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I .  I N T R O D U C T I O N  

This paper  considers a particular credibility model for the claim numbers Ni, 
N 2 , . . . ,  Nn , . . .  of  a single risk within a collective in successive periods 
1, 2 , . . . ,  n, . . . .  In the terminology of JEWELL (1975) the model Is an evolutionary 
credibility model, which means that the underlying risk parameter  A is allowed 
to vary in successive periods (the structure function is allowed to be time 
dependent).  Evolutionary credibility models for claim amounts have been studied 
by BUHLMANN (1969, pp. 164-165), GERBER and JONES (1975), JEWELL (1975, 
1976), TAYLOR (1975), SUNDT (1979, 1981, 1983) and KREMER (1982). Again in 
Jewell's terminology the considered model is on the other hand stationary, in the 
sense that the conditional distribution of N, given the underlying risk parameter  
does not vary with i. 

The computation of the credibility estimate of  Nn+t revolves the considerable 
labor of inverting an n x n covariance matrix (n is the number of  observations). 
The above mentioned papers have therefore typically looked for model structures 
for which this inversion is unnecessary and instead a recursive formula for the 
credibility forecast can be obtained. Typically nth order stationary a przorl 
sequences (e.g., ARMA (p, q)-processes) lead to an nth order recursive scheme. 
In this paper  we impose the restriction that the conditional distribution of N, is 
Poisson (which by the way leads to a model identical to the so called "doubly 
stochastic Poisson sequences" considered in the theory of stochastic point pro- 
cesses). What we gain is a recursive formula for the coefficients of  the credibility 
estimate (not for the estimate itself!) in case of  an arbitrary weakly stationary a 
prtort sequence. In addition to this central result the estimation of the structural 
parameters is considered in this case and some more special models are analyzed. 
Among them are EARMA-processes (which are positive-valued stationary 
sequences possessing exponentially distributed marginals and the same autocorre- 
lation structure as ARMA-processes) as a priori sequence and models which can 
be considered as (discrete) generalizations of  the P61ya process. 

* I t h a n k  the  ed i t o r  a n d  an  a n o n y m o u s  referee  for  v a l u a b l e  s u g g e s t i o n s  
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2 ALBRECHT 

2. D E F I N I T I O N  O F  THE M O D E L  A N D  BASIC PROPERTIES 

Let A, denote the risk parameter  in period t and let U , (A~, . . . ,  A, ) - - the  structure 
function of  the considered collective--denote the joint distribution function of 
A~, . . . ,  A,. We make the following assumptions: 

A S S U M P T I O N  I 

(I)  P ( N ,  = k , , . . . ,  N , = k , I { A , } ) =  lrl P ( N , = k ,  IA,). 

This means that the {N,} are conditionally independent given the {A,}. 

ASSUMPTION 2. The condmonal  distribution o f  N, given A, = h is a Poisson 
distnbunon 

hk~ 
(2) P( N, = k,]A, = A) - - -  e -~. 

- k , !  

It is Assumption 2 which creates the difference to the other above mentioned 
evolutionary models. The price we have to pay is the specification of the condi- 
tional distr ibution--which,  however, is very natural for claim number mode l s - -  
what we get on the other hand are more specific and useful results. 

Combining (1) and (2) we obtain the multivariate distribution of the claim 
numbers 

(3) P ( N ,  = k, . . . . .  N ~ =  k , )  . . . .  I " '  e-~,~ dU~(,X~ . . . .  X,).  
: o  , - I L k , !  J 

This, however, means that the sequence {N,},c~ is a "doubly stochastic Poisson 
sequence". Such sequences have been studied by GRANDELL (1971, 1972, 1976) 
as a special case of the doubly stochastic Poisson process, which itself can be 
considered as an evolutionary credibility model for claim numbers in continuous 
time. We will for practical purposes, however, consider only the discrete time 
model. A main implication of (3) is that it is possible to establish more properties 
of  the model than just the form of the conditional linear forecast of  N,+~ as in 
the usual credibility models. E.g., one can solve other statistical problems and 
one can give limit theorems for the process. For a lot of detailed results, cf. 
GRANDELL (1971, 1972, 1976) and SNYDER (1975). 

