () ¥ (@) + as Vinla@)
+ Ba0y2y (1 = 1) + 0aza(t) + va Gaza(t = 1)
where the backwards step operator B 1s defined by
Bx@) =x(t-1)
and hence
B"x(t)= x(t - n)

and zg(¢) is a sequence of independent identically distributed unit normal
variates.
The term in parentheses above involving 64 represents an infinite series of lag

effects, with exponentially declining coefficients:

Od,

da(1 — 8q),

da(l — 6d)z, etc.
The sum of these coefficients is unity, so this part of the formula represents the
lagged effect of inflation, with unit gain. This means that if retail prices rise by

1% this term will also, eventually, rise by 1%. We can alternatively describe it
as the “carried forward” effect of inflation m(r), where

m(t) =6a Vin{q(1)) + (1= da)m(t - 1),

from which we see that the amount that enters the dividend model each year is
84 times the current inflation rate, plus (I — 84) times the amount brought forward
from the previous year, and that this total 1s then carried forward to the next
year. The values adopted for the parameters are:

wg=0.8,06:=0.2, g =0.2, 8= —-0.2,

va =0.375, 04 =0.075.

A2.5. The model for c(z) is:

C(t)=wc< b ) Vin{g()} +n(),

1-(1-6)B
where
In{n(t)) = In(pc) + (B + BB + v B [In{n ()} — In(pe)] + be0y2y (1) + 0czc (£),

where z.(¢) is a sequence of independent identically distributed unit normal
variates.
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The term in parentheses in & has a similar form to the 84 term in the dividend
model, though the parameter value 1s different. It represents the current value of
expected future inflation as an exponentially weighted moving average of past
rates of inflation. The values adopted for the parameters are:

we = 1.0, 6 = 0.045, puc =0.035, ac=1.20,
Be=—0.48, v.=0.20, ¢.=0.06, o.=0.14.

A2.6. Interested readers are referred to WILKIE (1986) for interpretation of
what the model implies and how it can be used. A fuller description of the deriva-
tion of the model is given in WILKIE (1984).

A2.7. There 1s no specific provision in Professor Wilkie’s model for cash as an
mvestment. We have assumed that the return on cash for any year is the Consols
yield at the start of the year less one percentage point.

APPENDIX 3
THE SIMULATION PROGRAM

A3.1.1. In order to simulate the run-off of an insurance company it is
necessary to make decisions in regard to many parameters. Furthermore it is not
easy, ab initio, to select sensible values for many of them. The program is written
in such a way as to allow for a range of values of each of the parameters. As there
are at least 20 parameters or values that may vary, and several may have up to
8 or 9 values, 1t is impossible to provide for every possible combination of values
of the parameters. Not only would the program take too long to run but the
volume of output would be too great to comprehend.

A3.1.2. The program is written, therefore, to allow each of the parameters to
vary in turn over its whole range, whilst the others are kept constant at a
“normal” or standard level. It also permits an analysis by two parameters at a
time, for every possible combination of the various levels of those two
parameters.

A3.1.3. For each parameter combination the same 1000 sets of random
numbers are used, so that the comparisons are not significantly affected by any
bias in the particular sets of random numbers chosen.

The Basis of the Sumulations

A3.2.1. The program works from a series of written premiums, going back
sufficiently far into the past to include every year for which claims are still to be
run off. Provision is made for three alternative bases for the future.

1. A wind-up — an assumed return of the unearned premium reserve (UPR)
as the policyholders claim on the liquidator for the unearned part of their
premiums.

2. A run-off —the UPR is translated into a pattern of future claims payments
and included with payments in respect of the outstanding claims and IBNR.
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3. A continuing business — the future period of writing premiums can be
selected and after that there is a run-off as in 2 above.

A3.2.2. Itisnecessary to generate claim ratios for each type of business and for
provision to be made for the claims ratios to vary stochastically. The classes of
business are characterized by the length of run-off period and settlement pattern
and the proportions of business written in each category of tail are set by three
parameters.

A3.2.3. The investment model is that given by WILKIE (1986). The investment
mix may be varied according to the nature of the business and the initial invest-
ment mix is specified separately for the technical provisions and asset margin. The
rules for selling and buying investments may be selected. Buying is likely to occur
where there is a continuing business and written premiums are growing but it can
also arise in the later years of a run-off where the income from the assets is large,
particularly in the case of larger initial asset margins.

A3.2.4. The volume of written premiums may be allowed to grow or diminish
over the years since this affects the ratio of outstanding claims to the latest year’s
written premiums and also the relative importance of income and outgo in respect
of future business where this is assumed.

A3.2.5. Corporation tax is payable by a general insurance company 1n the UK
on its profits, which include capital gains as well as income and exclude any
allowance for indexation of the purchase price of securities. However, such
“income” is not subject to tax if it is used to pay claims and expenses, and 1t
seems likely that with a company that is in any danger of becoming insolvent
there will be past losses carried forward, as well as future claims outgo, that will
probably absorb most, if not all, of the income. This will mean that the effective
rate of tax.on interest will be very low. Provision is made for notional rates of
tax for the first five years, at rates well below the current rates of corporation tax.
The “tax” is assumed also to include the payment of dividends to shareholders.
This will result in an overstatement of the outcome in scenarios where the
company remains solvent, but this is not the main feature of the results with
which we are concerned. The tax treatment in the model could clearly be made
more sophisticated.

The Investment Model

A3.3. The Wilkie model has been used, notwithstanding the author’s warning
that it was not developed for short-term forecasting. Wilkie’s own view is that
its use in these simulations can be justified. We have examined the output from
the model over several hundred simulations of 30 years and have satisfied
ourselves that the variations in the values do not appear unreasonable in the light
of experience over recent years. However, this includes the possibility of a col-
lapse in the market such as occurred in 1974 and it might be thought that such
a collapse would require special dispensations allow the majority of insurers to
continue to write business. Care should, therefore, be exercised in interpreting the
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results in so far as they depend upon the impact of temporary abrupt falls in
market values.

