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ABSTRACT 

In a previous paper, Jewell and Sundt showed how to approximate a distribution 
of total losses from a large, fixed, heterogeneous portfolio, using a recursive 
algorithm developed by Panjer for the distribution of a random sum of random 
variables (a single casualty contract). This paper  extends the approximation 
procedure to large, dynamic heterogeneous portfolios, in order to model either 
a portfolio of correlated casualty contracts, or a future portfolio, whose composi- 
tion is not known with certainty. 

0. INTRODUCTION 

The problem of finding the distribution of . ~ = ~  d-3~2"1-.~2"~-""" "t-XN, where the 
(.~,) are a fixed and large set of independent, nonidenttcally distributed, integer- 
valued random variables was considered in JEWELL and SUNDT (1981) 
(hereinafter referred to as JS). Although, in theory, the discrete density of f is 
just the N-fold convolution of the individual densities, this computation is very 
time-consuming, and various forms of approximation must be used; moreover, 
in many risk applications, the use of a normal approximation gives very bad 
results, even for large N, because of the skewness and long tails of the density. 
However, if the probability p, = Pr {.~, = 0} is significant for most z = I, 2 . . . .  , N, 
it turns out that a very good approximation can be obtained using newly-developed 
procedures for the related problem of calculating the distribution of the sum of 
a random number of independent and identically distributed random variables. 

In many risk applications, especially in insurance and investment management,  
there are an ever-changing number of risks of different types, and it is of  interest 
to predict the distribution of a portfolio whose future composition is not known 
with certainty. This paper develops a general model for this situation, and shows 
how the approximation procedure described in JS can be extended. 

1. T H E  D Y N A M I C  P O R T F O L I O  M O D E L  

Let i = 1 , 2 , . . . ,  N index a number of  different risk classes (insurance policies 
or types of  investment) in a given portfolio, and let r~, e [0, 1 , . . . ]  be the random 
number of independent risks of type i, giving a grand total number of  risks in 
the portfolio 

N 

(I.I) r~T= Y. rT,. 
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Risks of  type z are s~mdar, in the sense that, if .~,~ is the random monetary 
gamble from the ) th  risk of  type ~, then its discrete density, f ,°(x),  is the same 
for all ./, i.e.: 

(I.2) Pr{.~,j =x}  = f ~ ( x ) ,  (t = I, 2 , . . . ,  N ) ( . / =  1,2, .  , n,). 

We shall only consider discrete gambles, with the common  range of  the (£,j) as 
[0, 1,2 . . . . .  R]. As mentioned above, we assume for the moment  that the (£v) 
are statistically independent  of  each other and the (~,), but we do not assume 
that the (~,) are independent .  (But see Appendix  A.) 

The total monetary gamble for all risks of  type ~ is then the sum of  a random 
number  o f  random variables: 

0, ( t =  1,2, N)  (,~, = 0 )  
(1.3) ~ ' =  .x,~ +.~,2 + .  • • +.~,~,, (~, > 0), " " '  

and the grand total monetary risk as then the fixed-term random sum" 

(I.4) .V =.xl +-x2 +" " " +xN. 

Note that the (.~,) are now dependent random variables, if the (g,) are. 
If  g(y)  and ~r(n~, n2 . . . . .  nN) are the discrete densities of  the total risk sum 

and the number  o f  risks of  each type, respectively, we have then the discrete 
density o f  y as: 

Pr {)7 = y} = g ( y ) = Y ' ~ . . .  ~. lr(n,, n2,. . . ,  nN){f°(y)] "* 
nl n2 nN 

(i.5) 
*[f2°(y)] '~*" • • *[f~(y)]"~.', (y = 0, I, 2 , . . . )  

which, o f  course, is a lengthy and laborious computa t ion  (In .IS, the special case 
o f  (if,) deterministic was considered.) 

