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In the present paper we present two credibility regression models for the 
classification of passenger cars. As regressors we use technical variables like price, 
weight, etc. In both models we derive credibility estimators and find expressions 
for their estimation errors. Estimators for structure parameters are proposed.  A 
numerical example based on real data is given. The second model is hierarchical 
with a level for make of car. 

I.  BACKGROUND 

In Norway there is no common passenger car tariff for all insurance companies, 
and thus there are several different tarrlffs in the market.  However, most of them 
seem to have about the same structure as the one used by Storebrand to be 
described below, but with different parameter values. 

In this paper we are going to discuss vehicle damage insurance for passenger 
cars. The tariff structure is multiplicative with factors for bonus-malus,  
mileage/distr ict ,  deductibles, age of car, and car model. We shall concentrate on 
the factor for car model. There are 65 classes numbered from 30 to 94, and the 
factor for class c is equal to 1.04 c-a°. 

Until the present research was started, the classification of mdwidual  car 
models was performed rather subjectively. There was one person classifying new 
car models. When a new car model appeared on the market,  he looked at its 
specifications and tried to find out to which cars it was comparable.  Then he 
looked at the factors for these cars, both by Storebrand and by the competing 
companies. When the car had been in the market for some time and clmms 
statistics had become available, the rating factor was reassessed, taking into 
account the observed claims ratio, the observed volume of exposure (premium), 
the old factor, and the premiums of the competing companies. This reassessment 
was also performed m a rather subjective way, but not by the same person who 
had made the initial classification of the car. 

The procedure described in the previous paragraph has obvious advantages 
compared to an objectxvely based statistical procedure. It would be ~mpossible to 
build into a mathematical model all the experience, knowledge, and intuition of  
a skilled person. How could the model incorporate,  say, the person's  opinion of 
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the importance of the shape of the car (a limousine and a coupd are bought by 
quite different sorts of  people)? And even if one should succeed in creating a 
model which to a great extent incorporated the knowledge of the skilled person, 
this model would probably be too complicated for practical use. However, the 
advantage of the subjective procedure is also a disadvantage. The procedure is 
too dependent on the person performing it. As it is impossible to build the 
knowledge of the skilled person Into a statistical model, it is also impossible to 
give an adequate documentation of  the procedure. And what then zf the person 
leaves the company? 

This was the background that motivated the present research. One wanted an 
objective method for classification of cars, and in this paper we are going to 
describe the models and methods that were considered. We are also going to com- 
ment upon the difficulties that occurred during the work. As should be well 
known to everyone who has worked on modelling insurance data, these data are 
very seldom what you want them to be. 

When the project was started, it was decided that this time we should concen- 
trate only on the determination of the factor for car model. Ideally, one should 
of  course have developed models and methods for simultaneous determination of 
all the factors in the multiplicative model, but that would have been a much more 
ambitious and time-consuming project. It was discussed whether one should con- 
centrate only on the classification of new car models, for which we have no claims 
data, but in the present author 's opinion, classification of new models is only a 
special case of reclassification (i.e. the case with exposure volume equal to zero). 
It would therefore be unnatural not to treat these two situations together, and 
it was decided to follow this line. 

As was argued above, the subjective approach has great advantages compared 
to a statistically based procedure, and it would be wrong to throw this system 
away completely. It is the author 's  intention that the methods presented in this 
paper should not replace the skilled person, but rather be an aid to him. The 
system proposes a class to the person, but he should himself decide whether to 
follow this proposal or not. In particular, this is important for reclassification of  
cars that have already been in the market for some time, and for which we know 
the rating of  the competitors. It would be too ambitious to build a model that 
also incorporates the premiums of  competing companies. For marketing reasons, 
it could also be desirable to make smaller changes by the reclassification than 
those proposed by the statistical procedure. 

Furthermore, in the statistxcal investigations it became clear that some car 
models behaved so strangely, relative to the model studied, that they ought to be 
considered as outliers in the present context. For such cars one should not use 
the factor suggested by the system, and perhaps even more important, these cars 
should be left out when estimating the model parameters. The most striking 
example in our investigations was Volkswagen Golf GTI, and the parameter 
estimates changed considerably when this car was taken out of the estsmation 
procedures. It is important that the person doing the classification identifies such 
cars and sees to it that they are left out of the statistical analysis. One could of 
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course argue that  the model  a s sumpt ions  should  also embrace  such cars,  but  it 
is the op in ion  o f  the present  au thor  that  it is p re fe rab le  to have a relat ively s imple 
model  giving sa t i s fac tory  results for " n o r m a l "  cars,  than a compl ica ted  model  
that  could be used for all cars.  In par t icu la r ,  as he believes that  in pract ice  the 
"ou t l i e r s"  would usual ly  be easy to ident i fy .  

For  the numerica l  compu ta t i ons  we used the p rog ra m package  SAS,  which m 
par t i cu la r  was very convenient  for the matr ix  calculus.  

2. PRELIMINARIES 

2. I. Opt imahty  Criterion f o r  Est tmators 

Let m be a r andom var iable .  We  shall say that  an es t imator  m ~t~ of  m is bet ter  
than ano ther  es t imator  m ~z) if 

E ( m { l ) - m )  2 < E ( m  (2) - m)  2, 

that  is, we use the quadra t i c  loss funct ion.  
Let m = (m~ . . . . .  ms)' be an unknown random vector and m (~) = (ml ~) . . . . .  m}l)) ' 

and m (2) = (ml  2) . . . . .  m}2)) ' two es t imators  o f  m.  Then we shall say that  m (t) is 
a bet ter  e s t ima tor  o f  m than m (2) if 

E(m,  (l) - m,) 2~<E(m,  ¢z)- m,) 2 i=  I . . . .  s 

with strict inequal i ty  for at least one c 
We implici t ly  assume that  s econd-o rde r  moments  exist for all r a n d o m  var iables  

to be considered.  

2.2. Credtbthty Est tmators  

Let x and m be r a n d o m  vectors ,  x observable  and m unknown.  We shall call rh 
a l inear e s t ima tor  o f  m (based on x)  if  rh may  be writ ten in the form rh = a + Ax ,  

where a is a n o n - r a n d o m  vector  and A a n o n - r a n d o m  matr ix .  The  credibi l i ty  
e s t ima tor  o f  m (based on x)  is defined as the best l inear es t imator  o f  m. We sum- 
mar ize  some results abou t  c red ib ih ty  es t imators  in the fol lowing theorem.  

THEOREM 2. I.  (1) There always exists a unique credibihty estimator o f  m. 

0i) Let Fn be a hnear esttmator o f  m. Then th is a credtbihty esttmator o f  m 
t f  and only t f  m sattsfies the two condtt lons 

(2.1) Erh = E m  

(2.2) Cov(rn, x ' )  = Coy(m,  x ' ) .  

(ii0 Let th be the credtbihty esttmator o f  m. Then we have 

(2.3) Coy(m,  rh ' )  = Cov(th,  m ' )  = Cov( th)  = Cov(m)  - Cov(m - rh). 

For  p r o o f  o f  (i) we refer to DE VYLDER (1976), for p r o o f  o f  (i0 to SUNDT 
(1980), and for p r o o f  o f  (ill) tO SUNDT (1981). 
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3. i .  M o d e l  

3. A NON-HIERARCHICAL APPROACH 

Cons ide r  a g roup  o f  K different  car  models .  These could  be all passenger  cars 
(statxon wagons  included)  that  are ra ted in S to reb rand ,  or a well-defined 
subgroup  o f  these (e.g. diesel cars,  cars with four-wheel  drive,  all Volkswagen 
models ,  all cars p roduced  af ter  1982, etc.).  For  the pa rame te r  es t imat ion  des- 

cr ibed in Subsect ion  3.3 ~t could be reasonable  to take  a representa t ive  sample  
f rom the g roup  considered.  

For  car  model  k we have observed Ix risk units (policies).  Let X, ,  be the total  
clmm a m o u n t  in the exposure  t ime for unit ~ o f  model  k, and let pk, be the earned 
p remium.  We want  to use earned p remium as a measure  o f  risk volume,  but  this 
p r emium also conta ins  the car  model  factor  which we are going to reassess, and  
this old value should  not  be included in the risk measure .  Hence,  let 

(3.1) wk, = Pk,/fk, 

where fk is the old factor ,  be our  measure  of  risk volume.  We assume that  for 
fixed k, the X k , ' s  are independen t  o f  the co r re spond ing  da ta  f rom other  car  
models ,  and that  X k ~ , . . . , X k l ~  are cond i t iona l ly  independent  gwen Ok, a 
r a n d o m  p a r a m e t e r  charac ter iz ing  car  model  k. It is assumed that  01, . , OK are 
independen t  and  ident ical ly  d is t r ibuted .  

Let 

It lS assumed that  

Yk,  = X k , /  wk, .  