Future Statutory Solvency

A3.4.1. For a continuing company it is necessary to examine the financial
position at the end of each year, if not more often, Accounts and returns have
to be presented and a simulation of the future development of the company for
management purposes would need to have regard to how the position might
appear in presentational terms at each future reporting date.

A3.4.2. For a company that is already being run-off or to test what would
happen 1n such circumstances, the reporting constraint is less relevant and our
aim has been to look at “true” solvency, rather than the position as constrained
by reporting conventions. The model simply looks at the adequacy of the assets
to meet the liabilities as they are simulated to arise during the run-off. It does not
check the solvency position as it might be reported to shareholders or to the
supervisory authority at points during the run-off. Such a factor could be intro-
duced if a procedure for deciding on appropriate bases for the technical pro-
visions in future years were to be defined.

The Choice of Parameters and Their Values

A3.5. Every parameter is allowed to have at most 9 values, but need not be
given more than 1. The parameters are numbered 1 to 13 and their levels 1 to 9.
The value for level § is the standard and a value must be inserted for this
parameter in every case, even if it is not included in the list of parameters to be
analysed, since the program requires a value to be assigned for every parameter.
A detailed list of the parameters and the factors underlying their choice is given
below:

1. Written premiums. The values used are £1,000,000, £10,000,000 and
£100,000,000 a year. For a larger amount of business the purely stochastic
variation would be negligible in comparison with other variability, so that the
results would be unhkely to differ significantly from those for £100,000,000 a
year. The written premiums are taken as being net of initial expenses and
commission.

2. Claim ratio — very long. Ths is the claim ratio for future business of a very
long-tailed nature, 1.e. with a run-off period of 20 years. So far no such
business has been included in the simulations. Claim ratios are assumed to
include the expenses of claim settlement with actual claim costs but they are
related to written premiums net of commission and expenses (cf. Paragraph
4.3.2).

3. Standard deviation — very long. This 1s the standard deviation of the above
claim ratio.

4. Claim ratio — long This is the claim rato for future business of a long-
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tailed nature, i.e. with a run-off period of 10 years. We have used values of
80%, 100%, 125% and 150%.
S. Standard deviation — long. We have used 5%, 10%, 15%, 20% and 25%
of written premiums.
6. Claim ratio — short. This is the claim ratio for future business of a short-
tailed nature. We have used 80%, 100%, 125% and 150% here also.
7. Standard deviation — short. We have used 5%, 10%, 15% and 20% of
written premiums.
8. Growth rates. Separate real growth rates may be assurned before and after
the assessment date. Rates varying from 0.8 to 1.5 have been used and the ef-
fect of zero real growth up to the date of assessment and positive or negative
growth thereafter, and vice versa, have been examined. Inflation is auto-
matically allowed for in the program so that the growth assumptions relate to
growth in real terms.
9. Proportions of business. These are the proportions of written premiums
represented by very long-tailed business, long-tailed business and short-tailed
business. Only the first two are given: the program calculates the short-tailed
and checks that it is not negative.
10. Asset mix — solvency margin. The proportions of equities and gilts are
given separately. The proportion of “cash” is calculated and checked to see
that it is not negative.
11. Asset mix — technical provisions. As above (10).
12. Asset margin. This is expressed as a percentage of the net written
premiums in the last year before the date of assessment. This margin is allowed
to range from nil to 120%. The normal value has been taken as 40%. Different
reserving strength, arising from the assumptions made in calculating the
outstanding claims, allowing for inflation and for discounting, can be studied
by looking at different asset margins (cf. Paragraph 5.2). On the standard basis
the technical provisions are established using 5% inflation and no discounting.
13. Selling rules. There are 8 alternative rules, namely:

(a) Sell equities until they are exhausted, then gilts and finally cash.

(b) Equities, cash, gilts.

(c) Gilts, equities, cash.

(d) Gilts, cash, equities.

(e) Cash, gilts, equities.

(/) Cash, equities, gilts.

(g) Sell rateably (i.e. in proportion to the current value of holdings).

(h) Sell each year whatever has performed best since the start of the run-

off.
Investment (where there is a surplus of income over outgo) is always done
rateably. It is also necessary to specifiy:

1. The number of future years. This 1s limited to the range 1 to 10 but the
parameter can take the values 0 or — 1 meaning that we are assuming no new
business written and that we have either a run-off (0) or a wind-up (- 1).
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The number of simulations.

The number of parameters to be analysed, that is 1 or 2.

The existence of the very long-tailed class. This was included as an option
to avoid having very long loops which are not needed where there is no such
class. It was merely a program-writing device.

Ealbadi

The Program Plan

A3.6. The program has been written to permit it to be run on FORTRAN IV
(otherwise known as FORTRAN 66). In particular we have avoided the use of
negative values in arrays. For this purpose we have assumed that the past 1s
represented by years 1 to 20 and the future by years 21 to 46. Whilst this means
that some arrays have to be larger than they would otherwise need to be, the
simplification is worthwhile. The program is divided into sections:
1. Inutialization. This sets out the values of the parameters, dimensions the ar-
rays and sets some initial values. The values of the parameters could be inserted
by lead cards if preferred. This section also includes the values of: number of
future years, number of parameters, very long-tailed option and the number of
simulations. This section also contains some data manipulation and checking to
avoid time-consuming operations later 1n the program.
2. The random number generartor. This generates the necessary number of
random normal variates and stores them in an array for use by the later stages
of the program. This ensures that the same numbers are used for every variation
within a single simulation. They are recalculated for each further simulation. The
random number generator of the machine has been used to generate uniform
random variates in the range 0 to 2. After subtracting 1 these are used in
Marsaglia’s polar method to generate the corresponding random normal variates.
This method requires pairs of uniform randoms and produces normal variates if,
and only if, the sum of the squares of the two variates is less than 1. The program
counts the number of useful pairs and stops when it has enough to fill the array.
We have tested this process and found that a distribution of 3 million variates
was very closely normal, using 9-figure tables of the normal integral for the test.
This however does not test that they come in a random order and we have further
tested them to count the number of cases where there is a run of 1 increase or
2 increases and so on up to 7 increases. It is not difficult to calculate theoretically
the expected number of such runs both upwards and downwards and their
expected size. The results are within expected limits. The methods will be des-
cribed 1n detail in a paper to be written by two of the authors of this report,
together with notes on the times taken to make the calculations. These seem to
vary considerably from one method to another. It is perhaps worth mentioning
that what we require are representative sequences rather than purely random
ones. Kendall and Babington Smith noted in 1938 that a sequence of 10" ran-
dom numbers 1s almost certain to contain a sequence of a million zeros (or, for
that matter any other sequence you care to specify). This might be a random
sequence but 1t is not very useful in practice.
3. Investment values. The program now calculates the investment values for up
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to 26 future years, depending on the particular run-off period involved. The
values are of:

The retail price index.
Equity dividends.

