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A B S T R A C T  

Recursive credibility estimation is discussed from the viewpoint of  linear filtering 
theory. A conjunction of geometric mterpretation and the innovation approach 
leads to general algorithms not developed before. Moreover, covariance charac- 
terizations considered by other researchers drop our elegantly as a result of 
geometric considerations. Examples are presented of Kalman type filters valid 
for non-Gaussian measurements 
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1. I N T R O D U C T I O N  A N D  S U M M A R Y  

There have appeared a number of  papers, fairly tightly connected, concerned 
with recursive credibility formulae. An early paper that occupies a somewhat 
central position is that of GERBER and JONES (1975), which develops credibility 
formulae of the updating type, vahd if and only if the covariance structure (5.12) 
holds. The other papers notably, J E W E L L  ( 1 9 7 6 ) ,  SUN DT ( 1981, 1983) and KREM ER 
(1982) develop recursive formulae for a variety of other evolutionary type models, 
the last emphasizing the relationships with modern models of time series. Last, 
but not least, the paper of DE JONG and ZEHNWJRTH (1983) relates some credibility 
models to the Kalman filter, perhaps, the most important algorithm in linear 
stochastic system theory. 

The basic purpose of the present paper is to unify many existing results in 
recursive credibility theory and moreover develop more general ones. To achieve 
this, we adopt a geometric interpretation of recursive linear least squares estima- 
tion theory m the spirit of GERBER and JONES (1975) and DE VYLDER (1976). 
There is also a side benefit to be had by adopting a geometric approach-- i t  
reduces both the conceptual and algebraic burdens. The practical tmportance to 
actuaries of the present paper lies in the fact that once a model for premium 
rate-making is postulated, the estimators of parameters, premium forecast and 
associated errors may be derived quite readily using the general results contained 
herein. Moreover, the recursive nature of the formulae affords economy of 
computing space and time. 

The main results here are established with the aid of KAILATH'S (1974) innova- 
tion technique which has found fruitful apphcations in linear filtering theory. It 
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20 ZEHNWIRTH 

is intimately related to the well known Gram-Schmldt orthogonalization scheme 
and Fourier series. 

Suppose 'Y is a forecast of the random quantity Y with associated mean-square 
error C, based on some past measurements. Given a new measurement X we 
wish to update our forecast of Y and its associated mean-square error C. Let 
represent, the forecast of X based on the past measurements. The innovation, 
e = X - X ,  represents what is "new" in the new measurement X. The updated 
forecast of Y is 

(I . I)  Y + K e  

where the weight K is given by 

(1.2) K = El Ye]{E[e2]} -'. 

The mean-square error of the updated forecast (I . l )  is 

(1.3) C - KE[ Ye]. 

The foregoing results are treated in elaborate detail in Sections 3 and 4. In 
Section 5 we consider a general prospective ratemakmg framework and indicate 
how covariance structures considered by GERBER and JONES (1975), JEWELL 
(1976) and SUNDT ( 198 I ) drop out elegantly as a result of the geometric interpreta- 
tion of the problem. Finally, in Section 6 Kalman type filters are derived for two 
different models using results developed earlier in the paper. The filters are related 
to the work of SUNDT (1981, 1983) and DE JONC and ZEHNWIRTH (1983). 

2. HILBERT SPACE OF SQUARE-INTEGRABLE RANDOM VARIABLES 

For the purposes of the present paper it is convenient to formulate some definitions 
and terminology and to state two classical projection theorems. 

Consider a fixed probability space (1~, ,.~, P). The Hilbert space ~ = L2(l~, ~, P) 
is the linear space of measurable functions from fl into R whose second moment 
exist. We identify with the element X ~ gt', the equivalence class {X: X = X a.e }. 
The inner product (X, Y) for any two elements X and Y in ,~' is defined by 

(X, Y~ = E[XYJ.  

Accordingly, the corresponding I1" II is defined by 

II x II = ( E [ X 2 ] ) ' / 2  

It is beneficial to extend the definition of the inner product ( . , . )  to random 
vectors. Suppose X = (XL . . . .  , X,) and Y = (Yt . . . .  Y,,) where X c  ~ "  and 
Y~ ~ " .  Define (X, Y) by 

(X, Y)= E[XY']. 

