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ABSTRACT 

This pape r  cons iders  re insurance  re tent ion  limits in cases where the cedent  has 
a choice be tween  a pure  quo ta - share  t reaty,  a pure  excess o f  loss t reaty or a 
combina t ion  o f  the two. Our  pr imary  aim is to find the combina t ion  of  re tent ion  
limits which minimizes  the skewness coefficient o f  the insurer ' s  re ta ined  risk 
subject  to const ra in ts  on the var iance  and the expec ted  value of  his re ta ined  risk. 
The results are given wi thout  speci fy ing precisely  how the excess of  loss reinsur- 
ance p r emium is ca lcula ted .  It is also shown that ,  d e p e n d i n g  to some extent  on 
the cons t ra in t  on the var iance ,  the so lu t ion  to the p rob lem is a pure  excess o f  
loss t reaty if the excess of  loss p remium is ca lcu la ted  using the expec ted  value 
or  s t anda rd  devmt lon  pr inc ip le  but  that  this need not be true if the var iance  
pr inc ip le  is used.  
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]. INTRODUCTION 

This pape r  cons iders  re insurance  re tent ion l imits in cases where the cedent  has 
a choice be tween  a pure  quota -share  treaty,  a pure  excess o f  loss t reaty or a 
combina t i on  of  the two Such combina t ions  occur  m prac t ice ;  see, for example ,  
GERATHEWOHL (1980, Vol. 2, p. 371). 

We assess the effects on the insurer  of  a p a m c u l a r  combina t ion  of  re insurance  
treat ies  by cons ider ing  three momen t  funct ions  of  the insurer ' s  re ta ined  risk. 
These funct ions  are the skewness  coefficient and  the var iance  o f  the insurer ' s  net 
c la ims and the insurer ' s  expec ted  net profit.  Our  pr imary  aim is to find the 
combina t i on  o f  re tent ion  limits which minimizes  the skewness  coefficient of  the 
insurer ' s  net c laims,  subject  to a max imum value for the var iance  of  the insurer ' s  
net c la ims and a m in imum value for the insurer ' s  expec ted  net profit. 

In Sect ion 3 we show that  the solut ion to this p rob lem is unchanged  if we 
replace  the skewness  coefficient by the coefficient o f  var ia t ion  of  the insurer ' s  net 
claims. 

Cons t r a ined  op t imiza t ion  as a cr i ter ion for d e t e r m i n m g  op t imal  re tent ion  limits 
has been used before ,  see BUHLMANN (1970, pp. 114-119), but  not  in relat ion 
to a c o m b i n a t i o n  o f  types of  re insurance.  C o m b i n a t i o n s  o f  types of  re insurance  
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have not often been discussed in the mathematical insurance literature; one 
notable exception is L E M A I R E ,  REINHARD and VINCKE (1981). There are some 
similarities between our paper and theirs, but also some important differences. 
For example, in our paper we allow the claim number distribution to be more 
general than the Poisson (for example negative binomial). There is also a differ- 
ence in the way in which we assume the reinsurance premiums are calculated. 
We assume the quota-share premium is calculated on a proportional basis with 
a commission payment to the insurer; we do not specify how the excess of loss 
reinsurance premium is calculated but make some assumptions about this pre- 
mium which are shown to be satisfied if it is calculated using the expected value, 
standard deviation or variance principles. 

In Section 2 we describe in detail the two reinsurance treaties and discuss our 
assumptions relating to the excess of loss reinsurance premium. 

In Section 3 we state our problems and give the solution in general form. 
In Section 4 we give the solution to our problems assuming the excess of loss 

reinsurance premium is calculated using the expected value, the standard devi- 
ation or the variance principle. It is shown that, provided the constraint involving 
the variance of  the insurer's retained risk is not too restrictive, the optimal solution 
is a pure excess of loss treaty in the first two cases but this need not to be true 
in the last case. 

In Section 5 we discuss briefly the necessity of the assumptions made concerning 
the claim number distribution. 

In Section 6 we give a numerical example to illustrate our results. 

