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AN EVOLUTIONARY CREDIBILITY MODEL FOR CLAIM NUMBERS

By PETER ALBRECHT*

Unwersity of Mannheim, FR Germany

Key WorbDs

Credibility, doubly stochastic Poisson sequences, weakly stationary sequences,
generalized Pdlya sequence.

1. INTRODUCTION

This paper considers a particular credibility model for the claim numbers N,
N,,...,N, ... of a single nsk within a collecive tn successive periods
1,2,...,n,....Inthe terminology of JeweLL (1975) the model 1s an evolutionary
credibility model, which means that the underlying risk parameter A is allowed
to vary in successive periods (the structure function 1s allowed to be time
dependent). Evolutionary credibility models for claim amounts have been studied
by BUHLMANN (1969, pp. 164-165), GERBER and JoNEs (1975), JEweLL (1975,
1976), TayLor (1975), SUNDT (1979, 1981, 1983) and KREMER (1982). Again in
Jewell’s terminology the considered model is on the other hand stationary, in the
sense that the conditional distribution of N, given the underlying risk parameter
does not vary with i

The computation of the credibility estimate of N, , involves the considerable
labor of inverting an n X n covariance matrix (n is the number of observations).
The above mentioned papers have therefore typically looked for model structures
for which this inversion is unnecessary and instead a recursive formula for the
credibility forecast can be obtained. Typically nth order stationary a prioni
sequences (e.g., ARMA (p, q)-processes) lead to an nth order recursive scheme.
In this paper we impose the restriction that the conditional distribution of N, is
Poisson (which by the way leads to a model identical to the so called “doubly
stochastic Poisson sequences’ considered in the theory of stochastic point pro-
cesses). What we gain is a recursive formula for the coefficients of the credibility
estimate (not for the estimate itself!) in case of an arbitrary weakly stationary a
priort sequence. In addition to this central result the estimation of the structural
parameters is considered in this case and some more special models are analyzed.
Among them are EARMA-processes (which are positive-valued stationary
sequences possessing exponentially distributed marginals and the same autocorre-
lation structure as ARMA-processes) as a priort sequence and models which can
be considered as (discrete) generalizations of the Pdlya process.

* 1 thank the editor and an anonymous referee for valuable suggestions
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2 ALBRECHT

2. DEFINITION OF THE MODEL AND BASIC PROPERTIES

Let A, denote the risk parameter in period 1 and let U, (A, . .., A, )—the structure
function of the considered collective—denote the joint distribution function of
Ay, ..., A, We make the following assumptions:

ASSUMPTION |
(l) P(Nl:kla,anknl{Ar})=l—l P(Nl=kI|Al)
=1
This means that the { N,} are condutionally independent given the {A,}.

AssuMPTION 2. The conditional distribution of N, given A,= A is a Poisson
distribution

Ak
(2) P(N,=k|A, =/\)=F e

It is Assumption 2 which creates the difference to the other above mentioned
evolutionary models. The price we have to pay is the specification of the condi-
tional distribution—which, however, is very natural for claim number models—
what we get on the other hand are more specific and useful results.

Combining (1) and (2) we obtain the multivariate distribution of the claim
numbers

© © g Kk
(3) P(N,=k,,...,N,,=k,,)=J' J‘ n{)" e_"'}dU,,()\,,...,)\,,).

0 o.—l_l?:?

This, however, means that the sequence {N,},cn is a ““doubly stochastic Poisson
sequence’’. Such sequences have been studied by GranpeLL (1971, 1972, 1976)
as a special case of the doubly stochastic Poisson process, which itself can be
considered as an evolutionary credibility model for claim numbers in continuous
time. We will for practical purposes, however, consider only the discrete time
model. A main implication of (3) is that it is possible to establish more properties
of the model than just the form of the conditional linear forecast of N, ., as in
the usual credibility models. E.g., one can solve other statistical problems and
one can give limit theorems for the process. For a lot of detailed results, cf.
GRANDELL (1971, 1972, 1976) and SNYDER {1975).
If we denote

@) {E(A,) =m, Cov(A,A)=r,

Var (Al) = rll = rl)
we obtain the corresponding moments of {N,} as

) {E(N,)=m,, Cov(N,N)=r, 15
Var(N,))=r,+m,
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From (2) we see that the marginal distributions of the process { N,} are mixed
Poisson distributions

@ 4y k

(6) P(N,=k)=j /\—e“ dU, (A).
o k! :

This implies that P{N, = k) can be calculated for various mixing distributions
U, (A). For some recent results see ALBRECHT (1984). The multivariate counting
distribution of the process is given by (3), but can alternatively be derived as
follows.

Let Ly(s,,...,S,) denote the Laplace functional of (A,,...,A,) and let
®N(1,,...,1,) denote the probability generating functional of (N, ..., N,).

As e *!'"" is the probability generating function of a Poisson variable with
parameter A, we obtain from (3)

(7) oN(n,. .., t")=Jw- x Jm ﬁ E[tM A =A1dU, (A, ..., A,)

0 0 =1
o =

=J e J [T e "% dU,(Ay, ..., An)
0 0 1=l

=LM1—1t,...,1—1t,).
The multivariate counting distribution then is given by the relation

[" L] 3P (1., 1)

il P R

(8) P(lekh'--,Nn:kn): k'

We now come to the central problem of credibility, the calculation of the optimal
linear forecast of N,., given the N,,..., N,. If f,(N,,..., N,)=a,+¥ _, a,N,
denotes the linear forecast function, the parameters which make E{N,,, —
fo{Ny, ..., N} a minimum are determined in the following way (this is easily
established by straightforward calculation, or as a special case from the general
result of JEWELL (1971, p. 15) or GRANDELL (1976, p. 128)).

a, is given by a single equation which makes the forecast unbiased

) Go= E(Nypuy) — Z, a,E(N,)=my., _é. am,
The remaining coefficients are given by the n X n system of linear equations
(10) i, Cov (N, N)a,=Cov (N, Novy),  i=1,...
S
or more specifically
(1) a,m,+iI ra, = sy, i=1,...,n
)=

We note, that because of the identical expectation and covariance structure the
optimal linear forecast of N,,, given the N,..., N, equals the optimal linear
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forecast of A,.; = E[N,4i[A.+1] given Ny, ..., N,. In turn this means that it 1s
also 1dentical to the optimal linear forecast of Var (N, |A,.)=A,., given
Ny, ..., N,

We now consider in detail a rather general class of doubly stochastic Poisson
sequences, which turns out to have nice properties with respect to the calculation
of the credibility forecast and the estimation of the structural parameters.

3. WEAKLY STATIONARY A PRIORI SEQUENCES

We require that {A,},.n is @ weakly stationary sequence characterized by the
following moment structure:

(12) E(A)=m forallieN
(13) Cov(A,A)=r., forallyjeN

The main result in connection with this special model s that we are able to
simplify the calculation of the credibility forecast. Whereas the general case only
allows that the inverse of C(n)=(Cov(N, N,)),-,, .. can be calculated recur-
sively we are able to give a recursive formula for the optimal coefficients a,
however, not a recursive formula for the credibility forecast.

Let now

(14) j’,',‘(N,,...,N,,)=ao(n)+'; a(m)N,
denote the optimal linear forecast of N,,, given N,,..., N, and
(15) C(n)=(Cov (N, N))yy=1, #=(c,)
denote the covariance matrix of (N, ..., N,).
We have
rtm 1=},
(16) C"={r|0,_1| t;éj'.
Let
(17) a(n)={(a,(n),...,a,(n))
(18) a(n) =(ay(n),..., a,(n))
(19) rin)y=(r,..., r,)
and
(20) Fn)=(ry,...,n).

From (10) we obtain that the optimal coefficients of the credibility forecast are
given by

(21 a(n)=C~(n)F(n).
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The following lemma gives the form of the inverse of a partitioned matrix.
LEMMA 1. Let the symmetric (n, n) matrix C be decomposed to
Ci u'
C =( ),
ul|D

where D s of order (n—1, n—1). Then we have

I 1

- ~-—v

s s
(22) C'= 1 t

— v | D' +-v0

s s
where

v=D""u

s=c,—vu=c,~u'D'u

The following lemma gives some useful elementary properties of the covariance
matrix C(n).

LEMMA 2.
1. C(n+1) can for n=1 be decomposed in the following way:
_fro+m]| r(n)y
(23) C(n+l)—( o C(n))'
2.
(24) C(n)a(n)=r(n).
This implies
3.
(25) C7'(n)r(n)=d(n).

We now define (the a,(n) are the coefficients of the credibility forecast

ﬁ(Nl’ B | Nn))

26)  s(n)=rotm—r(nY@(n)=rotm—3 ray_n(n), n=1

ree |

n

27) kiny=ry —r(n)Ya(n)=r,p— 2 ra(n), n=1.

=1

REMARK. s(n)= E{N,.,—f¥(N,,. ., N,)} ie., the minimum mean square
error of a linear forecast of N, ., given N,..., N,.
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We now come to the central result.

THEOREM. For the coefficients al(n+1), a(n-+1) of the credibility forecast

Jar1i(Ny, ..., Nou) the following relations are valid (n=1):
k
(28) ao(n+l)=(l -s((:))) ao(n)
(29) a,(n+1) =<0
s(n)
(30) a,(n+l)=a,_.(n)—k(—n2a,,_,+2(n), 2<isn+1.
s(n)

The starting values are ay(1)=m(1=r,/(ro+m}) and a,(1)=r,/(r,+ m).

REMARK. (30) can alternatively be written as

31 (az(n-H),...,a,,+|(n+l))'=a(n)—Mﬁ(n).
s(n)
ProoF.
(32) a(n+1)=C '(n+D)F(n+1).

From the decomposition (23) of C(n+1), we obtain in the notation of lemma
1, using (25):

v=C~'(n)r(n)=a(n)
=(rgc+m)—a(n)'r(n)=s(n).

The following partitioned form of C~'(n+1) results:

1 i 1.,
———a(n)
C-'(n+1)= T(") s(”l) :
———a(n) C '(n)+——d(n)a(n)
s(n) s(n)

From (32), the relations (29) and (30) easily follow. Then (28) is obtained from
(9).

CoroLLaRY. For the mean square error s(n) of the credibility forecast the
Sollowing recursive formula is valid:
k(n)’ ri

(33) s(n+1)=s(n) - s(n)’ n=l; S(1)=ro+m—ro+m.

Proor. From (26)

n
S(’l+l)=ro+m_ Z rlan+2—|(n+])_rn+lal("+l);
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using (29), (30) this simplifies to

k(n)
s(n)

k(n)
s(n)’

rotm-— i r,{a,,+,_,(n)—

a:(")}'—’nﬂ

Using (26), (27) this in turn simplifies to (33).

The theorem allows recursive calculation of the credibility forecast of N, in
case of a known risk structure. To obtain an emprrical credibility forecast, we
have to estimate the unknown parameters, which here are: m, ro, r\, #s,....

The estimation problem exhibits the second important property of the model
considered in this section. If we assume that the a priori sequence {A,} is weakly
stationary, then we obtain from (5), that the observable sequence { N,} 1s a weakly
stationary one, too. We then have the possibility to apply results from the
well-developed theory of the statistical analysis of weakly stationary time series,
seee.g., HANNAN (1960, Chapters 11-1V) or Doos (1953, Chapter X). Forexample
a spectral analysis of the sequence { N,} is possible. Some results in this direction
can be found in GRANDELL (1976, Chapter 7.2). We will here, however, confine
to the above mentioned estimation problem. Up to now we have only considered
the claim number sequence of a single risk, observed for n years. We now assume
that we observe a collective of K independent risks, each having the same
probability law of its claim number sequence.

Let

(34) N, = number of claims of risk i in year j
i=1,...,K;j=1,...,n

From standard results of time series analysis, e.g., HANNAN (1960, pp. 30-33),
we obtain the following natural estimators of the above mentioned parameters.

l n

5 o= — N,

(35) = WZHI A
. l K n-k R .
(36) = Rk =1 ZI Zl (N~ m) (N, —m), fork=1
-1 y—
(37 Var (N) =—— 3 % (N, —#)?
arti) = Kn—1 ,§| ng =)
A natural estimate for r, then is
l K n

(38) 7 Y T (N, —m)?— s

0=
Kn—1| =17 =1

As pointed out by the referee the expected value of (37) is given by

R _
var(N,)—1=—— ¥ r(n—j),

J=1

which implies a slight bias.
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The theorem shows, how the coefficients of the credibility forecasts can be
calculated recursively in the case of an arbitrary stationary a prior: sequence. It
is, however, not possible to develop a recursive formula for the credibility forecast
itself for the general case. It would be interesting to examine special classes of
stationary a prior: sequences which give rise to recursive formulae for the credibil-
ity forecast ttself. For a more general type of evolutionary models KREMER (1982)
has considered ARMA (p, q) processes as a special class of stationary a priori
sequences. In the model of this paper the a priori sequences have to be positive-
valued to be admuissible. Therefore the ARMA (p, q) processes are not admissible
in general. However Lewis and a number of co-authors (see LAWRENCE and
Lewis (1980) for the most recent results) have developed models for positive-
valued stationary time series {X,},. Which, being in general rather distinct from
the ARMA-models, possess the same autocorrelation structure as the ARMA-
processes. These processes are called EARMA (p, q)-processes, the E stemming
from the additional feature of all these processes: they have an exponential
marginal distribution!

The results of KREMER (1982) cannot be translated into the present context
for several reasons, one being that the form of the linear regressions of the
EARMA-processes have not yet been established. Another drawback of the
EARMA-processes is that the statistical analysis of these processes is not yet well
developed in general, contrary to the ARMA-processes. In the following, we
consider some examples.

ExampLE |. EAR (1)-process as a priori sequence. A stationary version of the
first order autoregressive model with exponential marginals with “finite past”
can be obtained as follows (cf. GaAvEr and Lewis (1980, p. 732):

(39)

A,=pA,_+1,E, =2
{ pln " (0<p<1)

Ay=pE,+ 1 E|,

where {I,},,~, is a sequence of i..d. Bernoulli-variables with P(], =0)=p and
{E,}.~o is an independent sequence of i.i.d. exponentially distributed variables
with parameter A. The resulting sequence is a first order Markov process, the A,
are exponentially distributed with parameter A and can alternatively be obtained
in the usual first-order autoregressive form A, =pA,_, +¢, with a suitable {¢,}.
For the second order structure we obtain

(40) {m=E(A,,)=1/)\, ro=Var(A,)=1/A%

re=Cov (A, Ansi) = p*/A%=p*r, k=1

From (40) we see that the r, fulfill the property (10) of SunpT (1981, p. 7), which
in our context reads:

(41) Fevi—, =p-ho, foralli=y, forally=1.

Clearly p,=p for all i and from Sundt’s result (11) we obtain the following
recursive formula for the credibility forecast.
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As (notation as in SUNDT (1981)) ¢, = E{Var (N,|A,)} = E(A,) = 1/ A, we define

\ 1
= n=2;
As(n—1) n

(42) ¥n

T1H1/A
@3) x=2p2+(l—p2)(1+§>
and obtain
(44) 'Yn+l=(X-7np2)_l
(45) {f:lv((Nla ccey Nn)zp[(l _Yn)Nn+ ')‘n >r‘:——l(Nla ccey Nn—l)]+(l _p)/\
fo=1/A.