2 I N T E R P R E T A T I O N S  

Before describing a method of  approximat ing (1.5), we gwe some possible 
practical interpretations o f  the model 

In insurance applications,  the simplest interpretation is that i refers to different, 
distinguishable types o f  insurance policies in a given portfolio;  for instance, 
similar policies in personal lines of  insurance could refer to ordinary life insurance 
pohcies with the same face values issued to persons o f  the same age. For the 
current year, we know exactly the number  of  policies of  type t and hence, 
following JS, can find an approximat ion to the current g(y).  However,  an 
approximat ion  to (1.5) would be necessary to predict total portfolio risk for next 
year, after some policies are withdrawn, some policies have paid out benefits, or 
new policies have been added,  and still others have shifted type. By specifying 
the stochastic law governing this " d r o p - a d d "  mechanism, we can get 
~r(n~, n 2 , . . . ,  nN) for next year. Possible reasons for leaving correlation between 
the (~,) are that we may have a precise idea o f  how new sales are distributed 
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among the different types of policies, but may be uncertain about the total new 
business; or, the new business total may be accurately estimated but the distribu- 
tion may be uncertain; or, there may be an uncertain number of pohcies which 
are shifting type (as in aging of life insurance insured), etc. 

A second insurance interpretation is the so-called casualty claim model, in 
which multiple claims may occur on a policy during a given exposure year. Here 
I indexes each of a fixed number of policies, f,°(x) is the indwidual claim 
("severtty") density, ti, is the random number of  claims ("frequency") ,  and .~, is 
now the total monetary claim on the single pohcy i. Of  course, if the (tl,) were 
independent, then this application could be handled by making ~ 7r(n,)[f,°(y)] n*, 
the bastc density used in the procedure described In JS; but this would require 
prior calculation of this compound law (see also Sections 8 and 9, below). 
Moreover, external factors, such as weather and economics, often affect the 
number of claims of all types of contracts in a given portfolio in the same way, 
thus introducing correlatton and the need for a more general model. 

In most insurance portfolios, a great deal of  effort is used to assure that the 
(~,j) are statistically independent of each other. However, there remains always 
the possibility that risks of the same type i are influenced by the same exogenous 
factors. In Appendix A, we consider the case when risks of the same type are 
exchangeable random variables, which leads to a weak form of dependence on 
the (.~,j). 

In investment portfolios, it is unusual to have independent risks of  the same 
type, i.e., requiring the same investment level, and having the same outcome 
distribution; instead, we usually have a different amount of  money invested in 
different risks. If  we let ri, be the level of  investment in type i and ~ the net 
return from this investment, then (1.3) holds only if the (xo) are perfectly 
correlated, or what is the same, if (I.3) is replaced by ~, = ~,.~,t. Another limitation 
on mvestment modelling is that tt ts usually possible to have negative net returns, 
which ~s discussed in Section 10. It should be remembered also that our approxi- 
mation is usually successful only if the problem is modelled so that the probability 
of zero net return is substantial, i e., all "sure thing" return has been eliminated. 

Technological risk applications are based upon the compound law interpreta- 
tion; for instance, in rehabihty engineering, ti, may refer to the random number 
of mechamcal,  electrical, or thermal shocks of type : which affect a given piece 
of equipment;  in fire damage analysis, ti, is the random number of fires of  a 
given type (size, type of dwelling or land classification) which occur; and so 
forth. In technology applications, the primary modelling challenge is to express 
damage in appropriate,  addttlve untts for situations where there is no accepted 
monetary surrogate for the risk 

3. N O T A T I O N  A N D  M O M E N T S  

The success of  the approximation procedure to be described depends upon the 
assumption that most of  the total risks, (.~,), have a htgh probability of  being 
zero; this can occur either because f,°(0) is large, or because ri, is often zero. We 
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now change to a traditional notation (see JS) which emphasizes the distribution 
o f  risk when it is positive. Let 

(3.1) Pr{£,j=O}=f,°(O)=p,=l-q,, (t = 1 , 2 , . . . ,  S ) ( j  = l, 2 , . . . ,  ~,) 

(3.2) f ( x )  = Pr {.~,j = xl.x,j > 0} =f,°(x)/q,, (x = I, 2 . . . .  , R) 

and define the first two moments  of  non-zero risk as: 

(3.3) m, = g'{.~,j[~,~ > 0} = ~{~,j}/q,, 

(3.4) v, = °V{£,jI.~,j > 0} = [°V{£,; }/q,] - p,(m,) 2. 