Equity yield.

Gilt yield.

Equity price.

Gilt price.

Cash yield.

Borrowing rate.

A net income multiplier (see below).
10. An equity price ratio.

11. A gilt price ratio.

12. A mean retail price index.

The reason for a “cash” yield is that gilts are assumed to relate to medium or long
term, whilst cash is either cash on deposit or very short term gilts. It is assumed
that the cash yield is 1% below that of gilts and that when cash becomes negative
and we have to borrow, it is at a rate 2% higher than the gilt rate. The gilt and
equity yields have a minimum of 0.5%. The equity price ratio is the square root
of the ratio of the equity price at the end of the relative year to its value at the
start of the year. Its purpose is to revalue equities from the year-end value, on
which the income is based, to the mid-year value at which it is assumed that sales
take place or purchases are made. After the mid-year transactions the remaining
values of gilts and equities are updated to the year-end by a further multiplication
by the equity (or gilt) price ratio. Although interest is calculated on the values at
the start of the year, allowance is made for the loss of income on selling during
the year by multiplying the net outgo by a factor of 1 plus half the average yearly
yield on the investments. Whilst this assumes that the values of all three classes
are equal, the effect of differences is likely to be too small to be of any conse-
quence in practice.

4. Best investment. The next section is really a continuation of section 3 in that
it calculates which of the three classes of investment has performed best since the
start of year 21 and stores this information for use later in the program.

5. Outstanding claims. The program now calculates the outstanding claims at the
end of year 20. For each earlier year the program calculates the claims according
to the mean claim ratios and then, using the run-off rates shown in Table A3.1,
calculates the amounts, in constant money terms, which it expects to pay out in
each future year.

These are stored in an array by year of expected payment and the total is
accumulated, allowing for 5% future inflation, in a variable TOTOS which is the
total provision for claim amounts outstanding at the end of year 20. By using
these run-offs we have automatically taken into account the IBNR claims. If we
have a wind-up situation then TOTOS is the technical provision. If we are con-
sidering a run-off or a continuing business then we must add 50% of the written
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TABLE A3 1]
From Abbott, et al , 1981

Duration from Proportion of claims settled (%)
year of ongin Short-tall Long-tail
0 612 56
1 241 253
2 52 187
3 37 132
4 27 10.4
5 22 79
6 09 64
7 — 46
8 — 38
9 — 30
10 — 11
100 0 100 0

premium for year 20 into TOTOS as the unearned premium reserve. This figure
for technical provisions, together with the asset margin obtained from the
product of the assumed asset margin percentage and the written premiums for
year 20, enable us to calculate the initial amounts of each type of asset using the
specified proportions. This is the initial investment portfolio.

6. Future premiums. We next add into the arrays of future payments the
expected contribution to claims outgo arising from future written premiums and
from the unearned premium reserve for the last year, to give the expected claims
outgo in constant money terms.

7. Emerging costs. The program now has the information to enable it to calculate
the expected payments in each future year. The claims outgo 1s adjusted for infla-
tion according to the Wilkie model and is allowed to vary stochastically. We
assume a normal distribution and a formula of 0.15X = 75/X as the standard
deviation for the total claim outgo in any year. The square root factor is
dominant for the smaller amounts and the smaller companies but for the larger
companies the stochastic variation is negligible and it is only realistic to assume
some sort of overall secular variation (see Appendix 5).

We take the values of assets at the beginning of the year and calculate the
income on each type of asset, reducing the total income for the year by the tax
factor where appropriate. We then have the outgo, adjusted to allow for inflation
and stochastic variation, less the income and less any written premiums for a
continuing business. As mentioned in A3.6.3 we adjust for the loss of part of the
year’s investment income as a result of net selling during the year (or vice versa
in a net buying situation). Investment or disinvestment 1s assumed to take place
at mid-year values. If there 1s net investment, it is assumed to be made propor-
tionately to the existing values of the three classes of investment. Where there is
net outgo, the specified selling rule is applied.

8. Final assets. This process continues until the last year’s claims outgo has been
paid. The final assets are in the currency of the final year as a result of the applica-
tion of the investment model which revalues the assets, combined with the models
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for income and outgo in each year which allow implicitly for future inflation. In
order to bring the final asset value into the currency of the start of the run-off,
it is divided by the ratio of the retail price index in the final year to that at the
date of assessment. The result is then expressed as a percentage of the written
premiums in year 20 (the year before the date of assessment). These values from
the 1000 simulations are grouped into ranges and output as a distribution,
together with their mean and standard deviation.

APPENDIX 4
RESULTS OF SIMULATION

Full details of the results of 1000 simulations on a variety of different bases are
set out in Tables A4.1 to A4.4. Tables A4.]1 and A4.2 show summary distribu-
tions of the simulations by the assets remaining at the end, as well as the number
of insolvencies and the mean and standard deviation of the distributions. Results
are also given for a few additional variants not tabulated in Tables 4 and 5.
Tables A4.3 and A4.4 also include a number of additional variants and
Table A4.4 shows the additional asset margin required in the case of 2 years’ new
business as compared to the pure run-off with the same assumptions (in so far
as these are applicable).

The tables show the standard basis at the top and also in each of the groups
of alternative assumptions (marked (s)). The variants examine the effect of vary-
ing the one assumption referred to, whilst leaving all the other assumptions the
same as in the standard basis.

The assumptions underlying the standard basis are as follows:

Net written premiums’ £10m a year

Proportion of long-tailed business 40% of net written premiums
Past growth In line with inflation

Future growth In line with nflation

Mean claim ratio? (short-tailed) 100% of net written premiums'
Standard deviation of CR?

