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PREMIUM CALCULATION FOR DEDUCTIBLE POLICIES WITH
AN AGGREGATE LIMIT

By THoMAs Mack™

Miinchener Riickversicherungs-Gesellschaft, Munich

ABSTRACT

In Industrial Fire insurance an aggregate limit for the amount retained by the
policyholder under a deductible policy has been agreed upon more frequently
in recent times. This agreement is equivalent to a stop-loss cover on the retained
loss amount. For the Poisson-lognormal model the corresponding stop-loss net
premium is calculated using various methods (normal power, translated gamma,
various discretisations) and the methods are compared. Finally, the influence of
the model parameters is examined and 1t is demonstrated how a variety of
parameter value combinations can be reduced to only a few rating curves.

KEYWORDS

Deductibles, aggregate limit, stop-loss premium, Industrial Fire insurance,
Poisson-lognormal model.

l. INTRODUCTION

On a number of markets the practice of adding an aggregate limit to an Industrial
Fire insurance policy with a deductible has increased in recent times. An aggregate
limit means that the maximum accumulated amount of losses to be retained by
the policyholder is limited for each year; the insurer then takes over payment
should this maximum be exceeded. The advantage for the policyholder is quite
obvious: the risk retained under the deductible is limited, not only in terms of
each loss event but also on an annual basis. A policy with a deductible but no
aggregate limit, however, may lead to an unexpectedly high retained aggregate
loss amount if the policyholder is confronted with an accumulation of loss events.
For the insurer, the calculation of deductible rebates, difficult enough as it is,
becomes even more complicated With the aggregate limit, the policyholder is
granted in addition a stop-loss cover on his retained losses, which leads to a
reduction in the normal deductible rebate. If the size of a loss is independent of
the number of losses, the normal deductible rebate depends solely on the distribu-
tion of the loss amounts, whereas when an aggregate limit 1s established, the
distribution of the annual number of losses has to be considered too. Moreover,
the risk of fluctuation, which in connection with deductibles works against the
insurer anyway (cf. STerk (1979), MAck (1980, 1983)), is increased even further
by an aggregate limit.

* The author would like to thank Dieter Amdt for carrying out the considerable work of pro-
gramming
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Intheory, there is no problem involved in developing a formula for the reduction
in the deductible rebate resulting from the aggregate himit: the formula for the
stop-loss net premium (i.e., the loss expectancy of the stop-loss cover) may be
applied without further ado to the distribution of the aggregate retained losses.
But the computation itself is a problem, as it 1s a well-known fact that only in
rare cases a closed analytical expression can be given for the distribution of
aggregate losses. In Industrial Fire insurance there is the additional problem that
the distributions of loss frequency and loss amounts are not known precisely
enough (at least for the individual risk to be rated), and rough estimates for some
parameters of these distributions are the best we have. It is therefore necessary
to use model assumptions that are flexible and cover a broad spectrum of realistic
possibilities.

This paper follows the assumption that the distribution of the annual number
of losses is Poisson and that the distribution of the loss amounts is lognormal.

It is widely accepted that the Poisson distribution 1s realistic for the number
of losses in Industrial Fire portfolios. Also the validity of the lognormal model
for the loss amounts has been demonstrated on several occasions in the past
(e.g., BENCKERT (1962), FERRARA (1971), STRAUSS (1975)), and in the field of
Industrial Fire in particular.

Generally these distributions cannot immediately be transferred to single risks
due to the influence of a big fire on the loss distributions. But a policy for which
an aggregate limit is agreed is usually so large that it can be considered as a
small portfolio. Therefore the application of the Poisson-lognormal model seems
to be an acceptable approximation.

The information available in insurance practice on the loss distribution of the
risk to be rated consists for the most part of only the net premium and no more.
Therefore in order to estimate the two parameters of the lognormal distribution,
additional information is necessary. In this paper it is assumed that the normal
deductible rebate is also known, i.e., the reduction in the loss expectancy due to
the deductible without the aggregate limit being taken into account. But the
calculation of deductible rebates will not be discussed in any further detail as
this is dealt with excellently in STERK (1979, p. 180ff). Should the normal deduct-
ible rebate not be known, then use can be made of the results of BENCKERT
(1962), FERRARA (1971) and STRAUSS (1975), where for one of the two parameters
a relatively small range of values was established that is independent of the
monetary unit and thus of currency, inflation, etc.

If the mean loss amount, the net premium for full insurance cover, the deduct-
ible amount and the corresponding deductible rebate are known, the parameters
of the Poisson-lognormal model are determined in full (mean number of
losses = net premium/mean loss amount). And in practice these figures are on
hand as a rule or they can at least be estimated with a sufficient degree of accuracy
by the underwriter. With these figures, the distribution of aggregate losses is
determined for the policyholder’s retained amount under the deductible before
accounting for the aggregate limit. Then for the calculation of the stop-loss net
premium, defined by the aggregate limit on this aggregate retained loss, three
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different ways of approximating the stop-loss net premium are used:

* The “normal power” and “‘translated gamma’ methods based on an analytical
approximation of the distribution of aggregate losses. These procedures are
extremely simple to handle and require no programming. Up to now, however,
little 1s known of the quality of the results in such cases as the one here with
a rather low mean number of losses.

¢ The method of approximating the loss amount distribution by means of very
simple discrete distributions (one, two and three point distributions) for which
the stop-loss net premium can be calculated explicitly and simply. Due to the
limitation of the amount of each loss by the deductible these methods turn out
to give excellent results.

* The recursive procedure for arithmetic distributions, first described by PANJER
(1980); the required discretisation follows the ‘‘matching moments’ method
developed by GERBER (1982). This procedure produces results that may be as
exact as required depending on the degree of discretisation.

The aim of these comparative calculations is not only to check the quality of

these procedures, but first and foremost to find a procedure which is as simple

as possible and which at the same time produces acceptable exactness. In addition,
the final section investigates the influence of each of the model parameters and
suggests a procedure for reducing the large number of possible combinations to

a few special cases in order to derive simple rating rules for underwriters.

2. PROBLEM AND NOTATIONS
Let the following data be known for a given risk:

b =net premium (expected value of the aggregate losses) for full insurance
cover

¢ =mean loss amount per loss event
a = deductible amount

r(a) = (net) deductible rebate = reduction in the net premium resulting from
the deductible, 0<r(a)<1

z=annual aggregate limit for the accumulated retained losses under the
deductible; z is often expressed as a multiple z=ka of the deductible
amount, e.g., k =3.

The expected value of the aggregate retained losses under the deductible before
accounting for the aggregate hmit is then given by r(a)b. The problem is to find
the expected value r(a, z)b of the aggregate retained losses considering the
aggregate limit z. With 1—-[r(a, z)/r(a)] we thus obtain the proportion by which
the deductible rebate r(a) is to be reduced as a resuit of the additional aggregate
limit.

The following random variables are considered.

X =loss amount per loss event
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N = number of losses per year (assumed to be independent of X)
X, = retained loss amount (per loss event) under deductible a

_{X if X=<a
a if X>a

S, = aggregate retained losses (per year) under deductible a

0 ifN=0

N
2 (X,), ifN>0
i=]

where (X,), denotes the retained amount of the ith loss

S, . = aggregate retained losses (per year) under deductible a and aggregate
limit z
{S,, if S,=z

z if §,>z

With the given data, the following relationships exist

b=E(N)E(X)
c=E(X)
r(a)b=E(S,) = E(N)E(X,)
(@S _E(X)
b E(X)

Then E(S,.) = r(a, z)b is to be calculated under the assumption that N is subject
to a Poisson distribution and X to a lognormal distribution, i.e., (with ® denoting
the standard normal distnibution function)

F(x)=p(sz)=d>(—lm;—“) for 0 < x <,
, 1 ) |nx—u)2)
=F = -3 ,
/) (x) J27ox exp( ( o

A
p(N=t)=Fe'* fori=0,1,2,....

The parameter A is given by
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and the parameters u and o can be deduced from the values for a, r(a) and ¢
with the aid of the formulae
c=E(X)=exp (u+30%),

r(a) =E_(lk—){,[: xf(x) dx +a(l —F(a))}

R )

(cf. STERK 1979, p. 234). For this purpose it is convenient to introduce

t1=—.
C

Then the equation for r(a) can be rewritten as

r(a)= <1>(1"7'—§) +:(1 —¢('“7'+‘—2’)).

This equation has a unique solution o (given ¢ and r(a)) because the right-hand
side is a strictly increasing function of o. Parameter u is thus replaced with ¢
Besides z we now have to work with the three model parameters ¢, o and A.

Should it happen that the deductible rebate r(a) is not known, it may be
possible to choose the parameter value of o from the interval [2, 2.5]in accordance
with the results of BENCKERT (1962), FERRARA (1971) and STRAUSS (1975).

If E(S,—z)" denotes the stop-loss net premium with priority (stop-loss attach-
ment point) z on the aggregate retained losses S, i.c.,

E(Sa - Z)+ = E(Sa) - E(Sa,z)’
the required reduction in the deductible rebate comes to
_r(az) E(S,-2)*
r(a) E(S,)

This expression, i.e., the stop-loss net premium measured as a fraction of the
mean aggregate retained losses without an aggregate limit, will be called “relative
stop-loss net premium” in the following discussion. Similarly, the value

i.e., the priority expressed as a multiple of the deductible amount, is referred to
as ‘‘relative priority’.

The curve of values of the relative stop-loss net premium as a function of the
relative priority is called “‘stop-loss curve”; it begins at point (0; 1), is degressively
and strictly decreasing (convex) and runs to point (c0; 0). The “relevant area” is
that part of the curve in which the relative stop-loss net premium amounts to
between 50% and 5% as in practice the majority of cases occur in this range.
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3. CALCULATION METHODS

As the distribution of the aggregate retained losses S,, which is required for an
exact calculation of the stop-loss net premium, cannot be given in closed form,
various approximation methods have been developed in actuarial literature.
Several of these methods have been applied in the problem here. As most of
these methods are well-known, no further details are given. This applies to the
following methods:

I. Normal power method, see BeARD, PENTIKAINEN and PESONEN
(1968/1977, p.43f); BERGER (1972); Kauppi and OJANTAKANEN (1969):
PESONEN (1969). More precisely, the NP2 method was used here, i.e., the changed
variable was calculated from a quadratic equation.

2. Translated gamma method, see BoHMAN and EsscHER (1963/1964); SEAL
(1977); Bowers, GERBER, Hickman, JonNes and NEessitT (1982). In the
expression for the stop-loss net premium (cf. SEAL 1977, p. 215) the incomplete
gamma function occurs.

3. Recursive calculation of the stop-loss net premium by means of an arithmetic
discretisation of the loss amount distribution, see GERBER (1982) who uses the
recursive procedure of PANJER (1980). In the problem here the discretisation
method called “matching moments™ was used where the probability weights for
the discretised variable are calculated in such a way that within adjacent pairs
of intervals the first two moments for the discretised loss amount are equal to
those of X, according to the lognormal distribution. As an obvious extension of
the recursion formula stated by PANJER and GERBER, the occurrence of losses
of amount 0 for the discretised distribution was explicitly admitted as this proved
to be suitable due to the skewness of the distribution of X, in order to avoid
negative probabilities.

With the normal power and the translated gamma method an estimation of
the approximation error is not possible. But for the method with a discretisation
of the loss amount distribution an upper bound for the approximation error can
be developed using a metric introduced by GERBER (1980) (Chapter 7.3):

max |E(S,—z)* - E(S, —2)"| <A max |E(X, -—x)*-E()?a—x)*I

z=>0 0=sx<a

=A max

0 x<a

f (F(y)—F(y)) dy|,

where the symbol " refers to the discrete approximating distribution.

If the discretised loss amount distribution only has one or two atoms, the
distribution of the aggregate losses and thus the stop-loss net premium can
generally be calculated very easily without recursion formula. On account of the
finite range (0, a] of the retained loss amount X, it does not seem unreasonable
to approximate the distribution of X, by such a one-point or two-point distribu-
tion. Indeed it will be shown that this method in the problem here leads to
astoundingly good results. For this method too, the above formula for the error
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bound holds true. For the choice of the atoms of the approximating loss amount
distribution there are several possibilities (one-point: lower bound, upper bound,
third approach; two-point: Ist, 2nd, 3rd possibility), details of which are given
in the appendix.

4. COMPARISON OF CALCULATION METHODS

In principle, the matching moments discretisation is the most accurate method
of calculating as the accuracy can theoretically be improved as far as desired by
raising the number n +1 of discretisation points. It is possible that numerical
problems will arise when the value of n reaches a certain size, but here it was
not necessary to go so far as a better approximation was already arrived at for
arelatively small n than with the other methods. Table 1 shows a typical example

TABLE |
RELATIVE STOP-Loss NET PREMIuM (%) USING VARIOUS METHODS
(PARAMETERS 0=2,1=1,A=3)
Method k=10 k=15 k=20 k=25
Matching moments, n =100 32573 16 375 7 4675 3 2266
n= 30 3257 16373 7 4663 32259
n= 10 32552 16350 74558 32187
Normal power 334 169 797 356
Translated gamma 321 159 744 333
Two-point, Ist possibility 334 16 1 803 3218
2nd possibility 320 169 705 34]
3rd possibitity 3252 1637 7452 3244
One-point, lower bound 21 6 14 02
upper bound 35 23 96 58
third approach 335 148 730 297

With the matching moments method for n =100 the maximum error amounts
to less than +£0.05% according to the inequality in Section 3, i.e., the exact value
e.g. for k=1.0 is between 32.523% and 32.623%. The normal power method
generally overestimated the stop-loss net premium; in all the parameter combina-
tions examined (e =2, =0.1,0.3, 1.0, 3.0, 10.0, A =1, 3, 10, 30), only for A =1
and 1 =<1 was there a small area where this was not the case. Where the aggregate
loss distribution was very skewed (t=10, A =1) the normal power method
overestimated the stop-loss net premium in the relevant area by more than one
half of the true value in some cases. If the aggregate loss distribution is practically
a normal distribution (A =30, <3, here the skewness is <0.5) the normal power
method, like the translated gamma and the two-point too, produces a very good
approximation to 3 decimal places. The relative error however increases with
higher priorities (i.e., with a lower stop-loss net premium).
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The values produced by the translated gamma method were above and below
the exact values in all of the parameter combinations examined, i.e., the translated
gamma stop-loss curve intersects the exact stop-loss curve, and in the cases
examined more than once. A very good approximation is produced of course
near to the intersections But the accuracy of the translated gamma method is
not at every point better than that of the normal power method.

The stop-loss curves of each of the two-point methods also meet the exact
curve usually more than once. As shown in Table 2, the third two-point method
seems to provide the best approximation apart from the matching moments
method. Sometimes, however, this method can produce a small range of values,
where the deviation is greater than in the normal power method.

Of the three one-point methods only the third approach produces acceptable
results especially if the skewness of the aggregate loss distribution is small (e.g.,
<0 5). This method may underestimate the true result. The other two methods
should be considered as being the simplest way of providing lower and upper
bounds rather than being approximations.

Table 2 is an attempt to compare the accuracy of the varnious methods. For
this the values of the methods per priority were put in order of accuracy; the
method with the value nearest to the matching moments value was given the
order number 1, going down to order number 8 for the method with the value
which was furthest removed. Then for each method the mean order number was
calculated for a larger number of priorities, which were chosen equidistant in
the relevant area.

TABLE 2
MEAN ORDER NUMBER OF THE VARIOUS METHODS IN TERMS OF ACCURACY

Parameters Method (see key below)
(o =2 throughout) NP TG TPI1 TP2 TP3 OPL OPU OP3
(t=0.1,A=3 41 39 31 29 18 80 70 52
A=10 51 42 25 25 16 80 70 52
t=10,A=3 42 30 39 35 16 80 70 48
A=10 5.0 36 33 25 15 80 7.0 5.0
(=10, A=3 37 25 42 36 18 70 80 52
A=10 39 25 45 39 17 75 75 46

Key NP =normal power; TG =translated gamma; TPi=two-point 1th possibihity, OPL=
one-point, lower bound. OPU = one-point, upper bound, OP3 = one-point, third approach

The results in this table cannot however be simply transferred to other parameter
combinations. For t=1 and A =30, for example, procedure TP2 has a lower
mean order number than TP3; here however, all the methods are exact to three
decimal places. For A =1 the value according to normal power in the relevant
area is sometimes higher than the upper bound given by OPU.

Finally in this connection certain computing problems must be mentioned too.
The possible occurrence of negative probabilities in the matching moments
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method has already been pointed out by GerBer (1982). But these negative
probabilities do not seem to have any distorting influence on the stop-loss net
premiums calculated with them. With the two-point methods it is possible that
when the Poisson probabilities for high priorities are calculated, an underflow
will occur, meaning that values are produced that are too small to be expressed
in the computer. As these are summands and not very many either, they can be
given a value of zero without having any noticeable effect on the accuracy but
in general an appropriate instruction should be included in the computer program
to avoid an abnormal program termination. An overflow in the translated gamma
method occurred for A =30 and ¢ =0.1 or 0.3 in the calculation of the incomplete
gamma function, i.e., values were produced which were so large they could not
be expressed in the computer. This error can only be avoided by means of applying
special techniques in calculating the incomplete gamma function ratio (see
Knamis and RuperT 1965). Difficulties in calculating were encountered in all
the methods apart from the normal power method—and, of course, the one-point
methods. As the normal power method produces results that are nearly always
on the safe side and as the safety loading increases relative to the decrease in
the stop-loss net premium as it should, this method can be generally recommen-
ded, especially if the results have to be produced quickly and without any
programming.

5. DEPENDENCY OF THE RESULTS ON THE PARAMETERS

In practice it is recommended that underwriters are given simple rating tables or
curves so that they do not have to consult the actuarial department each time a
policy with an aggregate limit comes up. In view of the dependency of the
stop-loss net premium on three parameters (o, A, t) it does not seem possible to
provide a calculation model of the kind mentioned. Surprisingly enough however,
it is possible to eliminate all three parameters to a large extent if a slight reduction
in accuracy is acceptable. In view of the uncertainty of the parameter values
pertaining to any one risk, this loss in accuracy can be ignored.