2. THE REINSURANCE A R R A N G E M E N T  AND THE COST OF THE EXCESS 

OF LOSS REINSURANCE 

2.1. The Reinsurance Arrangement 

Consider a risk for which the aggregate gross (of reinsurance) claims in some 
fixed time interval are denoted by a random variable Y. We assume Y has a 
compound distribution, so that 

N 

Y = E x ,  
i -  I 

where {X,}, with 0<~ x0< X, <Xl <~ + ~ ,  is a sequence of i.i.d, random variables, 
with common distribution function F, representing the amounts of the individual 
claims and N is a random variable, independent of the X,'s, representing the 
number of claims in the time interval. We shall assume that F is continuous and 
that the third moments of X, and N are finite (although this will not always be 
necessary). Let A t, A2 and A 3 denote the mean, variance and third central moment 
of N. Throughout this and the following two sections, which contain our main 
results, we shall make the following two assumptions: 

(2.1.1) A2-Ai~>0 

(2.1.2) 2AE2-AiA2- AiA3~ 0. 
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In Section 5 we shall comment on the necessity of these assumptions for our 
results but for the present we remark that both assumptions will hold if N has 
either a Polsson or a negattve binomial distribution. 

We assume the insurer of the risk arranges a combination of quota-share and 
excess of loss reinsurance in the following way: 

Firstly, the insurer chooses a quote-share retention level which we denote a 
so that the insurer's aggregate claims, net of quota-share reinsurance, are a Y. 
We assume the cost of the quota-share reinsurance is calculated on a proportional 
basis with a commission payment. (See CARTER (1979, p. 87).) More precisely, 
let P denote the insurer's gross (of expenses and reinsurance) premium income 
in respect of this risk. We assume an amount eP is used to cover the insurer's 
expenses, irrespective of the level of reinsurance. The premium of the quote-share 
reinsurance is ( 1 - a ) P  less a commision payment of c(1 -a)P. 

Secondly, the insurer chooses an excess of loss retention level which we denote 
M so that the insurer's aggregate claims, net of quota-share and excess of loss 
reinsurance, can be represented by a random variable Y(a, M), where 

N 
Y(a, M) = ~ min (aX,, M). 

I = l  

We denote by P(a, M) the premium paid to the reinsurer in respect of the excess 
of loss arrangement and we assume the premiums for the two arrangements are 
calculated independently of each other. (It could be argued that there should be 
a connection between the two reinsurance premium calculations since 100% 
reinsurance should cost the same for the two types of treaty but we do not make 
this extra assumption). Hence the insurer's net (of expenses and reinsurance 
costs) premium income is 

P ( c -  e) + aP(I - c) - P(a, M). 

2.2. The Cost of the Excess of Loss Reinsurance 

Let C(a, M) denote the cost to the insurer of the excess of loss reinsurance 
arrangement, so that 

(2.2.1) C(a, M)=P(a,  M ) - E [ a Y -  Y(a, M)] 

Throughout this paper we make the following assumptions concerning C(a, M): 

(2.2.2) C(a, M) ~ ~ for a, M > 0, 

where ¢¢, is the class of functions with continuous derivatives of order i. 

(2.2.3) 

(2.2.4) 

(2.2.5) 

l fx~=+oo,  lim C(a,M)=O for any a ~ (0,1] 
M ~ o o  

Ifx~ < +oo, C(a,M)=O foranyM>~ax~andanya~(O,I] 

OC/OM < 0  forMe(O, ax~)andanya~(O,l] 

C(a, M) is a convex function of a and M. 
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Assumptions (2.2.3) are natural. (2.2.4) implies only that the cost of the excess 
of  loss arrangement should decrease as more of the risk is retained by the insurer. 
(2.2.5) is a little more difficult to interpret but it holds in all our examples in 
Section 2.3. Roughly speaking, if we regard a as fixed, (2.2.4) and (2.2.5) together 
imply that as M decreases, the cost of  reinsurance increases and the rate of  
increase of  this cost should also increase. 

From assumption (2.2.2), (2.2.3) and (2.2.4) we can see that 

(2.2.6) C(a,M)>~O for any a ~ [0,1] and any M ~ 0 

with 

(2.2.7) C(a, M) = 0 if and only if M !> axl. 

2.3. Some Examples 

In this section we discuss very briefly the assumptions of Section 2.2 when P(a, M) 
is calculated according to some well known principles. 