(short-tailed) 10% of net written premiums'
Mean claim ratio? (long-tailed) 100% of net written premiums’
Standard deviation of CR?

(long-tailed) 15% of net written premiums’
Initial asset distribution Technical provisions:

50% cash; S0% gilts
Asset margin: 100% equities

Asset selling rule Proportionate to holdings
Asset margin {(for Tables A4.1
and A4.2) 40% of net written premiums

1 Premiums net of commission and expenses
2 Ratio of ctaims (including claims settlement expenses), without allowance for future inflavion or
for discounting, to premiums net of commission and expenses (see Paragraph 4 3 2)



TABLE A4 1
SUMMARY OF RESULTS FOR PURE RUN-OFF OF BUSINESS (WITH 1000 SIMULATIONS)

Standard
deviation
No of simulations with remaining assets' of. Mean assets  of assets
No of remaining'  remaining’
Assumptions insolvencies 0%—40% 40%—80% 80%—120% 120%—160% Over 160% % %
Standard basis 8 98 252 264 173 205 112 70
Net written premiums.?
(a) £1m a year 20 119 227 250 17 213 113 75
(b) £10m a year (s) 8 98 252 264 173 205 112 70
(c) £100m a year 6 93 258 275 164 204 112 69
Proportion of long-tailled business-
(a) 20% of net written premiums’ 3 126 321 293 153 104 94 s5
(b) 40% of net wniten premums? 8 98 252 264 173 205 112 70
(c) 60% of net written premums’ 13 88 197 230 184 288 130 85
Imual asset distribution
Cash Gilts Equities
(a TP+AM — — 3 128 303 295 162 109 95 53
b) — TP + AM — 20 159 220 208 142 251 120 98
(c) — — TP + AM 49 124 182 181 149 315 136 115
(d) ;TP iTP AM (s) 8 98 252 264 173 205 112 70
(e) ITP+1AM ITP+1AM — 14 127 260 255 150 194 107 72
(f) iTP +}AM - iTP + } AM 12 85 222 278 184 219 118 72
(8) TP —_ AM 3 93 283 312 176 133 102 54
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TABLE A4 1 (Continued)

Standard

deviation

No. of simulations with remaining assets’ of Mean assets  of assets

No of remaming'  remaiming’
Assumptions msolvencies 0%—40% 40%—80% 80%—120% 120%-160% Over 160% L %
Standard basis 8 98 252 264 173 205 112 70

4. Innal asset margin
(a) 0% of net wnitten premlums2 134 336 292 138 58 44 52 55
(b} 20% of net wnitten premiums’ 36 210 312 222 117 102 83 62
(c) 40% of net written premums? (s) 8 98 252 264 173 205 112 70
(d) 60% of net written premiums? 2 34 149 244 212 360 147 80
(e) 80% of net wniten premuums? 0 12 74 184 211 519 180 90
(f) 100% of net written premiums? 0 4 34 117 186 659 212 100
5 Asset selling rules:

(a) Equities, gilts, cash 9 133 285 262 152 159 102 66
(b) Equities, cash, gilts 16 142 233 24] 143 225 113 8!
(¢) Gilts, equities, cash 5 123 246 285 181 160 105 61
(d) Glts, cash, equities 3 67 249 314 201 166 n 58
(e) Cash; gilts, equities 11 134 212 237 168 238 120 83
(f) Cash, equinies, gilts 7 78 245 244 185 241 123 79
(g) In proporuion to holdings (s) 8 98 252 264 173 205 112 70
(h) Sell best performer first 14 131 239 268 158 190 108 70

1 Deflated to the date of assessment and expressed as a percentage of net written premiums? in the year before the date of assessment (see Appendix 3 6 8)
2 Premiums net of commuission and expenses
(s) mndicates the assumpution made for the standard basis

(44!
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TABLE A4 2

SUMMARY OF RESULTS WITH 2 FURTHER YEARS' BUSINESS (WITH 1000 SIMULATIONS)

Standard
deviation
No of simulations with remaining assets' of* Mean assets  of assets
No of remaiming’  remaining’
Assumptions insolvencies 0% —40% 40%—80% 80%—120% 120%—-160% Over 160% %o %o
Standard basis 50 96 146 171 175 362 144 109
. Net written premiums °
(a) £1m a year 61 106 144 155 161 373 144 117
(b) £10m a year (s) 50 96 146 171 175 362 144 109
(c) £100m a year 43 96 144 181 172 364 144 107
Proportion of long-tailed business
(a) 10% of net written premiums’ 52 136 217 220 164 211 108 83
(b) 20% of net wrtten premiums’ 48 116 190 212 159 275 120 91
(c) 40% of net written premiums? (s) 50 96 146 171 175 362 144 109
(d) 60% of net written premiums’ 52 83 120 141 159 445 168 130
(e) 80% of net wrniten premiums’ 53 71 99 117 126 528 191 151
(f) 90% of net wriiten premiums? 58 71 93 106 118 554 203 162
Future real growth rate (in constant
money terms).
(a) —20% a year (real past growth
-20% pa) 53 78 118 143 144 464 171 134
(b) No growth (no real past growth) (s) 50 %96 146 17 175 362 144 109
(¢) +50% a year (real past growth
+50% pa) 83 94 139 149 155 380 144 121
{d) +30% a year (no real past growth) 66 93 131 144 151 415 155 127
(e) +50% a year (no real past growth) 86 80 122 130 137 445 164 141
Mean claim ratio? (short-tailed)
(a) 80% of net written premiums? 7 47 105 129 177 535 187 117
(b) 100% of net written premiums? (s) 50 96 146 171 175 362 144 109
(c) 125% of net written premiums? 165 167 177 168 120 203 90 103
(d) 150% of net written premiums 380 158 183 110 67 102 35 102
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TABLE A4 2 (Continued)
SUMMARY OF RESULTS WITH 2 FURTHER YEARS' BUSINESS (WITH 1000 SIMULATIONS)