E [ Y k , [ O k ]  = ink(Ok) 

(3.2) Var m k ( O k ) =  X 

(3.3) Var [  Yk, [ Ok] = S Z ( O k , ) / V k ,  

with Vk, = Wk, (the reason for in t roduc ing  vk, will become clear in subsect ion 3.6, 
where we m o d i f y  the present  assumpt ions) ,  and 

#k = E m k ( O k )  = X l ~ ,  

where Xk is a known q x 1 design vector  based on the technical  da t a  o f  the car  
and /3 is an unknown q x 1 regression vector.  We fur ther  in t roduce  

(3.4) 

O=Es2(O~) x =¢/X 
IA Ik I,  

xk=Zx,, ok=Z  , w,=Zwk, 
t=l t=l t = l  

Yk = X k /  Wk. 

We note that  in the special case when 

E m k ( @ k  ) = Iz, 
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independent o f  k, the condit ions o f  the B u h l m a n n - S t r a u b  model (BUHLMANN 
and STRAUB (1970)) are satisfied. 

It is also interesting to relate our  present model to HACHEMEISTER'S (1975) 
regression model.  In that model one assumes that 

E [ Yk, I Ok ] = xLb  (Ok), 

wherex~, is a known q x 1 design vector and b is a q x 1 vector function. To cor- 
respond to our  present set-up we assume that Xk,=Xe independent o f  t. We 
introduce 

and get 

A = Coy b(Ok) B = Eb(Ok)  

Var E [  Yk, [ Ok] = X~-AXk. 

Thus this variance would typically vary between car models whereas m (3.2) we 
have assumed it to be constant .  Let us now assume that the first element o f  Xk 
is equal to one, which will usually be the case. Then we obtain our  present model 
by assuming that only the first element o f  b(Ok) is random,  which makes all 
elements o f  A except the (1,1) element equal to zero. We note that this A is not 
positive definite. 

3.2. Credtbdtty Est tmatton o f  ms(OD 

Let Jh5 be the credibihty estimator of  m~(@~) based on the observed Y~,'s. We also 
introduce the estimation error 

~b~ = E(ms(O~) - ths) z 

of  ph~ From Theorem 2.1 we get 

( 3 . 5 )  ,~7, = ~-,Y, + (1 - ~s)~, 

~ ,  = 4V (v ,  + x )  = X( l  - f , )  

with 

~, = v s / ( v ,  + u) .  

3.3. Parameter EstimaUon 

The structure parameters  ~, X, and 13 will in practical applications be unknown 
and have to be estimated. 

We have that 
Ij, 

(3.6) 4 ~ = ( I k - - I )  -1 ~ Vk,(Yx,-- y~)2 
I=1 
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satisfies E [ ~  I Ok] = sZ(Ok), and thus 

K 
~*= ~ uk~,~ 

t = l  

is an unbiased estimator o f  ~ for all weights u~ ( ~ f = l u k  = 1). In an earlier 
version o f  the paper we suggested that one should simply apply uk = K-  1. This 
choice has been criticized by Ragnar  Norberg,  who suggests that one should apply 

uk = ( lk - 1 lr - . 

An optimal choice o f  weights is difficult, involving four th-order  moments  (cf. 
e.g. NORBERG (1982)), and it was not within the scope of  the present research to 
per form a p ro found  analysis of  this problem. Both our choice and Norberg ' s  
choice can be criticized; our  choice because it gives too much weight to cars with 
low exposure; Norberg ' s  choice because if Is is much greater than the other Ik'S 
for some s, then the value of  Os will have a too dominant  influence on the 
estimate o f  ~. The present discussion also applies to the analogously weighted 
estimators in subsections 3.6 and 4.3. We note that in the special case 
It = / 2  . . . . .  IK Norberg ' s  choice and our  choice are equal, and m this case 4~* 
is equal to the est imator proposed by BUHLMANN and STRAUB (]970) for the 
B u h l m a n n - S t r a u b  model.  

We introduce 

Y = (Y1 . . . . .  YK) '  X = (Xl . . . . .  XK)'  
K 

v = ~ Ok D = d i a g ( v z / v  . . . . .  VK/V) 
k = l  

and get 
E Y =  X 3  

(3.7) Cov Y =  ( 4 ~ / v ) D - '  + M r  

with I x  denoting the K × K identity matrix. It is assumed that X has rank q. 
We trivially have that 

= ( X ' D X ) - ' X ' D Y  

is an unbiased estimator of/3.  It seems reasonable to base an estimator o f  k on 
the statistic 

(3.8) Q = ( Y -  X ~ ) ' D ( Y -  X~),  

and we therefore want to find the expectation o f  Q. In the deduction we use that 
for an r ×  s matrix A and an s ×  r matrix B we have 

(3.9) t r (AB) = tr(BA ), 

where "tr"  denotes the trace o f  a quadratic matrix (i.e. the sum of  its diagonal 
elements); this result is easily proved. We have 

E Q  = E ( Y -  X 3 ) ' D ( Y -  X 3 )  = t r [ D  E(Y - X ~ ) ( Y -  X 3 ) '  I 
= tr [ D Cov(Y - X3)  ] 
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as  

E ( Y -  xt~) = 0. 

We fur ther  get 

E Q  = t r (D Cov [ [ I K -  X ( X ' D X ) -  ~X'D] Y] ) = 
t r (D[  IK - X ( X ' D X )  - ~ X ' D ]  (Cov Y)[ IK - D X ( X ' D X )  - I X }  ), 

and insert ion o f  (3.7) gives 

EQ = Xzl + (oh~ v )7"2 (3. I 0) 

with 

(3.11) 

and 

(3.12) 

r~ = tr(D[l~¢ - X ( X ' D X ) - ~ X ' O ]  [ IK - D X ( X ' D X ) - ~ X  ' ])  

rz = t r (D[IK - X ( X '  D X ) - I X '  D I D  - l  [lu - D X ( X '  D X ) - t X  ' } ). 

F r o m  (3.11) we get 

(3.13) r~ = t r  D - t r [ D X ( X ' D X ) - t X ' D }  - t r [ D ~ X ( X ' D X )  -~X '  ] 
+ tr { D X ( X '  D X )  - ~X' D ZX (X '  D X  ) - ~X' ]. 

By repeated use o f  (3.9) we see that  the three last terms in (3.13) are all equal  to 
t r [ ( X ' D X ) - ~ X ' D Z X } ,  and as in add i t i on  tr D =  1, we get 

(3.14) 7.1 = 1 - tr{ ( X ' D X ) - I X ' D 2 X ] .  

From (3.12) we ob ta in  

rz = t r ( [ lK - D X ( X '  D X )  -~X '  } [1K - D X ( X '  D X )  -~X '  } ) 
= tr I K -  t r [ D X ( X ' D X ) - ~ X  ' } = t r l K -  tr[ ( X ' D X )  - ~ X ' D X ]  = tr I K -  tr Iq, 

and as the trace o f  an idenu ty  matr ix  is equal  to its d imens ion ,  we get 

(3.15) r2 = K - q. 

F rom (3.8), (3.10), (3.14), and  (3.15) we get that  

= [ ( Y -  X ~ ) ' D ( Y -  X ~ )  - (K - q )4 )* / v ] / [1  - tr{ ( X ' D X ) - ~ X ' D Z X ] ]  

is an unbiased  es t ima tor  o f  k. It has,  however ,  the d i sadvan tage  that  it can take 
negat ive values whereas k is a lways non-negat ive .  There fo re  we replace it by 

k* = m a x ( 0 , k ) .  

However ,  by this ad3ustment  we lose the unbmsedness .  For  s imphci ty ,  in the 
fol lowing we proceed as if k* > 0; the adap t ion  to the case ~.* = 0 is trivml. To 
avoid  having to take  special  care o f  the case k* = 0, one could  ins tead o f  put t ing  
k* equal  to zero when ~, ~< 0, put  k* equal  to some small  posi t ive number ;  one 
possible  choice would be e / K  for some small  e, as we would then have a sympto t i c  
unbiasedness  when K goes to infinity. 
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If Cov Y were known, the best linear unbiased estimator of fl would be 

~J= {X'(Cov Y)-xX}- lX ' (cov  y ) - l y ,  

and as Yz . . . .  YK are independent, 

/3= xk(Var Y~)-Ix~ ~] Xk(Var Yk)-lYk 
k = l  k = l  

= XkV~(O+ XV~)-IXl ~ XkVk(q~+ XVk)-'Yk 
k = l  k = l  

= flcXkXl~ Z fXXlk Yk, 
k = l  k = l  

and we propose to estimate/3 by 

w~th 

~*= ~'txkx~ ~ ~'txkYk 
k = l  k = l  

~'t=Vk/(Ve+x*) X* =6*/X*. 
It should be noted that in the Buhlmann-Straub model the estimators X* and/3* 
reduce to the estimators studied by BUHLMANN and STRAUB (1970). 

3.4. Determinatton of  the Tariff Class 

By inserting the estimators ~'~ and B* in (3.5) we get the empirical credibihty 
estimator 

- ~  • 
m, = f~*Y~ + (1 - ~',)/.zs 

with 
#5 =x5/3 . 

The estimation error ¢,, is estimated by 

~,* = X*(l - ~':*). 

The estimator rhs* cannot yet be used as the proposed rating factor for car 
model s; it still needs to be adjusted by some scaling factor. The approach used 
m our numerical invesugations was to determine the scaling factor such that the 
total premium for the portfoho used for the estimations would be the same with 
the new values of the model factor as with the old ones. 