At first 1t is not automatically clear what influence the variation of one single
parameter will have on the relative stop-loss net premium where the other
parameters and the relative priority remain constant, as the incorporation of
relative values may produce different results to those produced by absolute values.
In the case where parameter A increases, the mean number of losses increases
too while the priority (both relative and absolute) remains unchanged. It is
therefore obvious that the stop-loss net premium increases overproportionally
and leads to an increase in the relative stop-loss net premium. In case of variation
of the parameter o or 1 it is best to observe the shape of the density function of
the amount of retained loss X,. As f ingreases, the proportion E(X,)/a decreases
too, meaning that the distribution of X is skewed more and more to the right.
If o, A and k are constant, therefore, the absolute priority ka will increase in
relation to the mean aggregate retained losses E(S,) = AE(X,) so that the relative
stop-loss net premium decreases. The same applies when parameter o is raised:
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a higher o means a more skewed lognormal distribution with a higher expected
value E(X). If ¢ is constant, the deductible a = tE (X)) increases too as that the
distribution of X, becomes more skewed. If A is constant, the absolute prionty
therefore becomes greater in relation to E(S,) so that the relative stop-loss net
premium decreases.

On account of this, with a constant A for two pairs of parameters (o, t), (J,7),
a similar stop-loss net premium is to be expected if the same proportion
E(X,)/a=r(a)/t is produced in both cases, i e., if

| . .
- d)(llt—g> —(D(Iit+g) =l<l>(ln—.'—g) —(D(ln—.’ +g).
t o 2 o 2 { g 2 g 2

Table 3 shows that this is in fact the case. Here the value of t for the various
values of « is selected in such a way that the equation above holds with =2
andi=1.

TABLE 3
COMPENSATING A VARIATION OF { WITH A VARIATION OF A

Parameter Values Relative Stop-Loss Net Premium (%) for A =3

T t k=1 k=15 k=2 k=25
16 170 314 152 675 279
18 133 320 158 714 302
20 1 00 326 164 747 323
22 072 330 16 8 772 339
24 050 333 172 7.94 355

This being so, it is possible to transpose parameter values o # 2 to the case
o =2 by an appropriate alteration of the parameter ¢ without any essential change
in the stop-loss curve. In this way parameter o is practically eliminated.

If o 1s constant a similar situation arises for the influence of variations of the
parameters ¢ and A. Table 4 shows that an increase of ¢ can be compensated by
an appropriate increase of A so that the stop-loss curve remains almost unchanged.

Therefore, parameter ¢ can be eliminated by an appropriate correction of the
value of A. Finally, with o and ¢ constant and a given value for the relative

TABLE 4

COMPENSATING A VARIATION OF ¢ WiTH A VARIATION OF ¢

Parameter Values Relative Stop-Loss Net Premium (%) for o =2

t A k=1 k=15 k=2 k=25 k=3
01 24 520 354 219 136 803
03 34 526 354 223 135 768
10 6 53.4 357 226 13.4 759
30 12 542 361 226 132 7.32

100 31 560 375 231 132 701
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stop-loss net premium, there is an almost linear connection between A and that

value of relative priority which leads to the given stop-loss net premium for this
A:

Example for =2, 1=1:

Parameter Value of A 1 3 10 30

Relative prionity k corresponding to 10% stop-loss net

premium 109 183 396 974
Straight line 0 3iA +0 81 112 174 391 1011
Relative prionity A corresponding to 30% stop-loss net

premium 069 106 254 683
Straight line 0 21A +0 46 067 109 256 676

This makes it possible to derive from the stop-loss curves for 2 values of the
parameter A the curves for the other values of A approximately by means of
interpolation or extrapolation.

To sum up then, we may say: the stop-loss curves resulting from the lognormal
distribution by a deductible with an aggregate limit have very similar shapes for
the relevant parameter values of o, t and A, and with the aid of appropriate
parameter transformations they can be approximately interchanged. Itis therefore
possible to represent the effect of an aggregate limit on the expected losses in
such a way that 1t can be determined using only a few curves or tables without
any great reduction in accuracy.

APPENDIX

Calculation of the Stop-Loss Net Premuum by Simple Discrete Approximations of
the Distribution of Loss Amounts with One-Point or Two-Point Distributions

This appendix will deal with one-point and two-point distributions as well as a
special three-point distribution for the loss amounts, i.e., distributions that allow
for only one, two or three different loss amounts. For such distributions, the
distribution of the aggregate losses and thus the stop-loss net premium can be
calculated exactly without great difficulty. On account of the finite range (0, a)
of the loss amount X, it does not seem unreasonable to approximate the distribu-
tion of X, by such a distribution.

In the following, we shall frequently be needing the first three moments about
zero of the retained loss X,; for 1=1, 2, 3... we have:

a

E(X,) = J x'dF(x)+a'(l - F(a))

0

— — 2 —-—
=exp (1 +§1202)¢(1—na—#—w> +a'(l _d)(lna_____y))

a (e
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Here again it is convenient to replace parameter u with t by writing
a=tc=tE(X)=texp (n+i0?)

for the mean loss amount. This results in

E(X,)' = c'{exp G - l)oz)d)(l—na_—l—(i—-;)a) +l'<l -—Cb(l%_l+%cr))}.
The values

h=c"'E(X,)

now only depend on ¢ = a/c and o. Note that h, = r(a) applies. In the following
discusston it will always be assumed that the values t, ¢ and A are known and
therefore h,, h,y, h; too.

Al. Approximation by Means of One-Point Distributions

The most simple way of approximating is to work only with a constant loss
amount 8 = E(X,), i.e. to approximate the aggregate retained losses S, by means
of N. According to a theorem of BUHLMANN, GAGLIARDI, GERBER and STRAUB
(1977), this results in a lower bound for the stop-loss net premium for each
priority z, i.e.,

+
E(S,—z)"2E(N-z)"= OE(N—g) .

Another approximation stemming from BENKTANDER only uses losses of the
(maximum) amount a. So that the expected value of the aggregate losses remains
unchanged, the mean number of losses must be reduced mechanically to

6
A¥=—,
a

If N* denotes the Poisson variable belonging to A™ then S, will be approximated
by aN* and we have

E(S,—z)*<E(aN*-z)*= aE(N*—f) ,

i.e., an upper bound for the stop-ioss net premium is obtained. This also results
from the theorem of BUHLMANN, GAGLIARDI, GERBER and STRAUB (1977). Here
the fact is employed that the distribution of aggregate losses based on the number
of losses N* and the constant loss amount a is identical with the distribution of
aggregate losses which results from the number of losses N and the loss amount
“a with probability 8/a or 0 with probability 1 —8/a”. This is a special feature
of the Poisson distribution.
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In these cases, the explicit calculation of the stop-loss net premium is quite
simple:

E(N-u)"= Y (i—u)p(N=1)

>u

=Y 1—e “—up(N>u)

su il

P e *~up(N>u)

=Ap(N=[u])+ (A —u)p(N>u),
[u] denoting the integer part of u.
In the special problem here, with a priority of z = ktc, this produces for the
stop-loss net premium E(S,—z2)"
* a lower bound
ch{ap(N =[v])=(v—-2)(1-p(N <))}
with v =kt/h,
* and an upper bound
chi{Ap(N*=[k]) = (v-A)(1-p(N*=k))}

with v =kt/h,, N* being Poisson distributed with parameter (h,/t)A.

In a third approach, due to BENKTANDER (1974), the distribution of the
aggregate losses S, is directly approximated by the distribution of (N where N
is Poisson distributed with parameter E(N) X and the values of ¢, A are
determined by the equations

E(¢N) = (X =E(S,),
Var(§1\~/)={2X=Var(Sa).
This yields
_Var(S,)  E(X.)
E(S,) E(X,)

¢ J(E(S))? _(E(X.)
Var(S,) | E(X,)

For the stop-loss net premium with priority z we then get the approximation
E(S,—2)"~ E(CI(I—z)*={E(1\7—§) .
In the problem to be solved here this leads to (with priority z = ktc)

ch{Ap(N =[]~ (v-A)(1 - p(N <))}

with v=kt/h,, 0=kth,/h, and N being Poisson distributed with parameter
(hi/hy)A.
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It is easy to see that generally A<A and 6= {<a holds and using again the
theorem of BUHLMANN, GAGLIARDI, GERBER and STRAUB (1977) it can be shown
that the stop-loss net premium according to this third approach 1s between the
bounds defined above, 1.e.,

E(BN-z2)*<E((N-z)"<E(aN*-2)*

A2 Approximation by Means of Two-Point Distributions

Calculating the stop-loss net premium with priority z 1s still a quite simple matter
for a distribution of loss amounts that only provides for two different loss amounts
x <y with praobabulity p for x and g = 1 — p for y:1f W, denotes the corresponding
variable of aggregate losses with A-Poisson distributed number of losses N, then
the aggregate losses, in the case of exactly N =) losses, 1 of which have an
amount y, come to

W, =iy+(j—i)x=1i(y—x)+x, 1=0,1,...,)

(Jorye

The constraint W,, <z is equivalent to 1 <(z— x)/(y—x). As [z/x] losses may
occur for W,, < z at the most, this leads to

with probability

E(z-W,)"'= ¥ A e ) ({)PJ_"I'(Z"JX—'(}’_—"))

}<z/r]' 1w

with w=min (J, (z —jx)/(y—Xx)).

This can be worked out on a programmable pocket calculator with 10 memory
registers; the size of the factorials does not constitute a problem either as long
as the corresponding summands are calculated recursively. Finally the stop-loss
net premium 1s given by

E(W,~2)"=E(W,,)~z+E(z-W,)"
=A(px+qy)—z+E(z—W,)".

There are several ways of approximating the retained loss amount X, by means
of a two-point distribution.

Ist possibility:

The distribution of X, is produced by truncating the distribution of X at the
point q, i e., the distribution of X, always has a point mass amounting to | — F(a)
at point a. Particularly where low deductibles are concerned, the obvious way is
therefore to choose the two-point distribution in such a way that y = a. Then the
other point x and 1its point mass p are selected so that the first two moments are
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equal to those of X,, i.e.
px+(1-pla=E(X,)
px?+(1-p)a*= E(X,)%

This leads to
_ (’—hl)2
T 2=2th, +h,
g=1-p
c
x=—(h—qt)
p
y=1tc

2nd possibility-
If a value for y other than a is admitted, the two-point distribution can be selected
in such a way that the first three moments are equal to those of X, that is

px+(1-p)y=E(X,)
px*+(1-p)y*= E(X,)*
p*+(1=p)y = E(X.).
If £ denotes the skewness of X, i.e.,
£=(hy—h,(3h,—2h1))(h,— A} ™2,
then we get

1, ¢
2 W4+

g=1-p

x=c<h,—\/§(h2—hf))
y=c(h,+\/£(h2—hf)).
q

For the corresponding aggregate losses W,,, the first three moments are equal to
those of the aggregate retained losses S, as is the case too with the normal power
and translated gamma methods.

3rd possibility (special three-point distribution):

If a procedure is desired whereby a point mass of y = a is retained as in the first
possibility and at the same time the first three moments of X, are considered as
in the second possibility, then this is feasible, similiarly as in the upper bound
one-point distribution, if a point mass at loss amount 0 is added and the Poisson
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parameter is adjusted accordingly. More precisely a three-point distribution is
adjusted with points 0, x, a and point masses u, v, w so that

ut+tvt+tw=1
vx +wa=E(X,)
vx?+wa’=E(X,)?

ox’ +wa’=E(X,).
This yields

h,h;—h%
w=
(h 1 =2hyt + h)t

(hl_W’)z

v=
hy—wr?

u=1l—v—w

x =< (h,— wt).
v

In the case of a A-Poisson distributed number of losses, the corresponding
aggregate loss distribution does not change if the loss amount 0 and 1ts point
mass u are omitted and the other point masses v and w are raised accordingly
and the parameter A reduced, i.e.,

v
p—v+w

—_— w _l
q_v+w_ p
A¥=A{v+w)

The corresponding stop-loss net premium can therefore be calculated using the
two-point distribution given by p, g, x and y = a = tc; in this case the reduced
mean number of losses A* 1s to be used instead of A.

Further possibilities:

If a value for y is admitted in the 3rd possibility other than y =g, it is possible
to have the same first four moments of the special three point distribution as
those of X,. Another possibility is to break the interval [0, a] into two intervals
and to apply each of the first two one-point methods to each of these intervals.
In this way, two-point distributions are produced which give improved upper
and lower bounds for the stop-loss net premium.
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HOMOGENEOUS PREMIUM CALCULATION PRINCIPLES

By AxeL ReicH

Kolnische Riickversicherungs-Gesellschaft, Cologne

ABSTRACT

A premium calculation principle 7 is called positively homogeneous if 7(cX) =
cm(X) for all ¢>0 and all random variables X. For all known principles it is
shown that this condition is fulfilled if it is satisfied for two specific values of ¢
only, say ¢ =2 and ¢ =3, and for only all two point random variables X. In the
case of the Esscher principle one value of c¢ suffices. In short this means that
local homogeneity implies global homogeneity. From this it follows that in the
case of the zero utility principle or Swiss premium calculation principle, the
underlying utility function is of a very specific type.

A very general thearem on premium calculation principles which satisfy a weak
continuity condition, is added. Among others the proof uses Kroneckers Theorem
on Diophantine Approximations.

KEYWORDS
Premium principles, homogeneity, utility functions.

I. INTRODUCTION

In actuarial practice one generally uses only three premium calculation principles,
namely the expected value principle, the variance principle and the standard
deviation principle. Apart from these there are many other principles for determin-
ing a premium for a risk: all these are examined in the new textbook by
GoovAErTs, DE VYLDER and HAEzZENDONCK (1984). A central theme is the
analysis of the principles which fulfil some desirable properties such as translation
invariance, (sub-)additivity, iterativity, homogeneity etc. For example the expec-
ted value principle is always additive and homogeneous, but it is iterative or
translation invariant only in the case of a vanishing loading.

If a premium principle is defined by a utility function, then the above mentioned,
(so-called) plausible properties are in general very restrictive: The Swiss premium
calculation principle e.g. is translation invariant if and only if the corresponding
utility function is exponential or linear, and it is positively homogeneous if the
utility function u(x) is—up to linear transformations—a power of x. Therefore,
e.g., the Swiss premium calculation principle is both translation invariant and
homogeneous only in the case of a linear utility function. Such an analysis has
been performed already for all known principles and all properties mentioned
above. If # denotes a premium calculation principle, which therefore to any real
random variable X assigns a real number 7(X)—the premium of X—then in

ASTIN BULLETIN Vol 14, No 2
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all cases it turns out that, e.g., in the case of translation invariance (that means

(n m(X +c)=m(X)+c

for all risks X and all real numbers c), it is sufficient to know equation (1) for
all ceR and only all X € D, (D, the set of all 2-atomic random variables): If
(1) is valid for all ceR, X € D,, then automatically (1) is fulfilled also for those
X not in D,. This reduction to the essence of a property has been worked out
for the property of translation invariance by REIcH (1984) in a definitive sense:
Any principle is already translation invariant (i.e., (1) holds for all ceR and all
risks X)), if (1) 1s fulfilled for all X € D, and two specific values of ¢ only, say
c¢=1and c=+2. In case of the Orlicz principle (HAEzeNDONCK and GOOVAERTS
(1982)) a single value of ¢, e.g., ¢ =1, suffices. A further reduction is impossible
as one can see from the counterexamples in ReicH (1984).

In the case of the property of homogeneity (sometimes also called proportion-
ality)

(2) m(cX)=cm(X)

(more exactly we will examine positively homogeneous principles, i.e., ceR™)
we will now give a similar analysis of the analogous problems. Equation (2)
means for ¢ =3, say, that the premium of X should be homogeneously divided
in two equal parts, if the risk X is split up into two parts in a homogeneous way.
The aim of this paper therefore is to give an answer to the question- How little
does one really need to know, to have already property (2) in full generality (i.e.,
for arbitrary risk X and arbitrary c € R")? Of course, this leads to other conditions
than in the case of translation invariance and other principles are now of special
interest. A mere corollary from the results (still to be formulated and proved)
should be mentioned here: Take for example the Swiss premium calculation
principle. If (2) holds for all X € D, only and for all c€[3, 3], then (2) holds
automatically for all risks X and all ceR". There is therefore no difference in
homogeneity as a local or global property. This fact is a trivial consequence of
theorem 2.2, which is best possible in the precise sense specified there. Moreover
for every known premium calculation principle the following is true (X € D,):
If (2) holds in the two special cases ¢ =3 and ¢ =3 only, then again (2) is fulfilled
for all ¢>0.

From this one can prove that even an extremely weaker assumption than the
homogeneity is (with the Orlicz principle as the only exception) very restrictive
for all utility principles.

2. RESULTS AND REMARKS

Among the known principles the following are in every case (i.e., independent
of the choice of the corresponding parameters or utility functions) positively
homogeneous: Expected value principle, maximal loss principle, percentile prin-
ciple, standard deviation principle and Orlicz principle. The variance principle
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on the contrary is certainly not positively homogeneous in the case of a non-
vanishing loading (cf. GoovaEerTs, DE VYLDER and HAEZENDONCK (1984)).
For the remaining cases of the Swiss Premium calculation principle, the zero
utility principle (which is indeed a special case of the Swiss premium calculation
principle, but has for technical reasons to be treated separately) and the-Esscher
principle it will now be proved for example: If one has for all X € D,

7(zX)=3m(X) and w(3X)=37(X),
then
w(eX)=cm(X)

holds for all X and all ceR", i.e., 7 is positively homogeneous. More generally
and more exactly:

2A. 7 = zero utility principle

This principle was introduced by BuHLMANN (1970). One starts with a utility
function u with u'(x) =0, u”(x)<0. For a given risk X the premium P = =(X)
is determined by

(3) E[u(P - X)]=u(0).