This is not an inner product in the true sense--it  is a matrix. However, If we 
ignore this deficiency, the projection theorem can be used as a quick mnemonic 
way of obtaining the approximate optimal estimators (theorem 3.2) 
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The following properties of  the bilinear functional . , . )  are noted. 

(2. I) (AX, B Y)  = A(X,  Y )B '  

for any two matrices A and B of appropriate dimensions. 

(2.2) [[AX[I 2= AHXII2A ' 

and 

(2.3) (X, V) '=  (Y, X). 

We state two classical projection theorems applicable to any Hilbert space 
(borrowed from LUENBERGER (1969)). 

THEOREM 2.1. Let ~ be a Htlbert space and ~P a closed subspace of~'. Correspond- 
mg to any vector Y ~ Y(, 3 a umque X*  ~ .5~ such that 

I IV-X*[I ,=  inf I Iv -Xl l , ,  
X,e.fg 

where It" II, IS the norm defined on ~. 

Furthermore, a necessary and sufl~oent condition that X * e  ~ be the unique 
mmimization vector is that Y - X *  be orthogonal (±) to ~.  

In what follows denote by ~ ( Y [ ~ )  the projection of Y onto ~ ,  that is 
~'(vl.~) -- x * .  

THEOREM 2.2. Let ~ be a closed subspace o f  a Hdbert space ~.  Suppose N is a 
closed subspace o f  ~P so that .~P = N G  N ± where N i is the orthogonal complement 
o f  N i n E .  I f  Y e K then 

~ ( Y I ~ )  = ~ ( Y [ N )  + ~(Y[N± ) .  

3. LINEAR ESTIMATION OF A RISK PARAMETER 

One of the key problems in credibility theory is the estimation of a risk parameter. 
Suppose Y~ ~ is a (non-observable) risk parameter  and Xo, X i , . . . , X ,  are 
(observable) measurements in ~. A linear estimator of  Y based on Xo, X~,. .  , Xn 
is any linear combination 

with mean-square error 

Y* = ~ a,X,, (a, E R) 

II Y -  Y*II 2. 

Denote by LPk = ~(X0,  X i , . .  •, Xk) the closed linear subspace spanned by the 
elements Xo, Xi, .. •, Xk. Also for notational simplification denote by ~k(.,,~) the 
projection ~ ( X I ~ k ) ,  of  X onto ~k where X e ~.  
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The following fundamental  result ts based on the projection theorem in ~'. It 
is discussed in LUENBERGER (1969) and appears  under various guises in NORBERG 
(1979) and references therein. It is included here for the sake of completeness. 

THEOREM 3.1. Suppose X = (X0, X i , . . . ,  Xn) 'e  ~,n+t and ~ n ( Y )  = t~'X where 

= ( ' ~ o  . . . .  , ~,,)'- 
Then, 

,~'= < Y, X>llxll-2 

and the mean-square error II Y -  ~ , (  Y)II 2 is 

tl Y - ~ , (  Y)II 2= II YII2- ( Y, x)llxll-2( x, Y~. 

PROOF. The projection theorem 2.1 gives 

Y - ~ n ( Y ) . . L X , ;  i = 0 ,  I , . . . , n  

whence, 

~ ' ( X , X , ) = ( Y , X , ) ;  i = 0 , 1  . . . . .  n. 

The expression for ~' follows from the last set of  equalities whereas the expression 
concerning the mean-square error follows by noting that Y -  ~ , ( Y )  & ~n(Y) .  
We remark that the matrix G = [IX[[ 2 is called the Gram matrix. 

COROLLARY. ]f  X 0-~. 1 then ~ . (  Y) ts the inhomogeneous hnear Bayes rule which 
may be written 

(Y, 1)+ C[Y,  X * ] C - ' [ X * ] ( X * - ( X * ,  1)) 

with associated mean-square error ( Bayes risk) 

c[ ~ -  c[ Y, x*]c- ' [  x*]c[ x*,  r] 

where the vector X * = ( X t  . . . . .  X , )  and the covanances C [ . , . ]  and C[ . ]  are 
defined as follows: 

For any two vectors U ~ ~'" and V ~ ~m 

C[U, V]=(U,  V ) - ( U ,  I)(I,  V) 

and 

c[ u] = c[ u, u]. 