Let y* be our scaling factor. Then the new model factor will be 

ps =31 ms, 

and thus the total "new" premium will be ~*~eK=~ wkm~-* whereas the "old" 
premium is ~ = z  Pk with 

I ,  

pk = ~ Pkt. 
t = ]  



T W O  C R E D I B I L I T Y  R E G R E S S I O N  A P P R O A C H E S  49 

As these two p remiums  should  be equal ,  we get 

"y = P k  W k m k  . 
k = l  

In a d d m o n  to our  e s t ima tor  for the class, we also want  a confidence interval  
for the "co r rec t "  factor ,  by which we mean 7m,(O,), where 3, denotes  the mean 
o f  3,*. To get such a confidence interval  we need some a d d m o n a l  a s sumpt ion ,  and  
for s implici ty  we assume that  the cond i t iona l  d i s t r ibu t ion  o f  m,(Os) given the 
observa t ions  is normal  with mean th, and var iance  ~ks. This a s sumpt ion  seems 
highly unreal is t ic ,  in par t i cu la r  for cars with low exposure ,  but  we really did  not  
need an exact confidence interval ,  only  some measure  o f  the uncer ta in ty  o f  the 
es t ima tor ,  and  for this pu rpose  the a s sumpt ion  seems adequate .  As a i -e  con- 
fidence interval  (in the Bayesian sense, cf. e.g.  DEGROOT (1970, subsect ions  
11.5-6))  for  the fac tor  we obta in  Ms-+ g~-~/2,[-f,, where g~-c/2 denotes  the 
1 - e / 2  fracti le  in the s t andard  no rma l  d i s t r ibu t ion  N(0 ,  1) and by insert ion o f  
es t imators  for unknown  pa ramete r s  we finally get the es t imated  confidence inter-  
val p,* _+ 3, gl-c/2x~s*. 

From the e s u m a t o r  and the confidence interval  of  the model  fac tor ,  we can 
t rwmlly  derive an estxmator and  a confidence interval  for the model  class (cf. 
Section 1). 

When  a new car model  t, for which we have no da ta ,  is to be classified, we have 
vt = ~'* = 0, which gives 

Pt = ' y  #t = ~ x l ~ 8  

that  is, 

q 

(3.16) p* = x/ct* ~ * = tXj X o 
j = l  

with 

* ( * ) '  
Ot = O~ , . . . , O ~ q  = ~  

Thus,  (3.16) is the fo rmula  to be used to find the model  fac tor  for car  model  t. 
Let us for  a momen t  call o*, given by (3.16), O*(0) to stress that  this is the 

factor  es t imate  wi thout  exposure .  When  we get an observed  exposure ,  we get the 
fac tor  

Or*(1) = ~r*V* Y, + ( I  - ~'t*)o~(O), 

that  ~s, a weighted mean o f  the initial fac tor  es t imate  and the empir lca l  fac tor  
-,,,* Y,. We also note that  with no exposure  we have ~k, = X and ~b* = X*. 

3.5. Chotce of Regressors 

In subsect ion 3.1 we said that  xk should  be a design vector  based on the technical  
da ta  o f  car  model  k wi thout  giving any fur ther  ind ica t ion  o f  which regressors one 
should  use. In our  numerica l  invest igat ions  we registered for each car  model  in 
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our test sample the four basic variables engine power, cylinder volume, weight, 
and price. Diesel cars and cars with four-wheel drive were not included in our 
sample; otherwise it would have been appropriate to include (O,l)-variables for 
these characteristics. As interesting regressors we concentrated on the four basic 
variables and ratios between them. 

It should be noted that the estimator ~* of ~ does not depend on the chosen 
regressors. For X* and B* we made several computations using different 
regressors. In each design we of course included a constant term, that is, the first 
element of xk being equal to 1. 

As 

X = E ( m k ( O k )  --  Xk/3) 2, 

X measures how close the prior mean Is to mk(Ok), and it was therefore felt that 
one should use a set of  regressors making X* small. This is also consistent with 
our choice of the quadratic loss function; one could think of all the possible 
regressors being studied as included in a huge design, but that for most of them 
we estimate the corresponding element of B by zero. 

An important point when choosing regressors is that we know something 
about monotoniclty. To motivate this, let us look at an example. At an early stage 
of  our research we wanted to classify some new car models for which the prices 
were still unknown. A design giving small X* under these circumstances was 
(l power/weight weight/power) '  For two of the cars we got the following 
results: 

Car Weight Power Class 
l 1200 kg 63 HP 59 
2 1227 kg 86 HP 42 

This seems of course very unreasonable. Car 2 has a slightly higher weight and 
a much higher power than Car 1, but should be rated lower! 

In accordance with our opinion about monotonicity, several sets of regressors 
were rejected when looking at/5*. It should be noted that the more regressors we 
include, the more difficult it would be to control that our opinion about 
monotonicity is satisfied as the different regressors could be strongly correlated; 
even if we mean that the factor should be increasing with cylinder volume, it need 
not be disturbing to get a negative coefficient for this regressor if engine power 
has a positive coefficient, as cylinder volume and engine power are strongly 
correlated. Under these considerations we conclude that q should not be too 
large, say, at most 4-5.  

It should be noted that the monotonicity secured by the choice of regressors 
is not necessarily sansfied for the posterior estimates r~* with positive exposures. 
This is reasonable as we then have more information apart from the technical 
data; the monotonicity is important only when we base the factor on only the 
technical data. 

One should be aware that in one respect price Is different from the other basic 
variables considered, as the price may change whereas the car model is still the 
same, 
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We conclude this subsection by briefly recapitulating the criteria that should be 
taken into consideration by the choice of regressors: 

(i) small k*; 
(ii) monotonicity; 

(iii) small q. 

3.6. Some Practical Modifications 

In subsection 3.3 we described how we would have estimated 4~ if we had had 
the necessary data. Unfortunately, we did not have them. From (3.6) we see that 
for each policy we had to match the exposure with the total amount of  the claims 
occurred during the exposure period. At present, the data of Storebrand are 
organized such that for each calendar year we have one claims file and one policy 
riffle. The claims file contains data for all claims reported during the year. As stated 
above, we really wanted the claims occurred during the year, but this does 
not seem to be a serious problem. The policy file contains data from the middle 
of  the year. The registered premium is the premium at the latest renewal prior 
to the middle of the year, which means that these renewals range from the middle 
of the previous year until the middle of  the present year. Thus a match between 
claims and policies would be awkward. We also have the problem that the total 
registered premium for a fixed car model is not really the premmm we wanted 
it to be, but we decided to use it as an approximation. If the premium volume 
of  the car model is relatively stable over time, this approximation should be 
acceptable. However, if the premmm volume is growing, we would register too 
low a value for the exposure volume. This will in particular be the case when a 
new car model is introduced, most extremely for cars introduced m the second 
half of the year, for which we may have claims, but no premium. Such cars 
should not be included in the parameter estimation. 

The following additional model assumptions and estimation method were 
applied. Let Nk, be the number of claims from risk unit t of  car model k, and 
let Zku denote the claim amount of the jth of these claims. Then 

N~, 

X~, = ~ Zkv. 
J = l  

We assume that given Ok, the Zkv'S are conditionally independent and identically 
distributed and conditionally independent of the Nk,'s. It is further assumed that 
N,, IS conditionally Poisson distributed with parameter Wk,r~(Ok) given Ok. It is 
well known that under these conditions 

Var[Xk, I Ok] = wk,rk(Ok)tk(Ok) 

with 

tk(Ok) = E[ Z~,jI Ok], 

and by using (3.3) we obtain 

('1 17~ ~2(f::'h-] = r t . ( O t - ] t ~ ( O ~ L  
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We now have that 

satisfies E[ ¢~ l Ok l = s2 (Ok ), and thus 
K 

k = !  

is an unbiased estimator of  4~ for all weights us. (We stress that the quantities 4~- 
and 4~* defined in the present subsection are not the same as the quantities defined 
m subsection 3.3, hoping that this abuse of notation wdl not present any prob- 
lems to the reader.) 

The author ~s not quite happy with the mtroducnon of the present compound 
Poisson assumption in our model. From (3.17) we see that the functions rs and 
tk depend on k whereas their product Js independent of  k. And rs really should 
depend on k as an independence assumpnon would imply that technical data have 
no influence on the number of  claims, which seems very unrealistic. 

The fact that in our test sample ~ was strongly correlated with the four basic 
technical variables, could be a consequence of the issue discussed in the prevJous 
paragraph. Let as denote the engine power of car model k. From our test sample 
consisting of 62492 policies distributed on 90 different car models, we found the 
correlations displayed in Table 3.1 by using a correlation procedure in SAS. As 
is seen from the table, the correlations become considerably lower if we divide 
0~ by ak. Therefore we replace assumpnon (3.3) by 

Var [ Yk, I Ok] = aks2(Os) /wk,  = s 2 ( O k ) / U k ,  

with Vk,= Wk,/ak. Under this assumption (3.17) should be replaced by 

sZ(Ok) = r~(Ok)tk(Ok)/as. 
We get that 

4,~ = ~ z~,~ (akwk,) 
t J = l  

satisfies E[¢,~ I Os] = s2(Os), and thus 
K 

6*= ~ uke,7 
S = !  