We prove

THeEOREM 2.1. For fixed, positive ¢,, ¢, # 1 let log c,/log ¢, not be rational If
Jor every X e D,

m(e, X)=cm(X) and =w(c;X)=c,m(X)
hold, then u 1s linear. Conversely, if u 1s hnear, then for all X and all cc R*
w(cX) = cm(X)
holds, ve. 1 is positively homogeneous.
Remark Theorem 2.1 is best possible in the following sense: For any pair

¢, €R' (¢,=c, 15 admissible), which the condition of theorem 2.1 (i.e.,
log ¢,/log ¢, € @) does not fulfil, there is a non-linear utility function u such that

(¢ X)=cm(X), 1=1,2 XeD,,
holds. In this case the zero utility principle certainly is not positively

homogeneous.

2B. 7 = Swiss premuum calculation principle

This principle was introduced by BuHLMANN, GAGLIARDI, GERBER and STRAUB
(1977) If z€[0, 1] and u is a strictly monotonic, continuous function on R the
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premium P = 7(X) for a risk X 1s given by the equation
(4) E[u(X —zP)]=u((1 —z)P).

In the case z=1 and by the substitution u(x)-> —u(—x) one just gets the zero
utility principle. By a different proof than in the case 2A one proves for 0=z <|

THeEOREM 2.2. For fixed, positive c,, c; # | let log ¢,/log ¢, not be rational. If
Jor every X € D,
m(c, X)=c¢m(X) and w(c,X)=c,m(X)
hold, then for suitable o, B, v, reR (with By>0, r>0)

a+Bx’, x=0

r

(3) u(x)z{a—y(—x), x<0.

Conversely, if u has the form (5), then for all X and all ce R”

m(cX)=cm(X)

holds, i.e., m is positively homogeneous.

Remark. Theorem 2.2 is best possible in the following sense' For any pair
c;, c;€R"Y, which does not fulfil the conditions of theorem 2.2, there is an
admissible utility function u, not of the form (5), such that

(e X)=cm(X), 1=1,2,XeD,

holds. In this case the Swiss premium calculation principle certainly is not
positively homogeneous.

2C. = Esscher principle

This principle was introduced in BUHLMANN (1980) and so named in view of
the formal similarity to the Esscher transform. Given « =0 the premium P = #(X)
1s determined explicitly by the equation

_E[X exp (aX)]
X = Elexp (aX)]

It 1s very easy to see (cf. GOOVvAERTS, DE VYLDER and HAEZENDONCK (1984)),
that the Esscher principle is positively homogeneous only 1n the case =0, i.e.,
Esscher premium = net premium. A simple proof will give the following sharp
result:

THeOREM 2.3. If for a fixed co# 1, a single (non-degenerated) Xy D, the
equation

m(coXo) = com(Xo)
holds, then o = 0.
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2D. General premium principles

The result mentioned in the introduction, namely that the property of positive
homogeneity is already fulfilled in the global sense 1f it is known only locally with
respect to the variable ¢, now follows easily: If 7 denotes the zero utility principle,
the Swiss premium calculation principle or the Esscher principle, then the
theorems above yield at once

CoroLLARrY 2.4, Ifforall X € D, and all ¢ in a given (arbitrarily small} bounded
interval in R™ one has

w(cX) =cm(X),
then 7w(cX)=cw(X) holds for all X and all ceR™.

Finally one should pay attention to a very general result, which on the one hand
makes the results above more transparent, on the other hand is true for general,
possibly still unknown principles: Denote by 7 any premium principle with the
very weak and plausible continuity condition, that for every convergent sequence
(y«)<=R" and every X € D,

k=00 k-0

For such principles one has throughout

THEOREM 2.5. For fixed, positive c,, c;# 1 let log c,/log ¢, not be rational. If
m(ce, X)=cm(X) and w(c;X)=c,m(X), XeD,,
then 7r(cX) = cm(X) holds for all X € D, and even all ¢> 0.

As a corollary (because in any interval I, however small it may be, there are of
course always two numbers ¢;, ¢;# | in I such that log ¢,/log c,€ Q) we note:
The (global) property of such premium calculation principles of being positively
homogeneous 1s always a local property in the following sense:

If w(¢X)=cm(X) holds for only all ce I, then automatically also for even all
ceR”.

ReMARK. Simple and explicit examples for pairs of numbers ¢, ¢, # |, which
satisfy log ¢,/log ¢, 2 Q, are the following:

(1) =2, =3,
(ii) 4 =%, 02=%,
(1ii) =11, =12,
(iv) =2, c;=m,
(V) Cl=2y C2=e"$
(vi) ¢ =e, c,=e",

(vir) ¢ =1.25, c;=1.1.



128 REICH

As was pointed out by GERBER (1979), pp. 73-74, the global property of positive
homogeneity 1s not reasonable for practical reasons. From example (vii) e.g., one
can deduce by the corollary of theorem 2.5 more precisely that it is in the same
way again unreasonable to accept the homogeneity property as a local property

with respect to ¢ only: If for all X
m(cX)=cm(X)

holds for, say all ¢ between 1 and [.25 (local property), then automatically by
the results above also for all ¢ > 0 (global property). In accordance with GERBER
(1979) the quotient w{(cX)/w(X) should depend not only on ¢ but also on X.

3. PROOFS

Ad 2A: First of all we consider the zero utility principle = with strictly monotonic
utility function u, such that 4’'(x) =0, u"(x) <0. To prove theorem 2.1 we assume
u(0) =0 without loss of generality, because for a given risk X the premium
P = 7(X) does not change if in (3) u is substituted by u —u(0).

Lemma 3.1. If for a fixed cy>0
(6) m(coX)=com(X),  XeD,,

then there exists a B, = Bo(cy) sSuch that

u(cox) = Bou(x)
holds for all xeR.

Proovr. Forthe presentletbe x>0,and fora, beR, g€[0, I]let X =X, , ,€ D,
be defined by

pr(X=a)=1-g, pr(X=b)=q.
With the abbreviation P = P(a, b, g) = w( X) one has by (3)

(7N (1 —q)u(P—a)+qu(P-b)=u(0),
and by (6)
(8) (1-q)u(co(P—a))+qu(cl P—b)) = u(0).

(7) and (8) yield
1-gq u(P-b)—u(0)
g u(0)-u(P-a)’
(10) 1-q_ u(co(P= b))~ u(0)
q u(0)—u(c(P-a))
Putting x'=~1,a=2, y=1, b=1—x one gets

(9)

(11) a=y-x', b=y—x and b<y<a.
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If
_u(0)—u(x)

Tu(x)—u(x')’

(12)

then 0<g <1 in view of the strict monotonicity of u. Because of x=y—b,
x'=y—a and by (12) one concludes

(1-q)u(y—a) +qu(y—b)=u(0),
therefore y = P(a, b, q) according to (7). From this, in view of (10), (11) 1t follows
L =g u(cox)—u(0)
g u(0)=u(cx)
for arbitrary x > 0. Together with (9) this leads to

u(cox)—u(0)  u(x)—u(0)
u(0) - u(cyx") ~u(0) - u(x")

(13)

Therefore
u(cox) - u(o>=%)'—)[u<x)-u<o>],
RS (e
- il%f)—) u(x)

for all x> 0, respecting the normalization u#(0) = 0. With B, = u(cex’)/u(x’) this
1s the assertion for x> 0.

In the case x < 0 one proves in an analogous way the existence of a real number
¥o such that

(14) u(cox) = you(x)

holds for all x < 0. Now certainly B, = y, (this is exactly the statement of lemma
3.1), because with regard to (9) and u(0) =0 one has
l-q  u(P-b)

g  u(P-a)

(15)

Correspondingly by (10)

(16) l—q____u(cO(P—b))z_&.u(P—b)
q u(co(P—a)) Yo u(P—a)

iIf b< P < a, which 1s true in view of (11) and P =y. Comparing (15) and (16)

one has Bg= v,.
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ProoF oF THEOREM 2.1. Under the assumptions of theorem 2.1 there are by
lemma 3.1 real numbers 8, B, such that
(17) u(e)x)=pu(x) and u(c,x)=Bu(x), x€R.
Successive application of these relations gives for x = 1

u(ciey)=p7B7u(l), nmelZ

Together with (17) 1t follows for xeR, n, me Z
(18) u(cieyx)=u(ciey)u(x)/u(l).

By assumption one has log c¢,/log ¢c;€ Q, therefore according to Kronecker's
approximation theorem (cf. ReicH (1984), Appendix) the set

{klogec, +llogec, k,1eZ}

is dense in R. From this it follows at once that for every given number y>0
there are two sequences k(n), I(n) € Z such that

k(")Clz(").

(19) y=hm c)

n-+oC

By (18) and the continuity of u one concludes
(20) u(yx)=u(y)u(x)/u(l).

for arbitrary y > 0, x € R. The only continuous solution of this functional equation
are

(2n u(x)=u(l)x", x>0,

with some re R, as is well known. Because u is strictly increasing, (21) holds
for all x>0 with suitable r> 0. Moreover, if x <0 then it follows from (20)

u(x)=u(-1)(-x)’,
so indeed there are numbers 8 >0, y <0 such that
Bx’, x=0
u(x) ={ .
y(-x), x<0

In the case r =1 one has certainly 8 = — 7y for continuous u’, therefore u 1s linear.
The case r=2 is impossible in view of u"(x)=0, the case 0<r<2, r#1, is
impossible according to the existence of u”(0). Because of the assumed normaliz-
ation of u theorem 2.1 1s proved.

The remark after theorem 2.1 can be easily proved.

Ad 2B:

Proor oF THEOREM 2.2 (Swiss premium calculation principle). Let be z<1
and without any restriction of generality let u be strictly increasing. Assume as
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in theorem 2.2 that two numbers ¢,, c;# | are given and that 7(¢X) = ¢w(X)
holds for 1 =1, 2. According to (4) one has more precisely
(22) E[u(¢,X —z¢,PY]=u((1 - z)cP), XeD,, i=1,2.

Defining g,(x) = u{c,x) equation (22) gives
E[g(X -zP)]=g((1-2)P).

By GOOVAERTS, DE VYLDER and HAEZENDONCK (1984), theorem 2, p. 72, there
exist real numbers a,, B8, 1=1, 2, such that

(23) u(cx)=a, +Bu(x), xeR.

Without any restriction one can assume u to be normalized, especially u(0) =0.
Then, of course, ¢,=0 and

(24) u(cx) =Bu(x), xeR.
From this it follows immediately for arbitrary n, meZ, xeR
(25) u(cierx) =By B7u(x)=u(cicy)u(x)/u(l).

The condition log ¢,/log ¢, € Q@ leads via Kronecker’s approximation theorem and
the continuity of u to

(26) u(yx)=u(y)u(x)/u(l)

for all y>0, xeR.
In the case x =0 one introduces u,(x) = u(x)/u(l) and gets by (26)

u(yx)=u(y)u(x), xy>0.
As is well known for continuous u, it follows that u, is monomial, therefore u too.

u(x)y=u(l)x’, x=0,
with suitable r> 0.
In the case x <0 one defines z= —x and u,(z) = —u(z). By (26)

uy(yz) = u( y)uy(z)/uz (1),
therefore it follows in a similar way that u, is a monomial. This means
u(x)=-u(-1)(~-x), x<0,

for suitable s> 0. In view of (26) r=s holds, so the first part of theorem 2.2 is
proved The second part is trivial.

The remark after theorem 2.2 is easily proved and the proof 1s omitted.

Ad 2C:

Proor oF THEOREM 2.3 (Esscher principle). Let X,€ D, not be degenerated,
say
pr(Xo=a)=1—gq, pr{Xy,=b)=gq
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for some a, beR, a# b, gc (0, 1). If for a fixed ¢, # |
m(coXo) = com(Xo)
is true, then

coa(l —q) exp (acoa) + cobq exp (acyb) —e a(l—gq)exp (aa)+ bq exp (ab)
(1—q) exp (acoa) +q exp (acob) ® (1-q)exp (ea)+qexp (ab)

Multiplication yields
(a—b)exp[a(coa+b)]=(a—b)exp[alch+a)l,
therefore in view of a# b
exp [a(coa +b)]=exp [a(cb +a)].

Assume a >0, then coa +b = cob + a, therefore a = b according to ¢, # |. This is
a contradiction, so necessarily a =0.

Ad2D:

If I =(a,b),0<a<b=<oo,is any interval in R™, then by trivial arguments there
are two numbers ¢, ¢;€ I such that log ¢,/log c,£ Q. From this it is clear that
Corollary 2.4 follows from the preceding Theorems.

ProoF oF THEOREM 2.5. By induction one immediately proves for n, meN

(27) m(ci X)=cl7n(X), m(c3 X)) =cym(X).
Because of
1
7r(X)=7T(C,'lX>=C,7r(—X), i=1,2,
c, c,

equation (27) even holds for n, me Z. Then one has
(28) m(cted' X)=clm(cr X)=clcdw(X).

Given an arbitrary ¢>0 there are according to Kronecker’'s approximation
theorem (cf. ReicH (1984), Appendix) two sequences n(k), m(k)e Z such that

k
yo= et s e

The continuity condition for 7 and (28) yields
w(cX)=a(lim y- X)=lim a(yX)=lim v, 7(X) = cw(X),
k-»00 k00 ko0

therefore the assertion.
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APPROXIMATING THE DISTRIBUTION OF A DYNAMIC
RISK PORTFOLIO

By WiLLiaMm S. JEWELL

Department of Industnial Erigineering and Operations Research
University of California, Berkeley

ABSTRACT

In a previous paper, Jewell and Sundt showed how to approximate a distribution
of total losses from a large, fixed, heterogeneous portfolio, using a recursive
algorithm developed by Panjer for the distribution of a random sum of random
variables (a single casualty contract). This paper extends the approximation
procedure to large, dynamic heterogeneous portfolios, in order to model either
a portfolio of correlated casualty contracts, or a future portfolio, whose composi-
tion is not known with certainty.

0. INTRODUCTION

The problem of finding the distribution of y =X, +X,+X,+- - - + Xy, where the
(x,) are a fixed and large set of independent, nonidenucally distributed, integer-
valued random variables was considered in JEweLL and SunDpT (1981)
(hereinafter referred to as JS). Although, in theory, the discrete density of y is
just the N-fold convolution of the individual densities, this computation is very
time-consuming, and various forms of approximation must be used; moreover,
in many risk applications, the use of a normal approximation gives very bad
results, even for large N, because of the skewness and long tails of the density.
However, if the probability p, = Pr {x, =0} is significant for most 1=1,2,..., N,
itturns out that a very good approximation can be obtained using newly-developed
procedures for the related problem of calculating the distribution of the sum of
a random number of independent and identically distributed random variables.

In many nisk applications, especially in insurance and investment management,
there are an ever-changing number of risks of different types, and it is of interest
to predict the distribution of a portfolio whose future composition is not known
with certainty. This paper develops a general model for this situation, and shows
how the approximation procedure described in JS can be extended.

l. THE DYNAMIC PORTFOLIO MODEL

Let i=1,2,..., N index a number of different risk ciasses (insurance policies
or types of investment) in a given portfolio, and let A,€[0, 1,...] be the random
number of independent risks of type i, giving a grand total number of risks in
the portfolio

N
(L.1) ir=} A.

ASTIN BULLETIN Vol 14, No 2




136 JEWELL

Risks of type 1 are simular, in the sense that, if X, 1s the random monetary
gamble from the jth nisk of type 1, then 1ts discrete density, £°(x), is the same
for all 4, i.e.

(1.2) Pr{%, =x}=f7(x), (t=1,2,...,NYy=1,2,. ,n).
We shall only consider discrete gambles, with the common range of the (X,) as
[0,1,2,..., R]. As mentioned above, we assume for the moment that the (X,)

are statistically independent of each other and the (#,), but we do not assume
that the (#,) are independent. (But see Appendix A.)

The total monetary gamble for all risks of type 1 is then the sum of a random
number of random variables:

. fo, (n,=0)
x —
N T e R (r,>0).

(1.3) (1=1,2,...,N)

and the grand total monetary risk 1s then the fixed-term random sum-
(1.4) y=X+X+ - +Xp

Note that the (X,) are now dependent random variables, 1f the (n,) are.

If g(v) and w(n,, n,, ..., ny) are the discrete densities of the total risk sum
and the number of risks of each type, respectively, we have then the discrete
density of y as:

Prij=y}=g(y)=LX L w(n,ny,...,nn)//(MI

mony ny

WD AR (3=0,1,2,..)

which, of course, is a lengthy and laborious computation (In JS, the special case
of (A,) deterministic was considered.)

(1.5)

2 INTERPRETATIONS

Before describing a method of approximating (1.5), we give some possible
practical interpretations of the model

Ininsurance applications, the simplest interpretation 1s that i refers to different,
distinguishable types of insurance policies in a given portfolio; for instance,
similar policies in personal lines of insurance could refer to ordinary life insurance
policies with the same face values 1ssued to persons of the same age. For the
current year, we know exactly the number of policies of type ' and hence,
following JS, can find an approximation to the current g(y). However, an
approximation to (1.5} would be necessary to predict total portfolio risk for next
year, after some policies are withdrawn, some policies have paid out benefits, or
new policies have been added, and still others have shifted type. By specifying
the stochastic law governing this ‘“drop-add” mechanism, we can get
w(ny, ny, ..., ny) for next year. Possible reasons for leaving correlation between
the (A,) are that we may have a precise idea of how new sales are distributed
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among the different types of policies, but may be uncertain about the total new
business; or, the new business total may be accurately estimated but the distribu-
tion may be uncertain; or, there may be an uncertain number of policies which
are shifting type (as in aging of life insurance insured), etc.

