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AN EVOLUTIONARY C R E D I B I L I T Y  M O D E L  FOR CLAIM 

B Y  P E T E R  A L B R E C H T *  

Umversity of  Mannhezm, FR Germany 

NUMBERS 

K E Y  W O R D S  

Credlbthty, doubly stochastic Polsson sequences, weakly stationary sequences, 
generahzed P61ya sequence. 

I .  I N T R O D U C T I O N  

This paper  considers a particular credibility model for the claim numbers Ni, 
N 2 , . . . ,  Nn , . . .  of  a single risk within a collective in successive periods 
1, 2 , . . . ,  n, . . . .  In the terminology of JEWELL (1975) the model Is an evolutionary 
credibility model, which means that the underlying risk parameter  A is allowed 
to vary in successive periods (the structure function is allowed to be time 
dependent).  Evolutionary credibility models for claim amounts have been studied 
by BUHLMANN (1969, pp. 164-165), GERBER and JONES (1975), JEWELL (1975, 
1976), TAYLOR (1975), SUNDT (1979, 1981, 1983) and KREMER (1982). Again in 
Jewell's terminology the considered model is on the other hand stationary, in the 
sense that the conditional distribution of N, given the underlying risk parameter  
does not vary with i. 

The computation of the credibility estimate of  Nn+t revolves the considerable 
labor of inverting an n x n covariance matrix (n is the number of  observations). 
The above mentioned papers have therefore typically looked for model structures 
for which this inversion is unnecessary and instead a recursive formula for the 
credibility forecast can be obtained. Typically nth order stationary a przorl 
sequences (e.g., ARMA (p, q)-processes) lead to an nth order recursive scheme. 
In this paper  we impose the restriction that the conditional distribution of N, is 
Poisson (which by the way leads to a model identical to the so called "doubly 
stochastic Poisson sequences" considered in the theory of stochastic point pro- 
cesses). What we gain is a recursive formula for the coefficients of  the credibility 
estimate (not for the estimate itself!) in case of  an arbitrary weakly stationary a 
prtort sequence. In addition to this central result the estimation of the structural 
parameters is considered in this case and some more special models are analyzed. 
Among them are EARMA-processes (which are positive-valued stationary 
sequences possessing exponentially distributed marginals and the same autocorre- 
lation structure as ARMA-processes) as a priori sequence and models which can 
be considered as (discrete) generalizations of  the P61ya process. 

* I t h a n k  the  ed i t o r  a n d  an  a n o n y m o u s  referee  for  v a l u a b l e  s u g g e s t i o n s  
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2 ALBRECHT 

2. D E F I N I T I O N  O F  THE M O D E L  A N D  BASIC PROPERTIES 

Let A, denote the risk parameter  in period t and let U , (A~, . . . ,  A, ) - - the  structure 
function of  the considered collective--denote the joint distribution function of 
A~, . . . ,  A,. We make the following assumptions: 

A S S U M P T I O N  I 

(I)  P ( N ,  = k , , . . . ,  N , = k , I { A , } ) =  lrl P ( N , = k ,  IA,). 

This means that the {N,} are conditionally independent given the {A,}. 

ASSUMPTION 2. The condmonal  distribution o f  N, given A, = h is a Poisson 
distnbunon 

hk~ 
(2) P( N, = k,]A, = A) - - -  e -~. 

- k , !  

It is Assumption 2 which creates the difference to the other above mentioned 
evolutionary models. The price we have to pay is the specification of the condi- 
tional distr ibution--which,  however, is very natural for claim number mode l s - -  
what we get on the other hand are more specific and useful results. 

Combining (1) and (2) we obtain the multivariate distribution of the claim 
numbers 

(3) P ( N ,  = k, . . . . .  N ~ =  k , )  . . . .  I " '  e-~,~ dU~(,X~ . . . .  X,).  
: o  , - I L k , !  J 

This, however, means that the sequence {N,},c~ is a "doubly stochastic Poisson 
sequence". Such sequences have been studied by GRANDELL (1971, 1972, 1976) 
as a special case of the doubly stochastic Poisson process, which itself can be 
considered as an evolutionary credibility model for claim numbers in continuous 
time. We will for practical purposes, however, consider only the discrete time 
model. A main implication of (3) is that it is possible to establish more properties 
of  the model than just the form of the conditional linear forecast of  N,+~ as in 
the usual credibility models. E.g., one can solve other statistical problems and 
one can give limit theorems for the process. For a lot of detailed results, cf. 
GRANDELL (1971, 1972, 1976) and SNYDER (1975). 

I f  we denote 

rE(A,)  = m,, Cov (A,, Aj) = r,j, 

(4) /iVar (A,) = r,, = r,, 

we obtain the corresponding moments of {N,} as 

~ E ( N , ) = m , ,  Cov ( N , , / ~ )  = r,j, t # j  
(5) tVar  (N,) = r, + m,. 
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From (2) we see that the marginal distributions of the process {N,} are mixed 
Poisson distributions 

f 
,~Ak 

(6) P(N, = k) = ~ e -^ dUA,(A). 
0 

This implies that P(N, = k) can be calculated for various mixing distributions 
UA,(A). For some recent results see ALBRECHT (1984). The multivariate counting 
distribution of the process is given by (3), but can alternatively be derived as 
follows. 

Let L~(st,...,sn) denote the Laplace functional of (A~ . . . . .  An) and let 
• ~ ( t j , . . . ,  t ,)  denote the probability generating functional of  ( N ~ , . . . ,  N,) .  

As e -*(~-') is the probability generating function of a Poisson variable with 
parameter  A, we obtain from (3) 

fo o loon (7) qb~(t, . . . . .  t.) . . . .  E[t~'IA,=A,]dU,,(A, . . . . .  X.) 

io o ioO  . . . .  e -*'~'-',) d U . ( X . . . . ,  X.) 

= L.A(I- t l , . . . ,  l -- t.). 

The multivariate counting distribution then is given by the relation 

( 8 )  P (  N ,  = k ,  . . . .  . N n  = k . )  = I ~k N 
ot ,° . . .ot , ' , , oo"  

We now come to the central problem of credibility, the calculation of the optimal 
linear forecast of N.+~ given the N~ . . . .  , N.. l f f . ( N ~ , . . . ,  N . ) =  ao+Z,"=~ a,N, 
denotes the linear forecast function, the parameters which make E{N,,+~- 
f,,(N~ . . . .  , N.)} 2 a minimum are determined in the following way (this is easily 
established by straightforward calculation, or as a special case from the general 
result of  JEWELL (1971, p. 15) or GRANDELL (1976, p. 128)). 

ao is given by a single equation which makes the forecast unbiased 

n n 

(9) ao = E(N.+t)- Y. a,E(N,)= m,,+,- ~_. a,m,. 
I--I I = l  

The remaining coefficients are given by the n x n system of linear equations 

(10) ~ Cov(N,,Nj)aj=Cov(N,,N,,+,), i = l , . . . , n  

or more specifically 

(11) a,m,+~ rva~=r,n+~, i = 1  . . . .  ,n. 

We note, that because of the identical expectation and covariance structure the 
optimal linear forecast of  N,+~ given the N ~ , . . . ,  N,  equals the optimal linear 
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forecast of A.+) = E[N,+~IAn+)] given N ) , . . . ,  Nn. In turn this means that it is 
also identical to the optimal linear forecast of Var(Nn+t[A,+~)=A,+) given 
N t , . . . ,  Nn. 

We now consider in detail a rather general class of doubly stochastic Poisson 
sequences, which turns out to have nice properties with respect to the calculation 
of the credibility forecast and the estimation of the structural parameters. 

3. WEAKLY STATIONARY A PRIORI SEQUENCES 

We require that {A.}.c~ is a weakly stationary sequence characterized by the 
following moment structure: 

(12) E(A,) = m for all l ~l~l 

(13) Cov (A,, Aj) = rl,_jl for all t,j ~ 

The main result m connection with this special model IS that we are able to 
simplify the calculation of the credibility forecast. Whereas the general case only 
allows that the inverse of C(n)= (Coy (N,, Nj)),=~..n can be calculated recur- 
sively we are able to give a recursive formula for the optimal coefficients a,, 
however, not a recursive formula for the credibility forecast. 

Let now 

(14) f~(N,  . . . .  ,Nn)=ao(n)+ ~ a,(n)N, 

denote the optimal linear forecast of N,÷~ given N~ , . . . ,  N, and 

(15) C(n)  = (Cov  (N,, Nj)) ,a=, . . ,  = (cv) 

denote the covanance matrix of (N~ . . . . .  Nn). 
We have 

roA- m i = j ,  
(16) c,j = 

Lrl,_ A t #j .  

Let 

(17) 

(18) 

(19) 

and 

(20) ~(n) = ( r , , . . . ,  r,)'. 

From (10) we obtain that the optimal coefficients of the credibility forecast are 
given by 

(21) a(n) = C-'(n)~(n).  

a(n)=(at(n),...,an(n))' 

d(n)=(a,(n),...,al(n))' 

r(n) = ( r , , . . . ,  r,)' 
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The following lemma gives the form of  the inverse of  a part i t ioned matrix. 

LEMMA I. Let the s y m m e m c  (n, n) m a m x  C be decomposed to 

u l o ] '  

where D is o f  order (n - I, n - I). Then we have 

(22) c- '=  -sV 
I ' 

- v D -~ + ~  v v  

where 

v=D-lu 

s = c I i - v ' u  = cl i - u ' p - I  u. 

The following lemma gives some useful elementary properties of  the covariance 
matrix C(n) .  

LEMMA 2. 
1. C ( n +  1) can for  n >I 1 be decomposed in the following way: 

(23) C(n+l)=fr°+m l r(n)') 
\ r(n) C(n)]" 

2, 

(24) C ( n ) ~ ( n )  = r(n) .  

This imphes 
3. 

(25) C - I ( n ) r ( n )  = a(n) .  

We now define (the a,(n)  are the coefficients o f  the 
f*n( N, ,  . . , N . ) )  

credibility forecast 

(26) s ( n )  = r o +  m - r (n) '~ (n)  = r o +  m --  ~ r , a . _ , + l ( n ) ,  n >! 1 
ILl 

(27) k ( n ) = r . + , - r ( n ) ' a ( n ) = r . + , -  ~ r , a , ( n ) ,  n > ~ l .  

REMARK. s ( n )  = E { N . + , - f ~ ( N t  . . . .  Nn)} 2, i.e., the minimum mean square 
error o f  a linear forecast o f  Nn+~, given N~ . . . .  , N.. 
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We now come to the central result. 

THEOREM. For the coefficients ao(n+ 1), a(n+ 1) of the credzbility forecast 
fn+~(NI , . . . ,  N,+~) the following relations are valid (n >! 1): 

k(n)~ , . 
(28) ao(n + 1)= I - s ~ n ) J a o t n )  

k(n)  
(29) a , (n+ I) = s(n) 

k(n) 
(30) a , ( n + l ) = a , _ , ( n ) - s ~ a n _ , + 2 ( n ) ,  2 ~ . i ~ < n + l .  

The starting values are ao(i) = m(l  - rl/ ( ro + m ) ) and al(1) = rl/ ( ro + m ). 

REMARK. (30) can alternatively be written as 

k(n) 
(a2(n + !) . . . .  , an+,(n + 1))'= a(n)-s~ ,i(n). (31) 

PROOF. 

(32) a ( n +  ! )= C - ' ( n +  l ) i (n+  1). 

From the decomposition (23) of C ( n +  1), we obtain in the notation of lemma 
1, using (25): 

v = C-J(n)r(n)  = ~i(n) 

S = (ro+ m ) - l i ( n ) ' r ( n )  = s(n). 

The following partitioned form of C-~(n + l) results: 

C-'(n+l)=l_s_~__n)a(n) 

1 
- - -  ~i(n)' 

s(n) 

C-~(n)+ - L  ,i(n),i(n)' s(n) 
From (32), the relations (29) and (30) easily follow. Then (28) is obtained from 
(9). 

COROLLARY. For the mean square error s(n) of  the credibility forecast the 
following recur~ive formula is valid: 

k(n) 2 rl 2 
(33) s ( n + l ) = s ( n ) ,  s (n ) '  n~>l' s (1 )=ro+m ro+m 

PROOF. From (26) 

s(n + l ) =  ro+ m -  r,a.+2_,(n + I) - r.+la,(n + I); 
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using (29), (30) this simplifies to 

{ -s~n)k(n) } r.+, k (n)  r o + m -  Y_ r, a,+,_,(n) a,(n) - 
S (  tl ) " 

Using (26), (27) this in turn simplifies to (33). 
The theorem allows recursive calculation of the credibility forecast of Nn+t in 

case of a known risk structure. To obtain an ernp~rical credibility forecast, we 
have to estimate the unknov~n parameters, which here are: m, ro, rt, r2 , . . . .  

The estimation problem exhibits the second important property of the model 
considered in this section. If we assume that the a priori sequence {A,} is weakly 
stationary, then we obtain from (5), that the observable sequence {N,} is a weakly 
stationary one, too. We then have the possibility to apply results from the 
well-developed theory of the statistical analysis of weakly stationary time series, 
see e.g., HANNAN (1960, Chapters II-IV) or DooB (1953, Chapter X). For example 
a spectral analysis of the sequence {N,} is possible. Some results in this direction 
can be found m G~NDELL (1976, Chapter 7.2). We will here, however, confine 
to the above mentioned estimation problem. Up to now we have only considered 
the claim number sequence of a single risk, observed for n years. We now assume 
that we observe a collective of K independent risks, each having the same 
probability law of its claim number sequence. 

Let 

(34) /~, = number of claims of  risk i in year j 

i = l , . . . , K ; j = l , . . . , n .  

From standard results of time series analysis, e.g., HANNAN (1960, pp. 30-33), 
we obtain the following natural estimators of the above mentioned parameters. 

I ~ N~, (35) rh = - ~  ,.J=, 

i K n - - k  

(36) ~ k - K ( n _ k ) _ l  ~ • (N~,-rfi)(N~+k.,-rh), fork>El 
I - - I  j - - ]  

' i (37) Var (N~,) = Kn----~-il ,=, ~=, 

A natural estimate for ro then is 

(N,,-  r~)2- r~. (38) r°= K n -  1 ,=l j=~ 

As pointed out by the referee the expected value of (37) is given by 

1 I " - t  
r j ( n - j ) ,  Var(N~,) Kn - I n ;=l 

which implies a slight bias. 
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The theorem shows, how the coefficients of the credibility forecasts can be 
calculated recurslvely in the case of an arbitrary stationary a priort sequence. It 
is, however, not possible to develop a recursive formula for the credibility forecast 
itself for the general case. It would be interesting to examine special classes of 
stationary a prtort sequences which give rise to recursive formulae for the credibil- 
ity forecast Itself. For a more general type ofevolut lonary models KREMER (1982) 
has considered ARMA (p, q) processes as a special class of stationary a priori 
sequences. In the model of this paper the a priori sequences have to be positive- 
valued to be admissible. Therefore the ARMA (p, q) processes are not admissible 
m general. However Lewis and a number of co-authors (see LAWRENCE and 
LEWIS (1980) for the most recent results) have developed models for positive- 
valued staUonary time series {X,},~r,~ which, being in general rather distinct from 
the ARMA-models ,  possess the same autocorrelation structure as the ARMA- 
processes. These processes are called EARMA (p, q)-processes, the E stemming 
from the additional feature of all these processes: they have an exponential 
marginal distributmn ! 

The results of KREMER (1982) cannot be translated into the present context 
for several reasons, one being that the form of the linear regressions of the 
EARMA-processes have not yet been established. Another drawback of the 
EARMA-processes is that the statistical analysis of  these processes is not yet well 
developed in general, contrary to the ARMA-processes. In the following, we 
consider some examples. 

EXAMPLE 1. EAR ( I )-process as a priori sequence. A stationary version of the 
first order autoregresswe model with exponential marginals with "fimte past" 
can be obtained as follows (cf. GAVER and LEWIS (1980, p. 732): 

{A~ =pA,,_~+lnE~, n ~ 2  
(39) Ai = pEo + Ii Ei, (0~< p < 1) 

where { I , } . ~  is a sequence of iJ.d. Bernoulli-variables with P(In = 0 ) = p  and 
{E~}.~o is an independent sequence of i.i.d, exponentially distributed variables 
with parameter  A. The resulting sequence is a first order Markov process, the A, 
are exponenually distributed with parameter A and can alternatively be obtained 
in the usual first-order autoregresswe form A~ = pA, , - t+en  with a suitable {e,}. 
For the second order structure we obtain 

(40) { m = E ( A . ) = I / A ,  ro=Var  (A.)  = I/A 2 
r k = C o v ( A . , A . + k ) = p k / A 2 = p k r o ,  k~> I 

From (40) we see that the rk fulfill the property (10) of  SUNDT (1981, p. 7), which 
in our context reads: 

(41) r,+~_j=p,.r,w for a l l i ~ j ,  f o r a l l j ~  >1 .  

Clearly p, = P  for all i and from Sundt's result (I I) we obtain the following 
recurswe formula for the credibility forecast. 
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As (notation as in SUNDT (1981)) q~, = E{Var (N,]A,)} = E(A,)  = l/A, we define 

1 1 
(42) % A s ( n - l ) '  n~>2; Yt I + I / A  

(43) 

and obtain 

(44) 

X= 202 +( I -P2) ( I +~) 

7,+i = (X - 3',,P2) -I 

f f * ( N ,  . . . . .  N,)  = p [ ( I - % ) N , + y , , f * _ , ( N , , . . . ,  N ,_ , ) ]+  ( I - p ) A  
(45) [ fo=  I/A. 