From the joint count ing density, we get the marginal densities. 

(3.5) 7r,(n) = Pr {~, = n}, 

and the first two moments :  

(3.6) 

(3.7) 

(i= I, 2 , . . . ,  N)( s = I, 2 , . . . ,  r~,) 

A, = ~{,~,}, 
"/,k = ~'{ri, ; &}, 

(~, k =  1 , 2 , . . . ,  N).  

The approximat ion  itself is based upon moment-matching  with the first two 
moments  o f  the exact density (1.5), which we now find m a straightforward 
manner.  First, from (I.3) and the assumptions:  

~g{£,l n,} = n,~{~,,}, 
~ n , ~ { d v }  , ( i  = k)  

c~{£'; £a[n" nk} =~0, (i # k) 

so that, unconditaonlng,  we have: 

(3 .8 )  ~ { ; , }  = ~{,~,} ~{;,~}, 

~f ~{,i,}'v{i,~} + v{,~,}[~{~,,}] 2 , (,=k) 
(3.9) ~{:~, ; £a} = 1.0 + C¢{r], ; ~k}~'{.f,,}/gl£k,}, (t ~ k). 

Then, using (1 4) and notat ion defined above, we find the first two moments  o f  
total portfol io risk as: 

N 

g'{37} = E A,q,m,, 
i = l  

(3.10) 

and 

N N N 

(3.1 I) ~{.~} = ~ A,q,(v, +p,m~) + ~ ~ y, kq,q~m,mk. 
I = l  r - - I  k ~ l  

The (q,), (m,), and (v,) are presumed known from past portfolio statistics on 
each type ~, and the (A,) and (Y,k) are gotten from modell ing assumptions regarding 
the future composi t ion o f  the por t foho;  so, we shall assume that these moments  
are given parameters. 
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Of  course,  if the (~,) are statistically independent ,  the last term become 
77.q~m~. In the static portfol io model  in JS, the composi t ion  was fixed, with all 

~, = I ; an equivalent ,  but slightly general ized model  can be gotten from the above,  
with if, = n, = A,, and all 77,k = O. 

4. THE APPROXIMATING RISK COLLECTIVE MODEL 

In the approx imat ion ,  we replace the original por t foho  by a homogeneous "risk 
collective",  that is, we assume that 37 is approximate ly :  

o, (,i~ =o1 
(4.1) 37= ¢, +~ '2+"  • • + ~ , ,  (~e>  0) 

where ~e is the r andom number  of  equwalent posutve claims (if,), assumed to be 
independen t  of  each other  and ~ ,  and identically distributed, according to proto- 
typical counting and individual risk densities: 

7r(n) = Pr {~, = n}, ( n = 0 ,  1 , 2 , . . . ) ;  
(4.2) 

f (w)=Pr{~=w},  ( w = l , 2  . . . .  ), 

leading to the usual compound law of  risk theory for the density of  37: 

(4.3) g ( y ) =  ~ 7r(n)[f(y)]"'. 
r l = 0  

As ment ioned  earlier, the rat ionale behind this approx imat ion  is that,  in many  
appl icat ions,  the (~u) are zero with high probabi l i ty ;  the (v;,,) then represent  just 
the positive (£,j). (See also JS and GERBER (1979).) 

If  the prototyplcal  moments  are: 

(4.4) A = ~{~e}; 77 = 7/'{~e}, 

(4.5) m = .~'{~,}; v = ~{ f f } ,  

then the moments of the random sum in the approximating model wil l  be: 

(4.6) ~{y} = Am, 

(4 .7)  ~{37} = At) + 7 m  2. 

For a good  approx imat ion ,  the momen t s  (4.6), (4.7) must  be matched  as closely 
as possible with the true values (3.10), (3.11). In addit ion,  the forms of  the 7r(n) 
and f(w) chosen may also be vaned.  