This 1s the desired recursive formula for the credibility forecast.
It is interesting to note that the regressions of this a priort sequence are all
linear, precisely

(46) E(An-f-lIAI,' . :An)=E(An+l|An)=pAn+(l _P)/A

However, we have not been able to show that the regressions of the a posteriort
process {N,} are linear too, i.e., the credibility forecast in the best forecast of
N,. based on N,..., N,.

We now come to the estimation of the unknown parameters A and p and
consider again a collective of K independent risks each having the same law of
its claim number sequence. Let N, be defined as in (34); noticing that E(N,) = 1/A
and r,=Cov (N, N,,,)=p/A* we obtain from (35) and (36) the following (con-
sistent) natural estimators of A and p:

. [
(47) A=1/K—_Z N,

K n-
(48) p=r0r——— L L (N,=A7) (N, =47,
A drawback of the model is, that all correlations p, = Corr (A, A,.x) are positive.
Indeed, one can show that there does not exist an autoregressive sequence
A,=pA,_te, possesssing exponentially distributed marginals and p <0!
However, Gaver and LeEwis (1980, p 741) present models of similar autocorrela-
tion structure and negative correlation, which still possess the property of having
an exponential marginal distribution. GAver and Lewis (1980, pp. 736-737)
consider also an autoregressive process of first order with a gamma marginal
distribution and a similar autocorrelation structure, the GAR (1)-process.
ExampLE2. EMA (1)-process as a priori sequence. A first-order moving average
model with exponential marginal distribution, was considered by LAWRANCE
and Lewis (1977) and can be obtained as follows (forward formulation)

(49) A, =Be,+1.e,., (0=8=<1),
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where the {I,},-, are i.i.d. Bernoulli variables with P(I,=1)=1—8 and {¢,},~,
1s an independent sequence of i.i.d. exponentially distributed (parameter A)
random variables. The process is not Markovian and the second order structure
is given by
m=E(A,)=1/A, ro=Var(A,)=1/A%
(50) rI=C0V(An:An+l):B(l—B)r0
n= 0 fork=2
To obtain a recursive formula for the credibility forecast we can use Theorem 2

in SunDT (1981, p. 6).
We obtain the following recursive relation for the estimation error s(n):

s(n)=l(l+l)—w, nz2

A Al Ais(n—1)
Gy 1 1y _B*(1-8)°
=3 (143) -5
and the following recursive formula for the credibility forecast
_BU-B) . BU-B) 1
.F:(Nl,' RO ) Nn)"'Azs(n_l) Nn AZS(H— l)ﬁ—l(Nla vt Nn-l)+A,
(52) | (1-8) B(I ) n=2
Ny =~ BB BUZB)

TA (AN 1+A

A natural estimator of the unknown parameter 8 (A is estimated as under (47))
is given by

(53) BA=%+% \/1-422(—)_—l Zl "Z:(N ANy, =47,

A drawback of the model is that the first-order autocorrelation p, = B(1—8) 1s
always nonnegative (one can show in addition, that 1t is always bounded from
above by 1/4).

The regressions of the a priort process are given by

T P ]

and are therefore not linear.

ExampLE 3. EARMA (1,1) process as a priori sequence. A first order mixed
autoregressive-moving average process with an exponential marginal distribution
was considered by Jacoss and Lewis (1977) and can be obtained as follows
(“backward formulation™).
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An=ﬂ£n+UnAn—l (Osﬂsl)
(n=1)
(55) Anszn—l+VnEn (Ospsl) »
Ao= &g

where {U,} and {V,} are independent sequences of independent Bernoulli vari-
ables with P(U,=0)=8, P(V,=0)=p and {e,} is an independent sequence of
i.i.d. exponentially distributed (parameter A) random variables. The resulting
process {A,} is stationary and in general non Markovian. The second order
structure of the process is given by

m=E(A,)=1/A, roVar (A,)=1/A2
(56) ry=Cov (A, Apsy) = ro(1=B)B +p(1-28)]
k=1

nn=p r.

Again we can apply Theorem 2 of SUNDT (1981) to obtain a recursive formula
for the credibility forecast. The result is as follows:

_[P("o+ m)_rl]z

s(n) = (ro+m)+p*(ro+m)—2pr, , n=2
(57) . s(n—1)
s(l)=(r0+m)-—r0:_lm
( (. _plrtm)—r,
f:(Nl’an)—(p S("_l) )Nn
(58) +&;(J:§)l)'—"ﬁ_.(1v,,...,Nn_.)+m(1—p), n=2
N r
L ﬁ(N')=m(l—r0+m)+ro+mN"

4. SOME SPECIAL MODELS

We first treat two models which can be considered as generalizations of the
Pélya-process in discrete time. The Pélya-process is a mixed Poisson process
with the gamma distribution as mixing distribution.

Model A. A natural generalization, which was already considered by BATEs
and NEYMAN (1952), is to assume
(59) A =a A,
where A follows a gamma distribution with parameters b and p. The a priori

moments are given by

6)  E)=al  vara)=aiB  cova,a)-agd
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SNYDER (1975, p. 288) considers the continuous time analogue, which he terms
“inhomogeneous Pdlya process’.

Model A seems to be the only known double stochastic Poisson sequence for
which the multivariate counting distribution can be given explicitly. Bates and
Neyman showed that

(61) P(N,=n,,. .,N.=n)= (1+b)*l’n!<n+p—l) [k] Ll: a,/b j|,.l,

n —1n'll+a/b

where a=Y" , a,and n=3%"_ n,

Comparing (61) with Jounson and Kotz (1969, p. 292, (32)) shows, that the
multivariate counting distribution of the ‘‘discrete inhomogeneous Pélya process”™
is just a multivanate negative binomial distribution (N =p, P,=a,/b in their
notation).

JounsoN and Kotz (1969, p. 295) show also, that in case of a multivariate
negative binomial distribution the regressions are always linear. Especially we
obtain

62 E(N..,N, .. p "+'+_a"+'z

(62) (NoiNis - Na) = b+ b+a N,
=——E(N,)+ "'EN
b+a ! +a :

This implies that in case of the “discrete inhomogeneous Pdlya process” the
optimum forecast function (with respect to the mean square error) is identical
to the best linear forecast function (the credibility forecast).

If we want to calculate the credibility forecast with the method of chapter 1
(equations (9) and (10)), we can apply a result of JEweLL (1976, pp. 16-17),
because Cov (N, N,) can be factored into a,-((p/b%)a,).

It is interesting to note that already BUHLMANN (1969, pp. 164-165) considered
a similar model. He considered a sequence of conditionally Poisson distributed
claim variables {X|,} with the property

(63) E(X,|0)=a,- 9,

where a,=n+c¢, ¢ is a constant independent of n and 6 follows a gamma
distribution.

In addition to Buhlmann’s results we show 1n the following how the structural
parameters (especially ¢) can be estimated.

Assume that we have given a sample of size m of observations of (N, ..., Ny).
Let
n, = ith observation of N, t=1,...,myy=1, . |k
Let
k m m
"«=2 nu, ﬁ_;:Z nua "=Z n, %k(k—*—l)
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Then the log-likelihood-function of the observations is given by

(64) log L=—(n+pm)log<l+

K +
+ ¥ n,log (j—c)
1=! P

The likelihood equations then are given by

+3 T log(p—1+))

1=l y=1

r+ kc) mon

dlog L ( r+kc) mon 1
65 =-m] 1+ + =0
(65) ap 8 b ,;,glp—l+_]
L —k(n+ ko
(66) alog _ (n pm)+z Ao

ac btr+kec ,Z)+c

(67) 6l0gL=(n-2i-pm)(r+kc)_£=O'
ab b*+b(r+kc) b

If p, é b denote the maximum likelihood estimators of p, ¢, b, then from (67)
we obtain

m

(68) b=—(r+ké)p

n

Substituting (68) in (66), we obtain that ¢ is the solution of
k

(69) Ak
SS1j+ e (r+ké)

Substituting (69) in (65), we obtain that p is the solution of

)
mp/)

Model B Another way to obtain a generalization of the Pélya process is to
replace the gamma mixing distribution by a multivariate analogue, a multivariate
gamma distribution for (A,..., A,).

A natural way to obtain a multivariate gamma distribution, more precisely a
multivanate y>-distribution is the following, cf. also JonnsoN and Kotz (1972,
chapter 40.3) or KrisHNAIaH and Rao (1961). The x?-distribution with n degrees
of freedom is a special gamma distribution and is the distribution of ¥ _, X2,
where the X, are independent and identically N (0, 1)-distributed (normal distri-
bution with mean 0 and variance 1). A natural multivariate analogue is obtained
by starting with m independent and identically multivariate normal distributed
random vectors Y, =(Y,,,..., Y,), 1=1,..., m. Precisely Y, follows a N(0, X)
distribution, where £ =(Z,) is the variance covariance matrix of (Y;,,..., Y,,)
and we assume that 2, = 1.

m n

|
70 — =mlo (l+
( ) |§|}§|p_1+_] g
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The a priori vector

(71) (A.,...,A")=(§l Y3, ..., il Y?,)

then follows a distribution, which can be considered as a multivariate y*-distribu-
tion. Especially each A, is y*-distributed with n degrees of freedom. The Laplace
functional L3(s,,...,s,)= E[e *"]is given by

(72) LA(s, ..., 8.)=|T+2s,.3|"""%,

where s, is a diagonal matrix with diagonal elements s,,..., s, From (7) it
follows that the probability generating functional of N,,..., N, is given by

(73) SN, ..., ) =[T+2(1-1,)3|

where I —t, is a diagonal matrix with diagonal elements (1—-1¢,,...,1-1,).
A simple special case is obtained when we assume a first-order correlation for
the Y, i.e., X is of the form

1 r 0 ............ 0
r 1 r.
0. r 1 r.'._
Tl
.‘. '.‘.“ 0
re

0 0 r

We then obtain the following second order recursive relations for ¢, (¢,, ..., 1,) =
[1+2(1—1,)%:
@ns2(lts - 5 tar2) = (3=20,42) Pasi(fy - oy Lysr)
(74) =4(tyiz = D)(tnsr = DP@a(t1,. .., 1) forn=0
() =(03-21), @olto) = 1.

The probability generating functional in this special case then is given by
SNy, .. )=, ..., 1)
We obtain that

3 @u(t) _ . L((m/2)+k)

—((m/2)+k)
(75) ETH T(m/2) @i(t) .
From (8) we obtain
k K
(76) P(N, = k) =~ 2ul0) 2 T((m/2)+k)

Kl ot |0 KB T(m/2)

This result is identical (for 1 = 1) with a result of ALBRECHT (1984), who calulated
P(N(t) = n) for a mixed Poisson process N(t) with a x*-mixing distribution.
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In addition we obtain after some calculation that
k +ky
2D,(14, 1) k, F((m/2)+k ) ( ) —((m/2)+k,)\ (k)
17 —— % — 1 t,t
(1) S = ()= S § (00) foutn, )
X{[(4—4r?)t,+4r’ — 6]}l

where (k) denotes the kth derivative with respect to 1,.
We obtain after some calculation

l l&k'+k2¢2(11 tz) (—l)k
= N, = P\ R L R [ SV A
(78)  PNi=ki, Ny =lk2) kitky!  arhare |, Lo k'k!T(m/2)

% [k, T((m/2)+k, + K)F(k, + 1)
x 3 (k)(_l) Tk —Fot k+1)

X (9= 4r2)TUm/DTk TR (g2 Gy mky(g g 2 kK

Even in the simple first-order case we have not been able to develop an expression
for E(N,,+1|N,, ..., N,), the “best” estimate of N,,, given N,..., N,.
As the second-order structure of the sequence N, is given by

E(N)=m,  Var(N,)=3m,
(79) r =C0V(Nn NH—I) =2mr2
rk=C0V(Nn N|+k)=0’ k22

we can apply Theorem 2 of SunpT (1981) to obtain a recursive formula for the
credibility forecast. The result is as follows:

3 4m?*rt -
o) s(n)y=3m Sno1y n=
(1)=3 —im‘4
s =5m 3 r
2 2
- f:(N.,...,Nn>=s(n"’_'l)(Nn—f:-.(Nl,...,Nn_.))+m, n=2

SHN)=m(1-3)+3r°N

Model C (a priori sequence with independent increments). If we assume that
the a priori sequence {A;=0, A, A,, ...} possesses independent increments, this
means—cf. Doos (1953, p. 96)—that forall n=3 and i, <1, < - - <1, the random
variables A,—A,,...,A, —A, _, are mutually independent. An additional
assumption 1s that E(A,) = m; let V,=Var (A,), then we obtain for : <j

Cov (A, A,)=Cov (A, ~Ag A, —A,+A,)
=Var (A)+Cov (A, — Ao, A, —A)
= Var (A,),
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i.e., in general
(82) Cov (A, A))=Var (Anne,))-

A credibility model with the above moment structure for the a priori variables
was already considered by GERBER and JONEs (1975, pp. 98-99), they show that
the credibility forecast fX(N,,..., N,) of N,., is of the “updating type”

(83) ﬁ(va R ] Nn)= (] _Zn)j*-—l(Nl’ s Nn—l)+ZnNn'
The weights can be calculated recursively, we have
\%
Z, =t
m+YV,
Z,, Vn_vn—l+mzn—l

B Vn - Vn—l +mZn—l+m.

Additional models for the a prior: sequence are considered in GRANDELL {1972)
(e.g., {A,}is in the form of a linear regression model, pp. 106-108) and GRANDELL
(1976) (e.g. {A,} 1s a stationary alternating Markov chain, pp 153-157).
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LINEAR FILTERING AND RECURSIVE CREDIBILITY ESTIMATION
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ABSTRACT

Recursive credibility estimation is discussed from the viewpoint of linear filtering
theory. A conjunction of geometric interpretation and the innovation approach
leads to general algorithms not developed before. Moreover, covariance charac-
terizations considered by other researchers drop our elegantly as a result of
geometric considerations. Examples are presented of Kalman type filters valid
for non-Gaussian measurements

KEYWORDS

Credibility, filtering theory, linear Bayesian theory, geometry, Kalman filter,
prospective ratemaking, Gram-Schmidt, Fourier series.

l. INTRODUCTION AND SUMMARY

There have appeared a number of papers, fairly tightly connected, concerned
with recursive credibility formulae. An early paper that occupies a somewhat
central position is that of GErRBER and JoNes (1975), which develops credibility
formulae of the updating type, vahd if and only if the covariance structure (5.12)
holds. The other papers notably, JEWELL (1976), SUNDT (1981, 1983) and KREMER
(1982) develop recursive formulae for a variety of other evolutionary type models,
the last emphasizing the relationships with modern models of time series. Last,
but not least, the paper of bEJONG and ZEHNWIRTH (1983) relates some credibility
models to the Kalman filter, perhaps, the most important algorithm in linear
stochastic system theory.