I f  we denote 

rE(A,)  = m,, Cov (A,, Aj) = r,j, 

(4) /iVar (A,) = r,, = r,, 

we obtain the corresponding moments of {N,} as 

~ E ( N , ) = m , ,  Cov ( N , , / ~ )  = r,j, t # j  
(5) tVar  (N,) = r, + m,. 
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From (2) we see that the marginal distributions of the process {N,} are mixed 
Poisson distributions 

f 
,~Ak 

(6) P(N, = k) = ~ e -^ dUA,(A). 
0 

This implies that P(N, = k) can be calculated for various mixing distributions 
UA,(A). For some recent results see ALBRECHT (1984). The multivariate counting 
distribution of the process is given by (3), but can alternatively be derived as 
follows. 

Let L~(st,...,sn) denote the Laplace functional of (A~ . . . . .  An) and let 
• ~ ( t j , . . . ,  t ,)  denote the probability generating functional of  ( N ~ , . . . ,  N,) .  

As e -*(~-') is the probability generating function of a Poisson variable with 
parameter  A, we obtain from (3) 

fo o loon (7) qb~(t, . . . . .  t.) . . . .  E[t~'IA,=A,]dU,,(A, . . . . .  X.) 

io o ioO  . . . .  e -*'~'-',) d U . ( X . . . . ,  X.) 

= L.A(I- t l , . . . ,  l -- t.). 

The multivariate counting distribution then is given by the relation 

( 8 )  P (  N ,  = k ,  . . . .  . N n  = k . )  = I ~k N 
ot ,° . . .ot , ' , , oo"  

We now come to the central problem of credibility, the calculation of the optimal 
linear forecast of N.+~ given the N~ . . . .  , N.. l f f . ( N ~ , . . . ,  N . ) =  ao+Z,"=~ a,N, 
denotes the linear forecast function, the parameters which make E{N,,+~- 
f,,(N~ . . . .  , N.)} 2 a minimum are determined in the following way (this is easily 
established by straightforward calculation, or as a special case from the general 
result of  JEWELL (1971, p. 15) or GRANDELL (1976, p. 128)). 

ao is given by a single equation which makes the forecast unbiased 

n n 

(9) ao = E(N.+t)- Y. a,E(N,)= m,,+,- ~_. a,m,. 
I--I I = l  

The remaining coefficients are given by the n x n system of linear equations 

(10) ~ Cov(N,,Nj)aj=Cov(N,,N,,+,), i = l , . . . , n  

or more specifically 

(11) a,m,+~ rva~=r,n+~, i = 1  . . . .  ,n. 

We note, that because of the identical expectation and covariance structure the 
optimal linear forecast of  N,+~ given the N ~ , . . . ,  N,  equals the optimal linear 
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forecast of A.+) = E[N,+~IAn+)] given N ) , . . . ,  Nn. In turn this means that it is 
also identical to the optimal linear forecast of Var(Nn+t[A,+~)=A,+) given 
N t , . . . ,  Nn. 

We now consider in detail a rather general class of doubly stochastic Poisson 
sequences, which turns out to have nice properties with respect to the calculation 
of the credibility forecast and the estimation of the structural parameters. 

3. WEAKLY STATIONARY A PRIORI SEQUENCES 

We require that {A.}.c~ is a weakly stationary sequence characterized by the 
following moment structure: 

(12) E(A,) = m for all l ~l~l 

(13) Cov (A,, Aj) = rl,_jl for all t,j ~ 

The main result m connection with this special model IS that we are able to 
simplify the calculation of the credibility forecast. Whereas the general case only 
allows that the inverse of C(n)= (Coy (N,, Nj)),=~..n can be calculated recur- 
sively we are able to give a recursive formula for the optimal coefficients a,, 
however, not a recursive formula for the credibility forecast. 

Let now 

(14) f~(N,  . . . .  ,Nn)=ao(n)+ ~ a,(n)N, 

denote the optimal linear forecast of N,÷~ given N~ , . . . ,  N, and 

(15) C(n)  = (Cov  (N,, Nj)) ,a=, . . ,  = (cv) 

denote the covanance matrix of (N~ . . . . .  Nn). 
We have 

roA- m i = j ,  
(16) c,j = 

Lrl,_ A t #j .  

Let 

(17) 

(18) 

(19) 

and 

(20) ~(n) = ( r , , . . . ,  r,)'. 

From (10) we obtain that the optimal coefficients of the credibility forecast are 
given by 

(21) a(n) = C-'(n)~(n).  

a(n)=(at(n),...,an(n))' 

d(n)=(a,(n),...,al(n))' 

r(n) = ( r , , . . . ,  r,)' 
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The following lemma gives the form of  the inverse of  a part i t ioned matrix. 