T A B L E  3.1 

CORRELATION OF ~bt~ AND q)~/Clk WITH THE FOUR BASIC RISK VARIABLES 

~k/a~- 
unwelghted weight Wk unwelghted weight v~ 

Weight 0 249 0 445 - 0  009 0.078 
Power 0 337 0,499 0 041 0 083 
Cyhnder volume 0 346 0 509 0 063 0 106 
Price 0 286 0 486 0 060 0 187 
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is an unbiased estimator of 4~ = Es2(Ok)  for all weights u~; in the numerical 
example in Section 6 we applied Uk = K- l .  

The reason that we introduced a v~, in subsection 3.1 should now be clear: The 
derivations made in the previous subsections are still valid under our revised 
assumptions; we have only changed the definition of some of  the quantities. 

3.7. lntroduct ton o f  Subject tve Assessment  

Classification of individual car models by credibility has also been treated by 
CAMPBELL (1986). He computes a model factor by a pure Buhlmann-Straub 
model, that IS, he makes no regression assumption about the technical attributes 
of the car. However, before performing the credibility analysis, he divides the 
cars by using cluster analysis into groups of cars that are similar with respect to 
technical attributes. The credibility analysis is then performed within each group 
of car models. Roughly speaking, one could say that in our set-up the regression 
assumption plays the role of the cluster analysis in Campbell 's set-up. 

After the Buhlmann-Straub analysis has been performed, Campbell lets the 
final value of the model factor be a weighted mean of the value found by the 
Buhlmann-Straub analysis and a subjecuve estimate based on a technical assess- 
ment of the car. 

Let us now see how one could incorporate a subjective estimator in our model. 
We assume that when car model k is initially classified, a skilled person proposes 
a class Ck. His proposal IS based on a technical assessment of the car. From the 
class Ck we find the factor 

ffk = 1.04 C~-30 

This factor is not yet comparable to mk(Ok) as it is differently scaled (cf. sub- 
section 3.4). From (3.1) and (3.4) we get 

Yk = ( X k /  pk )fk,  

which motivates the scaling factor 

N = Xk Pk, 
k=l 

and we introduce the rescaled model factor 

A k = NFk.  

We now assume that A ,  is independent of  the data from the other car models, 
that it is conditionally independent of Ykl . . . . .  Yk~, given Ok, and that 

E [ A k l O k ]  = mk(Ok) E V a r [ A k [ O k ]  =T. 

Now let ~ ,  be the credibility estimator of m(Os) based on Y,l . . . .  Ys/,, and 
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As and let 

From Theorem 2.1 we get 

with 

We have that 

~k~ = E(rn~(O~)  - rhs) 2. 

r~,=(v,Y,+eAs+ x~s)/(v,+e+ x) 

¢,=~l(v~+e+ x) 

e= O/r. 

K 

~ =  ~ u k l ( Y k - - A k ) Z - - 4 ~ * / V k J  
k = l  

is an unbmsed esumator of r for all weights Uk, but as ~" can take negauve values, 
we propose to estimate r by r* = max(T, 0). 

We can of course still estimate k and fl by the estimators prevaously found, but 
af we also want to include the Ak's in the estimation, we can easily modify the 
estimators presented in subsection 3.3 by using the following trick: We simply 
transform the subjective estimator A k  tO an artaficlal risk unit I ,  + 1 with "risk 
volume" 

(3.18) Vk.i,+ 1 = e 

and "claim amount" 

(3.19) X k . l ,  + ~ = e A k .  

By adding the new risk umts X~.i,+~ , . . ,  XK, i~+~ to the statasncs data, we can 
estimate k and ~ in exactly the same way as in subsection 3.3. In (3.18) and (3.19) 
we estimate e by 

e* = 4~* / r*.  

This author is for two reasons a bit reluctant about the introduction of the 
subjective estimator As in the credibility estimator rhs. Both reasons really have 
as a consequence that the model assumptions made about the Ak's are not fulfill- 
ed in practice. 

Firstly, the person performing the assessment will probably gradually adapt 
himself to the statastacal model. He will get a feeling of what class the statistical 
model wall propose, and thus his assessment as no longer independent. Thas does 
not seem to be an important objection, but it means that after a while the attitude 
of  the person is apt to change, and thus one should frequently update the estimate 
of r. 

The second objection is more serious. In a competitive market like the 
Norwegian one, not only the risk level of the car will influence the person 
performing the assessment, but also the classification of similar cars, not only by 
Storebrand, but also by the competing compames. 
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Thus this author ~s more attracted by the opinion expressed in Section 1, that 
the subjective assessment should be influenced by the statistical method instead 
of influencing the method itself. 

4. A HIERARCHICAL APPROACH 

4.1. Model  

The make of the car is a characteristic that we have not mentioned yet, but it 
could contain valuable information about the risk of a car; the information that 
the car is a Mercedes Benz, may contain information about both the car and its 
driver that is not contained in characteristics like price, power, etc. It should be 
noted that make differs from the characteristics studied in subsection 3.5 in one 
important respect; whereas those characteristics were quantitative, make ~s 
quahtattve, and thus we cannot directly include make in the set-up of  Section 3. 
One possible approach would be to extend the regression analysis of Section 3 
to a covariance analysis. Instead of following that line we are going to extend the 
non-hierarchical regression model of  Section 3 to a hierarchical model with a new 
level representing the make of the car. 

Consider a group of  N different makes. For make n we have observed K.  
different car models, and for model k of these we have observed l .k risk units. 
Let X.~, denote the total claim amount in the exposure time for unit i of model 
k of make n, and let p.k, be the earned premium. We introduce 

W.k, = P.k, /  f .k , 

where f.~ denotes the old factor for make of car. 
We assume that claim amounts from cars of different makes are independent, 

and that from within one make n, claim amounts from different car models are 
conditionally independent given a random parameter H. (capital Greek eta) 
characterizing make n. Within car model k of make n, the claim amounts from 
different risk units are assumed to be conditionally independent given (O.k, H.),  
where @.k is a random parameter characterizing car model k of make n. It is 
assumed that e.~ . . . . .  O.K. are conditionally independent and identically 
distributed given H., and that their common conditional distribution depends on 
the make only through the value of H.. We further assume that Hi . . . .  , HN are 
independent and identically distributed. 

Let 

It is assumed that 

Ynk~ = X , k , /  W,k,. 

E[ Y.k, I @.k, H.] = m.k(O.k ,  H.) 

EVar[m.~(O.k ,  H.)[ H.] = k 

Var[ Y.k, [ O.k, H.]  = S2(Onk, Hn)/Unkt 



56 B J O R N  S U N D T  

with v.k, = w.k,/a.k,  where a.k is a known quanti ty which could be equal to one, 
engine power (cf. subsection 3.6), or something else. We further assume that 

(4.1) E[m.k(O~k, H.)I  H~] = x~kb(H.) ,  

where x.k is a known,  non- random q × 1 design vector based on the technical data 
o f  the car and b is a q x 1 vector function.  We introduce 

4~ = EsZ(O.k, H.)  /~ = Eb(H.)  

(4.2) ~ = C o v  b ( H . )  

x = 6 1 X  

I,k Ink Ink 
xok = Z x .k ,  = Z o,,., = Z w.k, 

1=1  t = l  t = l  

Y.k = X . k /  W.k. 

We note that for E = 0, the model reduces to the non-hierarchical model 
studied in Section 3. 

4.2. Credibtlity Estimators o f  mr(Ors, Hr) 

Let rhrs and /~r denote the credibility estimators o f  mrs(Ore, Hr) and b(Hr) based 
on the observed Y.k,'s. We introduce the estimation errors 

4'r~ = Var(mrs(er~, Hr) - Zms) YL = Cov(b(Hr)  -/~r).  

Then we have the following result. 

T H E O R E M  4.1.  W e  have 

mrs  : ~'rs Yr~ + (1 - ~'rs)x/sbr  

¢rs = (1 --  ~rs)[  ~ "q" ( 1  - -  ~rs)X~sFlrXrs} 

(4.3) 

(4.4) 

wtth 

~'rs = Vr,/(Vrs + ~ ) .  

PROOF AS the coefficients o f  credibility estimators depend on only first- and 
second-order  moments ,  it is sufficient to prove the result for a special case having 
the same first- and second-order  moments  as the general case. It is convenient to 
consider mult inormal  distributions as it is well-known that in that case the Bayes 
estimators are linear, and hence they are equal to the credibility estimators. 

Let 

W . k ,  = V.k,~21 Y .k ,  - m . k ( O . k ,  H.)I 

Unk = m.k(O.k,  H. )  - X,;kb(H.). 