5. THE ADELSON-PANJER RECURSIVE ALGORITHMS 

At this point ,  we should stop and consider  whether  the computa t ion  of  the 
c o m p o u n d  law (4.3) can be effected in any efficient manner ;  otherwise,  it is not 
much improvemen t  over  (1.5). A tradit ional  approx ima t ion  (for the static port fol io  
problem)  used in actuarial  circles was to make  7r(n) a Poisson law; this was 
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because (further) approximations to the compound law had been developed in 
the early risk theory literature (see, e.g., GERaER (1979)). 

However, the recent extension by PANJER (1981) of a recursive scheme of 
ADEt.SON (1966) now provides an efficient and direct way to compute (4.3). 
Essentially, if f(w) is discrete over [1,2 . . . .  ] and the counting distribution is 
chosen from a certain (a, b)-famdy for which: 

(5.1) 7r(n) = a +  r r ( n -  1), ( n =  1 ,2 , . . . )  

then g(y) can be calculated recursively via. 

~'(1 - a) (" ~b)/a , ( a # 0 )  
g(O) = ~r(O)= i e_b, (a =0)  

(5.2) 

g(y)= ~ a+b f(x)g(y-x), ( y = l , 2 , . . . ) .  

This is clearly an efficient computational procedure, provided the (a, b)-family 
is a useful one. As elaborated upon in SUNDT and JEWELL (1981), the only 
members of this family, apart from the degenerate density, are: 

A-e -a  
(5.3a) (Poisson) ~r(n) = , ( a = 0 ;  b = A ) ;  

n! 

(5.3b) (Binomial) Ir(n)=(l~t)p"(l-p) M-", (a=-p/(l-p);  

b=-a(M +l)); 

(5.3c) (Negat iveB,nomml)  rr(n)=(a+n-I) 

(a=p; b=p(a-I)). 
These counting distributions are useful, since they are often used in modelling 
compound risk laws. Furthermore, since: 

a+b a+b 
(5.4) A : .~'{~e} = 1 - a ;  3 '= ~{~e} = (1 - a )  2; 

we get: 

(5.5) 

and 

(5.6) 

a a ( X + l )  
a = l - - - ;  b - - - - l "  

Y Y 

g'{,i,} a I - a '  

The importance of the ratio (5.6) m modelling empirical counting processes is 
well known. From (5.3), we see that this family covers a wide range of such 
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ratios, with the Binomial giving ( y / A ) < 1  and the Negative Binomml (Pascal) 
giving ( y / A ) >  I; the Poisson (y = A) distribution is the dividing line. 

Therefore, for computational simplicity, we propose to use the (a, b)-family 
to model the counting distribution 7r(n) and the recursive procedure (5.2) to 
compute the approximate density (4.3). Note that, if a < 0 in (5 5), we are not 
completely free in our choice of b, since M must be an integer in the Binomial 
law (5.3b); however, this is not usually a serious limitation (see JS). 

6 .  T H E  F I N A L  A P P R O X I M A T I O N  

Having selected cr(n) on the basis of computational convenience, we must now 
choose the prototypical density, f (w) .  The form which will give the best approxi- 
mation in all cases is not known. However, a natural way, consistent with the 
interpretation given in Section 4, is to weight the individual densities (3.2) with 
weights proportional to the expected number of risks with positive outcome in 
the corresponding class, i.e., to fix. 

(6.1) f (w)  EA 'q ' f ' (w) -ZA ' f~(w) ,  ( w = l , 2 , . .  ,R) .  
Z Ajqj Z A, qj 

This choice is consistent with JS for the static risk portfolio model, and also 
provides the greatest simplification to the formulae below. Using (3.3), (3 4) in 
(6.1), we find first m and v in (4.5), then substitute into (4.6), (4.7) to find the 
first two moments of the approximating model ; these moments are then equated 
with the exact results (3.10), (3. II ), obtaining finally the first two moments of  the 
prototyplcal counllng density In terms of the original parameters: 

N 

A = . ~ { ~ }  = Z A,q,; 

A,q, l - q ,  k ,  ,_, Y ' t q ' q k ~ T ]  ; 

(6.2) 

(6.3) 

where the mean prototyplcal severity is: 

(6.4) m = g'{ ~} = - -  

and the severity variance is: 