LEMMA I. Let the s y m m e m c  (n, n) m a m x  C be decomposed to 

u l o ] '  

where D is o f  order (n - I, n - I). Then we have 

(22) c- '=  -sV 
I ' 

- v D -~ + ~  v v  

where 

v=D-lu 

s = c I i - v ' u  = cl i - u ' p - I  u. 

The following lemma gives some useful elementary properties of  the covariance 
matrix C(n) .  

LEMMA 2. 
1. C ( n +  1) can for  n >I 1 be decomposed in the following way: 

(23) C(n+l)=fr°+m l r(n)') 
\ r(n) C(n)]" 

2, 

(24) C ( n ) ~ ( n )  = r(n) .  

This imphes 
3. 

(25) C - I ( n ) r ( n )  = a(n) .  

We now define (the a,(n)  are the coefficients o f  the 
f*n( N, ,  . . , N . ) )  

credibility forecast 

(26) s ( n )  = r o +  m - r (n) '~ (n)  = r o +  m --  ~ r , a . _ , + l ( n ) ,  n >! 1 
ILl 

(27) k ( n ) = r . + , - r ( n ) ' a ( n ) = r . + , -  ~ r , a , ( n ) ,  n > ~ l .  

REMARK. s ( n )  = E { N . + , - f ~ ( N t  . . . .  Nn)} 2, i.e., the minimum mean square 
error o f  a linear forecast o f  Nn+~, given N~ . . . .  , N.. 
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We now come to the central result. 

THEOREM. For the coefficients ao(n+ 1), a(n+ 1) of the credzbility forecast 
fn+~(NI , . . . ,  N,+~) the following relations are valid (n >! 1): 

k(n)~ , . 
(28) ao(n + 1)= I - s ~ n ) J a o t n )  

k(n)  
(29) a , (n+ I) = s(n) 

k(n) 
(30) a , ( n + l ) = a , _ , ( n ) - s ~ a n _ , + 2 ( n ) ,  2 ~ . i ~ < n + l .  

The starting values are ao(i) = m(l  - rl/ ( ro + m ) ) and al(1) = rl/ ( ro + m ). 

REMARK. (30) can alternatively be written as 

k(n) 
(a2(n + !) . . . .  , an+,(n + 1))'= a(n)-s~ ,i(n). (31) 

PROOF. 

(32) a ( n +  ! )= C - ' ( n +  l ) i (n+  1). 

From the decomposition (23) of C ( n +  1), we obtain in the notation of lemma 
1, using (25): 

v = C-J(n)r(n)  = ~i(n) 

S = (ro+ m ) - l i ( n ) ' r ( n )  = s(n). 

The following partitioned form of C-~(n + l) results: 

C-'(n+l)=l_s_~__n)a(n) 

1 
- - -  ~i(n)' 

s(n) 

C-~(n)+ - L  ,i(n),i(n)' s(n) 
From (32), the relations (29) and (30) easily follow. Then (28) is obtained from 
(9). 

COROLLARY. For the mean square error s(n) of  the credibility forecast the 
following recur~ive formula is valid: 

k(n) 2 rl 2 
(33) s ( n + l ) = s ( n ) ,  s (n ) '  n~>l' s (1 )=ro+m ro+m 

PROOF. From (26) 

s(n + l ) =  ro+ m -  r,a.+2_,(n + I) - r.+la,(n + I); 
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using (29), (30) this simplifies to 

{ -s~n)k(n) } r.+, k (n)  r o + m -  Y_ r, a,+,_,(n) a,(n) - 
S (  tl ) " 

Using (26), (27) this in turn simplifies to (33). 
The theorem allows recursive calculation of the credibility forecast of Nn+t in 

case of a known risk structure. To obtain an ernp~rical credibility forecast, we 
have to estimate the unknov~n parameters, which here are: m, ro, rt, r2 , . . . .  