We assume that the W.k,'s are independent and identically distributed N(0, ~) ,  
the U.k'S are independent and ldenucally distributed N(0,  k), the b(Hn) 's  are 
independent and identically distributed N(B,  Y.,), and that the W.k,'S, the U.k'S, 
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and the b ( H . ) ' s  are independent.  It is obvious that we have the same first- and 
second-order  moments  as in the distribution-free model.  Fur thermore ,  we have 

E[mrs(Ors, Hr)[ b(Hr),  Y,k,v(k, i)] = ~'rsY,, + (1 - ~',,)x,~sb(H,) 

as under the condit ional  probabil i ty measure gwen b(H,)  we have the same first- 
and second-order  moment  structure for make r as in subsection 3.1 (cf. formula  
(3.5)). We get 

rh,s = E[m~,(Ors, Hr)] Y.k,V(n, k, t)] 

= E[ E[ m~s(Ors, H~)lb(Hr), Y.k,V(n, k, 0 ] l  Y.~,V(n, k, t)] 

= E[E[mrs(Ors ,  H,)[ b ( H r ) ,  Yrg, V(k,  t )] lY.k ,v(n,  k, t)] 

as different makes are independent,  and thus 

F~Irs : frsYrs -4- (1 - ~s)x/sf[  b(Hr)l Y.k, V (n, k, i)] 

= ~rsYrs+ (1 - ~'rs)x;sbr, 

which proves (4.3) 
For  firs we apply the same way of  reasoning and get 

firs = E Var [m,,(@rs, H~)[ Y,~,v(n, k, 0]  

= E Vat [rnr,(@~,, H~)[ b(Hr),  Y,k,v(n,  k, i)1 

+ E Var [E[m~s(Or,, H~)[ b(H~), Y,k,V(n, k, 1)11 Y,k,v (n, k, i)] 

= X(l - ~'~s) + (1 - f~s)2xL(Cov[b(H~)l Y,k,v(n,  k, t)] xrs 

= (l - ~~,)[ X + (l - f~s)x/slI~xM, 

which proves (4.4). 
This completes the p roof  o f  Theorem d.1. Q.E .D.  

We now want an expression for/~r. To reduce the dimension of  the problem we 
first prove the following lemma. 

LEMMA 4.1. The credibthty esnmator !~ depends on the Ynk,'S only through 
Y~l . . . .  Y~K,. 

PROOF Let b} l) be credibdity esnmator  of  b(Hr) based on Yr~ . . . . .  Yrx,. 
Then by Theorem 2.1(il) 

E/~} Z) = Eb(Hr)  

Cov(br (1), Yrk) = C o v ( b ( H ~ ) ,  Yrk). 

As 

for all (k, s, t), we get 

k = l  . . . .  K~ 

Cov(Y~, Y~,,)= Cov(Y~,, Y~,) 

Cov(b(H~), Y~k,) = Cov(b(H~),  Y~k) 

Coy(b} l), Y.k,) = Cov(b(Hr), Yrk,). 
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Furthermore,  as different makes are independent, we have 

Cov(/~r O), Ynk,) = Cov(b(Hr),  Y,k,) = 0 

for all n ~ r, and thus Lemma 4.1 follows from Theorem 2.1(ii). 

We want to find a matrix expression for br and introduce 

Zr = diag(~'rl . . . . .  g'rg,) 

X r :  (Xrl . . . . .  XrKr) t Yr : (Yr l ,  . ,  YrKr) ' .  

We write /~ as 

From (2.1) we get 

that is, 

From (2.2) we obtain 

(4.5) 

We easily get 

br = ~r @ PrYr .  

• y, = ~ - l"rXrO, 

br : r r ( Y r  - X r ~ )  + ~.  

I 'r  Cov Y, = Cov(b(Hr),  YI). 

Cov Yr = k Z 7  1 + X ~ X l  Cov(b(Hr) ,  Y~)= ~Xr' ,  

and insertion in (4.5) gwes 

(4.6) r r ( k Z 7 1  -t- X r ~ X ~  ) -~- ~ X r  t . 

We multiply (4.6) by ZrXr  from the right to obtain 

r r X ~ ( X l q  + ~ X ;  Z r X r )  = ~ X ~  ZrXr ,  

which gwes 

(4.7) 

From (4.6) we get 

(4.8) 

that is, 

Insertion of  (4.7) gives 

r r X r  = ~Xr '  Z r X r ( X I q  + ~ X /  Z r X r ) -  1. 

P A z ; -  ~ = (lq - P r X , ) Z X ; ,  

Fr = X -  1 (lq -- P r X r ) ~ X r  ¢ mr. 

Pr  = (~[q + ~ X ~  Z r X r ) -  l ~ x ~  Zr. 

If  X ;  ZrXr  is non-singular, we introduce 

br = ( X / Z r X r ) - I x ~  ZrYr .  

Q.E.D. 
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Then we have 

t --I  I PrY, = (~,lq + ~ x / Z r X r ) - ' ~ X / Z r Y r  = (~klq + E X / Z r X r )  ~ X ;  Z r X ,  b, 

= ~ X / Z r X r ( X l q  + ~ X / Z r X r ) -  lbr = ~rbr, 

where we have in t roduced  the credibi l i ty  mat r ix  

~ ,  = E X / Z r X r ( X l q  + ~ X / Z r X r ) -  l, 

and we get 

We still have to find an expression for the es t imat ion  error  mat r ix  Hr. By 
Theorem 2.1(ili) we get 

I'I, = Coy  b(Hr)  - Coy  b,  = ~ - l " , (Cov Y,)I ' /  = ~ - l"r(XZ7 1 + X,~x / ) r ' ; .  

We insert (4.6) and ob ta in  

[Ir = ~ -- ~ x / r /  ~- ~ ( l q  - x ] r / ) ,  

that  IS, 

n, = ~(4 - a/) = (t~ - a,)E, 

the last equah ty  because  Hr and ~ are symmetr ic .  
We now have expressions  for all the quant i t ies  tha t  we need for the c o m p u t a -  

t ion o f  rhr~ and ¢,5. 

4.3. Parameter Esttmatton 

Cor r e s pond ing  to (3.6) we in t roduce  

¢,*,k = ( l .k  - ! ) -  
InA 
Z v,,~,(r,,k,- Y.k) 2, 

/ = l  

for  which we have 

E[~,*,~ I O,,k, H.]  = s2(O.k, H. )  

if  v.k, = w.k,, and in that  case 
N K.  

~*= Z X u.,0:k 
n = l  k = l  

is an unbiased  es t ima tor  o f  ~b for all weights U . k ( ~ J = l  ~ j  U.X)= I. 
It should be obvious  how one could  generahze  the a s sumpt ions  and es t imators  

in t roduced  in subsec tmn 3.6 to the  hierarchical  model ,  and  we shall  not  go any 
fur ther  into detai ls  on that  mat te r .  

In the fol lowing we just  assume that  we have got  an unbiased  es t ima tor  $* o f  
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4~, and  the fol lowing der iva t ions  do  not  depend  on whether  v.k, = w.k, or not.  
Fo r  the es t imat ion  o f  X, ~,  and ~ we shall also assume that  X .  has full rank 

q for all n. In pract ice ,  this will mean that  we exclude da ta  f rom makes  for which 
we have observed only a few car models ,  f rom the es t imat ion  procedures .  It is 
o f  course  quesuonab le  not  to uuhze  these da ta ,  but the es t imat ion  procedures  
become much s impler .  

We  in t roduce  

On = 

D n -~ 

b n  = 

K~ N 

Zv°k v=Zv.  
k = l  . = 1  

vYldiag(v . i  . . . . .  V.K.) 

( X / , D . X . ) - ~ X g D .  Y..  

A n a l o g o u s  to what we did in subsect ion 3.3, we get 

E ( Y ~ - X J J . ) ' D . ( Y . - X . b . ) = X [ I - t r l  ' - ~ ,  2 ( X . D . X . )  X . D . X . ] ]  + ( K .  - q ) 6 / v . ,  

and thus 
= 1  ~ vn(Yn - X , , b n ) ' D n ( Y .  - X .bn )  - (K.  - q)$ 

, - ( X n D . X . )  X . D . X .  } v =l 1 tr[  ' -~ , 2 

is an unbiased  es t ima tor  o f  h. As X may  take negative values,  we proceed as in 
subsect ion 3.3 to const ruct  a modif ied  e s u m a t o r  X* which is non-negat ive  or  
posi t ive.  In the fol lowing,  we assume for s implici ty  that  X* is posiuve.  