(65) 

A,q,m, 
Ajqj 

v= ZA'q'(v'+m~) mL 
Z Ajq~ 

To summarize: In the final approximation,  we would first calculate the f , (x)  and 
the moments of Section 3 using the data, then compute f (w)  from (6 l) and use 
it in the approximating model (4.3), together with one of the ~-(n) of  Section 5, 
with (a, b) selected using (5.5), the approximate density is computed recursively 
via (5.2). 
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In the static portfolio case considered in JS, all Y,k are identically zero, so that 
y < A, and a Binomial counting law results. This raises the integrality problem 
for M previously mentioned, and means that the resulting values of (a, b) do 
not exactly match ~/'{.~} in the original and approximating models; however, the 
resulting error is not serious in the example analyzed in that paper. 

In contrast, the dynamic portfolio model of this study can give y/A > 1, and 
hence Negative Binomial 7r(n), if the (7,k) are large enough. To see this, consider 
the case of independent, but still random, (~,). (6.3) then becomes: 

(6.6) 7 = ~{~e} = h,q, ( 7 , - h , ) .  
i -I 

Thus, we see that, if a sufficient number of  (margmal) counting densities (3.5) 
have y,,/A, > I, then also ~ /h  > 1, a most reasonable result. 

7. T H E  C O M P O U N D  M U L T I N O M I A L  C O U N T I N G  D I S T R I B U T I O N  

One natural way m which the number of risks in the different classes, ~ =  
(ri,, ~2 , . . . ,  fiN), might be generated in a predictive, dynamic model is from a 
Multinomial law, with given total number of risks, nT, and a set of selecnon 
probabdmes, ¢r =(¢rt, 7r2,. •, 7rN), viz: 

(7.1) P r { l i = n i n r ;  r r } = ( n , ,  
N 

t i T  1-1 n 
7 T i '  ~ 

n2, • . • , tin , - I  

(~ n, = nT)(~ 7r, = 1). 

With fixed nT and ~, there are already correlations between the counts in different 
classes, as: 

(7.2) ,g{n, lnT; ~} = zr, nT; (z = l, 2 . . . .  , N )  

(7.3) 
I 2 ( l = k )  ~{~,; ak lnT;~}= rr, n T - z r ,  nT, 
t--Tr, rrknT, ( i # k ). 

However, to give more modelling flexibility, we now perm]t both nT and ~ to 
be a random scalar and random vector, respectively, but require that they be 
independent of each other, for simphcity. This "collective" model dependency 
gives a more complex covariance structure. 

Define: 

N N N 

(7.4) g ' {~T}=AT = Z A," ~ { ~ r } = Y r  = E Z ")',k; 
I I i ~ l  k = l  

then, uncondltioning (7.2), (7.3), we obtain the moments for use in (6.2), (6.3): 

(7.5) ~{~,} = h, = hT~'{rr,}; 



DISTRIBUTION OF DYNAMIC RISK PORTFOLIO 143 

{Ar,~{-~-,} + (TT - AT + A~-) W{ ~,} ( I = k )  

J +('YT--'~T)~2{~',}, 
(7.6) ~{ ri, ; ~k } = "/,k = )(.,/7. _ A T +it  ~_) eel.k, ; ~, } 

[. + (TT -- A T) ~'{'rT', } ~'{'kj }, i ¢  k). 

It Is easy to show that  these satisfy (7.4), by using ~ 7~, = I. 
It seems to the au thor ' t ha t  practical model l ing variat ions might fall into one 

of  two extremes: either ( I )  the (~,)  might be known rather  precisely, and 
forecast ing uncertainty might be associated with the total numbe r  of  risks or, (2) 
there would be a relatively stable number  of  risks, but predict ion uncertainty 
would remain about  their distr ibution over  the different risk classification types. 
(For  the casualty claim model ,  only the first variat ion would p robab ly  be relevant.) 