The estimation problem exhibits the second important property of the model 
considered in this section. If we assume that the a priori sequence {A,} is weakly 
stationary, then we obtain from (5), that the observable sequence {N,} is a weakly 
stationary one, too. We then have the possibility to apply results from the 
well-developed theory of the statistical analysis of weakly stationary time series, 
see e.g., HANNAN (1960, Chapters II-IV) or DooB (1953, Chapter X). For example 
a spectral analysis of the sequence {N,} is possible. Some results in this direction 
can be found m G~NDELL (1976, Chapter 7.2). We will here, however, confine 
to the above mentioned estimation problem. Up to now we have only considered 
the claim number sequence of a single risk, observed for n years. We now assume 
that we observe a collective of K independent risks, each having the same 
probability law of its claim number sequence. 

Let 

(34) /~, = number of claims of  risk i in year j 

i = l , . . . , K ; j = l , . . . , n .  

From standard results of time series analysis, e.g., HANNAN (1960, pp. 30-33), 
we obtain the following natural estimators of the above mentioned parameters. 

I ~ N~, (35) rh = - ~  ,.J=, 

i K n - - k  

(36) ~ k - K ( n _ k ) _ l  ~ • (N~,-rfi)(N~+k.,-rh), fork>El 
I - - I  j - - ]  

' i (37) Var (N~,) = Kn----~-il ,=, ~=, 

A natural estimate for ro then is 

(N,,-  r~)2- r~. (38) r°= K n -  1 ,=l j=~ 

As pointed out by the referee the expected value of (37) is given by 

1 I " - t  
r j ( n - j ) ,  Var(N~,) Kn - I n ;=l 

which implies a slight bias. 
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The theorem shows, how the coefficients of the credibility forecasts can be 
calculated recurslvely in the case of an arbitrary stationary a priort sequence. It 
is, however, not possible to develop a recursive formula for the credibility forecast 
itself for the general case. It would be interesting to examine special classes of 
stationary a prtort sequences which give rise to recursive formulae for the credibil- 
ity forecast Itself. For a more general type ofevolut lonary models KREMER (1982) 
has considered ARMA (p, q) processes as a special class of stationary a priori 
sequences. In the model of this paper the a priori sequences have to be positive- 
valued to be admissible. Therefore the ARMA (p, q) processes are not admissible 
m general. However Lewis and a number of co-authors (see LAWRENCE and 
LEWIS (1980) for the most recent results) have developed models for positive- 
valued staUonary time series {X,},~r,~ which, being in general rather distinct from 
the ARMA-models ,  possess the same autocorrelation structure as the ARMA- 
processes. These processes are called EARMA (p, q)-processes, the E stemming 
from the additional feature of all these processes: they have an exponential 
marginal distributmn ! 

The results of KREMER (1982) cannot be translated into the present context 
for several reasons, one being that the form of the linear regressions of the 
EARMA-processes have not yet been established. Another drawback of the 
EARMA-processes is that the statistical analysis of  these processes is not yet well 
developed in general, contrary to the ARMA-processes. In the following, we 
consider some examples. 

EXAMPLE 1. EAR ( I )-process as a priori sequence. A stationary version of the 
first order autoregresswe model with exponential marginals with "fimte past" 
can be obtained as follows (cf. GAVER and LEWIS (1980, p. 732): 

{A~ =pA,,_~+lnE~, n ~ 2  
(39) Ai = pEo + Ii Ei, (0~< p < 1) 

where { I , } . ~  is a sequence of iJ.d. Bernoulli-variables with P(In = 0 ) = p  and 
{E~}.~o is an independent sequence of i.i.d, exponentially distributed variables 
with parameter  A. The resulting sequence is a first order Markov process, the A, 
are exponenually distributed with parameter A and can alternatively be obtained 
in the usual first-order autoregresswe form A~ = pA, , - t+en  with a suitable {e,}. 
For the second order structure we obtain 

(40) { m = E ( A . ) = I / A ,  ro=Var  (A.)  = I/A 2 
r k = C o v ( A . , A . + k ) = p k / A 2 = p k r o ,  k~> I 

From (40) we see that the rk fulfill the property (10) of  SUNDT (1981, p. 7), which 
in our context reads: 

(41) r,+~_j=p,.r,w for a l l i ~ j ,  f o r a l l j ~  >1 .  

Clearly p, = P  for all i and from Sundt's result (I I) we obtain the following 
recurswe formula for the credibility forecast. 
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As (notation as in SUNDT (1981)) q~, = E{Var (N,]A,)} = E(A,)  = l/A, we define 

1 1 
(42) % A s ( n - l ) '  n~>2; Yt I + I / A  

(43) 

and obtain 

(44) 

X= 202 +( I -P2) ( I +~) 

7,+i = (X - 3',,P2) -I 

f f * ( N ,  . . . . .  N,)  = p [ ( I - % ) N , + y , , f * _ , ( N , , . . . ,  N ,_ , ) ]+  ( I - p ) A  
(45) [ fo=  I/A. 