Let 

) W n  - - - -  X / Z r X r  Xt~ Z n X .  
r=l  

= w . G .  = x"  z . x .  x~  z .  Y..  
n = l  n=[ n = l  

It seems reasonable  to base our  e s t ima tor  o f  ~, on 

N 

a = ~ W . ( b .  - f l ) (b .  - ~ ) ' .  
/'I=1 

We have 
N N 

E Q =  Z Wn E(bn - ~)(Gn - ~ ) '  = Z W,, Cov( /~  - fl) 
n = l  t i l l  

N 

= ~ w~[Cov Go- c o v ( £ , , B ' ) - C o v ( B , £ ~ ) +  Coy ,~] 
n = l  

N 

w .  [ Coy G. - Coy(B, t~,~ )1, 
n = l  

that  is, 

N 

(4.9) E Q =  ~ W n ( l q -  
n=l  

w,,) Coy/L.  
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For all n we have 

COV bn ---- (X/, ZnXn ) -  I x n  Z n ( C o v  Y. )Z .X. (X,~ Z . X . ) -  i 

= (Xn Z n X n ) -  Ixn  Z r t ( X Z ;  l ..1_ X~ ~Xn)ZnXn(X t~  Z n X t , ) -  1 _- ~k(Xn Z n X n )  - l  -.~ ~ ,  

and insertion m (4.9) gives 

E Q =  TX + ( ~-] W n ( l q  
\ n=  I 

with 

that is, 

and 

N 
T = E  

n=] 

N 

w.(lq- w.)(x,',z.x.)-'= Z (lq- w.)w.(x,',z.x.)-' 
n=l 

= (lq -- W. )  X / Z r X r  = ( N  - I ) X / Z  rXr 
\ n  = I \ r  = [ 

E Q = ( N -  I X / Z X  k +  I u -  ~ ~,, 
r= l  

In= , _ <N_ '  'zrxrj  
is an unbiased estimator of  E. However,  as E is symmetric whereas E does not 
in general have this property,  we replace ~' by 

= (~ + ~ ' ) / 2 .  

When estimating X, we had the problem that X was not necessarily positive. The ^ 
analogous problem when estimating ,7, is that E is not necessarily positive semi- 
definite. As ,~ is symmetric,  it can be written as 

=A'TA, 

where A is an orthonormal q × q matrix (i.e. A'A = lq) and 

T = diag(Tj ..... Tq), 

where z~ . . . .  Zq denote the eigenvalues o f  ~,. Let 

r ° = m a x ( T , , 0 )  I = l , .  , q  

T o = diag (z ° . . . . .  zg). 

It can be shown (cf. BUNKE and GLADITZ (1974),RAO (1965)) that 

~* ,TOA 

satisfies 

v' (~* - ~, )v ~< v' ( P -  ~) v 
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for all q x 1 vectors v and all positive semi-definite q × q matrices P, and hence 
it seems reasonable to replace ~- by ~-* to get a positive semi-definite estimator. 
To avoid having to take special care of the case when E* is not strictly positwe 
definite, one could instead of replacing negative eigenvalues by zero, replace them 
by some small positive number; one possible choice would be e / N  for some e as 
we would than have asymptotic unbiasedness when N goes to infinity. 

The computation of ~-* from ~, involving the construction of A and T, may 
seem complicated. However, xn SAS we had standard procedures for the com- 
putation of A and T. 

The procedure for estimation of ~. depends on the parameters ~ and ),, which 
were assumed to be unknown, and we therefore insert the estimators ~* and ~,* 
for these parameters. 

We have that 

(4.10) /3*= a. ~ a.tL 
n = l  n = l  

is the best hnear unbiased estimator of /3. As /3" depends on the unknown 
parameters ~, ~, and E, we insert the estimators ~*, k*, and ~* for these 
parameters in (4.10). 

We have now found estimators for all the unknown parameters involved in the 
credibility estimators presented m subsection 4.2, and we are therefore able to 
construct empirical versions of these credibility estimators. 

4.4. A Disadvantage of  the Hierarchical Model 

For a new car model s of make r (i.e. Wr, = 0) we have 

Mrs = x~sbr. 

In the non-hierarchical model the corresponding formula was 

rhrs = xg/3. 

In subsection 3.5 on the choice of  regressors, we said that we have some prior 
opinion on monotonicity, and that the regressors should be chosen such that this 
monotomcity was preserved. This was not too complicated in the non- 
hxerarchical model. In the hierarchical model it is much more difficult. Whereas 
in the non-hierarchical model we could just look at the sign of the elements of 
/3, in the hierarchical model we have to look at the elements of br for all r. 

In a parametric empirical Bayes analysis we could solve the problem by restric- 
ting the support of  the distribution of  b(Hr) to a set ~ for which the mono- 
tonicity is preserved. Then of course also the posterior mean of b(Hr) would be 
contained in ~ .  However, such a parametric model would presumably be 
complicated to handle, and we would probably have to leave the hnearity of the 
estimators. 

If our statistical models should be used as proposed m Section 1, that is, not 
as giving the final answer, but as an aid for the person who finally makes the 
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decision, this author would recommend that this person receives the estimates 
from both the hierarchical and the non-hierarchical models, using the same 
regressors in both models. In his decision he should be aware that the hierarchical 
model utdizes information about the make of the car, information that is not 
used in the non-hierarchical model. On the other hand, for the assessment of new 
car models, the non-hierarchical model will preserve some monotonicity proper- 
ties, which may be violated in the hierarchical model. 

4.5. A Modi f i ed  Approach  

When the author gave a seminar on the present research, Ragnar Norberg 
suggested a modified approach that avoids the monotonicity problem discussed 
in the previous subsection. We replace the assumptions (4.1) and (4.2) by 

E [ m . k ( O . k ,  H.)I Hn] = M . k ( H . )  E M . k ( H . )  = X~kfl Var M . k ( H . )  = ~. 

One could say that these assumptions are more consistent with the assumptions 
made in the non-hierarchical model whereas (4.1) and (4.2) are more m line with 
HACHEMEISTER'S (1975) regression model. 

Under these new assumptions we obtain 

(4.11) 

with 

r~,~ = ~'r, Y,, + ( 1 - ~'r~) (XA# + D,)  

Dr= ~ ~ ~'rp(Yro-X/vfl) X+/~ ~ ~rp • 
pHI p=l 

It is interesting to compare (4.11) to (3.5). We see that the only formal difference 
is that we have added a correction term Dr to the prior mean xA~. For the case 
with no exposure for car model s this property is very attractive. We then get 

I~lrs : XA~  q" Dr,  

that ~s, we compute the prior mean xA~ based on the technical data and add a 
correction term Dr as the car IS of make r. 

We hope to return to the present model in a subsequent paper. 

5. SOME CARS ARE MORE EQUAL THAN OTHERS 

As is well known, there are often several variants of  one car model. In a 
Norwegian price list from 1984 (OPPLYSNINGSRADET FOR VEITRAFIKKEN (1984)) 
we found for instance 9 entries for Volkswagen Golf and 28 for Opel Ascona. 
The technical differences between such variants may be number of doors, engine, 
shape (coup6/sedan), etc. Such differences will of course in most cases also 
influence the price. In our investigations we have considered each variant as a 
separate model. However, variants of a car model usually have very much m 
common, and ,t is tempting to try to utihze this informaton in the estimation of 
the model factors. 
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One possible soluuon would be to extend our two-level hierarchical model 
(make, model) to three levels (make, model, variant) (for multi-level hierarchical 
models, cf. e.g. SUNDT (1980),NORBERG (1985)). This would be a more compli- 
cated model, and we would have to estimate more parameters. 

Another possibihty would be to drop the make level m the three-level hierar- 
chical model to obtain a two-level model with levels for model and variant. For 
this model we could make the same assumptions as in Section 4, but the grouping 
of the cars would be different. 

A third approach would be simply to consider different variants as one model. 
Then we have the difficulty that the different variants do not have the same 
technical specifications, but as design vector we could use a weighted mean of the 
design vectors for the different variants with weights proportional to the observed 
exposures. In this set-up, possible differences in risk characteristics of the varmnts 
now pooled together would be incorporated in s2(Ok) (to use the notation of the 
non-hierarchical model). The present approach should be used with care as there 
exist variants with risk characteristics so different from other variants of the same 
model that they should definitely not be pooled together; a striking example is 
Volkswagen Golf GTI. Usually, one would be able to identify such "outliers" 
already before one obtains the risk statistics. However, this need not always be 
the case, and one should therefore, even if the variants are pooled together, 
always register the variant of each car in the statistics data so that one is able to 
detect an "outlier" and revise the pooling if necessary. 

6 NUMERICAL EXAMPLE 

6.1. The Data 

We have already mentioned our numerical studies a couple of tImes. Our first 
studies were based on data from Storebrand for the year 1983, and in subsection 
3.6 we presented some results based on these data. When our first studies had 
been performed, data from 1984 became available, and in our investigations on 
these data, we included a greater number of makes and car models than in our 
1983 studies. In the present section we shall display figures found m our 1984 
study; the 1983 data were analysed in the same way. 

For each car model included in the study, we registered the technical varmbles 
weight, engine power, cylinder volume, and price. The price was the price given 
in a list from April 1984 (OPPLYSNINGSRADET FOR VEITRAFIKKEN (1984)), and 
we only included car models that were found in this list. This imphes that we 
excluded car models that were no longer produced or imported to Norway. If one 
should also include older car models, one would have had to use older prices, 
which would have had to be adjusted to the price level of 1984. At the present stage 
of the development of models and methods, we decided to leave out this problem, 
but ~t is further discussed in SUNDT (1986). As already mentioned, for simplicity 
we also excluded diesel cars and cars with four-wheel drive. 

In the following presentation we use the codes of Storebrand for make and 
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Code Name K. Rnsk umts v. 

