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ABSTRACT 

Credibility theory refers to the use of  linear least-squares theory to approximate 
the Bayesian forecast of  the mean of a future observation; families are known 
where the credibility formula is exact Bayesian. Second-moment  forecasts are 
also of interest, for example,  in assessing the precision of the mean estimate. For 
some of these same families, the second-moment  forecast is exact in linear and 
quadratic functions of  the sample mean. On the other hand, for the normal 
distribution with normal-gamma prior on the mean and variance, the exact 
forecast of  the variance is a linear function of the sample variance and the squared 
deviation of the sample mean from the prior mean. Bi.ihlmann has given a 
credibility approximation to the variance in terms of the sample mean and sample 
variance. 

In this paper,  we present a unified approach to estimating both first and second 
moments of  future observations using linear functions of  the sample mean and 
two sample second moments ;  the resulting least-squares analysis requires the 
solution of  a 3 × 3 linear system, using 11 prior moments from the collective and 
giving joint predictions of  all moments of  interest. Previously developed special 
cases follow immediately. For many analytic models of  interest, 3-dimensional 
joint prediction is significantly better than independent forecasts using the 
"natural"  statistics for each moment  when the number of  samples is small. 
However, the expected squared-errors of  the forecasts become comparable as 
the sample size increases. 

0. INTRODUCTION 

In applications of  Bayesian prediction, it is often difficult or extravagant to 
compute the entire predictive distribution; for example,  the underlying likelihood 
and prior densities may be empirical, with only a few moments known with any 
degree of reliability. Also, the decision structure may depend only upon the first 
few moments,  instead of upon the total shape of the predictive density. Finally, 
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the need for repeated recalculation of forecasting formulae may argue for simple, 
easy-to-compute results. 

A case in point is actuarial science, where the fair premium (predictive mean) 
is the point estimator of  basic importance. To this may be added fluctuation 
loadings, which are given functions of the predictive second moment,  the variance, 
or the standard deviation (see, e g., GERBER, 1980). Credibdity theory is the name 
given by actuaries to approximations of  Bayesian predictors by formulae that 
are linear in the data, chosen to minimize quadratic Bayes risk. Thus, credibility 
formulae are linear least-squares predictors, and are akin to the classical estimators 
of  that type, and to the linear filters used in electrical engineering. 

The main emphasis of  credibility theory thus far has been on approxtmating 
the predictive mean, under a wide variety of different model assumptions (see, 
inter alia, NORBERG, 1979; JEWELL, 1980). For many simple models used in 
practice, the linear credibility predictor of  the mean is exactly the Bayesian 
conditional mean,  in other situations, the credibility formula is usually quite 
robust. 

1. B A S I C  M O D E L  A N D  N O T A T I O N  

Consider the usual Bayesian setup, in which a random observable, .~, depends 
upon an unknown parameter,  0, through a (discrete or continuous) likelihood 
density, p(xlO ). In the experiment of interest, 0 is fixed at some unknown and 
unobservable value 0, but the parameter  has a known prior density, p(O). The 
conditional moments  of  ~, given 0 are: 

(1.1) m,(O) = ~(:x) '10),  (i = 1, 2 , . . . ) .  

If  we were to attempt to predict x prior to observing any data, and without 
knowing 0, we would have to use the marginal density of .~, p(x) = ~{p(xlO)} = 
J p(xlO)p(O) dO, which has prior-to-data (marginal) moments: 

(1.2) rn, = ~{m,(O)} = .~{(.~)'}. 

For convenience in the sequel, we also define higher order cross-moments about 
the origin, such as: 

(1.3) m~ = ~{m,(O)mj(O)}; m,jk = .~'{m,(l~)mj(O)mk(O)}; etc., 

explicitly permitting the indices to be repeated, e.g., real = .~'{(rnl(O))2}. Thus, 
from the four conditional moments {m,(0); 1=1 ,2 ,3 ,4}  we can form eleven 
marginal moments  of  order four or less: 

(1.4) ./~={ml;m2, mtl;m3, m21, mlll;ma, m31, m22, m21t, mllll}. 

Three central moments of order two deserve special symbols: 

(1.5) e=~g~{~lO}=m2-m,,;  d=~g{~lf f}=ml,-rnt2; 

c = ~ { . ~ }  = e + d = m 2 -  m~ ,  
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where double operators and their corresponding operands are to be interpreted 
"inside-out".  Central moments of  higher order can also be defined. 

Now suppose that n independent observations, ~ = {x~, x2, • • •, x,}, are drawn 
from the same likelihood density, p(x[ 0), with 0 fixed, but unknown. From Bayes' 
law, the posterior-to-data parameter density is: 

(1.6) p (0[~)cc  1~I p(xulO)p(O), 
u ~ l  

and knowing this enables us to calculate the posterior-to-data pred~ctwe densuy 
for the next observation, .~,+t, as: 

(1.7) p (x ,+ , l~ )  = f p(x,+,lO)p(Ol~) dO. 

This is, in fact, the predictive density for any future observation, assuming that 
0 does not change, and that no more information is available. From our viewpoint, 
given 9,  the {-~,+l, -x,+2, x,+3, - • .} are exchangeable random variables ; for example,  
the joint predictive density of  (.~,+~, x,+z) is: 

(1.8) p(x,+,, x,+21~) = f p(x,+,[O)p(x,+2[O)p(O[~) dO. 

(1.7) and (1.8) also have predictive moments analogous to (1.2), (1.3): 

(1.9) m , ( ~ )  = ~"{-~,+,l~}; m2(~) = ~{.~2,+,1~}; 

m,~(~)  = ~{£,+v~,+21@}; etc., 

that can, in principle, be calculated exactly; however, analytic solutions almost 
always require that p(x[O) and p(O) be chosen from among natural conjugate 
famdzes. We now consider how approximate results can be obtained for the 
predictive moments in (1.9). 