An interesting special case of  the c o m p o u n d  Mult lnomial  coccurs when the 
(?r,) are fixed, and 77-= 3.r. It then follows from (7.5), (7.6) that  ;t, = y,, ( i =  
1 , 2 , . . . ,  N )  and (r~,, r~k; i ~ k) are uncorrelated. This then simplifies (6.2), (6.3), 
(6.6) to A = y, that is, a = 0, b = A, and a Poisson count ing distr ibution would be 
used in the approx ima t ion  of  Section 5! One obvious  way in which this could 
happen  is if tit  were Poisson with parameter ,  say p.; it is then well known that 
the (r~,) must  be statistically mutual ly  independent ,  with marginal  densities that 
are Poisson with parameters  (Tr,/.t). 

8. AN EXACT RESULT 

There is one case in which the proposed  procedure  gives an exact result. Cons ider  
a risk portfol io  of  fixed size N, with each contract  ~= 1 , 2 , . . . ,  N having an 
individual  claim density f ,°(x) ,  with paramete rs  q,, m,, v,, and an independent 
claim n u m b e r  density that is Poisson, with pa ramete r  ,o.,. This is the basic model  
used in casual ty insurance.  

Fol lowing the procedure  in Sections 5 and 6, we get the same special results 
descr ibed in the previous section, namely,  y,, =A,, Y,k = 0 ,  ( i #  k) and A = y =  

ix,q,. In other  words,  once f ( w )  is de te rmined  from (6. I), the recursive algori thm 
(5.2) is used with the Poisson density (5.3a) to find the approx ima te  g(y).  

However ,  it is easy to show, using generat ing functions,  that  the exact form 
(1.5) reduces to a c o m p o u n d  Poisson law with pa ramete r  3., and a severity density 
f ( w ) .  Thus,  the dynamic  portfol io  approx ima t ion  is, in fact, exact for independent  
Potsson claims. This is true even if p, = 0  for all ~!! 

Unfor tunate ly ,  the same line of  p roof  shows also that  independen t  Binomial  
or Negat ive  Binomial  claim densities (with different parameters  for each t) can 
only lead to an approximation of  the true g(y).  However ,  it follows f rom Section 
6 that the approx imat ing  law for tie would be Binomial or Negat ive  Binomial,  
respectively. 

9 MODELLING WITH FIXED AND RANDOM NUMBER OF COUNTS 

TO highlight the differences between the model  and procedure  of  this paper  and 
the static port fol io  model  in JS, it is instructive to re-examine how the independen t  
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Poisson casualty claim model of Section 8 would be handled according to the 
JS procedure. We use primes to designate the equivalent parameters of this paper, 
in terms of the given model parameters ~,, q,, m,, v,. 

First of all, since all ~,-= I m the JS model, we would have to estimate or 
calculate separately the N individual total severity densities for each contract 
risk, ~, : 

(9.1) f O,(x)=g,(x) = ~ (l-L,)" [f,O(x)],," 
n=O n !  

(This could be done by N applications of the Adelson algorithm, or might be 
approximated from real total severity data.) 

Then, in terms of the parameters of  this paper, we would get: 

A',= 1" q',= 1 --e-Is,q,; m : =  /./.,m, 

(9.2) 
, ,  v, = /.z,v, + ( m , - p , m , ) m , .  

kq , /  

Thus, the static portfolio approach of JS would use the Panjer recursive algorithm 
with. 

(9.3) f ' ( w ) = ( Z f ° ' ( w ) ) / ( ~ q ~ ) ,  ( w = l , 2  . . . .  ) 

and a Binomial counting density with moments: 

(9.4) A '=  Z q', < A ; 

~ , ' = Z q :  I - q :  m, . 

The resulting g(y) would then only approximate the true density, which could 
be obtained exactly in this case. Thus, one might be tempted to dismiss the JS 
procedure in compound claims applications. However, we can imagine situations 
in practice where the actuary has used empirical data to estimate the densities, 
g,(x) and 7r(n,). Then the question of the best approximation procedure is still 
open. 

We remind the reader that, if the (J,) are, in fact, deterministic, then the 
procedures of  the two papers are equivalent; conversely, if the (~,) are correlated, 
only the procedure described here applies. 