We now dtscuss straightforward extensions of  the abovemennoned results to vector 
parameters. 

Suppose Y = ( Y~, . . . ,  Ym)'E ~,m is a vector risk parameter  to be estimated on 
the basis of the measurement  vector X = (X0, X~ . . . .  , X , ) c  ~,n+~. We restrict 
attention to linear estimators, namely E avX p of each component  Y, of  the vector 
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¥. Write, A = (a,j), an m x n matrix. The optimal linear estimator minimizes 

Y, a,jXj 
I - I  J - I  

over all matrices A of  dimension m × n. 

THEOREM 3.2 (Luenberger) .  I f  AX  is the optimal linear estimator of Y then 

,,i =(Y,  X>llxll -= 

and the error covarlance matrix of AX  Is given by 

II v - ~ x l l  2= II vi i2-(  v, x>lfxlf-~(x, v>. 

PROOF. The results follow from the observat ion that the opt imizat ion decom- 
poses into a separate problem for each componen t  Y, o f t h e  risk parameter  vector 
Y. The ith subproblem is simply that of  finding ~ , ( Y , )  That  is 

AX = (9~,( Y , ) , . . . ,  ~ , (  ym)),. 

= ~ . ( Y ) ,  say. 

We remark that trace II ¥ - A X l l  2 represents the mean-square  error o f  ~ , ( Y ) .  
It is also known as the Bayes risk of  ~ , ( Y )  relative to squared error loss function. 

COROLLARY 1. I f  T is a fixed r × m  m a m x  then the optimal linear estimator 
o f  TY  is T ~ , ( Y )  with error covanance  TI[ Y -  °2°( Y)II2T '. 

COROLLARY 2. I f  Xo -= I then ~ , (  Y) is the mhomogeneous linear Bayes rule for 
Y, which may be written 

(Y, I )+  C[Y, X * ] C - ' [ X * ] ( X * - ( X * ,  I)) 

with error covamance malrlx, 

c[Y]- c[¥, x*]c-'[x*]c[x*, ¥]. 

All the foregoing results are well known to both linear filtering theorists and 
credibility theorists. 

4. T H E  G E O M E T R Y  O F  R E C U R S I V E  RISK P A R A M E T E R  E S T I M A T I O N  

In many practical situations the elements Xo, X~, X2, • • • represent measurements  
taken sequentially in time. The optimal linear est imator of  a risk parameter  Y 
based on the measurements  to time n, viz., Xo, X i , . . . ,  X ,  is Y, = ~ , ( Y )  with 
mean-square  error 

c~ = II Y -  ~.112 
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If  X,+~ is the next measu remen t  then its best hnear  es t imator  based on ~ ,  is 
~ , (X ,+~) .  Accordingly,  the innovat ion of  the new reformat ion  acquired at t ime 
n + l  is 

e.+l = X o + ~ - g ~ , , ( X , + t ) .  

Put eo = Xo and write eo* = eo/lleo]], then by virtue of  theorem 3.1 

g % ( X i ) = ( X a ,  eo)eo* * 

whence,  

e ~ = X ~ - ( X ~ .  * * e0)eo. 

By virtue of  the project ion theorem 2. I, eo .1_ e t and ~ = ~(eo ,  e~). It follows that 

e2= X 2 - ( X 2 ,  * * e0)eo - ( X 2 ,  et*)el* 

where el* = e,/ile,tl .  
Subsequent ly ,  

(4.1) 

where 

e~+, = X~+ , -  ~ (X.+, ,  e~*)e t 
../dO 

e~* = ej/lle, ll; ; = o ,  1 ,2 , . . . .  

We observe  that  the normal ized innovat ions  {e~*} represent  the o r thonormal  
system obta ined  by the wel l -known Gram-Schm~dt  or thogonal izat ion process. It 
follows, trivially, that  the innovat ton sequence  {ej} is or thogonal .  

The closed hnear  subspace  ~,..~ may be d e c o m p o s e d  

(4.2) ~n+, = ~ ,®.Z(e~. , ) .  

In view of  the project ion theorem 2.2, 

(4.3) 't",+ i = '~', + ~ ( Y l e , + , )  

where appl ica t ion of  theorem 3.1 yields, 

(4.4) ~(Yle.+,) = ( Y. e.+,) l l  en+, I1-%.+,. 

