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A B S T R A C T  

The unbayesed credlbdity procedure proposed by Gerber  is revisited. Its perform- 
ance is discussed, connections are drawn to earlier literature, and some possible 
ideas of  generalizations are investigated (and found fruitless). 
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I .  I N T R O D U C T I O N  

More than two years have elapsed since GERnER (1982) proposed a procedure 
for construction of estimators highlighted as Unbayesed Credib!lity. During this 
time there has been published no further work on the topic. It is, therefore, worth 
while having another look at the unbayesed estimations to throw some light on 
their properties and to inquire if further ideas ought to be pursued along the 
same lines. 

In Section 2 of the present paper two estimation problems considered by 
GERBER (1982) and Gerber 's  unbayesed approach to their solution are briefly 
recapitulated. The properties of  the two unbayesed estimators are discussed in 
Section 3; it ts shown that one of them will usually have an infimte expected 
squared loss. Section 4 stresses the need to build adequate mathematical models 
and to work strictly within these in search for methods. In particular the properties 
of any proposed method has to be examined in terms of the performance criterion 
adopted. Section 5 presents a couple of  variations of the unbayesed approach 
which show that it can lead to many different estimators; the particular form of 
any unbayesed estimator is due to arbitrary restrictions imposed on the estimating 
functions rather than being due to the structure of  the model itself. 

2. R E V I E W  O F  T H E  U N B A Y E S E D  E S T I M A T I O N  P R O C E D U R E  

In order to make our presentation fairly selfcontained and to state points clearly, 
let us recall the unbayesed set-up in neutral mathematical terms. The model 
framework in Sections 4 and 6 of  Gerber 's  paper  is the following. 

MODEL. Let X,s, i =  I , . . . ,  m ( > l ) , j  = I . . . .  , n, be a collection of real random 
variables For each i the Xo, J = 1 , . . . ,  n, have the same distribution, which we 
denote by F,. All X,j are mutually independent,  and F=(Fj  . . . . .  Fm)E 
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x .  - - x ~m, where ~ is the nonparametr ic  family o f  all those dis t r ibuuons on 
the real line which possess a finite second order  moment .  

Let /z and 0 .2 denote the mean and the variance, which are well defined 
functionals on ,.~, and put p., = p.(F,) and 0-,2 = 0.2(F,), t =  I , . . . ,  m. 

The vector  o f  means, lu. = (p.~, . . , / z , , ) ,  is to be estimated. More precisely, let 
denote the class of  all measurable m-vectorvalued functions o f (on ly )  the X,fs ;  

we seek a P =  ( P ~ , . . . ,  P,,,) c .~ that is in some sense close to I.I.. Gerber  considers 
two different measures o f  closeness, hence two problems, the first o f  which is the 
fol lowing (numbers  in square brackets refer to formulas in Gerber ' s  paper):  

PROBLEM I thck P c  .~ such that 

(1)[20] ~ EF(P, - ~,) 2 
i -  I 

zs "small" (not "minimum" as stated by Gerber, see second remark below). 
(Here Ev denotes  the integral with respect to F~ ×.  • • × F~ ×.  • • × F,, × .  • • × F~, 

the joint distribution o f  the Xv's.) 

A couple o f  remarks are in order  at this stage. First a formal one:  Gerber  
phrases his problem as that o f  predicting, for each i, a future independent  selection 
X,.,+~ from F,, the per formance  of  a set o f  predictors P, being measured by (I)  
with p., replaced by X,.,+~. That problem is, however,  equivalent to the one stated 
here because 

Ev(P, - X,.,+,) z = 0.,z+ Ev(P, - I t , )  2. 

The second remark concerns  realities" As it stands, problem I is not properly 
stated since for each choice o f  P the expression in (!)  is a functional depending  
on F. One cannot  find a P minimizing (1) for all F (the choice P, = / z ( G , ) ,  with 
G , c ~ ,  ~=1 . . . .  ,re,  is optimal in F = ( G t , . . , G , , ) , b u t  poor  in other  points F 
where ~," ~ { t t ( G , ) - t z ( F , ) }  2 is large). Thus,  still loosely speaking, we can only 
require o f  P that ( !)  should not be " too  large" in " too  many"  points F. We leave 
these considerat ions for the time being and cont inue our  recapitulation of  the 
unbayesed approach.  