When P(a, M) is calculated according to the expected value principle, standard 
deviation principle or variance principle (see, for example, GERBER (1979, p. 67) 
it is not difficult to prove that C(a, M) satisfies (2.2.2), (2.2.3) and (2.2.4). If 
P(a, M) is calculated according to the expected value principle it can be shown 
that C(a, M) satisfies (2.2.5). Now suppose that P(a, M) is calculated according 
to the standard deviation principle so that, after a little calculation, 

C(a, M)=f{Z,G2(a, M)+ (A2- A,)H2(a, M)} '/2 

Where f is a positive loading factor and 

G(a, M) = (ax - M) 2 dF(x , 
M / a  

H(a, M) = (ax - M) d f (x) .  
M / a  

It can be shown that given any two non-negative convex functions g~(x) and 
g2(x) the function g ( x ) =  [g~(x)+ g~(x)] ~/2 is stdl convex. It can also be shown 
that H(a ,  M)  is a convex function of (a, M) (this is equivalent to say that C(a, M) 
is convex if P(a, M) is calculated according to the expected value principle). 
Since 1 2 - A ~ 0  by assumption, in order to prove that C(a, M) is convex we 
only have to prove that G(a, M) Is convex. The convexity of  G(a, M) follows 
easily since 

G ( a , M ) ~ 2  fora>O,M>O 

02 G( a, M ) / O M 2 ~ 0 using the Cauchy-Schwarz inequality 
and 

{02G(a, M)/OM2} • {02G(a, M)/Oa 2} -{02G(a, M)/Oa OM} 2= 0. 

The fact that C(a, M) satisfies (2.2 5) when P(a, M) is calculated according to 
the variance principle follows directly from the corresponding result for the 
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standard deviation principle (Since the square of a non-negative convex function 
is also convex) 

3.  T H E  P R O B L E M  A N D  ITS S O L U T I O N  

3.1. The Problem 

The problem, in broad terms, is to choose retention levels a and M which are, 
in some sense, optimal for the insurer. We shall assess the effects of  reinsurance 
by considering moment functions of the distribution of the insurer's retained 
risk. More precisely, let W(a, M) be a random variable denoting the insurer's 
net (of expense and reinsurance) profit and let E[W(a, M)], V[Y(a, M)], 
CV[ Y(a, M)] and Y(Y(a, M) be the expected net profit and the variance, 
coefficient of  variation and skewness coefficient of  the insurer's net claims respec- 
tively. Our main problem is 

PROBLEM 1. Minimize V[ Y(a, M)] over the set I". 

Where F={(a,M):O~<a~<l and M>~0 and E[W(a,M)]~>B and 
V(Y(a,  M))~< D} 

for some constants B and D. It is assumed that B and D are such that F # Q .  
(Note that we assume CV[ Y(a, M)] and y[ Y(a, M)] are zero if either a = 0 or 
M = 0 ,  as well as C[Y(a, M)] when a = 0 . )  

We shall show that any solution to problem I is a solution to problem 2 and 
vice versa, where problem 2 is 

PROBLEM 2 Minimize CV[ Y(a, M)] over the set F. 

Note that V[ Y(a, M)]  = V[ W(a, M)] and y[ Y(a, M)] = - y [  W(a, M)] so that 
problem I can be expressed entirely in terms of the insurer's net profit. This is 
not the case for problem 2 since here is no simple relationship between 
CV[ Y(a, M)] and CV[ W(a, M)]. 

In order to solve the above problems it will be helpful to consider the following 
simpler problem: 

PROBLEM 3 Minimize y[ Y(a, M)] over the set Fi. 

Where F~ ={(a,  M): 0~<a<~ 1, M~O,  E[W(a, M ) ] ~  B} 

or equivalently (as we will see), 

PROBLEM 4. Minimize CV[ Y(a, M)] over the set Fi, 
i.e., we drop the constraint concerning the variance. 

3.2. The Skewness Coefficient and the Coefficient of Variation 
of the Total Net Claims 

The statement and proof  of the following result assume, for convenience, that 

Xo> O. 
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RESULT 1. (i) y[ Y(a, M)] and CV[ Y(a, M)] are functions of class c¢~ for 
a, M > 0 .  

(ii) Both of them are strictly increasing functions of the single variable M/a  
for Xo < M~ a < x~ and points such that 0 < M~ a ~< Xo and M~ a I> x~ give minimum 
and maximum values respectively of  the two functions over the set 
((a, M): a, M>0}.  

(iii) y [Y(a , ,  M , ) ]>  y[Y(a2, M2)] if and only if CV[Y(a,,  M,) ]>  
CV[ Y(a2, M2)]. 