A second insurance interpretation 1s the so-called casualty claim model, in
which multiple claims may occur on a policy during a given exposure year. Here
1 indexes each of a fixed number of policies, f,o(x) is the individual claim
(“‘severity’) density, A, is the random number of claims (“frequency”), and X, is
now the total monetary claim on the single policy 1. Of course, if the (A,) were
independent, then this application could be handled by making ¥, 7(n,)[f2(y)]™"
the basic density used 1n the procedure described 1n JS; but this would require
prior calculation of this compound law (see also Sections 8 and 9, below).
Moreover, external factors, such as weather and economics, often affect the
number of claims of all types of contracts in a given portfolio in the same way,
thus introducing correlation and the need for a more general model.

In most insurance portfolios, a great deal of effort is used to assure that the
(x,) are statistically independent of each other. However, there remains always
the possibility that risks of the same type i are influenced by the same exogenous
factors. In Appendix A, we consider the case when risks of the same type are
exchangeable random variables, which leads to a weak form of dependence on
the (x,).

In investment portfolios, it is unusual to have independent nisks of the same
type, i.e., requiring the same investment level, and having the same outcome
distribution; instead, we usually have a different amount of money invested in
different risks. If we let A, be the level of investment in type i and X, the net
return from this investment, then (1.3) holds only if the (x,) are perfectly
correlated, or what is the same, if (1.3) is replaced by X, = A,X,. Another limitation
on investment modelling is that 1t 1s usually possible to have negative net returns,
which 1s discussed in Section 10. It should be remembered also that our approxi-
mation is usually successful only if the problem is modelled so that the probability
of zero net return 1s substantial, i e., all “*sure thing” return has been eliminated.

Technological risk applications are based upon the compound law interpreta-
tion; for instance, in reliability engineering, A, may refer to the random number
of mechanical, electrical, or thermal shocks of type 1 which affect a given piece
of equipment: in fire damage analysis, n, is the random number of fires of a
given type (size, type of dwelling or land classification) which occur; and so
forth. In technology applications, the primary modelling challenge is to express
damage in appropriate, additive units for situations where there 1s no accepted
monetary surrogate for the risk

3. NOTATION AND MOMENTS

The success of the approximation procedure to be described depends upon the
assumption that most of the total risks, (x,), have a high probability of being
zero; this can occur either because f,O(O) is large, or because #, is often zero. We
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now change to a traditional notation (see JS) which emphasizes the distribution
of nisk when 1t is positive. Let

(3.1) Pr{x,=0}=f%0)=p,=1-gq, (1=1,2,....,N)y=1,2,...,1)

(3.2) £i(x)=Pr{x, =x|x,>0}=f2(x)/q. (x=1,2,...,R)
and define the first two moments of non-zero risk as:

(3.3) m, = &{%,|%,> 0} = &{%,}/q,

(3.4) v = V{%,|%,>0) =[V{%,}/q]- p.(m)".

From the joint counting density, we get the marginal densities.
(3.5) m,(n)=Pr{n, = n}, (i=1,2,...,N)(y=1,2,..., 1)
and the first two moments:

(3.6) A =¢{n},

. L k=1,2,..., N).
(37) Yk = (g{nl; "k}’ (' )

The approximation itself is based upon moment-matching with the first two
moments of the exact density (1.5), which we now find 1n a straightforward
manner. First, from (1.3) and the assumptions:

&{x.|n}=n¥{x,},

nY{x,}, (1=k)

%{x,; %|n, nk}={0 (i k)

so that, unconditioning, we have:

(3.8) &{x}=¢{n}%{x,},
L [RIVENFVGNEEIE  G=k)
(3:9) elx: 5l ”{o+ @l ) E{5, 1 {Za), (1 % k).

Then, using (1 4) and notation defined above, we find the first two moments of
total portfolio risk as;

(3.10) &{y}= gl Agqm,
and
(3'I ]) CV-{};} = gl /\lql(ul +an?) + ;I k§| ')’:kqn‘hm.mk-

The (q,), (m,), and (v,) are presumed known from past portfolio statistics on
eachtype 1, and the (A,) and (v, ) are gotten from modelling assumptions regarding
the future composition of the portfolio; so, we shall assume that these moments
are given parameters.
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Of course, if the (n,) are statistically independent, the last term become
Y 7,,q,2m,2. In the static portfolio model in JS, the composition was fixed, with all
i, = 1; an equivatent, but slightly generalized model can be gotten from the above,
with i, =n,=A, and all y,, =0.

4. THE APPROXIMATING RISK COLLECTIVE MODEL

In the approximation, we replace the original portfolio by a homogeneous *‘risk
collective”, that 1s, we assume that y 1s approximately:

__{0, (7 =0)
(41) y_{‘;l.{.ﬁz-f---"i'ﬁ’ﬁ', (ﬁe>0)

where n, is the random number of equivalent positive claims (w,), assumed to be
independent of each other and n,, and identically distributed, according to proto-
typical counting and individual rnisk densities:

m(n)=Pr{A, =n}, (n=0,1,2,...);
f(w)=Pr{w=w}, (w=1,2,..)),

(4.2)

leading to the usual compound law of risk theory for the density of y:

oo

(43) g0) = T ().
n=0
As mentioned earlier, the rationale behind this approximation 1s that, in many
applications, the (x,) are zero with high probability; the (w,) then represent just
the positive (x,). (See also JS and GErBER (1979).)
If the prototypical moments are:

(4.4) A=%8{n};  y=Y{nl},

(4.5) m=&{w}; v=Y{w},

then the moments of the random sum in the approximating model will be:
(4.6) E{y}=am,

(4.7) V{y} = Av+ym’.

For a good approximation, the moments (4.6), (4.7) must be matched as closely
as possible with the true values (3.10), (3.11). In addition, the forms of the 7 (n)
and f(w) chosen may also be varied.

5. THE ADELSON-PANJER RECURSIVE ALGORITHMS

At this point, we should stop and consider whether the computation of the
compound law (4.3) can be effected in any efficient manner; otherwise, it is not
much improvement over (1.5). A traditional approximation (for the static portfolio
problem) used in actuarial circles was to make #(n) a Poisson law; this was
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because (further) approximations to the compound law had been developed in
the early nsk theory literature (see, e.g., GERBER (1979)).

However, the recent extension by PANJER (1981) of a recursive scheme of
ADELSON (1966) now provides an efficient and direct way to compute (4.3).
Essentially, 1f f(w) is discrete over [1,2,...] and the counting distribution 1s
chosen from a certain (a, b)-family for which:

(5.1) 7r(n)=(a+;b)1r(n—l), (n=1,2,..)

then g(y) can be calculated recursively via.

(1=a)@**Va (g #0)
e

g0 =70 ={" o

(5.2)
min(y, R)

x
gly)= ZI (a +b;)f(X)g(y—X), (y=12,..)).
This is clearly an efficient computational procedure, provided the (a, b)-family
is a useful one. As elaborated upon in SunpT and JEweLL (1981), the only
members of this family, apart from the degenerate density, are:

(5.3a) (Poisson) 7r(n)=A"ne'_ , (a=0:b=12A);

(5.3b) (Binomial) w(n)=(tl)p"(l—p)““", (a=-p/(1-p);
b=—a(M+1));
. a+n—1
(5.3¢) (Negative Binormal) 7r(n)=( " )p"(l—p)",

(a=p:b=pla—1)).

These counting distributions are useful, since they are often used in modelling
compound nisk laws. Furthermore, since:

. a+b . a+b

(54) A"g{ne}_l_as Y 7/{ e} (l_a)z»
we get:
(5.5) a=1-t,  pARFD

Y Y
and

Vii
(5.6) {"e}___l____ l

The importance of the ratio (5.6) in modelling empirical counting processes is
well known. From (5.3), we see that this family covers a wide range of such
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ratios, with the Binomual giving (v/A) <1 and the Negative Binomial (Pascal)
giving (y/A)>1; the Poisson (y = A) distribution 1s the dividing line.

Therefore, for computational simplicity, we propose to use the (a, b)-family
to model the counting distribution #(n) and the recursive procedure (5.2) to
compute the approximate density (4.3). Note that, if a <0 in (5 5), we are not
completely free in our choice of b, since M must be an integer in the Binomial
law (5.3b); however, this is not usually a serious limitation (see JS).

6. THE FINAL APPROXIMATION

Having selected w(n) on the basis of computational convenience, we must now
choose the prototypical density, f(w). The form which will give the best approxi-
mation in all cases is not known. However, a natural way, consistent with the
interpretation given in Section 4, 1s to weight the individual densities (3.2) with
weights proportional to the expected number of risks with positive outcome in
the corresponding class, 1.e., to fix.

_TAGLW) S ALAw) )
(6.1) flw)= T Ad = AV (w=1,2,.. ,R).

This choice 1s consistent with JS for the static risk portfolio model, and also
provides the greatest simplification to the formulae below. Using (3.3), (34) in
(6.1), we find first m and v 1n (4.5), then substitute into (4.6), (4.7) to find the
first two moments of the approximating model; these moments are then equated
with the exact results (3.10}, (3.11), obtaining finally the first two moments of the
prototypical counting density in terms of the original parameters:

(6.2) N=E(R)= T Ag;

(6.3) y=V{i.} = .g. A.q.[l —q.(%ﬂ + g g Y.Aq.qk<m,';"")2;

where the mean prototypical severity is:

eyl Agm,
(6.4) m=¥{w}= __Z v

and the severity variance 1s:

YAaq(v,+m?)
vV="-—"—>g""memmT.,
L Ag

To summarize: In the final approximation, we would first calculate the f;(x) and
the moments of Section 3 using the data, then compute f(w) from (6 1) and use
it in the approximating model (4.3), together with one of the 7(n) of Section 5,

with {a, b) selected using (5.5), the approximate density is computed recursively
via (5.2).

(65)
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In the static portfolio case considered in JS, all y,, are identically zero, so that
v <A, and a Binomial counting law results. This raises the integrality problem
for M previously mentioned, and means that the resulting values of (a, b) do
not exactly match ¥{y} in the original and approximating models; however, the
resulting error is not serious 1n the example analyzed in that paper.

In contrast, the dynamic portfolio model of this study can give y/A> 1, and
hence Negative Binomial #(n), if the (y,.) are large enough. To see this, consider
the case of independent, but still random, (4,). (6.3) then becomes:

(66) y=913)=3 ra+ 3 (22 (-2

Thus, we see that, if a sufficient number of (marginal) counting densities (3.5)
have y,/A,> 1, then also y/A > 1, a most reasonable result.

7. THE COMPOUND MULTINOMIAL COUNTING DISTRIBUTION

One natural way in which the number of risks in the different classes, 5=
(A, n,, ..., ny), might be generated in a predictive, dynamic model is from a
Multinomial law, with given total number of risks, ny, and a set of selection
probabtlhities, w=(m,, m,,. ., mx), viz:

nr

(7.1) Pr{ﬁ=n|"r;ﬂ}=< . )ﬂI m,  Lm=np)E =)

n,n,,..

With fixed ny and =, there are already correlations between the counts in different
classes, as:

(7.2) €{n|nr;w}=mns; (1=12,...,N)

— 2 —_
(73) %{ﬁ,;ﬁk|nr;n}={’“"T morn (=)

—T TN (l# k)

However, to give more modelling flexibility, we now permit both ny and = to
be a random scalar and random vector, respectively, but require that they be
independent of each other, for simplicity. This “‘collective” model dependency
gives a more complex covariance structure.

Define:

. N . N N
(7.4) E{nAr}=Ar= L A; Yart=vyr=1% kZ Yk s
1 1=1 k=1
then, unconditioning (7.2), (7.3), we obtain the moments for use in (6.2), (6.3):

(7.5) &{Aa}=r=Ar7€{m};
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ArE{mY + (yr — Ar + A7) V{7} (1=k)
+(yr—Ar) &),

(yr—Ar + AT 6{7,; T, }
+(yr—Ar)E{m}&{7}, (i# k).

It 1s easy to show that these satisfy (7.4), by using ¥ 7, = 1.

It seems to the author that practical modelling variations might fall into one
of two extremes: either (1) the (#,) might be known rather precisely, and
forecasting uncertainty might be associated with the total number of risks or, (2)
there would be a relatively stable number of risks, but prediction uncertainty
would remain about their distribution over the different nisk classification types.
(For the casualty claim model, only the first vanation would probably be relevant.)

An interesting special case of the compound Muluinomial coccurs when the
(m,) are fixed, and y;r = Ay It then follows from (7.5), (7.6) that A,= 1y, (i=
1,2,..., N) and (n, A, ;i # k) are uncorrelated. This then simplifies (6.2), (6.3),
(6.6) to A =y, thatis, a=0, b= A, and a Poisson counting distribution would be
used in the approximation of Section 5! One obvious way in which this could
happen is if Ar were Poisson with parameter, say u; it is then well known that
the (#A,) must be statistically mutually independent, with marginal densities that
are Poisson with parameters (mu).

(76) cg{ﬁ,; ﬁk}= Y =

8. AN EXACT RESULT

There is one case in which the proposed procedure gives an exact result. Consider
a risk portfolio of fixed size N, with each contract 1=1,2,..., N having an
individual claim density f(x), with parameters g, m, v, and an independent
claim number density that is Poisson, with parameter w,. This is the basic model
used in casualty insurance.

Following the procedure in Sections 5 and 6, we get the same special results
described in the previous section, namely, y,=A, v« =0, (i#k) and A=y=
Y w.q. In other words, once f(w) is determined from (6.1), the recursive algorithm
(5.2) is used with the Poisson density (5.3a) to find the approximate g(y).

However, it is easy to show, using generating functions, that the exact form
(1.5) reduces to a compound Poisson law with parameter A, and a severity density
f(w). Thus, the dynamic portfolio approximation is, in fact, exact for independent
Poisson claims. This is true even if p, =0 for all 1!!

Unfortunately, the same line of proof shows also that independent Binomial
or Negative Binomial claim densities (with different parameters for each 1) can
only lead to an approximation of the true g(y). However, it follows from Section
6 that the approximating law for a1, would be Binomial or Negative Binomial,
respectively.

9 MODELLING WITH FIXED AND RANDOM NUMBER OF COUNTS

To highlight the differences between the model and procedure of this paper and
the static portfolio model in JS, it is instructive to re-examine how the independent
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Poisson casualty claim model of Section 8 would be handled according to the
JS procedure. We use primes to designate the equivalent parameters of this paper,
in terms of the given model parameters u,, g, m, v.

First of all, since all A,=1 1n the JS model, we would have to estimate or
calculate separately the N individual total severity densities for each contract
risk, X,:

n

9.1) 0 =g(0= 5 EL ),

n=0
(This could be done by N applications of the Adelson algorithm, or might be
approximated from real total severity data.)
Then, in terms of the parameters of this paper, we would get:

A=l gi=l-eth o mi= (—,)u.m,
(9.2)
b= (f)uv +(m, = pimiym.
Thus, the static portfolio approach of JS would use the Panjer recursive algorithm
with.

(9.3) S =C LW q), (w=1,2,..)
and a Binomial counting density with moments:

A=Y qi<A;

()]

The resulting g(y) would then only approximate the true density, which could
be obtained exactly in this case. Thus, one might be tempted to dismiss the JS
procedure in compound claims applications. However, we can imagine situations
in practice where the actuary has used empirical data to estimate the densities,
g.(x) and w(n,). Then the question of the best approximation procedure is still
open.

We remind the reader that, if the (n,) are, in fact, deterministic, then the
procedures of the two papers are equivalent; conversely, if the (1,) are correlated,
only the procedure described here applies.

(9.4)

10. OTHER VARIATIONS

In JS, an improved approximation for the example considered was obtained by
modifying the 7(0) of the Binomial (5.3b) to enable an exact match of ¥{y},
together with an integral value of M. This modification could be used with the
model of this paper whenever (y/A) <1, and requires only a trivial change in
the recursive algorithm. But this refinement is not necessary in the other cases,
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as 7'{y} is matched exactly. Of course, one might try matching other moments
or values of the exact distribution by modifying the initial values of the prototypi-
cal counting density (see the discussion in JS).

It would also be desirable, particularly in investment applications, to extend
the range of permitted (X,) to negative values The difficulty then 1s that the
relationship (5.2) is no longer recursive, and must be solved by other means,
such as iterative methods. This point is discussed in SunpT and JEweLL (1981),
where possible procedures for the Binomial and Poisson cases are suggested;
exact recursion with negative values in the Negative Binomial case (y/A)>1
does not seem to be possible.

11. COMPUTATIONAL CONCLUSIONS AND ACKNOWLEDGEMENT

The limited computations carried out thus far indicate that the same general
kinds of approximation error result as in JS; in other words, the underlying
severity density should not be too “lumpy’” if there are only a few risk types.
Errors also seem higher in strongly correlated cases, as expected. A future paper
will explore computational results in more detail.

The author would like to thank the referee who found several errors in the
original formulae.

APPENDIX A
DEPENDENT RISKS

InSection 1, it was assumed that the individual risk severities (X, ) were statistically
independent of each other and of the counts (#,). In this appendix, we consider
the modifications necessary if the risks are exchangeable random variables within
each type i, but still independent of the counts. As is well known, this weak
dependency is equivalent to assuming that, for each type r=1,2,..., N, there
exists a random parameter, 5,, such that the individual risks are independent if
8, =8, is known, and depend in the same way upon 8, Thus, the basic density
(1.1) is replaced by:

(A1) Pr{%,=x]0}=12%xl0), (i=1,2,...,N),(y=1,2,...,n)
giving a joint density within type 1, given A, = n, similar risks, of:
(A2) Pr{ﬂ f.,=xu|n.]=% T £2x,16),

=1 =1
and a common marginal density for any risk of type i:
(A3) Pr{%, = x} = &f(x|6,) = f2(x).

(Expectations in the above are over the random values of 6.) Exchangeable
random variables thus have the property that they have the same marginal density
(and self moments), their arguments may be permuted in any fashion in their
joint density (A.2), and they have common cross moments.
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In addition to the dependency between different types introduced by the
correlation between different counts, we will also permit the different parameters
n8=(6,0,. ,8y)tobestaustically dependent, with arbitrary joint d.f. U(8).
In short, our new model substitutes for (1.5) the general form:

g(y)=J. J j dU@) LY - ¥ m(a)f(y60]"

(A.4) R .
*[f2(¥10173% - - - [ fR(yI6N 1R

Intuitively, we can think of 6, as representing exogenous factors, such as the
economy, weather, political factors, etc. that influence the random outcome of
all risks of type i jointly. This type of *‘collective behaviour” model is often used
in casualty insurance, where it is recognized that all risk classification schemes
are imperfect, and that residual correlations still exists among risks of a given
type due to the unexplained inhomogeneity still present within the class 1. Further,
there might be common factors between the different classes, which would account
for the dependency between 5, and 5k (i#k).