This ~s the desired recursive formula for the credibility forecast. 
It is interesting to note that the regressions of this a pnon sequence are all 

linear, precisely 

(46) E ( A , , . , I A , , . . . ,  A,,) = E(A,+, IA,)  = pA,  + (1 - p)/A. 

However, we have not been able to show that the regressions of  the a postenorl 
process {N,} are linear too, i.e., the credibility forecast in the best forecast of 
N,+t based on N ~ , . . . ,  N,. 

We now come to the estimation of the unknown parameters A and p and 
consider again a collective of K independent risks each having the same law of 
its claim number  sequence. Let N~, be defined as in (34); noticing that E(N,)  = 1/A 
and r~ = Coy (N,, N,+~)= p/A 2 we obtain from (35) and (36) the following (con- 
sistent) natural estimators of  A and p: 

/ '  i N,, (47) i = l  ~ n  ,.,=, 

2 I2 (E,- i - ' ) (E+, . , -X- ' ) .  (48) t3 -  K ( n -  1 ) -  I ,=l j=l 

A drawback of the model is, that all correlations p~ = Corr (A,, A,..k) are positive. 
Indeed, one can show that there does not exist an autoregresslve sequence 
A , = p A , _ ~ + e ,  possessstng exponentially distributed marginals and p < 0 !  
However, GAVER and LEWIS (1980, p 741) present models of  similar autocorrela- 
tlon structure and negative correlation, which still possess the property of  having 
an exponential marginal distribution. GAVER and LEWIS (1980, pp. 736-737) 
consider also an autoregresslve process of first order with a gamma marginal 
distribution and a similar autocorrelation structure, the GAR (l)-process.  

EXAM PLE 2. E M A  ( 1 ) - p r o c e s s  as a priori sequence. A first-order moving average 
model with exponential marginal distribution, was considered by LAWRANCE 
and LEwis (1977) and can be obtained as follows (forward formulation) 

(49) A, =/3E, + I,e,+K, (0~</3 <~ 1), 
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where the {l.}.~l are i.i.d. Bernoulli variables with P(I. = 1) = I - /3  and {e.}.-~ 
Is an independent sequence of i.i.d, exponentially distributed (parameter A) 
random variables. The process is not Markovian and the second order structure 
is given by 

(50) 

m=E(A.)=I/A, to= Var (A.) = l/;t 2 

r, = C o v  (A., A.+l) =/3(1 --/3)r o 

rk=0 for k ~ 2  

To obtain a recursive formula for the 
in SUNDT (1981, p. 6). 

We obtain the following recursive relation for the estimation error s(n): 

(51) 

credibility forecast we can use Theorem 2 

1 ( I )  /32(1-/3)i, n>~2 s(n)=~ I+ Z ~ ' s ( . - !  

l(  l) /3~(,-/3)~ s(l) =~ I+~- ,~+~ 

and the following recurslve formula for the credibility forecast 

I 
., N._,)+-~, f /3(1-/3) N. /3(1-/3) ~ , f ~ ( N i , . . . ,  Nn) h2s(n-1) ~ ) j ~ _ , t N , , . .  

(52) 
f~ (N, )  = 1 /3(1 -/3_______) .~ fl(I-/3_______) N, 

A (1 +A)A I+A " 

n~>2 

A natural estimator of the unknown parameter/3 (A is estimated as under (47)) 
is given by 

1 K n - I  
(53) /3 = ~ + ~  1 - 4 ~  2 (Xjl ~ - I ) ( x j +  1 i - ~ - I ) .  

K(n-i)-l,~t_ j - t  - 

A drawback of the model is that the first-order autocorrelation p~ = /3 (1 - /3 )  is 
always nonnegative (one can show in addition, that it is always bounded from 
above by 1/4). 

The regressions of the a pnon process are given by 

1 [  l -2fl+ fl e_A(i_/3)A /~] 
(54) E(A.+, IA.)=-  ~ /3AA.+ 1-13 1- /3  

and are therefore not linear. 

EXAMPLE 3. EARMA (1, 1) process as a priori sequence. A first order mixed 
autoregressive-moving average process with an exponential marginal distribution 
was considered by JAcoas  and LEWIS (1977) and can be obtained as follows 
("backward formulation"). 
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t 
A . = / 3 e . + U . A . _ i  (0<~fl<~l) ( n ~ l )  

(55) A . = p A . _ , +  V.e. ( 0 ~ < p ~  < I) , 

mo = eo 

where { U,} and { V,} are independent  sequences of  independent  Bernoulli vari- 
ables with P( U, = 0) =/3, P(  V, = 0) = p and {e,} is an independent  sequence o f  
i.i.d, exponential ly distributed (parameter  A) random variables. The resulting 
process {A,} is stat ionary and in general non Markovian.  The second order  
structure o f  the process is given by 

m = E ( A , )  = l/A, roVar (A, )  = I / A  2 

(56) r, = C o v  (A., A.+, ) = ro(I - /3)[/3 + p( l  - 2/3)] 

r k = p k - l r l "  

Again we can apply Theorem 2 of  SUNDT (1981) to obtain a recurslve formula 
for the credibility forecast. The result is as follows: 

s(n) = (ro+ rn) + p2(ro+ m) - 2pr, [p ( ro+  m) - r,] 2, 
s ( n - I )  

2 (57) rl 
s ( I ) = ( r o + m ) - - -  

ro+m 

(58) 

n ~ 2  

p ( r o + m ) - r l )  
f . * ( N , , . . . , N n ) =  p s ( n - I )  N. 

p(ro+ m) - rl 
s~n--]-~ f~_,(N,,...,N~_,)+m(l-p), 

= + N i .  . f~(Ni)  m 1 ro+ r o + m  

n ~ 2  

4. S O M E  S P E C I A L  M O D E L S  

We first treat two models which can be considered as generalizations of  the 
P61ya-process in discrete time. The P61ya-process is a mixed Poisson process 
with the gamma  distribution as mixing distribution. 

Model A. A natural generalization, which was already considered by BATES 
and NEYMAN (1952), is tO assume 

(59) A s = a s. A, 

where A follows a gamma distribution with parameters  b and p. The a priori 
moments  are given by 

p _e_ (60)  E(A,)  = a ,~.  Var (A,) = a, 2 , Cov (A,, Aj) = a,aj b2. 
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SNYDER (1975, p. 288) considers the cont inuous  time analogue,  which he terms 
" inhomogeneous  P61ya process".  

Model A seems to be the only known double  stochastic Poisson sequence for 
which the multivariate count ing distribution can be given explicitly. Bates and 
Neyman  showed that 

( ;)-" '-r l o, (61) P ( N ~ = n , , . .  N k = n ~ ) =  1+ nl 
' " n ,=t n , ! L l + a / b J  ' 

where a = ~ = l  a, and n : E ~ : l  n,. 
Comparing (61) with JOHNSON and KOTZ (1969, p. 292, (32)) shows, that the 

multivariate counting distribution of the "discrete inhomogeneous P61ya process" 
is just a m u l t w a n a t e  negat ive bmomta l  d is t r ibut ion ( N = p ,  P, = a , / b  in their 
notation). 

JOHNSON and KOTZ (1969, p. 295) show also, that in case of a multivariate 
negative binomial distribution the regressions are always linear. Especially we 
obtain 

an+~ + a.+, ~ N, (62) E ( N n + ~ N ~ ' " " N n ) = P b + a  b + a  

b E(  .+~, b + a ~ N , .  = N ~+ a,+~ 
b + a  

This implies that in case o f  the "discrete inhomogeneous  P61ya process" the 
opt imum forecast function (with respect to the mean square error) is identical 
to the best hnear forecast function (the credibility forecast). 

I f  we want to calculate the credibihty forecast with the method of  chapter  I 
(equations (9) and (10)), we can apply a result of  JEWELL (1976, pp. 16-17), 
because Coy  (N,, Nj) can be factored into a,. ( (p/b2)aj) .  

It is interesting to note that already BUHLMANN (1969, pp. 164-165) considered 
a similar model.  He considered a sequence of  condit ionally Poisson distributed 
claim variables {X ,}  with the property 

(63) E(x°le)=a..O, 

where a,  = n + c, c is a constant  independent  o f  n and 0 follows a gamma 
distribution. 

In addit ion to Buhlmann ' s  results we show m the following how the structural 
parameters  (especially c) can be estimated. 

Assume that we have given a sample of  size m of  observations of  (N~ . . . .  , Nk). 
Let 

n , j= t t h  observation o f  N0, t =  l , . .  . ,  m ; j =  l, . ,k~ 

Let 

n, = ~ no, 5j = n,j, n = n,, r = ½ k ( k +  l). 
J ~ l  J= ]  J= l  
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Then the tog-likelihood-function of the observations is given by 

( ; )m  (64) Iog L =  - ( n  +pm) log I + r  k.__.__c + ~ ~ l o g ( p - I + j )  
~ l . / = l  

• 

The likehhood equations then are given by 

(65) 01ogL ( -~ ) ~ ~ 1 ~ = - m l o g  I+  r k--'-'---S + - - - 0  
ap ,=1 ~=t p -  1 + j  

(66) Olog_____L_-k(n+pm) ÷ ~ fi~ =0  
ac b + r + k c  j ~ j + c  

(67) O log L _  (n + pm)(r+ _-n=o" 
Ob b2+b(r+kc)  b 

If fi, ~, /~ denote the maximum likelihood estimators of p, c, b, then from (67) 
we obtain 

(68) g=E (r+ k~)~ 
n 

Substituting (68) in (66), we obtain that ~ is the solution of 

(69) ~ ~'~ = 
n k  

j = , j + ~  (r+k~)  

Substituting (69) in (65), we obtain that/~ is the solution of 

- m log I + . 
, = l j = l p - l + J  

Model B Another way to obtain a generalization of the P61ya process is to 
replace the gamma mixing distribution by a multivariate analogue, a multivariate 
gamma distribution for (A~ . . . . .  An). 

A natural way to obtain a multivariate gamma distribution, more precisely a 
multivariate x2-distributlon is the following, cf. also JOHNSON and Korz  (1972, 
chapter 40.3) or KRISHNAIAH and RAO (1961). The x2-distribution with n degrees 
of freedom is a special gamma distribution and is the distribution of ~ , ~  X, 2, 
where the X, are independent and identically N(0, l)-distributed (normal distri- 
bution with mean 0 and variance 1). A natural multivariate analogue is obtained 
by starting with rn independent and identically multivariate normal distributed 
random vectors Y, = ( Y , t , . . . ,  Y,n), i = 1 . . . .  , rn. Precisely ¥, follows a N(0, ~) 
distribution, where X = (E v) is the variance covariance matrix of ( 'I~1, • • •, Y,, 
and we assume that E,, = 1. 
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The a priori vector  

(71) (A, . . . . .  A , ) = ( ~  y 2 , . . . ,  ~ y,2~ 
\ I = l  I - - I  / 

then follows a distribution, which can be considered as a multivariate x2-distribu- 
tion. Especially each A, is xZ-distributed with n degrees of  freedom• The Laplace 
functional  L'~(s, . . . .  , s ,)  = E[e  -Is,A,] is given by 

(72) A L ,  ( s t , . . . ,  s , )  = I/+ 2s~l -"/2, 
where sa is a diagonal  matrix with diagonal elements s ~ , . . . , s , .  From (7) it 
follows that the probabil i ty generating functional  of  N ~ , . . . ,  N,  is given by 

(73) @y( t ,  . . . .  , t ,)  = [! +2 (1  - ta)~[ 

where l - t a  is a diagonal matrix with diagonal  elements ( 1 -  t t , . . . ,  I - t , ) .  
A simple special case is obta ined when we assume a first-order correlat ion for 

the Y,j, i.e., ~ is of  the form 

I 

r 

O. 

r o . . . . . . . . . . . .  0 /  

I r " . 
" .  

r .  l r 
• ° 

• • • • . 

• . 0 

" .  " . r ' .  I " . r  

. . . . . . . . .  i : ' . 0  r I/ 

We then obtain the following second order  recursive relations for ~ , ( h ,  • ••,  t ,)  = 
I! + 2(1 - t~)~[: 

~P,+2(h,-- , t,+2) = ( 3 - 2 / , + 2 ) ~ p , + , ( t , , . . . ,  t,,+l) 

( 7 4 )  - 4 ( t , + 2 - 1 ) ( t n + l - l ) r 2 ~ , ( t t , • • • , t , )  f o r n / > 0  

~o,(/t) = ( 3 -  2t,), Co(to) = I. 

probabil i ty generating functional in this special case then is given by The 
~ ( t , , . • . ,  t .) = ~ ( t , , . . . ,  t .) -'~/2. 

We obtain that 

dk~l(t~) _ 2k F ( ( m / 2 ) +  k) 
(75) Ot~ r ( m / 2 )  

From (8) we obtain 

(76) 

tpl( tl) -((m/2)+k). 

1 ok~l ( t , )  [ 
P ( N , =  k) k! Ott k , , - o -  k!3 °"/2)+' r ( m / 2 )  

2 k F ( ( m / 2 ) + k )  

This result is identical (for  t = 1 ) with a result of  ALBRECHT (1984), who calulated 
P ( N ( t )  = n) for  a mixed Poisson process N ( t )  with a x2-mixing distribution. 
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In addit ion we obtain after some calculation that 

(77) otk'ot~ 2 - ( - l ) k '  r (m/2) ~o  

x {[(4 - 4r  2) t2 + 4r 2 - 6] k' }(k'-k) 

where (k) denotes  the kth derivative with respect to t2. 
We obtain after some calculation 

(78) P ( N , = k ,  S 2 = k 2 )  = 1 l aU'+k~-dP2(t,,t2) ,,~,.-o-- (--l)k 
' k,) k2! Ot~'Ot2 k: . k , ! k z !F(m/2 )  

x ~ ( ~ )  ( _ , ) k  r ( ( m / 2 ) + k , + k ) r ( k , + l )  
k~O F ( k l -  k2+ k +  1) 

x (9 - 4r 2) -((m/z)+k,+k)(4rZ _ 6)2k+k,-k~( 4 _ 4r z) k2-k" 

Even in the simple first-order case we have not been able to develop an expression 
for E ( N . + t I N t  . . . . .  N . ) ,  the "bes t"  estimate o f  N.+~ given N t . . . . .  N . .  

As the second-order  structure o f  the sequence N.  is given by 

E ( N , ) = m ,  Var (N,)  = 3m, 

(79) rl = Cov ( N,, N,+ l) = 2mr 2 

r k = C o v ( N , , N , + ~ ) = O ,  k>~2 

we can apply  Theorem 2 of  SUNDT (1981) to obtain a recurslve formula  for the 
credibility forecast. The result is as follows: 

(80) 

(8~) 

4 m 2  r 4 
s ( n ) = 3 m  n>~2 

s ( n -  l ) '  

4 
s ( l )  = 3 m - -  mr 4 

3 

f ~ . ( N , , . . . , N . )  s ( n -  ) N .  _ , ( N , , . . . , N . _ , ) ) + m ,  

f ~ l ( N i ) =  m ( I - - ~ r  ) + s r  N, 

n ~ 2  

Model C (a priori sequence with independent  increments).  I f  we assume that 
the a priori sequence (Ao-~ 0, A~, A2 . . . .  } possesses independent  increments,  this 
means - -c f .  D o o a  ( 1953, p. 96) - - tha t  for all n >I 3 and i~ < t2 < • • - < z~ the random 
variables A , : - A , , , . . . , A , , - A  ..... are mutual ly independent .  An addit ional 
assumption is that E ( A , ) =  m; let V, = V a r  (A,), then we obtain for t < j  

Coy (A,, Aj) = C o v  (A, - Ao, A~ - A, + A,) 

= V a r  (A,) + C o v  ( A , - A o ,  Aj - A , )  

= Var (A,), 
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i.e., in general 

(82) Cov (A,, Aj) = Var (Am,n(,, .1)).  

A credibility model with the above moment structure for the a priori variables 
was already considered by GERBER and JONES (1975, pp. 98-99),  they show that 
the credibility forecast ./'~(N~ . . . .  , N, )  of N,+~ is of the "updating type" 

(83) f ~ ( N , , . . . ,  N . ) =  (1 -Z . ) f~_ , (N ,  . . . . .  N._ , )+Z .N . .  

The weights can be calculated recursively, we have 

Vi 
Z I = 

m +  V~ 

V . -  Vn_, + mZ._, 
z . -  

V , -  V,_l+mZ,_l+m" 

Additional models for the a pnon sequence are considered in GRANDELL (1972) 
(e.g., {Aj} is in the form of a linear regression model, pp. 106-108) and GRANDELL 
(1976) (e.g. {Aj} ts a stationary alternating Markov chain, pp 153-157). 
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LINEAR FILTERING AND RECURSIVE CREDIBILITY ESTIMATION 
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A B S T R A C T  

Recursive credibility estimation is discussed from the viewpoint of  linear filtering 
theory. A conjunction of geometric mterpretation and the innovation approach 
leads to general algorithms not developed before. Moreover, covariance charac- 
terizations considered by other researchers drop our elegantly as a result of 
geometric considerations. Examples are presented of Kalman type filters valid 
for non-Gaussian measurements 

K E Y W O R D S  

Credibility, filtering theory, linear Bayesian theory, geometry, Kalman filter, 
prospective ratemaking, Gram-Schmidt, Fourier series. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

There have appeared a number of  papers, fairly tightly connected, concerned 
with recursive credibility formulae. An early paper that occupies a somewhat 
central position is that of GERBER and JONES (1975), which develops credibility 
formulae of the updating type, vahd if and only if the covariance structure (5.12) 
holds. The other papers notably, J E W E L L  ( 1 9 7 6 ) ,  SUN DT ( 1981, 1983) and KREM ER 
(1982) develop recursive formulae for a variety of other evolutionary type models, 
the last emphasizing the relationships with modern models of time series. Last, 
but not least, the paper of DE JONG and ZEHNWJRTH (1983) relates some credibility 
models to the Kalman filter, perhaps, the most important algorithm in linear 
stochastic system theory. 