This ~s the desired recursive formula for the credibility forecast. 
It is interesting to note that the regressions of this a pnon sequence are all 

linear, precisely 

(46) E ( A , , . , I A , , . . . ,  A,,) = E(A,+, IA,)  = pA,  + (1 - p)/A. 

However, we have not been able to show that the regressions of  the a postenorl 
process {N,} are linear too, i.e., the credibility forecast in the best forecast of 
N,+t based on N ~ , . . . ,  N,. 

We now come to the estimation of the unknown parameters A and p and 
consider again a collective of K independent risks each having the same law of 
its claim number  sequence. Let N~, be defined as in (34); noticing that E(N,)  = 1/A 
and r~ = Coy (N,, N,+~)= p/A 2 we obtain from (35) and (36) the following (con- 
sistent) natural estimators of  A and p: 

/ '  i N,, (47) i = l  ~ n  ,.,=, 

2 I2 (E,- i - ' ) (E+, . , -X- ' ) .  (48) t3 -  K ( n -  1 ) -  I ,=l j=l 

A drawback of the model is, that all correlations p~ = Corr (A,, A,..k) are positive. 
Indeed, one can show that there does not exist an autoregresslve sequence 
A , = p A , _ ~ + e ,  possessstng exponentially distributed marginals and p < 0 !  
However, GAVER and LEWIS (1980, p 741) present models of  similar autocorrela- 
tlon structure and negative correlation, which still possess the property of  having 
an exponential marginal distribution. GAVER and LEWIS (1980, pp. 736-737) 
consider also an autoregresslve process of first order with a gamma marginal 
distribution and a similar autocorrelation structure, the GAR (l)-process.  

EXAM PLE 2. E M A  ( 1 ) - p r o c e s s  as a priori sequence. A first-order moving average 
model with exponential marginal distribution, was considered by LAWRANCE 
and LEwis (1977) and can be obtained as follows (forward formulation) 

(49) A, =/3E, + I,e,+K, (0~</3 <~ 1), 
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where the {l.}.~l are i.i.d. Bernoulli variables with P(I. = 1) = I - /3  and {e.}.-~ 
Is an independent sequence of i.i.d, exponentially distributed (parameter A) 
random variables. The process is not Markovian and the second order structure 
is given by 

(50) 

m=E(A.)=I/A, to= Var (A.) = l/;t 2 

r, = C o v  (A., A.+l) =/3(1 --/3)r o 

rk=0 for k ~ 2  

To obtain a recursive formula for the 
in SUNDT (1981, p. 6). 

We obtain the following recursive relation for the estimation error s(n): 

(51) 

credibility forecast we can use Theorem 2 

1 ( I )  /32(1-/3)i, n>~2 s(n)=~ I+ Z ~ ' s ( . - !  

l(  l) /3~(,-/3)~ s(l) =~ I+~- ,~+~ 

and the following recurslve formula for the credibility forecast 

I 
., N._,)+-~, f /3(1-/3) N. /3(1-/3) ~ , f ~ ( N i , . . . ,  Nn) h2s(n-1) ~ ) j ~ _ , t N , , . .  

(52) 
f~ (N, )  = 1 /3(1 -/3_______) .~ fl(I-/3_______) N, 

A (1 +A)A I+A " 

n~>2 

A natural estimator of the unknown parameter/3 (A is estimated as under (47)) 
is given by 

1 K n - I  
(53) /3 = ~ + ~  1 - 4 ~  2 (Xjl ~ - I ) ( x j +  1 i - ~ - I ) .  

K(n-i)-l,~t_ j - t  - 

A drawback of the model is that the first-order autocorrelation p~ = /3 (1 - /3 )  is 
always nonnegative (one can show in addition, that it is always bounded from 
above by 1/4). 

The regressions of the a pnon process are given by 

1 [  l -2fl+ fl e_A(i_/3)A /~] 
(54) E(A.+, IA.)=-  ~ /3AA.+ 1-13 1- /3  

and are therefore not linear. 

EXAMPLE 3. EARMA (1, 1) process as a priori sequence. A first order mixed 
autoregressive-moving average process with an exponential marginal distribution 
was considered by JAcoas  and LEWIS (1977) and can be obtained as follows 
("backward formulation"). 