Gerber  constructs his unbayesed credibility estimator in the following manner:  

METHOD I. (i) As a first step, solve the simple problem of  minimizing (I)  as 
P = (P~ . . . . .  Pro) ranges in the class ~ '  of  functions with P, of  the form 

z~, +(1 - z ) g ,  (2) [7] 

where 

n j  i 

x=± xh, 
m h L I  
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(3) [21] 

where 

and Z is a funct ion of  F (only).  Min imum is readily found to be at ta ined at 

n ~h , ( ~ - / 2 y  
Z =  m , 

n Eh=, (/Zh--fi)Z+(m--1)O "2 

1 ! 
/ 2 = - -  ~ /a,h and o - 2 = -  ~ o'2. 

m h = l  m h ~ l  

(ii) As a second step, replace numera to r  and denomina to r  in (3) by their 
"na tu ra l "  unbiased est imators  [13] and [22] (Gerber ' s  Section 4). Then the 
r ight-hand side express ion in (3) turns into 

(4) [23] 2 = I ( m -  l)t~ 2 
m 

" Eho, ( g h - 2 )  2 
m A __ with &2 =~h_ , O~/m and ~r~Z ~f~ , (Xh~- ,~h)E/(n- I). Upon replacing Z in (2) 

by Z, we obtain a funct ion P c  ~,  which is the unbayesed  credibili ty est imator.  
The second p rob lem is the following. 

PROBLEM 2. The same as problem I, but with (1) replaced by the eomponentwise 
expected squared error 

(5)[27]  EF(P, - p.,) 2, i =  I , . . . ,  m, 

(vector-valued) 

The above  remarks  to p rob lem I app ly  also to p rob lem 2. The unbayesed  
procedure  follows the same outline as in me thod  I: 

METHOD 2. First minimize (5) as P = (P~, . . . ,  Pro) ranges in the class ~ "  of  
functions with P, of  the form 

(6) Z,X, + (I - Z , ) X ,  

where each Z, is a funct ion of  F. ~roceeding in analogy to step (ii) of  method 
l, Gerbe r  arrives at the es t imator  P given by 

(7) P, = X, , t = I , . . .  m. 
mn ( X , -  .~) 

Having summar ized  the present  state of  unbayesed  credibility, we now set forth 
to study its merits in terms of  concepts  f rom est imat ion theory. 

3 P R O P E R T I E S  O F  T H E  U N B A Y E S E D  E S T I M A T O R S  

We first consider  p rob lem I and the unbayesed  es t imator  given by (2) and (4). 
It ought ,  perhaps ,  to be said that  it is unfor tuna te  to speak of  P as the "real  

solut ion"  to the prob lem of  minimizing ( I ) (Gerbe r ' s  Section 4), confer  the second 
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remark to problem i above. Clearly, method 1 is only a preparatory piece of 
motivating heuristics, and the resulting /; is so far only a candidate estimator, 
whose performance has to be examined in terms of the criterion (1). This task 
has not been under taken-- in  fact, not even ment ioned-- in  the previous literature 
on unbayesed credibility, and no references are made to the closely related 
literature on compound estimation problems. Therefore, a few remarks are added 
here on these matters: 

Very little is known about  the possibihty of solving (reasonably precise versions 
of) problem 1 under the present model with nonparametric  ..~. Some results on 
restricted inadmissibility have been established: For certain simple parametric 
subfamilities fro C f f  one can construct estimators that in all of  ~g'  dominate old 
established estimators known to be uniformly optimal on ~ with respect to the 
traditional performance criterion (5) when one restricts to the class of  unbiased 
estimators. The first results of  this kind appeared in fundamental papers by STEIN 
(1956) and JAMES and STEIN (1961). They considered the subfamily ~o of all 
normal distributions with variance l (say) and proved that the estimator 

(8) P* = (...~, . . . . .  X,,), 

which is admissible on ,..~ with respect to (5) and furthermore is uniformly 
minimum variance unbiased, does not even remain admissible when criteron (I)  
is adopted. If  m I> 3, it is dominated by the so-called James-Stein estimator P** 
defined by 

( P,**= I ~"-r,~-~2" "~,, i =  I , . .  , m. 
n Z..,h~l h ~  

To most statisticians this result came as a surprise, to some even as an unpleasant 
one, and there were signs of controversies between defenders of  the traditional 
P* on the one side and advocates of the new P** on the other Now there is no 
reason to discuss which is the better of  P* and P** (on . .~) ,  because that 
question ~s settled by emotionless mathematics once the performance criterion 
is chosen. What can be discussed, is only the choice of criterion. That discussion 
is, however, not of  a purely mathematical nature, but depends on the goals and 
attitudes of  the decision maker. 

In closing our comments on problem 1, we note that admissibility on , .~  of 
estimators of  the James-Stein type has been extensively treated in the literature, 
see e.g., BERGER (1976). A survey of James-Stein estimations Is given by EFRON 
and MORRIS (1973) 