(3.2.1) 

(3.2.2) 

(3.2.3) 

PROOF. (i) A little calculation gives the following formulae: 

V[Y(a, M ) ] =  A,(/32-/3~2) + A2/3~ 

CV[ Y(a, M)]={ V[ Y(a, M)]}'/2/(A~fl,) 

y[ Y(a, M)] = {A3/3~ + A, (/33 - 3/31/32 + 2/3]) 

+ 3A2B,(/32-/3~2)}/{ 1/'[ Y(a, M)]} 3/2 

where 

Using integration by 
continuous, we have 

f M/a 
/3k = a e x k d F ( x ) + M k ( I - F ( M / a ) ) .  

d O  

parts and the assumptions that F ( 0 ) = 0  and that F is 

f M/a 
(3.2.4) /3k = M k - k a  k xk-KF(x) dx 

dO 
from which the proof of (i) follows immediately. 

(ii) Let z = M/a. Then we can see that 

flk = Mkae (3.2.5) 

where 

Otk = (X/Z) k dFF(x) + ! - F(z). 

Substituting (3.2.5) into (3.2.1), (3.2.2) and (3.2.3) we see that CV[ Y(a, M)] and 
y[ Y(a, M)] can be expressed as functions of the single variable z. We shall show 
that dy[ Y(z)] /dz  > 0, for xo < z < x~ 

-~ [  Y(z)] = 3(1 - F(z))z-5[x, (,~2- c~) + a2,~,] -5/2 

{So x A~ (x2z2-x3z)dF(x)+A,(A2-A,)h(z)  
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where 

h(z) = 2 x ( l  - F(x) )  dx" (x 2 - xz) dF(x )  

+ ( 1 - F(x) )  dx" (xz 2 - x 3) dF(x) .  

It is easily checked that  h ( O ) = 0  and that  dh(z)/dz>~O so that  h(z)>~O for  z~>O. 
That  d y / d z  is strictly positive for Xo< z<x~ then follows from assumpt ions  

(2.1.1) and (2.1.2). The p roo f  that  d C V / d z >  0 is s imilar  to that  given above but 
is somewha t  s impler  and does not require assumpt ions  (2.1.1) and (2.1.2). The 
remaining par t  o f  (ii) now follows immedia te ly  and (iil) follows from (ii). 

REMARKS The equivalence of  p rob lem 1 and 2, and of  p rob lems  3 and 4, 
follows from part  (iii) of  the above result. 

A further  implicat ion of  the result is that  the locus of  points (a, M )  satisfying 
the relation y[ Y(a, M ) ]  = constant ,  or CV[ Y(a,  M ) ]  = constant ,  is a straight line 
passing through the origin in the (a, M) -p l ane ,  a higher value of  the constant  
giving a line with s teeper  slope. 

3.3. lsocost Curves 

In this section we consider  the locus of  points (a, M)  satisfying the relation 
E[ W(a, M)]  = B which is equivalent  to 

(3.3.1) P ( c -  e ) +  a ( P ( l  - c ) -  A , E ( X ) )  - C(a, M )  = B. 

Where B is the constant  appear ing  in the definition of  the sets F and F~. (See 
Section 3.1). It can be regarded as the set o f  points with a fixed re insurance price, 
since (3.3 1) is equivalent  to 

(3.3.2) ( i - a ) [ P ( 1 - c ) - A t E ( X ) ] + C ( a , M ) = P ( I - e ) - A ~ E ( X ) - B .  

Where the lef t-hand side represents  the total re insurance cost o f  the a r rangement  
( a , M ) .  

We make  the fol lowing assumpt ions  about  the parameters  involved in our 
problems:  

(3.3.3) P ( I - c ) - A , E ( X ) > O  

(3.3.4) B < P ( I  - e) - 3., E ( X )  

(3.3.5) B >  P(c - e) 

(3.3.6) B >  max {E[ W(a, M)]:  0 <  a ~ 1, O~ < M ~< axo}. 

Assumpt ion  (3.3.3) implies that  the cost o f  the quota-share  a r rangement  
[( I - a ) ( P (  I - c) - A~ E ( X ) ) ]  is positive for 0 ~< a < 1 and also that  the cost of  this 
a r rangement  decreases  with the retention a. Then (3.3.3) together  with (2.2.6) 
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and (2.2.7) implies that  the total re insurance cost of  the a r rangement  (a, M )  is 
non-negat ive ,  and is zero if and only if a = 1 and M I> x~. Assumpt ion  (3.3.4) is 
then natural  since the right hand side represents  the insurer 's  expected  profit 
af ter  expenses  but without  any reinsurance.  Assumpt ions  (3.3.5) and (3.3.6) imply 
that points  such that a = 0 or M ~< axo respect ively are not feasible solutions to 
our  problems,  i.e., we do not consider  solut ions where the whole risk is passed 
to the reinsurer  through the quota-share  a r rangement  or  where the excess of  loss 
retention is less than the smallest  possible claim (net of  quota-share  reinsurance).  