E V O L U T I O N A R Y  C R E D I B I L I T Y  M O D E L  I 1 

t 
A . = / 3 e . + U . A . _ i  (0<~fl<~l) ( n ~ l )  

(55) A . = p A . _ , +  V.e. ( 0 ~ < p ~  < I) , 

mo = eo 

where { U,} and { V,} are independent  sequences of  independent  Bernoulli vari- 
ables with P( U, = 0) =/3, P(  V, = 0) = p and {e,} is an independent  sequence o f  
i.i.d, exponential ly distributed (parameter  A) random variables. The resulting 
process {A,} is stat ionary and in general non Markovian.  The second order  
structure o f  the process is given by 

m = E ( A , )  = l/A, roVar (A, )  = I / A  2 

(56) r, = C o v  (A., A.+, ) = ro(I - /3)[/3 + p( l  - 2/3)] 

r k = p k - l r l "  

Again we can apply Theorem 2 of  SUNDT (1981) to obtain a recurslve formula 
for the credibility forecast. The result is as follows: 

s(n) = (ro+ rn) + p2(ro+ m) - 2pr, [p ( ro+  m) - r,] 2, 
s ( n - I )  

2 (57) rl 
s ( I ) = ( r o + m ) - - -  

ro+m 

(58) 

n ~ 2  

p ( r o + m ) - r l )  
f . * ( N , , . . . , N n ) =  p s ( n - I )  N. 

p(ro+ m) - rl 
s~n--]-~ f~_,(N,,...,N~_,)+m(l-p), 

= + N i .  . f~(Ni)  m 1 ro+ r o + m  

n ~ 2  

4. S O M E  S P E C I A L  M O D E L S  

We first treat two models which can be considered as generalizations of  the 
P61ya-process in discrete time. The P61ya-process is a mixed Poisson process 
with the gamma  distribution as mixing distribution. 

Model A. A natural generalization, which was already considered by BATES 
and NEYMAN (1952), is tO assume 

(59) A s = a s. A, 

where A follows a gamma distribution with parameters  b and p. The a priori 
moments  are given by 

p _e_ (60)  E(A,)  = a ,~.  Var (A,) = a, 2 , Cov (A,, Aj) = a,aj b2. 
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SNYDER (1975, p. 288) considers the cont inuous  time analogue,  which he terms 
" inhomogeneous  P61ya process".  

Model A seems to be the only known double  stochastic Poisson sequence for 
which the multivariate count ing distribution can be given explicitly. Bates and 
Neyman  showed that 

( ;)-" '-r l o, (61) P ( N ~ = n , , . .  N k = n ~ ) =  1+ nl 
' " n ,=t n , ! L l + a / b J  ' 

where a = ~ = l  a, and n : E ~ : l  n,. 
Comparing (61) with JOHNSON and KOTZ (1969, p. 292, (32)) shows, that the 

multivariate counting distribution of the "discrete inhomogeneous P61ya process" 
is just a m u l t w a n a t e  negat ive bmomta l  d is t r ibut ion ( N = p ,  P, = a , / b  in their 
notation). 

JOHNSON and KOTZ (1969, p. 295) show also, that in case of a multivariate 
negative binomial distribution the regressions are always linear. Especially we 
obtain 

an+~ + a.+, ~ N, (62) E ( N n + ~ N ~ ' " " N n ) = P b + a  b + a  

b E(  .+~, b + a ~ N , .  = N ~+ a,+~ 
b + a  

This implies that in case o f  the "discrete inhomogeneous  P61ya process" the 
opt imum forecast function (with respect to the mean square error) is identical 
to the best hnear forecast function (the credibility forecast). 

I f  we want to calculate the credibihty forecast with the method of  chapter  I 
(equations (9) and (10)), we can apply a result of  JEWELL (1976, pp. 16-17), 
because Coy  (N,, Nj) can be factored into a,. ( (p/b2)aj) .  

It is interesting to note that already BUHLMANN (1969, pp. 164-165) considered 
a similar model.  He considered a sequence of  condit ionally Poisson distributed 
claim variables {X ,}  with the property 

(63) E(x°le)=a..O, 

where a,  = n + c, c is a constant  independent  o f  n and 0 follows a gamma 
distribution. 

In addit ion to Buhlmann ' s  results we show m the following how the structural 
parameters  (especially c) can be estimated. 