The basic purpose of the present paper is to unify many existing results in 
recursive credibility theory and moreover develop more general ones. To achieve 
this, we adopt a geometric interpretation of recursive linear least squares estima- 
tion theory m the spirit of GERBER and JONES (1975) and DE VYLDER (1976). 
There is also a side benefit to be had by adopting a geometric approach-- i t  
reduces both the conceptual and algebraic burdens. The practical tmportance to 
actuaries of the present paper lies in the fact that once a model for premium 
rate-making is postulated, the estimators of parameters, premium forecast and 
associated errors may be derived quite readily using the general results contained 
herein. Moreover, the recursive nature of the formulae affords economy of 
computing space and time. 

The main results here are established with the aid of KAILATH'S (1974) innova- 
tion technique which has found fruitful apphcations in linear filtering theory. It 
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is intimately related to the well known Gram-Schmldt orthogonalization scheme 
and Fourier series. 

Suppose 'Y is a forecast of the random quantity Y with associated mean-square 
error C, based on some past measurements. Given a new measurement X we 
wish to update our forecast of Y and its associated mean-square error C. Let 
represent, the forecast of X based on the past measurements. The innovation, 
e = X - X ,  represents what is "new" in the new measurement X. The updated 
forecast of Y is 

(I . I)  Y + K e  

where the weight K is given by 

(1.2) K = El Ye]{E[e2]} -'. 

The mean-square error of the updated forecast (I . l )  is 

(1.3) C - KE[ Ye]. 

The foregoing results are treated in elaborate detail in Sections 3 and 4. In 
Section 5 we consider a general prospective ratemakmg framework and indicate 
how covariance structures considered by GERBER and JONES (1975), JEWELL 
(1976) and SUNDT ( 198 I ) drop out elegantly as a result of the geometric interpreta- 
tion of the problem. Finally, in Section 6 Kalman type filters are derived for two 
different models using results developed earlier in the paper. The filters are related 
to the work of SUNDT (1981, 1983) and DE JONC and ZEHNWIRTH (1983). 

2. HILBERT SPACE OF SQUARE-INTEGRABLE RANDOM VARIABLES 

For the purposes of the present paper it is convenient to formulate some definitions 
and terminology and to state two classical projection theorems. 

Consider a fixed probability space (1~, ,.~, P). The Hilbert space ~ = L2(l~, ~, P) 
is the linear space of measurable functions from fl into R whose second moment 
exist. We identify with the element X ~ gt', the equivalence class {X: X = X a.e }. 
The inner product (X, Y) for any two elements X and Y in ,~' is defined by 

(X, Y~ = E[XYJ.  

Accordingly, the corresponding I1" II is defined by 

II x II = ( E [ X 2 ] ) ' / 2  

It is beneficial to extend the definition of the inner product ( . , . )  to random 
vectors. Suppose X = (XL . . . .  , X,) and Y = (Yt . . . .  Y,,) where X c  ~ "  and 
Y~ ~ " .  Define (X, Y) by 

(X, Y)= E[XY']. 

This is not an inner product in the true sense--it  is a matrix. However, If we 
ignore this deficiency, the projection theorem can be used as a quick mnemonic 
way of obtaining the approximate optimal estimators (theorem 3.2) 
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The following properties of  the bilinear functional . , . )  are noted. 

(2. I) (AX, B Y)  = A(X,  Y )B '  

for any two matrices A and B of appropriate dimensions. 

(2.2) [[AX[I 2= AHXII2A ' 

and 

(2.3) (X, V) '=  (Y, X). 

We state two classical projection theorems applicable to any Hilbert space 
(borrowed from LUENBERGER (1969)). 

THEOREM 2.1. Let ~ be a Htlbert space and ~P a closed subspace of~'. Correspond- 
mg to any vector Y ~ Y(, 3 a umque X*  ~ .5~ such that 

I IV-X*[I ,=  inf I Iv -Xl l , ,  
X,e.fg 

where It" II, IS the norm defined on ~. 

Furthermore, a necessary and sufl~oent condition that X * e  ~ be the unique 
mmimization vector is that Y - X *  be orthogonal (±) to ~.  

In what follows denote by ~ ( Y [ ~ )  the projection of Y onto ~ ,  that is 
~'(vl.~) -- x * .  

THEOREM 2.2. Let ~ be a closed subspace o f  a Hdbert space ~.  Suppose N is a 
closed subspace o f  ~P so that .~P = N G  N ± where N i is the orthogonal complement 
o f  N i n E .  I f  Y e K then 

~ ( Y I ~ )  = ~ ( Y [ N )  + ~(Y[N± ) .  

3. LINEAR ESTIMATION OF A RISK PARAMETER 

One of the key problems in credibility theory is the estimation of a risk parameter. 
Suppose Y~ ~ is a (non-observable) risk parameter  and Xo, X i , . . . , X ,  are 
(observable) measurements in ~. A linear estimator of  Y based on Xo, X~,. .  , Xn 
is any linear combination 

with mean-square error 

Y* = ~ a,X,, (a, E R) 

II Y -  Y*II 2. 

Denote by LPk = ~(X0,  X i , . .  •, Xk) the closed linear subspace spanned by the 
elements Xo, Xi, .. •, Xk. Also for notational simplification denote by ~k(.,,~) the 
projection ~ ( X I ~ k ) ,  of  X onto ~k where X e ~.  
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The following fundamental  result ts based on the projection theorem in ~'. It 
is discussed in LUENBERGER (1969) and appears  under various guises in NORBERG 
(1979) and references therein. It is included here for the sake of completeness. 

THEOREM 3.1. Suppose X = (X0, X i , . . . ,  Xn) 'e  ~,n+t and ~ n ( Y )  = t~'X where 

= ( ' ~ o  . . . .  , ~,,)'- 
Then, 

,~'= < Y, X>llxll-2 

and the mean-square error II Y -  ~ , (  Y)II 2 is 

tl Y - ~ , (  Y)II 2= II YII2- ( Y, x)llxll-2( x, Y~. 

PROOF. The projection theorem 2.1 gives 

Y - ~ n ( Y ) . . L X , ;  i = 0 ,  I , . . . , n  

whence, 

~ ' ( X , X , ) = ( Y , X , ) ;  i = 0 , 1  . . . . .  n. 

The expression for ~' follows from the last set of  equalities whereas the expression 
concerning the mean-square error follows by noting that Y -  ~ , ( Y )  & ~n(Y) .  
We remark that the matrix G = [IX[[ 2 is called the Gram matrix. 

COROLLARY. ]f  X 0-~. 1 then ~ . (  Y) ts the inhomogeneous hnear Bayes rule which 
may be written 

(Y, 1)+ C[Y,  X * ] C - ' [ X * ] ( X * - ( X * ,  1)) 

with associated mean-square error ( Bayes risk) 

c[ ~ -  c[ Y, x*]c- ' [  x*]c[ x*,  r] 

where the vector X * = ( X t  . . . . .  X , )  and the covanances C [ . , . ]  and C[ . ]  are 
defined as follows: 

For any two vectors U ~ ~'" and V ~ ~m 

C[U, V]=(U,  V ) - ( U ,  I)(I,  V) 

and 

c[ u] = c[ u, u]. 

We now dtscuss straightforward extensions of  the abovemennoned results to vector 
parameters. 

Suppose Y = ( Y~, . . . ,  Ym)'E ~,m is a vector risk parameter  to be estimated on 
the basis of the measurement  vector X = (X0, X~ . . . .  , X , ) c  ~,n+~. We restrict 
attention to linear estimators, namely E avX p of each component  Y, of  the vector 
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¥. Write, A = (a,j), an m x n matrix. The optimal linear estimator minimizes 

Y, a,jXj 
I - I  J - I  

over all matrices A of  dimension m × n. 

THEOREM 3.2 (Luenberger) .  I f  AX  is the optimal linear estimator of Y then 

,,i =(Y,  X>llxll -= 

and the error covarlance matrix of AX  Is given by 

II v - ~ x l l  2= II vi i2-(  v, x>lfxlf-~(x, v>. 

PROOF. The results follow from the observat ion that the opt imizat ion decom- 
poses into a separate problem for each componen t  Y, o f t h e  risk parameter  vector 
Y. The ith subproblem is simply that of  finding ~ , ( Y , )  That  is 

AX = (9~,( Y , ) , . . . ,  ~ , (  ym)),. 

= ~ . ( Y ) ,  say. 

We remark that trace II ¥ - A X l l  2 represents the mean-square  error o f  ~ , ( Y ) .  
It is also known as the Bayes risk of  ~ , ( Y )  relative to squared error loss function. 

COROLLARY 1. I f  T is a fixed r × m  m a m x  then the optimal linear estimator 
o f  TY  is T ~ , ( Y )  with error covanance  TI[ Y -  °2°( Y)II2T '. 

COROLLARY 2. I f  Xo -= I then ~ , (  Y) is the mhomogeneous linear Bayes rule for 
Y, which may be written 

(Y, I )+  C[Y, X * ] C - ' [ X * ] ( X * - ( X * ,  I)) 

with error covamance malrlx, 

c[Y]- c[¥, x*]c-'[x*]c[x*, ¥]. 

All the foregoing results are well known to both linear filtering theorists and 
credibility theorists. 

4. T H E  G E O M E T R Y  O F  R E C U R S I V E  RISK P A R A M E T E R  E S T I M A T I O N  

In many practical situations the elements Xo, X~, X2, • • • represent measurements  
taken sequentially in time. The optimal linear est imator of  a risk parameter  Y 
based on the measurements  to time n, viz., Xo, X i , . . . ,  X ,  is Y, = ~ , ( Y )  with 
mean-square  error 

c~ = II Y -  ~.112 
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If  X,+~ is the next measu remen t  then its best hnear  es t imator  based on ~ ,  is 
~ , (X ,+~) .  Accordingly,  the innovat ion of  the new reformat ion  acquired at t ime 
n + l  is 

e.+l = X o + ~ - g ~ , , ( X , + t ) .  

Put eo = Xo and write eo* = eo/lleo]], then by virtue of  theorem 3.1 

g % ( X i ) = ( X a ,  eo)eo* * 

whence,  

e ~ = X ~ - ( X ~ .  * * e0)eo. 

By virtue of  the project ion theorem 2. I, eo .1_ e t and ~ = ~(eo ,  e~). It follows that 

e2= X 2 - ( X 2 ,  * * e0)eo - ( X 2 ,  et*)el* 

where el* = e,/ile,tl .  
Subsequent ly ,  

(4.1) 

where 

e~+, = X~+ , -  ~ (X.+, ,  e~*)e t 
../dO 

e~* = ej/lle, ll; ; = o ,  1 ,2 , . . . .  

We observe  that  the normal ized innovat ions  {e~*} represent  the o r thonormal  
system obta ined  by the wel l -known Gram-Schm~dt  or thogonal izat ion process. It 
follows, trivially, that  the innovat ton sequence  {ej} is or thogonal .  

The closed hnear  subspace  ~,..~ may be d e c o m p o s e d  

(4.2) ~n+, = ~ ,®.Z(e~. , ) .  

In view of  the project ion theorem 2.2, 

(4.3) 't",+ i = '~', + ~ ( Y l e , + , )  

where appl ica t ion of  theorem 3.1 yields, 

(4.4) ~(Yle.+,) = ( Y. e.+,) l l  en+, I1-%.+,. 

Alternatively d e c o m p o s e  37n+~ thus: 

(4.5) ..~'.+, = ,La(eo)e • • ' G ~ ( e . + , ) .  

The Fourier  series of  Y based on ~,+~ ts 

n + l  

(4.6) Y.+, = E ( Y, ej*)e~* 
j=O 

whereas the Fourier series based on ..~?. is 

(4.7) 'Y,= ~ (Y, eT>e t .  
3- :0  
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The difference between expression (4.6) and (4.7) yields expression (4.3) 
We note that the key element in the foregoing analysis is the orthogonality 

property of the innovation sequence {ej}. 

A n t i  v e.~l 

I 

~,°?,,~X,,,~) "-2 
~ Y l e , , . , )  

FIGURE 4 ] The geomet ry  of recurswe risk pa ramete r  es t imat ion  

Figure 4.1 shows the geometry of recursive risk parameter estimation. The 
co-ordinate axis labelled 2 repLesents ~ .  and the 1-2 plane repLesents ~.+~. 
Observe that Y -  ~'. L ~n, Y -  Yn+l _L ~ + l ,  e,,+l L ~ and e.+t _L Yn. 

We point out that ~f Xo-~ I then 1 s,LP. whence we have the unblasedness 
properties, 

(v- f , ' . , i )=o 
(4.8) and 

(e,+l, I )=0 .  

Denote by C~ the mean-square error, 

II r -  ~oll 2 

Examination of fig. 4.1 leads to 

(4.9) C.+, = C. - I I ~ (  Yle,,+,)[I 2 

Write, 

(4.10) 

=C.-(Y.e.÷,>Zlie.+,ll -~. 

K.+, = ( Y. e.+,)[] e.+, 1]-2. 
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then equations (4.3) and (4.9) may be recast 

(4.11) ~". +, = ~",,+K.,+,e.+, 

and 

(4.12) C.+, = C. - K.+,( Y, e.+0 

respectively. 
The preceding analysis also applies to the estimation of a vector risk parameter  

Y~ Y(". Recall that, 

f .=  ~.(r)  

= ( ~ . (  Y , ) , . . . ,  ~ . (  Y,,,))'. 

Let C. represent the error covariance matrix of  1~.. The following recursions are 
obtained. 

(4.13) 17'.+1 = 1~'. + K.+, e.+, 

and 

(4.14) C.+, = C. - K.+,(e.+,, Y) 

where 

(4.15) K.+, =(¥, e.+,)lle.+,l1-2. 
Finally, we remark that the preceding recursions also carry over to vector 

valued measurements X0, Xi . . . . .  

5 .  T H E  G E O M E T R Y  O F  R E C U R S I V E  P R O S P E C T I V E  R A T E M A K I N G  

In the present section we adopt  the general prospective rate-making formulation 
of GERBER and JONES (1975). 

Let X, represent the claims cost (or loss ratio, etc.) in the ith period. The 
premium forecast for period n + 1 based on the measurements Xo(~ 1 ), X i , . . . ,  X,  
is denoted by P,+~. This premium is the optimal affine estimator ( inhomogeneous 
linear Bayes rule) of  X.+t based on the measurements X~, X2, • • •, X.. 

That is, 

P.+l = ~ . (X .+ i ) .  

The innovation in the measurement X.  is 

Since, 

we have, 

(5.1) 

e , ,=X . -~ , , _ t (X , , ) .  

-~.= ~._,O~(e.) 

~ . (  X.+,) = ~._ , (  X.+t) + ~ (  X.+,]e.) 



L I N E A R  F I L T E R I N G  A N D  R E C U R S I V E  C R E D I B I L I T Y  E S T I M A T I O N  27 

where 

(5.2) ~(X.+ , l e . )  = (X.+, .  e.)ll e. I1-%.. 

In keeping with GERBER and JONES (1975) write 

(5.3) z .  = (xo+,,  e.)lle.II -= 

whence, 

(5.4) P.+, = ~ . _ , ( X . + , ) +  Z . ( X .  - P.). 

We emphasize that the last formula holds true in general. 
We now focus on formula (4) of SUNOT (1981) which examines the situation 

where there exist constants b.. c. and d. such that 

P.+, = b. + c.P. + d.X..  

Combining this with formula (5.4) above yields 

~._ , (X .+ , )  = (c. + Z . )P .  + (d. - Z . ) X .  + b.. 

As ~._~(X.+~) should not depend on X.. we must have d. =Z . .  and as P. = 
~._~(X.)  we obtain 

(5.5) ~ . _ , ( x . ÷ , )  = a.~'._,(x.)+ b. 

with a. = c .+Z . .  That is. the premium forecast for period n +  1 based on ~._~ 
is an affine function of the premium forecast for period n also based on ~._~. 
Since the innovations {ej} are orthogonal, ~ . - l ( X . + l )  and ~ . _ i ( X . ) ( = P . )  have 
the Fourier series representations 

n--I 
~._ , (X.+t )  = ~ (X.+,, e,*)e,* (5.6) 

and 

(5.7) 
n - I  

~ ._ , (X . )  = Z (X., e,*)e,* 

where we recall that the sequence {e,*} represents the orthonormal innovations. 
Substituting (5.6) and (5.7) into (5.5) gives 

(5.8) (X.+l, e,*) = a.(X. ,  e,*); i=  ! , . . . ,  n - I 

and 

(5.9) (X.+,, eo*)= a . (X. ,  eo*)+b.. 

Also let 

(5.10) b. = E [ X . + , ] -  a.E[X.].  

We are now in a position to derive the covariance characterization (5) of SUNDT 
(1981, p. 5). 