2. C R E D I B L E  M E A N  F O R M U L A E  

Consider first the problem of calculating or approximating m~(~). For many 
years, actuaries (in a different terminology) have been assuming that this 
"experience-rated premium" was linear in the data, as summarized in the sample 
mean, .~=~ x~/n (it is clear from exchangeability arguments that each of the 
samples, xu, should be weighted the same). Using heuristic reasoning, they argued 
for the approximation:  

(2.1) ml(~) = ,~1-~,+,1~} = f t * ( ~ )  = (1 - z,)m, + z,.~, 

i.e., the forecast, f~*(~),  should be a convex combination of the "manua l"  (prior) 
mean, m~, and the "experienced" mean, ~. The "credibility factor", z~, that 
weights these two means is, they argued: 

n 
(2.2) Zl - - -  

nol  + n '  
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where the "credibility time constant", non, was to be chosen empirically. This 
heuristic formula, used for many years, was considerably strengthened by 
BUHLMANN (1967), who showed that the best linear formula (in the least-squares 
sense) to approximate the predictive mean ml (~ )  was precisely the credibility 
formula, f~*(~), but with the time constant computed explicitly from the prior 
second moments: 

e m 2 - m t t  m 2 - m  ~ c 
(2.3) not d m t t - m t  m t l - m ~  1 = ~ - 1  2 

Thus, a credibility predictor to approximate ~'{~,÷~1~} needs only the first three 
components of (1.4), {m~; m2, mlt}, instead of the complete shape of the prior 
and likelihood densities. 

In fact, Bailey, Mayerson, and others had already shown in the 1950s that 
(2.1), (2.2), (2.3) was exactly mr (g )  for many "natural"  p(xlO) and p(O) used 
in Bayesian modelling. JEWELL (1974a) then showed that, if the likelihood were 
a member of  the szmple exponential family (for which .~ is the sufficient statistic) 
over some space X: 

a(x) e -°x 
(2.4) p(x]O)= 3,(0) ' ( x ~ x )  

and p(O) were the natural conJugate prwr to (2.4): 

[3,(0)]-"0, e-O~o, 
(2.5) p ( O ) -  , ( 0 ~ 0 )  

g( nol, Xol) 

over the maximal range O for which the normalization g(not, Xol) is finite, then, 
under a certain regularity condition (JEWELL, 1975), (2.1) is exact, with the 
hyperparameters not in (2.3) and (2.5) identical, and with Xot = mtno~. 

A simple argument also shows that, if the exponent Ox in (2.4) is replaced by, 
say, Ot(x), then the credibility form (2.1) again provides an exact prediction for 
~'{t(x,+t)l~} as a linear combination of the prior mean of the statistic, ~{t(.~)}, 
and the sample mean of the statistic ~ t(xu)/n, with appropriate redefinition of 
(2.3). For this and other reasons that will become clearer below, we feel that 
(2.1) is a robust formula in most cases. 

3.  E X A C T  R E S U L T S  F O R  S E C O N D  M O M E N T S  

We now consider exact results that are known for the predictive moments, ml(~) ,  
m2(~), and m l t (~ ) ,  concentrating on the most-studied case, the simple exponen- 
tial family. 

It is well known that the combination (2.4), (2.5) is closed under sampling, so 
that, posterior-to-data ~, the hyperparameters in (2.5) are replaced by: 

(3.1) nol~nol+n; Xol~-Xol+nx. 
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Since m t =  Xot/not, it follows that  the upda ted  first m o m e n t  is: 

Xot + n~ 
(3.2) ~{:~,+,[~} = m , ( ~ )  (1 - zt)m, + ztY,, 

n o t + n  

which is s imply  (2.1), (2.2). It is also clear that  the marginal  second momen t s  
must also involve only not and Xo~, and that  the predict ive second momen t s  must 
be a funct ion of  only the sufficient statistic, :~, but no fur ther  s ta tement  can be 
made  about  dependenc ies  in general.  JEWELL (1974a) tabulates  d = d(not, Xot) 
for six of  the examples  given below, whence one can easily get e = notd(not, Xot), 
c = (no+ 1)d(not,  Xot), and hence: 

(3.3) m2(~ )  = (not + 1 + n)d(nol  + n, Xot + n.~) + m12(~) 

mt t(@) = d(no, + n, Xot + n.~) + m~(~),  

and,  from these, the upda ted  versions of  the central moment s  c and d: 

(3.4) ~ { x , + t l ~ }  = m2(~ )  - m~(~) ,  

~¢{~.÷ t; ~.+21~} = m, t ( ~ ) -  m,~(~). 

EXAMPLE 1. Let p(xlO) be Bernoulli  (~r) and p(Tr) be Beta (Xot, not-Xol),  
( 0 = I n  ( r r - t -  1)), then: 

XOi (no t  - xol  ) 
(3.5) d(no, ,  Xot) = nlt(no, + 1) " 

EXAMPLE 2. Let p(x[O) be Geomet r i c  (rr),  and p(~-) be Beta (Xot, n o t + l ) ,  
(0 = In w- I ) ,  then: 

Xo~(Xot + no~) 
(3.6) d(no,, Xot) = n~t(no~- 1) 

EXAMPLE 3. Let p(xlO) be Poisson (~r) and p(Tr) be G a m m a  (Xot, not), (0 = 
In rr-~), then: 

X0I 
(3.7) d(no,, Xot) -  n~, 

EXAMPLE 4. Let p(xlO) be Exponent ia l  (0),  and p(O) be G a m m a  (not + 1, Xot), 
then: 

Xo 2, 
( 3 . 8 )  d ( no1 , Xot ) = no2t (not  - 1 )" 

EXAMPLE 5. Let p(x[O) be Normal (~r , s~) ,  So 2 known,  
Norma l  (Xot/ nol, So2/ not), 0 = - z r /  s~, then: 

(3.9) d(not ,  Xol)-- s._~_ ( independen t  o f x o 0 .  
not 

and p(rr )  = 
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Thus, in these examples from JEWELL (1974a), d(nm, Xol), m~(~),  m2(~),  and 
m ~ ( ~ )  are all linear, quadratic, or constant m Xo~ and hence m .~ as well. 

MORRIS (1982) refers to simple exponential likelihoods (2.4) in which mE(0 ) 
is at most a quadratic polynomial in m~(O) as QVF-NEF;  he shows that the only 
members of this family are the five examples above, plus Example 6, below, plus 
all of  the related members found through linear translation and convolution 
(Binomial, Pascal, Gamma,  etc.). 