The basic purpose of the present paper is to unify many existing results in
recursive credibility theory and moreover develop more general ones. To achieve
this, we adopt a geometric interpretation of recursive linear least squares estima-
tion theory in the spint of GErRBER and JoNEes (1975) and De VyLDER (1976).
There is also a side benefit to be had by adopting a geometric approach—it
reduces both the conceptual and algebraic burdens. The practical importance to
actuaries of the present paper lies in the fact that once a model for premium
rate-making is postulated, the estimators of parameters, premium forecast and
associated errors may be derived quite readily using the general results contained
herein. Moreover, the recursive nature of the formulae affords economy of
computing space and time.

The main results here are established with the aid of KaiLATH's (1974) innova-
tion technique which has found fruitful applications in linear filtering theory. Tt

ASTIN BULLETIN Vol 15, No 1
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is intimately related to the well known Gram-Schmidt orthogonalization scheme
and Fourier series.

Suppose Y is a forecast of the random quantity Y with associated mean-square
error C, based on some past measurements. Given a new measurement X we
wish to update our forecast of Y and its associated mean-square error C. Let X
represent the forecast of X based on the past measurements. The innovation,
e=X—)A(, represents what is “‘new’ in the new measurement X. The updated
forecast of Y is

(1.1 Y+ Ke

where the weight K 1s given by

(1.2) K = E[Ye}{E[e’]} 7.
The mean-square error of the updated forecast (1.1) is
(1.3) C — KE[Yel].

The foregoing results are treated in elaborate detail in Sections 3 and 4. In
Section 5 we consider a general prospective ratemaking framework and indicate
how covariance structures considered by GeErBER and JonNEs (1975), JEWELL
(1976) and SUNDT (1981) drop out elegantly as a result of the geometric interpreta-
tion of the problem. Finally, in Section 6 Kalman type filters are derived for two
different models using results developed earlier in the paper. The filters are related
to the work of SunpT (1981, 1983) and DE JONG and ZEHNWIRTH (1983).

2. HILBERT SPACE OF SQUARE-INTEGRABLE RANDOM VARIABLES

Forthe purposes of the present paper it is convenient to formulate some definitions
and terminology and to state two classical projection theorems.

Consider a fixed probability space (Q, & P). The Hilbert space % = L), F, P)
is the linear space of measurable functions from (1 into R whose second moment
exist. We identify with the element X € &, the equivalence class {)?: X=X ae}.
The inner product (X, Y) for any two elements X and Y in & is defined by

(X, Y)=E[XY].
Accordingly, the corresponding | - || is defined by
IX|=(E[x*])"?2

It is beneficial to extend the definition of the inner product (-, -) to random
vectors. Suppose X =(X,,...,X,) and Y=(Y,,. ., Y,) where Xe X" and
Y € ™. Define (X, Y) by

(X, Y= E[XY"].

This is not an inner product in the true sense—it is a matrix. However, 1f we
ignore this deficiency, the projection theorem can be used as a quick mnemonic
way of obtaining the approximate optimal estimators (theorem 3.2)
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The following properties of the bilinear functional (-, -) are noted.

2.1 (AX, BY)= A(X, Y)B’

for any two matrices A and B of approprate dimensions.
(2.2) |AX | = A X [P A°

and

(2.3) (X, Y)Y=(Y, X).

We state two classical projection theorems applicable to any Hilbert space
(borrowed from LUENBERGER (1969)).

THEOREM 2.1. Let ¥ be a Hilbert space and ¥ a closed subspace of . Correspond-
ing to any vector Y € ¥, 3 a unique X* e ¥ such that

_X*| . = § _
1Y —X*||, ;gf 1Y — X[
where | - ||, is the norm defined on .

Furthermore, a necessary and sufticient condition that X*e ¥ be the unique
minimization vector is that Y — X* be orthogonal (1) to &£

In what follows denote by ?(Y|¥) the projection of Y onto <, that is
P(Y|E)=X*

THEOREM 2.2. Let & be a closed subspace of a Hilbert space . Suppose N is a
closed subspace of & so that ¥ = N@® N where N* is the orthogonal complement
of Nin L If YeX then

P(Y|L)=P(Y|N)+P(Y|N*).

3. LINEAR ESTIMATION OF A RISK PARAMETER

One of the key problems in credibility theory is the estimation of a risk parameter.
Suppose Y e 3 1s a (non-observable) risk parameter and X,, X,,..., X, are
(observable) measurements in #. A linear estimator of Y based on X,, X,,.. , X,
is any linear combination

n

Y*=7Y aX, (a,eR)

=1
with mean-square error
1Y = y*|.
Denote by &, = L(X,, X1, ..., Xi) the closed linear subspace spanned by the

elements Xo, X, ..., X Also for notational simplificatton denote by ?,.(X) the
projection P(X|%,), of X onto &, where X € ¥.
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The following fundamental result 1s based on the projection theorem in . It
is discussed in LUENBERGER (1969) and appears under various guises in NORBERG
(1979) and references therein. It is included here for the sake of completeness.

THEOREM 3.1. Suppose X =(Xy, X,,..., X,) e ¥"*" and P,(Y)= a'X where
a=(d,,...,a,).
Then,

a'=(Y, X)L x|~
and the mean-square error || Y — ()|’ is

1Y =2 N2 =1YIP=(Y, OUX[7X, ¥).

Proor. The projection theorem 2.1 gives
Y-2(Y)LX,; i=0,1,...,n
whence,
a(X, X,)=(Y, X,); i=0,1,...,n

The expression for @' follows from the last set of equalities whereas the expression
concerning the mean-square error follows by noting that Y~2,(Y) L 2,.(Y).
We remark that the matrix G =| X/’ is called the Gram matrix.

COROLLARY. If Xo=1 then P,(Y) 1s the inhomogeneous linear Bayes rule which
may be written
(Y, D+ CLY, X*ICTIX*IX* —(X*, 1))
with associated mean-square error (Bayes risk)
ClY]-CLY, X*1C'[X*IC[X*, Y]
where the vector X*=(X,,..., X,) and the covanances C[-,+] and C[-] are

defined as follows:
For any two vectors Ue X" and Ve X™

ClU, V]=(U, Vy—{U, 11, V)
and
ClUl=CLu, Ul.

We now discuss straightforward extensions of the abovementioned results to vector
parameters.

Suppose Y=(Y,,..., Y,.) e #™ is a vector risk parameter to be estimated on
the basis of the measurement vector X = (X, X, ..., X,)e #""'. We restrict
attention to linear estimators, namely Z a,X,, of each component Y, of the vector
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Y. Write, A=(a,), an m X n matrix. The optimal linear estimator minimizes

m 2

X

Y- % auXJ

V|

over all matrices A of dimension m Xn.

THEOREM 3.2 (Luenberger). If AX is the optimal hnear estimator of Y then
A=(Y, X))|x|7?
and the error covariance matrix of AX 1s given by

1Y~ AXIP=[ Y- (Y, X)| X[ %X, V).

Proor. The results follow from the observation that the optimization decom-
poses into a separate problem for each component Y, of the risk parameter vector
Y. The th subproblem is simply that of finding %,(Y,) That s

jx:(gn( Yl)a Ty *@n(ym))l'
=2?,.(Y), say.

We remark that trace | ¥ — AX|? represents the mean-square error of @,(¥).
Itis also known as the Bayes risk of 2,(Y) relative to squared error loss function.

CoroLrary 1. If T is a fixed r X m matrx then the optimal linear estimator
of TY is T?,(Y¥) with error covariance T||Y - 2,(V)|*T".

CoroLLary 2. If Xy=1 then P,(Y) 1s the inhomogeneous linear Bayes rule for
Y, which may be written
(Y, )+ CLY, X*JCT'[X*](X* —(X*, 1))
with error covariance matrix,

CLY]- CLY, X*]C ' [X*]C[X*, Y.

All the foregoing results are well known to both linear filtering theorists and
credibility theorists.

4. THE GEOMETRY OF RECURSIVE RISK PARAMETER ESTIMATION

In many practical situations the elements X, X, X,, ... represent measurements
taken sequentially in time. The optimal linear estimator of a risk parameter Y
based on the measurements to time n, viz., Xo, X,,..., X, is Y,=2,(Y) with
mean-square error

C.=lY-Y., )~
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If X,., is the next measurement then its best linear estimator based on £, 1s
P.(X..,). Accordingly, the innovation of the new information acquired at time
n+lis

€nvy = Xnay = Pul(Xoay).
Put e, =X, and write e} = ¢,/ e||, then by virtue of theorem 3.1
Po( X)) =(X,, e5)es
whence,
=X, —(X,, ed)ed.
By virtue of the projection theorem 2.1, ¢, L e, and &, = ¥%(e,, €,). It follows that
er= X, —(X,, eg)ed —(X;, el)ef

where ef=e,/| e,|.
Subsequently,

(41) en+l=Xn+l_ Z (Xn+l,e_;k)e;k

=0

where

J=0,1,2,....

We observe that the normalized innovations {ef} represent the orthonormal
system obtained by the well-known Gram-Schmidt orthogonalization process. It
follows, trivially, that the innovation sequence {e} is orthogonal.

The closed linear subspace &, ., may be decomposed

(4.2) Ly =L, @ L(Enay).
In view of the projection theorem 2.2,
(43) Yn+l Y +@(Y‘en+l)

where application of theorem 3.1 yields,

(4.4) P(Y]ens1) =(Y, ensi)ll sl *€nsr.
Alternatively decompose £, thus:

(4.5) L1 =Z(e) @ - - DZL(en+1).

The Fourier series of Y based on £, ts

n+1

(4.6) Yo = Z (Y, ef)e

whereas the Fourier series based on %, is

(4.7) Y, = Z (Y, ef

=0
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The difference between expression (4.6) and (4.7) yields expression (4.3)

We note that the key element in the foregoing analysis is the orthogonality
property of the innovation sequence {e,}.

LX)

j(YleuH)

FIGURE 4 1 The geometry of recursive risk parameter estimation

Figure 4.1 shows the geometry of recursive risk parameter estimation. The
co-ordinate axis labelled 2 represents <Z, and the 1-2 plane represents Z,.,.
Observe that Y~ Y, L £ Y— Y,,+| 1L L, ne LE and e, L Y

We point out that if X,=1 then 1€.#, whence we have the unbiasedness
properties,
(Y=Y, 1)=0
(4.8) and
{€nt1, 1) =0.
Denote by C, the mean-square error,
1Y =Y,

Examination of fig. 4.1 leads to

(4.9) Conr= Co=|2(Y]e, )
=G, —(Y, el €nn |7

Write,

(4.10) Koer=(Y, enedllennill ™,
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then equations (4.3) and (4.9) may be recast

(4.11) Your = Yot Kovi€an
and

(4.12) Cor1 = Cr = K, Y, €41)
respectively.

The preceding analysis also applies to the estimation of a vector risk parameter
Y e ™. Recall that,

Y. =P.(Y)
= (@n( Yl)’ ] gn( Ym))"

Let C, represent the error covariance matrix of Y,. The following recursions are
obtained.

(4.13) ANED A ST
and

(4.14) Cor1 =Co=Knri(enr, Y)
where

(4.15) Ko =Y, enllen |72

Finally, we remark that the preceding recursions also carry over to vector
valued measurements X,, X, .. ..

5. THE GEOMETRY OF RECURSIVE PROSPECTIVE RATEMAKING

In the present section we adopt the general prospective rate-making formulation
of GERBER and JonNes (1975).

Let X, represent the claims cost (or loss ratio, etc.) in the ith period. The
premium forecast for period n + | based on the measurements X,(=1), X4, ..., X,
is denoted by P,.,. This premium is the optimal affine estimator (inhomogeneous
linear Bayes rule) of X,,, based on the measurements X, X5, ..., X,.

That is,

P = P (X))
The innovation in the measurement X, is
e, =X, — P._(X,).
Since,
L= DL e,)
we have,

(5-1) @n(Xn+l)=@nfl(xn+l)+g(xn+llen)
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where

(5.2) P(Xnir|€n) = (Xnur, )l €al| e
In keeping with GerBer and Jones (1975) write

(53) Z, = (Xous, ea)leall
whence,

(5.4) Prv1 = Pooi(Xor) + Z,( X0 = Po).

We emphasize that the last formula holds true in general.

We now focus on formula (4) of SUNDT (1981) which examines the situation
where there exist constants b,, ¢, and d, such that

P..,=b,+c,P,+d.X,.
Combining this with formula (5.4) above yields
@n—l(xn+l) = (Cn + Zn)Pn +(dn _Zn)xn + bn'

As P,_,(X,.,) should not depend on X,, we must have d,=Z, and as P,=
P?._,(X,) we obtain
(55) ?n—l(xn+l)=an@n—l(xn)+bn

with a, = ¢, +Z, That is, the premium forecast for period n+1 based on %,_,
is an affine function of the premium forecast for period n also based on %,_,.
Since the innovations {e} are orthogonal, #,_,(X,+) and ?,_,(X,)(=P,) have
the Fourier series representations

n—1

(5.6) Por(Xpe) = T ( Ky, eFre?
=0

and

(5.7) P (X)) =T (X, eHe?
1=20

where we recall that the sequence {e¥} represents the orthonormal innovations.
Substituting (5.6) and (5.7) into (5.5) gives

(5.8) (Xns1, e =a, (X, eF); i=1,...,n—1
and
(5.9) (Xn+1, €8) = an( X, €3)+ b
Also let
(5.10) b, = E[X.+1]— a.E[X,].

We are now in a position to derive the covariance characterization (5) of SUNDT
(1981, p. 5).
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Equation (5.8) can be written as
(Xn+l, el) = an<Xm el)
and insertion of (4.1) gives

<Xn+h X Z Xp e_:k >= an<Xn9 Xl - i <Xp e_;k>ejk>
J

-0
that is,

(Xn-H, Xl) Z (Xn _, n+h ej*>= a, [ Xm X) Z <Xu e;kxxm 7 :l
=0
Combining the last equation with (5.8) we obtain
(Xn+l5 Xr>_<Xn €>0k>(X,1+l, e>0k> = an[(Xm Xl>_<Xu e(,txxm eg)],
that 1s,

(5.11) Cl X, X]=a,C[X,, X.]; i=1,...,n-1

The converse is straightforward.

The case for which a, =1 and b,=0in (5.5) makes (5.4) a credibility formula
of the updating type in the spirit of GErER and Jones (1975). Equation (5.11)
now reduces to the covariance structure.

V,.+ W, 1=j
5.12 X, X
(5.12) CIX, X)]= {V. , oy
in agreement with GERBER and JoNEs (1975).
Xn+l
en+l
X,
—2
Pn+\
P,
e?‘
¢

n-1

FIGURE 51 The geometry of credibility formulae of the updating type
in the spirit of GERBER and JONES (1975)
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Figure 5 | shows the geometry of credibility formulae of the updating type.
The co-ordinate axis labelled 2 represents X, and the 1-2 plane represents %,,.
Let E, represent the mean-square error of P, that is

E, = el

Figure 5.1 depicts the following orthogonality relations: e, L e,,,, €, L P, and
€4 1 gn-

These may be used to obtain a number of expressions connecting Z, and
second-order moments of X,, e,, P, etc. In particular

(5.13) E o= Xus1— X, |- (1 - Z,)?E,

assuming (5.12) holds.
We can also demonstrate (5.13) mathematically thus: From expression preced-
ing (5.1)
Xn+l—Xn =P, —P,ten —e.