Alternatively d e c o m p o s e  37n+~ thus: 

(4.5) ..~'.+, = ,La(eo)e • • ' G ~ ( e . + , ) .  

The Fourier  series of  Y based on ~,+~ ts 

n + l  

(4.6) Y.+, = E ( Y, ej*)e~* 
j=O 

whereas the Fourier series based on ..~?. is 

(4.7) 'Y,= ~ (Y, eT>e t .  
3- :0  
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The difference between expression (4.6) and (4.7) yields expression (4.3) 
We note that the key element in the foregoing analysis is the orthogonality 

property of the innovation sequence {ej}. 

A n t i  v e.~l 

I 

~,°?,,~X,,,~) "-2 
~ Y l e , , . , )  

FIGURE 4 ] The geomet ry  of recurswe risk pa ramete r  es t imat ion  

Figure 4.1 shows the geometry of recursive risk parameter estimation. The 
co-ordinate axis labelled 2 repLesents ~ .  and the 1-2 plane repLesents ~.+~. 
Observe that Y -  ~'. L ~n, Y -  Yn+l _L ~ + l ,  e,,+l L ~ and e.+t _L Yn. 

We point out that ~f Xo-~ I then 1 s,LP. whence we have the unblasedness 
properties, 

(v- f , ' . , i )=o 
(4.8) and 

(e,+l, I )=0 .  

Denote by C~ the mean-square error, 

II r -  ~oll 2 

Examination of fig. 4.1 leads to 

(4.9) C.+, = C. - I I ~ (  Yle,,+,)[I 2 

Write, 

(4.10) 

=C.-(Y.e.÷,>Zlie.+,ll -~. 

K.+, = ( Y. e.+,)[] e.+, 1]-2. 
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then equations (4.3) and (4.9) may be recast 

(4.11) ~". +, = ~",,+K.,+,e.+, 

and 

(4.12) C.+, = C. - K.+,( Y, e.+0 

respectively. 
The preceding analysis also applies to the estimation of a vector risk parameter  

Y~ Y(". Recall that, 

f .=  ~.(r)  

= ( ~ . (  Y , ) , . . . ,  ~ . (  Y,,,))'. 

Let C. represent the error covariance matrix of  1~.. The following recursions are 
obtained. 

(4.13) 17'.+1 = 1~'. + K.+, e.+, 

and 

(4.14) C.+, = C. - K.+,(e.+,, Y) 

where 

(4.15) K.+, =(¥, e.+,)lle.+,l1-2. 
Finally, we remark that the preceding recursions also carry over to vector 

valued measurements X0, Xi . . . . .  

5 .  T H E  G E O M E T R Y  O F  R E C U R S I V E  P R O S P E C T I V E  R A T E M A K I N G  

In the present section we adopt  the general prospective rate-making formulation 
of GERBER and JONES (1975). 

Let X, represent the claims cost (or loss ratio, etc.) in the ith period. The 
premium forecast for period n + 1 based on the measurements Xo(~ 1 ), X i , . . . ,  X,  
is denoted by P,+~. This premium is the optimal affine estimator ( inhomogeneous 
linear Bayes rule) of  X.+t based on the measurements X~, X2, • • •, X.. 

That is, 

P.+l = ~ . (X .+ i ) .  

The innovation in the measurement X.  is 

Since, 

we have, 

(5.1) 

e , ,=X . -~ , , _ t (X , , ) .  

-~.= ~._,O~(e.) 

~ . (  X.+,) = ~._ , (  X.+t) + ~ (  X.+,]e.) 
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where 

(5.2) ~(X.+ , l e . )  = (X.+, .  e.)ll e. I1-%.. 

In keeping with GERBER and JONES (1975) write 

(5.3) z .  = (xo+,,  e.)lle.II -= 

whence, 

(5.4) P.+, = ~ . _ , ( X . + , ) +  Z . ( X .  - P.). 

We emphasize that the last formula holds true in general. 
We now focus on formula (4) of SUNOT (1981) which examines the situation 

where there exist constants b.. c. and d. such that 

P.+, = b. + c.P. + d.X..  

Combining this with formula (5.4) above yields 

~._ , (X .+ , )  = (c. + Z . )P .  + (d. - Z . ) X .  + b.. 