EXAMPLE 6. The last member  of this group is the Hyperbolic Secant density: 

- 0 x  
e 

p(xlO) = (cos 0) 2 cosh (rrx/2) '  

for which 

(3.10) d(nol, xm) - 

[° 
x = I - m ,  + m ] ,  o = + 

xg, + 
no21( nol - 1)" 

This hkelihood seems to be useful only in certain random-walk problems. 
We should mention also that it is easy to construct members of the simple 

exponential family in which the mean is a complicated function of ~, for example, 
by truncating the range of any of the above distributions. 

To obtain dependency on .~ and other statistics, we must turn to two-parameter 
families, of  which the most popular  ~s the normal density with both the mean, 
/2, and the precision, ~, as random quantities. 

EXAMPLE 7. Let 

and 

p( xJO ) = p( xl~, oJ )= Normal (a ,  w - ' )  

.02,,]) 
p(w) = G a m m a / o q  ~ l X o 2 - / - - 1  , 

\ z k \ rim~ 

with a, xm, Xo2, and 
sampling, with updating: 

n 
(3.11) ct ~- ot +~ ;  n o l ~ n m + n ,  

XOi.<__Xoi..~_~Xu ; X02 ~_ X02 ..~._ ~ 2 Xu; 

from which we find that (3.2) again holds, and that: 

(3.12) d = d(nol, a, Xo~, Xoz) = (2a - 2 )  [.\no~/ knol l  

where c =  e + d  is the prior variance. 

p(la.lw ) = Normal ( X°t, ( nmw )-~ ) ,  
\ n o l  

non given hyperparameters.  This family is closed under 

1 
(2o~ - 2 )  c' 
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For  this example ,  we see that  the updat ing_~i l l  give exact s econd -momen t  
predictors  that  are quadra t ic  in ~ and linear m x 2 = ~  x2w/n. Because the normal  
case is so impor tan t  to least-squares approx imat ions ,  we also give the exact results 
cor responding  to (3.4) in terms of  the sample variance, s 2= n - ~  ( x ~ - $ )  2, the 
sample  mean ,  .~, the pr ior  marginal  variance,  c, and the credibil i ty factor,  z~: 

(no,+,+n) 
(3.13) ~{;n+~l~}=(no~+l+n)CC{~, ,+~;x ,+2[~}=\~_~ 

x F / 2 ~ - 2 \  ~)2].  [ ~ ~ - i - ) ( 1 -  2",)c + z,s2 + z,(1-- Zl)( m, -- 

An impor tan t  simplification occurs if the "na tu ra l "  choice 2c~ = n01 + 3 is made ;  
note that this does not significantly restrict the choice of  the 2 -paramete r  G a m m a ,  
but does mean  that there are only three distinct hyperpa ramete r s  in all. (3.13) 
then simplifies to a general ized credibility formula:  

(3.14) ~ { J . + , l ~ }  = (no, + 1 + n)c¢{5.+, ; .~.+21~} 

= (1 - z,)c+ z,s2+ z,(1 - z , ) (m, -  ~)2. 

This result is not new, but  rea r rangement  into credibili ty form first appea red  in 
JEWELL (1974a).  The equivalent  mul t id imensional  formula  appea red  in JEWELL 
(1974b, 1983). 

(3.14) is, in fact, equivalent  to: 

(3.15) ,~{£2,+1[~} = m2(~)  = (1 - zl)m2+ zlx z, 

that is, the predict ive second momen t  is exact ly in credibihty form with the same 
credibili ty factor  as in (2.2), with obvious  ad jus tments  to the pr ior  mean  and 
sample  mean.  

4. LEAST-SQUARES T H E O R Y  A N D  M U L T I D I M E N S I O N A L  C R E D I B I L I T Y  

We now take a t empora ry  detour  to display some general results f rom multi- 
d imensional  credibil i ty theory that will be used in the next section. Suppose  we 
have a vector-valued version of  the Bayesian model  o f  Section 1, in which samples  

= {Yt, Y2, • - •, Y,} of  a vector-valued r andom variable,  ~, are to be used to predict  
a r andom vector,  ft. I f  we approx imate  ~{ff]@} by a l inear funct ion of  the 
vector-valued sample  mean ,  y = ~ y,/n, least-squares theory then shows that the 
best (vector-valued)  predic tor  is: 

(4.1) f ( ~ )  = ( ,g'{ff} - Z~{.~}) + Z~ ~ ,~{ff[~}, 

where Z is a matrix of  appropr ia t e  d imensions  given by the solut ion of  the normal 
system of  equa tmns :  

(4.2) Z ~ ' { ;  ; ;}  = c¢{ ~ ; ;}  

( ~  is the matr ix  covar iance  operator) .  
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Now suppose  ~, is actually a future observat ion  of  the same r andom vector,  
~, say f f = f , ÷ ~ .  Then these equat ions become:  

(4.1') f (  ~ ) = ( I  - Z ) m  + Z y  -~ ~{.~.+,l@} 

where I is the n x n  unit matr ix,  Z is the square  solution of: 

m is the pr ior  mean  vector,  obta ined  f rom the condi t ional  mean vector: 

(4.3) re(O)-- ~{~10}; 

m = ~ { . f l  = ~ { m ( ~ ) } ;  

and E and D are the two componen t s  of  within-risk and between-r isk covariance,  
respectively:  

(4.4) E =  ~'~'{.~; .~[0}; D = ~'{m(/~); m(0)};  

~ = ~ { . ~ ; . f l  = E +  O. 

Thus,  the credibil i ty fo rmula  of  Section 2 extends directly to the multi- 
d imensional  case, with a credibili ty matrix,  Z ,  mixing the prior  mean,  m, and the 
exper ience  mean ,  .~. The  ana logy is comple te  if we assume D has an inverse and 
rearrange (4.2'): 

(4.5) Z = n D ( E + n D ) - ~ = n ( n l + N ) - ~ ;  N = E D  -~, 

where N is now a matrix of  t ime constants.  Fur ther  details on this extension may 
be found in JEWELL (1974b). 