Substituting (5.4) with ,_,(X,+,) = P, into the last equation gives
Xn+l - Xn = (l - en)Zn + en+l'

Recogmzing the fact that e, L e,., now yields (5.13).
GERBER and JoNEs (1975) also derive the relations,

(5.14) Z=W, (W, + V)"
(515) Zn = ( Wn - Wn—I+Zn—l Vn—l)(Wn - Wn—-l+Zn—l Vn—~l+ Vn)_l

which will be alluded to in the next section.

6. KALMAN TYPE FILTERS

In the present section we examine some applications of the algorithms developed
earlier to two special models and relate them to the classical Kalman filter for
which both measurement and system noises are Gaussian (Jazwinski (1969)).

6.1. Buhlmann Model

Consider a risk characterized by a parameter Y. Associated with this risk are

measurements X, X,,. .. The following assumptions are made:
AssumMpTION 1. Conditional on Y fixed, the measurements X,, X,,... are
independen.

AssumrpTION 2. Conditional on Y fixed, the mean and variance of each X, can
be written E[X,|Y1=u(Y) and C[X,|Y]= o*(Y) respectively.

Without loss of generality assume w(Y)=Y and for notational convenience
write, yo= E[ Y], o3= E[c*(Y)] and v=C[Y]
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Adopting the notation and terminology of the preceding sections, the recursion
for the inhomogeneous linear Bayes rule for Y is,

(6.1.1) Vo= Vot Kovinr.

In view of assumptions | and 2 and the unbiasedness conditions (4.8) it follows
that
<Xn+|’e])=<),1ej>; j=0:1:"'9n'

This means,

9n(xn+l) = @n( Y)(=Pn+l)
whence,

Cna) = Apy1— )‘/n'
Consider now the inner product,
(Y, ey =(Y =¥, + ¥, e.0))
= ( Y_ }A,m en+l)i
the latter equality following from f’,, 1 e,+.. Further,
(Y_ }A,m en+l)=<y_ }A,m Y- }A,n+Xn+l_ Y)

=C,

the latter equality following from the orthogonality condition
Y=Y, L X,

as a result of (4.8) and assumptions | and 2.

Consequently,

(6.1.2) (Y, enr1) = C,

Moreover,

(6.1.3) leassll® =1 Xns1 = Yall?

=Y = V)P X = YR
= C,+ E[C[X,..| Y]]
=C,+ o2
where the second equality follows from
Y-V, 1LX,., - Y
Substituting (6.1.2) and (6.1.3) into (4.10) yields,
(6.1.4) Kpo1=C,(C,+ad)™".
For continuity write (4.12) again,

(615) Cn+l=cn_Kn+lCn-
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Substituting (6.1.4) into (6.1.5) gives

(6.1.6) Cr=C;'+a5

In summary, we have developed the Kalman filter
(6.1.7) Your= Yot Kot (X = Y2)
(6.1.8) Kur1=Co(C,+0g)”!

(6.1.9) an=C'+05?

with initial conditions
)70=y0 and Cy=v.
We point out that if Y has a Gamma distribution and X,|Y is Poisson with
mean Y (implying that o?(Y) =Y and y,= 0}) then
V.= E[YIX,,..., X,]
and
Cn = E[C[lel’ R } Xn]]

Moreover, by virtue of a fundamental result in linear Bayes theory (HARTIGAN
(1969)), the same classical Kalman filter (6.1.7) to (6.1.9) is obtained if we assume
instead that
Y ~ Normal (y,, v)
and
X,|Y ~Normal (Y, ).

See DE JoNG and ZEHNWIRTH (1983) for more details.
In passing we also note that since P,(X,.,) = P.(Y) it follows that

Kn+| = Zn+l'
Combining (6.1.4) and (6.1.5) gives
Zn+l = Zn(Zn + I)_l,

which is also a consequence of expression (5.15).

Moreover,
(6.1.10) P =P, +Z,(X,—P,)
and
(6.1.11) Epr=[(E,— ) '+ 051 '+ 0l

The last expression also follows from (5.13).

6.2. Evolutionary Risk Parameter Model

In the present sub-section we imagine that we have a sequence of risk parameters
Y, Y,, ... and corresponding measurements X,, X,,.... The measurement
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equations are given by

ASSUMPTION |
X,|Y, ~ Poisson (Y,)
and
C(X., XY, Y,]=0, 1#j
The system equations (that is, the equations indicating how the parameters
evolve over time) are given by
ASSUMPTION 2
E[Y,]Y, 1= Y.,
and
ClY.|Y,-d=v,  (v.eR).
We also assume independence between the measurement and system “‘noises™.
That 1s,
ASSUMPTION 3
ClX,, Yol Y,]=0.
Now, put E[Y,]=y,, a constant, and write
Coriin = | Yosr = Y|
and
Coir = Yorr = Yo|?
where in the present context,
Y, =2.(Y,).
Applying the projection theorem to the decomposition (4.2) gives
Prner (Yo} =Po(Yor) + Kpri€nn
where now
Kovi =(Yaur, €ani)ll€nsall 2.
In view of assumptions 2 and 3
(Yorr,e)=(Yoe);  j=0,1,.. ,n
whence,
P Yoit) = Po(Y,).
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Similarly, in view of assumption |
P Xp1)=Po( Vo).

1t follows that,
(6.2.1) Voir= Yot Kotr€n
where

€1 = Xpa1 — }A’,,.
Consider the inner product
(6.22) Yoty ned=(Yarr = Yot ¥, €

=Y — }‘/m €nt1)

=<Yn+l - )A/n, Yn+| - }A,n+Xn+l - i‘,r|+l)

= Covijny

the second equality follows by noting that

A

}A,n 1 Xn+| - Yn

and the last equality follows by noting that

Yo=Y L Xoii— Your.
Now,
Coriln =1 Yosr = Yot Y, = V[P
=C+| Yos = Yal?,
since
Yy =Y, L Y, ~ Y,
Hence,
(6.23) Cotin=Crtv,
Turning now to the computation of |e,.,||> we have
(6.2.4) lewsrl? =1 Yass = Vol + | Xy = Yo |
=Crrint E[Y, 1]
=Coaint Yo,

the second equality following from assumptions | and 2.
Application of (4.9) with Y, ., playing the role of Y gives

(62 5) Cn+l=Cn+l|n_Kn+l<Yn0|, en+l>-

33
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Combining equations (6.2.1) to (6.2.5) yields the Kalman filter

(6.2.6) Vir = Yot Kput(Xos = V)
(6.2.7) Kpii = Cosrn( Cotfn +30) ™
(6.2.8) Cotr=Criilat¥5'

and

(6.2.9) Cosiln=Cut,

with initial conditions
YO =Y and C||0 = Vy.

We point out again the connection with the classical Kalman filter That 1s, 1f
instead of assumption 1 we have:

ASSUMPTION 1

X,|Y,~ Normal { Y,, yo)-

In addition to assumptions 2 and 3 we also assume

ASSUMPTION 4

Y,|Y, . ~Normal (Y,_,, v,).

The same Kalman filter (6.2.6) to (6.2.9) is obtained.
The prospective rating algorithm is given by

(6.2.10) P =P, +Z,(X,—P,)
and
(6.2.11) Epi={(E.—y0) "+ y5'} "+

where again
Z,= K,

Although the two preceding models satisfy (5 12) we conclude by emphasizing
that the general algorithms presented in Sections 4 and 5 may be applied to any
model and in particular the models considered by SUNDT (1981, 1983) satisfying
the more general structure (5.10) and (5.11).
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UNBAYESED CREDIBILITY REVISITED

By RAGNAR NORBERG

University of Oslo, Norway

ABSTRACT

The unbayesed credibility procedure proposed by Gerber is revisited. Its perform-
ance is discussed, connections are drawn to earlier literature, and some possible
ideas of generalizations are investigated (and found fruitless).

KEYWORDS

Unbayesed credibility, principles of statistical decisions.

|. INTRODUCTION

More than two years have elapsed since GERBER (1982) proposed a procedure
for construction of estimators highlighted as Unbayesed Credibility. During this
time there has been published no further work on the topic. It is, therefore, worth
while having another look at the unbayesed estimations to throw some light on
their properties and to inquire if further ideas ought to be pursued along the
same lines.

In Section 2 of the present paper two estimation problems considered by
GerBeERr (1982) and Gerber’s unbayesed approach to their solution are briefly
recapitulated. The properties of the two unbayesed estimators are discussed in
Section 3; it 1s shown that one of them will usually have an infinite expected
squared loss. Section 4 stresses the need to build adequate mathematical models
and to work strictly within these in search for methods. In particular the properties
of any proposed method has to be examined in terms of the performance criterion
adopted. Section 5 presents a couple of variations of the unbayesed approach
which show that it can lead to many different estimators; the particular form of
any unbayesed estimator is due to arbitrary restrictions imposed on the estimating
functions rather than being due to the structure of the model itself.

2. REVIEW OF THE UNBAYESED ESTIMATION PROCEDURE

In order to make our presentation fairly selfcontained and to state points clearly,
let us recall the unbayesed set-up in neutral mathematical terms. The model
framework in Sections 4 and 6 of Gerber’s paper is the following.

MopEeL. Let X,,i=1,...,m(>1),3=1,..., n, be a collection of real random
variables For each i the X,y =1,..., n, have the same distribution, which we
denote by F,. All X, are mutually independent, and F=(F,, ..., F,)e

ASTIN BULLETIN Vol 15 No |
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Fx---xF™", where F is the nonparametric family of all those distributions on
the reat line which possess a finite second order moment.

Let u and o denote the mean and the variance, which are well defined
functionals on %, and put u,=u(F,) and ol=c¥F),1=1,...,m.

The vector of means, p=(u;, .., mm), 1$ to be estimated. More precisely, let
&2 denote the class of all measurable m-vectorvalued functions of (only) the X,’s;
weseeka P=(P,,..., P,)e P that is in some sense close to p. Gerber considers
two different measures of closeness, hence two problems, the first of which is the
following (numbers in square brackets refer to formulas in Gerber’s paper):

PrOBLEM | Pick Pe P such that
(1)[20] Y Ee(P—p)’
[ |

1s “small” (not “mimimum” as stated by Gerber, see second remark below).
(Here E denotes the integral with respectto Fy X« - X Fy X+ -« X F, X+ -« X F,
the joint distribution of the X,’s.)

A couple of remarks are in order at this stage. First a formal one: Gerber
phrases his problem as that of predicting, for each 4, a future independent selection
X, n+1 from F,, the performance of a set of predictors P, being measured by (1)
with u, replaced by X, ,,+,. That problem is, however, equivalent to the one stated
here because

Eg(P, _X.,n+|)2=0',2+EF(P| _#,)2.

The second remark concerns realities* As it stands, problem 1 is not properly
stated since for each choice of P the expression in (1) is a functional depending
on F. One cannot find a P minimizing (1) for all F (the choice P, = u(G,), with
Ge% 1=1,...,m,is optimal in F=(G,,. ., G,,), but poor in other points F
where Y7 {n(G,)— n(F,)} is large). Thus, still loosely speaking, we can only
require of P that (1) should not be ““too large” in “‘too many” points F. We leave
these considerations for the time being and continue our recapitulation of the
unbayesed approach.

Gerber constructs his unbayesed credibility estimator in the following manner:

MeTHOoD 1. (i) As a first step, solve the simple problem of minimizing (1) as
P=(P,,..., P,) ranges in the class ?' of functions with P, of the form

(2)[7] ZX,+(1-2)X,
where
- 1 »
X==1% X,,
n,
_ | m _
X=_ Z Xh’
mn.
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and Z is a function of F (only). Minimum is readily found to be attained at

"Z;." 1 (I-"h_,‘-z)2

(3)[21] = - ,
nye (wn=ia)+(m=1)o’
where
l m m
f=—7Y p» and o’=— % oi.
m = mp_)

(ii) As a second step, replace numerator and denominator in (3) by their
“natural” unbiased estimators [13] and [22] (Gerber’s Section 4). Then the
right-hand side expression in (3) turns into

5 (m—1)é?
(@123] SRR T A

with ¢*=Y ", d4/mand i =1, (X, ~ X,)?/(n—1). Upon replacing Z in (2)
by Z, we obtain a function P e &, which is the unbayesed credibility estimator.
The second problem is the following.

ProBLEM 2. The same as problem |, but with (1) replaced by the componentwise
expected squared error

(5)[27] Ep(P, —u,)?, i=1,...,m,

(vector-valued)

The above remarks to problem 1| apply also to problem 2. The unbayesed
procedure follows the same outline as in method [:

METHOD 2. First minimize (5) as P=(P,,..., P,) ranges in the class " of
functions with P, of the form

(6) ZX+(1-2)X,

where each Z, is a function of F. groceeding in analogy to step (ii) of method
1, Gerber arrives at the estimator P given by

A2
- m-—1 ag,

2
" Pt T BB

=1,...,m

Having summarized the present state of unbayesed credibility, we now set forth
to study 1ts merits in terms of concepts from estimation theory.

3 PROPERTIES OF THE UNBAYESED ESTIMATORS

We first consider problem | and the unbayesed estimator given by (2) and (4).
It ought, perhaps, to be said that it is unfortunate to speak of P as the “‘real
solution™ to the problem of minimizing (1) (Gerber’s Section 4), confer the second
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remark to problem | above. Clearly, method 1 1s only a preparatory piece of
motivating heuristics, and the resulting P is so far only a candidate estimator,
whose performance has to be examined in terms of the criterion (1). This task
has not been undertaken—in fact, not even mentioned—in the previous literature
on unbayesed credibility, and no references are made to the closely related
literature on compound estimation problems. Therefore, a few remarks are added
here on these matters:

Very little is known about the possibility of solving (reasonably precise versions
of) problem | under the present model with nonparametric % Some results on
restricted inadmissibility have been established: For certain simple parametric
subfamilities %, < % one can construct estimators that in all of %' dominate old
established estimators known to be uniformly optimal on %{' with respect to the
traditional performance criterion (5) when one restricts to the class of unbiased
estimators. The first results of this kind appeared in fundamental papers by STEIN
(1956) and JaMEs and STEIN (1961). They considered the subfamily %, of all
normal distributions with variance | (say) and proved that the estimator

(8) P*=(X,,...,X,),

which is admissible on F3' with respect to (5) and furthermore is uniformly
minimum variance unbiased, does not even remain admissible when criteron (1)
is adopted. If m =3 it is dominated by the so-called James-Stein estimator P**
defined by

m-2 _
(I P
nyr. X

To most statisticians this result came as a surprise, to some even as an unpleasant
one, and there were signs of controversies between defenders of the traditional
P* on the one side and advocates of the new P** on the other Now there is no
reason to discuss which is the better of P* and P** (on %y’), because that
question 1s settled by emotionless mathematics once the performance criterion
is chosen. What can be discussed, is only the choice of criterion. That discussion
is, however, not of a purely mathematical nature, but depends on the goals and
attitudes of the decision maker.