The fol lowing result discusses the shape  of  the isocost curves. 

RESULT 2. Let 

p ( a , M ) = E [ W ( a , M ) ] - B  for any a, M > 0  

ao=[ P ( e - c ) +  B]/[ P( I - c ) - A , E ( X ) ]  

A = {a '  0 < a ~< I and there exist at least one M, M < axt, such that  p(a, M )  = 0}. 

Then (i) A = (a0, 1]. 
(ii) For each a ~ A there is a unique M such that  p(a, M )  = 0 Le., there is a 

function ~ mapp ing  A into (0, oo) such that  M = ~ ( a )  is equivalent  to p(a, M) = O. 
(iii) ~ ( a )  ~ ~, .  
(iv) limo.a~ ~ ( a )  =aoX~. 
(v) h m ~ . , ;  ~ ' ( a )  = -oo.  

(vi) ~ ( a )  is convex and is strictly convex if C(a, M) is strictly convex.  

PROOF First note that  p(a, M ) =  0 is equivalent  to 

p(a, M) = P ( c -  e ) + a ( P ( I - c ) - A , E ( X ) ) -  C(a, M ) - B  =0. 

(i) Let a ~- ao. It follows from the definition of  ao and f rom (2.2.6) and (2.2.7) 
that  p ( ~ , M ) < 0  for any M<c~x~. Hence d ~ A .  Now let ~C(ao ,  I]. p(a ,M) ,  
considered  as a funct ion of  M, is cont inuous  since C(a, M) is assumed con- 
t inuous.  Also 

lim p(a ,  M ) =  P ( c - e ) + 6 ( P ( I - c ) - A , E ( X ) ) - B > O  
M ~ x  7 

lim p ( a , M ) < 0  by (3.3.6). 
M~ax~ 

Hence  there is at least one M, M < ~:~x~, such that p(8,  M )  = 0. 
(ii) Suppose  p(a, M~) = 0 =  p(a, M2) for  some a, Mi and Mz. Then C(a, Mt) = 

C(a, M2) and hence,  using (2.2.4), M~ = M2. 
(iii) This follows f rom the Implicit  Funct ion theorem. See, for example ,  

APOSTOL (1963). 
(iv) Let {an} be a sequence such that  a,,>ao, l i m , . o o a , = a o  and 

l i m , . ~ ( a n )  = k~< +oo. By continuity we have p(ao, k)=0,  which implies that 
k I> aoxt using the definit ions of  p and a and (2.2.6) and (2.2.7). But using part  
(i) above,  ~ ( a , )  < a,,xl and (iv) follows 
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(v) If xt = +oo this is obvious. If  x~ < +oo we have only to notice that, using 
(2.2.3) and (2.2.4), both aC/aa and aC/aM are zero at the point (ao, aox~). 
Hence OR~aM is zero and dp/aa is strictly positive at (ao, aox~). 

(vi) Let a~, a2eA and 0<~A ~< 1. p(a, M) is concave since C(a, M) is convex, 
so we have 

p(Aa, +(1 -A)a2 ,  ~(Aa~+(1 -X)a2) )  

= 0 = Ap(al, ~ ( a , ) )  + (1 -A)p(a2 ,  qb(a2)) 

~<p(Xat+(I -A)a2 ,  A O ( a l ) + ( l - A ) O ( a 2 ) ) .  

Using the proof  of  part (i) above we have 

AdP(a,)+(l  + A)dP(a2) t> O(Aa, +(1 - X)a2) 

It is clear that • is strictly convex if the same is true for C(a, M). 

3.4. The Variance as a Funcnon of (a, M). 

We shall find the following result useful when proving our main results in the 
next section. 

RESULT 3 
(i) O V[ Y(a, M)]/Oa > 0 for x0 < M/a < x~, 

(ii) aV[Y(a, M)]/aM>O for xo<M/a<x~. 

PROOF. We have already seen that V[Y(a, M ) ] e  qg~ for a, M > 0  (see proof  
of  result l(i)). Differentiating (3.2.1) we have: 

r M/a 
OV/Oa =2Ala  x 2 dF(x) 

J 0  

+2(a=-a,) xaF(x)LJ ° 

[ r ] OV/OM=2A,(I-F(M/a))  M F ( M / a ) -  axdF(x) 
dO 

F fM/o ] 
+ 2 A 2 ( 1 - F ( M l a l ) L J  ° axdF(x )+M(1-F(Mla ) )  

(il) follows directly and (i) follows from (2.l . l) .  