11 Audl 7 1112 9050 
14 BMW 11 2754 15117 
15 Cltroen 10 I 190 10429 
16 Ftat 7 782 9541 
17 Ford, British 7 2322 22326 
18 Ford, German 24 13107 115557 
24 Lancta 1 58 942 
25 Mercedes Benz 7 1561 7444 
31 Opel 33 8860 67880 
33 Peugeot 14 1467 13017 
34 Renault 1 950 13771 
37 SAAB 6 3382 21261 
39 Skoda 2 248 2549 
45 Volkswagen I 1 3145 35722 
46 Volvo 19 3946 29881 
47 Dalhatsu 2 105 1555 
53 Subaru 6 349 3076 
54 Mitsublshl 14 1844 17962 
66 Talbot 6 507 4976 
93 Lada 5 3490 28800 
94 Honda 9 3823 29963 
96 Toyota 16 4034 35365 
97 Nlssan 14 3653 33067 
98 Mazda 21 8069 69041 

Total 253 70758 598290 

model .  In Table  6.1 we give some summary  policy data  for our  sample.  For  the 

headings o f  the table we have used the no ta t ion  o f  Section 4, and in the fol lowing 

we use v,k = w,k/(engine power).  As we see f rom the table, we have applied data  
f rom in all 253 different car models  distrsbuted on 24 dlfferent makes.  We applied 

no such pool ing o f  car models  as described in Section 5. 

It would obvsously be too  much to present the results for all 253 car models ,  

and we therefore  restrict ourselves to give more  detaded data for a representat ive 

sample o f  25 car models  found by including each tenth model  f rom our  

total sample,  ordered by the codes for make  and model .  In Table  6.2 we display 
the exposure  and the techmcal  variables engine power ,  weight,  price, and 

pr ice /weight .  Prices are given in NOK and weights in kg. 

We est imated ch by the procedure  described in subsect ion 3.6 and found 
~* = 651.1. 

6 2. The Non-hierarchical Approach 

For the non-hierarchtcal  model  we computed  f rom the 1983 data for several 
different sets o f  regressors the est imates k* and fl* as descrtbed m subsection 3.3. 

Accord ing  to the crtteria gwen in subsectton 3.5, it seemed reasonable  to use the 

two regressors cylinder vo lume and p r i ce /we igh t ,  giving q = 3. However ,  it was 
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T A B L E  6.2 

Make Model Name Power Wetght Prtce Price/weight Rtsk umts v,,, 

14 541 BMW 320 1 125 1105 162540 147 10 173 928 
15 313 Citroen Visa GT 80 830 79200 95 42 35 288 
16 321 Flat Panda 45 45 670 48400 72 24 179 3251 
17 328 Ford Escort 1 6 L 79 880 87560 99 50 738 6,:137 
18 451 Ford SJerra 2 0 105 1095 102100 93 24 77 628 
18 741 Ford Sxerra I 6 75 1100 109260 99 33 19 206 
25 504 Mercedes Benz 190 E 122 1100 199560 181 42 185 1043 
31 327 Opel Corsa I 2 ST Sedan 55 775 67270 86 80 144 1747 
31 347 Opel Kadett 1 2 S Comb1 60 870 72620 83 47 269 2770 
31 421 Opel Rekord 2 0 S 100 1140 118290 103 76 2879 18532 
33 354 Peugeot 305 GLS 74 930 88020 94 65 249 2146 
33 892 Peugeot 505 Break 100 1295 146580 113 19 50 372 
39 323 Skoda 120 GLS 58 910 50627 55 63 74 877 
45 523 Volkswagen Santana 1 9 GX 115 1100 138810 126 19 17 120 
46 506 Volvo 240 GLT B23A 129 1330 178900 134 51 21 110 
46 907 Volvo 240 GLE B23 129 1300 178400 137 23 10 52 
53 349 Subaru 1600 GL Swing-Back 71 885 74800 84 52 48 374 
54 396 Mltsublshl Galant 16,00 GL 75 1065 99900 93 80 206 2188 
93 411 Lada 1600 S 78 1040 54570 52 47 716 5669 
94 417 Honda Prelude EX 106 985 181400 184 16 36 306 
96 433 Toyota Carma Coup6 75 1060 94000 88 68 321 2790 
97 321 N~ssan Stanza I 6 GL 81 970 93800 96 70 49 408 
97 832 Nissan Bluebird I 8 GL 88 1150 108300 94 17 327 2804 
98 353 Mazda 626 1 6 GLX Sedan 81 1035 93900 90 72 153 1351 
98 474 Mazda 929 2 0 DX St Wagon 90 1200 108400 90 33 350 2835 

argued that cylinder volume and engine power were strongly correlated, and that 
diesel cars and petrol cars were more comparable with respect to engine power 
than with respect to cylinder volume. Therefore it was felt that if we should later 
include also diesel cars in the analysis, it would be better to replace the regressor 
cylinder volume by engine power. We did this and got only a slightly higher 
value o f  k*. With the 1984 data we therefore concentrated on the design 
(1 power price/weight).  We obtained 

k* = 0.2063 

8" = ( - 0 . 4 1 8 3  0.01238 0.01007)',  

and from the values of  6" and X* we found 

* X* x =~b*/ =3156 .  

In Table 6.3 we have displayed the observed Yk, the estimated prior mean/z~,  
the empirical credibility weight g'~, and the estimated estimation error ¢,,~ for each 
o f  the car models. 

We see that Volkswagen Santana 1.9 GX and Volvo 240 GLE B23 have rather 
extreme values of  Yk. However,  as these cars also have low exposure, ~ does 
not differ much from #~. 

We also computed estimates for tariff classes as described in subsection 3.4. 
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Make Model Yk ~ ,h~ ~'~ ff~ 

14 541 3 336 2 610 2 775 0 2272 0 1595 
15 313 0 502 1 533 I 447 0 0836 0 1891 
16 321 2.283 0 866 1 585 0 5075 0 1016 
17 328 I 465 1 561 1 497 0 6711 0 0679 
18 451 5 628 I 820 2.452 0 1660 0 1721 
18 741 0 147 1 510 I 426 00614 0 1937 
25 504 2 075 2 919 2 709 0 2485 0 1551 
31 327 0 844 1136 1 032 0 3563 0.1328 
31 347 I 135 I 165 I 151 0 4675 0 1099 
31 421 1 644 1 864 I 676 0 8545 0 0300 
33 354 0 954 1 451 I 250 0 4048 0 1228 
33 892 3 043 1 959 2 073 0 1054 0 1846 
39 323 I 301 0.860 0 956 0 2175 0.1615 
45 523 10 904 2 276 2 591 0 0365 0 1988 
46 506 1 556 2 533 2 500 0 0337 0 1994 
46 907 0.000 2 560 2 519 0 016t 0.2030 
53 349 I 307 1 312 1 311 0 1060 0 1845 
54 396 1 230 1 455 1 363 0 4094 0 1219 
93 411 1133 I 076 1 112 0 6424 0 0738 
94 417 3046 2 748 2 774 0 0883 0 1881 
96 433 1 811 1 403 1 594 0.4693 0 1095 
97 321 0 862 1 558 1 478 0 1145 0 1827 
97 832 | 749 1 619 I 680 0 4705 0 1092 
98 353 I 243 1 498 1.422 0 2998 0 1445 
98 474 1 186 1 605 1 407 0 4732 0 1087 

A f t e r  h a v i n g  c o m p u t e d  ~ * ,  w e  c o m p u t e d  e s t i m a t e s  f o r  t h e  c l a s s e s  b a s e d  o n  b o t h  

t h e  c r e d i b d i t y  e s n m a t e s  a n d  b a s e d  o n  t h e  p r i o r  m e a n s .  F o r  t h e  e s t i m a t e s  b a s e d  

o n  p r i o r  m e a n s ,  t h e  d e v i a t i o n s  f r o m  t h e  c l a s s e s  t h a t  w e r e  a c t u a l l y  u s e d  in 1984,  

w e r e  in m o s t  c a s e s  q u i t e  s m a l l ;  f o r  t h e  e s t i m a t e s  b a s e d  o n  t h e  c r e d i b i h t y  

e s t i m a t e s ,  t h e  d e v i a t i o n s  w e r e  s o m e w h a t  l a r g e r .  T h e  e x p l a n a t i o n  is p r o b a b l y  t h a t  

o n e  h a s  b e e n  a b i t  r e l u c t a n t  t o  a l t e r  t h e  c l a s s  o f  a c a r  m o d e l .  F o r  t h e  a c t u a l  r a t i n g ,  

o n e  m i g h t  feel  t h a t  t h e  p r o c e d u r e  is t o o  s e n s i t i v e  t o  t h e  r a n d o m  v a r i a b l e  Yk, a n d  

o n e  s h o u l d  p a y  a t t e n t i o n  to  t h i s  in t h e  f inal  s u b j e c t i v e  d e t e r m i n a t i o n  o f  t h e  c l a s s ;  

t h e  statisncal p r o c e d u r e s  d o  n o t  m a k e  political c o n s i d e r a t i o n s .  