In closing our comments on problem 1, we note that admissibility on %g of
estimators of the James-Stein type has been extensively treated in the literature,
see e.g., BERGER (1976). A survey of James-Stein estimations 1s given by EFRoN
and Morris (1973)

Let is now examine the unbayesed estimator designgd for problem 2. Again
by the second remark to problem 1, it is clear that P given by (7) does not
represent the solution to the problem of minimizigg (5) (Gerber's Section 6). In
fact, by inspection of (7), it is readily seen that P, assigns the value +c to (5)
on wide subsets of F™: If, for instance, the F, are normal distributions, then &2
is independent of X, — X, and (X, — X)™' has no expected value. More gengrally,
if the margmal distribution of X, — X has a point of increase in 0, then P, and
hence (P w,)? are usually not integrable.
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Problem 2 1n the present nonparametric model is one of the classics of statistics,
and to the knowledge of the present author no alternatives to the natural unbiased
estimator (8) have been proposed Ln the pre-unbayesed literature. Thus, in this
case 1t would really be surprising if P could be shown to have any good properties.
And unpleasant as the interpretation of the model and problem 2 is that the
estimation problems are unrelated in every respect; the samples are drawn in an
independent manner from populations that have nothing in common, and the
losses incurred by error of estimation are measured separately for each problem.
A reasonable task for the theory would be to put a firm basis to the intuitive
feehing that the estimator of w«, should depend only on X,,..., X,,. If we are
not able to justify the deletion of the X,,, h# i from the estimation of w,, then
we would be in serious trouble: How could we then in a rational way choose the
statistical basis for a given estimation problem? Which irrelevant data were not
to be included? Which advice should we give to the practitioners?

As we have seen, the unbayesed approach gives rise to no such concerns. The
traditional and intuitively sound estimator (8) remains an uncontested answer to
problem 2.

4. MODEL AND METHOD

After the discussions in section 3 the question arises: What brought Gerber to
enter the X, h# 1, into the estimation of w,? Why didn’t he use the “natural
unbiased estimator” (8)? The reason seems to be that he had a particular
interpretation in mind; X,,,..., X,, are spoken of as being the claim amounts
in n different years for risk no. 1 in a portfolio of m insured risks. A few remarks
on basic principles of statistical decisions are called for:

The first step in a statistical analysis is to separate out of the situation those
features that are believed to have some bearing on the problem and work them
into a mathematical model. The mode! should give a surveyable and, as far as
possible, true picture of the phenomena. If, for instance, the data stem from
similar automobile insurance risks, the model ought to give precise content to
the notion of similarity between these risks. The model in Section 2 fails to reflect
the essential circumstance that automobile insurance claims have something in
common that distinguishes them from data on e.g. soldiers’ heights and turnover
of cheese. One reasonable mathematical means of expressing this similarity
between the risks is to regard them as selections from one and the same structure
distribution (population). Thus the structure distribution is not “‘essentially super-
fluous™ (Section 4 of Gerber's paper) to those who think they can learn something
about a given risk by looking at other risks of the same kind.

Having decided on a model, the purpose of the decision has to be expressed
in terms of a performance criterion. When this is done, one is left with the purely
mathematical problem of finding decision functions with good performance.

In the traditional credibility analysis based on models with structure distribu-
tions, credibility estimators are obtained as logical consequences of the mathe-
matical set-up. They are justified by their (restricted) optimality properties.
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This is not the case with unbayesed approach in method 2 above. There the
particular credibility appearance of the estimator could only be obtained by the
analyst’s intervening into the mathematics by prescribing a certain procedure and
exempting it from the requirements expressed by the performance criterion. The
following quotation from Neyman (1954) seems pertinent: *“. .. the efforts of the
representatives of modern statistical theory are directed towards solving problems
that depend only on the stochastical model studied and on nothing else’.

Considered as a statistical framework for the analysis of related risks, problem
| together with the model in Section 2 plays an intermediate role. As explained
above, the model may be judged as inadequate, but 1t still represents a reasonable
partial description of the situation. The connection between the different rating
problems is now established through the choice of the performance criterion (1).
The unbayesed method 1, however, is until further without any support whatsoever
in studies of its performance.

5. SOME VARIATIONS OF THE UNBAYESED PROCEDURE

Until the estimator resulting from method 1 has been investigated with respect
to performance, it can, of course, not be excluded. But the unbayesed device as
such can be put on test in other ways. One angle of attack arises from noting
that the requirement that Z in (2) be independent of 1 is quite arbitrary.

Looking for good estimators, we could possibly gain something by allowing
Z to depend on 1, that is, let P be of the form (6). But then the unbayesed
procedure reduces to that of method 2 and delivers (7), which maximizes the
expected loss instead of minimizing it as pointed out already in Section 3.

Let us allow for further flexibility and admit nonhomogeneous estimators of
w, of the form

Then we find by the first step of the unbayesed prescription that the optimal
approximation to g, is u,. And following the recipe further, we now only have
to estimate u, by a natural unbiased estimator. Then we obtain finally (8), which
would have resulted immediately if we already at the outset looked for a natural
unbiased estimator.

Which ends the present discussion. Some further considerations around the
topic of unbayesed estimations can be found in an unpublished report, NORBERG
(1983), which can be received upon request.
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CORRIGENDUM

B. Sundt (1982). Asymptotic behaviour of compound distributions and stop-loss
premiums. ASTIN Bulletin 13, 89-98.

In the proof of Theorem 3, one uses that g.= H(s)— H(s+ 1) instead of the
correct expression g, = H(s — 1) — H(s). This means that the displayed asymptotic
expression for g, really concerns g,.,, and that the correct result should be

1—
Pe—n.
v

8~

The author became aware of this error when reading Milidiu and Jewell (1984),
whose Theorem 2 gives a generalization of this result.
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ABSTRACT
We improve on some results of SUNDT (1982) on the asymptotic behaviour of
compound negative binomial distributions
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Consider the aggregate claims of an insurance company in a given period,

N
X=1Y
1=1
where the claim sizes {Y,: 1eNg} are i.i.d. non-negative random vanables with
F(x)= P{Y,< x} non-lattice (i.e., we assume the claim size distribution F to be
non-discrete; take for instance F continuous), independent of the negative
binomial claim arrival variable N. Then

-1+
anP{N=n}=(a n)ﬂ"q", neN
n

where 0<p <1, p+g=1 and a >0. Denote by f the Laplace-Stieltjes transform
of F and assume that there exists a constant x > 0 satisfying

(n P_1=J e"* dF(x)
4]
and that
(2) v=pJ x e dF(x) <o
(4]

e, p~' =f(—«) and | f'(— k)] <co. We now want to estimate P{X > x} as x> 0.

* This research was supported by a grant from The Nuffield Foundation
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NoTtaTiON. If f(n) and g(n) are two functions, in this paper we always
abbreviate the statement lim, .. f(n)/g(n)=1 to f(n)~ g(n) as n->co.
In SuNDT (1982), the following theorem was proved.

ProposiTioN | (SunDT (1982), Theorem 5). If e*P{X > x} is ultimately
monotone, then

(3) P{X>x}~(«T(a)) ' (q/v)*x""' e, asx-oco,

The condition of ultimate monotonicity was needed because the proof in SUNDT
(1982) used a Tauberian argument. In this note we want to prove that under (1)
and (2), (3) always holds, as indeed was conjectured by Sundt.

THEOREM. Assume the negative binomial model above. If the claim size distribu-
tion F satisfies (1) and (2), then (3) holds.

Of course condition (2) is only needed to get a non-trivial statement in (3).
The proof of the theorem differs entirely from the one given in SUNDT (1982)
and essentially hinges on the following recent Blackwell type theorem for gen-
eralised renewal measures.

ProPOSITION 2 (EMBRECHTS, MAEJIMA AND OMEY (1984), Theorem la). Let
a be a positive function such that a(x) = x?L(x), 8> —1 and L slowly varying (that
15, for all t >0, L(tx) ~ L(x) as x> 0). Let F be non-latuce. Then for all h> 0,
(4) a(n)P{x<S,<x+h}~hu"?'a(x), asx-co,

n=1

where S, = X+ - -+ X, is the random walk defined by F and u the mean of F.
Moreover, the convergence in (4) is uniform in h on compact sets.

A more general statement including 8 < —1 is given in EMBRECHTS, MAESIMA
and OMEY (1984).

ProoF oF THEOREM. Define the associated distribution or Esscher transform

x

FK(X)=(f(—K))_'J’ e”dF(y), x=0.

0

One easily verifies that for all n=2, integer, because of (1)

X

F2(x)=p" J e dF"(y),  x=0,

0

(here (n) denotes the nth convolution, i.e., G"'= G*").
Now

(5) P{X>x}= J-m e_"yd{ E P_"Pan(")()’)}-

x n=0
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By Stirling’s formula, a(n)=p "p,~(g*/T(a))n®"" as n->co, satisfying the
condition in proposition 2 with 8= a —1. Hence it follows that, with

H(y)=Y p "p.F(y), y=0,

nea
Vh>0: H(y+h)—- H(y)~hv""a(y), y->c0.

In this last expression, we use a(-) defined on the positive real numbers, this
can be achieved most easily by a(x)=a([x]) where [ ] denotes integer part.
Therefore by uniform convergence:

Ve>03y*: Vy=y* and VhO0<shs<]l, say:
1—

ap a—| _ a—1
(6) T(a )(Q/V) hy*" < H(y+h)—H(y)< F( )(fI/V) hy®™".
Take now x=y =y*(e), A>0 fixed then it follows from (5) and (6) that
P{X> x}= e " dH(y)
w© x+(k+1)a
=X J e " dH(y)
k=0 J x+kA

8

< ¥ e TR (x4 (k4 1)A) — H(x + kA))
k

=0

l
a —x{x+kA) +kA a-~ IA
“Ta ) v) Eoe (x )

l+¢
" T(a)

A similar argument, replacing (1 +¢) by (1 —¢), proves the converse inequality
(=). Letting £/0 we get as x>

——(q/v )"J ey~ dy, asAl0.

P{X > x}~ Ta )(q/v) J e Yy~ dy,

The theorem follows since

o0
J ey M dy~k" eTx®7! ) as x>0,
X

Obviously, there is no mistery in assuming p, to be negative binomial. The
proof easily extends to more general situations. To give the reader some idea of
the generality of our approach, below we present a fairly straightforward extension
of our Theorem. For further details, the reader is referred to TEUGELS (1985) in
which these and related questions in insurance will be discussed.

For instance, suppose p, = P{N = n} satisfies the following property: there
exist > 1, L slowly varying and y € R such that u"p, ~n”L{n) as n >0 (in the
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negative binomial case, uw =p~', L(n)=(q“/I'(a)) and y = —1). Again, define
the Esscher transform (assumed to exist!) by

LS

FK(X)=(f(—K))"J e dF(y)

Q
where k = k(u) >0 is the solution of
7 =J e dF(x).
0

If now the conditions (1) and (2) hold (with p ™' replaced by p) then

P{X> x}~(—f'(—K)/f(~K))“’_
K

e "'x"L(x), asx-—>co,

In general, the behaviour of P{X > x} will depend on the relationship between
the asymptotic behaviour of P{N > n} and | — F(x) as n, x > . A multitude of
results exist, these are all reviewed in TEUGELS (1985). In a forthcoming paper,
we also plan to return to the lattice case (1.e., when the claim size distribution is
discrete).
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ON COMBINING QUOTA-SHARE AND EXCESS OF LOSS
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ABSTRACT

This paper considers reinsurance retention limits in cases where the cedent has
a choice between a pure quota-share treaty, a pure excess of loss treaty or a
combination of the two. Our primary aim is to find the combination of retention
limits which minimizes the skewness coefficient of the insurer’s retained risk
subject to constraints on the variance and the expected value of his retained risk.
The results are given without specifying precisely how the excess of loss reinsur-
ance premium 1s calculated. It is also shown that, depending to some extent on
the constraint on the variance, the solution to the problem is a pure excess of
loss treaty 1If the excess of loss premium is calculated using the expected value
or standard dewviation principle but that this need not be true if the variance
principle is used.

KEYWORDS

Reinsurance, Quota-share, Excess of loss, skewness, coefficient of variation,
constrained optimization.

|. INTRODUCTION

This paper considers reinsurance retention limits in cases where the cedent has
a choice between a pure quota-share treaty, a pure excess of loss treaty or a
combination of the two Such combinations occur 1n practice; see, for example,
GeRATHEWOHL (1980, Vol. 2, p. 371).

We assess the effects on the insurer of a particular combination of reinsurance
treaties by constdering three moment functions of the insurer’s retained risk.
These functions are the skewness coefficient and the variance of the insurer’s net
claims and the insurer’s expected net profit. Our primary aim is to find the
combination of retention limits which minimizes the skewness coefficient of the
insurer’s net claims, subject to a maximum value for the variance of the insurer’s
net claims and a minimum value for the insurer’s expected net profit.

In Section 3 we show that the solution to this problem is unchanged if we
replace the skewness coefficient by the coefficient of variation of the insurer’s net
claims.

Constrained optimization as a criterion for determining optimal retention limits
has been used before, see BUHLMANN {1970, pp. 114-119), but not in relation
to a combination of types of reinsurance. Combinations of types of retnsurance

* Thus research was supported by Fundagad Calouste Gulbenkian and by Instituto Superior de
Economia of Lisbon [ wish to thank Howard Waters for his helpful advice and crniticism

ASTIN BULLETIN Vol 15, No 1
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have not often been discussed in the mathematical insurance literature; one
notable exception is LEMAIRE, REINHARD and Vincke (1981). There are some
similarities between our paper and theirs, but also some important differences.
For example, in our paper we allow the claim number distribution to be more
general than the Poisson (for example negative binomial). There is also a differ-
ence in the way in which we assume the reinsurance premiums are calculated.
We assume the quota-share premium is calculated on a proportional basis with
a commission payment to the insurer; we do not specify how the excess of loss
reinsurance premium is calculated but make some assumptions about this pre-
mium which are shown to be satisfied if it is calculated using the expected value,
standard deviation or variance principles.

In Section 2 we describe in detail the two reinsurance treaties and discuss our
assumptions relating to the excess of loss reinsurance premium.

In Section 3 we state our problems and give the solution in general form.

In Section 4 we give the solution to our problems assuming the excess of loss
reinsurance premium is calculated using the expected value, the standard devi-
ation or the variance principle. It is shown that, provided the constraint involving
the variance of the insurer’s retained risk is not too restrictive, the optimal solution
is a pure excess of loss treaty in the first two cases but this need not to be true
in the last case.

In Section 5 we discuss briefly the necessity of the assumptions made concerning
the claim number distribution.

In Section 6 we give a numerical example to illustrate our results.