3.5. The Solutton 

In this section we solve our problems in general terms. 
RESULT 4. (i) The non-negative constraints are redundant in our problems. 

(ii) The constraint E[W(a, M)] ~ B  is active in the opt imum of our problems, 
i.e., in the opt imum of our problems this constraint holds as an equality. 
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PROOF. (t) Follows directly from assumptions (3.3.5) and (3.3.6). 
(ii) We shall prove the result for problem !, and hence problem 2. The proof  

for problems 3 and 4 is similar but simpler. Let (a~, M~)eF  be such that 
E[W(a~, M~)]> B. From the proof  of  result 2 we know that there exists M* < M~ 
where a~xo < M* < a l x  t and E[ W(a~, M*)] = B. Using result 3(ii) and result I(ti) 
we see that 

and 

V[ Y(al, M * ) ] ~  < V[ Y(al, Mt)]<~ D 

y[ Y(al, M*)] < yy[ Y(a,, M,)]. 

Let us now consider the solution to problem 3 (and hence to problem 4). We 
know that the solution lies on the isocost curve M = ~ ( a )  and information about 
the shape of this curve is contained m result 2. Figure 1 gives three examples of 

M 

aoXl 

3 

0 ao I a 

F I G U R E  I ISOCOSt c u r v e s  In the  (a ,  M ) - p l a n e  

isocost curves, labelled It, I2 and /3. We know that each curve has slope - ~  at 
the point (a0, aox~) and we have assumed x~ is finite for convenience. We also 
know that each curve is convex although not necessarily strictly convex. From 
result 1 we know that straight lines through the origin in fig. I represent points 
of constant skewness, the larger the slope the higher the skewness. Hence it is 
clear that the solution to problem 3 is the point, or set of points, where the 
strmght line through the origin with the smallest slope intersects the isocost curve. 
If  the isocost curve is decreasing, as in Ii, this point will be (1, ~ ( | ) ) ,  i.e., pure 
excess of  loss reinsurance will be optimal. (Note that LEMAIRE, REINHARO and 
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VINCKE (1981), by making  assumpt ions  abou t  the calculat ion of  the re insurance 
p remiums  different to ours,  were able to assume that  the isocost curves were 
decreasing and hence that,  in terms of  our  p rob lem,  excess of  loss re insurance 
was opt imal . )  Even if the isocost curve is not decreasing,  as in /2, the point  
( l , dp ( l ) )  may  still be the solut ion to p rob lem 3. Isocost  curve 13 shows a case 
where the solut ion is not ( l ,  ~ ( l ) ) .  

It is clear that  in general  the solution to p rob lem 3 will be ( I ,  qb(I )) unless we 
can find a point  on the isocost curve such that the gradient  of  the isocost curve 
at that point  equals the slope of  the line jo ining that  point  to the origin. Such a 
point  may not be unique since the isocost curve may  not be strictly convex 

Summar iz ing  we have the following result: 

RESULT 5. Le t  

H = {(a, ~ ( a ) ) :  a o <  a ~< 1, d~(a)/da = ~(a)/a}. 

Then 
(i) if H is empty  the solution to p rob lems  3 and 4 is the point  ( 1 , ~ ( 1 ) ) .  

(ii) if H is not empty ,  all the points in H are solutions to p rob lems  3 and 4. 

REMARKS. (i) We have given a geometr ical  p roo f  of  result 5 but it is possible  
to give a more  formal  p roo f  using the K u h n - T u c k e r  condi t ions and the facts that  
E[W(a,M)] is a concave function and T[Y(a,M)], or CV[Y(a,M)], is a 
quas i -convex funct ion of  (a, M) .  See ARROW and ENTHOVEN (1961). 

(ii) Using the definition of  • the set H can be defined as 

(3.5.1) H={(a ,M):a~l  and E[W(a,M)]=B 

and B+ P(e-c)+ C(a, M ) - a  cgC/Oa-M OC/OM =0}. 

We are now in a posit ion to solve p rob lems  I and 2. 

RESULT 6. Let 

at = in f{a :  (a, ~ ( a ) )  is a solut ion to p rob lem 3}. 