Standard
deviation
No of simulations with remaining assets' of Mean assets  of assets
No of remaimng’' remaining’
Assumptions insolvencies 0% —40% 40%—80% 80%—120% 120%-160% Over 160% % %
Standard basis 50 96 146 171 175 362 144 109
. Vanability of claim ratio (short-tailed)
(a) Standard deviation 5% NWP? 49 9 142 178 170 364 144 109
(b) Standard deviation 10% NWP2 (s) 50 96 146 171 175 362 144 109
(¢) Standard deviation 15% NWP? 48 96 148 168 173 367 144 111
(d) Standard dewviation 20% NWP? 52 94 144 170 172 368 145 112
Mean claim rano® (long-tailed)
(a) 80% of net written premiums® 17 62 136 161 195 429 163 106
(b) 100% of net written premums? (s) 50 96 146 171 175 362 144 109
¢) 125% of net written premiums’ 105 139 155 160 138 303 120 114
(d) 150% of net written premiums? 195 139 164 143 119 240 97 120
Variability of claim ratio (long-tailed)
(a) Standard deviation 5% NWP? 49 84 159 172 171 365 144 109
(b) Standard deviation 10% NwPp? 50 89 156 172 168 365 144 109
(c) Standard deviation 15% NWP? (s) 50 96 146 171 175 362 144 109
(d) Standard deviation 20% NWP? 49 101 137 176 176 361 144 110
(e) Standard dewviation 25% NWP? 50 104 135 174 172 365 144 111
Iminal asset distribution
Cash Gilts Equities
(@ TP+ AM — — 46 130 186 204 173 261 118 86
(b) - TP + AM — 79 121 141 147 124 388 155 152
(<) — — TP + AM 86 91 112 131 113 467 181 172
(d) iTP TP AM (s) 50 96 146 171 175 362 144 109
(e) {TP+;AM (TP +iAM — 61 120 162 159 163 335 136 13
(f) iTP +;AM — TP +1AM 43 77 141 174 159 406 152 112
® TP — AM 41 97 166 208 182 306 (28 87
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9 Imitial asset margin

(@) 0% of net written premiums? 196
(b) 20% of net written premiums? 103
() 40% of net written premiums? (s) 50
(d) 60% of net written premiums? 24
(e) 80% of net written premiums? 11
(f) 100% of net wnitten premiums? 3
10 Asset selling rules
(a) Equines, gilis, cash 56
(b) Equities, cash, gilts 63
(c) Gaults; equities; cash 51
(d) Gilts, cash, equities 35
(e) Cash, gilts, equities 41
(f) Cash; equiues, gilts 52
(g) In proportion to holding (s) 50
(h) Sell best performer first 58

120
103
106
87
76
90
96
101

197
197
146
115
75
45

161
156
154
141
143
144
146
154

154
167
171
151
127

88

175
169
165
192
173
153
171
164

97
140
175
158
140
128

150
138
181
197
173
168
175
159

151
244
362
497
619
718

338
371
343
348
394
393
362
364

74
109
144
180
216
252

136
144
137
142
154
151
144
142

98
105
109
123
133
144

113
120
103

99
116
119
109
114

I Deflated to the date of assessment and expressed as a percentage of net written premiums? in the year before the date of assessment (see Appendix 3 6 8)

2 Premiums net of commssion and expenses

3 Rauo of claims (including claims setilement expenses), without allowance for future inflation or for discounting, to premiums net of commission and

expenses (see Paragraph 4.3.2)
(s) indicates the assumption made for the standard basis
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TABLE A4 3
ASSET MARGINS REQUIRED TO ACHIEVE 1/100 PROBABILITY O RUIN — No FUTURE NEw BUSINESS

Asset margin Asset margin as % of
Assumptions as % of NWP! techmical provisions
Standard basis 40 15
1 Net written premiums*'
(@) £1m a year 55 25
(b) £10m a year (s) 40 15
(c) £100m a year 35 15
2 Proporuon of long-tailed business
(a) 20% of net written premiums’ 30 15
(b) 40% of net written premiums’ (s) 40 15
(c) 60% of net written premiums’ 45 15
3. Ininal asset distribution
Cash Gilts Equities
(a) TP+ AM _— - 30 10
(b) — TP + AM — 60 25
©) — —_ TP + AM 80 35
(d) ;TP Tp AM (s) 40 15
(e) TP+ )AM TP + 1AM — 50 20
(€) ITP + 1AM — ITP + 1AM 45 20
(g) TP — AM 30 10
4. Asset selling rules:
(a) Equities; gilts; cash 40 15
(b) Equities, cash; gilts 50 20
(c) Gilts, equities; cash 35 15
(d) Gults, cash, equities 30 10
(e) Cash; gilts, equities 35 15
(f) Cash, equities; gilts 45 20
{g) In proportion to holdings (s) 40 15
(h) Sell best performer first 55 25

1. Premiums net of commission and expenses
(s) indicates the assumpuion made for the standard basis

TABLE A4 4
ASSET MARGINS REQUIRED TO ACHIEVE 1/100 PROBABILITY OF RUIN — TwO YEARS NEw BUSINESS

Excess asset margin
as compared

Asset margin to pure run-off
Assumptions as % of NWP! (as % of NWP!)
Standard basis 90 50
1 Net wntten premiums’
(a) £1m a year 100 45
(b) £10m a year (s) 90 50
(c) £100m a year 80 45
2 Proportion of long-tailed business
(@) 10% of net written premiums'’ 75 45
(b) 20% of net wnitten premiums’ 80 50
(c) 40% of net written premiums’ (s) 90 50
(d) 60% of net written premums’ 95 50
(e) 80% of net wrnitten premums’ 100 40