As ~._~(X.+~) should not depend on X.. we must have d. =Z . .  and as P. = 
~._~(X.)  we obtain 

(5.5) ~ . _ , ( x . ÷ , )  = a.~'._,(x.)+ b. 

with a. = c .+Z . .  That is. the premium forecast for period n +  1 based on ~._~ 
is an affine function of the premium forecast for period n also based on ~._~. 
Since the innovations {ej} are orthogonal, ~ . - l ( X . + l )  and ~ . _ i ( X . ) ( = P . )  have 
the Fourier series representations 

n--I 
~._ , (X.+t )  = ~ (X.+,, e,*)e,* (5.6) 

and 

(5.7) 
n - I  

~ ._ , (X . )  = Z (X., e,*)e,* 

where we recall that the sequence {e,*} represents the orthonormal innovations. 
Substituting (5.6) and (5.7) into (5.5) gives 

(5.8) (X.+l, e,*) = a.(X. ,  e,*); i=  ! , . . . ,  n - I 

and 

(5.9) (X.+,, eo*)= a . (X. ,  eo*)+b.. 

Also let 

(5.10) b. = E [ X . + , ] -  a.E[X.].  

We are now in a position to derive the covariance characterization (5) of SUNDT 
(1981, p. 5). 
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Equation (5.8) can be written as 

(X~+l, e,)= an(X,, e,) 
and insertion of (4.1) gives 

X,+, ,X ,  E (Xj, ej*)ej* a, X,,,X, ' - = - (Xj, ej*)ej* 
J-O 3 0 

that is, 

[ 1 (X~+,, X , ) -  ~ (X,, e~*)(X,+,, ej*)= an (X~, X , ) -  ~ (X,, ej*)(Xn, ej*) . 
J~O J =0 

Combining the last equation with (5.8) we obtain 

(X,+,, X, ) - (X , ,  eo*)(Xn+,, eo*) = a,,[(X,,, X , ) - (X , ,  eo*)(X,,, eo*)], 
that is, 

(5.11) C[X,+,, X,]= anC[X,, X,]; i =  1 . . . . .  n - I. 

The converse is straightforward. 
The case for which an~  1 and b, -= 0 in (5.5) makes (5.4) a credibility formula 

of  the updating type in the spirit of  GERBER and JONES (1975). Equation (5.11) 
now reduces to the covariance structure. 

(5.12) CEX,,Xj]=~ V'+W'; '=J  
i v , ;  i < j  

in agreement with GERBER and JONES (1975). 

e, I + ~  

X,, 

e n 

'~2 

FIGURE 5 1 The geometry of cred~bihty formulae of the updating type 
m the sprat of GERBER and JONES (1975) 
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Figure 5 I shows the geometry of credibility formulae of the updating type. 
The co-ordinate axis labelled 2 represents X, and the I-2 plane represents .~',. 

Let E, represent the mean-square error of P,, that is 

E °  = lie,, II 2 

Figure 5.1 depicts the following orthogonahty relations: e, _L e,+~, e, ± P, and 
e,+, X ..~.. 

These may be used to obtain a number of expressions connecting Z. and 
second-order moments of X., e., P. etc. In particular 

(5.13) E. ~, -- IIX.+, - X° II 2 - (I - Zo)2Eo 

assuming (5.12) holds. 
We can also demonstrate (5.13) mathematically thus: From expression preced- 

ing (5.1) 

X, ,+t -  X .  = P.+l - P. + e.+l -e, , .  

Substituting (5.4) with ~ . - ~ ( X . + t ) =  P. into the last equation gives 

X . + t -  X .  =( I  - e . ) Z .  + e,,+l. 

Recogmzing the fact that e. _L e.+, now yields (5.13). 
GERBER and JONES (1975) also derive the relations, 

(5.14) Z, = W,(W,+ V,)-' 

(5.15) zo  = ( wn - w . _ ,  + z . _ ,  v . _ , ) (  w .  - w . _ ,  + z . _ ,  v . _ ,  + vo ) - '  

which will be alluded to in the next section. 

6. K A L M A N  T Y P E  F I L T E R S  

In the present section we examine some applications of the algorithms developed 
earher to two special models and relate them to the classical Kalman filter for 
which both measurement and system noises are Gaussian (JAZWINSKI (1969)). 