The accuracy  of  any forecast  f ( ~ )  for y,÷~ is measured  by the diagonal  terms 
of  the expected  squared-er ror  matrix:  

(4.6) • = ~{[.~,+, -f(~)][. .~,+~ - f ( ~ ) ] ' } ;  

note that the expecta t ion  is over  all possible  joint  values of  (.~,+~; ~ ) .  However ,  
since the latter are independent ,  given /9, ~ can be d e c o m p o s e d  into: 

(4.6') • = ~'{[~,+~ - m( / J ) ]~ ,+ ,  - m(0)] '}  + ~ { [ f ( ~ )  - m ( 0 ) ] [ f ( ~ )  - m(0)] '}  

= E + a.l.J', say, 

where we see the por t ion of  the mse due to the inherent  fluctuation of  the 
observable ,  and the mse due to the approx ima t ion  of  the true mean,  re(O), by 
the approx ima t ion ,  f ( ~ ) .  

We know that  the m i m m u m  values of  the diagonal  terms for  • and • are 
a t ta ined by picking the Bayesian predictive mean ,  m ( ~ )  = ~{~,+~1~}, which, in 
general ,  leads to a nonl inear  regression on the data. With a l inear forecast  (4.1'), 
(4.2'), it is easy to show that, for any n, 

(4.7) ~ = E[ E + n D  ]-~ D = [I  - Z ] D  = D[ I - Z'].  
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In most cases of  interest, all terms of  ~ will app roach  zero as n app roaches  
infinity for any forecast ,  so that  all forecasts are asymptot ica l ly  equivalent ;  in 
the linear case, it usually happens  because  Z approaches  I (see also (8.6)). 
Fortunately,  a l inear predic tor  also usually has small mean-squared-e r ro r  also 
for modera t e  n, even though f ( ~ )  is not exact ly the Bayesian predict ive mean.  

We now examine  the use of  (4.1'), (4.2') as an approximation for  our  original 
one-d imens iona l  p rob lem of  est imating second moments .  

5. O R G A N I Z I N G  T H E  L E A S T - S Q U A R E S  C O M P U T A T I O N S  

We return to the main prob lem of  organizing credibili ty approx ima t ions  f2(@) 
and f l l ( ~ )  for m2(~)  and r o l l ( g )  of  arbi t rary distr ibutions.  In view of  the exact 
results in Section 3, it seems reasonable  to restrict the statistics to be used to 
l inear and quadra t ic  funct ions of  the da ta ;  however ,  there are several different 
ways to select statistics o f  this type. After a great  deal o f  exper imenta t ion ,  the 
authors  have found that  the choices that  give the s implest  and clearest  results 
are the " n a t u r a l "  first and second moments  about  the origin: 

= -  2 '-5 1 
(5.1) t l ( ~ )  nl ~ xu = x ;  t2(~)=~x"=X;n t l t (~)-n(n-1)  ~x~x~;~o 

for n >i 2. In other  words,  we set f i = [ t l ( ~ ) ;  t2 (~) ;  t l , ( ~ ) ] ' =  t ( ~ )  in (4.1). Note  
that  this choice implicit ly includes (.~)2 = i rE(O)+  (n - 1)ttl(~)]/n, as well as the 
sample  var iance s 2 = [ ( n  - 1)/n][t2(~)- t t l (~ ) ] .  

As predic tands ,  we can get all the forecasts o f  interest simultaneously by setting 
= [.x,+~ • x,+l'2 ; x ' ~ ~ ] ' .  Then,  to get Z in (4.1), we need only to compu te  the 

means in (4.1) and the two covar iance matr ices in (4.2). This approach  is thus 
similar to credibil i ty regression model l ing;  see HACHEMEISTER (1974). 

For the means,  we find easily. 

(5.2) ~{~1o) = ~ 1 0 }  = re(o) =Ira, (0);  m2(0); m,,(0)]' ,  

~'(fi} = ~{I~} = m = [ m l ;  m2; m, , ] '  

(Note  that  mat(O)= m~(O) ) Compu ta t i on  of  the covar iance  terms is straightfor- 
ward,  but  tedious,  as they involve all 11 momen t s  of  (1.4); we find, for n ~ 2 :  

(5.3) cg{fi;.~}=D+-lE(n); ~ { f f ; P I = D ;  
n 

where D and E(n) are new matrices,  analogous to the matr ices in (4.4), but 
otherwise unrelated.  Explicitly, we find. 

-mlt--m~ m21--m2m I ml t~ -ml lmt  1 
( 5 . 4 )  O = m 2 2 -  m~ m2' ' -  m2m' '1 

/ 
(symmetric)  2 
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and 

(5.5) 

where 

(5.6) 

and 

(5.7) 

E(n)= Eoo+~_ lEl" 

I ITI2-- ml  i m 3 - -  FFl21 

Eoo = m4 - m22 

(symmetric) 

2 ( m 2 l  -- r r l l l l )  ] 
2(m3~ - ms, l) 

4(m211- m~,l,) 

[i0 0 ] E , =  0 0 . 

0 2(m22-2m21,+mttll ) 

Once these have been computed, the credibility matrix Z is the solution of: 

(5.8) Z(D+~E(n)) = D; 

and the vector forecastf(~)=[fl(~);fE(~);f,~(~)]' is given by: 

(5.9) f(~) = (I - Z)m + Zt(~), 

which should be compared with (4.1'), (4.2'). 

6. INDEPENDENT FORECASTS USING NATURAL STATISTICS 

Before examining the various aspects of the three-dimensional forecast (5.9), it 
is of interest to consider first how the one-dimensional result (2.1) would general- 
ize if second-moment forecasts were made only in terms of their "natural"  
statistics, i.e., if the solution to Z were forced to be diagonal. We find: 

(6.1) rn2(~) = ~{.~2~+,1~} ~f2*(~)  = (1 - zz)m2+ z2t2(~); 

n /~1/4 -- m22 
Z 2 --  - - ,  t102 --  - - - - - - - - - -~ ,  

H02 "~- n /~/22 -- m2 

and, for n i> 2, 

(6.2) rntl(~)=~'{.~,+l.~,+zl~}~f~*~(~)=(1-zl,)ml,+Zllt11(~). 
2 

4(m2,1- mllll)+---7(mn-2m21~+ mllll) tl n - - I  

Zll n+noll(n )' noll(n)= m,l,l_rnl21 

These are to be compared with (2.1), (2.2), (2 3), which, of course, still hold for 
the first-moment forecast. (Note that asterisks distinguish the independent 
forecasts f~*, f~ ,  and f~** from the corresponding components of the joint forecast 
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f, and that zj~ in (6.2) is not the (1, 1)st component  of  Z in (4.2').) We will return 
to analysis of  independent forecasts in Section 9, after analyzing the asymptotic 
behaviors of  (5.8), (5.9). 