6 .3 .  The Hterarchical Approach 

A l s o  f o r  t h e  h i e r a r c h i c a l  m o d e l  w e  u s e d  t h e  d e s i g n  (1 p o w e r  p r i c e / w e i g h t ) ' .  T h e  

p a r a m e t e r s  X, ~ ,  a n d  fl w e r e  e s t i m a t e d  as  d e s c r i b e d  in s u b s e c t i o n  4 .3 .  

F o r  k w e  f o u n d  t h e  e s t i m a t e  

X* = 0 . 1 9 1 3 ,  

f r o m  w h i c h  w e  o b t a i n e d  

x = q~*/X* = 3404 .  



68 BJORN SUNDT 

It is r e a s o n a b l e  t h a t  t he  v a l u e  o f  ;~* ~s l o w e r  t h a n  in t he  n o n - h i e r a r c h i c a l  m o d e l .  

W h e n  e s t i m a t i n g  ,7,, we o b t a i n e d  

• - 2 9 9 6 5 0  - 3 1 1 3  4724  '~ 

I -3113 75 
\ 4724  - 18 

T h i s  m a t r i x  is o b v i o u s l y  no t  p o s i t i v e  de f in i t e .  It h a s  o n e  n e g a t i v e  e i g e n v a l u e ,  a n d  

by  r e p l a c i n g  th i s  e i g e n v a l u e  by  1 0 - 6 / g =  4 . 1 0  -8 as d e s c r i b e d  in s u b s e c t i o n  4 .3 ,  

we a r r i v e d  at  

/ 0 .0488  - 2 . 1 6 7 8  1.351 ) 

~ * ' 1 0 5 =  I - 2 . 1 6 7 8  107.385 66 .820  
\ 1.3511 6 6 . 8 2 0  4 1 . 7 0 9  . 

As  t he  v a l u e  o f  X* was  o n l y  s l igh t ly  l o w e r  t h a n  in t h e  n o n - h i e r a r c h i c a l  m o d e l  

w h e r e a s  the  d i f f e r e n c e  b e t w e e n  ~ a n d  ~ *  IS c o n s i d e r a b l e ,  we p r e s u m e  t h a t  for  

p r a c t i c a l  p u r p o s e s  we w o u l d  c h o o s e  the  n o n - h i e r a r c h i c a l  m o d e l ,  b u t  we sha l l  go  

o n  p r e s e n t i n g  s o m e  r e su l t s  fo r  t h e  h i e r a r c h i c a l  m o d e l  for  i l l u s t r a t i ve  p u r p o s e s .  

W e  m e n t i o n  t h a t  c o m p u t a t i o n s  m a d e  o n  t he  s a m e  d a t a  w i th  the  m o d i f i e d  m o d e l  

d e s c r i b e d  in s u b s e c t i o n  4.5 ,  gave  m u c h  m o r e  r e a s o n a b l e  resu l t s .  

F o r  fl we f o u n d  

fl* = ( - - 0 . 0 5 8 7  0 .01228  0 . 0 0 6 8 7 ) ' .  

TABLE 6 4 

II - 0  05086 0 01078 0 00762 
14 - 0 05181 0 05778 - 0 02127 
15 - 0  05134 0 03461 - 0  00683 
16 - 0 05132 0 03384 -000638  
17 - 0  05091 0 01332 000631 
18 - 0  05102 0 01853 000276 
24 - 0 05090 0 01263 000662 
25 - 0 05058 -000309  0 01623 
31 - 0 05065 000014 0 01424 
33 - 0 05059 - 000233 0 01643 
34 - 0.05100 0 01753 0.00355 
37 - 0  05078 0 00707 0 01019 
39 - 0 05093 0 01407 000577 
45 - 0 05106 0 02029 000170 
46 - 0 05043 - 0  01066 0 02107 
47 - 0  05086 0 01094 0 00775 
53 - 0 05093 0 01400 0 00575 
54 - 0 05071 0 00327 0.01236 
66 - 0 05091 0 01307 0 00630 
93 - 0 05082 000877 0 00905 
94 - 0 05070 000284 0 01290 
96 - 0 05083 000927 0 00862 
97 - 0 05079 000733 0 01003 
98 - 0 05078 000682 0 01037 

Make b~' 
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In Table 6.4 we have displayed the empirical credibility estimate b~* for the 24 
makes included in the study. The table illustrates the problem discussed in 

x , ~ b ,  will be decreasing in subsection 4.4; we see that for makes 25, 33, and 46 ' "* 
engine power, and for makes 14, 15, and 16 It will be decreasing in price/weight. 

As examples of the values found for IL* we display the value for one make with 
low exposure (Skoda) and one with high exposure (Opel). We found 

{ 0.0211 -7.9151 4.979 ) 
Ill* 39"102= ~-7.9151 39.063 24.483 

\ 4.9790 24.483 15.463 

/ 0.0071 -0.095 0 .0 6 8 )  
I I ~ ' 1 0 5 =  ~-0 .0954 4.459 3.114 

\ 0.0678 3.114 2.255 . 

Table 6.5 is the hierarchical analogue to Table 6.3. The quantities displayed in 
the last three columns are the estimates of the quantities 

¢',,k = (1 - ~',k)[ X + (1 - ~,k)x/,i, II,x,,~,] 

i~ (make) nk = X + X~kFlnXn~c 

@,~°k~ = X + X,~kEX, k. 

TABLE 6 5 

Make Model Y,k x,,~:b, m,k ~',,~ x,~fl* ~*~ ~,*,t~ mnke) ff~k °) 

14 541 3 336 4 042 3 891 0 2141 
15 313 0 502 2 066 1 944 0 0779 
16 321 2 283 1 010 1 632 0 4885 
17 328 I 465 I 629 I 522 0 6541 
18 451 5 628 2 152 2 693 0 1558 
18 741 0 147 I 613 I 529 0.0572 
25 504 2 075 2 517 2 413 0 2346 
31 327 0.844 1 193 1 075 0 3391 
31 347 1 135 1 146 1 141 0 4486 
31 421 1 644 1 441 I 612 0 8448 
33 354 0 954 1 332 1 186 0 3867 
33 892 3 043 1 576 1 721 0 0985 
39 323 1 301 1,086 I 130 0 2049 
45 523 10 904 2 497 2 782 0 0339 
46 506 1 556 I 408 1 413 0 0313 
46 907 0 0 0 0  1 466 1 444 0 0150 
53 349 1 307 1 430 I 417 0 0990 
54 396 I 230 I 354 I 306 0 3912 
93 411 1 133 1 108 I 124 0 6248 
94 417 3 046 2 625 2 660 0 0824 
96 433 1 811 1 409 1 590 0 4505 
97 321 0862  1.513 1443 0 1071 
97 832 1 749 1 539 I 634 0 4517 
98 353 I 243 I 442 I 385 0 2841 
98 474 1186 1.499 1 357 0 4544 

2 495 
1 587 
0 998 

603 
880 
553 
694 
221 
260 
890 
5O8 
955 
044 
229 
458 

2.477 
I 402 
I 515 
I 268 
2 517 
1.480 
1 609 
I 677 
I 567 
1 675 

0 1911 0 2573 I 4167 
0.2366 0 2621 0 6572 
0 0994 0 1973 0 1975 
0 0798 0 3050 0 5152 
0 1882 0 2288 2 5677 
0 1871 0 1989 0 3889 
0 1666 0 2258 0 3189 
0 1296 0.1987 0.2013 
0 1072 0 1969 0 2688 
0 0307 0 2336 1 5493 
0.1294 0 2235 0 4459 
0 2666 0 3072 1 1428 
0 2863 0 4036 0 7804 
05712 06053 1 6357 
0 2641 0 2753 2 4120 
0 2641 0 2692 2 2515 
0 3058 0.3557 0 5623 
0 1290 0 2252 0 4975 
0.0827 0 2688 2 3997 
0 2420 0.2703 0 3121 
0 1137 0 2199 0 6209 
0 2003 0 2283 0 6666 
0 1268 02641 1 1276 
0 1460 0 2089 0 8462 
0 1142 0 2244 I 4243 
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The quan t i ty  ff,,k has a l ready  been defined as the es t imat ion  error  o f  the credibi l-  
n(make) 

Xnkbn ity e s t ima tor  rh.k. We have that  v/ , ,k would  be the es t imat ion  error  of  ' " 
as e s t ima tor  of  rnnk , (O .k , ,H . )  for a car  model  k '  with the same technical  
specif icat ions as car  model  k, but  for which we have no exposure.  (To say that  
~(,,,~k~) ~S the es t imat ion  er ror  of  ' " x.kb. considered as es t imator  o f  m,,k(O,,~, H . )  
would  be wrong as t~,, conta ins  claims da ta  f rom car model  k.)  Similar ly ,  , t0)  ~nk 
would be the es t imat ion error  of  X,~kB considered as es t imator  of  m.,k,(O.,~', H., )  
for a car  model  k '  o f  make  n ' ,  for which we have no exposure .  

As a consequence  o f  the fact that  the value o f  ~* was lower in the present  model  
than m the non-h ie ra rch ica l  model ,  we see that  the values o f  ~'~*k are also lower.  
This Is intui t ively reasonable  as/~.k in the hierarchical  model  would conta in  more  
i n fo rma t ion  than  B in the non-hierarchica l  model .  
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