28 ZEHNWIRTH 

Equation (5.8) can be written as 

(X~+l, e,)= an(X,, e,) 
and insertion of (4.1) gives 

X,+, ,X ,  E (Xj, ej*)ej* a, X,,,X, ' - = - (Xj, ej*)ej* 
J-O 3 0 

that is, 

[ 1 (X~+,, X , ) -  ~ (X,, e~*)(X,+,, ej*)= an (X~, X , ) -  ~ (X,, ej*)(Xn, ej*) . 
J~O J =0 

Combining the last equation with (5.8) we obtain 

(X,+,, X, ) - (X , ,  eo*)(Xn+,, eo*) = a,,[(X,,, X , ) - (X , ,  eo*)(X,,, eo*)], 
that is, 

(5.11) C[X,+,, X,]= anC[X,, X,]; i =  1 . . . . .  n - I. 

The converse is straightforward. 
The case for which an~  1 and b, -= 0 in (5.5) makes (5.4) a credibility formula 

of  the updating type in the spirit of  GERBER and JONES (1975). Equation (5.11) 
now reduces to the covariance structure. 

(5.12) CEX,,Xj]=~ V'+W'; '=J  
i v , ;  i < j  

in agreement with GERBER and JONES (1975). 

e, I + ~  

X,, 

e n 

'~2 

FIGURE 5 1 The geometry of cred~bihty formulae of the updating type 
m the sprat of GERBER and JONES (1975) 
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Figure 5 I shows the geometry of credibility formulae of the updating type. 
The co-ordinate axis labelled 2 represents X, and the I-2 plane represents .~',. 

Let E, represent the mean-square error of P,, that is 

E °  = lie,, II 2 

Figure 5.1 depicts the following orthogonahty relations: e, _L e,+~, e, ± P, and 
e,+, X ..~.. 

These may be used to obtain a number of expressions connecting Z. and 
second-order moments of X., e., P. etc. In particular 

(5.13) E. ~, -- IIX.+, - X° II 2 - (I - Zo)2Eo 

assuming (5.12) holds. 
We can also demonstrate (5.13) mathematically thus: From expression preced- 

ing (5.1) 

X, ,+t -  X .  = P.+l - P. + e.+l -e, , .  

Substituting (5.4) with ~ . - ~ ( X . + t ) =  P. into the last equation gives 

X . + t -  X .  =( I  - e . ) Z .  + e,,+l. 

Recogmzing the fact that e. _L e.+, now yields (5.13). 
GERBER and JONES (1975) also derive the relations, 

(5.14) Z, = W,(W,+ V,)-' 

(5.15) zo  = ( wn - w . _ ,  + z . _ ,  v . _ , ) (  w .  - w . _ ,  + z . _ ,  v . _ ,  + vo ) - '  

which will be alluded to in the next section. 

6. K A L M A N  T Y P E  F I L T E R S  

In the present section we examine some applications of the algorithms developed 
earher to two special models and relate them to the classical Kalman filter for 
which both measurement and system noises are Gaussian (JAZWINSKI (1969)). 

6.1. Btihlmann Model  

Consider a risk characterized by a parameter Y. Associated with this risk are 
measurements X~, X 2 , . . .  The followmg assumptions are made: 

ASSUMPTION 1. Condztional on Y fixed, the measurements X~, X 2 , . . .  are 
independent. 

ASSUMPTION 2. Conditional on Y fixed, the mean and variance o f  each X, can 
be written E[X,I Y] = ;z( Y )  and C[X, I Y] = 0"2(Y) respectively. 

Without loss of generality assume I z (Y)=  Y and for notational convenience 
write, yo = E[ Y], 0-o 2 = E[o'2( Y)] and v = C[ Y] 
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Adopting the notation and terminology of the preceding sections, the recursion 
for the inhomogeneous linear Bayes rule for Y is, 

(6.I.i) Y.+,= ~'.+K.+,e.+,. 

In view of assumptions ] and 2 and the unbiasedness conditions (4.8) it follows 
that 

(X.+,,ej)=(Y, ej); j=O, l , . . . , n .  

This means, 

whence, 

~,.(x.+,) = ~.(  Y)(= p.+,) 

e.+,  = x o ÷ , -  ~o. 

Consider now the inner product, 

(Y.e.+,)=(Y- Y.+ Y..e.+,) 

= ( Y -  Y., e.+,), 

the latter equality following from Y'. _L e.+t. Further, 

( Y -  ~'.. e . + , ) = ( Y -  Y'., Y -  Y. + X . ÷ t -  Y) 

= c .  

the latter equality following from the orthogonality condition 

Y-~'.±x.~., 
as a result of (4.8) and assumptions 1 and 2. 

Consequently, 

(6.1.2) 

Moreover, 

(6.1.3) 

(Y.e.÷,)=C.. 

Ile.+,ll == I I X . + , -  ~'.11 = 

= II Y -  Y.II 2+ I I x . + , -  YII ~ 

= c .  + ECCCX.+,I Y]] 

= C .  + o-o 2 

where the second equality follows from 

Y-~ ' . .L  X,+m- Y. 

Substituting (6.1.2) and (6.1.3) into (4.10) yields, 

(6.1.4) K.+,=C.(C.+o'~)- ' .  

For continuity write (4.12) again, 

(6.1.5) C.+, = C. -K.+,C. .  
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(6.1.8) 

(6.1.9) 

with initial condit ions 
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Substituting (6.1.4) into (6.1.5) gives 

(6.1.6) -~ - C,+~ - C~ l +o'ff  2. 

In summary,  we have developed the Kalman filter 

+ K . ÷ , ( X . ÷ , -  

K . + ,  = C.( C. + o " I ) - '  

C~.~l = C ~  I + o'~ 2 
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Yo=Yo and C o = v .  

We point  out  that if Y has a G a m m a  distribution and X,[ Y is Poisson with 
mean Y (implying that o'2(Y) = Y and Yo = O'o 2) then 

~o = E[ Y I x , ,  . . . , x . ]  
and 

C. = E [  C [  Y I X , ,  . . . , x,]]. 

Moreover,  by virtue o f  a fundamental  result in linear Bayes theory (HARTmAN 
(1969)), the same classical Kalman filter (6.1.7) to (6.1.9) is obtained if we assume 
instead that 

Y ~ Normal  (Yo, v) 

and 

X,I Y ~  Normal  ( Y, ~o2). 

See DE JONG and ZEHNWIRTH (1983) for more details. 
In passing we also note that since ~ , (X ,+~)  = ~ , ( Y )  it follows that 

K.+, = Z . + g .  

Combining (6.1.4) and (6.1.5) gives 

z.+t=z.(z.+l)-', 
which is also a consequence  o f  expression (5.15). 

Moreover ,  

(6.1.10) P.+t= P. + Z . ( X . -  P.) 

and 

(6. !. i 1) E,+, = [ (E ,  - tz~)-' + a~2]- ,  + cry. 

The last expression also follows from (5.13). 

6.2. Evolutionary Risk Parameter Model 

In the present sub-section we imagine that we have a sequence o f  risk parameters  
Yt, Y2, . . .  and corresponding  measurements  X~,X2, . . . .  The measurement  
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equations are given by 

ASSUMPTION I 

and 

ZEHNWIRTH 

X.[ Yo - Poisson (Y.) 

C[X,,  Xjl Y,, Yj] = O, , # j  

The system equations (that is, the equations indicating how the parameters 
evolve over time) are given by 

and 

ASSUMPTION 2 

E[Y.IYo_,]= Yo_, 

c[f.lvo-,]=~,., ( . . ~ ) .  
We also assume independence between the measurement and system "noises". 
That is, 

ASSUMPTION 3 

c [ x . ,  Y.+,l Y°]= o. 

Now, put E[ Y~] = yo, a constant, and write 

c,,+,~,, = II Y . ÷ , -  £,11 ~ 

and 

where in the present context, 

o . + ,  = II Y , , + , -  £,+,11 ~ 

9. = ~ . (Yo) .  

Applying the projection theorem to the decomposiUon (4.2) gives 

~.+,( Y.+,) = ~ . (  Y.+,)+ K.+,e.+, 

where now 

K.+, =(Y.+, .  e..,)He.+,ll :. 

In view of assumptions 2 and 3 

(Y.+, .ej)=(Y. .e ,);  j = O . l  . . . .  n 

whence. 

~ . (Y.+ , )  = ~ . (Y . ) .  
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Similarly, in view of assumption l 

~ . ( x . + , )  = ~ . ( Y . + , ) .  

It fo l lows that. 

Y.+, = '~'. + K .+ ,  e.+, (6.2.1) 

where 

Consider the inner product 

(6.2 2) 

en+l = X n + I  -- Yn" 

(Y.+,, e .+,)= ( Y . + , -  ~' .+ ~'.. e,,+,) 

= ( Y . + , -  Y . ,e , ,+, )  

=(vo+ , -  ?o. vo+,- ? o + x ° + , -  9o+,> 

the second equality follows by noting that 

9 o . x o + , -  9o 

and the last equality follows by noting that 

< + , -  9o ± x. ,+,-  9"o+,. 

NOW, 

c°+,~.  = It go+,- Y.+ Y . -  9.112 

= C+l l  Y .+ , -  Y.IIL 

since 

~ , + , -  Y. ± v . -  9.. 

Hence, 

(6.2 3) C.+ll. = C . +  v.. 

Turning now to the computation of Jle.+,Jl 2 we have 

(6.2.4) lie.+, II = = II Y.+, - ¢'.11= + IIx.+, - Y.+, I] 2 

= C.+,i., + E[  Yo+i] 

= C.+q .  +Yo, 

the second equality following from assumptions 1 and 2. 
Application of (4.9) with Y.+t playing the role of Y gives 

(6.2 5) Co+, = C.+, l .  - K .+ , (  Y . ,  ,, e .÷,) .  

33 



34 ZEHNWlRTH 

Combining equations (6.2.1) to (6.2.5) yields the Kalman filter 

~'.+, = ~'. + K . + t ( X . + , -  Y.) 

K.+, = C.+,l.( C.+q. + yo)-' 

--I - I  - I  C.+l = C.+q.  +yo 

(6.2.6) 

(6.2.7) 

(6.2.8) 

and 

(6.2.9) 

with initial conditions 

C . + t l .  = C .  -4- u.  

Yo=Yo and Cq0 = Uo. 

We point out again the connectton with the classical Kalman filter That is, if 
instead of assumption I we have: 

ASSUMPTION I 

X,I Y, ~ Normal ( Y,, Yo)- 

In addition to assumptions 2 and 3 we also assume 

ASSUMPTION 4 

Y.] Y.-i ~ Normal ( Y._,, u.). 

The same Kalman filter (6.2.6) to (6.2.9) is obtained. 
The prospective rating algorithm is given by 

P.+,=e.+zo(x.-p.)  (6.2.10) 

and 

(6.2.11) 

where again 

E.+, = {(E. -Yo)- '  + Yo'}-' +Yo 

Z n  = g n 

Although the two preceding models satisfy (5 12) we conclude by emphasizing 
that the general algorithms presented in Sections 4 and 5 may be apphed to any 
model and in particular the models considered by SUNDT (1981, 1983) satisfying 
the more general structure (5.10) and (5.1 I). 
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UNBAYESED C R E D I B I L I T Y  REVISITED 

B Y  R A G N A R  N O R B E R G  

University of Oslo, Norway 

A B S T R A C T  

The unbayesed credlbdity procedure proposed by Gerber  is revisited. Its perform- 
ance is discussed, connections are drawn to earlier literature, and some possible 
ideas of  generalizations are investigated (and found fruitless). 

K E Y W O R D S  

Unbayesed credibility, principles of statistical decisions. 

I .  I N T R O D U C T I O N  

More than two years have elapsed since GERnER (1982) proposed a procedure 
for construction of estimators highlighted as Unbayesed Credib!lity. During this 
time there has been published no further work on the topic. It is, therefore, worth 
while having another look at the unbayesed estimations to throw some light on 
their properties and to inquire if further ideas ought to be pursued along the 
same lines. 

In Section 2 of the present paper two estimation problems considered by 
GERBER (1982) and Gerber 's  unbayesed approach to their solution are briefly 
recapitulated. The properties of  the two unbayesed estimators are discussed in 
Section 3; it ts shown that one of them will usually have an infimte expected 
squared loss. Section 4 stresses the need to build adequate mathematical models 
and to work strictly within these in search for methods. In particular the properties 
of any proposed method has to be examined in terms of the performance criterion 
adopted. Section 5 presents a couple of  variations of the unbayesed approach 
which show that it can lead to many different estimators; the particular form of 
any unbayesed estimator is due to arbitrary restrictions imposed on the estimating 
functions rather than being due to the structure of  the model itself. 

2. R E V I E W  O F  T H E  U N B A Y E S E D  E S T I M A T I O N  P R O C E D U R E  

In order to make our presentation fairly selfcontained and to state points clearly, 
let us recall the unbayesed set-up in neutral mathematical terms. The model 
framework in Sections 4 and 6 of  Gerber 's  paper  is the following. 

MODEL. Let X,s, i =  I , . . . ,  m ( > l ) , j  = I . . . .  , n, be a collection of real random 
variables For each i the Xo, J = 1 , . . . ,  n, have the same distribution, which we 
denote by F,. All X,j are mutually independent,  and F=(Fj  . . . . .  Fm)E 
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x .  - - x ~m, where ~ is the nonparametr ic  family o f  all those dis t r ibuuons on 
the real line which possess a finite second order  moment .  

Let /z and 0 .2 denote the mean and the variance, which are well defined 
functionals on ,.~, and put p., = p.(F,) and 0-,2 = 0.2(F,), t =  I , . . . ,  m. 

The vector  o f  means, lu. = (p.~, . . , / z , , ) ,  is to be estimated. More precisely, let 
denote the class of  all measurable m-vectorvalued functions o f (on ly )  the X,fs ;  

we seek a P =  ( P ~ , . . . ,  P,,,) c .~ that is in some sense close to I.I.. Gerber  considers 
two different measures o f  closeness, hence two problems, the first o f  which is the 
fol lowing (numbers  in square brackets refer to formulas in Gerber ' s  paper):  

PROBLEM I thck P c  .~ such that 

(1)[20] ~ EF(P, - ~,) 2 
i -  I 

zs "small" (not "minimum" as stated by Gerber, see second remark below). 
(Here Ev denotes  the integral with respect to F~ ×.  • • × F~ ×.  • • × F,, × .  • • × F~, 

the joint distribution o f  the Xv's.) 

A couple o f  remarks are in order  at this stage. First a formal one:  Gerber  
phrases his problem as that o f  predicting, for each i, a future independent  selection 
X,.,+~ from F,, the per formance  of  a set o f  predictors P, being measured by (I)  
with p., replaced by X,.,+~. That problem is, however,  equivalent to the one stated 
here because 

Ev(P, - X,.,+,) z = 0.,z+ Ev(P, - I t , )  2. 

The second remark concerns  realities" As it stands, problem I is not properly 
stated since for each choice o f  P the expression in (!)  is a functional depending  
on F. One cannot  find a P minimizing (1) for all F (the choice P, = / z ( G , ) ,  with 
G , c ~ ,  ~=1 . . . .  ,re,  is optimal in F = ( G t , . . , G , , ) , b u t  poor  in other  points F 
where ~," ~ { t t ( G , ) - t z ( F , ) }  2 is large). Thus,  still loosely speaking, we can only 
require o f  P that ( !)  should not be " too  large" in " too  many"  points F. We leave 
these considerat ions for the time being and cont inue our  recapitulation of  the 
unbayesed approach.  

Gerber  constructs his unbayesed credibility estimator in the following manner:  

METHOD I. (i) As a first step, solve the simple problem of  minimizing (I)  as 
P = (P~ . . . . .  Pro) ranges in the class ~ '  of  functions with P, of  the form 

z~, +(1 - z ) g ,  (2) [7] 

where 

n j  i 

x=± xh, 
m h L I  
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(3) [21] 

where 

and Z is a funct ion of  F (only).  Min imum is readily found to be at ta ined at 

n ~h , ( ~ - / 2 y  
Z =  m , 

n Eh=, (/Zh--fi)Z+(m--1)O "2 

1 ! 
/ 2 = - -  ~ /a,h and o - 2 = -  ~ o'2. 

m h = l  m h ~ l  

(ii) As a second step, replace numera to r  and denomina to r  in (3) by their 
"na tu ra l "  unbiased est imators  [13] and [22] (Gerber ' s  Section 4). Then the 
r ight-hand side express ion in (3) turns into 

(4) [23] 2 = I ( m -  l)t~ 2 
m 

" Eho, ( g h - 2 )  2 
m A __ with &2 =~h_ , O~/m and ~r~Z ~f~ , (Xh~- ,~h)E/(n- I). Upon replacing Z in (2) 

by Z, we obtain a funct ion P c  ~,  which is the unbayesed  credibili ty est imator.  
The second p rob lem is the following. 

PROBLEM 2. The same as problem I, but with (1) replaced by the eomponentwise 
expected squared error 

(5)[27]  EF(P, - p.,) 2, i =  I , . . . ,  m, 

(vector-valued) 

The above  remarks  to p rob lem I app ly  also to p rob lem 2. The unbayesed  
procedure  follows the same outline as in me thod  I: 

METHOD 2. First minimize (5) as P = (P~, . . . ,  Pro) ranges in the class ~ "  of  
functions with P, of  the form 

(6) Z,X, + (I - Z , ) X ,  

where each Z, is a funct ion of  F. ~roceeding in analogy to step (ii) of  method 
l, Gerbe r  arrives at the es t imator  P given by 

(7) P, = X, , t = I , . . .  m. 
mn ( X , -  .~) 

Having summar ized  the present  state of  unbayesed  credibility, we now set forth 
to study its merits in terms of  concepts  f rom est imat ion theory. 