Proceeding in a manner similar to Section 3, we define the positive risk densities
£.(x]6,), the probabilities p,(8,) and q,(8,), and the first two moments, m,(6,) and
v,(8,), all dependent upon the risk parameter. (3.8), {3.9) still have the same
form, except that they express only the conditional mean total nisk, £{x,|6,}, and
conditional covariance of- total risks between different classes, €{x,; X|6,; 6,} in
terms of the conditional moments of individual risk, and the (non-é-dependent)
moments (3.6), (3.7) of the counts.

Now all that remains 1s to uncondition these moments, using the relationships:

N -~
(A3) 8(5)= T #8(x)6),

N N - - -~
(A6) Viyt= ¥ ¥ [8€{x: %0, 6} +6{8{x[6}; E{%|6:}1].

t=1k—1

(Innermost operators are over the total risks (X,); outermost operators are over
the risk parameters (6,).)
We define the unconditional versions of g,(8), m,(8), v,(0) as:

(A.7) a.=%{q(8)); m=%m(6)); b =2¢n(b)).

By the theorem of conditional expectation, g, = Pr {X, >0} is the same as in (3.1).
However, as the referee reminds us, m, and o, are not the same as m, and v, in
(3.3), (3.4) unless the variation due to 6, vanishes; hence, the different notation.
In fact, 1n the current notation, we see that:

(A.8) m, = €{%,|%, >0} = &, + €{q.(6,); m(6,)/ q.}

In addition to correlations, we shall also need higher-order cross-moments, so
we define:

(A9) Q(8)=q(6)—q: M(8)=m(0)—m,; Vi(6,))=0v(0,)—10;:
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and use notation like.
Q.Qu = €{Q.(6,)Qu(6i)} = €{q.(6.); qu(6:)}:
(A.10) QM, = €{Q.(6)M(6)};
QMM, = {Q.(6)M,(6)M.(6,));

and so forth
In place of (3.10), we have:

(All) %’{}7}=Z)\.q.'ﬁ.+{z /\.(Q.M.)},

and, 1n place of (3.11), we obtain:

cV‘{ﬁ} = Z '\lql(ﬁl +pl(’ﬁl)2) +Z ; Ylkqlqk’—nr'ﬁk

xT AlgpM?—(m,)*Q2)

+3 ALQV, +2,(p, - 4.)QM, +(p, — 4.) QM 2.Q’ M, — Q*M?)

+3 Y 2v.q.m,QM,
(A.12) th

+z % (71k + '\nAk)[qlqule + ml'ﬁkorok +2q1';'leMk

+2q,Q.M M, +2m,Q.QM; + Q.QMM,]
- [Z /\.—Q,—I\Z] :

The term in braces in (A.11) gives a correction term to the calculation of A in
(6.2) (with, of course, m, and v, replaced by m, and 5,); similarly, the terms 1n
braces in (A.11) and (A.12) give two correction terms to the calculation of vy in
(6.3).

In many applications, these corrections simplify because either the probability
of a claim or the moments are independent of 8,. For instance, in life insurance,
m, = m, and v, = 0, are the moments of the face value of policies of type 1, which
do not usually change with exogenous conditions, while the expiration probability,
q,(9), would probably vary with external effects, this would eliminate all terms
mn (A.11), (A.12) with M, M,, or V,! Conversely, in casualty insurance, the
probability of a claim, g, might be relatively fixed several years in a row, but the
severity moments, m,(6,) and v,(6,), might be relatively uncertain in view of
inflation, etc.; in this case, all terms in (A.11), (A.12) involving Q, and Q, can
be eliminated!

A more complex model can also be developed by permitting the (n,) to depend
upon 0: details are left to the reader.
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BOOK REVIEW

R. V Hogg and S. A. Klugman (1984). Loss Distributions. xii+235, £28.45,
Chichester: John Wiley & Sons Limited

This book is written from the point of view of mathematical statistics and
attacks the problem how to model the probability distribution of the financial
severity of a single claim.

Two actuaries, C. C. Hewitt and G. S. Patrik, functioned as sparring partners
for the authors and they were also responsible for part of the written text. As
such this book represents a good biend of the pure statistical and practical aspects
of the reality of loss phenomena.

The authors advocate the philosophy that a mathematical model for the
empirical loss distribution, with parameters estimated from the data, provides a
better tool for forecasting and pricing than the empirical distribution itself.
I agree, especially when one has to account for structural change through time.

The book consists of five chapters and an appendix, containing the major
distributions and their properties. The inclusion of exercises in all chapters
provides further insight and makes it useful as a text.

The introductory chapter addresses itself to matters of terminology, kinds of
coverages and, what I like to coin, accounting induced descriptive insurance
statistics. Most of it will be well known to most of us, but it is always good to
see how others put it down on paper.

Hereafter there are two chapters, titled Models for Random Varables and
Stanstical Inference, which form about 40% of the whole book. These two chapters
are essentially an introduction to mathematical statistics, motivated by and written
from the insurance point of view. Even actuaries with a strong training in
mathematical statistics and nonlinear optimization procedures may find various
instructive examples and models.

Various probability density functions, which should be candidates to graduate
the loss distribution, are introduced. These include Gamma, lognormal, Pareto,
Weibull, Burr, a generalization of Fisher’s F, etc. In my opinion the inverse
Gaussian distribution should have been included too.

Parameter estimation for grouped data is thoroughly discussed.

The next chapter, Modelling Loss Distributions, applies the procedures,
described in the statistical chapters, to various real data sets, which include
hurricane, homeowners physical damage, theft and fire, long-term disability,
automobile bodily injury and hospital malpractice. Here also an interesting
digression on the allocation of loss adjustment expenses can be found. Most of
the data are in grouped format.

The final chapter, Applications of Distributional Models forms in my view the
crown of this book. Here we find such matters as inflation, deductibles and
leveraging, limits and layers, loss elimination ratios, and all this with fitted
mathematical models.
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This is a good book. It should be seminal for the analysis of loss data in
practice Therefore 1t should attract to all actuaries who take an active interest

1n the statistical analysis of loss data.
P. TER BERG

ANNOUNCEMENT ASTIN WORKSHOP

In this Bulletin appears for the first time a new section called ASTIN Workshop.
It is intended to attract papers on practical applications and related to the daily
work of the actuary.

We are aware of the fact that such papers might be different in nature and/or
style from those regularly published in this bulletin. Nevertheless we feel it to
be important to have also such papers in our journal. Of course they should
contain a valuable message which is important to the readers.

P. TER BERG



WORKSHOP
RATE MAKING AND SOCIETY'S SENSE OF FAIRNESS

By G W.DE WiT AND J. VAN EEGHEN

Nanonale-Nederlanden N.V.—Research Department
P. O Box 796, 3000 AT Rotterdam, Netherlands

I INTRODUCTION AND SUMMARY

Actuaries have always been in search of ways to determine premiums which
match the risks insured as closely as possible. They do this by difterentiating
between them on the basis of observable risk factors. In practice, many examples
of such risk factors are being used. age and sex for life insurance; location, type
of building etc. for fire insurance. Motor insurance is perhaps the most characteris-
tic branch with respect to this phenomenon: in tanffs we find factors like weight,
price or cylinder capacity of the car, age of the driver, area of residence, past
claims experience (Bonus/Malus), annual mileage etc.

Outsiders may not always be very positive about such a refined premium
differentiation. The basis of insurance, they say, should be solidarity among
insureds; premium differentiation 1s basically opposed to this. Another statement
heard in the field is: ‘““Premium differentiation ultimately results in letting every
individual pay his own claims, it is the end of insurance”.

Much confusion arises during discussions about this subject, especially between
actuaries and non-actuaries. We will therefore first give a mathematical definition
of solidarity, (Section 2), followed by a brief description of certain trends in
society which might bring insurers to deliberately drop certain risk factors from
their tariffs in order to increase solidarity (Section 3). The consequences of doing
so are examined and it is shown that increased solvency requirements will in the
end prove to be ineffective. A possible solution is a voluntary transfer of premium
between companies (Section 4). The situation is illustrated by an example of
health insurance in the Netherlands, where proposals to arrive at such transfeis
are presently being discussed.

2. FORMS OF SOLIDARITY

If no insurance is purchased, the situation can be briefly summarized as follows:

Carried by Carried by

Insured Insurer
Risk X 0
Expected risk E(X) 0
Variance of risk Var (X) 0

where X is the random variable representing the claims of a random insured.

ASTIN BULLETIN Vo) 14, No 2
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By the insurance transaction, the risk 1s transferred from the insured to the
insurer. In exchange the insured pays a premium equal to E(X), if we use the
expected value premium principle and 1gnore loadings and estimation errors.
The result of the transaction is:

Carried by Carned by

Insured Insurer
Risk E(X) X-E(X)
Expected risk E(X) 0
Variance of risk 0 Var (X)

It has been recognized however that risks are like leaves in a tree: similar, but
never identical. We therefore say that the risk of an individual is characterized
by a distribution Py, where 0 differs from one insured to another. 4 is unobservable
and is in turn looked upon as a realization of a random variable @, whose
distribution is characteristic for the market. Thus the risk process is divided into
two parts: first the “@-lottery” (which is the realization of @ and can be viewed
as an underwriting experiment: each time a risk is accepted a # is drawn at
random from the population ®); then the “‘claims lottery” ruled by the probability
law P,. Suppose for a moment that 6 is observable and that the insurer fixes the
premium after observing the outcome of the @-lottery. If the outcome of © is 8,
the premium charged will be the conditional expectation E(X|© = @). The pre-
mium of an insured randomly drawn from the collective then becomes a random
variable itself: E(X|®). This situation can be represented as follows:

Carried by Carried by

Insured Insurer
Risk E(X|®) X - E(X|0)
Expected risk E(X) 0
Variance of risk Var{E(X|®)} E{Var(X|0)}

While in the first example the insured transferred his full risk to the insurer (X
is replaced by E(X)), he now keeps part of the risk for himself, for his premium
E(X|®) is a random variable.

We may now define actual solidarity as the variance of the risk transferred to
the insurer (i.e., shared among insureds). Full solidarity 15 achieved in the first
example: )

S§ = Var (X).
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In the second example the actual solidarity remains restricted to the ““purely
probabilistic” part of it:

S, = E{Var (X|0)}.

The part of the variance which is caused by 0, the “risk solidarity”, remains
with the insured:

S, =Var {E(X|0)}.
The subdivision is complete now, for it can easily be checked that
§$=5,+S.

As we have said before, § is unobservable; the probability distribution of an
individual risk is never known. However, we do have some information on the
differences in distribution of the risks in our portfolio by means of observable
risk factors. These risk factors can be viewed as a (vector-valued) random variable
F. Mathematically, every potential F satisfies the following:

(1) for all sets A: Pr{X e A|@, F}=Pr{X c A|0®}

i.e., the conditional distribution of the risk given © does not depend on F.

If each insured is charged a premium E(X|F)* (i.e., information on risk factors
is taken into account in pricing), the result of the insurance transaction is as
follows:

Carried by Carried by

Insured Insurer
Risk E(X|F) X - E(X|F)
Expected risk E(X) 0
Variance of risk Var{E(X|F)} E{Var(X|F)}

Now we can write:
Var (X|F)= E(X?*F)—- E*X|F)
(because of (1))
= E{E(X?|®)|F}- E*{E(X|0)|F}
= E{Var (X|0)|F}+ Var { E(X|0®)|F}
* We implicitely assume that a good estimate of E(X|F) s available For simphcity, we assume

that E(X|F) (like E(X)) 1s known In actual practice however, the choice of F 1s limited to those
factors for which a good (small vanance) esumate of E(X|F) s available
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Hence

E{Var (X|@)}+ E{Var[E(X|®)|F]}
= S, + S..

E{Var (X|F)}

S, can be interpreted as the part of risk solidarity S, that remains unknown after
the information contained in F has been taken into account. It may therefore be

called the “‘unknown-risk solidarity”.

Similarly, Var { E(X|F)} can be viewed as the part of S, that becomes known
through F. It is therefore called the “‘*known-risk solidarity™, S

Evidently we have:*

§=85,+S5.=5,+8S,, +S.-

The result of the insurance transaction (with premiums equal to E(X|F)) can
therefore be rewritten as:

Carried by Carried by

Insured Insurer
Risk E(X|F) X-E(X|F)
Expected risk E(X) 0
Variance of risk Sk S,+8S..

The endeavours of the rate making actuary can now be represented as follows:

F
FIGURE | Solidanty shared among insureds

* These relations hold only 1f premiums are based on the expected value of X (conditionally or
not 10 ® or F) In social insurance however, premiums may not be related to the risk insured at all
Think e g, of income related premiums or premiums which have to be paid in spite of the certainty
one will never receive a benefit {(women having to pay for a widow's pension under the Dutch social
insurance) In such cases actual solidanty can be defined as

E[E{(X - P(F))*|F}]
(where P(F)1s the premium payable) which may well exceed $=Var(X)
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As F moves “towards full information about ®” (i.e., towards the right in the
above graph)—which is what the actuary tries to achieve—the unknown risk
solidarity S,, will tend towards 0, and the solhidarity shared among insureds will
remain restricted to S,. If no F is used for rate making purposes, i.e., F is at the
origin of the graph, then there will be full solidarty.

3. SOCIETY'S SENSE OF FAIRNESS

In the past, it used to be very difficult to discover risk factors both in a qualitative
and in a quantitative sense. Solidarity was therefore—unavoidably—considerable.
But recent developments have changed this situation:

e with the help of computers it has become possible to make thorough risk
analyses, and consequently to arrive at further premium differentiation,

e the consumer’s attitude towards tariffs became more critical He requested
more information and, if he was a good risk, objected to pay the same premium
as the bad ones.

Both developments have their own special character. The first one shows that in
recent years the actuary has been successful in his travel to the right of the F-axis
of fig. 1 (see for instance DE WiIT (1982) or vaN EEGHEN, GREUP and NUSSEN
(1983)). With the help of large data files and the possibility to analyse such data
in detail, he is on his way to reduce actual solidarity to purely probabilistic
solidarity S,. This S, is the smallest possible value of the actual solidarity shared
among insureds. It can be considered as a limit-situation in which F contains
all information about ®. BicHseL (1983) has shown that an insurance system in
which each insured is charged a premium equal to the expected value of future
claims leads to the optimization of the total result of the economy. Along the
same lines, one might argue that the minimization of solidarity through further
refinements of tariffs, leads to the optimization of the total result of the economy
as well.

The consumer’s attitude is of a completely different nature. In the past, we
believe he would be more inclined to simply accept the premium charged, but
today things seem to be different. Premiums have increased a great deal, coverages
have been extended and the risks of society have grown. Because of the relative
level of premiums, the consumer has become more sensitive to price differences.
Price sensitivity is probably also closely related to the general economic situation.
In days of rapid economic growth and an ever increasing level of personal
consumption, people will pay less attention to premium differences than in times
of stagnation and budget squeezes. These developments tend to decrease total
solidarity.

Nevertheless a changing attitude is starting to become apparent, caused by a
critical review of today’s society. It is this change that gives rise to the type of
statements mentioned in the introduction. People start realizing that a certain
restauration of solidarity might be desirable. For insurance, this seems to apply
especially to those branches which are in the closest relation to people themselves.
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Therefore: healthy persons will be paying for the less healthy ones. And: should
someone who works under circumstances which endanger his physical condition
have to pay a higher premium 1n spite of the fact his work 1s of vital importance
to the economy? The answer to such questions is often determined by the degree
of influence a person has on his own risk. Should solidarity be extended to cover
those people who harm their own health by their voluntarily chosen way of life?
The answer to this question would generally be affirmative, but a non-smoker’s
discount, for instance, denies this form of solidarity. One might object against
this form of solidarity, because it reduces one’s own responsibility and has an
anti-prevention character. It therefore seems justified to restrict solidanty to
factors for which one is not personally responsible. Alternatively, the community
can impose solidarity by safety rules (helmets for motorcyclists, safety belts in
cars etc.)

But solidarity is not merely related to ‘“personal’ branches of insurance, but
applies to more matenal fields also. Should someone who, for economic reasons,
lives in a certain area pay a higher motor insurance premium, because of the
higher traffic risks? The higher rent he has to pay in such an area may even be
compensated by special subsidies. This brings us to a totally different aspect of
solidarity. Should premiums be such that everyone can afford insurance? In the
past, this question used to be relevant for social insurance only The reasoning
of private insurers was: if you cannot pay for insurance, don’t buy it. But times
have changed. Many types of insurance have become such common commodities,
that they are being considered as basic needs and must therefore be affordable
by everyone. If private insurers do not want to see their tasks taken over by social
insurance they should keep this aspect in mind.

Where the foregoing considerations have a mainly social character, legal aspects
may (or will) also be important, in the form of restrictions which preclude
insurance companies from using certain risk factors, even if these factors can
be proved to be statistically significant. We are thinking of:

e emancipation. It will no longer be allowed to distinguish between men and
women for rate making purposes. For the European Community this rule will
be laid down in a forthcoming directive;

e discrimination. Tariffs are not allowed to differentiate between racna] groups.

FIGURE 2
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What we are saying is that there may be reasons (mostly related to society’s
sense of fairness) for us not to use certain parts of the risk information available
in our tariffs. Although we might be able to push premium differentiation to point
A 1n figure 2, we prefer to stick with situation B In practice, the difference
between A and B can be quite significant.