6.1. Btihlmann Model  

Consider a risk characterized by a parameter Y. Associated with this risk are 
measurements X~, X 2 , . . .  The followmg assumptions are made: 

ASSUMPTION 1. Condztional on Y fixed, the measurements X~, X 2 , . . .  are 
independent. 

ASSUMPTION 2. Conditional on Y fixed, the mean and variance o f  each X, can 
be written E[X,I Y] = ;z( Y )  and C[X, I Y] = 0"2(Y) respectively. 

Without loss of generality assume I z (Y)=  Y and for notational convenience 
write, yo = E[ Y], 0-o 2 = E[o'2( Y)] and v = C[ Y] 
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Adopting the notation and terminology of the preceding sections, the recursion 
for the inhomogeneous linear Bayes rule for Y is, 

(6.I.i) Y.+,= ~'.+K.+,e.+,. 

In view of assumptions ] and 2 and the unbiasedness conditions (4.8) it follows 
that 

(X.+,,ej)=(Y, ej); j=O, l , . . . , n .  

This means, 

whence, 

~,.(x.+,) = ~.(  Y)(= p.+,) 

e.+,  = x o ÷ , -  ~o. 

Consider now the inner product, 

(Y.e.+,)=(Y- Y.+ Y..e.+,) 

= ( Y -  Y., e.+,), 

the latter equality following from Y'. _L e.+t. Further, 

( Y -  ~'.. e . + , ) = ( Y -  Y'., Y -  Y. + X . ÷ t -  Y) 

= c .  

the latter equality following from the orthogonality condition 

Y-~'.±x.~., 
as a result of (4.8) and assumptions 1 and 2. 

Consequently, 

(6.1.2) 

Moreover, 

(6.1.3) 

(Y.e.÷,)=C.. 

Ile.+,ll == I I X . + , -  ~'.11 = 

= II Y -  Y.II 2+ I I x . + , -  YII ~ 

= c .  + ECCCX.+,I Y]] 

= C .  + o-o 2 

where the second equality follows from 

Y-~ ' . .L  X,+m- Y. 

Substituting (6.1.2) and (6.1.3) into (4.10) yields, 

(6.1.4) K.+,=C.(C.+o'~)- ' .  

For continuity write (4.12) again, 

(6.1.5) C.+, = C. -K.+,C. .  
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(6.1.8) 

(6.1.9) 

with initial condit ions 
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Substituting (6.1.4) into (6.1.5) gives 

(6.1.6) -~ - C,+~ - C~ l +o'ff  2. 

In summary,  we have developed the Kalman filter 

+ K . ÷ , ( X . ÷ , -  

K . + ,  = C.( C. + o " I ) - '  

C~.~l = C ~  I + o'~ 2 
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Yo=Yo and C o = v .  

We point  out  that if Y has a G a m m a  distribution and X,[ Y is Poisson with 
mean Y (implying that o'2(Y) = Y and Yo = O'o 2) then 

~o = E[ Y I x , ,  . . . , x . ]  
and 

C. = E [  C [  Y I X , ,  . . . , x,]]. 

Moreover,  by virtue o f  a fundamental  result in linear Bayes theory (HARTmAN 
(1969)), the same classical Kalman filter (6.1.7) to (6.1.9) is obtained if we assume 
instead that 

Y ~ Normal  (Yo, v) 

and 

X,I Y ~  Normal  ( Y, ~o2). 

See DE JONG and ZEHNWIRTH (1983) for more details. 
In passing we also note that since ~ , (X ,+~)  = ~ , ( Y )  it follows that 

K.+, = Z . + g .  

Combining (6.1.4) and (6.1.5) gives 

z.+t=z.(z.+l)-', 
which is also a consequence  o f  expression (5.15). 

Moreover ,  

(6.1.10) P.+t= P. + Z . ( X . -  P.) 

and 

(6. !. i 1) E,+, = [ (E ,  - tz~)-' + a~2]- ,  + cry. 

The last expression also follows from (5.13). 

6.2. Evolutionary Risk Parameter Model 

In the present sub-section we imagine that we have a sequence o f  risk parameters  
Yt, Y2, . . .  and corresponding  measurements  X~,X2, . . . .  The measurement  
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equations are given by 

ASSUMPTION I 

and 

ZEHNWIRTH 

X.[ Yo - Poisson (Y.) 