3 P R O P E R T I E S  O F  T H E  U N B A Y E S E D  E S T I M A T O R S  

We first consider  p rob lem I and the unbayesed  es t imator  given by (2) and (4). 
It ought ,  perhaps ,  to be said that  it is unfor tuna te  to speak of  P as the "real  

solut ion"  to the prob lem of  minimizing ( I ) (Gerbe r ' s  Section 4), confer  the second 
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remark to problem i above. Clearly, method 1 is only a preparatory piece of 
motivating heuristics, and the resulting /; is so far only a candidate estimator, 
whose performance has to be examined in terms of the criterion (1). This task 
has not been under taken-- in  fact, not even ment ioned-- in  the previous literature 
on unbayesed credibility, and no references are made to the closely related 
literature on compound estimation problems. Therefore, a few remarks are added 
here on these matters: 

Very little is known about  the possibihty of solving (reasonably precise versions 
of) problem 1 under the present model with nonparametric  ..~. Some results on 
restricted inadmissibility have been established: For certain simple parametric 
subfamilities fro C f f  one can construct estimators that in all of  ~g'  dominate old 
established estimators known to be uniformly optimal on ~ with respect to the 
traditional performance criterion (5) when one restricts to the class of  unbiased 
estimators. The first results of  this kind appeared in fundamental papers by STEIN 
(1956) and JAMES and STEIN (1961). They considered the subfamily ~o of all 
normal distributions with variance l (say) and proved that the estimator 

(8) P* = (...~, . . . . .  X,,), 

which is admissible on ,..~ with respect to (5) and furthermore is uniformly 
minimum variance unbiased, does not even remain admissible when criteron (I)  
is adopted. If  m I> 3, it is dominated by the so-called James-Stein estimator P** 
defined by 

( P,**= I ~"-r,~-~2" "~,, i =  I , . .  , m. 
n Z..,h~l h ~  

To most statisticians this result came as a surprise, to some even as an unpleasant 
one, and there were signs of controversies between defenders of  the traditional 
P* on the one side and advocates of the new P** on the other Now there is no 
reason to discuss which is the better of  P* and P** (on . .~) ,  because that 
question ~s settled by emotionless mathematics once the performance criterion 
is chosen. What can be discussed, is only the choice of criterion. That discussion 
is, however, not of  a purely mathematical nature, but depends on the goals and 
attitudes of  the decision maker. 

In closing our comments on problem 1, we note that admissibility on , .~  of 
estimators of  the James-Stein type has been extensively treated in the literature, 
see e.g., BERGER (1976). A survey of James-Stein estimations Is given by EFRON 
and MORRIS (1973) 

Let is now examine the unbayesed estimator designed for problem 2. Again 
by the second remark to problem I, it is clear that P given by (7) does not 
represent the solution to the problem of minimizing (5) (Gerber 's  Section 6). In 
fact, by inspection of (7), it is readily seen that P, assigns the value +co to (5) 
on wide subsets of  .~m: If, for instance, the F, are normal distributions, then &2 
is independent of  . ~ , -  ..~, and ( X , -  • ) - i  has no expected value. More generally, 
if the marginal distribution of ,.Y,- ,~ has a point of  increase in 0, then P, and 
hence (P , - l z , )  2 are usually not integrable. 
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Problem 2 in the present nonparametric model is one of the classics of statistics, 
and to the knowledge of the present author no alternatives to the natural unbiased 
estimator (8) have been proposed in the pre-unbayesed literature. Thus, in this 
case it would really be surprising if P could be shown to have any good properties. 
And unpleasant as the interpretation of the model and problem 2 is that the 
estimation problems are unrelated in every respect; the samples are drawn in an 
independent manner from populations that have nothing in common, and the 
losses incurred by error of estimation are measured separately for each problem. 
A reasonable task for the theory would be to put a firm basis to the intuitive 
feeling that the estimator of/z ,  should depend only on X,~, . . . ,  X,n. If we are 
not able to justify the deletion of the Xhj, h ~ i, from the estimation of/.t,, then 
we would be in serious trouble: How could we then in a rational way choose the 
statistical basis for a given estimation problem? Which irrelevant data were not 
to be included? Which advice should we give to the practitioners? 

As we have seen, the unbayesed approach gives rise to no such concerns. The 
traditional and intuitively sound estimator (8) remains an uncontested answer to 
problem 2. 

4 .  M O D E L  A N D  M E T H O D  

After the discussions in section 3 the question arises: What brought Gerber to 
enter the Xh, h # ~, into the estimation of /z ,9  Why didn't he use the "natural 
unbiased estimator" (8)? The reason seems to be that he had a particular 
interpretation in mind; X,~, . . . ,  X,, are spoken of as being the claim amounts 
in n different years for risk no. i in a portfolio of m insured risks. A few remarks 
on basic principles of statistical decisions are called for: 

The first step in a statistical analysis is to separate out of the situation those 
features that are believed to have some bearing on the problem and work them 
into a mathematical model. The model should give a surveyable and, as far as 
possible, true picture of the phenomena. If, for instance, the data stem from 
similar automobile insurance risks, the model ought to give precise content to 
the notion of similarity between these risks. The model in Section 2 fails to reflect 
the essential circumstance that automobile insurance claims have something in 
common that distinguishes them from data on e.g. soldiers' heights and turnover 
of cheese. One reasonable mathematical means of expressing this similarity 
between the risks is to regard them as selections from one and the same structure 
distribution (population). Thus the structure distribution is not "essentially super- 
fluous" (Section 4 of Gerber's paper) to those who think they can learn something 
about a given risk by looking at other risks of the same kind. 

Having decided on a model, the purpose of the decision has to be expressed 
in terms of a performance criterion. When this is done, one is left with the purely 
mathematical problem of finding decision functions with good performance. 

In the traditional credibility analysis based on models with structure distribu- 
tions, credibility estimators are obtained as logical consequences of the mathe- 
matical set-up. They are justified by their (restricted) optimality properties. 
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This is not the case with unbayesed approach in method 2 above. There the 
particular credibility appearance of the estimator could only be obtained by the 
analyst's intervenmg into the mathematics by prescribing a certain procedure and 
exempting it from the requirements expressed by the performance criterion. The 
following quotation from Neyman (1954) seems pertinent: " . . .  the efforts of the 
representatives of modern statistical theory are directed towards solving problems 
that depend only on the stochastical model studied and on nothing else". 

Considered as a statistical framework for the analysis of related risks, problem 
1 together with the model in Section 2 plays an intermediate role. As explained 
above, the model may be judged as inadequate, but it still represents a reasonable 
partial description of the situation. The connection between the different rating 
problems is now established through the choice of the performance criterion (1). 
The unbayesed method I, however, is until further without any support whatsoever 
in studies of its performance. 

5. S O M E  V A R I A T I O N S  O F  T H E  U N B A Y E S E D  P R O C E D U R E  

Until the estimator resulting from method I has been investigated with respect 
to performance, it can, of course, not be excluded. But the unbayesed device as 
such can be put on test in other ways. One angle of attack arises from noting 
that the requirement that Z in (2) be independent of i is quite arbitrary. 

Looking for good estimators, we could possibly gain something by allowing 
Z to depend on t, that is, let P be of the form (6). But then the unbayesed 
procedure reduces to that of method 2 and delivers (7), which maximizes the 
expected loss instead of minimizing it as pointed out already in Section 3. 

Let us allow for further flexibility and admit nonhomogeneous estimators of 
/.i,, of  the form 

P, = Z,o+ ~ Z,,,Rh. 
h=l  

Then we find by the first step of the unbayesed prescription that the optimal 
approximation to p,, is ~,. And following the recipe further, we now only have 
to estimate ~, by a natural unbiased estimator. Then we obtain finally (8), which 
would have resulted immediately if we already at the outset looked for a natural 
unbiased estimator. 

Which ends the present discussion. Some further considerations around the 
topic of unbayesed estimations can be found in an unpublished report, NORBERG 
(1983), which can be received upon request. 
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Consider the aggregate claims of an insurance company in a given period, 

N 

x = E Y ,  

where the claim sizes {Y,: ~No} are i.i.d, non-negative random variables with 
F(x) = P{ Y~ ~< x} non-lattice (i.e., we assume the claim size distribution F to be 
non-discrete; take for instance F continuous), independent of the negative 
binomial claim arrwal variable N. Then 

p n ~ P { N  n } = ( a ~ - I + n )  = p"q", n ~  
n 

where 0 < p < 1, p + q = I and o~ > 0. Denote by f the Laplace-Stieltjes transform 
of F and assume that there exists a constant K > 0 satisfying 

;o o p-i = e ~ dF(x) (I) 

and that 

(2) v=p xe'X dF(x)<oo 

i.e, p - '  = f ( - K )  and If ' ( -K)l  <oo. We now want to estimate P { X > x }  as x~co .  

* This research was supported by a grant from The Nuffield Foundation 
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NOTATION. If  f ( n )  and g ( n )  are two functions, in this paper  we always 
abbreviate the statement l i m , ~ o o f ( n ) / g ( n )  = l to f ( n )  ~ g (n )  as n ~ co. 

In SUNDT (1982), the following theorem was proved. 

PROPOSITION | (SUNDT (1982), Theorem 5). I f  e ' * P { X > x }  is ultimately 
monotone, then 

(3) P { X > x } - - ( ~ c F ( a ) ) - I ( q / v ) ~ x  ~-I e - ~ ,  a s x ~ .  

The condition of  ultimate monotonicity was needed because the proof  in SUNDT 
(1982) used a Tauberian argument. In this note we want to prove that under (1) 
and (2), (3) always holds, as indeed was conjectured by Sundt. 

THEOREM. Assume  the negative bmomzal model above. I f  the claim size distribu- 

tion F satisfies (1) and (2), then (3) holds. 

Of course condition (2) is only needed to get a non-trivial statement in (3). 
The proof  of  the theorem differs entirely from the one given in SUNDT (1982) 
and essentially hinges on the following recent Blackweil type theorem for gen- 
eralised renewal measures. 

PROPOSITION 2 (EMBRECHTS, MAEJIMA AND OMEY (1984), Theorem la). Let 
a be a positive function such that a ( x )  = x a L ( x ) , / 3  > - I and L slowly varying (that 
Is, for  all t > O, L( tx )  ~ L ( x )  as x ~ oo). Let  F be non-lattice. Then for  all h > O, 

(4) ~ a ( n ) P { x < S , < ~ x + h } ~ h l x - ~ - t a ( x ) ,  a s x ~ o o ,  
n = l  

where S, = Xi  +" • • + X ,  is the random walk defined by F and ~ the mean o f  E 
Moreover, the convergence in (4) is uniform in h on compact sets. 

A more general statement including/3 ~<-1 is given in EMaRECHTS, MAEJIMA 
and OMEY (1984). 

PROOF OF THEOREM. Define the associated distribution or Esscher transform 

fo F ~ ( x ) = ( f ( - K ) ) - '  e~Y d f ( y ) ,  x ~ O .  

One easily verifies that for all n ~ 2, integer, because of (I)  

F~n)(x) = p" e "y dF( ' ) ( y ) ,  x i> O, 

(here (n) denotes the nth convolution, i.e., G (")-= G*~). 
Now 

(!o ,1 (5) P { X  > x} = e -~y d (~')0' • 
w 
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By Stirling's formula, a(n)=p-np,-(q"/F(a))n a-~ as n o o o ,  satisfying the 
condition in proposition 2 with /3 = a - I. Hence it follows that, with 

H(y) = ~ p-"p,F?)(y), y ~> O, 
n ~ O  

V h > 0 :  H(y+h) -H(y )~hv - "a (y ) ,  y~oo. 

In this last expression, we use a ( . )  defined on the positive real numbers, this 
can be achieved most easily by a(x)= a([x])  where [ ] denotes integer part. 
Therefore by uniform convergence: 

Ve>O3y*:Vy~>y * and Vh, 0 ~ h < ~ l ,  say: 

l - e  ~ ~ I + e  
(6) l~a~(q/v) h e -~<~H(y+h)-H(y)~F~a)(q/v)~hy ~-t. 

Take now x~>y=y*(e), A > 0  fixed then it follows from (5) and (6) that 

P{X > x} = f 5  e-mY dH(y) 

~ r+(k+l)~ 
= e -~y dH(y) 

k = O  ,Tr+kdL 

~ e-~(x+ka)(H(x+(k+ I )A)-H(x+kA))  
k = 0  

l + e  ,, 
~F(a) (q/v) k=o~ e-'(~+ka)(x+kA)°-'A 

I + e  a f ~ e _ , , y y a _  I ~ r(a)(q/~,) dy, asM0. 

A similar argument, replacing (1 + e) by ( 1 - e ) ,  proves the converse inequality 
(~) .  Letting e,l,0 we get as x ~ o o  

P{X>X}-F~a)(q /v )  e-"Yy ~-' dy. 

The theorem follows since 

I me-'~Yy ~-I d y ~ K  -! e-'~Xx c~-I, a s  x---~ oo.  

Obviously, there is no mistery in assuming p, to be negative binomial. The 
proof  easily extends to more general situations. To give the reader some idea of 
the generality of  our approach,  below we present a fairly straightforward extension 
of our Theorem. For further details, the reader is referred to TEUGELS (1985) in 
which these and related questions in insurance will be discussed. 

For instance, suppose p, = P{N= n} satisfies the following property: there 
exist ~ > I, L slowly varying and y e n  such that Iz"p, ~ nVL(n) as n- too  (in the 
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negative binomial  case, ~ =p-~ ,  L(n ) -=(q" /F(a ) )  and y = a -  1). Again, define 
the Esscher t ransform (assumed to exist!) by 

Io F,~(x) = ( f ( - K ) ) - '  e"' dF(y)  

where K = K( /z )>  0 is the solution of  

~ = e K" dF(x) .  
o 

If  now the condit ions (1) and (2) hold (with p -~ replaced by ~ )  then 

( - - f ' ( - -K) / f ( - -K)) - ' - '  P { X > x }  e-K'x 'L(x) ,  as x ~co.  
K 

In general, the behaviour  o f  P{X  > x} will depend on the relationship between 
the asymptot ic  behaviour  of  P { N >  n} and I - F ( x )  as n, x ~ e c .  A multi tude of  
results exist, these are all rewewed in TEUGELS (1985). In a for thcoming paper, 
we also plan to return to the lattice case (Le., when the claim size distribution is 
discrete). 
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ABSTRACT 

This pape r  cons iders  re insurance  re tent ion  limits in cases where the cedent  has 
a choice be tween  a pure  quo ta - share  t reaty,  a pure  excess o f  loss t reaty or a 
combina t ion  o f  the two. Our  pr imary  aim is to find the combina t ion  of  re tent ion  
limits which minimizes  the skewness coefficient o f  the insurer ' s  re ta ined  risk 
subject  to const ra in ts  on the var iance  and the expec ted  value of  his re ta ined  risk. 
The results are given wi thout  speci fy ing precisely  how the excess of  loss reinsur- 
ance p r emium is ca lcula ted .  It is also shown that ,  d e p e n d i n g  to some extent  on 
the cons t ra in t  on the var iance ,  the so lu t ion  to the p rob lem is a pure  excess o f  
loss t reaty if the excess of  loss p remium is ca lcu la ted  using the expec ted  value 
or  s t anda rd  devmt lon  pr inc ip le  but  that  this need not be true if the var iance  
pr inc ip le  is used.  

KEYWORDS 

Reinsurance ,  Quota - share ,  Excess of  loss, skewness ,  coefficient o f  var ia t ion,  
cons t ra ined  op t imiza t ion .  

]. INTRODUCTION 

This pape r  cons iders  re insurance  re tent ion l imits in cases where the cedent  has 
a choice be tween  a pure  quota -share  treaty,  a pure  excess o f  loss t reaty or a 
combina t i on  of  the two Such combina t ions  occur  m prac t ice ;  see, for example ,  
GERATHEWOHL (1980, Vol. 2, p. 371). 

We assess the effects on the insurer  of  a p a m c u l a r  combina t ion  of  re insurance  
treat ies  by cons ider ing  three momen t  funct ions  of  the insurer ' s  re ta ined  risk. 
These funct ions  are the skewness  coefficient and  the var iance  o f  the insurer ' s  net 
c la ims and the insurer ' s  expec ted  net profit.  Our  pr imary  aim is to find the 
combina t i on  o f  re tent ion  limits which minimizes  the skewness  coefficient of  the 
insurer ' s  net c laims,  subject  to a max imum value for the var iance  of  the insurer ' s  
net c la ims and a m in imum value for the insurer ' s  expec ted  net profit. 

In Sect ion 3 we show that  the solut ion to this p rob lem is unchanged  if we 
replace  the skewness  coefficient by the coefficient o f  var ia t ion  of  the insurer ' s  net 
claims. 