4. CONSEQUENCES OF DELIBERATELY IGNORING RISK INFORMATION

If it is decided that not all information available will be used for the rating
structure, this policy should be adopted by all companies operating on the same
market. It will be clear that, 1f with one company two different risks have to pay
the same premium, while with another one the good risks pay a low premium
and the bad risks a higher one, the former will attract relatively more bad risks
and thus will incur a loss.* This implies that in a market where every company
is free to fix its own rating structure (like the Dutch or the British ones) it will
be less easy to respond to social pressure for “fairness™ than in markets where
rating structures are imposed by the authorities (like in Germany or Belgium).

But even 1n a regulated market there may be problems. If certain aspects of
risk information are ignored in the rating structure, they may be used for under-
writing purposes. Applications by unwanted risk groups may be refused or
“forgotten”. By doing so, insurance compantes can increase their profitability,
while other companies will see their profits reduced.

This may aiso occur with “special character” companies: in almost every
country there are companies (often mutuals) which sell insurance to agriculturers
or to civil servants only or which operate in one specific area. These groups may
turn out to consist of non-average risks.

To 1illustrate the effects of such a situation, let us assume that we are dealing
with a two-company market. A risk factor F has been discovered but it 15 not
used 1n the tariffs. So both companies charge a level premium E(X). Suppose
that, due to the market mechanism described above, the insureds of company |
are characterized by Fe % and those of company Il by F¢ %, where F is a
subset of the possible outcomes of F. The expected risk carried by the companies
now becomes.

E(X|Fe¥)-E(X) for company I
and
E(X|Fe#F)—-E(X) forcompany Il

one of which, say for company I, may be positive
This situation clearly leads to modifications in the profit and loss accounts of
companies | and Il In a free market (but still assuming that F remains removed
from the tariffs), company I might consider adjusting its overall premium level.
* In reality, the difference has to be substantial before the effect becomes noticeable Moreover,

we simplify by considering the risk process only and by ignoring expenses, marketing and chent
service aspects

&
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But this would mean that F is effectively used as a rating factor, not on a company
level but on the market level. Risks characterized by Fe & would be charged a
higher premium (by company I) than risks characterized by F ¢ & (insured with
company II). Since this 1s what we were trying to avoid on grounds of social
fairness, the situation is not very satisfactory and seems to call for another
solution, especially if the premium differences are very large.

Another possibility i1s that the companies do not adjust their premiums to reflect
the special character of the risks of their portfolio. The resulting positive value
of the expected risk for company I is a risk theoretical impossibility: the insurer
will soon be ruined. In practice however, premiums contain loadings for security,
expenses, profits etc.

This loading will now turn out to be lower than expected, because of the special
risk selection represented by F € %. It may very well be possible that the company
can still live and survive with this smaller loading. But its existence will have
become subject to more risk and a larger safety buffer may therefore be required.
See also pE HuLru (1984).

Let us return to fig. 2. It illustrates that by deliberately ignoring some risk
information, we find ourselves in situation B instead of A. Solidarity between
insureds S, +S,,, which was defined as the variance carried by the insurer, was
thus increased. This increase of the variance is a second indication that the
solvency margin of an insurer is to be increased when not all possible nsk
information is used in determining premiums. Such an increase would be based
on risk variance grounds and therefore its nature is different from the one which
reflects premium 1inadequacy due to nsk selection (Fe %).

The necessary provisions in situations A and B can thus be written as:

R,=RV,+RS,
Rz =RVyz+RS,
where
RV=kJnJs, +s,
is the variance part of the provision (n is the portfolio size), and
RS =k;nVS,,
is the risk selection part of the provision. We have
RV,< RVg;
RS.< RSy
and hence
R4, < R;.

It should further be noted that RV expressed as a percentage of premium income,
tends to zero when the size of the portfolio increases, This is not true for RS,
which shows that the law of large numbers 1s not the whole story of insurance
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as is popularly believed. RS will be zero when all risk information is reflected

in premium differentiation. While much literature exists on the determination of

the level of the variance part of the reserve, RV, 1t 1s hard to say anything general
about the level of RS. We will simply mention two of the factors that can influence
1t:

« the explanatory power of the deliberately omitted risk factor F. The more
E(X|F = f) varies with f, the greater S,,, and the greater will be the premium
inadequacy resulting from adverse risk selection. The risk pattern n fig. 3a 1s
more dangerous than the one (n fig. 3b.

E(X|F=/) E(X|F=f)

FIGURE 3a FIGURE 3b

¢ the possibility of the market to arrive at an effective risk selection The most
dangerous risk selection would result from a choice of & such that E(X|F e
F)— E(X|F ¢ %) is maximized. In practice however, not all choices of ¥ are
possible. Social tolerance can be important in this respect A health insurance
company for instance, cannot openly say that 1t accepts insureds under age 30
only, without being highly controversial. So full risk selection (through age)
would be impossible, but some degree of risk selection may be possible by
means of carefully planned marketing campaigns. Such aspects are reflected
in the value of k,

As we have seen, an extra security buffer may be necessary for protection
against nisk selection effects in a market where part of the risk information is not
reflected in tariffs. This may however not be sufficient. The possibilities of fighting
premium inadequacy by setting up extra provisions are limited. The difference
between the net premium charged (E(X)) and the necessary net premium
(E(X|Fe %)) may be too large to be financed from the premium loading. In
such cases another solution is necessary

Since considerations of social fairness have led to the decision of non-differenti-
ation of premiums with respect to F, this same sense of social fairness suggests
a transfer of premium income from the companies characterized by Fg % to
those portfolios for which F € & holds. Since F is an observable risk factor, with
known effect on the expected losses, the level for such a ‘“‘fair transfer’” can be
computed
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To realize such transfers in practice, a consensus between companies is
necessary. This consensus can only be reached when there is full agreement on
what is “socially fair”. Public opinion and political pressure can prove to be
major factors in the process of reaching a final agreement.

These principles have been applied in the Dutch health insurance market. ““Age
of the insured” is a highly sigmificant risk factor but it is not used in tanffs.
Deliberate and undeliberate risk selection by some companies have had a great
impact on the profit and loss accounts of the Dutch companies. As a consequence
of the free market mechanism premium levels have been adjusted, leading to
highly differing premium levels from company to company. Thus age has factually
returned as a rating factor. At present, proposals are being discussed to arrange
transfers of premium income between companies, to cure the situation. The
theoretically necessary safety provisions could then be reduced to a realistic level.
Details can be found in the Appendix.

5. CONCLUSION

In this contribution we have tried to show that, depending on social circumstances,
practical tariffs should not always reflect all the risk information available,

If the reduction of the relationship on a micro-level between risks insured and
premiums charged is pushed to an extreme, the nature of the insurance industry
will change profoundly, the end being a full socialization of insurance, with for
instance income-related premiums. The different stages of such a process can be
summarized as follows:

extra mutual transfers full

safety of premwuum socialization
provision income between of insurance
necessary companies

& P - P
® - - -

removal of risk factors—-
all information

1s used

It is not our intention to plead for tariffs from which as many risk factors as
possible have been removed. But in modern society, we should be aware of the
fact that some aspects of the free market mechanism need to be adjusted. This
also applies to insurance, and 1nsurance companies need not feel threatened by
these developments. The intention of this paper is therefore to take better notice—
especially in a quantitative sense—of the consequences of solidarity transfers. A
better knowledge of these transfers may help the insurance industry to react
adequately upon general social developments. If such a reaction should result
in a reduced premium differentiation, the insurance industry will have to reach
a consensus on whether to increase solvency requirements or to neutralize the
effects of risk selection by mutual transfers of premium income.
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APPENDIX
Health Insurance in the Netherlands

In the Netherlands, 30% of the population obtains full health coverage from
private insurance companies.

The most important risk factor (F) for this type of risk is age of the insured.
The expected loss for an individual of age x is: E(X|F = x)=S(x).

S(x)

X

Clearly, age is a very significant risk factor. Premiums however, originally do not
depend on age, but only on type of coverage and level of deductible. So if N(x)
is the number of insureds of age x in the portfolio, the net premium applicable
to all insureds is:

P=(Z N(x)S(X))/Z N(x).

An actuarial provision is not formed; the financing system used is pay-as-you-go.

This situation 1s a typical example of a rating structure where an important
risk factor has been deliberately ignored, and the features described in the previous
paragraph are observable in the market. Premiums differ widely from company
to company, as a function of the age composition of the portfolio. Companies
with a “young” portfolio have low premiums and therefore attract the largest
number of new (mainly young) insureds. Companies with an “old” portfolio
have high premiums, they will therefore not be able to attract enough new insureds,
the portfolio therefore grows older and as a result they have to increase their
premiums, possibly to an unacceptably high level. This feature is reinforced by
the steepness of the S(x)-curve: S(85) is about 7 times as high as S(20). The
situation in the market can therefore well be represented by fig. 3a of the main
text (for two companies). Due to the free market mechanism, age is de facto
used as a rating factor.

An extra provision necessary to protect companies from possible premium
inadequacies can be formed as follows.

Suppose there is a portfolio with a given age composition which attracts no
more new insureds. The age composition in subsequent years is therefore fully
determined by aging and mortality.
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If p, is the one-year survival probability of an x-year old insured, the expected
number of insureds of age x +¢ after  years will be.

N:(X+t) =P Pewrt pt+t——IN(x)-

Suppose the premiums are to be kept constant at a level P, the discounted
(interest = 100:1% ) premium income for the company will be:

DP=PY (1+1)""Y N(x+1)
while the discounted yearly claims total is:
DC=Y (1+)7'Y N(x+1)S(x+1).

The difference DC — DP could be considered as a theoretically necessary extra
provision.

For the average Dutch portfolio this provision would be 440% of net premium
income, an amount which 1s simply not available and 1s equal to the actuanal
provision in a fully capitalized health insurance system without inflation.

To cope with this problem and with the problem of widely differing premium
levels in the market (part of which is due to differing age compositions), the
Dutch health insurance companies are in the process of deciding to share the
costs of older insureds. Basically the proposal is as follows:

» for each insured of age x>55, the insurer receives r[S(x)—S(55)] where
0sr<=l;
 for each insured of age x <55, the insurer pays A[S(55) —S(x)],
where A is determined 1n such a way that for the market as a whole and for fixed
r, the balance of income and expenditure is zero.
The result of these transfers is a new (less steep) curve of expected losses:

S*(x)=(1-A)S(x) +AS(55) x<55
= S(55) x=355
=(1—-r)S(x)+rS(55) x> 55.

S(x)

5*(x)

55 X



SOCIETY'S SENSE OF FAIRNESS 163

Due to the reduction of the slope of the S-curve, premium differences in the
market will decrease, so that the resulting situation might be represented by figure
3b of the main text.

If we compute the level of the necessary safety provision in a similar way as
above, but with S(x) replaced by S*(x), we find, for the values of r and A
suggested by the Dutch insurers, a provision of 20% of premium income, which
is more in line with the financial position of the Dutch health insurance industry
than the previous 440%.

This is a mixed solution. The $*-curve is not completely horizontal. The factor
age continues to be of importance, also because the premium transfers relate
only to a specific part of the total health insurance coverage. An extra provision
(20% ) thus remains necessary. Premium differences due to differences in age
composition are strongly reduced. Solidanty between younger and older insureds
1s thus secured through an agreement between insurance companies which does
not interfere with normal, healthy competition.
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THE INFLUENCE OF EXPENSE LOADINGS ON THE
FAIRNESS OF A TARIFF
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ABSTRACT

In non-life insurance, it 1s nearly always assumed that the expense loading 1s a
fraction of the risk premium. This may deeply affect the fairness of a tariff, as
illustrated in the case of the Belgian bonus-malus system.

KEYWORDS

Rate making, Expense loadings.

I. INTRODUCTION—SUMMARY

The exponential growth of the number of papers dealing with the theory of
premium calculation principles is one of the significant trends of the actuarial
science during the last decade. Also noteworthy is the fact that all of those papers
concentrate on the risk premium {pure premium and safety loading) and deliber-
ately leave aside the determination of the loading for expenses, commissions,
taxes, profit, ... We shall attempt to show in this paper that this neglect has some
severe consequences, that it is futile to try to assess the risk premium with great
precision if the expense loading is only grossly estimated, that risk premiums
with desirable characteristics in terms of the principles of risk classification are
distorted through the loading process (this should be obvious since in many cases
the expense loading is greater than the risk premium). Note that the same remark
was made by JEwWeLL (1980): “The next step in premium setting is to determine
the additional 50-200% increase which determines the commercial premium by
adding expense and profit loadings. Except in life insurance where there are
specific cost models for sales commissions (in many cases of regulated form),
there seems to be no further modelling principles used, except [multiplying the
risk premium by a factor 1+a). This lacuna in the literature is all the more
surprising, as it is in sharp contrast to the fields of engineering and business
management, where extensive and sophisticated cost allocation and modelling
are the order of the day. Are these activities outside the realm of the actuary,...?”

2. APPARENT AND REAL RISK PREMIUMS

In all lines of insurance the policy-holders are partitioned according to some
criteria that significantly affect the risk (like use and power of the car, age and
occupation of the driver in motorcar insurance). Let s be the number of cells,

ASTIN BULLETIN Vol 14, No 2
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and {b;1=1,..., s} the commercial tariff: b, is the premium to be paid by a
policy-holder that belongs to cell i. b, is the sum of two components: the risk
premium r, and the expense loading e, that contains the company's general
expenses g, the commissions ¢, the taxes r, and, in some cases, a profit loading
p.:
b,=nr+e, i=1,...,s

where e,=g,+c¢ +¢ +p,.

In non-life insurance, it is nearly always assumed* that the expense loading
is a fraction of the risk premium:

b=r(l+a), a>0, i=1

The loading coefficient « = a, +a, +a, + a,, where

a, = loading coefficient for general expenses
a. =loading coefficient for commissions
a, = loading coefficient for taxes

a, =loading coefficient for profits.

This proportional approach is certainly open to some criticisms. Why should
the salesmen of the company (brokers, agents,...) be paid more for bad risks
than for good risks {(on the contrary we feel that they should be rewarded for
bringing good risks to the company)? Is it fair that young drivers pay more taxes
than older policy-holders? Is there any reason for the fact that drivers living in
big cities contribute more to the profit of the company than inhabitants of small
communities? If a proportional loading is applied, the high risk cells certainly
pay a disproportionate share of the expenses. This means that the “real” risk
premium they pay is not r, but r; = r, +(EX), where (EX), is the excess charge
of expenses (considered here as the “hidden™ part of the risk premium)

(a) A Special Case: Flat Expense Loading

Suppose that there is no reason whatsoever that the high risk cells contribute
more towards the expenses than the low risks, and denote by n, the population
of cell i. Instead of paying b, = r,(1 + ), a risk that belongs to cell 1 should pay

* Among the few exceptions we found 1n the literature were

the proposed new motor rating structure in the Netherlands, the authors' recommended rates are

applicable for 90% of the premtum income (including the part of the component for expenses

contained therein), while the remaining 10% is considered to relate to expenses which should be

appropnated towards each policy as a fixed amount (GREGORI1US (1982))

* a recommendation of the Massachusetts Insurance Service Office (RoY (1980)) The proposition
1s to allocate 75% of the operating costs as a fixed amount, and the remaining 25% as a proportional
loading
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'=r,+8, where

l+a n

is computed in such a way that the total income Y, n,b, of the company is not
modified. As this risk effectively pays b,, he is charged a (positive or negative)
excess premium of

(EX),=ar,—-p

L bn,
=L{bl_l }
1 +a n

The real risk premium paid is thus

rn=r+(EX), =b-8.

(b) A More General Case: Linear Loading

Suppose now that the expense loading should be partly proportional to the risk
premium, partly uniform. Instead of being charged b, = r,(1 + ), a risk of cell i
should contribute

bi=r(1+y)+p,
where y=y, +v.+v,+7v, and B=8,+B.+B,+8,.
The total proportional part of the company’s income is
1+
(14+9) T nr,=——"L7 nb,
p l+af

In order to keep the same total income, 8 should then be equal to

SICHNRESTIN

l+a 5

2 nb,

_a-v.
l+a n

The excess premium for cell i

(EX),=ar,—(yr.+8)

==Yyt —|.
1+ n
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Then the real risk premium is

1 2 nb,
ri=r+(EX), = b(l +a—y)~(a=y)~ :

l+a n

Of course other expense allocation models are conceivable (commissions
designed in such a way that the broker has an incentive to sign up good risks,
for instance), but the model considered in (b) is more likely to be selected in
practice, due to its simplicity.

3. AN 'APPLICATION

Since 1971, all Belgian companies are compelled to use an {8-class merit-rating
system in motorcar third-party insurance. The premium levels {b,;¢=1,..., 18}
are presented in Table 1 along with the populations n, observed in a company
(columns | and 2). The expense loading is purely proportional, with the following
coefficients

Company expenses a, =0.5901
Commissions a.=0.3257
for the social security system a=0.1916
for the fund of the handicapped a=0.1149 _
Taxess ¢or the Red Cross a=00048 { 04885
tax a=0.1722
Total loading a = 1.4043

The expense loading thus multiplies the risk premium by 2.4!

(a) Flat Expense Loading

Let us assume that the fair way to allocate expenses is that each policy-holder
pays a fixed amount. In our example we obtain

b,

«
B= e =39.9308.
We then compute the excess premium, and express it as a percentage of the
commercial premium b, (see Table 1, columns 3 and 4). For instance a policy-
holder of class 18 can claim that he is being overcharged by 76.88, or 38.44%!
Then, we substract 8 from b, in order to obtain the real risk premium (column
5). By multiplying the figures of this column by 1.6647 (in order to bring back
the premium of the initial class 10 to 100), we obtain the ‘‘real” ment-rating
system applied by the Belgian companies. It differs markedly from the “alleged”
one: for instance the ratio between the largest and smallest premiums is 8, instead
of the apparent 3.33!
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TABLE |
FLAT EXPENSE LOADING

(EX), % 100 i
b, n, (EX), Y r “Real” System
1
200 27 76 88 3844 160 0692 266 47
160 28 5352 3345 120 0692 199 88
140 53 41 83 29 88 100 0692 166 59
130 81 36 27 69 90 0692 149 94
120 115 3016 2513 80 0692 133.29
115 201 27 24 23 69 75 0692 124 97
110 322 24 32 22 11 70 0692 116.65
105 507 21 40 2038 65 0692 108 32
100 1141 18 48 18.48 60.0692 100
100 1429 18 48 18 48 60 0692 100
95 2318 1556 16 37 55 0692 91 68
90 3385 12 64 14 04 50.0692 83 35
85 9 190 972 1143 45 0692 7503
80 9791 679 8 49 40 0692 66 71
75 9 887 387 517 35 0692 58 38
70 12 231 095 136 30.0692 50 06
65 11025 -195 -302 25.0692 41.713
60 70962 -4.89 -8 14 20 0692 3341

132693

(b) Ltnear Loading

To be more realistic, let us compute the real “*hidden™ merit-rating system under
the following assumptions.