Then 
(i) if V[Y(a~,~(a~))]~<D, (a~,~(at)) is a solution of  p rob lem I and every 

solution of  p rob lem 1 is a solution of  p rob lem 3. 
(ii) if V[ Y(at, ~ ( a ~ ) ) ] >  D the solution to p rob lem 1 is (a  °, ~ ( a ° ) )  where 

a ° = s u p  {a: a~< 1, E[W(a, M ) ] =  B and V[Y(a, M ) ] =  D}. 

In this case a ° <  at. 

PROOF. (i) I f  (a~, ~(at)) is a solution of  p rob lem 3 and V[ Y(al, ~ ( a l ) ) ] ~  < D 
then clearly (a~, ~(a~) )  is a solut ion of  p rob lem 1. I f  (a, ~ ( a ) )  is ano ther  solut ion 
to p rob lem 1 we must  have y[Y(a,~(a))]= T[Y(at,@(al))] and so ( a , @ ( a ) )  
solves p rob lem 3. 
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(ii) Using geometrical arguments and result 3, it is clear that for any a such 
that al~<a.~l we have, assuming V[Y(al, dP(al))]> D, dP(al)<~(a) and D <  
V[ Y(al, ~ ( a l ) ) ] ~  V[ Y(a, ~(a) ) ] .  This shows that a ° <  at. 

On the other hand, 7 [ Y ( a , ~ ( a ) ) ]  is a strictly decreasing function of a for 
ao<  a < a~, as is clear when we consider the geometrical proof  of result 5. 

So for any point (a,~(a)) such that ao<a<a ° we will have y[Y(a,~(a))]> 
7[Y(a°,~(a°))] and for any point such that a ° < a ~ < l  we will have 
V[ Y(a, ~ ( a ) ) ] >  D, otherwise these woul.2 be a contradiction to the definition 
of a ° or to the mean value theorem. 

4. T H E  S O L U T I O N  IN S O M E  S P E C I A L  CASES 

In this section we give, briefly, the solution to problems 3 and 4 when the excess 
of loss reinsurance premium is calculated according to the expected value prin- 
ciple, the standard deviation principle or the variance principle. 

RESULT 7. (i) If the excess of loss reinsurance premium is calculated using 
the expected value principle or standard deviation principle, the solution to 
Problems 3 and 4 is (1, ~ ( l ) ) ,  i.e., a pure excess of loss arrangement. 

(li) If  the excess of loss reinsurance premium is calculated using the variance 
principle, the solution to problem 3 and 4 is (d, qb(,~)) where 

= rain ( 2 [ P ( e -  c)+ B]/[P(I - c ) - A ~ E ( X ) ] ,  1}. 

PROOF. (i) The proof  is immediate since for both cases 

aC aC 
(4.1) B + P ( e - c ) + C ( a , M ) - a - - - M  =B+P(e-c)  

Oa OM 

which is positive by assumption (3.3.5) and so the set H is always empty (although 
the relevant isocost curve is not necessarily decreasing). The result follows from 
result 5(i). 

(ii) In this case the left-hand side of  (4.1) is equal to 

B+ P(e- c)- C(a, M). 

Hence the set H is 

{(a, M): E [W(a ,  M ) ] =  B and a = 2 [ B +  P(e-c)]/[P(l - c ) - h ~ E ( X ) ] a n d  a ~< I} 

and the result follows from result 5. 

5. D I S C U S S I O N  

We have assumed throughout Sections 2, 3 and 4 that assumptions (2.1.1) and 
(2.1.2) hold for the claim number distribution N. It is clear that all our results 
relating to the coefficient of  variation, in particular the solutions to problem 2 
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and 4, are valid without  making assumption (2.1.2), since this assumption was 
used only in the p roof  o f  result l(ii), and then only in relation to the skewness 
coefficient. 

Assumpt ion (2.1.1) was used in relation to the coefficient of  variation to show 
that C(a, M), and hence the isocost curve M = ~ ( a ) ,  is convex when the excess 
of  loss reinsurance premium is calculated according to the s tandard deviation 
principle or the variance principle (see Section 2.3). If  (2.1.1) does not hold it 
is not hard to find examples where P(a, M) is calculated according to either the 
s tandard deviation principle or the variance principle and where the isocost curve 
is no longer convex. (One particular example assumes N to be a degenerate 
random variable always equal to 1, which is equivalent to assuming a combinat ion  
o f  quota-share  and stop-loss reinsurance). However  if (2.1.1) does not hold we 
can still state result 7(i), relating to the coefficient o f  variation, since this result 
is an immediate  consequence o f  result 5(i), and it is easy to see that this result 
is independent  of  the convexity of  the isocost curves. Assumpt ion (2.1.1) was 
also used for the p roof  of  result 3(i), which was later applied in the p roof  of  
result 6(ii). It is not difficult to see that if (2.1.1) does not hold, but  a~ = 1 in 
result 6, this result is still true. So we can conclude that when P(a, M) is calculated 
using the expected value or s tandard deviation principle, the main results relating 
to the coefficient of  variation [i.e., result 7(i) and result 6], hold without the 
assumption (2.1.1) being fulfilled. 