(f) 90% of net written premiums' 105 40



TABLE A4 4 (Continued)
ASSET MARGINS REQUIRED TO ACHIEVE 1/100 PROBABILITY OF RUIN — TwO YEARS' NEW BUSINESS

Excess asset margin
as compared

Asset margin to pure run-off
Assumptions as % of NWP'! (@as % of NWP")
Standard basis 90 50
3 Future growth rate (in constant money terms)
(a) —20% a year (real past growth —20% p.a) 100 35
(b) No growth (no real past growth) (s) 90 50
(c) +50% a year (real past growth +50% p a.) 115 85
(d) +30% a year (no real past growth) 100 65
(e) +50% a year (no real past growth) 120 85
4 Mean claim rauo (short-tailed)
(a) 80% of net written premiums’ 30 0
(b) 100% of net written premiums’ (s) 90 50
(¢) 125% of net written premums' 125 75
(d) 150% of net written premiums’ 180 115
5 Varniability of claim ratio (short-tailed)
(a) Standard deviation 5% NWP' 80 45
(b) Standard deviauon 10% NWP' (s) 90 50
(c) Standard deviation 15% NWP' 85 45
(d) Standard deviation 20% NWP! 90 50
6 Mean claim rauo? (long-tailed)
(a) 80% of net written premiums’ 50 20
(b) 100% of net written premiums’' (s) 90 50
(c) 125% of net wnitten premiums’ 115 60
(d) 150% of net written premiums’ 150 85
7 Vanability of claim rauo (long-tailed)
(a) Standard deviation 5% NWP! 80 45
(b) Standard deviation 10% NWP' 85 50
(c) Standard deviation 15% NWP' (s) 90 50
(d) Standard deviation 20% NWP' 90 50
{e) Standard deviation 25% NWP' 90 50
8 Imiial asset distribution
Cash Gilts Equities
(a) TP+ AM — — 85 55
(b) — TP + AM — 110 S0
(c) — — TP + AM 135 55
@ TP 'TP AM (s) 90 50
(&) !TP + 1AM LTP + ! AM — 90 55
(f) I TP+ 1AM — TP + 1AM 90 45
(8) TP - AM 75 45
9 Asset selling rules
(a) Equities, gilts, cash 95 55
(b) Equities; cash; gilts 95 45
(¢) Gilts; equittes; cash 90 55
(d) Gilts, cash, equities 70 40
(e) Cash, gilts, equities 85 50
(f) Cash, eques, gilts 95 50
(2) In proporuon to holdings (s) 90 S0
(h) Sell best performer first 95 40

1 Premiums net of commuission and expenses

2 Rauo of claims (including claims settlement expenses), without allowance for future inflation or
for discounting, to premiums net of commission and expenses (see Paragraph 4 3 2)

(s) indicates the assumption made for the standard basis
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APPENDIX 5
VARIABILITY OF CLAIMS OUTGO

A5.1. In DAYKIN and BERNSTEIN (1985) it was assumed that the amount of the
payments made 1n each development year for each year of origin varied log-
normally. This meant that a payment amount that was to be varied stochastically
was multiplied by exp(RS + M) where R is a random normal variate, S the
standard deviation and M the mean. In order that the overall mean should be
correct the value of M has to be equal to minus half the square of the standard
deviation. This formula is suitable for a single payment, but in most cases the
payment amounts considered were the totals of several or many individual
amounts. Furthermore different values would need to be adopted for funds of
different sizes if account was to be taken of the fact that variation is not the same
for a small fund as for a large one.

A5.2. This was cumbersome and not entirely satisfactory, so an alternative
approach was sought. The formula should reflect the number of payments in-
volved and, if possible, the ratio of the standard deviation to the mean (the
coefficient of variation). Consideration was given to the estimation of the
numbers of claims (or claim payments) in each year’s totals. We were unable to
obtain any figures from actual portfolios but information from returns to the
supervisory authority and from other sources suggested that for short-tailed
business an average payment rising from £500 in the year of occurrence by
multiples of 2 to £16,000 in the last year of development was not unreasonable.
For long-tailed business the average payments rose over 10 years from £800 to
£15,000.

AS.3. We assumed that coefficients of vanation were in the range of 2 to 10,
increasing at later durations as fewer, larger claims are settled. We were then able
to estimate both the numbers of claims and their average amounts for different
mixes of business by year of development. For this purpose it was assumed that
claims were identical with payments, and whilst this is clearly not the case, it 1s
not thought that it would make much difference if we were able to make more
detailed assumptions. These calculations suggested that the formula for standard
deviation should be a multiple of the square root of the number of claims, or its
deemed equivalent, the total amount of payment. For convenience we used the
amount of money, even though inflation would involve a change in the multiplier
over time.

AS.4, Tt must be realized that precision was out of the question since we could
not take into account all the possible variations in the make-up of a portfolio.
It was also necessary to have regard to the fact that the bulk of the outstanding
claims are paid in the first two or three years of run-off and relate primarily to
the latest two or three years’ business. Calculations showed that out of total
outstandings of £1 million about one-half was paid in the first year and a quarter
in the next year. By year 7 the payments were under £20,000, so that variation
in these later years was less significant in the overall context. What is more, for
many insurers the later payments, if they turn out to be large, may well be
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recoverable from reinsurers and so not form part of the problem for net run-off
patterns. It simply moves the problem to another area. Further consideration
would need to be given to the variability of the tail in the case of a company with
a lot of long-tailed business and relatively high retentions.

AS.5. Experiment suggested that a multiplier of about 50 to 100 times the
square root of the amount (in pounds sterling in 1986) was of the right order of
magnitude. However, it was clear that whilst this gave a reasonable amount of
variation for the smaller insurer it was wholly inadequate for a large one. In
present conditions most of the variation for the larger fund arises from secular
change and this 1s more likely to be proportional to the actual amount to be paid
than to its square root. The problem is to choose a multiplier to give a realistic
variation. Experience over recent years suggests that it must be at least 0.1, to give
a variation of 20% 1n 95% of all cases. We finally adopted the formula

SD = aX + b/ X

using values of 0.15 for @ and 75 for b.

AS5.6. This formula is similar to one which we understand was wintroduced by
the Finnish supervisory authority in 1952. Whilst we are well aware of the
approximations and assumptions involved in its derivation, we think 1t is
adequate for the purpose, although it can be considered as simply one of a class
of possible formulae. It also greatly simplifies the calculations. As indicated
above, the earlier paper calculated the outgo for each future year for each year
of occurrence and for each length of tail separately and applied the stochastic fac-
tor to each such amount. The main effect of this was to reduce the overall varia-
tion compared with applying the same formula to the total and this effect can be
achieved by adjusting the overall level of the variation. It was decided, therefore,
to calculate the total outgo in each year, including that from future business
where appropriate, and apply the variability factor to the total.