(1) Commissions should be the same for every risk.

Indeed in Belgium a broker is nothing more than a salesman, and does not
participate in the settlement of claims. He should not have any incentive to sign
up customers that belong to the worst risk classes. So y, =0 and

Z nlrl Z nlbl

c

B.=a. =9.2608.

n  l+a

(it) The contributions to the social security system, the fund of the handicapped
and the Red Cross should be proportional to the risk premium.

Bad risks have a higher propensity to cause claims with bodily injury, thereby
adding their share to the deficits of the social security system and the fund of
the handicapped. It is only fair that they should pay for it. So y, =0.3113.

(iii) The tax should be the same for all policy-holders. So

anbl
=2V 50390
B l+a n ) ’
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(iv) The part of the general expenses related to the production and the
admunistration of the policies should be uniformly distributed among the policy-
holders. The part related to the claims settlement should be proportional to the
nsk premium. In a large Belgian company, the former part accounts for 72.54%
of the general expenses, the latter part for the remaining 27.46%. This leads to
v =0.1620 and

2 nb,
Qg ~ Yo
=———=12.1714.
By l+a n

Assembling the three components, we have
Y=Y +¥+7=04733
B=B.+B, +B,=264712

Altogether, around one third of the total expense loading is allocated propor-
tionally, the remaining two thirds evenly.

The computations described in Section 2 enable us to compute the “‘real”
merit-rating system applied by the Belgian companies; it is more severe than the
“official” one, since for instance the ratio between the extreme premiums is 6.18,
instead of the apparent 3.33.

It was stated over and over again [see for instance LEMAIRE (1982)] that the
Belgian bonus-malus system is unefficient and unfair to the best drivers, since
the penalizations for claims are much too small.

The preceding considerations show that the effect of a purely proportional
loading 1s to attenuate this unfairness.

TABLE 2
LINEAR LOADING

b, (EX), lgg-(lfi)' r *“Real” System
200 5097 25 48 134 15 249 16
160 3548 2218 102 03 189 50
140 27 74 19 81 8597 159 67
130 23 86 18 36 7794 144 75
120 19 99 16 66 6990 129 83
115 18 06 1570 6589 122 37
110 16 12 14 65 61 87 114 92
105 1418 1351 57 86 107 46
100 12 25 1225 5384 100
100 12 25 1225 53 84 100
95 1031 10 86 49 83 92 54
90 8.38 9.31 45 81 8508
85 644 758 4179 7763
80 450 563 3778 7017
75 257 342 3376 6271
70 063 090 29175 5526
65 -130 =201 25.73 4779

60 -324 -540 2172 4033
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L'ECRETEMENT DES SINISTRES “AUTOMOBILE"

PAR LIONEL MOREAU

Assurances Générales de France, Paris

SUMMARY

French insurance companies usually classify their agents according to their results
by branch and to this effect they calculate their respective claim ratios.

As regards motor insurance many agents have argued against this practice as
they believed it was unfair to be adversely classified when they had the misfortune
to incur a large claim.

In this article, the merits of various statistical systems for attenuating the effects
of large claims on the portfolio are considered in order to come to the most
equitable solution possible, 1.e., to ascertain the best method and system for
attenuating the effects of large claims. The conclusion is that the excess of loss
technique 1s best suited to this effect.

To arrive at this conclusion the author of this article relates in detail the various
stages of the study, the various systems envisaged and the tests which have
allowed to select the most appropriate system. The main results obtained are also
given together with their respective drawbacks.

At the end of the article the author mentions the still fairly limited bibliography
which deals with this question.

Dans le but d’améliorer les résultats, les compagnies d’assurance ont ['habitude
en France de publier un classement de leurs Agents Généraux basé sur le ratio
S/ P (sinistres/primes) et de tenir compte de ce classement pour I'attribution de
certains avantages commerciaux.

Or, en assurance automobile, un malaise profond s’était emparé d’un certain
nombre d’entre eux, et ils avaient mis ’accent sur un point qu’ils estimaient injuste:

“Nous ne pouvons pas &tre pénalisés” disaient-ils, “‘si un trés gros sinistre,
atteignant 500 ou 1000 fois la prime annuelle, frappe un de nos clients, car il
s’agit alors d’un phénomeéne aléatoire dont nous ne sommes pas responsables”.

Telle est 'origine de la politique de I’écrétement.

l. LA THEORIE DE BASE

Nous désignerons pour une agence i:
¢ les primes émises par P,

e le nombre de véhicules par v,

le nombre de sinistres par n,

le montant des sinistres par S,

¢ le montant du sinistre j par sJ

S=Y s

=1

ASTIN BULLETIN Vol 14, No 2
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Nous voulons substituer & I'indicateur S,/ P, brut un indicateur plus nuancé,
obtenu par la répartition sur "ensemble des agences de la masse des montants
des sinistres excédant un seuil nommé priorité. Cette technique est celle bien
connue en réassurance sous le nom d’excess-loss. Pour utiliser le langage habituel,
nous parlerons des sous-crétes, pour désigner les montants inférieurs a cette
priorité et surcrétes les montants supérieurs.

On peut donc se poser deux problémes distincts:

(a) Comment calculer les surcrétes?

(b) Comment les répartir?

(a) pour les calculer, trois méthodes sont proposées par Mlle Hess
(cf. bibliographie [1]):

1. La priorité fixe
Doit alors étre répartie, pour I'ensemble des agences, 1a masse R des sinistres
supérieure a la priorité fixe F:

R=Y Y (S\-F)
1 je ),

avec J,={j: s> F}.

2. La priorité dite au Kéme percentile

On veut par exemple écréter 1% ou 2% des sinistres. La priorité F est alors le
résultat d'un calcul implicite:

et on détermine aisément F par le tracé de I’histogramme cumulatif.

3. La priorité dite au percentile vanable
C’est la méme technique mais segmentée, les agences ayant €té préalablement
ventilées dans des classes différentes en fonction de critéres de taille, le pourcen-
tage pouvant devenir plus important si la taille est plus petite, afin de minimiser
la dispersion.

(b) Pour répartir cette masse, on peut appliquer plusieurs techniques:
1. Répartition sur les sous-crétes:
S1 nous posons

T,=3 &S+F Y 1

Jed, J€J,
- R
SI=T,x{1+ .

LT
i
2. Réparution sur les nombres de simistres:

S’—T+m
[} Zn,'
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3. Répartition sur les nombres de véhicules:

§i=T, +822
Lo,

4. Nous ajouterons bien slir une quatriéme répartition, la répartition sur les
primes
R xP,
Si=T, +———.
LP

On doit donc étudier quel indicateur rendra le mieux compte de la situation.
Les travaux mentionnés ci-dessus nous proposent de déterminer S;/ P, ayant
I’'une des formes 1, 2 ou 3 ci-dessus.
Nous proposons d'y ajouter la quatriéme et méme d’étudier une forme plus
classique, celle appliquée en réassurance d’excess-loss, a savoir:

T./P,

P:=P,x(l——Z—RE)

qui consiste a ne prendre en compte que les sous-crétes rapportées a des primes
nettes du prix de I’excess.

Il. CRITERE D'OPTIMISATION

Entre toutes ces méthodes d’écrétement et ces choix de répartition et d’indicateur,
quelle est la meilleure facon de procéder? Celle bien siir qui donne le meilleur
ajustement avec ce que nous déciderons d’appeler le meilleur critére (ce qui
résulte 12 d’un choix et non d’une vérité qui s’imposerait).

Nous avons pensé que les agents étaient “responsables’ des éléments qualitatifs
suivants.

e les sinistres matériels en fréquence et en colit moyen
* les sinistres corporels en fréquence.

Autrement dit, nous voulions juger les agents sur le critére S,/ P,

S=% si+m ¥ |
sed? Jed;
avec’
J7 =):s]=montant d’un sinistre matériel
et

Ji=j:8,=montant d’un sinistre corporel

m étant le colit moyen national:

m

(1)/r5

v ged; 1 yeJs
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Nous ne prétendrons pas ici que ce critére était le metlleur, mais il était celur
qui correspondait le mieux a la sensibilité de notre Compagnie et de I’Assurance
Automobile frangaise qui, par la pratique du bonus, a éliminé le colit moyen des
gros sinistres comme critére de jugement, polarisant son action contre les exceés
de fréquence. Eliminer le coiit réel des matériels ne nous a pas par contre semblé
judicieux pour deux raisons:

(a) cela aurait introduit un trop gros biais avec une formule d’écrétement

(b) les agents, par I’exercice rapide des recours, et une bonne connaissance
du marché local peuvent avoir une influence, légére mais réelle, sur les coiits
moyens des petits matériels.

III. LE TRAVAIL ENTREPRIS

Les pages qui vont suivre vont décrire ’étude a laquelle nous nous sommes livrés
en 1979 pour le compte de notre Direction Automobile.

Nous cherchions au départ, en partant du support réel de nos agences, a
déterminer quelle formule et quel niveau d’écrétement se rapprochaient le plus
du critére optimal que nous avons décrit plus haut.

Ce critére en effet, ne pouvait rester que théorique: Les esprits n’auraient pas
été préts a I’accueillir, et sur le plan pratique, il était trés difficile a réaliser a
I’état permanent. Nous étions tenus par deux contraintes:

1. les données dont nous disposions,
2. notre marge de négociation.

Le point 2 nous imposait déja une solution d'écrétement parce qu’elle avait
déja fait son chemin dans les espnits et nous recommandait la voie la plus simple,
si posstble une priorité fixe et une répartition en primes. Le point | nous obligeait
a faire I'inventaire de nos données statistiques.

A. Inventaire Statishque

La branche Automobile dispose d’un grand nombre de ventilations statistiques:
elle est d’ailleurs tenue par la réglementation de fournir des états faisant ressortir,
pour de trés nombreuses catégories, les ratios S/ P (Sinistres/Primes acquises)
recalculés a chaque clbture d’exercice pour tous les exercices antérieurs (le taux
n’étant absolument définitif que vers la 6éme année mais déja trés stabilisé apres
la 3éme). On peut donc distinguer les résultats des différentes garanties
(responsabilité civile, dommages) dans les différents types de véhicules (2 roues,
4 roues, camions, transports publics, etc. ...) et méme dans les différents
types de garantie (contrats n’ayant que la Responsabilité Civile, ayant les
dommages, etc. .. .).

Malheureusement, et cela se comprend aisément, étant donné le nombre de
divisions que cela créerait, ces statistiques sont tenues pour I’ensemble du por-
tefeuille et non pas agence par agence. Les seules statistiques tenues par agence
portent sur l'intégralité du portefeuille, tous risques et tous véhicules compris.
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Nous avons donc fait une étude plus précise de I'existant et avons demandé
a I'informatique de nous constituer un double fichier d’étude.

(1) un fichier par agence nous indiquant.

* le portefeuille en nombre de véhicules: 4 roues V|
2 roues V?
¢ le portefeuille en primes: P,
¢ le nombre de sinistres- matériels n;"
corporels n;
* le montant des sinistres: matériels 7

corporels ST,

(2) un fichier trié par agence composé de tous les sinistres dépassant 10 000 F
fournissant leur nature (matériel ou corporel) et leur montant.

Le travail ayant été eflectué en 1979 a porté sur ’exercice 1976 qui, a défaut
d'étre totalement clos, reflétait déja des résultats quasiment défimitifs,

Afin de fixer les idées, nous publions ci-dessous les premiers chiffres, avant
toute vérification, qui sont sortis du listage de ces fichiers:
e nombre d’agences traitées: 1548
* nombre de véhicules:

V=Y u=105 188
dont
V?=316567 (2 roues)

* primes totales:

P=7993mns F (mns F=millions de francs)
¢ nombre de sinistres:
n=289625
dont
n‘=16846 (corporels)

e montant des sinistres:

5=603,l mns F
dont

S$°=336,5mns F (corporels)

e écrétements:
al0000F: 2498 mnsF
20000F: 212, mnsF
30000 F: 188,2mnsF
40000 F: 170,5mnsF
50000 F: 156,0mnsF

Sinistre maximal: 4,4 mns F.
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B. Raffinage des Données

Cette étape du travail, qui est la plus ingrate, ne peut étre passée sous silence
lorsqu’il s’agit de décrire un cas réel.

Un premier examen a fait de suite apparaitre trois séries de difficultés:

* De mauvaises codifications faisaient ressortir certains sinistres dans des
agences-fantdmes qui n"avaient jamais existé, ceci prouvant d'ailleurs qu’il devait
exister des erreurs d'imputation, phénomeéne moins visible.

* Les écrétements choisis n"étaient pas suffisamment élevés puisque, a 10 000 F,
on écrétait 75% des sinistres corporels et a3 50 000 F 45%.

e Enfin, on s’est aper¢u que le nombre de sinistres matériels dépassant les
divers points d’excess n'était pas négligeable et qu’il convenait de les rapatrier
en ‘‘pseudo-corporels” dans les statistiques en nombre de sinistres du premier
fichier.

Afin de rendre les données exploitables, nous avons donc procédé a un travail
préparatoire effectué sur un terminal individuel avec des programmes souples,
ce qui était possible grace a la petite taille du fichier décrit ci-dessus.

Cet ensemble de taches préparatoires au calcul proprement dit s’est enchainé
selon le plan suivant:

1. lecture du fichier d’agences, vérification de séquence et éclatement par
compagnies (notre statistique auto portant également sur certaines filiales)

2. préparation du fichier de calcul comportant tous les renseignements
documentés et laissant la place pour recevoir les zones d’écrétement

3. lecture du fichier de sinistres, vérification de séquence et éclatement par
compagnie.

4. totalisation par agence des sinistres dépassant les 5 seuils d’écrétement
retenus (20 000, 40 000, 60 000, 80 000, 100 000) et comptage, en nombre et en
montant, des ‘‘gros matériels” (dépassant 10 000 F).

5. assortiment des deux fichiers—rectification des codes erronés (agences-
fantdmes)—copie des totaux écrétés dans les zones prévues—rapatriement en
nombre et montant des ‘‘gros matériels” en ‘‘pseudo-corporel”.

6. tri par chiffre d’affaires—répartition en 7 groupes d’agences par tranche de
240 (la 7éme étant incompléte) afin de tester les meilleurs ajustements par niveau
de taille.

Ces étapes ont dii étre répétées 3 ou 4 fois avant d’obtenir une totale fiabilité.
Le tableau ci-dessous résume la situation avant et aprés raffinage

avant raffinage

varr ci-dessus aprés raffinage

Nombre d’agences 1548 1554
Nombre de véhicules 1051188 1057018
Nombre de 2 roues 316 567 318403
Primes totales en mns F 799.3 8037
Nombre de sinistres 289 625 290 706
Montant des sinistres 603,1 606,5
Nombre de corporels 16 846 18 532*
Montant des corparels 336,5 363,9*

* Dont 1601 gros matériels pour 26,2 mns F rapatnés en corporels
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* surcrétes:
20000 F: 206,7mns F
40000 F: 164,7 mns F
60000 F: 138,0mnsF
80000F: 1220mns F
100000 F: 107,6 mns F

C. Le Module de Calcul

Ce module avait pour mission de tester quelle était, pour les 5 priorités fixes
ci-contre définies, et dans chacun des 7 groupes de taille, la meilleure des méthodes
envisagées a savoir

I la répartition sur les primes

2. la répartition sur les surcrétes

3. la répartition sur le nombre de véhicules, et

0 aucune répartition sinistres nets sur primes amputées de la prime d’excess.

Pour chaque agence on a donc calculé, a c6té du brut, le S/ P théorique 5,/R
défini au chapitre I1, a I'aide de la moyenne nationale m du coiit moyen corporel

3639mnsF
T18532

Puis au cours de 4 calculs successifs (type L, 2, 3, 0) on a calculé, pour chacun
des 7 groupes, h le biais moyen

Bl =5\ £ U0

en posant J, = §,/P, et J, comme le ratio précédemment exposé selon le type
choisi—(S;/ P, ou T,/ P, ayant un mode de calcul différent selon le type ! et le
seuil d’écrétement r, voir § I).

Pour étre complet, nous ajouterons qu’en ce qui concerne le type 3 (répartition
par véhicule), nous n’avons compté les 2 roues que pour une fraction de véhicules,
selon une équivalence de prime qui s’est avérée étre un 2 roues = 0,126 véhicule
4 roues

C’est donc la minimisation du biais de Bff, qui donne la traduction concréte
de “meilleur type de calcul™ et “meilleur niveau d’écrétement”, expressions qui,
a défaut d'étre définies, n’avaient pas jusque la de signification réelle.

=19 636.

D. Les Résultats Obtenus

Une premiere étude sur les 240 premiéres agences sur les types |, 2 et 3, a permis
d’éliminer de suite le dernier comme le fait ressortir le tableau ci-dessous (si bien
que I'on n’a pas examiné les autres groupes).