Cons t r a ined  op t imiza t ion  as a cr i ter ion for d e t e r m i n m g  op t imal  re tent ion  limits 
has been used before ,  see BUHLMANN (1970, pp. 114-119), but  not  in relat ion 
to a c o m b i n a t i o n  o f  types of  re insurance.  C o m b i n a t i o n s  o f  types of  re insurance  

* This research was supported by Funda~a5 Calouste Gulbenklan and by Instltuto Superior de 
Economla of Lisbon I wish to thank Howard Waters for his helpful advice and crltlc~srn 
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have not often been discussed in the mathematical insurance literature; one 
notable exception is L E M A I R E ,  REINHARD and VINCKE (1981). There are some 
similarities between our paper and theirs, but also some important differences. 
For example, in our paper we allow the claim number distribution to be more 
general than the Poisson (for example negative binomial). There is also a differ- 
ence in the way in which we assume the reinsurance premiums are calculated. 
We assume the quota-share premium is calculated on a proportional basis with 
a commission payment to the insurer; we do not specify how the excess of loss 
reinsurance premium is calculated but make some assumptions about this pre- 
mium which are shown to be satisfied if it is calculated using the expected value, 
standard deviation or variance principles. 

In Section 2 we describe in detail the two reinsurance treaties and discuss our 
assumptions relating to the excess of loss reinsurance premium. 

In Section 3 we state our problems and give the solution in general form. 
In Section 4 we give the solution to our problems assuming the excess of loss 

reinsurance premium is calculated using the expected value, the standard devi- 
ation or the variance principle. It is shown that, provided the constraint involving 
the variance of  the insurer's retained risk is not too restrictive, the optimal solution 
is a pure excess of loss treaty in the first two cases but this need not to be true 
in the last case. 

In Section 5 we discuss briefly the necessity of the assumptions made concerning 
the claim number distribution. 

In Section 6 we give a numerical example to illustrate our results. 

2. THE REINSURANCE A R R A N G E M E N T  AND THE COST OF THE EXCESS 

OF LOSS REINSURANCE 

2.1. The Reinsurance Arrangement 

Consider a risk for which the aggregate gross (of reinsurance) claims in some 
fixed time interval are denoted by a random variable Y. We assume Y has a 
compound distribution, so that 

N 

Y = E x ,  
i -  I 

where {X,}, with 0<~ x0< X, <Xl <~ + ~ ,  is a sequence of i.i.d, random variables, 
with common distribution function F, representing the amounts of the individual 
claims and N is a random variable, independent of the X,'s, representing the 
number of claims in the time interval. We shall assume that F is continuous and 
that the third moments of X, and N are finite (although this will not always be 
necessary). Let A t, A2 and A 3 denote the mean, variance and third central moment 
of N. Throughout this and the following two sections, which contain our main 
results, we shall make the following two assumptions: 

(2.1.1) A2-Ai~>0 

(2.1.2) 2AE2-AiA2- AiA3~ 0. 
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In Section 5 we shall comment on the necessity of these assumptions for our 
results but for the present we remark that both assumptions will hold if N has 
either a Polsson or a negattve binomial distribution. 

We assume the insurer of the risk arranges a combination of quota-share and 
excess of loss reinsurance in the following way: 

Firstly, the insurer chooses a quote-share retention level which we denote a 
so that the insurer's aggregate claims, net of quota-share reinsurance, are a Y. 
We assume the cost of the quota-share reinsurance is calculated on a proportional 
basis with a commission payment. (See CARTER (1979, p. 87).) More precisely, 
let P denote the insurer's gross (of expenses and reinsurance) premium income 
in respect of this risk. We assume an amount eP is used to cover the insurer's 
expenses, irrespective of the level of reinsurance. The premium of the quote-share 
reinsurance is ( 1 - a ) P  less a commision payment of c(1 -a)P. 

Secondly, the insurer chooses an excess of loss retention level which we denote 
M so that the insurer's aggregate claims, net of quota-share and excess of loss 
reinsurance, can be represented by a random variable Y(a, M), where 

N 
Y(a, M) = ~ min (aX,, M). 

I = l  

We denote by P(a, M) the premium paid to the reinsurer in respect of the excess 
of loss arrangement and we assume the premiums for the two arrangements are 
calculated independently of each other. (It could be argued that there should be 
a connection between the two reinsurance premium calculations since 100% 
reinsurance should cost the same for the two types of treaty but we do not make 
this extra assumption). Hence the insurer's net (of expenses and reinsurance 
costs) premium income is 

P ( c -  e) + aP(I - c) - P(a, M). 

2.2. The Cost of the Excess of Loss Reinsurance 

Let C(a, M) denote the cost to the insurer of the excess of loss reinsurance 
arrangement, so that 

(2.2.1) C(a, M)=P(a,  M ) - E [ a Y -  Y(a, M)] 

Throughout this paper we make the following assumptions concerning C(a, M): 

(2.2.2) C(a, M) ~ ~ for a, M > 0, 

where ¢¢, is the class of functions with continuous derivatives of order i. 

(2.2.3) 

(2.2.4) 

(2.2.5) 

l fx~=+oo,  lim C(a,M)=O for any a ~ (0,1] 
M ~ o o  

Ifx~ < +oo, C(a,M)=O foranyM>~ax~andanya~(O,I] 

OC/OM < 0  forMe(O, ax~)andanya~(O,l] 

C(a, M) is a convex function of a and M. 
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Assumptions (2.2.3) are natural. (2.2.4) implies only that the cost of the excess 
of  loss arrangement should decrease as more of the risk is retained by the insurer. 
(2.2.5) is a little more difficult to interpret but it holds in all our examples in 
Section 2.3. Roughly speaking, if we regard a as fixed, (2.2.4) and (2.2.5) together 
imply that as M decreases, the cost of  reinsurance increases and the rate of  
increase of  this cost should also increase. 

From assumption (2.2.2), (2.2.3) and (2.2.4) we can see that 

(2.2.6) C(a,M)>~O for any a ~ [0,1] and any M ~ 0 

with 

(2.2.7) C(a, M) = 0 if and only if M !> axl. 

2.3. Some Examples 

In this section we discuss very briefly the assumptions of Section 2.2 when P(a, M) 
is calculated according to some well known principles. 

When P(a, M) is calculated according to the expected value principle, standard 
deviation principle or variance principle (see, for example, GERBER (1979, p. 67) 
it is not difficult to prove that C(a, M) satisfies (2.2.2), (2.2.3) and (2.2.4). If 
P(a, M) is calculated according to the expected value principle it can be shown 
that C(a, M) satisfies (2.2.5). Now suppose that P(a, M) is calculated according 
to the standard deviation principle so that, after a little calculation, 

C(a, M)=f{Z,G2(a, M)+ (A2- A,)H2(a, M)} '/2 

Where f is a positive loading factor and 

G(a, M) = (ax - M) 2 dF(x , 
M / a  

H(a, M) = (ax - M) d f (x) .  
M / a  

It can be shown that given any two non-negative convex functions g~(x) and 
g2(x) the function g ( x ) =  [g~(x)+ g~(x)] ~/2 is stdl convex. It can also be shown 
that H(a ,  M)  is a convex function of (a, M) (this is equivalent to say that C(a, M) 
is convex if P(a, M) is calculated according to the expected value principle). 
Since 1 2 - A ~ 0  by assumption, in order to prove that C(a, M) is convex we 
only have to prove that G(a, M) Is convex. The convexity of  G(a, M) follows 
easily since 

G ( a , M ) ~ 2  fora>O,M>O 

02 G( a, M ) / O M 2 ~ 0 using the Cauchy-Schwarz inequality 
and 

{02G(a, M)/OM2} • {02G(a, M)/Oa 2} -{02G(a, M)/Oa OM} 2= 0. 

The fact that C(a, M) satisfies (2.2 5) when P(a, M) is calculated according to 
the variance principle follows directly from the corresponding result for the 
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standard deviation principle (Since the square of a non-negative convex function 
is also convex) 

3.  T H E  P R O B L E M  A N D  ITS S O L U T I O N  

3.1. The Problem 

The problem, in broad terms, is to choose retention levels a and M which are, 
in some sense, optimal for the insurer. We shall assess the effects of  reinsurance 
by considering moment functions of the distribution of the insurer's retained 
risk. More precisely, let W(a, M) be a random variable denoting the insurer's 
net (of expense and reinsurance) profit and let E[W(a, M)], V[Y(a, M)], 
CV[ Y(a, M)] and Y(Y(a, M) be the expected net profit and the variance, 
coefficient of  variation and skewness coefficient of  the insurer's net claims respec- 
tively. Our main problem is 

PROBLEM 1. Minimize V[ Y(a, M)] over the set I". 

Where F={(a,M):O~<a~<l and M>~0 and E[W(a,M)]~>B and 
V(Y(a,  M))~< D} 

for some constants B and D. It is assumed that B and D are such that F # Q .  
(Note that we assume CV[ Y(a, M)] and y[ Y(a, M)] are zero if either a = 0 or 
M = 0 ,  as well as C[Y(a, M)] when a = 0 . )  

We shall show that any solution to problem I is a solution to problem 2 and 
vice versa, where problem 2 is 

PROBLEM 2 Minimize CV[ Y(a, M)] over the set F. 

Note that V[ Y(a, M)]  = V[ W(a, M)] and y[ Y(a, M)] = - y [  W(a, M)] so that 
problem I can be expressed entirely in terms of the insurer's net profit. This is 
not the case for problem 2 since here is no simple relationship between 
CV[ Y(a, M)] and CV[ W(a, M)]. 

In order to solve the above problems it will be helpful to consider the following 
simpler problem: 

PROBLEM 3 Minimize y[ Y(a, M)] over the set Fi. 

Where F~ ={(a,  M): 0~<a<~ 1, M~O,  E[W(a, M ) ] ~  B} 

or equivalently (as we will see), 

PROBLEM 4. Minimize CV[ Y(a, M)] over the set Fi, 
i.e., we drop the constraint concerning the variance. 

3.2. The Skewness Coefficient and the Coefficient of Variation 
of the Total Net Claims 

The statement and proof  of the following result assume, for convenience, that 

Xo> O. 
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RESULT 1. (i) y[ Y(a, M)] and CV[ Y(a, M)] are functions of class c¢~ for 
a, M > 0 .  

(ii) Both of them are strictly increasing functions of the single variable M/a  
for Xo < M~ a < x~ and points such that 0 < M~ a ~< Xo and M~ a I> x~ give minimum 
and maximum values respectively of  the two functions over the set 
((a, M): a, M>0}.  

(iii) y [Y(a , ,  M , ) ]>  y[Y(a2, M2)] if and only if CV[Y(a,,  M,) ]>  
CV[ Y(a2, M2)]. 

(3.2.1) 

(3.2.2) 

(3.2.3) 

PROOF. (i) A little calculation gives the following formulae: 

V[Y(a, M ) ] =  A,(/32-/3~2) + A2/3~ 

CV[ Y(a, M)]={ V[ Y(a, M)]}'/2/(A~fl,) 

y[ Y(a, M)] = {A3/3~ + A, (/33 - 3/31/32 + 2/3]) 

+ 3A2B,(/32-/3~2)}/{ 1/'[ Y(a, M)]} 3/2 

where 

Using integration by 
continuous, we have 

f M/a 
/3k = a e x k d F ( x ) + M k ( I - F ( M / a ) ) .  

d O  

parts and the assumptions that F ( 0 ) = 0  and that F is 

f M/a 
(3.2.4) /3k = M k - k a  k xk-KF(x) dx 

dO 
from which the proof of (i) follows immediately. 

(ii) Let z = M/a. Then we can see that 

flk = Mkae (3.2.5) 

where 

Otk = (X/Z) k dFF(x) + ! - F(z). 

Substituting (3.2.5) into (3.2.1), (3.2.2) and (3.2.3) we see that CV[ Y(a, M)] and 
y[ Y(a, M)] can be expressed as functions of the single variable z. We shall show 
that dy[ Y(z)] /dz  > 0, for xo < z < x~ 

-~ [  Y(z)] = 3(1 - F(z))z-5[x, (,~2- c~) + a2,~,] -5/2 

{So x A~ (x2z2-x3z)dF(x)+A,(A2-A,)h(z)  
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where 

h(z) = 2 x ( l  - F(x) )  dx" (x 2 - xz) dF(x )  

+ ( 1 - F(x) )  dx" (xz 2 - x 3) dF(x) .  

It is easily checked that  h ( O ) = 0  and that  dh(z)/dz>~O so that  h(z)>~O for  z~>O. 
That  d y / d z  is strictly positive for Xo< z<x~ then follows from assumpt ions  

(2.1.1) and (2.1.2). The p roo f  that  d C V / d z >  0 is s imilar  to that  given above but 
is somewha t  s impler  and does not require assumpt ions  (2.1.1) and (2.1.2). The 
remaining par t  o f  (ii) now follows immedia te ly  and (iil) follows from (ii). 

REMARKS The equivalence of  p rob lem 1 and 2, and of  p rob lems  3 and 4, 
follows from part  (iii) of  the above result. 

A further  implicat ion of  the result is that  the locus of  points (a, M )  satisfying 
the relation y[ Y(a, M ) ]  = constant ,  or CV[ Y(a,  M ) ]  = constant ,  is a straight line 
passing through the origin in the (a, M) -p l ane ,  a higher value of  the constant  
giving a line with s teeper  slope. 

3.3. lsocost Curves 

In this section we consider  the locus of  points (a, M)  satisfying the relation 
E[ W(a, M)]  = B which is equivalent  to 

(3.3.1) P ( c -  e ) +  a ( P ( l  - c ) -  A , E ( X ) )  - C(a, M )  = B. 

Where B is the constant  appear ing  in the definition of  the sets F and F~. (See 
Section 3.1). It can be regarded as the set o f  points with a fixed re insurance price, 
since (3.3 1) is equivalent  to 

(3.3.2) ( i - a ) [ P ( 1 - c ) - A t E ( X ) ] + C ( a , M ) = P ( I - e ) - A ~ E ( X ) - B .  

Where the lef t-hand side represents  the total re insurance cost o f  the a r rangement  
( a , M ) .  

We make  the fol lowing assumpt ions  about  the parameters  involved in our 
problems:  

(3.3.3) P ( I - c ) - A , E ( X ) > O  

(3.3.4) B < P ( I  - e) - 3., E ( X )  

(3.3.5) B >  P(c - e) 

(3.3.6) B >  max {E[ W(a, M)]:  0 <  a ~ 1, O~ < M ~< axo}. 

Assumpt ion  (3.3.3) implies that  the cost o f  the quota-share  a r rangement  
[( I - a ) ( P (  I - c) - A~ E ( X ) ) ]  is positive for 0 ~< a < 1 and also that  the cost of  this 
a r rangement  decreases  with the retention a. Then (3.3.3) together  with (2.2.6) 
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and (2.2.7) implies that  the total re insurance cost of  the a r rangement  (a, M )  is 
non-negat ive ,  and is zero if and only if a = 1 and M I> x~. Assumpt ion  (3.3.4) is 
then natural  since the right hand side represents  the insurer 's  expected  profit 
af ter  expenses  but without  any reinsurance.  Assumpt ions  (3.3.5) and (3.3.6) imply 
that points  such that a = 0 or M ~< axo respect ively are not feasible solutions to 
our  problems,  i.e., we do not consider  solut ions where the whole risk is passed 
to the reinsurer  through the quota-share  a r rangement  or  where the excess of  loss 
retention is less than the smallest  possible claim (net of  quota-share  reinsurance).  

The fol lowing result discusses the shape  of  the isocost curves. 

RESULT 2. Let 

p ( a , M ) = E [ W ( a , M ) ] - B  for any a, M > 0  

ao=[ P ( e - c ) +  B]/[ P( I - c ) - A , E ( X ) ]  

A = {a '  0 < a ~< I and there exist at least one M, M < axt, such that  p(a, M )  = 0}. 

Then (i) A = (a0, 1]. 
(ii) For each a ~ A there is a unique M such that  p(a, M )  = 0 Le., there is a 

function ~ mapp ing  A into (0, oo) such that  M = ~ ( a )  is equivalent  to p(a, M) = O. 
(iii) ~ ( a )  ~ ~, .  
(iv) limo.a~ ~ ( a )  =aoX~. 
(v) h m ~ . , ;  ~ ' ( a )  = -oo.  

(vi) ~ ( a )  is convex and is strictly convex if C(a, M) is strictly convex.  

PROOF First note that  p(a, M ) =  0 is equivalent  to 

p(a, M) = P ( c -  e ) + a ( P ( I - c ) - A , E ( X ) ) -  C(a, M ) - B  =0. 

(i) Let a ~- ao. It follows from the definition of  ao and f rom (2.2.6) and (2.2.7) 
that  p ( ~ , M ) < 0  for any M<c~x~. Hence d ~ A .  Now let ~C(ao ,  I]. p(a ,M) ,  
considered  as a funct ion of  M, is cont inuous  since C(a, M) is assumed con- 
t inuous.  Also 

lim p(a ,  M ) =  P ( c - e ) + 6 ( P ( I - c ) - A , E ( X ) ) - B > O  
M ~ x  7 

lim p ( a , M ) < 0  by (3.3.6). 
M~ax~ 

Hence  there is at least one M, M < ~:~x~, such that p(8,  M )  = 0. 
(ii) Suppose  p(a, M~) = 0 =  p(a, M2) for  some a, Mi and Mz. Then C(a, Mt) = 

C(a, M2) and hence,  using (2.2.4), M~ = M2. 
(iii) This follows f rom the Implicit  Funct ion theorem. See, for example ,  

APOSTOL (1963). 
(iv) Let {an} be a sequence such that  a,,>ao, l i m , . o o a , = a o  and 

l i m , . ~ ( a n )  = k~< +oo. By continuity we have p(ao, k)=0,  which implies that 
k I> aoxt using the definit ions of  p and a and (2.2.6) and (2.2.7). But using part  
(i) above,  ~ ( a , )  < a,,xl and (iv) follows 
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(v) If xt = +oo this is obvious. If  x~ < +oo we have only to notice that, using 
(2.2.3) and (2.2.4), both aC/aa and aC/aM are zero at the point (ao, aox~). 
Hence OR~aM is zero and dp/aa is strictly positive at (ao, aox~). 