10. OTHER VARIATIONS 

In JS, an improved approximation for the example considered was obtained by 
modifying the rr(0) of  the Binomial (5.3b) to enable an exact match of ~V{.~}, 
together with an integral value of M. This modification could be used with the 
model of  this paper  whenever ( y / A ) <  1, and requires only a trivial change in 
the recursive algorithm. But this refinement is not necessary in the other cases, 
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as V'{~} is matched exactly. Of course, one might try matching other moments 
or values of  the exact distribution by modifying the initial values of the prototypl- 
cal counting density (see the discussion in JS). 

It would also be desirable, particularly in investment applications, to extend 
the range of permitted (.~,j) to negative values The difficulty then is that the 
relationship (5.2) is no longer recursive, and must be solved by other means, 
such as iterative methods. This point is discussed in SUNDT and JEWELL (1981), 
where possible procedures for the Binomial and Poisson cases are suggested; 
exact recursion with negative values in the Negative Binomial case ( y / A ) >  I 
does not seem to be possible. 

I1 .  COMPUTATIONAL  CONCLUSIONS A N D  A C K N O W L E D G E M E N T  

The limited computations carried out thus far indicate that the same general 
kmds of approximation error result as in JS; in other words, the underlying 
severity density should not be too " lumpy"  if there are only a few risk types. 
Errors also seem higher in strongly correlated cases, as expected. A future paper  
wdl explore computational results in more detail. 

The author would like to thank the referee who found several errors in the 
original formulae. 

A P P E N D I X  A 

D E P E N D E N T  RISKS 

In Section I, it was assumed that the individual risk severities (~,~) were statistically 
independent of each other and of the counts (~,). In this appendix,  we consider 
the modifications necessary if the risks are exchangeable random oarmbles within 
each type i, but still independent of the counts. As is well known, this weak 
dependency is equivalent t oas suming  that, for each type t = I, 2 , . . . ,  N, there 
exists a random parameter, 0,, such that the individual risks are independent if 
t~, = 0, is known, and depend in the same way upon 0,. Thus, the basic density 
(1.1) is replaced by: 

(A.I) Pr{~,j=xlO,}=f,°(x[O,), ( i =  1 , 2 , . . . ,  N) ,  (j  = 1,2 . . . .  , n,) 

giving a joint density withm type z, given ~, = n, similar risks, of: 

(A.2) Pr{(5)~,j=x,jln,}=~ N f,°(x,jlo,), 
J=l  J= l  

and a common marginal dens,ty for any risk of  type i: 

(A.3) Pr {.~,j = x} = ~'f,°(xl if,) =f,°(x).  

(Expectations in the above are over the random values of  tJ,.) Exchangeable 
random variables thus have the property that they have the same marginal density 
(and self moments),  their arguments may be permuted in any fashion in their 
joint density (A.2), and they have common cross moments. 



146 JEWELL 

In addi t ion to the dependency  between different types introduced by the 
correlat ion between dtfferent counts,  we will also permtt  the different parameters  
in O= (Or, 02,. , ON) to be statistically dependent ,  with arbi trary joint  d.f. U(O). 
In short,  our  new model  substitutes for (I .5)  the general form: 

(A.4) o, o2 oN ,, . . . . .  

.[f2°(yl "* O2)] 2 . . . . . [ f ~ , ( y l O N ] " ~ .  

Intuitively,  we can think of  0, as represent ing exogenous factors, such as the 
economy,  weather,  political factors, etc. that influence the r andom outcome of  
all risks of  type ~ jointly. Th,s type of  " 'collective behav iour"  model  is often used 
,n casual ty  insurance,  where it is recognized that  all risk classification schemes 
are imperfect ,  and that  residual correlat ions still exists among  risks of  a given 
type due to the unexpla ined inhomogenei ty  still present  within the class ~. Further,  
there might  be c o m m o n  factors between the different classes, which would account  
for the dependency  between 0, and 0k (i # k). 