Entre les deux premiers types qui semblaient a trés peu de chose prés
équivalents, nous avons bien slr choisi le premier pour les raisons politiques
exposées ci-dessus
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GROUPE NO | BiIAlS EN %

Ecrétement Type No | Type No 2 Type No3
0 38,16 38,16 38,16
20000 12,48 13,59 35,96
40 000 11,88 12,70 36,61
60 000 11,61 12,42 30,60
80 000 1,77 12,76 26,76
100 000 11,98 13,08 23,74

L’étude de ce type | dans les différents groupes d’agence a fait ressortir les
biais suivants:

BiAlsS EN % PRIMES EN mns F

Groupe 1 2 3 4 5 6 7
Par moyenne 127,02 70,07 51,42 3904 27,59 17,16 5,37
Sans écrétement 38,16 34,29 36,56 53,44 65,19 52,11 215,12
20000 12,48 13,08 13,23 14,70 17,41 18,85 23,55
40000 11,88 11,52 12,13 13,53 15,51 16,67 27,92
60 000 11,61 10,93 11,99 13,70 15,43 16,63 37,46
80000 11,77 11,20 12,84 14,69 16,41 18,03 48,98
100 000 11,98 11,55 13,78 15,77 17,64 19,64 59,61

Il est de suite apparu que le groupe 7 des petites agences n’était pas ajustable
mais que, ce cas mis a part, on obtenait ['optimum dans une tranche d’écrétement
comprise entre 40 et 60 000 F.

On a donc refait le calcul de type 0 (sous-crétes rapportées aux primes nettes
de I'excess) sur une “bande élargie” allant de 45000 a 65 000 par pas de 5000.
On a obtenu le résultat ci-apres.

Groupe 1 2 3 4 5 6 7
Par moyenne 127,02 70,07 51,42 39,04 27,59 17,16 5,37
Sans écrétement 38,16 34,29 36,59 53,44 55,19 52,11 215,12
45000 11,47 8,30 8,52 9,70 11,69 11,58 49,90
50000 11,38 8,28 8,74 10,16 12,06 12,21 50,58
55000 11,33 8,31 9,07 10,61 12,46 12,84 51,89
60000 11,30 8,41 9,44 11,08 12,94 13,57 53,57
65000 11,30 8,55 9,87 11,53 13,47 14,30 55,38

On était ainsi arrivé a cette conclusion fort safisfaisante que le meilleur ajuste-
ment était obtenu en utilisant le processus le plus facile & faire adopter: prendre
sur les primes un “impdt” répartissant la charge des gros sinistres et tirer le ratio
d’aprés les sous-crétes.
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IV. CONCLUSION

Cette étude a permis de prendre une décision. La priorité de 60 000 F pour 1976
a été choisie et on I'a indexée pour les exercices sutvants. Aujourd’hui, le calcul
est toujours en vigueur.

Lors de I'exécution de ce travail, il n'avait été effectué sur ce sujet que peu
d’écrits publiés sauf, a notre connaissance, la thése de Mlle Hess patronnée par
le Groupement Technique Accidents et déja citée [1].

Depuis lors une étude fort compléte utilisant la théorie de la crédibilité a traité
a fond ce sujet [2] ainsi que d'autres papiers du méme auteur [3].

Bien que ce travail n’ait pas été congu lors de son exécution dans le cadre
strict d’'une application de la théorie de la crédibilité, il semble clairement que
les résultats concrets obtenus en soient une illustration naturelle et qu’il pourra
€tre repris sous cette optique sans que ses conclusions en soient modifiées.
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ACTUARIAL REMARKS ON PLANNING AND CONTROLLING
IN REINSURANCE

By ErwIN STRAUB

Zurnich

1. SKETCH OF THE PLANNING AND CONTROLLING PROCESS
IN A (RE}INSURANCE COMPANY

Planning is, or ought to be, an ever-developing process in which virtually each
member of the company has to be involved. Planning without controlling, i.e.,
without feedback, planning on its own, is useless.

In the first part of the present note, general aspects of planning are briefly
described nasfar as they are relevant to possible treatment by actuarial methods.

1 1. ““Hardware” and “Software” of Planning

The circles in the above figure represent what could be called the hardware of
planning consisting of three sets of figures, namely

* Actual figures describing the most recent reality. Most of these figures are part
of what 1s usually called the Earnings Statement (EST).

* Forecasts for the near future, say the next three years. Most of these figures
are contained in the Planning Budget (PLB).

* Control figures or signals in the sense of a “‘bread-line” expressing, for example,
how much the company should earn as a minimum in order to remain self-
financing. Such figures are calculated on the basis of so-called Return on Equity
considerations and they are found in a corresponding ROE-document.

By software we mean everything done with the hardware described above, i.e.,
primarily the comparison of figures from different domains of the hardware on
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different levels within the organisation of the company, the analysis, for example,
of deviations between actual and planned, the conclusions to be taken from such
analyses and the planning of new actions as a consequence.

In the above graph, circles symbolize the hardware and arrows indicate the
software.

Also non-numeric planning instruments (e.g., project planning, action plans,
assessment and decisions) are considered to be part of the planning software.

1.2. Earnings Statement and Planning Budget

The Earnings Statement and the Planning Budget are the two most important
numerical management accounting tools for planning and controlling a re-
insurance group and/or company and/or its various profit centers. The structure
of both is the same and can be sketched as follows:

Operating Result Reinsurance (Non Life) consisting of
Premiums
Underwriting Result gross
Retrocessions
Change in IBNR
Management Expenses
Standard Investment Income on technical reserves

Adding these components together—each of them to be taken with its correct
positive or negative sign—yields the operating result (before tax) of the re-
insurance production unit in question (e.g., a marketing department, a geographic
area, a specific product of the whole company).

Looking at this operating result over a number of years we observe that it is
affected by two kinds of fluctuation, namely

¢ cychcal variations due to pulsation of the markets and
e random varniations due to the occurrence (or non-occurrence) of large claims.

While it is of vital importance to judge (past and future) cyclical variations as
realistically as possible in order to be able to react both adequately and in time,
random variations are of quite a different nature and therefore require a com-
pletely different statistical treatment. Such a treatment is described in Section 1.3
below.

Clearly it 1s not at all easy to distinguish clearly between cyclical and random
fluctuations in practice because the total fluctuation of the operating result is a
mixture of both. Random fluctuations appear as a kind of noise or disturbance
which makes 1t difficult to quantify the underlying cyclical changes and trends.

1.3. The Cat Fund Concept

Basically random fluctuations of operating (or underwriting) results can be
smoothed either by external reinsurance {or retrocession) or internally by some
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kind of catastrophe and large claims fund. In what follows we shall mostly speak
in terms of such internal arrangements, although the inherent ideas are the same
both for an actual external cover and an internal arrangement which exists only
on paper.

Looking at a reinSurance company from an organizational point of view, it
could be conceived as a sort of profit center hierarchy.

Example:
top level =level | = whole company

level 2 =e.g., geographicarea
level 3 =e.g., line of business within area

We assume for the following that systematic planning and controlling is
institutionalised 1n the company; in the present context this would mean among
other things that

e an Earnings Statement (every year) and
» a Planning Budget (say every three years)

are produced for each profit center in the above figure. Clearly the Earnings
Statement of a PC 2 is the sum of the Earnings Statements of all its PC 3s (and
similarly for PC 1 of all its PC 2s). This sounds trivial but is nonetheless relevant
in practice when there are different currencies, for example.

Whether a claim is considered as large or small depends on the size and
structure of the portfolio under consideration. As a consequence of this, any
mechanism designed to eliminate the “‘noise’” must be much more efficient on
the lower level profit centers {with the smaller volumes) than on top level.

This goal can be achieved in practice by working with two instruments, namely
a Catastrophe Protection or Cat Cover acting on level 1 and a so-called Large
Claim Compensator acting on the profit centers of level 3 defined as follows:

(i) The Cat Cover is an excess of loss arrangement where the retrocessionaire
pays the excess of each claim which for the account of PC 1 exceeds a priority
P (say £1 million), however not more than a certain cover amount C (say £19
million, depending on the top catastrophe exposure). This Cat Cover is either
placed with external retrocessionaires or consists of a company-internal catas-
trophe excess of loss arrangement, a Cat Fund. In practice the whole Catastrophe
Protection is often a combination of both.

(i) The Large Claim Compensator, an internal excess of loss mechanism, is
usually a lower layer to the Cat Cover, paying the excess of every claim which
for the account of any PC 3 is larger than p (say £100 000) up to where the Cat
Fund comes in.

Note that the point “where the Cat Cover comes in” can vary from case to case:
If a large claim hits one single PC 3 only with a gross amount of £3 million, then



186 WORKSHOP STRAUB

the Cat Cover pays £2 million to PC I as well as to the said PC 3, and thus the
Large Claim Compensator is left with an obligation of £900 000 to that same
PC 3. If, however, a £3 million claim hits two PCs of level 3, say A with £600 000
and B with £2.4 million then again the Cat Fund’s payment to the top PC1 is
two million, of which £400 000 to the A-PC 3 and £1.6 million to B so that the
underlying Large Claim layer is left with payments of £100000 and £700 000 to
A and B respectively.

So the structure of the Earnings Statement and the Planning Budget (of any
profit center from level I down to 3) sketched in Section 1.7 is incomplete. The
full structure is rather:

Premiums

Gross underwriting result
Retrocessions

Change 1in IBNR
Contributions to
Recuperations from
Contributions to
Recuperations from
Management Expenses
Standard Investment Income on technical reserves

Cat Cover

Large Claim Compensator

1.4. Return on Equity Considerations

The purpose of calculating ROE minimum control figures is to give a quantitative
answer to the following two basic questions:

(i) How much equity does a company need in order to run its business?
(ER = equity required)

(ii) How much should the company earn as a minimum on its ER? (ROE
minimum = minimal return on equity)

Both ER and ROE are control figures which immediately lead to further questions,
such as:

(i) How does the actual (or planned) equity of the company compare with
its ER?

(i1)) How does the actual (or planned) overall operating result of the company
compare with its ROE minimum?

The basic idea underlying the ROE calculations is the criterion that the Group
company should be self-financing. This may in some cases be a very severe
criterion since after all a company can only do as well as the marketplace will
allow. Nevertheless, if the minimum ROE 1s higher than the actual result, this
is, to say the least, an important piece of information to the General Management.
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2 ACTUARIAL CONTRIBUTIONS TO PLANNING

Now the question is *“What can an actuary do in the corporate planning depart-
ment of an insurance or reinsurance company?”’ Below are indicated some
possible answers to a few specific planning problems.

2.1. How to Fix Cover Amounts and Priorities in the Cat Fund Arrangement

The amount of coverage under the Cat Protection is dictated by the needs, i e.,
the exposures written by the company. As a rule of thumb the upper point of
the catastrophe cover is in the region of 10% of the company’s GNPI (underlying
gross net premium income) or less.

What is a reasonable priority P?

As a guideline for fixing P under the Cat Fund we can argue that if the average
operating result is x% of the GNPI then P must be much below that since, 1f it
were of the same order of size, then one single large claim after deduction of
recuperation from the Cat Cover would already destroy the entire operating
result. As the latter is perhaps in the region of 1% to 5%, the priority P should
be some ten times less, say 0.3% of GNPI. The same reasoning is used for fixing
the priorities p under the Large Claim Compensator.

2.2, Assessing the Cat Fund's Size and the Yearly Contribution to the Fund

A practicable rule of thumb 1s to say that the fund should be able to pay a secular
catastrophe claim, i.e., a catastrophe which happens in all likelihood only once
in a century (such as the 1923 Tokyo earthquake or the Betsy windstorm in 1965,
but also an imaginable secular man-made catastrophe which could hit the port-
folio).

Another pragmatic approach 1s reflected in a rule of thumb of the type

fluctuation

reserve = ; - - on s
premium loading X risk willingness

the basic idea of which can be formulated as follows:

On the one hand the Cat Fund size (=reserve) must vary directly with the
potential fluctuations of its claim load, while on the other hand it can be lower
for higher loadings 1n the contribution to the fund and the more one is prepared
to accept that the fund may be exhausted (=risk willingness). Intuitively this sort
of connection between the above four items is pretty obvious; no actuarial model
is needed to see this.

When it comes to quantifying things like ““fluctuation™ or “risk willingness”
we cannot, however, do without a risk theoretical model. Considering the most
simple actuarial model of insurance being a reservoir with steadily inflowing
premiums and stochastically outflowing claims and putting equality in Cramér’s
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mnequality one obtains the following general formula of which the above men-
tioned rule of thumb is but a special case, namely

E[Z] Ine\  E[Y)/E[Z]
U U2 ( _'2—) ~Var[Z]/Var[Z]

of which a sketch of a proof is given under 2.6 below and where U is the reserve,
Z stands for the yearly gross claims load of any insurance company or portfolio
under consideration, E[Z] its expected value i.e., the pure gross risk premium,
v[Z]=Var[Z]/E*Z] which is the square of the coefficient of variation of Z,
i.e., a measure for fluctuation, ¢ is the tolerated probability of ruin, Y and Z are
the net yearly result and claims load tespectively under some arbitrary reinsurance

cover. . .
Putting Y=Y and Z =Z in the above formula yields

u _ v[Z]
E[Z] (E[YVE[Z]}(-2/In¢)

or in other words

fluctuation

reserve = N T L T1re
premium loading Xrisk willingness

with

reserve = ﬁ

i.e., the initial reserve U is to be expressed as a multiple of E[Z]

E[(Y]

“premium loading” = ﬁ = profit margin

since if Y =P —Z with premiums P=(1+8)E[Z] then E[Y]/E[Z]=6

*risk willingness” =—
Ing

where £ denotes the probability with which we allow the fund to be exhausted
at some future time.

2.3. Breakdown of Qverall Risk Capital on Subportfolios

Risk capital (sometimes also called contingency or fluctuation reserves), catas-
trophe reserves and solvency requirements—though fitting different purposes
and/or looked upon from different standpoints—always pose the same two
problems for the actuary: the assessment of an appropriate overall reserve and
the question of how to find the “right™ distribution of the latter over a number
of subportfolios or profit centers. For a solution of the second of these two
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problems put again
Y=Y and Z2=2Z

in the above mentioned general formula, thus

—E—Eji]-v[Z]-(—lnTs>=6
) U=u[Z]-(—lnT£> é E[Z].

If now the entire portfolio 1s subdivided into a number of subportfolios j=1,
2,..., N with totals of claims Z, we calculate U, according to

In ¢’

y-iiz)- (-57) - E12)

where &'=constant, t.e., independent of j, which means that we consider a
distribution of the total reserve over the subportfolios as fair if each subportfolio
has the same ruin probability ¢'.

Of course 3%, U= U, i.e,

.ln g - g v[ZJ]-E—[SZ"—]=ln £* v[Z]%Z]

which determines the common ruin probability &',

Var[Z]
8E(Z]
N var[Z]
1=1 SJE[ZJ]

Assuming non-correlated Z, thus yields

Y Var[Z]
~lne' Y §E[Z]

—lne

Ing'=lne-

5 Var[Z,]
8E(Z]

where the right-hand side is always less than one because of
Z a.lb}<za)Z bJ
since for nonnegative a, and b, one has ab, < a, 3. b, and by summing over j one
gets Y ab <Y a ¥ b
2.4. ““Extending™ Scarce Statistical Materials

A main difficulty to be overcome when assessing Cat Cover premiums is, for
example, the fact that we only possess scarce statistical data as a rule. Instead
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of—or even better, parallel to—a parametric model approach 1t is sometimes
useful to proceed pragmatically by combining underwriting judgement with scarce
statistics as follows.

Ist step:  take the statistics available, say of the last five years, of claims
exceeding the priority of the catastrophe fund.

2nd step: add the same five years statistics to 1t but with a built-in artificial
windstorm claim which, we believe, 1s likely to occur every ten years.

3rd step: repeat the ten years statistics obtained in this way by building in an
additional big fire and a catastrophe air crash.

4th step:  repeat the above twenty years’ statistics and add a severe windstorm
with a return period of forty years.

5th step:  the 40 years are again doubled and reinforced by a secular earthquake
catastrophe.

2.5. Quantifying the Change in IBNR

Clearly if the organization is such that the component ‘““change in IBNR” of the
Earnings Statement is considered to be assessed by the actuary working in the
Planning section to some extent, then there are a number of different methods
at his disposition. Instead of describing them here even only sketchwise we refer
to the excellent monograph **Loss Reserving Methods™, Issue No | of Surveys
of Actuarial Studies prepared by the Nationale-Nederlanden N.V., The Nether-
lands.

2.6. Derivation of the Above Used Formula

We merely indicate here the main steps of a proof of the general formula

E[Z] Ine\  E[YVE[Z]
vzl < 'T> ~Var[Z])/Var[Z]

used before. }
Cramér’s inequality says that if £ denotes the ruin probability and Y the net
result of the portfolio under consideration then

E<e

with U = initial reserve and R =solution of 1 = E[eR¥].
Putting equality in Cramér’s inequality and taking logarithms on both sides
yields

Ine

U

where R is the positive solution of ¢(R)=In E[e"®V]=0.
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Taking only the first two terms of the expansion of ¢(R) we obtain

_ 2E[Y]
“var[Y]

5

~ R~ ~
—-RE[Y] +7 Var[Y]=0 ie R

and therefore

e ELYL ore ¥ = net resuli= F— 2
U Var[Y]’ where =net result =

Multiplying both sides by Var[Z] and dividing them by E[Z] yields (realizing
that Var[Y]=Var[Z])

_E(z) . (_Ine\__E[VVE[Z]
LY ”[Z]( 2) Var [Z]/Var [Z]

where the left-hand side (which we denote by g = security factor) does not depend
on the type of reinsurance (because no “~ ™ occurs), contrary to the right-hand
side.

Interpretation of individual terms:

=initial reserve in ‘‘natural” money units E[Z]

E[Z]
Var[Z

v[Z]=azr—[]= square of the coefficient of variation of Z
E‘[Z]

Er ¥

E%g=expected net result in natural money units

Var[21=some sort of reciprocal measure of the efficiency of
Var[Z] the applied reinsurance programme.

In line with the intuition that the security factor decreases with increasing initial
reserves, decreasing fluctuations of the gross result and increasing tolerated ruin
probability (the latter being a measure of the risk aversion).
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