(vi) Let a~, a2eA and 0<~A ~< 1. p(a, M) is concave since C(a, M) is convex, 
so we have 

p(Aa, +(1 -A)a2 ,  ~(Aa~+(1 -X)a2) )  

= 0 = Ap(al, ~ ( a , ) )  + (1 -A)p(a2 ,  qb(a2)) 

~<p(Xat+(I -A)a2 ,  A O ( a l ) + ( l - A ) O ( a 2 ) ) .  

Using the proof  of  part (i) above we have 

AdP(a,)+(l  + A)dP(a2) t> O(Aa, +(1 - X)a2) 

It is clear that • is strictly convex if the same is true for C(a, M). 

3.4. The Variance as a Funcnon of (a, M). 

We shall find the following result useful when proving our main results in the 
next section. 

RESULT 3 
(i) O V[ Y(a, M)]/Oa > 0 for x0 < M/a < x~, 

(ii) aV[Y(a, M)]/aM>O for xo<M/a<x~. 

PROOF. We have already seen that V[Y(a, M ) ] e  qg~ for a, M > 0  (see proof  
of  result l(i)). Differentiating (3.2.1) we have: 

r M/a 
OV/Oa =2Ala  x 2 dF(x) 

J 0  

+2(a=-a,) xaF(x)LJ ° 

[ r ] OV/OM=2A,(I-F(M/a))  M F ( M / a ) -  axdF(x) 
dO 

F fM/o ] 
+ 2 A 2 ( 1 - F ( M l a l ) L J  ° axdF(x )+M(1-F(Mla ) )  

(il) follows directly and (i) follows from (2.l . l) .  

3.5. The Solutton 

In this section we solve our problems in general terms. 
RESULT 4. (i) The non-negative constraints are redundant in our problems. 

(ii) The constraint E[W(a, M)] ~ B  is active in the opt imum of our problems, 
i.e., in the opt imum of our problems this constraint holds as an equality. 
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PROOF. (t) Follows directly from assumptions (3.3.5) and (3.3.6). 
(ii) We shall prove the result for problem !, and hence problem 2. The proof  

for problems 3 and 4 is similar but simpler. Let (a~, M~)eF  be such that 
E[W(a~, M~)]> B. From the proof  of  result 2 we know that there exists M* < M~ 
where a~xo < M* < a l x  t and E[ W(a~, M*)] = B. Using result 3(ii) and result I(ti) 
we see that 

and 

V[ Y(al, M * ) ] ~  < V[ Y(al, Mt)]<~ D 

y[ Y(al, M*)] < yy[ Y(a,, M,)]. 

Let us now consider the solution to problem 3 (and hence to problem 4). We 
know that the solution lies on the isocost curve M = ~ ( a )  and information about 
the shape of this curve is contained m result 2. Figure 1 gives three examples of 

M 

aoXl 

3 

0 ao I a 

F I G U R E  I ISOCOSt c u r v e s  In the  (a ,  M ) - p l a n e  

isocost curves, labelled It, I2 and /3. We know that each curve has slope - ~  at 
the point (a0, aox~) and we have assumed x~ is finite for convenience. We also 
know that each curve is convex although not necessarily strictly convex. From 
result 1 we know that straight lines through the origin in fig. I represent points 
of constant skewness, the larger the slope the higher the skewness. Hence it is 
clear that the solution to problem 3 is the point, or set of points, where the 
strmght line through the origin with the smallest slope intersects the isocost curve. 
If  the isocost curve is decreasing, as in Ii, this point will be (1, ~ ( | ) ) ,  i.e., pure 
excess of  loss reinsurance will be optimal. (Note that LEMAIRE, REINHARO and 
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VINCKE (1981), by making  assumpt ions  abou t  the calculat ion of  the re insurance 
p remiums  different to ours,  were able to assume that  the isocost curves were 
decreasing and hence that,  in terms of  our  p rob lem,  excess of  loss re insurance 
was opt imal . )  Even if the isocost curve is not decreasing,  as in /2, the point  
( l , dp ( l ) )  may  still be the solut ion to p rob lem 3. Isocost  curve 13 shows a case 
where the solut ion is not ( l ,  ~ ( l ) ) .  

It is clear that  in general  the solution to p rob lem 3 will be ( I ,  qb(I )) unless we 
can find a point  on the isocost curve such that the gradient  of  the isocost curve 
at that point  equals the slope of  the line jo ining that  point  to the origin. Such a 
point  may not be unique since the isocost curve may  not be strictly convex 

Summar iz ing  we have the following result: 

RESULT 5. Le t  

H = {(a, ~ ( a ) ) :  a o <  a ~< 1, d~(a)/da = ~(a)/a}. 

Then 
(i) if H is empty  the solution to p rob lems  3 and 4 is the point  ( 1 , ~ ( 1 ) ) .  

(ii) if H is not empty ,  all the points in H are solutions to p rob lems  3 and 4. 

REMARKS. (i) We have given a geometr ical  p roo f  of  result 5 but it is possible  
to give a more  formal  p roo f  using the K u h n - T u c k e r  condi t ions and the facts that  
E[W(a,M)] is a concave function and T[Y(a,M)], or CV[Y(a,M)], is a 
quas i -convex funct ion of  (a, M) .  See ARROW and ENTHOVEN (1961). 

(ii) Using the definition of  • the set H can be defined as 

(3.5.1) H={(a ,M):a~l  and E[W(a,M)]=B 

and B+ P(e-c)+ C(a, M ) - a  cgC/Oa-M OC/OM =0}. 

We are now in a posit ion to solve p rob lems  I and 2. 

RESULT 6. Let 

at = in f{a :  (a, ~ ( a ) )  is a solut ion to p rob lem 3}. 

Then 
(i) if V[Y(a~,~(a~))]~<D, (a~,~(at)) is a solution of  p rob lem I and every 

solution of  p rob lem 1 is a solution of  p rob lem 3. 
(ii) if V[ Y(at, ~ ( a ~ ) ) ] >  D the solution to p rob lem 1 is (a  °, ~ ( a ° ) )  where 

a ° = s u p  {a: a~< 1, E[W(a, M ) ] =  B and V[Y(a, M ) ] =  D}. 

In this case a ° <  at. 

PROOF. (i) I f  (a~, ~(at)) is a solution of  p rob lem 3 and V[ Y(al, ~ ( a l ) ) ] ~  < D 
then clearly (a~, ~(a~) )  is a solut ion of  p rob lem 1. I f  (a, ~ ( a ) )  is ano ther  solut ion 
to p rob lem 1 we must  have y[Y(a,~(a))]= T[Y(at,@(al))] and so ( a , @ ( a ) )  
solves p rob lem 3. 



60 CENTENO 

(ii) Using geometrical arguments and result 3, it is clear that for any a such 
that al~<a.~l we have, assuming V[Y(al, dP(al))]> D, dP(al)<~(a) and D <  
V[ Y(al, ~ ( a l ) ) ] ~  V[ Y(a, ~(a) ) ] .  This shows that a ° <  at. 

On the other hand, 7 [ Y ( a , ~ ( a ) ) ]  is a strictly decreasing function of a for 
ao<  a < a~, as is clear when we consider the geometrical proof  of result 5. 

So for any point (a,~(a)) such that ao<a<a ° we will have y[Y(a,~(a))]> 
7[Y(a°,~(a°))] and for any point such that a ° < a ~ < l  we will have 
V[ Y(a, ~ ( a ) ) ] >  D, otherwise these woul.2 be a contradiction to the definition 
of a ° or to the mean value theorem. 

4. T H E  S O L U T I O N  IN S O M E  S P E C I A L  CASES 

In this section we give, briefly, the solution to problems 3 and 4 when the excess 
of loss reinsurance premium is calculated according to the expected value prin- 
ciple, the standard deviation principle or the variance principle. 

RESULT 7. (i) If the excess of loss reinsurance premium is calculated using 
the expected value principle or standard deviation principle, the solution to 
Problems 3 and 4 is (1, ~ ( l ) ) ,  i.e., a pure excess of loss arrangement. 

(li) If  the excess of loss reinsurance premium is calculated using the variance 
principle, the solution to problem 3 and 4 is (d, qb(,~)) where 

= rain ( 2 [ P ( e -  c)+ B]/[P(I - c ) - A ~ E ( X ) ] ,  1}. 

PROOF. (i) The proof  is immediate since for both cases 

aC aC 
(4.1) B + P ( e - c ) + C ( a , M ) - a - - - M  =B+P(e-c)  

Oa OM 

which is positive by assumption (3.3.5) and so the set H is always empty (although 
the relevant isocost curve is not necessarily decreasing). The result follows from 
result 5(i). 

(ii) In this case the left-hand side of  (4.1) is equal to 

B+ P(e- c)- C(a, M). 

Hence the set H is 

{(a, M): E [W(a ,  M ) ] =  B and a = 2 [ B +  P(e-c)]/[P(l - c ) - h ~ E ( X ) ] a n d  a ~< I} 

and the result follows from result 5. 

5. D I S C U S S I O N  

We have assumed throughout Sections 2, 3 and 4 that assumptions (2.1.1) and 
(2.1.2) hold for the claim number distribution N. It is clear that all our results 
relating to the coefficient of  variation, in particular the solutions to problem 2 
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and 4, are valid without  making assumption (2.1.2), since this assumption was 
used only in the p roof  o f  result l(ii), and then only in relation to the skewness 
coefficient. 

Assumpt ion (2.1.1) was used in relation to the coefficient of  variation to show 
that C(a, M), and hence the isocost curve M = ~ ( a ) ,  is convex when the excess 
of  loss reinsurance premium is calculated according to the s tandard deviation 
principle or the variance principle (see Section 2.3). If  (2.1.1) does not hold it 
is not hard to find examples where P(a, M) is calculated according to either the 
s tandard deviation principle or the variance principle and where the isocost curve 
is no longer convex. (One particular example assumes N to be a degenerate 
random variable always equal to 1, which is equivalent to assuming a combinat ion  
o f  quota-share  and stop-loss reinsurance). However  if (2.1.1) does not hold we 
can still state result 7(i), relating to the coefficient o f  variation, since this result 
is an immediate  consequence o f  result 5(i), and it is easy to see that this result 
is independent  of  the convexity of  the isocost curves. Assumpt ion (2.1.1) was 
also used for the p roof  of  result 3(i), which was later applied in the p roof  of  
result 6(ii). It is not difficult to see that if (2.1.1) does not hold, but  a~ = 1 in 
result 6, this result is still true. So we can conclude that when P(a, M) is calculated 
using the expected value or s tandard deviation principle, the main results relating 
to the coefficient of  variation [i.e., result 7(i) and result 6], hold without the 
assumption (2.1.1) being fulfilled. 

When P(a, M) IS calculated according to the variance principle the proofs o f  
Results 5(il), 6(ii) and 7(ii), relating to the coefficient o f  variation, are no longer 
valid without  (2.1.1), a l though it may be possible to prove some of  these results 
without this assumption.  

Fur thermore (2. I. I ) is not a necessary condi t ion for the p roof  o f  result 1 relating 
the skewness coeffioent,  since this result still holds when N is a degenerate 
random variable and when the distribution function o f  the individual claim 
amounts  is absolutely cont inuous  [see LEMAI RE, REIN HARD and VJ NCKE (1981 )]. 
In this part icular  case all the comments  relating to the coefficient o f  variation 
apply to the skewness coefficient. 

We have already ment ioned tn Section 2.1 that both (2 . l . i )  and (2.1.2) hold 
if N has a Poisson or a Negative Binomial distribution. It is also worth ment ioning 
that (2.1.1), but not (2.1.2), holds for any mixed Poisson distribution and that 
(2 I 2), but not (2. l . l ) ,  holds if N has a binomial  distribution or is a degenerate 
random variable. 

6. AN EXAMPLE 

In this section we discuss a numerical example that illustrates the results in the 
previous sections. 

We assume the gross aggregate claims are generated by a c o m p o u n d  negative 
binomial distribution with 

Al = I0; A2 =20;  A~ =60 
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and 

F (x )  = {0 i f x ~  1 
I - x  -4 if x >  I 

so that individual claims have a Pareto distribution. We assume 

P = 2 4 ;  e = 0 . 3 5 ;  B = I . 7  

and the premium loadmg factor, f, used in the calculation of  the excess of  loss 
reinsurance premium is 0.8, 0.45 and 0.4 when the premium calculation used is 
the expected value principle, the s tandard deviation principle and the variance 
principle respectively. Table l gives the point  (a, M) which is the solution to 
problems 1 and 2 for various values of  c and D. Note that from table l, we can 
see that when c = 0.4 the isocost curves for the three premium calculation pnn-  
c~ples are not decreasing functions with a. 

TABLE I 

Excess of  loss premium 
calculation prmctple c D (a, M) V[ W(a, M)] ~[ Y(a, M)] CV[(a, M)] 

Expected value principle 0 4 33 ( 1, I 676) 32 38 0 6763 0.4507 
27 (0908,  1 57) 27 0677 04511 

0 3 33 (I ,  1.676) 32 38 0 6763 0 4507 
27 (0 863,2 53) 27 0 6886 0 4562 

Standard devtaton 0.4 33 ( I, 1 497) 30 77 0 6743 0 4495 
prmclple 27 (0921,  I 48) 27 06755 04502 

03  33 (1,1 497) 3077 06743 04495 
27 (0846,  186) 27 07153 04609 

Variance principle 0 4  33 (09375, I 47) 27 7 06751 04500 
27 (0 926, 1.46) 27 0 6751 0 4500 

03  33 (I ,  I 575) 31 54 06752 04500 
33 (0 854.3 42) 27 0 6952 0 4580 

Let us now consider  in more detail the case where c = . 3  and the s tandard 
deviation principle is used for the excess of  loss reinsurance premium. Figure 2 
shows the variance and the skewness coefficient for seven different isocost curves, 
starting with B = 32/15 and decreasmg B in steps of  4/30 until we get B = 4 / 3 .  
Points with the same subscript  correspond to points on the same isocost curve 
and the smaller the subscript,  the higher the value of  B. The points I~, I 2 , . . . ,  I7 
correspond to pure excess o f  loss treaties and these points together with the 
points on the solid lines represent solutions o f  Problem I for some value of  D. 
The dot ted hnes correspond to points that are never solutions to problem I, 
a l though they are on the ~socost curved considered.  This ts because,  for example, 
points between I5 and I~ have both greater skewness and greater variance than Is. 
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y( Y(a,  M))  
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FIGURF 2 Isocost curves in the ( V, ,y)-plane 
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OBITUARY 

HILARY L. SEAL 

I lth January 1911-25th July 1984 

On July 25, 1984 actuarial science lost one of its greatest personalittes: Hdary L. 
Seal died from the side effects of  a thrombosis This was a sudden end to his 
activity, which was always at the 200% level On an operational scale, Hilary 
stayed young. It remains to our satisfaction that the fruits of  his activity will be 
here for future generations 

Hilary received his formal education in his native England, first at Birmingham 
University, then at University College, London, where he graduated m Statistics 
with first class honors. He had an actuarial position in Brazil, but returned to 
England to serve his country during and shortly after World War II as a statistician 
m the Admiralty. In 1948 he received his Ph.D. for his thesis on "Discrete Random 
Processes in Relation to Mortality Data".  At this time it was clear that the old 
island was too small for Hilary; he immigrated to North America. He worked 
briefly for an insurance company in Toronto, then moved to New York and New 
Haven, where he became a successful consultant. He was able to combine his 
professional activity with an impresstve scientific career. For twenty years he 
taught statistics at Yale University. When he and his family moved to Apples 
(Switzerland) in 1972, the Swiss Federal Institute of  Technology of Lausanne 
and the University of Lausanne secured his services; in 1980 Hilary occupied 
the Chair of  Honor  of  the Institute of Actuarial Science of the University of 
Lausanne. 

Hilary's publications are manifold and cover the broad range of statistics and 
actuarial science. A bibliography is being prepared and will be published soon. 
The topics of  his papers include estimation of decrement rates, multivariate 
statistics, penston mathematics,  risk theory, queuing theory, numerical methods 
such as simulation and inversion of Laplace transforms; Hilary made good use 
of  the computer  at a time when other actuaries still relied on the abacus. His 
monographs are classics: Multivariate Statistical Analysis for Biologists (1964), 
Stochastic Theory of a Risk Business (1969), Survival Probabilities: The Goal of  
Risk Theory (1978). 

Hilary was a brilliant speaker. When he talked, one could expect fireworks 
But no matter how spectacular his lectures were, they were always based on 
extensive research. One of Hilary's loves was reading what others had been 
writing. His famous library is the testimony to this passion. 

For the readers of  the Astin Bulletin who had neither the opportunity to listen 
to Hilary nor to know him, we reprint the beginning of a letter that he wrote in 
1950 to the Editors of the Journal of the Institute of Actuaries Students Society. 
The topic is "Spot  the Prior Reference", and the letter begins as follows: 

A game which is fast become a favourite relaxation of the more priggish 
type of mathematician is one which might be called: Spot the prior reference. 
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Photograph shows the presentation of Corresponding Membership in the Association of Swiss 
Actuaries in June 1980. 