AS5.7. Itisinteresting to compare the values produced by the formula with those
from the exponential basis. The comparisons, with values of R corresponding to
the 5%, 25% and 50% points, are shown in Table AS.1. The correspondence

TABLE AS 1
STOCHASTIC MULTIPLIER (1 + RS) FOR DIFFERENT VALUES OF R AND STANDARD DEVIATION (§)

Random normal variate (R)

-196 -0675 0 0675 196
log-normal
S$=03 053 078 096 117 1.72
5$5=05 033 063 088 1.24 235
square root formula

($=015X+75;X)

X = 100,000 024 074 10 12 1.76
X = 1,000,000 0.56 0.85 10 115 1.44
X = 10,000,000 066 088 10 1.1 134
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between the two formulae, coupled with the size of variation by insurer, suggests
that the new formula is 1n line with the old but more realistic in its relation to
the actual amounts of payments.

APPENDIX 6
POSSIBLE APPROACH TO SIMULATING REINSURANCE RECOVERIES

A6.1. It 1s not possible to simulate reinsurance recoveries in our model 1n any
very precise way, firstly because it is too complicated and secondly because the
model simulates claims only in aggregate. It would in principle be possible to
think in terms of a specified number of reinsurers, each bearing a share of the
anticipated reinsurance recoveries, and find a way to model the failure of rein-
surers. Rather easier, and probably no less realistic, would be to go directly to
the proportion recovered. One way of approaching the problem is set out below.
A6.2. Reinsurers would be allocated to say, three categories — strong, average
and weak. For any class of business the proportion of reinsurance recoveries
anticipated from each of the three categories of reinsurer would be input as data.
The model would then be to apply a process, defined separately for each category,
to determine the proportion not recovered in respect of any particular year’s
estimated gross claim payments. There remains, of course, the problem of
estimating gross claims payments and simulating their out-turn, so that there
would be considerable practical problems in implementing an approach of this
sort.

A6.3. The probability of recovery would be related to the gross claims out-turn.
This could be done by taking the estimate of gross claims paid in the year in
question to be the mean estimate of claims paid, based on proportions expected
to be settled in the year, the rate of inflation assumed in setting the technical
provisions and, in the case of claims arising from future business, the mean claim
ratio. There would then be a set of formulae, one for each category of reinsurer,
to define the proportion of gross claims paid in the year which is assumed not
to be recovered, based on the ratio of gross claims out-turn to estimated gross
claims for the year. For year j we might, for example, define the proportion not
recovered, Y(/), by:

Weak

k() .
Y(y) ===
(=36 0 < k(j) < 200
Average
.. k()-50
Y(j)=———— k 5
) 500 50 < k(y) < 550
Strong
y(j) = X{z) =100 100 < k(J) < 900

800
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where

KUY XQ)
100 s 2.

1<y

1+

X(y) = actual total gross claims settled in year j

and

D, X(:j)=expected gross claims settlement in year j in respect of year
rsy
of origin 1 on basis of mean claims ratio, assumed settlement pattern and
expected inflation.

In terms of the notation of Appendix 1:

X j)= ; s - DRyBEG (A + 1) 7.

A6.4. The formulae can obviously be adapted to reflect one’s ideas of a plausi-
ble model for reinsurance recoveries. The general principle of these illustrative
formulae 1s that one would expect higher proportions not recovered for weaker
reinsurers and that, above a certain threshold, higher claims relative to the
expected level of claims imply a higher proportion not recovered. These formulae
do not attempt to distinguish between high claims as a result of high imtial loss
ratios, high inflation and adverse development. In principle one could also
develop some form of cumulative trigger so that failure to recover increased with
a series of high claims payments rather than simply on the basis of a single year.
A6.5. Consideration would also need to be given to whether to apply the
formulae to all classes together or each class separately. Possibly the most
realistic would be to apply it to the total claims on those classes of business where
significant amounts are reinsured.

A6.6. The simple approach suggested here may not be sufficiently realistic for
some companies for whom reinsurance recovery 1s a major issue. Further
development of these ideas is clearly needed. However, it is suggested that 1t may
be possible to obtain a useful indication of the role of reinsurance in a particular
case by the use of straightforward models.
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BOOK REVIEWS

H. U. GERBER (1986). Lebensversicherungsmathematik. Springer Verlag, Berlin
etc.; Vereingung Schweizerischer Versicherungs-mathematiker, Zurich. XIII,
125 pages, DM 98.00.

In the past decades there has been — and to a certain extent still is — a gap
between practitioners on the one hand and researchers in the field of actuarial
mathematics on the other, at least in Germany. While many mathematicians at
the universities have been inclined almost to ignore actuarial applications, people
from insurance companies have had the impression that stimulating and
innovative new ideas for their business were not to be expected from scientists
working in the ivory-tower of a university. These facts need to be kept in mind
when a new book on life insurance mathematics has to be assessed, written 1n
German by a leading expert in the fields of actuarial mathematics and risk theory.

It 1s true that for the techniques of hfe insurance elementary deterministic
models based on the calculation of interest suffice and will still suffice for the
foreseeable future, at least in the mass business. Nevertheless, these traditional
models are unsatisfactory because they do not take into account the random
character of insurance processes on the one side nor do they take advantage of
data-processing and modern computers on the other.

This 15 the starting point of the present monograph: mortality tables are
replaced by stochastic models based on a random variable T denoting the residual
life time of a person, and tabulations of commutation functions and the like are
supplanted by algorithms, especially recursions. Compared with this, the topics
of the individual chapters are fairly conventional.

Chapter I. Calculation of Interest. Indispensable preliminaries, presented
concisely and elegantly.

Chapter 2. The Future Life Time of a Person Aged x. The stochastic model —
the life time variable and distribution — and related notation.

Chapter 3. Capital Assurances. Discussion of the cash value of a capital. Since
this is a random variable by definition, not only the net single premium — the
expected value — but also the variance of the cash value 1s of interest.
Chapter 4. Life Annuities. Calculation of cash values and net single premiums.
Chapter 5. Net Premiums. Derivation of well-known formulae for various types
of insurance.