7. LIMITING BEHAVIOR OF THE JOINT FORECAST 

The analogy with (4.5) is complete if we can assume that D has an inverse (but 
see Section 8), for then (5.8) can be rearranged into: 

(7.1) Z = n ( n l + N ( n ) ) - t ;  S ( n ) = E ( n ) D - t ;  

so that we now have a time-varying "time constant":  

1 
(7.2) N ( n )  = N~o+ n 1N~" N~o = E~oD -~" N~ = E~D -~. 

Because of the simple form of E~, It follows that N~ induces correction terms 
only in the third row of Z, that is, in making a prediction of rn~(~) ;  furthermore, 
this correction term vanishes rapidly with increasing n. In fact, one can easily 
make the asymptotic expansion: 

so that the correction term Nt introduces changes only of order n -2 or smaller. 
More importantly, we see that, if D -] exists, then Z * I  as n ~ o o ;  thus our 

three-dimensional forecasts become "fully credible", that is, the forecasts f . ( ~ )  
are ultimately given essentially by their own natural statistics, t , (~)  (i = 1, 2, 11). 
Asymptotically, then, the joint predictions of  Section 5 will be undistinguishable 
from the independent forms of the last section. 

8. REDUCED-RANK D MATRIX 

It would be an unusual model for which E~o did not have an inverse; however, 
it is theoretically possible that D -1 does not exist. In several of  the special cases 
examined below, D is of  rank two because of the close asymptotic relationship 
between t2(~ ) and tll(~ ). Thus, to perform the inversion in (5.8), we must use 
the well-known matrix reversion formula which states that, if a and b are n x k 
matrices of  rank k (k ~ n), then: 

(8 1) [I,, + a b ' ] - ' =  In - a [ l k  + b' a]- lb '. 

If D Is of  rank two so that, for example, d s = aa~d ~ + as:d:, where d' is the ith 
row of D = (i = 1, 2, 3), then D can be written: 

a31 a32 
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We find from (8.1) that: 

[ ' ] - '  
(8.3) Z = A  A(n)+~12 O'2E(n) -', 

where A(n) is the full-rank 2 ×2 matrix: 

(8.4) A(n) = D'2E(n)-~A. 

The important implication of these results is that, when D is of rank two, the 
limit of Z(n) as n ~ o o  is not la, but is: 

(8.5) Z(oo) = AA(oo)-'D'2EL '. 

Thus, in this case, the t , (~)  are never "fully credible" for the ~ ( ~ ) ,  and depen- 
dence upon the prior means, m, ( t=  1,2, 11), and other moments, persists. In 
fact, Z ( ~ )  is not even diagonal! 

Nevertheless, from (8.3), (8.4), it is easy to show that: 

so that, from (9.1), it follows that • will vanish even in this case! 

9 .  C O M P A R I S O N  O F  T H R E E - D I M E N S I O N A L  F O R E C A S T S  W I T H  I N D E P E N D E N T  

F O R E C A S T S  U S I N G  N A T U R A L  S T A T I S T I C S  

One can show that the second term of (4.7): 

(9.1) • = [I  - Z]D, 

is still valid when using definitions (5.4) through (5.8). The diagonal terms of 
this matrix are the mean-squared approximation errors of the (joint) forecasts, 
call them mse ( f , (~ ) )  (t = 1, 2, 11). 

However, there are several arguments in favor of replacing the forecasts (5.9) 
with their independent counterparts (2.1), (6.1), and (6.2), such as avoiding the 
numerical inversion of a 3 x3 matnx, and requiring only seven moments from 
the list (1.4). If we let d,, denote the diagonal terms of 9 ,  we can show that 
mean-squared approximation errors of the independent forecast are: 

(9.2) mse(f,*(~))=(1-z,)d,,  (1=1 ,2 ) ;  mse(f~(~))=(1-z,l)d33. 

Each of these mse is larger, in general, than the corresponding diagonal terms 
in (9.1). 

However, by making asymptotic expansions for n - oo, one can show that the 
corresponding dominant terms in n -t are identical, and that, in the limit, 
rose ( f , (~ ) )  and mse ( f ,*(~))  differ only by terms of order n -2. Thus, for a large 
number of samples, we expect little difference in the approximation errors of 
joint and independent forecasts. 
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10.  P R E D I C T I V E  V A R I A N C E  A N D  F O R E C A S T  E R R O R  

There are two second-order central moments of special interest: the predictive 
variance, 

(10.1) v ( ~ ) = ~ { # . + , l ~ } = ~ { [ # . + , - m , ( ~ ) ] 2 } = m 2 ( ~ ) - m ~ 2 ( ~ )  

and the posterior-to-data mean-squared-forecast-error: 

(10.2) , / ,(9) = ~{[.~,+, - f , (~)]21~} = v (~ )  + [.f,(~) - m l ( ~ ) ]  2. 

If t h e f t ( 9 )  and f2(~)  obtained previously are exact, then both of the expressions 
are identical and equal to f2(~)  _ f2 (~ ) .  If credibility is only an approximation, 
then this latter expression may still be a good approximation to v (~ )  (note that 
we now may be using quadratic functions of the data in f2(@)). Comparing ~b(~) 
and v ( ~ )  requires knowing how closely the credibility for the mean approximates 
the Bayesian predictive mean. 

We can proceed a bit further if we rewrite the mean-squared-forecast-error as: 

(10.3) d~( ~ ) = m2( ~ ) - rn~,( ~ ) + ~'{[ f~(~)-  m,(6)]Zl~}, 
and approximate the first two terms by f 2 ( ~ ) - f ~ l ( ~ ) .  The third term cannot be 
estimated directly; however, by averaging once more over all prior values of ~, 
we obtain ~ { [ f ~ ( ~ ) - m , ( 0 ) ]  2} = mse[f~(~)] ,  which is a natural by-product of 
our analyses. In summary, then, we would use the following estimators for (10.1) 
and (10.2): 

(10.4) v (~ )  = f2(~)  _ f 2 ( ~ )  ; 

(10.5) ~b(~) = f 2 ( ~ )  -fl ,( . .~) + mse [f~(N)]. 