Let is now examine the unbayesed estimator designed for problem 2. Again 
by the second remark to problem I, it is clear that P given by (7) does not 
represent the solution to the problem of minimizing (5) (Gerber 's  Section 6). In 
fact, by inspection of (7), it is readily seen that P, assigns the value +co to (5) 
on wide subsets of  .~m: If, for instance, the F, are normal distributions, then &2 
is independent of  . ~ , -  ..~, and ( X , -  • ) - i  has no expected value. More generally, 
if the marginal distribution of ,.Y,- ,~ has a point of  increase in 0, then P, and 
hence (P , - l z , )  2 are usually not integrable. 
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Problem 2 in the present nonparametric model is one of the classics of statistics, 
and to the knowledge of the present author no alternatives to the natural unbiased 
estimator (8) have been proposed in the pre-unbayesed literature. Thus, in this 
case it would really be surprising if P could be shown to have any good properties. 
And unpleasant as the interpretation of the model and problem 2 is that the 
estimation problems are unrelated in every respect; the samples are drawn in an 
independent manner from populations that have nothing in common, and the 
losses incurred by error of estimation are measured separately for each problem. 
A reasonable task for the theory would be to put a firm basis to the intuitive 
feeling that the estimator of/z ,  should depend only on X,~, . . . ,  X,n. If we are 
not able to justify the deletion of the Xhj, h ~ i, from the estimation of/.t,, then 
we would be in serious trouble: How could we then in a rational way choose the 
statistical basis for a given estimation problem? Which irrelevant data were not 
to be included? Which advice should we give to the practitioners? 

As we have seen, the unbayesed approach gives rise to no such concerns. The 
traditional and intuitively sound estimator (8) remains an uncontested answer to 
problem 2. 

4 .  M O D E L  A N D  M E T H O D  

After the discussions in section 3 the question arises: What brought Gerber to 
enter the Xh, h # ~, into the estimation of /z ,9  Why didn't he use the "natural 
unbiased estimator" (8)? The reason seems to be that he had a particular 
interpretation in mind; X,~, . . . ,  X,, are spoken of as being the claim amounts 
in n different years for risk no. i in a portfolio of m insured risks. A few remarks 
on basic principles of statistical decisions are called for: 

The first step in a statistical analysis is to separate out of the situation those 
features that are believed to have some bearing on the problem and work them 
into a mathematical model. The model should give a surveyable and, as far as 
possible, true picture of the phenomena. If, for instance, the data stem from 
similar automobile insurance risks, the model ought to give precise content to 
the notion of similarity between these risks. The model in Section 2 fails to reflect 
the essential circumstance that automobile insurance claims have something in 
common that distinguishes them from data on e.g. soldiers' heights and turnover 
of cheese. One reasonable mathematical means of expressing this similarity 
between the risks is to regard them as selections from one and the same structure 
distribution (population). Thus the structure distribution is not "essentially super- 
fluous" (Section 4 of Gerber's paper) to those who think they can learn something 
about a given risk by looking at other risks of the same kind. 

Having decided on a model, the purpose of the decision has to be expressed 
in terms of a performance criterion. When this is done, one is left with the purely 
mathematical problem of finding decision functions with good performance. 

In the traditional credibility analysis based on models with structure distribu- 
tions, credibility estimators are obtained as logical consequences of the mathe- 
matical set-up. They are justified by their (restricted) optimality properties. 
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This is not the case with unbayesed approach in method 2 above. There the 
particular credibility appearance of the estimator could only be obtained by the 
analyst's intervenmg into the mathematics by prescribing a certain procedure and 
exempting it from the requirements expressed by the performance criterion. The 
following quotation from Neyman (1954) seems pertinent: " . . .  the efforts of the 
representatives of modern statistical theory are directed towards solving problems 
that depend only on the stochastical model studied and on nothing else". 

Considered as a statistical framework for the analysis of related risks, problem 
1 together with the model in Section 2 plays an intermediate role. As explained 
above, the model may be judged as inadequate, but it still represents a reasonable 
partial description of the situation. The connection between the different rating 
problems is now established through the choice of the performance criterion (1). 
The unbayesed method I, however, is until further without any support whatsoever 
in studies of its performance. 

5. S O M E  V A R I A T I O N S  O F  T H E  U N B A Y E S E D  P R O C E D U R E  

Until the estimator resulting from method I has been investigated with respect 
to performance, it can, of course, not be excluded. But the unbayesed device as 
such can be put on test in other ways. One angle of attack arises from noting 
that the requirement that Z in (2) be independent of i is quite arbitrary. 

Looking for good estimators, we could possibly gain something by allowing 
Z to depend on t, that is, let P be of the form (6). But then the unbayesed 
procedure reduces to that of method 2 and delivers (7), which maximizes the 
expected loss instead of minimizing it as pointed out already in Section 3. 

Let us allow for further flexibility and admit nonhomogeneous estimators of 
/.i,, of  the form 

P, = Z,o+ ~ Z,,,Rh. 
h=l  

Then we find by the first step of the unbayesed prescription that the optimal 
approximation to p,, is ~,. And following the recipe further, we now only have 
to estimate ~, by a natural unbiased estimator. Then we obtain finally (8), which 
would have resulted immediately if we already at the outset looked for a natural 
unbiased estimator. 

Which ends the present discussion. Some further considerations around the 
topic of unbayesed estimations can be found in an unpublished report, NORBERG 
(1983), which can be received upon request. 
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