Chapter 6. Net Level Premuium Reserves. Again, standard results as well as
results appearing in the stochastic model only, are proved, e.g. Hattendorf’s
theorem.

Chapter 7. Several Causes of Decrement. Inclusion of an additional random
variable describing the cause of decrement.
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Chapter 8. Joint Life Assurance. Here the advantages of the stochastic model
are particularly obvious, and analogies with reliability theory are made (joint life
status/series structure, last-survivor status/parallel structure).

Chapter 9. Aggregate Claims of a Collective, Risk theoretic considerations,
especially the development and numerical treatment of the distribution function
of the aggregate claims.

Chapter 10. Inclusion of Expenses. Incorporation of the third base of
calculation.

Chapter 11. Estimation of Probabilities of Death. Classical methods and pro-
cedures from mathematical statistics.

Appendix A Commutation Values

Appendix B. Simple Interest.

The present monograph thus has as many chapters as the first volume of
Saxer’s standard work. Regarding the contents, the amount of overlap is about
sixty per cent. The book is written clearly, precisely and elegantly. As in his
pioneering book on risk theory, the author succeeds brilliantly in bridging the gap
between intuition and rigour.

Compared with this, there are only a few minor points to be criticized. First
of all, the use of stochastic models appears to be a bit half-hearted now and then,
especially so with respect to their connections with reliability theory. Symp-
tomatically, in the Foreword a probability space (2, 4, P) is mentioned in pass-
ing, whereas in the text the symbol Pr, which is never defined explicitly, is used
whenever probabilities are represented — even ‘probabilities’ of the type
Prit < T< 1+ dt).

Naturally, the practical needs of an actuary over and above the technical and
mathematical aspects, e.g. statement of accounts, are not met by the present
book. However, practitioners from /ife assurance might be interested by the
material presented in Chapter 9 under the topic of reinsurance.

These objections, however, cannot detract from the substantial merits of
Gerber’s excellent book for which success both with practitioners and theorists
can be predicted without any risk whatsoever.

W.-R. HEILMANN

BIORN SUNDT (1984). An Introduction to Non-Life Insurance Mathematics.
Veroffentlichungen des Instituts fur Versicherungswissenschaft der Universitat
Mannheim, Vol. 28, Verlag Versicherungswirtschaft, Karlsruhe. 168 pages,
DM 24.00.

In his foreword to the book the editor writes: “Textbooks in Non-Life Insurance
Mathematics are rare. So it is a pleasure for me that Dr. Sundt was willing to
write down his lectures given at Mannheim during the summer of 1983.” A prac-
titioner might be deterred by these introductory sentences, since lectures for
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students of mathematics 1n Germany usually are filled with abstract theories and
complicated proofs. Dr. Sundt’s book, however, is well suited as an introduction
for practitioners into methods of modern risk theory. Abstract theories are
avoided whenever possible (e.g. credibility estimators are derived without any
Hilbert space theory), and complicated proofs are substituted by informal deduc-
tions (e.g. Edgeworth expansions are introduced without mentioning Cramér’s
condition on the underlying characteristic function). Abstract models are
motivated and explained using realistic actuarial problems, thus demonstrating
that the mathematics presented in the book is in fact applicable. This can best
be seen in the chapters on experience rating containing a nice introduction to
credibility theory. On the other hand, rigorous proofs are given whenever they
are informative, short and easy. So the practitioner will be enabled and
encouraged to build his own model when models presented 1n the book do not
fit his actuarial problem.

The main chapters of the book are credibility theory, bonus systems, the risk
process, the accumulated claim distribution, claims reserves, and utility theory.
These subjects include the most interesting and promising subjects of recent
research 1n risk theory. In the chapter on credibility theory, the simple standard
model as well as the Buhimann—Straub model and the Hachemeister regression
model are presented. The bonus malus chapter is concerned with the computation
of the premium for each bonus class when the transition rules are fixed. In the
chapter on the risk process, the claim number process 1s modelled by a general
non-homogeneous counting process, while for the accumulated claims process,
a homogeneous compound Poisson process is used. Ruin probabilities and the
adjustment coefficient are introduced, and the optimal reinsurance results of
Waters arc presented. The chapter on the accumulated claim distribution includes
stop loss inequalities, recursive algorithms of Panjer, Edgeworth expansions and
normal power approximations, and solvency control problems solved using nor-
mal power approximations. In the claims reserves chapter we find the indispen-
sable chain ladder method as well as Taylor’s separation method and Straub’s
burning cost model. The chapter on utility theory is concerned with inequalities
between zero utility premiums and between expected utilities with different com-
pensation functions, and the definition of Pareto-optimality.

The whole book is clearly written and easy to understand. Perhaps due to
personal taste, I do not believe in normal power approximations, I prefer
approximations by compound Poisson distributions. Sundt’s statement “...in
practical applications the NP-approximation seems to perform very well” can be
criticized. Approximations are needed only in those cases in which the exact com-
putation is impossible, e.g. for large portfolios. The performance of an approxi-
mation can, however, be checked only if one can compare the exact values and
the approximations, or if theoretical error bounds are available. For the normal
power approximation, no theoretical error bounds exist (not even for the simple
case of identically distributed risks). Theoretical error bounds exist for the
approximation with compound Poisson distributions. Nevertheless, normal
power approximations are frequently used in practice.
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This book by Dr. Sundt can be recommended as an introductory textbook into
modern risk theory for students as well as practitioners. Risk theory is a young
and rapidly growing discipline with possible applications in life and non-life
insurance, and in non actuarial branches. I think that Dr. Sundt’s book will pave
the way for the future application of new methods in risk theory like hierarchical
credibility models or the estimation of accumulated claims distributions.

In his preface Dr. Sundt reports on the way his book was created. The preface
is written in a very modest manner. There is not enough space to include the first
paragraph of the preface here but in brief it states that the book was created by
pure chance. I am pleased that this rare event actually happened, and all readers
of the book will be pleased, too.

CHRISTIAN HiprP
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