2. THE REINSURANCE ARRANGEMENT AND THE COST OF THE EXCESS
OF LOSS REINSURANCE

2.1. The Reinsurance Arrangement

Consider a risk for which the aggregate gross (of reinsurance) claims in some
fixed time interval are denoted by a random variable Y. We assume Y has a
compound distribution, so that

N
Y=% X
-1

where {X,}, with 0= x,< X, <x,<+00, is a sequence of i.i.d. random variables,
with common distribution function F, representing the amounts of the individual
claims and N 1s a random variable, independent of the X,’s, representing the
number of claims in the time interval. We shall assume that F is continuous and
that the third moments of X, and N are finite (although this will not always be
necessary). Let A, A, and A, denote the mean, variance and third central moment
of N. Throughout this and the following two sections, which contain our main
results, we shall make the following two assumptions:

(2.1.1) A=A, =0
(2.1.2) 2/\§—A]/\2_l\|/\3?0
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In Section 5 we shall comment on the necessity of these assumptions for our
results but for the present we remark that both assumptions will hold if N has
either a Poisson or a negative binomial distribution.

We assume the insurer of the risk arranges a combination of quota-share and
excess of loss reinsurance in the following way:

Firstly, the insurer chooses a quote-share retention level which we denote a
so that the insurer’s aggregate claims, net of quota-share reinsurance, are aY.
We assume the cost of the quota-share reinsurance is calculated on a proportional
basis with a commission payment. (See CARTER (1979, p. 87).) More precisely,
let P denote the insurer’s gross (of expenses and reinsurance) premium income
in respect of this risk. We assume an amount eP is used to cover the insurer’s
expenses, irrespective of the level of reinsurance. The premium of the quote-share
reinsurance is (1 —a) P less a commision payment of c(1—a)P.

Secondly, the insurer chooses an excess of loss retention level which we denote
M so that the insurer’s aggregate claims, net of quota-share and excess of loss
reinsurance, can be represented by a random variable Y(a, M), where

Y(a, M)= g min (aX, M).

We denote by P(a, M) the premium paid to the reinsurer in respect of the excess
of loss arrangement and we assume the premiums for the two arrangements are
calculated independently of each other. (It could be argued that there should be
a connection between the two reinsurance premium calculations since 100%
reinsurance should cost the same for the two types of treaty but we do not make
this extra assumption). Hence the insurer’s net (of expenses and reinsurance
costs) premium income is

P(c—e)+aP(l—c)—P(a, M).

2.2. The Cost of the Excess of Loss Reinsurance

Let C(a, M) denote the cost to the insurer of the excess of loss reinsurance
arrangement, so that

(2.2.1) C(a, M)=P(a, M)— E[aY — Y(a, M)]

Throughout this paper we make the following assumptions concerning C(a, M):
(2.2.2) C(a,M)e €, fora, M>0,

where €, is the class of functions with continuous derivatives of order i.

(22.3) Ifx,=+00, lim C(a,M)=0 foranyace(0,1]

M-
If x, < +o0, C(a,M)=0 forany M=ax, andanyac(0,1]
(2.2.4) aC/aM <0 for M € (0, ax,) and any a e (0, 1]
(2.2.5) C(a, M) is a convex function of a and M.
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Assumptions (2.2.3) are natural. (2.2.4) implies only that the cost of the excess
of loss arrangement should decrease as more of the risk is retained by the insurer.
(2.2.5) is a little more difficult to interpret but it holds in all our examples in
Section 2.3. Roughly speaking, if we regard a as fixed, (2.2.4) and (2.2.5) together
imply that as M decreases, the cost of reinsurance increases and the rate of
increase of this cost should also increase.

From assumption (2.2.2), (2.2.3) and (2.2.4) we can see that

(2.2.6) C(a,M)=0 foranyac[0,1]and any M =0
with
(2.2.7) C(a,M)=0 1fandonlyif M =ax,.

2.3. Some Examples

Inthis section we discuss very briefly the assumptions of Section 2.2 when P(a, M)
is calculated according to some well known principles.

When P(a, M) is calculated according to the expected value principle, standard
deviation principle or variance principle (see, for example, GERBER (1979, p. 67)
it is not difficult to prove that C(a, M) satisfies (2.2.2), (2.2.3) and (2.2.4). If
P(a, M) 1s calculated according to the expected value principle it can be shown
that C(a, M) satisfies (2.2.5). Now suppose that P(a, M) is calculated according
to the standard deviation principle so that, after a little calculation,

C(a, M) =f{A,G*(a, M)+ (A~ A ) H?*(a, M)}'/2.

Where f is a positive loading factor and

G(a, M)= [Jm (ax-M)* dF(x)] ”2,

M/a
H(a,M)=J (ax — M) dF(x).
M/a

It can be shown that given any two non-negative convex functions g,(x) and
g-(x) the function g(x)=[g3(x)+g3(x)]"/? is still convex. It can also be shown
that H(a, M) is a convex function of (a, M) (this is equivalent to say that C(a, M)
is convex if P(a, M) is calculated according to the expected value principle).
Since A,— A, =0 by assumption, in order to prove that C(a, M) is convex we
only have to prove that G(a, M) 1s convex. The convexity of G(a, M) follows
easily since

Gla,M)e%, fora>0,M>0
*Gla, M)/aM*=0 using the Cauchy-Schwarz inequality

and

{6°G(a, M)/dM?} - {3*G(a, M)/3a®}-{3*G(a, M)}/3a aM}*=0.
The fact that C(a, M) satisfies (2.2 5) when P(a, M) is calculated according to
the variance principle follows directly from the corresponding result for the
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standard deviation principle (Since the square of a non-negative convex function
is also convex)

3. THE PROBLEM AND ITS SOLUTION
3.1. The Problem

The problem, in broad terms, is to choose retention levels a and M which are,
in some sense, optimal for the insurer. We shall assess the effects of reinsurance
by considering moment functions of the distribution of the insurer’s retained
risk. More precisely, let W(a, M) be a random variable denoting the insurer’s
net (of expense and reinsurance) profit and let E[{W(a, M)], V[Y(a, M)],
CV[Y(a, M)] and y(Y(a, M) be the expected net profit and the variance,
coefficient of variation and skewness coefficient of the insurer’s net claims respec-
tively. Our main problem is

ProBLEM |. Minimize y[ Y(a, M)] over the set I.

Where [={(aq, M):0ssa=<! and M=0 and E[W(a,M)]=B and
V(Y(a, M))< D}
for some constants B and D. It is assumed that B and D are such that ['# .
(Note that we assume CV[Y(a, M)] and y[ Y{(a, M)] are zero if either a=0 or
M =0, as well as C[ Y(a, M)] when a=0.)

We shall show that any solution to problem 1 1s a solution to problem 2 and
vice versa, where problem 2 is

PROBLEM 2 Minimize CV[ Y (a, M)] over the set T'.

Note that V[ Y(a, M)]= V[W(a, M)]and y[ Y (a, M)]=—-y[ W(a, M)]so that
problem 1 can be expressed entirely in terms of the insurer’s net profit. This is
not the case for problem 2 since here is no simple relationship between
CV[Y(a, M)] and CV[W(a, M)].

In order to solve the above problems it will be helpful to consider the following
simpler problem:

PrROBLEM 3 Minimize y[ Y(a, M)] over the set T',.
Where I'y={(a, M):0<sa<1, M=0, E[W(a, M)]= B}
or equivalently (as we will see),

PROBLEM 4. Mimimize CV[ Y (a, M)] over the set T',,
i.e., we drop the constraint concerning the vanance.

3.2. The Skewness Coefficient and the Coefficient of Variation
of the Total Net Claims

The statement and proof of the following result assume, for convenience, that
Xo> 0.
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ResuLt 1. (i) y[Y(a, M)] and CV[Y(a, M)] are functions of class %, for
a, M >0.

(ii) Both of them are strictly increasing functions of the single variable M/a
for xo < M /a < x, and points such that 0 < M/a < xoand M /a = x, give minimum
and maximum values respectively of the two functions over the set
{(a, M): a, M > 0}.

(iii) y[Y(a,, M))]1>y[Y(a;, M;)] if and only if CV[Y(a, M,)]>
CVIY(a,, M,)].

Prookr. (i) A little calculation gives the following formulae:

(3.2.1) VI Y(aq, M)]=A|(32‘Bf)+/\23%
(3.2.2) CVLY(a, M)]={V[Y(a, M)1}''*/(1,B))
(3.2.3) YL Y(a, M)]={A:83+ A (B3B8, +2B7)

+3A28( Bz"ﬁf)}/{ V[ Y(a, M)]}m
where
M/a
Bx = J a*x* dF(x)+ M*(1 - F(M/a)).

Using integration by parts and the assumptions that F(0)=0 and that F is
continuous, we have

M/a

(3.2.4) B =M"—ka"J x*VF(x) dx

o

from which the proof of (i) follows immediately.
(ii) Let z= M/a. Then we can see that

(3.2.5) B =M*a,
where
a, = I (x/z)*dF(x)+1- F(z).
1]
Substituting (3.2.5) into (3.2.1), (3.2.2) and (3.2.3) we see that CV[Y(a, M)] and
¥[Y(a, M)] can be expressed as functions of the single varniable z. We shall show

that dy[Y(z)]/dz> 0, for x,<z<x,

Iy (201=301 - Fl2)z A (ar= )+ Asall ™
X {Af jz(xzzz—x3z)dF(x)+ X(Az—A)DR(2)
0

+(2A3= A A=A Ay a? J’ (xz’—xzzz)dF(x)}

0
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where

h(z)=2 Iz x(1—-F(x)) dx- Jz (x*—xz) dF(x)

0 0

+J (1= F(x)) dx - J (xz?—x*) dF(x).

0 0

It is easily checked that h(0)=0 and that dh(z)/dz =0 so that h(z)=0 for z=0.
That dvy/dz is strictly positive for x, <z <x, then follows from assumptions

(2.1.1) and (2.1.2). The proof that dCV/dz >0 is similar to that given above but

is somewhat simpler and does not require assumptions (2.1.1) and (2.1.2). The

remaining part of (ii) now follows immediately and (ii1) follows from (ii).

Remarks The equivalence of problem 1 and 2, and of problems 3 and 4,
follows from part (iii) of the above result.

A further implication of the result is that the locus of points (a, M) satisfying
the relation y[ Y(a, M)]= constant, or CV[ Y(a, M)] = constant, is a straight line
passing through the origin in the (a, M)-plane, a higher value of the constant
giving a line with steeper slope.

3.3. Isocost Curves

In this section we consider the locus of points (a, M) satisfying the relation
E[ W(a, M)]= B which is equivalent to

(3.3.1) P(c—e)+a(P(1-c)—AE(X))—C(a,M)=B.

Where B is the constant appearing in the definition of the sets I and I',. (See
Section 3.1). It can be regarded as the set of points with a fixed reinsurance price,
since (3.3 1) is equivalent to

(3.3.2) (1—a)P(1-c¢c)—AE(X)]+Cla,M)=P(1-e)—AE(X)—B.

Where the left-hand side represents the total reinsurance cost of the arrangement
(a, M).

We make the following assumptions about the parameters involved in our
problems:

(3.3.3) P(1—c¢)- A E(X)>0

(3.3.4) B<P(l—e)— A E(X)

(33.5) B> P(c—e)

(3.3.6) B>max {E[W(a, M)]: 0<a=1,0< M < axy}.

Assumption (3.3.3) implies that the cost of the quota-share arrangement
[(1—a)(P(1=c)—A,E(X))]1s positive for 0= a <[ and also that the cost of this
arrangement decreases with the retention a. Then (3.3.3) together with (2.2.6)
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and (2.2.7) implies that the total reinsurance cost of the arrangement (a, M) is
non-negative, and is zero if and only if a =1 and M = x,. Assumption (3.3.4) is
then natural since the right hand side represents the insurer’s expected profit
after expenses but without any reinsurance. Assumptions (3.3.5) and (3.3.6) imply
that points such that a =0 or M < ax, respectively are not feasible solutions to
our problems, i.e., we do not consider solutions where the whole risk is passed
to the reinsurer through the quota-share arrangement or where the excess of loss
retention is less than the smallest possible claim (net of quota-share reinsurance).
The following result discusses the shape of the isocost curves.

REsuLT 2. Let
pla, M)=E[W(a, M)]- B foranya, M >0
ao=[P(e—c)+ Bl/[P(1-c)—A E(X)]
A={a 0<a=1 and there exist at least one M, M < ax,, such that p(a, M) =0}.

Then (i) A=(ay, 1].

(ii) For each ae A there is a unique M such that p(a, M) =0 1.e., there is a
function ¢ mapping A into (0, ) such that M = ®(a) is equivalent to p(a, M) =0.

(iii) P(a)e %,.

(iv) lim, . .: ®(a) =a,x,.

(v) Iim,. 5 ®'(a)=—o0.

(vi) ®(a) is convex and is strictly convex if C(a, M) is strictly convex.

Proor First note that p(a, M) =0 is equivalent to
pla, M)=P(c—e)+a(P(l—c)— A E(X))—C(a, M)—B=0.

(i) Let @< a,. It foliows from the definition of a, and from (2.2.6) and (2.2.7)
that p(d, M)<O0 for any M <dx,. Hence ag A. Now let de(ao, 1]. p(d, M),
considered as a function of M, is continuous since C(a, M) is assumed con-
tinuous. Also

lim p(4, M)=P(c—e)+a4(P(l1—c)—A,E{(X))-B>0

M-axy

lim p(d M)<0 by (33.6).

M —dxg

Hence there is at least one M, M < dx,, such that p(d, M) =0.

(ii) Suppose p(a, M,)=0=p(a, M,) for some a, M, and M,. Then C(a, M,) =
C(a, M,) and hence, using (2.2.4), M, = M..

(iii) This follows from the Implicit Function theorem. See, for example,
ArosTtoL (1963).

(iv) Let {a,} be a sequence such that a,>a, lim,.oa,=a, and
lim, .. ®(a,)=k=+00. By continuity we have p(a,, k) =0, which implies that
k= agx, using the definitions of p and a and (2.2.6) and (2.2.7). But using part
(i) above, ®(a,) <a,x, and (iv) follows
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(v) If x, = +o0 this is obvious. If x, <+0c0 we have only to notice that, using
(2.2.3) and (2.2.4), both dC/da and 3C/dM are zero at the point (aq, aoX,).
Hence dp/9M is zero and dp/da is strictly positive at (a,, aox,).

(vi) Let a;,a,€ A and 0= A <. p(a, M) is concave since C{a, M) is convex,
so we have

p(Aa; + (1 —A)a,, P(Aa,+(1—A)ay))
=0=rp(a,, ®(a))+(1-21)p(a,, ®(a;))
< p(Aa,+(1—=1)a,, Ad(a,)+ (1 -A)P(ay)).
Using the proof of part (i) above we have
AdD(a)+(1+A)P(a,)=D(ra,+{(1—-A)ay)

It is clear that @ is strictly convex if the same is true for C(a, M).

3.4. The Variance as a Function of (a, M).

We shall find the following result useful when proving our main resuits in the
next section.

REsuLT 3
(i) aVLY{(a, M))/3a>0 for xo< M/a <x,,
(i) oVIY(a, M)l/oM >0 for xo<M/a <x,.

Proor. We have already seen that V[ Y(a, M)]e €, for a, M >0 (see proof
of result 1(i)). Differentiating (3.2.1) we have:
M/a

aV/aa=2/\,aJ, x? dF(x)

0
M/a

M/a
xdF(x)[J- axdF(x)+M(l—F(M/a))]
0

+2(A,—Ay) J

0

M/a
aV/oM =2A,(1 — F(M/a))[MF(M/a)—J axdF(x)]

M/fa
+2A2(1—F(M/a))[J axdF(x)+M(1—F(M/a)):|

(1) follows directly and (i) follows from (2.1.1).