C[X,,  Xjl Y,, Yj] = O, , # j  

The system equations (that is, the equations indicating how the parameters 
evolve over time) are given by 

and 

ASSUMPTION 2 

E[Y.IYo_,]= Yo_, 

c[f.lvo-,]=~,., ( . . ~ ) .  
We also assume independence between the measurement and system "noises". 
That is, 

ASSUMPTION 3 

c [ x . ,  Y.+,l Y°]= o. 

Now, put E[ Y~] = yo, a constant, and write 

c,,+,~,, = II Y . ÷ , -  £,11 ~ 

and 

where in the present context, 

o . + ,  = II Y , , + , -  £,+,11 ~ 

9. = ~ . (Yo) .  

Applying the projection theorem to the decomposiUon (4.2) gives 

~.+,( Y.+,) = ~ . (  Y.+,)+ K.+,e.+, 

where now 

K.+, =(Y.+, .  e..,)He.+,ll :. 

In view of assumptions 2 and 3 

(Y.+, .ej)=(Y. .e ,);  j = O . l  . . . .  n 

whence. 

~ . (Y.+ , )  = ~ . (Y . ) .  



LINEAR FILTERING AND RECURSIVE CREDIBILITY ESTIMATION 

Similarly, in view of assumption l 

~ . ( x . + , )  = ~ . ( Y . + , ) .  

It fo l lows that. 

Y.+, = '~'. + K .+ ,  e.+, (6.2.1) 

where 

Consider the inner product 

(6.2 2) 

en+l = X n + I  -- Yn" 

(Y.+,, e .+,)= ( Y . + , -  ~' .+ ~'.. e,,+,) 

= ( Y . + , -  Y . ,e , ,+, )  

=(vo+ , -  ?o. vo+,- ? o + x ° + , -  9o+,> 

the second equality follows by noting that 

9 o . x o + , -  9o 

and the last equality follows by noting that 

< + , -  9o ± x. ,+,-  9"o+,. 

NOW, 

c°+,~.  = It go+,- Y.+ Y . -  9.112 

= C+l l  Y .+ , -  Y.IIL 

since 

~ , + , -  Y. ± v . -  9.. 

Hence, 

(6.2 3) C.+ll. = C . +  v.. 

Turning now to the computation of Jle.+,Jl 2 we have 

(6.2.4) lie.+, II = = II Y.+, - ¢'.11= + IIx.+, - Y.+, I] 2 

= C.+,i., + E[  Yo+i] 

= C.+q .  +Yo, 

the second equality following from assumptions 1 and 2. 
Application of (4.9) with Y.+t playing the role of Y gives 

(6.2 5) Co+, = C.+, l .  - K .+ , (  Y . ,  ,, e .÷,) .  

33 
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Combining equations (6.2.1) to (6.2.5) yields the Kalman filter 

~'.+, = ~'. + K . + t ( X . + , -  Y.) 

K.+, = C.+,l.( C.+q. + yo)-' 

--I - I  - I  C.+l = C.+q.  +yo 

(6.2.6) 

(6.2.7) 

(6.2.8) 

and 

(6.2.9) 

with initial conditions 

C . + t l .  = C .  -4- u.  

Yo=Yo and Cq0 = Uo. 

We point out again the connectton with the classical Kalman filter That is, if 
instead of assumption I we have: 

ASSUMPTION I 

X,I Y, ~ Normal ( Y,, Yo)- 

In addition to assumptions 2 and 3 we also assume 

ASSUMPTION 4 

Y.] Y.-i ~ Normal ( Y._,, u.). 

The same Kalman filter (6.2.6) to (6.2.9) is obtained. 
The prospective rating algorithm is given by 

P.+,=e.+zo(x.-p.)  (6.2.10) 

and 

(6.2.11) 

where again 

E.+, = {(E. -Yo)- '  + Yo'}-' +Yo 

Z n  = g n 

Although the two preceding models satisfy (5 12) we conclude by emphasizing 
that the general algorithms presented in Sections 4 and 5 may be apphed to any 
model and in particular the models considered by SUNDT (1981, 1983) satisfying 
the more general structure (5.10) and (5.1 I). 
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