When P(a, M) IS calculated according to the variance principle the proofs o f  
Results 5(il), 6(ii) and 7(ii), relating to the coefficient o f  variation, are no longer 
valid without  (2.1.1), a l though it may be possible to prove some of  these results 
without this assumption.  

Fur thermore (2. I. I ) is not a necessary condi t ion for the p roof  o f  result 1 relating 
the skewness coeffioent,  since this result still holds when N is a degenerate 
random variable and when the distribution function o f  the individual claim 
amounts  is absolutely cont inuous  [see LEMAI RE, REIN HARD and VJ NCKE (1981 )]. 
In this part icular  case all the comments  relating to the coefficient o f  variation 
apply to the skewness coefficient. 

We have already ment ioned tn Section 2.1 that both (2 . l . i )  and (2.1.2) hold 
if N has a Poisson or a Negative Binomial distribution. It is also worth ment ioning 
that (2.1.1), but not (2.1.2), holds for any mixed Poisson distribution and that 
(2 I 2), but not (2. l . l ) ,  holds if N has a binomial  distribution or is a degenerate 
random variable. 

6. AN EXAMPLE 

In this section we discuss a numerical example that illustrates the results in the 
previous sections. 

We assume the gross aggregate claims are generated by a c o m p o u n d  negative 
binomial distribution with 

Al = I0; A2 =20;  A~ =60 
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and 

F (x )  = {0 i f x ~  1 
I - x  -4 if x >  I 

so that individual claims have a Pareto distribution. We assume 

P = 2 4 ;  e = 0 . 3 5 ;  B = I . 7  

and the premium loadmg factor, f, used in the calculation of  the excess of  loss 
reinsurance premium is 0.8, 0.45 and 0.4 when the premium calculation used is 
the expected value principle, the s tandard deviation principle and the variance 
principle respectively. Table l gives the point  (a, M) which is the solution to 
problems 1 and 2 for various values of  c and D. Note that from table l, we can 
see that when c = 0.4 the isocost curves for the three premium calculation pnn-  
c~ples are not decreasing functions with a. 

TABLE I 

Excess of  loss premium 
calculation prmctple c D (a, M) V[ W(a, M)] ~[ Y(a, M)] CV[(a, M)] 

Expected value principle 0 4 33 ( 1, I 676) 32 38 0 6763 0.4507 
27 (0908,  1 57) 27 0677 04511 

0 3 33 (I ,  1.676) 32 38 0 6763 0 4507 
27 (0 863,2 53) 27 0 6886 0 4562 

Standard devtaton 0.4 33 ( I, 1 497) 30 77 0 6743 0 4495 
prmclple 27 (0921,  I 48) 27 06755 04502 

03  33 (1,1 497) 3077 06743 04495 
27 (0846,  186) 27 07153 04609 

Variance principle 0 4  33 (09375, I 47) 27 7 06751 04500 
27 (0 926, 1.46) 27 0 6751 0 4500 

03  33 (I ,  I 575) 31 54 06752 04500 
33 (0 854.3 42) 27 0 6952 0 4580 

Let us now consider  in more detail the case where c = . 3  and the s tandard 
deviation principle is used for the excess of  loss reinsurance premium. Figure 2 
shows the variance and the skewness coefficient for seven different isocost curves, 
starting with B = 32/15 and decreasmg B in steps of  4/30 until we get B = 4 / 3 .  
Points with the same subscript  correspond to points on the same isocost curve 
and the smaller the subscript,  the higher the value of  B. The points I~, I 2 , . . . ,  I7 
correspond to pure excess o f  loss treaties and these points together with the 
points on the solid lines represent solutions o f  Problem I for some value of  D. 
The dot ted hnes correspond to points that are never solutions to problem I, 
a l though they are on the ~socost curved considered.  This ts because,  for example, 
points between I5 and I~ have both greater skewness and greater variance than Is. 
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FIGURF 2 Isocost curves in the ( V, ,y)-plane 
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