3.5. The Solution

In this section we solve our problems in general terms.

ResuLT 4. (i) The non-negative constraints are redundant in our problems.
(ii) The constraint E[W(a, M)] =B is active in the optimum of our problems,
i.e., in the optimum of our problems this constraint holds as an equality.
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ProoF. (1) Follows directly from assumptions (3.3.5) and (3.3.6).

(ii)) We shall prove the result for problem I, and hence problem 2. The proof
for problems 3 and 4 is similar but simpler. Let (a,, M,)e be such that
E[W(a,, M,)]> B. From the proof of result 2 we know that there exists M* < M,
where a,x, < M* <a,x, and E[ W(a,, M*)]= B. Using result 3(ii) and result 1(1i)
we see that

VIY(a,, M*)]< V[Y(a, M)]<D
and
Y[ Y(a,, M*)]<y[Y(a,, M))].

Let us now consider the solution to problem 3 (and hence to problem 4). We
know that the solution lies on the isocost curve M = ®(a) and information about
the shape of this curve is contained n result 2. Figure 1 gives three examples of

M

apx, +

FIGURE | Isocost curves in the (a, M)-plane

isocost curves, labelled I,, I, and I;. We know that each curve has slope —o© at
the point (aq, apx,) and we have assumed x, is finite for convenience. We also
know that each curve is convex although not necessarily strictly convex. From
result 1 we know that straight lines through the origin in fig. 1 represent points
of constant skewness, the larger the slope the higher the skewness. Hence it 1s
clear that the solution to problem 3 is the point, or set of points, where the
straight line through the origin with the smallest slope intersects the isocost curve.
If the isocost curve is decreasing, as in I, this point will be (1, ®(1)), i.e., pure
excess of loss reinsurance will be optimal. (Note that LEMAIRE, REINHARD and
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VinckeE (1981), by making assumptions about the calculation of the reinsurance
premiums different to ours, were able to assume that the isocost curves were
decreasing and hence that, in terms of our problem, excess of loss reinsurance
was optimal.) Even if the isocost curve is not decreasing, as in I, the point
(1, ®(1)) may still be the solution to problem 3. Isocost curve I; shows a case
where the solution is not (1, ®(1)).

It is clear that in general the solution to problem 3 will be (1, ®(1)) unless we
can find a point on the isocost curve such that the gradient of the isocost curve
at that point equals the slope of the line joining that point to the origin. Such a
point may not be unique since the isocost curve may not be strictly convex

Summarizing we have the following result:

REsuULT 5. Let
H={(a,®(a)): ap<a<1,dd(a)/da=®(a)/a}.

Then
(i) if H is empty the solution to problems 3 and 4 is the point (1, ®(1)).
(ii) if H is not empty, all the points in H are solutions to problems 3 and 4.

REMARKs. (i) We have given a geometrical proof of result 5 but it is possible
to give a more formal proof using the Kuhn-Tucker conditions and the facts that
E[W(a, M)] is a concave function and ¥[Y(a, M)], or CV[Y(a, M)], is a
quasi-convex function of (a, M). See ARRow and ENTHOVEN (1961).

(ii) Using the definition of ® the set H can be defined as

(3.5.1) H={(a,M):a<1 and E[W(a, M)]=B
and B+ P(e—c)+C(a, M)—adC/da—MaC/aM =0}.

We are now in a position to solve problems 1 and 2.

REsSULT 6. Let
a,=inf{a: (a, ®(a)) is a solution to problem 3}.

Then
(1) if V[Y(a,,®(a,))]=<D, (a,,P(a,)) is a solution of problem | and every
solution of problem 1 is a solution of problem 3.
(ii) if V[ Y(a,, ®(a,))]> D the solution to problem 1 is (a°, ®(a®)) where
a’=sup{a:a<1,E[W(a, M)]=B and V[Y(a, M)]=D}.

In this case a’ < a,.

Prookr. (i) If (a,, ®{(a,)) is a solution of problem 3 and V[ Y(a,, ®(a,))]s D
then clearly (a;, ®(a,)) is a solution of problem I. If (a, ®(a)) is another solution
to problem 1 we must have y[Y(a, ®(a))}=y[Y(a,, ®{a,))] and so (a, P(a))
solves problem 3,
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(ii) Using geometrical arguments and result 3, it is clear that for any a such
that a,<a =1 we have, assuming V[ Y(a,, ®(a,))]> D, ®{a,)s=®(a) and D<
VIY(a,, ®(a,))]< V[ Y(a, ®(a))]. This shows that a®<a,.

On the other hand, y[ Y(a, ®(a))] is a strictly decreasing function of a for
ap<a<a,, as is clear when we consider the geometrical proof of result 5.

So for any point (a, ®(a)) such that a,< a < a® we will have y[ Y(a, ®(a))]>
Y[Y(a® ®(a®)] and for any point such that a°<as<1 we will have
VIY(a, ®(a))]> D, otherwise these woul.. be a contradiction to the definition
of a° or to the mean value theorem.

4. THE SOLUTION IN SOME SPECIAL CASES

In this section we give, briefly, the solution to problems 3 and 4 when the excess
of loss reinsurance premium is calculated according to the expected value prin-
ciple, the standard deviation principle or the variance principle.

ResuLT 7. (i) If the excess of loss reinsurance premium is calculated using
the expected value principle or standard deviation principle, the solution to
Problems 3 and 4 is (1, ®(1)), i.e., a pure excess of loss arrangement.

(1i) If the excess of loss reinsurance premium 1s calculated using the variance
principle, the solution to problem 3 and 4 is (4, ®(4)) where

d=min {2[P(e-c)+ BY[P(1—c)- A, E(X)], 1}.

Proor. (i) The proof is immediate since for both cases
aC aC
(4.1) B+P(e—c)+Ca, M)—a—~-M—=B+P(e—c)
Jda aM

which is positive by assumption (3.3.5) and so the set H is always empty (although
the relevant isocost curve is not necessarily decreasing). The result follows from
result 5(i).

(ii) In this case the left-hand side of (4.1) is equal to

B+ P(e—c)—C(a, M).
Hence the set H is
{(a, M): E[W(a,M)]=Banda=2[B+P(e—c)]/[P(1-c)—A,E(X)]anda=< 1)}

and the result follows from result 5.

5. DiscussionN

We have assumed throughout Sections 2, 3 and 4 that assumptions (2.1.1) and
(2.1.2) hold for the claim number distribution N. It is clear that all our results
relating to the coefficient of variation, in particular the solutions to problem 2
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and 4, are valid without making assumption (2.1.2), since this assumption was
used only in the proof of result 1(ii), and then only in relation to the skewness
coefficient.

Assumption (2.1.1) was used in relation to the coefficient of variation to show
that C(a, M), and hence the 1socost curve M = ®(a), is convex when the excess
of loss reinsurance premium 1s calculated according to the standard deviation
principle or the variance principle (see Section 2.3). If (2.1.1) does not hold it
is not hard to find examples where P(a, M) is calculated according to either the
standard deviation principle or the variance principle and where the isocost curve
is no longer convex. (One particular example assumes N to be a degenerate
random variable always equal to 1, which is equivalent to assuming a combination
of quota-share and stop-loss reinsurance). However if (2.1.1) does not hold we
can still state result 7(i), relating to the coefficient of variation, since this result
is an immediate consequence of result 5(i), and it is easy to see that this result
is independent of the convexity of the isocost curves. Assumption (2.1.1) was
also used for the proof of result 3(i), which was later applied in the proof of
result 6(ii). It is not difficult to see that 1f (2.1.1) does not hold, but a; =1 in
result 6, this result is still true. So we can conclude that when P(a, M) is calculated
using the expected value or standard deviation principle, the main results relating
to the coefficient of variation [i.e., result 7(i) and result 6], hold without the
assumption (2.1.1) being fulfilled.

When P(a, M) 1s calculated according to the variance principle the proofs of
Results 5(i1), 6(ii) and 7(ii), relating to the coefficient of variation, are no longer
valid without (2.1.1), although it may be possible to prove some of these results
without this assumption.

Furthermore (2.1.1) is not a necessary condition for the proof of result 1 relating
the skewness coefficient, since this result still holds when N is a degenerate
random variable and when the distrnibution function of the individual claim
amounts is absolutely continuous [see LEMAIRE, REINHARD and VINCKE (1981)].
In this particular case all the comments relating to the coefficient of variation
apply to the skewness coefficient.

We have already mentioned in Section 2.1 that both (2.1.1) and (2.1.2) hold
if N has a Poisson or a Negative Binomial distribution. It is also worth mentioning
that (2.1.1), but not (2.1.2), holds for any mixed Poisson distribution and that
(21 2), but not (2.1.1), holds if N has a binomial distribution or is a degenerate
random variable.

6. AN EXAMPLE

In this section we discuss a numerical example that illustrates the results in the
previous sections.

We assume the gross aggregate claims are generated by a compound negative
binomial distribution with

A =10, A,=20; A;=60
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and

0 ifx=<li
F =
(x) {l—x“‘ ifx>1

so that individual claims have a Pareto distribution. We assume
P=24,; e=0.35; B=1.7

and the premium loading factor, f, used in the calculation of the excess of loss
reinsurance premium is 0.8, 0.45 and 0.4 when the premium calculation used is
the expected value principle, the standard deviation principle and the variance
princtple respectively. Table 1 gives the point (@, M) which is the solution to
problems 1 and 2 for various values of ¢ and D. Note that from table 1, we can
see that when ¢ =0.4 the isocost curves for the three premium calculation prin-
ciples are not decreasing functions with a.

TABLE 1
Excess of loss premium
calculation principle c D (a, M) VIW(a, M)] y[Y(a, M)] CV[(a, M)]

Expected value principle 04 33 (1,1676) 3238 06763 0.4507
27 (0908, 1 57) 27 0677 04511

03 33 (1,1.676) 3238 06763 04507

27 (0 863,253) 27 06886 04562

Standard deviaton 0.4 33 (1,1497) 3077 06743 0 4495
principle 27 (0921,148) 27 06755 04502
03 33 (1,1497) 3077 06743 0 4495

27 (0 846,18 6) 27 07153 04609

Varniance principle 04 33 (09375,147) 2711 06751 04500
27 (0926, 1.46) 27 06751 04500

03 33 (1,1575) 3154 06752 04500

33 (0 854, 3 42) 27 06952 04580

Let us now consider in more detail the case where ¢=.3 and the standard
deviation principle is used for the excess of loss reinsurance premium. Figure 2
shows the variance and the skewness coefficient for seven different isocost curves,
starting with B =32/15 and decreasing B in steps of 4/30 until we get B=4/3.
Points with the same subscript correspond to points on the same isocost curve
and the smaller the subscript, the higher the value of B. The points I}, I,..., I,
correspond to pure excess of loss treaties and these points together with the
points on the solid lines represent solutions of Problem | for some value of D.
The dotted lines correspond to points that are never solutions to problem 1,
although they are on the isocost curved considered. This 1s because, for example,
points between Is and I{ have both greater skewness and greater variance than /s.
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OBITUARY

HILARY L. SEAL
I1th January 1911-25th July 1984

On July 25, 1984 actuarial science lost one of its greatest personalities: Hilary L.
Seal died from the side effects of a thrombosis This was a sudden end to his
activity, which was always at the 200% level On an operational scale, Hilary
stayed young. It remains to our satisfaction that the fruits of his activity will be
here for future generations

Hilary received his formal education in his native England, first at Birmingham
University, then at University College, London, where he graduated 1n Statistics
with first class honors. He had an actuarial position in Brazil, but returned to
England to serve his country during and shortly after World War I1 as a statistician
in the Admiralty. In 1948 he received his Ph.D. for his thesis on *“Discrete Random
Processes in Relation to Mortality Data”. At this time it was clear that the old
island was too small for Hilary; he immigrated to North America. He worked
briefly for an insurance company in Toronto, then moved to New York and New
Haven, where he became a successful consultant. He was able to combine his
professional activity with an impressive scientific career. For twenty years he
taught statistics at Yale University. When he and his family moved to Apples
(Switzerland) in 1972, the Swiss Federal Institute of Technology of Lausanne
and the University of Lausanne secured his services: in 1980 Hilary occupied
the Chair of Honor of the Institute of Actuarial Science of the University of
Lausanne.

Hilary's publications are manifold and cover the broad range of statistics and
actuarial science. A bibliography is being prepared and will be published soon.
The topics of his papers include estimation of decrement rates, multivariate
statistics, pension mathematics, risk theory, queuing theory, numerical methods
such as simulation and inversion of Laplace transforms; Hilary made good use
of the computer at a time when other actuaries still relied on the abacus. His
monographs are classics: Multivanate Statistical Analysis for Biologists (1964),
Stochastic Theory of a Risk Business (1969), Survival Probabilities: The Goal of
Risk Theory (1978).

Hilary was a brilliant speaker. When he talked, one could expect fireworks
But no matter how spectacular his lectures were, they were always based on
extensive research. One of Hilary’s loves was reading what others had been
writing. His famous library is the testimony to this passion.

For the readers of the Astin Bulletin who had neither the opportunity to listen
to Hilary nor to know him, we reprint the beginning of a letter that he wrote in
1950 to the Editors of the Journal of the Institute of Actuaries Students Society.
The topic is “Spot the Prior Reference”, and the letter begins as follows:

A game which is fast become a favourite relaxation of the more priggish
type of mathematician is one which might be called: Spot the prior reference.
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'
Photograph shows the presentation of Corresponding Membership in the Association of Swiss
Actuaries in June 1980

The equipment is elementary—a good memory or an extensive system of
card records with appropriate cross-references. The object of the game is
simple—the infliction of a blow to the self-esteem of a colleague while
retaining an appearance of scientific detachment.

The first move is made by an author who inadvertently omits that thorough
search through the numerous volumes of Mathematical Reviews and the
Zentralblatt fiir Mathematik which nowadays occupies as much of a
mathematician’s time as the preparation of a supposedly original article.
The second move falls to the editor whose referees fail to notice that the
work submitted has already appeared in print in a substantially similar form
ten, twenty or even a hundred years earlier and the game is on. The reviewer
now appears on the scene and scores one or more points according to the
number of years he can span and the amount of scorn he can convey in a
politely worded account of the author’s limitations. The game continues as
a third and fourth writer show that even the reviewer himself has not found
the site of original publication of the material presented. Final honours go
to the player who has revealed the greatest number of missing references in
_the previous writers’ articles.

Following this introduction, Hilary showed that the convolution of uniform
distributions (a favorite topic of some writers of the 20th century) could be traced
down to the 18th century ....
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Hilary was a Fellow of the Faculty of Actuaries in Scotland, an Associate of
the Institute of Actuaries, a Fellow of the Royal Statistical Society, an Associate
of the Society of Actuaries, a Fellow of the Canadian Institute of Actuaries and
a member of more than a dozen other professional societies. He was one of the
very few actuaries who have been elected Fellows of the American Statistical
Society. At the International Congress of Actuaries in Switzerland he was made
a Corresponding Member of the Association of Swiss Actuaries.