Assume that we have given a sample of  size m of  observations of  (N~ . . . .  , Nk). 
Let 

n , j= t t h  observation o f  N0, t =  l , . .  . ,  m ; j =  l, . ,k~ 

Let 

n, = ~ no, 5j = n,j, n = n,, r = ½ k ( k +  l). 
J ~ l  J= ]  J= l  
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Then the tog-likelihood-function of the observations is given by 

( ; )m  (64) Iog L =  - ( n  +pm) log I + r  k.__.__c + ~ ~ l o g ( p - I + j )  
~ l . / = l  

• 

The likehhood equations then are given by 

(65) 01ogL ( -~ ) ~ ~ 1 ~ = - m l o g  I+  r k--'-'---S + - - - 0  
ap ,=1 ~=t p -  1 + j  

(66) Olog_____L_-k(n+pm) ÷ ~ fi~ =0  
ac b + r + k c  j ~ j + c  

(67) O log L _  (n + pm)(r+ _-n=o" 
Ob b2+b(r+kc)  b 

If fi, ~, /~ denote the maximum likelihood estimators of p, c, b, then from (67) 
we obtain 

(68) g=E (r+ k~)~ 
n 

Substituting (68) in (66), we obtain that ~ is the solution of 

(69) ~ ~'~ = 
n k  

j = , j + ~  (r+k~)  

Substituting (69) in (65), we obtain that/~ is the solution of 

- m log I + . 
, = l j = l p - l + J  

Model B Another way to obtain a generalization of the P61ya process is to 
replace the gamma mixing distribution by a multivariate analogue, a multivariate 
gamma distribution for (A~ . . . . .  An). 

A natural way to obtain a multivariate gamma distribution, more precisely a 
multivariate x2-distributlon is the following, cf. also JOHNSON and Korz  (1972, 
chapter 40.3) or KRISHNAIAH and RAO (1961). The x2-distribution with n degrees 
of freedom is a special gamma distribution and is the distribution of ~ , ~  X, 2, 
where the X, are independent and identically N(0, l)-distributed (normal distri- 
bution with mean 0 and variance 1). A natural multivariate analogue is obtained 
by starting with rn independent and identically multivariate normal distributed 
random vectors Y, = ( Y , t , . . . ,  Y,n), i = 1 . . . .  , rn. Precisely ¥, follows a N(0, ~) 
distribution, where X = (E v) is the variance covariance matrix of ( 'I~1, • • •, Y,, 
and we assume that E,, = 1. 
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The a priori vector  

(71) (A, . . . . .  A , ) = ( ~  y 2 , . . . ,  ~ y,2~ 
\ I = l  I - - I  / 

then follows a distribution, which can be considered as a multivariate x2-distribu- 
tion. Especially each A, is xZ-distributed with n degrees of  freedom• The Laplace 
functional  L'~(s, . . . .  , s ,)  = E[e  -Is,A,] is given by 

(72) A L ,  ( s t , . . . ,  s , )  = I/+ 2s~l -"/2, 
where sa is a diagonal  matrix with diagonal elements s ~ , . . . , s , .  From (7) it 
follows that the probabil i ty generating functional  of  N ~ , . . . ,  N,  is given by 

(73) @y( t ,  . . . .  , t ,)  = [! +2 (1  - ta)~[ 

where l - t a  is a diagonal matrix with diagonal  elements ( 1 -  t t , . . . ,  I - t , ) .  
A simple special case is obta ined when we assume a first-order correlat ion for 

the Y,j, i.e., ~ is of  the form 

I 

r 

O. 

r o . . . . . . . . . . . .  0 /  

I r " . 
" .  

r .  l r 
• ° 

• • • • . 

• . 0 

" .  " . r ' .  I " . r  

. . . . . . . . .  i : ' . 0  r I/ 

We then obtain the following second order  recursive relations for ~ , ( h ,  • ••,  t ,)  = 
I! + 2(1 - t~)~[: 

~P,+2(h,-- , t,+2) = ( 3 - 2 / , + 2 ) ~ p , + , ( t , , . . . ,  t,,+l) 

( 7 4 )  - 4 ( t , + 2 - 1 ) ( t n + l - l ) r 2 ~ , ( t t , • • • , t , )  f o r n / > 0  

~o,(/t) = ( 3 -  2t,), Co(to) = I. 

probabil i ty generating functional in this special case then is given by The 
~ ( t , , . • . ,  t .) = ~ ( t , , . . . ,  t .) -'~/2. 