BUHLMANN (1970, p. 100) also considers the problem of estimating the predic- 
tive variance. He breaks v (~ )  into a "variance part" and a "fluctuation part", 
which, in our notation, are: 

(10.6) v (~ )  = [m2(~ ) - -  m,, (~) ]  + [m,~(~) - m~(~)], 

the posterior-to-data version of c = e+  d (cf. (1.5)). He then approximates the 
first part by a one-dimensional credibility forecast using the unbiased sample 
variance, E 2= (n - 1) -~ E (xu _~)2 = t2(~)  - t ~ ( ~ ) ,  i.e., 

(10.7) e ( ~ )  = m 2 ( ~ )  - m , , ( ~ )  ~ (1 - z , ) ( m 2 -  m, , )  + z~ ~2. 

The credibility factor, z~, is a complicated function of n, but, by making the 
simplifying assumption of a "normal excess" (e.g., the kurtosis of p(xlO) ~s that 
of the normal density for every 0), he obtains a simplified form, z ,=  
( n -  K ) / ( n - 3 ) ,  where K is a complicated ratio of marginal moments. 

The second factor, 

(10.8) d ( ~ )  = m , , (~ )  - rn2(@) = F { [ m , ( ~ ) -  m,(0)]2l@} 

is approximated by: first, replacing m~(@) by f*(@),  and second, averaging over 
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all prior values of  ~, obtaining: d ( ~ ) =  rose [fl*(N)], giving finally: 

(10.9) v ( ~ )  = (1 - ze)e+ ze[t2(N) - q~(~)]  + mse [f~*(~)]. 

With our extended use of  these statistics, we could presumably improve 
Biihlmann's analysis by arguing in the same way that: 

(10.10) v(N) ~fz(N) - f l ~ ( ~ )  + mse [f~(~)].  

However, this is exactly the approximation (10.5) for f f (~ ) ,  which must be larger 
than v ( ~ )  if mean credibility is not exact! So, we would still prefer (10.4) for 
the estimate of  the variance. 

The difficult-to-estimate term, d ( ~ ) ,  is, in fact, the posterior-to-data predictive 
covariance, ~{[.~,+1- mt(~)][ .x ,+2-  m~(~)]l~},  which we know must vanish with 
n as the true value of 0 is identified. For instance, with the simple-exponential 
family of  Section 2, we have d ( N ) = e ( ~ ) d / ( e + n d )  or v ( ~ ) =  
e(fl0)[l + (d/(e +nd))]. And, in the general case, i f f l ( ~ )  is close to ml(~),  then 
we know that the average (preposterior) value of d ( ~ )  is mse [ f t (~ ) ] ,  which 
probably vanishes like mse [fl*(N)] = ed/(e +nd). 

So, in short, we doubt if the accuracy issues raised here are important in any 
realistic application, and expect the errors in using (10.4), (10.5) to be of  the 
same order of  magnitude as the errors m the underlying predictions f ( N ) .  

11. NUMERICAL EXAMPLES 

It should be remembered that important simplifications often occur in D and 
E(n) for the usual analytic forms assumed for the likelihood and the prior. For 
instance, where the likelihood is normal, with possibly random mean and variance, 
we have: 

m3(0) = 3v(O)m(O) + m3(0); 

m,(0)  = 3v2(0) + 6v(O)m2(O) + m4(0) ; 

where 

m(O)=m,(O) and v(O)=m2(O)-mZ,(O). 

From this, we see that all eleven moments in (1.4) can be expressed in terms of 
moments and cross-moments of  re(O) (up to order 4) and v(O) (up to order 2). 

The likelihoods introduced in Examples 1 through 6 of Section 3 have been 
characterized by Morris (1982) as the natural exponential families with quadratic 
variance functions, i.e., the variance is at most a quadratic function of the mean. 
From this, it follows that, for this family, the components of re(O) in (5.2) are 
linearly-dependent functions of the parameter,  and that D is singular. For 
example, if the likelihood is Poisson (zr), then m ( z r ) = [ I t ;  ~r+ 1r2; Ir2] '. 

We now consider three numerical examples that illustrate these ideas; in all 
examples, the joint credibility forecasts are exactly the Bayesian mean forecast, 
for all n. (However,  we have not introduced this prior knowledge into the 
numerical calculations below!) 
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EXAMPLE A. Cons ider  Example 7 from Section 3, the Normal  (~, to-I),  with 
N o r m a l - G a m m a  prior, and with the following hyperparameters :  xol = 10; nol = 10; 
Xo2 = 21, a = 6.5. Note that we have chosen a = (nol + 3 ) / 2  so that the predictive 
second momen t  will be in credibility form (3.14), (3.15). 

Numerical ly,  we find the eleven marginal moments  to be. 

= {1, 2.1, 1.1, 4.3, 2.3, 1.3, 12.037, 5.0033, 5.1033, 2.7589, 1.6367}, 

and the variance componen ts  are: 

d = ~{(no~)- l}  = 0.1 ; e = ,g{t3-t} = 1.0. 

The independent  time constants o f  Section 6 are 

nol = 002 = 10, and notl(n) = 10.52+ (5.73/(n - 1)). 

For  n = 2, 10, 100, and 10,000, Figure 1 shows the credibility matrix Z for the 
three-dimensional  forecasts of  (4.2)', together with their cor responding  mean- 
squared errors, the diagonal  terms from (9.1). Also shown are the cor responding  
independent  forecast factors of  (2.2), (6.1), (6.2), arranged in matrix format for 
easy visual compar ison  (and thus making (5.9) a general forecast formula,  even 
with Z diagonal) ;  the corresponding rose's are from (9.2). 