We shall miss Hilary Seal for his professional contributions. His family and
his friends will miss him for much more.

H. U. GERBER

EDITORIAL

This is the last issue of Astin Bulletin to be published under my editorship. Hans
Bithimann and D. Harry Reid will take on the editorial responsibilities from the
next issue onwards. Their addresses can be found in the Instructions to Authors
on the inside back cover.

I feel priviledged to have serived as Editor of the Astn Bulletin, a job which
I have done for almost eight years now. It brought me into contact with authors
and papers and also enabled me to read referees’ reports. I am confident that
these inputs have influenced my own thinking on insurance matters in a positive
way. It is an experience which I am glad to have had and 1 take this opportunity
to thank all the people involved; authors, referees, members of the Editorial
Board as well as the membership of Astin for having confidence in me.
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J. vaN EEGHEN, E. K. GrEUP and J. A. NusseN (1983). Rate Making. Surveys
of Actuarial Studies, No. 2. Nationale-Nederlanden N.V., Rotterdam. 138 pages.

The series Surveys of Actuarial Studies, published by the Research Department
of the Nationale-Nederlanden with G. W. de Wit as editor, covers, in its first
two volumes, two important R’s of actuarial nonlife activity: Reserving and Rate
making. The first volume, Loss Reserving Methods, was reviewed in Astin Bulletin
14, No. 1.

As the name of the series implies, the present volume contains, in a condensed
and logically ordered form, material from a large number of actuarial books and
papers, as well as some general statistical methods. The valuable bibliography
at the end of the booklet contains some eighty references.

The plan of the book is as follows. In the Introduction the rate making process
in general is discussed. After that, the treatment is entirely devoted to the risk
premium part of the premium. Chapter | treats the selection of tariff variables
(rating factors). Determination of tariff classes, defined via the tariff variables
chosen, is considered in Chapter 2. Chapter 3, Parameter estimation in modelled
tariff structures, treats the problem of estimating the risk premium, or the claims
frequency or the average claims size, as a function of the tariff class. In Chapter
4 an example of the credibility approach is given. Finally, Chapter 5 gives a brief
outline of the problem of large claims.

In general, each method of analysis is given a brief but sufficiently detailed
presentation. Then there are some hints on numerical computation and, in most
cases, also numerical examples. Finally, the authors give their own comments on
the method.

In the following I will give some of my own comments on the contents of the
book.

In the Introduction, “the (known) solidarity part” of the premium is introduced
as a separate premium component. This refers to an intentional omission of some
premium differentiation, for social reasons. The issue has obviously attracted a
great deal of interest in the Netherlands recently. It is not unknown in other
parts of the world. Still I think it belongs to the larger context of the difference
between risk factors, i.e., factors influencing the risk, and rating factors, which
are the factors actually used for premium calculation. Personally, I would have
liked this difference, which is not exclusively caused by feelings of social fairness,
to be more clearly set out in the discussion.

Chapter 1 presents Lemaire’s linear regression selection method, Hallin-
Ingenbleek’s unmodelled selection procedure and, as a nice contribution from
the statistical tool-box, a method based on discriminant analysis. In the comments
it is pointed out that exact significance levels are difficult to establish for the
procedures. In particular, assumptions of normality and homoscedasticity will
mostly be violated in practice. Especially the latter (equality of variances) I find
questionable as it is generally inconsistent with the compound Poisson model.
With this in mind, as the authors point out, the methods may however be efficient
tools for exploratory data analysis
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In Chapter 2 methods of cluster analysis are applied to the problem of reducing
a maximal number of basic classes, defined by the tariff vanables, to a smaller
number of tariff classes One method is Dickmann’s application of general cluster
analysis to insurance problems, based on vaniation within and between clusters.
The other is the method of Loimaranta, Jacobsson and Lonka, which 1s based
on likelihood estimation and tests of mixtures of distributions. The concept of
the chapter 1s very elegant. The two methods of cluster analysis may be used to
produce a set of admissible subdivisions of the portfolio. Finally, the credibility
related method of Schmitter and Straub, which is also described, may be used
to judge between them.

In the first part of Chapter 3 non-parametric methods of estimation in modeiled
tanff structures are considered: Simon-Bailey (minimum chi-square), graduation
by marginal totals and least squares. Applications are made to multiplicative and
additive models. Comments on methods and models are generally well elaborated.
Reference is given to a number of papers according to which the additive model
should produce a better fit for insurance data, even if the majority of existing
rating systems rather seem to be multiplicative. So for balance 1 should mention
that the Swedish motor insurance data from 1977, analyzed by Hallin-Ingenbleek
in SAJ 1983, No 1, showed a somewhat better fit for the multiplicative model
than for the additive one, as did data from 1979. The second part of the chapter
is devoted to a careful presentation of maximum likelthood methods, containing
inter alia Ter Berg’s treatment of loglinear models for Poisson, gamma and inverse
Gaussian distributions.

The last two chapters are rather short. Chapter 4 presents the elegant Buhlmann-
Straub model. For tanff construction this credibility approach has to be applied
with some care, according to the reviewer’s experience. This is because it starts
out from the assumption that the risk groups under study are similar, in the sense
that their risk characteristics are assumed to be chosen at random from one and
the same collective. The method therefore has a tendency to give too small
differences between risk groups. The case for experience rating of individual
contracts may be different.

The fifth chapter on large claims outlines methods of Schiffer- Willeke and
Gisler. The problem of large claims is a nuisance 1n tariff construction work, at
least as soon as personal injury claims or fire claims are present. So, as a
practitioner one could have hoped for a fuller treatment, perhaps including the
dwvision of claims into more than two size groups (e.g., normal claims, excess
claims, superexcess claims) and/or some help from the theory of outlying observa-
tions. Maybe one could hope for another volume in the series on this subject?

In summary, the authors have collected in a limited space an astonishingly
rich material on general rate making methods. They have deliberately refrained
from discussing the loading for commissions and expenses, and problems pertain-
ing to special lines of business. There is no mentioning of investment income.
These limitations are most natural considering the size of the book. It should be
of great value to every non-life actuary.

B. AINE
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R. E. BEArRD, T. PENTIKAINEN and E. PESONEN (1984). Risk Theory (3rd edition)
Chapman & Hall Ltd., London. xvui+408 pages, £11.95 paperback/£24.50 hard-
bound.

[A review on the first edition by H. Bihlmann appeared in AB 6, 178-179.]

Those readers who are familiar with the first two editions of this pioneering
book on risk theory will be surprised to see that the new edition 1s a complete
revision of the earlier editions. This renewed third edition gives an introduction
to risk theory with main emphasis on the practical aspects of theoretical results.
Therefore this book bridges the gap between practical problems and pure risk
theory.

The first chapter provides us with some thoughts on general modelling and
more specifically on insurance models. Also the notations which will be used 1n
the subsequent sections are introduced.

In the second chapter the authors examine the Poisson process. Classical
properties as well as approximations are considered. In addition they discuss the
economical influences on the claim number. They distinguish four kinds of
fluctuations: trends, long-period cycles, short-period oscillations and pure random
fluctuations. The structural distribution is introduced to incorporate short-period
oscillations. The classical characteristics of mixed Poisson distributions are sub-
sequently examined.

In Chapter 3 the compound Poisson process is extensively studied. The distribu-
tion of the claim size, those of the aggregate claims as well as basic characteristics
of the distribution are largely taken into consideration.

Possible estimation techniques for the aggregate claim size distribution are
given Some problems arising from large claims are given. Analytical results are
discussed as well as different types of claim distributions. The effect of a reinsur-
ance treaty on total claim size is examined. The by now classical approximations
for the compound Poisson distribution are given namely the Edgeworth
expansion, the normal power approximation, the gamma-approximation etc. Also
some more recent techniques, such as the inversion of the characteristic function,
the recursion algorithm are also dealt with.

Mostly based on the normal power approximation of the compound Poisson
distribution the authors discuss in Chapter 4 some practical problems related to
a one-year time span such as: evaluation of the fluctuation range of the annual
underwriting profits and losses, the reserve-funds, the problem of greatest reten-
tion, the influence of several retention limits, excess of loss reinsurance, stop-loss
reinsurance, experience rating.

In Chapter 5 the variance 1s used as a measure of stability to design an optimal
form of reinsurance to discuss reciprocity of two companies and the equitability
of safety loadings.

In Chapter 6 a completely new chapter (not appearing in the previous editions)
1s included considering the risk processes with a time span of several years. In
this case the basic parameters of the risk process are continually subject to
alterations which are partially revealed as trends and partially as cyclical The
effect of these phenomena is modelled for carrying out long-term considerations,
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e.g., the Poisson parameter is adapted to take into account the trends as well as
cycles (by means of an autoregressive process). In addition the problem of
forecasting the future flow of business is studied. The method 1s also adapted
for coping with inflation. Investment is a new topic developed. Ruin probabilities
for a finite time period come into the picture for discussing the problem of
solvency. This chapter ends with the description of the Monte Carlo simulation
of risk business.

In Chapter 7 several applications of the risk processes with a time span of
several years developed in the previous chapter are given: the evaluation of net
retentions, the effect of cycles, the effect of the time span, the effect of inflation,
dynamic control rules and a solvency profile.

By means of cohort analysis the results of risk theory are then adapted to the
life insurance branch in the following chapter.

In Chapter 9 infinite time ruin probability is studied essentially by means of
the adjustment-coefficient. Some practical consequences are deduced.

The final chapter describes the application of risk theory to business planning.
In the previous chapters many applications of a risk theory, such as the estimation
of a suitable level for the maximum net retention, the evaluation of stability, the
safety loading and the magnitude of the funds have been treated as isolated
aspects of an insurance business. In this chapter a picture of the management
process in its entirety is built up. An integration of the risk theoretical aspects
in the context of other management aspects, not of actuarial nature, is carried out.

The book ends with some appendices containing derivations and proofs of
some of the mathematical results obtained in the book: derivation of the Poisson
and mixed Poisson processes, Edgeworth expansion, Infinite time ruin probabil-
ity, Computation of limits of finite time ruin probabilities, Random numbers.

In addition the book contains quite a lot of interesting exercises (and their
solution), an author index, a bibliography, a subject index as well as a necessary
list of symbols.

In conclusion this book on risk theory where formulae are approached from
the practical point of view shows to practical actuaries that some of the theoretical
results lead to a better understanding of what is going on. To theoretical actuaries
(at universities) the book gives a motivation for going on with theoretical research.
Although this book has just appeared it is clear from discussions with students
that it provides us with insurance models and material which is highly appreciated
by people preparing for the actuarial profession.

M. GOOVAERTS

M. GoovaerTs, F. DE VYLDER and J. HAEzZENDONCK (1984). Insurance Pre-
miums. Theory and Apphcations. North-Holland, Amsterdam. xi+406 pages,
US $63.75/D11.150.00

This book introduces the reader to areas of insurance mathematics which have
so far not been published on this scale in the form of a textbook. The individual
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themes which the authors have already contributed to in numerous publications
are for the first time discussed systematically, starting from the fundamentals.

A brief general introduction is followed by the central chapters on premium
calculation principles (Chapter 2) and their properties (Chapter 3). The idea of
introducing premium calculation principles goes back to Hans Biihlmann and it
is astonishing how many such principles have meanwhile been developed. Based
mainly on work by Biihimann, Gerber and the authors, the following principles
are introduced: expected value, maximal loss, variance, standard deviation,
semi-variance, mean value, zero utility, Swiss premium, Orlicz, Esscher and
mixtures of Esscher principles. Apart from the definition some principles are
motivated by e.g., statistical reasoning or utility considerations. In addition
properties and characterisations are supplied which at present are not to be found
in printed form anywhere else. Because of the mathematically stringent form
every expert in this field and every reader interested in mathematics too, who
wishes to familiarize himself with the theoretical foundations of premium calcula-
tion, will definitely appreciate this book if only for its systematic presentation.
On the other hand, it has to be said to every practitioner that it is not the purpose
of this book to evaluate the various principles in contrast to each other or to
examine the practical feasibility of the principles which use utility concepts. In
Chapter 3 Properties of Premium Calculanion Principles the properties of additivity,
translation invariance, iterativity, homogeneity, multiplicativity and some gen-
eralisations are investigated as to which principles fulfill them. For example the
property of additivity holds that in the case of independent risks X, Y the
premium for X and Y should be just the sum of the individual premiums for X
and Y. Not all properties are plausible for insurance premiums and not all
generalisations important. The question of important and reasonable premium
calculation principles and properties, which has not been resolved in the field of
theory, should not be dealt with separately for principles and properties, and
should not be answered without involving practitioners either. On this point these
chapters provide a very successful presentation which will be the basis of every
scientific discussion in this very lively field in future.

In the next chapter, entitled Ordering among Risks, various possibilities of how
to introduce a partial order in the set of all (e.g., bounded) risks are considered.
Of course, for a fixed premium principle = a natural order is induced by
m(X;) < w(X,), but one is also interested in conditions independent of 7. The
most important term here, the net stop-loss ordering, is introduced and its
behaviour as to mixing and convolution investigated. These results allow state-
ments to be made about the influence of these orders of number and size of
losses on the orders of the corresponding total losses in the usual risk theoretical
model. In this connection the dangerousness of distributions is discussed; after
that generalisations of the stop-loss ordering are treated with stochastic domi-
nance, familiar from the theory of finance, and stop-loss dominance.

The chapter Bounds on Stop-Loss Premiums takes up the problem which occurs
in reinsurance practice of trying to calculate stop-loss premiums with incomplete
risk information. Whereas to make an exact calculation of a net stop-loss premium
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one requires full knowledge of the distribution function, the situation where one
often only has an estimate accepted on trust for the expected value and perhaps
the variance t00, 1s looked at very realistically here. Depending on the available
information e.g., about the first n moments or the symmetry of the density
function, one looks for an upper bound for all stop-loss premiums of those risks
which the given information applies to. The step from the noncalculable *‘true”
stop-loss premium to the upper bound is therefore a cautious one. In some cases,
e.g., when expected value and variance are regarded as known, lower bounds
can also be worked out analogously, i.e., an error estimate. The mathematical
tool necessary for this stems from finite dimensional analysis and is presented
comprehensively, so that this chapter is self-contained. The most important aid
is a duality theorem from convex analysis allowing the original maximisation
problem to be transformed into a simple minimisation problem so that analytical
or numerical results are gained. In the last chapter on applications the method
for estimating stop-loss premiums described above 1s applied to the case of
bounded exposure. Further applications of the ordering of risks and the procedure
in case of incomplete information are indicated for questions of determining the
optimal critical claim size in a bonus-malus system, for bounds of the ruin
probabulity and bounds for stop-loss premiums for weighted compound distribu-
tions.

This book, which only requires little prior mathematical knowledge, is the most
comprehensive presentation of the themes dealt with here. Because of the mathe-
matical style the practitioner will miss explanations and a mutual comparison of
the results at some points. The book reflects the current level of knowledge in
some fundamental partial fields of insurance mathematics in a precise form,
thereby providing a base from which theoreticians and practitioners can communi-
cate with each other.

A. REICH
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