The equipment  is e lementaryma good memory or an extensive system of  
card records with appropriate  cross-references. The object of  the game is 
s i m p l e n t h e  infliction of  a blow to the self-esteem of  a colleague while 
retaining an appearance of scientific detachment. 

The first move is made by an author who inadvertently omits that thorough 
search through the numerous volumes of  Mathematical Reviews and the 
Zentralblatt fur Mathematik which nowadays occupies as much of a 
mathematician 's  time as the preparation of  a supposedly original article. 
The second move falls to the editor whose referees fail to notice that the 
work submitted has already appeared in print in a substantially similar form 
ten, twenty or even a hundred years ear l ier - -and the game is on. The reviewer 
now appears  on the scene and scores one or more points according to the 
number  of  years he can span and the amount  of  scorn he can convey in a 
politely worded account of  the author 's  limitations. The game continues as 
a third and fourth writer show that even the reviewer himself has not found 
the site of  original publication of the material presented. Final honours go 
to the player who has revealed the greatest number  of  missing references in 
the previous writers' articles. 

Following this introduction, Hilary showed that the convolution of uniform 
distributions (a favorite topic of  some writers of  the 20th century) could be traced 
qdown to the 18th century . . . .  
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Hilary was a Fellow of the Faculty of Actuaries in Scotland, an Associate of 
the Institute of Actuaries, a Fellow of the Royal Statistical Society, an Associate 
of  the Society of Actuaries, a Fellow of the Canadian Institute of Actuaries and 
a member of more than a dozen other professional societies. He was one of the 
very few actuaries who have been elected Fellows of the American Statistical 
Society. At the International Congress of Actuaries in Switzerland he was made 
a Corresponding Member of the Association of Swiss Actuaries. 

We shall miss Hilary Seal for his professional contributions. His family and 
his friends will miss him for much more. 

H. U. GERBER 

EDITORIAL 

This is the last issue of Ast in  Bulletin to be published under my editorship. Hans 
Biihlmann and D. Harry Reid will take on the editorial responsibilities from the 
next issue onwards. Their addresses can be found in the Instructions to Authors  
on the inside back cover. 

I feel priviledged to have serived as Editor of the As tm  Bulletin, a job which 
I have done for almost eight years now. It brought me into contact with authors 
and papers and also enabled me to read referees' reports. I am confident that 
these inputs have influenced my own thinking on insurance matters in a positive 
way. It is an experience which I am glad to have had and I take this opportunity 
to thank all the people involved; authors, referees, members of the Editorial 
Board as well as the membership of Astin for having confidence in me. 



BOOK REVIEWS 

J. VAN EEGHEN, E. K. GREUP and J. A. NIJSSEN (1983). Rate Making. Surveys 
of Actuarial Studies, No. 2. Nationale-Nederlanden N.V., Rotterdam. 138 pages. 

The series Surveys of  A~ctuarial Studies, published by the Research Department 
of  the Nationale-Nederlanden with G. W. de Wit as editor, covers, in its first 
two volumes, two important R's of actuarial nonlife activity: Reserving and Rate 
making. The first volume, Loss Reserving Methods, was reviewed in Astin Bulletin 
14, No. I. 

As the name of the series implies, the present volume contams, in a condensed 
and logically ordered form, material from a large number  of  actuarial books and 
papers, as well as some general statistical methods. The valuable bibliography 
at the end of the booklet contains some eighty references. 

The plan of  the book is as follows. In the Introduction the rate making process 
in general is discussed. After that, the treatment is entirely devoted to the risk 
premium part of  the premium. Chapter  I treats the selection of tariff variables 
(rating factors). Determination of tariff classes, defined via the tariff variables 
chosen, is considered in Chapter  2. Chapter  3, Parameter estimation in modelled 
tariff structures, treats the problem of estimating the risk premium, or the claims 
frequency or the average claims size, as a function of the tariff class. In Chapter  
4 an example of  the credibility approach is given. Finally, Chapter  5 gives a brtef 
outline of  the problem of large claims. 

In general, each method of analysis is given a brief but sufficiently detailed 
presentation. Then there are some hints on numerical computation and, in most 
cases, also numerical examples. Finally, the authors give their own comments  on 
the method. 

In the following I will give some of my own comments on the contents of  the 
book. 

In the Introduction, "the (known) solidarity part"  of  the p remmm is introduced 
as a separate premium component.  This refers to an intentional omission of some 
premium differentiation, for social reasons. The issue has obviously attracted a 
great deal of  interest in the Netherlands recently. It is not unknown in other 
parts of the world. Still I think it belongs to the larger context of  the difference 
between risk factors, i.e., factors influencing the risk, and rating factors, which 
are the factors actually used for premium calculation. Personally, I would have 
liked this difference, which is not exclusively caused by feelings of  social fairness, 
to be more clearly set out in the discussion. 

Chapter  l presents Lemaire's linear regression selection method, Hallin- 
Ingenbleek's unmodelled selection procedure and, as a nice contribution from 
the statistical tool-box, a method based on discriminant analysis. In the comments 
it is pointed out that exact significance levels are difficult to establish for the 
procedures. In particular, assumptions of  normality and homoscedasticity will 
mostly be violated in practice. Especially the latter (equality of  variances) I find 
questionable as it is generally inconsistent with the compound Poisson model. 
With this in mind, as the authors point out, the methods may however be efficient 
tools for exploratory data analysis 
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In Chapter 2 methods of cluster analysis are applied to the problem of reducing 
a maximal number of basic classes, defined by the tariff variables, to a smaller 
number of tariff classes One method is Dickmann's application of general cluster 
analysis to insurance problems, based on variation within and between clusters. 
The other is the method of Loimaranta, Jacobsson and Lonka, which is based 
on likelihood estimation and tests of mixtures of distributions. The concept of 
the chapter is very elegant. The two methods of cluster analysis may be used to 
produce a set of admissible subdivisions of the portfolio. Finally, the credlbihty 
related method of Schmitter and Straub, which is also described, may be used 
to judge between them. 

In the first part of Chapter 3 non-parametric methods of estimation in modelled 
tariff structures are considered: Simon-Bailey (minimum chl-square), graduation 
by marginal totals and least squares. Applications are made to multiplicative and 
additive models. Comments on methods and models are generally well elaborated. 
Reference is given to a number of papers according to which the additwe model 
should produce a better fit for insurance data, even if the majority of existing 
rating systems rather seem to be multiplicative. So for balance I should mention 
that the Swedish motor insurance data from 1977, analyzed by Hallin-lngenbleek 
in S A J  1983, No 1, showed a somewhat better fit for the multiplicative model 
than for the additwe one, as did data from 1979. The second part of the chapter 
is devoted to a careful presentation of maximum likehhood methods, containing 
inter aha Ter Berg's treatment of loglinear models for Polsson, gamma and inverse 
Gaussian distributions. 

The last two chapters are rather short. Chapter 4 presents the elegant Biihlmann- 
Straub model. For tariff construction this credibility approach has to be applied 
with some care, according to the reviewer's experience. This is because it starts 
out from the assumption that the risk groups under study are similar, m the sense 
that their risk characteristics are assumed to be chosen at random from one and 
the same collective. The method therefore has a tendency to give too small 
differences between risk groups. The case for experience rating of mdlvidual 
contracts may be different. 

The fifth chapter on large claims outlines methods of Sch/iffer-Willeke and 
Gisler. The problem of large claims is a nuisance in tariff construction work, at 
least as soon as personal injury claims or fire claims are present. So, as a 
practitioner one could have hoped for a fuller treatment, perhaps including the 
division of claims into more than two size groups (e.g., normal claims, excess 
claims, superexcess claims) and/or  some help from the theory ofoutlylng observa- 
tions. Maybe one could hope for another volume in the series on this subject? 

In summary, the authors have collected in a limited space an astonishingly 
rich material on general rate making methods. They have dehberately refrained 
from discussing the loading for commissions and expenses, and problems pertain- 
ing to special lines of business. There is no mentioning of investment income. 
These limitatmns are most natural considering the size of the book. It should be 
of great value to every non-hfe actuary. 

B. AJNE 
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R. E. BEARD, T. PENTIKAINEN and E. PESONEN (1984). Rzsk Theory (3rd edition) 
Chapman & Hall Ltd., London. xvn+408 pages, £11.95 paperback/£24.50 hard- 
bound. 

[A review on the first edition by H. BiJhlmann appeared in AB 6, 178-179.] 
Those readers who are familiar with the first two editions of this pioneering 

book on risk theory will be surprised to see that the new edition is a complete 
revision of the earlier editions. This renewed third edition gives an introduction 
to risk theory with main emphasis on the practical aspects of theoretical results. 
Therefore this book bridges the gap between practical problems and pure risk 
theory. 

The first chapter provides us with some thoughts on general modelling and 
more specifically on insurance models. Also the notations which will be used in 
the subsequent sections are introduced. 

In the second chapter the authors examine the Poisson process. Classical 
properties as well as approximations are considered. In addition they discuss the 
economical influences on the claim number. They distinguish four kinds of 
fluctuations: trends, long-period cycles, short-period oscillations and pure random 
fluctuations. The structural distribution is introduced to incorporate short-period 
oscillations. The classical characteristics of mixed Polsson distributions are sub- 
sequently examined. 

In Chapter 3 the compound Poisson process is extensively studied. The distribu- 
tion of the claim size, those of the aggregate claims as well as basic characteristics 
of the distribution are largely taken into consideration. 

Possible estimation techniques for the aggregate claim size distribution are 
given Some problems arising from large claims are given. Analytical results are 
discussed as well as different types of claim distributions. The effect of a reinsur- 
ance treaty on total claim size is examined. The by now classical approximations 
for the compound Poisson distribution are given namely the Edgeworth 
expansion, the normal power approximation, the gamma-approximation etc. Also 
some more recent techniques, such as the inversion of the characteristic function, 
the recursion algorithm are also dealt with. 

Mostly based on the normal power approximation of the compound Poisson 
distribution the authors discuss in Chapter 4 some practical problems related to 
a one-year time span such as: evaluation of the fluctuation range of the annual 
underwriting profits and losses, the reserve-funds, the problem of greatest reten- 
tion, the influence of several retention limits, excess of loss reinsurance, stop-loss 
reinsurance, experience rating. 

In Chapter 5 the variance is used as a measure of stability to design an optimal 
form of reinsurance to discuss reciprocity of two companies and the equitability 
of safety Ioadings. 

In Chapter 6 a completely new chapter (not appearing in the previous editions) 
is included considering the risk processes with a time span of several years. In 
this case the basic parameters of the risk process are continually subject to 
alterations which are partially revealed as trends and partially as cyclical The 
effect of these phenomena is modelled for carrying out long-term considerations, 
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e.g., the Poisson parameter  is adapted to take into account the trends as well as 
cycles (by means of an autoregressive process). In addition the problem of 
forecasting the future flow of business is studied. The method IS also adapted 
for coping with inflation. Investment is a new topic developed. Ruin probabilities 
for a finite time period come into the picture for discussing the problem of 
solvency. This chapter ends with the description of the Monte Carlo simulation 
of  risk business. 

In Chapter  7 several applications of  the risk processes with a time span of 
several years developed in the previous chapter are given: the evaluation of net 
retentions, the effect of  cycles, the effect of  the time span, the effect of  inflation, 
dynamic control rules and a solvency profile. 

By means of cohort analysis the results of  risk theory are then adapted to the 
life insurance branch in the following chapter. 

In Chapter  9 infinite time ruin probability is studied essentially by means of 
the adjustment-coefficient. Some practical consequences are deduced. 

The final chapter describes the application of risk theory to business planning. 
In the previous chapters many applications of  a risk theory, such as the estimation 
of a suitable level for the maximum net retention, the evaluation of stability, the 
safety loading and the magnitude of the funds have been treated as isolated 
aspects of  an insurance business. In this chapter a picture of  the management  
process in its entirety is built up. An integration of the risk theoretical aspects 
in the context of  other management  aspects, not of  actuarial nature, is carried out. 

The book ends with some appendices containing derivations and proofs of  
some of the mathematical results obtained in the book: derivation of the Poisson 
and mixed Poisson processes, Edgeworth expansion, Infinite time ruin probabil- 
ity, Computat ion of limits of  finite time ruin probabilities, Random numbers. 

In addition the book contains quite a lot of  interesting exercises (and their 
solution), an author index, a bibliography, a subject index as well as a necessary 
list of symbols. 

In conclusion this book on risk theory where formulae are approached from 
the practical point of  view shows to practical actuaries that some of the theoretical 
results lead to a better understanding of what is going on. To theoretical actuaries 
(at universities) the book gives a motivation for going on with theoretical research. 
Although this book has just appeared it is clear from discussions with students 
that it provides us with insurance models and material which is highly appreciated 
by people preparing for the actuarial profession. 

M. GOOVAERTS 

M. GOOVAERTS, F. DE VYLDER and J. HAEZENDONCK (1984). Insurance Pre- 
miums. Theory and Applications. North-Holland,  Amsterdam. xi+406 pages, 
US $63.75/Dfl. 150.00 

This book introduces the reader to areas of  insurance mathematics which have 
so far not been published on this scale in the form of a textbook. The individual 
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themes which the authors have already contributed to in numerous publications 
are for the first time discussed systematically, starting from the fundamentals. 

A brief general introduction is followed by the central chapters on premium 
calculation principles (Chapter 2) and their properties (Chapter 3). The idea of 
introducing premium calculation principles goes back to Hans BiJhlmann and it 
is astonishing how many such principles have meanwhile been developed. Based 
mainly on work by Biihlmann, Gerber and the authors, the following principles 
are introduced: expected value, maximal loss, variance, standard deviation, 
semi-variance, mean value, zero utility, Swiss premium, Orlicz, Esscher and 
mixtures of Esscher principles. Apart from the definition some principles are 
motivated by e.g., statistical reasoning or utility considerations. In addition 
properties and characterisations are supplied which at present are not to be found 
in printed form anywhere else. Because of the mathematically stringent form 
every expert in this field and every reader interested in mathematics too, who 
wishes to familiarize himself with the theoretical foundations of premium calcula- 
tion, will definitely appreciate this book if only for its systematic presentation. 
On the other hand, it has to be said to every practitioner that it is not the purpose 
of this book to evaluate the various principles in contrast to each other or to 
examine the practical feasibility of the principles which use utility concepts. In 
Chapter 3 Properties of Premium Calculanon Principles the properties of additivity, 
translation invariance, iterativity, homogeneity, multiplicativity and some gen- 
eralisations are investigated as to which principles fulfill them. For example the 
property of additivity holds that in the case of independent risks X, Y the 
premium for X and Y should be just the sum of the individual premiums for X 
and Y. Not all properties are plausible for insurance premiums and not all 
generalisations important. The question of important and reasonable premium 
calculation principles and properties, which has not been resolved in the field of 
theory, should not be dealt with separately for principles and properties, and 
should not be answered without involving practitioners either. On this point these 
chapters provide a very successful presentation which will be the basis of every 
scientific discussion in this very lively field in future. 

In the next chapter, entitled Ordering among Risks, various possibilities of how 
to introduce a partial order in the set of all (e.g., bounded) risks are considered. 
Of course, for a fixed premium principle ~r a natural order is induced by 
• r ( X t ) ~  < ~r(X2), but one is also interested in conditions independent of  ~r. The 
most important term here, the net stop-loss ordering, is introduced and its 
behaviour as to mixing and convolution investigated. These results allow state- 
ments to be made about the influence of these orders of number and size of 
losses on the orders of the corresponding total losses in the usual risk theoretical 
model. In this connection the dangerousness of distributions is discussed; after 
that generalisations of the stop-loss ordering are treated with stochastic domi- 
nance, familiar from the theory of finance, and stop-loss dominance. 

The chapter Bounds on Stop-Loss Premiums takes up the problem which occurs 
in reinsurance practice of trying to calculate stop-loss premiums with incomplete 
risk information. Whereas to make an exact calculation of a net stop-loss premium 
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one requires full knowledge of the distribution function, the situation where one 
often only has an estimate accepted on trust for the expected value and perhaps 
the variance too, is looked at very realistically here. Depending on the available 
information e.g., about the first n moments or the symmetry of the density 
function, one looks for an upper bound for all stop-loss premiums of those risks 
which the given reformation applies to. The step from the noncalculable " t rue" 
stop-loss premium to the upper bound is therefore a cautious one. In some cases, 
e.g., when expected value and variance are regarded as known, lower bounds 
can also be worked out analogously, i.e., an error estimate. The mathematical 
tool necessary for this stems from finite dimensional analysis and is presented 
comprehensively, so that this chapter is self-contained. The most important aid 
is a duality theorem from convex analysis allowing the original maximisation 
problem to be transformed into a simple minimisation problem so that analytical 
or numerical results are gained. In the last chapter on applications the method 
for estimating stop-loss premiums described above is applied to the case of 
bounded exposure. Further applications of the ordering of risks and the procedure 
in case of  incomplete information are indicated for questions of determining the 
optimal critical claim size in a bonus-malus system, for bounds of the ruin 
probabdity and bounds for stop-loss premiums for weighted compound distribu- 
tions. 

This book,  which only requires little prior mathematical knowledge, is the most 
comprehensive presentation of the themes dealt with here. Because of the mathe- 
matical style the practitioner will miss explanations and a mutual comparison of 
the results at some points. The book reflects the current level of knowledge in 
some fundamental  partial fields of insurance mathematics in a preose  form, 
thereby providing a base from which theoretlcians and practitioners can communi- 
cate with each other. 

A. REICH 
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