Joint Prediction Independent Prediction 

n Z 

mse 

(!o :I .A(~) z2 
f~(~) 0 z,~ 

mse 
f~(~) 
f~ (~)  

f~(~) 

10 

100 

10,000 

t016667 000000 000000 / 008333 (016667 000000 000000) 
0 00000 0 16667 000000 / 0 57778 000000 0 16667 0.00000 
025641 002564 001282/ 035840 ~000000 000000 010959 

o5oooo oooooo oooooo/ oo5ooo [o5oooo oooooo oooooo' 
0 00000 0 50000 0 00000~ 034667 ~000000 0 50000 0.00000 
047619 004762 021429] 021862 ~000000 000000 047265 

090909 000000 000000t 000909 [090909 000000 000000 
000000 090909 000000~ 006303 ~000000 090909 000000 
016380 001638 081081/ 004061 \000000 000000 090433 

0 99900 000000 000000/ 000010 [099900 0.00000 0 00000 
0.00000 099900 000000~ 000069 ~000000 099900 000000 
000200 000020 099780/ 000045 ~000000 000000 099895 

0 08333 
0 57778 
0 37991 

0 05000 
0 34667 
0 22500 

0 00909 
0 06303 
0.04082 

0 00010 
0 00069 
000045 

FIGURE I Numencal results for Example A, Normal-Gamma-Normal 

We remark that: 

(1) Because of  previous results, m l ( ~ ) = f l ( ~ ) = f ~ ( ~ )  and m 2 ( ~ ) = f 2 ( ~ ) =  
f2*(~) ,  since a = no1+3. Thus, the upper part of  Z is diagonal, with Zll = z22 
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equal to the independent prediction factors. We also know that m , t ( @ ) = f l , ( ~ )  
(but not equal to f~*t(~), in general); here it is of interest to see how long a 
heavier weight is attached to t t (~ )  instead of the natural statistic, t~,(~). 

(2) The mse's for the first two components are, of  course, the same for both 
predictions. As might be expected, predicting second moments gwes larger mse's 
than the mse for f l ( ~ ) ;  however, the relative rate of  decrease w~th n is about 
the same. Furthermore, there is only about a 6% increase in mse for using fx*l(~) 
over the exact ft  ~(2~). 

(3) Both credibility factors approach the identity matrix as n approaches 
infinity, as the statistics in t ( ~ )  become "fully credible". 

EXAMPLE B. Consider Example 4 from Section 3, the Exponential (0), with 
G a m m a  prior, with hyperparameters:  Xot = 10; not = 10. The marginal moments 
are: 

.~ = {I, 2.2222, l . l l l l ,  8.3333, 2.7778, 1.3889, 47.619, 

11.905, 7.9365, 3.9683, 1.9841}. 

The hyperparameters  were chosen to make m~= 1.0 and not = 10.0, as in 
Example A, but now, due to the change in distributions, we have no2 = 13.24, 
and holt(n) = 10.59+ (5.29/(n - 1)). 

Figure 2 shows again the results for n =2 ,  10, 100, and 10,000, in a format 
similar to that of  fig. 1. 

Notice the following: 

(1) As in Example A, m l ( ~ ) = f t ( ~ ) = f ~ * ( 5 ~ ) ;  however, now both f2 (~)  and 
f t t ( ~ )  use all three statistics, particularly t l (~ )  and t i t (g ) .  Now, as n ~oo, we 
find the surprising result that 2 t ~ ( ~ )  is the preferred predictor for m2(~) ,  rather 
than the "natura l"  estimator, t2(~); they both have the same expectation, but 
the former has smaller variance. 

(2) In fact, we can make the following stronger statements. As a consequence 
of the exponential assumption only, m2(O)=2m~(O) for all 0, so that rn2(~)=  
2rnt~(~) for any prior. Assumption of a G a m m a  prior makes both predictions 
linear functions of  t(@), and, in fact, we see from fig. 2 that z2j = 2z3: ( j  = 1,2, 3), 
so that f 2 ( ~ ) = 2 f t ~ ( ~ )  for all ~ !  

(3) The mse's for independent predictions of  the two second moments are, of  
course, larger than in the joint predictions, and worst for f2*(~), as it is forced 
into using t2(~),  rather than ttt(5~) as its sole predictor. This gives a relative 
degradation which climbs about 20%, but, at the same time, all mse's are 
decreasing with n at about the same relative rate. Substituting t~t(~) for the 
"natural"  predictor of f2*(~)  would, of course, reduce the mse to four times that 
off~*l(~), which at its worst value (n = 2), is only about 5% larger than the joint 
prediction. 

(4) The non-convergence of Z to the identity matrix is the consequence of the 
previously-discussed fact that D is singular. However, since rn2=2rn~t, 2t~(~) 
is ultimately "fully credible" as n ~ oo, i.e., no dependence upon prior moments 
remains in f2 (~ )  in the limit. We have already proven this directly in (8.6). 
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EXAMPLE C. C o n s i d e r  Example  3 from Sect ion 3, the Poisson (Tr), with 
G a m m a  prior ,  and  hype rpa rame te r s :  X0~ = 10; n0~ = 10. The marg ina l  moments  
are: 

= {1, 2.1, 1.1, 5.62, 2.42, 1.32, 18.336, 6.776, 5.456, 3.036, 1.716}. 

The h y p e r p a r a m e t e r s  were again  chosen  to make  m~ = 1.0 and no~ = 10.0, but  
now n02 = 12.31, and  noll(n)= 10.43 + ( 4 . 3 5 / ( n -  1)). 

F igure  3 t abu la tes  the results for n = 2 ,  10, 100, and  10,000 in the same format  
as previous  examples .  

Joint Pred,ctmn Independent Predmtmn 

mse rose 

f l (~)  ( i  I 0 0 fl*(~) 
n Z f2(~) z 2 0 f2*(~) 

f , , (~)  0 z,, fl*, (@) 

10 

100 

10,000 

(0 16667 000000 000000 
060606 003030 003030 
0 30303 0 01515 0 01515 

050000 000000 0.00000 
1 05263 0 05263 0 47368 
0 52632 0 02632 0 23684 

090909 000000 000000 
0 33361 0 01668 1 65138 

i 

I0 16681 0 00834 0 82569 

099900 000000 000000' 
000399 000020 1 99601 
000200 000010 099800 

0 09259 
2 52525 
0 63131 

0 05556 
I 54553 
0 38638 

0 01010 
0 28728 
0 07182 

0 00011 
0.00317 
0 00079 

i 16667 0 00000 0.000001 0.09259 
00000 0 13127 0 00000~ 2 60465 
00000 0 00000 0 11184 ] 0 66573 

0 50000 000000 000000t 0.05556 
0 00000 0 43038 0 00000 ] 1 70786 
000000 000000 047222/ 0 39560 

1090909 000000 000000 / 0.1010 
0 00000 0 88312 0 00000~ 0 35044 
000000 000000 090382f 007209 

f099900 000000 0000001 000011 
000000 099868 0.00000 / 000396 
000000 000000 099894/ 000079 

FIGURE 2 Numerical results for Example B. Gamma-Exponent,al. 