Proceeding in a manner  similar to Section 3, we define the positive risk denstties 
.£(xlO,), the probabi l i t ies  p,(O,) and q,(O,), and the first two moments ,  m,(#,) and 
v,(O,), all dependen t  upon  the risk parameter .  (3.8), (3.9) still have the same 
form, except  that they express only the condit ional  mean total risk, ~g{;,lO,}, and 
condi t ional  covar iance of  total risks between different classes, c¢{5, ;.~k[O, ; Ok} in 
terms of  the condi t ional  moments  of  individual  risk, and the (non-0-dependent )  
moment s  (3.6), (3.7) o f  the counts. 

Now all that  remains  Is to uncondi t ion these moments ,  using the relattonships:  

N 

(A.5) ~{5} = E ~{;,I,~,}, 
I = l  

N N 

(A6) ~{.V}= £ £ E~C{;,;;kl0: • 0\}+'¢{~{;,1~,}; ~{;klt;~}}]. 
i = l  k - I  

( Inne rmos t  opera tors  are over  the total risks (.~,)" outermost  opera tors  are over  
the risk parameters  (6,).) 

We define the uncondi t ional  versions of  q,(O), m,(0),  v,(0) as: 

(A.7) q, = ~{q,(O)}" r~, = g'{m,(O,)}; ~, = ~{v,(/~,)}. 

By the theorem of  condit ional  expectat ion,  q, = Pr {-'~v > 0} is the same as in (3.1). 
However ,  as the referee reminds us, r~, and ~, are not the same as m, and v, in 
(3.3), (3.4) unless the variat ion due to 0, vanishes;  hence,  the different notation. 
In fact, m the current  notat ion,  we see that: 

(A.8) m, = ~{;,,I;,~ > 0} = a,, + ~{q,(/~,) ; m,(O,)/q,} 

In addi t ion to correlat ions,  we shall also need higher-order  c ross-moments ,  so 
we define: 

(A.9) Q,(O,)=q,(O,)-q,; M,(O,)=m,(O,)-r~,; V,(O,)=v,(O,)-~3,; 
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and use notation like. 

Q,Q~ = ~{Q,(0,)Qk(0k)} = ~'[q,(0,); qk(Ok)}; 

(A. 10) Q,M, = ~'{O,(O,) M,(0~)}. 

Q,M, Mk = ~{Q,(I~,)M,(O,)Mk(O~)}; 
and so forth 

In place of (3.10), we have: 

(A I I )  ~ '{f i}=~A,q,~,+ X,(Q,M,) , 
i 

and, in place of (3.1 I), we obtain: 

~'{.Y} = E A,q,(~, +p,(~,)2) +E  E y,aq,qkrh,rhk 
I 1 k 

xE A,(q,p,M, 2 - (rh,)2Q~) 
i 

+Z A,[Q,V, +2rh,(p,-q,)Q,M, +(p,-q,)Q,M~-2rh,Q~M, -Q,M,]2 2 
i 

(A.12) 
+ ~ ~ 2%kq, rh,Q~Mt 

i k 

+E E ( %k + h,hk)[q,qgM, Mk + rh,rhkQ, Qk +2q, rhkQ, Mg 
i k 

+ 2q,Q~M, Mk + 2rh, Q,Q~Mk + Q, QkM, Mk] 

The term in braces in (A.I I) gives a correction term to the calculation of ~ in 
(6.2) (with, of course, m, and v, replaced by r~, and g,); similarly, the terms in 
braces in (A.I I) and (A.12) give two correction terms to the calculation of 7 in 
(6.3). 

In many applications, these corrections simplify because either the probability 
of a claim or the moments are mdependent  of 0,. For instance, in life insurance, 
m, = ~, and v, = ~, are the moments of the face value of policies of  type z, which 
do not usually change with exogenous conditions, while the expiration probability, 
q,(O), would probably vary with external effects, this would eliminate all terms 
in (A.I I ) ,  (A.12) with M,, Mk, or V,! Conversely, in casualty insurance, the 
probability of a claim, q,, might be relatively fixed several years in a row, but the 
severity moments, m,(O,) and v,(O,), might be relatively uncertain in view of 
inflation, etc.; in this case, all terms in (A.I I), (A.12) involving Q, and Qk can 
be eliminated! 

A more complex model can also be developed by permitting the (~,) to depend 
upon 8; details are left to the reader. 
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