We obtain that 

dk~l(t~) _ 2k F ( ( m / 2 ) +  k) 
(75) Ot~ r ( m / 2 )  

From (8) we obtain 

(76) 

tpl( tl) -((m/2)+k). 

1 ok~l ( t , )  [ 
P ( N , =  k) k! Ott k , , - o -  k!3 °"/2)+' r ( m / 2 )  

2 k F ( ( m / 2 ) + k )  

This result is identical (for  t = 1 ) with a result of  ALBRECHT (1984), who calulated 
P ( N ( t )  = n) for  a mixed Poisson process N ( t )  with a x2-mixing distribution. 
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In addit ion we obtain after some calculation that 

(77) otk'ot~ 2 - ( - l ) k '  r (m/2) ~o  

x {[(4 - 4r  2) t2 + 4r 2 - 6] k' }(k'-k) 

where (k) denotes  the kth derivative with respect to t2. 
We obtain after some calculation 

(78) P ( N , = k ,  S 2 = k 2 )  = 1 l aU'+k~-dP2(t,,t2) ,,~,.-o-- (--l)k 
' k,) k2! Ot~'Ot2 k: . k , ! k z !F(m/2 )  

x ~ ( ~ )  ( _ , ) k  r ( ( m / 2 ) + k , + k ) r ( k , + l )  
k~O F ( k l -  k2+ k +  1) 

x (9 - 4r 2) -((m/z)+k,+k)(4rZ _ 6)2k+k,-k~( 4 _ 4r z) k2-k" 

Even in the simple first-order case we have not been able to develop an expression 
for E ( N . + t I N t  . . . . .  N . ) ,  the "bes t"  estimate o f  N.+~ given N t . . . . .  N . .  

As the second-order  structure o f  the sequence N.  is given by 

E ( N , ) = m ,  Var (N,)  = 3m, 

(79) rl = Cov ( N,, N,+ l) = 2mr 2 

r k = C o v ( N , , N , + ~ ) = O ,  k>~2 

we can apply  Theorem 2 of  SUNDT (1981) to obtain a recurslve formula  for the 
credibility forecast. The result is as follows: 

(80) 

(8~) 

4 m 2  r 4 
s ( n ) = 3 m  n>~2 

s ( n -  l ) '  

4 
s ( l )  = 3 m - -  mr 4 

3 

f ~ . ( N , , . . . , N . )  s ( n -  ) N .  _ , ( N , , . . . , N . _ , ) ) + m ,  

f ~ l ( N i ) =  m ( I - - ~ r  ) + s r  N, 

n ~ 2  

Model C (a priori sequence with independent  increments).  I f  we assume that 
the a priori sequence (Ao-~ 0, A~, A2 . . . .  } possesses independent  increments,  this 
means - -c f .  D o o a  ( 1953, p. 96) - - tha t  for all n >I 3 and i~ < t2 < • • - < z~ the random 
variables A , : - A , , , . . . , A , , - A  ..... are mutual ly independent .  An addit ional 
assumption is that E ( A , ) =  m; let V, = V a r  (A,), then we obtain for t < j  

Coy (A,, Aj) = C o v  (A, - Ao, A~ - A, + A,) 

= V a r  (A,) + C o v  ( A , - A o ,  Aj - A , )  

= Var (A,), 
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i.e., in general 

(82) Cov (A,, Aj) = Var (Am,n(,, .1)).  

A credibility model with the above moment structure for the a priori variables 
was already considered by GERBER and JONES (1975, pp. 98-99),  they show that 
the credibility forecast ./'~(N~ . . . .  , N, )  of N,+~ is of the "updating type" 

(83) f ~ ( N , , . . . ,  N . ) =  (1 -Z . ) f~_ , (N ,  . . . . .  N._ , )+Z .N . .  

The weights can be calculated recursively, we have 

Vi 
Z I = 

m +  V~ 

V . -  Vn_, + mZ._, 
z . -  

V , -  V,_l+mZ,_l+m" 

Additional models for the a pnon sequence are considered in GRANDELL (1972) 
(e.g., {Aj} is in the form of a linear regression model, pp. 106-108) and GRANDELL 
(1976) (e.g. {Aj} ts a stationary alternating Markov chain, pp 153-157). 
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