We not ice  that :  

(1) As in Example  A and  B, the first m o m e n t  uses only t l ( ~ ) ,  but  the second  
moments  use all three  stat ist ics,  with t2(~ ) p lay ing  a decreas ing ly  impor t an t  role. 
In cont ras t  to Example  B, however ,  we now find that ,  as n ~ o o ,  t ~ ( ~ ) + t ~ , ( ~ )  

is the p re fe r red  p red ic to r  for mE(D), ra ther  than t2(~) .  
(2) This is a consequence  o f  the a s sumpt ion  that  the l ike l ihood  is Poisson,  for 

then m2(O)=m~(O)+m2t(O) for all O, so that  mE(~)=m~(~)+mlt(~) for any 
prior.  It is the a s sumpt ion  of  the G a m m a  pr io r  that  makes  p red ic t ions  using only 
l inear  funct ions  o f  t ( ~ )  exact ,  and  in fig. 3 we can see that,  in fact, z2j = z~j+ z3j 
( j  = 1, 2, 3), so that  f 2 ( ~ ) = f ~ ( ~ ) + f ~ ( ~ )  for all 9 !  

(3) The rose's fol low the pa t te rn  o f  Example  B, with the mse o f f2* (~ )  b e c o m i n g  
progress ive ly  re la t ively worse  than its jo in t  coun te rpar t .  Here,  however ,  to improve  
the p red ic t ion  error,  one  would  p robab ly  have to inc lude  both  t~(~)  and t ~ ( ~ ) ,  
as It is not  c lear  that  jus t  one o f  the la t ter  wou ld  be an improvemen t  over  using 
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Joint Prediction Independent  Prediction 

mse rose 

n Z f2 (~ )  z 2 f ~ ( ~ )  

f i t ( g )  ~0 0 2'11 fl*l ( ~ )  

10 

100 

10,000 

tO 16667 0 00000 0 00000\ 0 08333 [0 16667 0 00000 0 00000 

0 45833 0 01389 0 013891 / 0 87472 k~ 00000 0 13973 0 00000 
I 

0 29167 0 01389 0 01389• 0 42472 00000 0 00000 0 11917 

ooo000 (i o o 0o0o0o 
1 02500 0 02500 0 22500| 0 52850 00000 044816 000000 

0 52500 0.02500 0 22500! 0 25850 00000 0 00000 0 47806 

,090909 000000 0000 , 000909 (i9009 00 00 000000 
1 08264 0 00826 0 81818| 009691 00000 0 89036 0 00000 

0.17355 0 00826 0 81818[ 0 04782 00000 0 00000 0 90515] 

099900 000000 0000,  0000,0 (i99900 0000  000000/, 
1 00110 000010 099790 |  000107 00000 099877 0000001 

000210 O00010 099790! 0.00053 00000 000000 099896/  

0 08333 

0 89985 
O4457O 

005000 

0 57723 
0 2641O 

000909 

0 11468 
004799 

0 00010 

0 00129 
0 00053 

FIGURE 3 Numerical results for Example C, Gamma-Po l s son  

j u s t  t 2 ( ~ ) .  Furthermore, neither of the other statistics would ever become "fully 
credible" as n ~ co, as they are not individually equal in expectation to m2, only 
in sum. Clearly, the best single statistic to use for m2(~) in the Poisson case is 
ll(~)+tl,(~). 

12. C O M P U T A T I O N A L  STRATEGIES,  C O N C L U S I O N  

The last two examples show that some care must be exercised If one wishes to 
make independent forecasts where p(xlO) is assumed-lo be in the QVF-NEF 
family, remembering that this also includes (fixed numbers of) convolutions of 
Examples 1-6, such as the Negative Binomial with fixed shape parameter. One 
can, of course, use the combination of "natural" statistics appropnate to the 
assumed likelihood. This is particularly important when we also assume that the 
natural conjugate prior is appropriate. 

On the other hand, for an arbitrary prior, the moments will not be hnear 
functions of the statistics, so that all positions of Z would be non-zero anyway, 
as would also be the case if all moments were from empirical studies. In these 
cases, Z would approach the identity matrix as n ~ co, and we expect that the 
independent forecasts (2.2), (6.1), (6.2) would be equally good (or equally bad) 
as the joint forecasts. Clearly, more computational experience is needed in making 
this decision. 

The great advantage of the joint forecast is that it can always be used if n i> 2, 
and, if there is a tendency for certain combinations of statistics to dominate, it 
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will be revealed automatical ly.  Of course, if n = 1, we are forced to use only 
2. t~(~) = x, and  t2(~ ) ~-X], the predictive power will be weak anyway,  in most 

practical cases. 
In summary ,  we have presented an easily implemented  three-d imens iona l  

credibil i ty formula that s imul taneous ly  approximates  the first and  second 
moments  of the Bayesian predictive density. While this approach requires eleven 
prior moments  from the collective, this calculat ion is simplified when familiar  
analytic forms are assumed for the likelihood. Previous work has shown that the 
credibili ty mean  is exact in t~(~) for a wide class of l ikelihoods and priors in 
which the sample mean  is the sufficient statistic: here we have shown that the 
s econd-momen t  credibili ty predict ions are also exact for five widely-used likeli- 
hoods and  their natura t  conjugate  priors, when using the three "na tu ra l "  statistics 
in t ( ~ ) .  

For these and  other reasons, we believe that these l inear  predict ion formulae 
will turn out  to be robust  in other cases where the dis t r ibut ions are empirical ,  or 
where the exact predict ions are known to be non- l inea r  in the data. We suspect 

also that, in most cases, it will also be reasonable  to use the simplified, i ndependen t  
forecasts, paying due a t tent ion to the remarks above. The authors  look forward 
to hearing from those who apply this approach to actual predict ion problems.  
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