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A B ST R A C T  

The paper presents an extension of the classical Cram6r-Lundberg ruin theory: 
the famous upper bound for the ruin probabihty with an infimte time horizon 
can be extended In a certain sense to the short and middle term case. Furthermore, 
a relation between the average values of lifetime and ruin amount is given. 
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1. INTRODUCTION 

In order to assess the financial stability of an insurance portfolio, one usually 
utilizes the notion of "mathematical ruin". Ruin being the phenomenon by which 
a portfolio passes from the state "to be" to the state "to be no longer", actuaries 
have naturally sought to measure the danger of such a passage by its "probabil- 
ity". Numerous studies have unfortunately shown that the notion of "ruin 
probability" is not easy to handle, in theory as well as in practice. This difficulty, 
and it seems to be a major one, requires the search for another quantifier of 
the notion of ruin than that of probability. 

The present article recalls firstly the notion of the ruin "counter-utility", 
proposed elsewhere, and which represents a more elaborate measure of danger 
than that of "probability". The ruin counter-utility takes into account three 
characteristics of ruin, that is: 

the probability of its occurrence 
the size of the ruin amount 
the time of its occurrence. 

The counter-utility is the greater, the larger the ruin amount, and is the smaller 
the more distant the event. The notion of counter-utility depends very closely 
on that of utility; in a certain way it reverses its properties. 

Secondly, the article shows that the celebrated upper bound of the ruin 
probability, indicated by Lundberg, valid in an infinite time horizon, can be 
generalized to the case of a finite time horizon. For this purpose the future 
should not be separated in two distinct periods, the considered period, and the 
one left out, but should be considered in its totality with a progressive attenuation 
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of what occurs, by a phenomenon similar to fog, limiting vision to a certain 
horizon (time-stumping phenomenon).  

By means of this new approach to the ruin problem it is easier to acquire, 
without mathematical complications, some knowledge of the seriousness of ruin 
in a limited time horizon. 

The considered portfolios will be characterised by the following symbols: 

X aggregate claim amount 
f (x)  density function of X 
M(a) moment  generating function of X 
P total risk premium per annum of the portfolio 
Pe  Esscher premium of the portfolio 
R, risk reserve, at time t 
T time elapsed until the first ruin 
q, probability of the first ruin at time t 
0 ruin probability in the future 
Z amount of the first ruin 
Z, amount of the first ruin, at time t 
g,(z) density function of Z, 
u (x) utility function 
fi(x) counter-utility function 
U ( Z )  ruin counter-utility 
a risk aversion coefficient 
b time stumping coefficient 
0 time horizon 

The article considers, for means of simplification, portfolios that are stationary 
in time and create independent total claim amounts, and is based on exponential 
utility and counter-utility functions. Under  these assumptions, the results are 
valid for an arbitrary process, not necessarily Poisson. 

2. CLASSICAL RESULTS OF THE RUIN THEORY 

The classical ruin theory is dominated by two notions: security margins and ruin 
probability. Here are some known properties: 

Security Margins 

The zero utdity principle 

U(R,+1) = I u(R, +P -x )"  f(x)" dx, 

under the hypothesis of an exponential utility function u (x), leads to the following 
formula for the premium P, margin included: 

(1) e "e = M ( a )  
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where 

which is equivalent to 

M(a) = I e"~ "f(x).  dx 

(2) P = 1 In M(a). 
a 

Ruin Probability 

The ruin probability (first ruin, with t an integer) 
cO 

is limited by Lundberg's upper bound 

(4) 0 < e - ~  Ro 

The coefficients a in (2) and (4) are identical. 

3. TH E NOTION OF C O U N T E R - U T I L I T Y  

The notion of utility is borrowed from economics: it allows the determination 
of preferences between many situations. 

The notion of counter-utility is derived from that of utility; it adds, for insurance 
purposes, a possibility to measure singularity considered situations. 

Let Y be a random variable. The expression 

= I a ( y ) . / ( y ) ,  dy O(Y) 

in which the function 12(y) satisfies 

(5) a(y)>0; a'(y)>0, a"(y)~0 

is called the counter-utility of Y. The function ta(y) is the counter-utility function. 
It is to be noted that the requirem_ent a">~0 is the reverse of u"~<0, which 

the utility [unction is subjected to. U(Y)  can be used to measure a risk: in 
U(Y) ,  the big values of Y are weighted overproportionally. 

The exponential function 

a ( y ) = e  ay 

satisfies our exigences. The coefficient a is called the risk aversion coefficient. 
The relation (1) expresses that, on the basis of an exponential counter-utility 

function, there is equivalence between the counter-utility of the premium P 
(left-hand term) and that of risk X (right-hand term): 

e ae = M(a) .  
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This last relation formalises the "counter-utility equivalence principle between 
premium and  risk". Through this interpretation of (1), the notion of counter- 
utility replaces that of utility and the counter-utility equivalence principle that 
of the zero utility principle. 

The Counter- Utihty of  R isk  

In order  to estimate the risk situation of a portfolio, we consider the risk reserve, 
more exactly the value 

which is representative of the danger (a positive danger if the risk reserve is 
negative and inversely), the counter-utility of this /~, is, at time t and for an 
exponential counter-utility function: 

= IeaF " ft(F)" O(A,) d~. 

For t = 0, the risk reserve has a known value; therefore 

U(/~0) = e aao = e-a Ro 

If the premiums are determined by the zero utility principle, or by the counter- 
utility equivalence principle, it can be easily shown that the counter-utility of 
the risk situation is constant in time: 

U(Rt )  = U(Ro)  t = 1, 2, 3 . . . .  

therefore 

(6) U(/~,) = e-a Ro 

The value of Lundberg's upper bound (4) of the ruin probability 4/is thus equal 
to the counter-utility of the risk situation of the portfolio at the beginning of 
time, and, because of the constancy of this counter-utility in time, equal to the 
counter-utility of the risk situation at time t (always under the hypothesis of a 
counter-ut i l ty  eqmvalence between premium and risk). 

The Counter- Uttlity of  Ruin  

If Z,  represents the ruin amount (first ruin), at time t, it can be shown without 
difficulty that the counter-utility of the ruin situation for all future years, gen- 
eralizing (3): 

(7) U ( Z )  = ~ e e~ • g,(z) ,  dz 

is equal to the value of the counter-utility of the risk situation: 

(8) U ( Z )  = 0 ( /~ , )=  U ( g o ) =  e -a a° 
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Thus the counter-utility U ( Z )  of the ruin situation for the entire future, the 
counter-utility U(/~,) of the risk situation at t, notably when t = 0, and the upper 
bound of the ruin probability according to Lundberg are identical. 

4. I N C R E A S I N G  C O U N T E R - U T I L I T Y  PRINCIPLE 

The formulae and properties stated so far are known. 
The greater part of the following is new. The model referred to above can be 

generalized (always under the hypothesis of a stationary process and of an 
exponential utility function) in view of studying the equilibrium and the ruin 
conditions in the short and medium term. 

The Counter- Utility o f  R isk  

In reality, for a given aversion coefficient, premium P and risk X are not entirely 
equivalent. The relation (1) opens up three cases 

a P  
e ~ M ( a )  

corresponding successwely to an over-taxed premium, a premium equivalent in 
counter-utility and an under-taxed premium. We transform this last relation into 
an equation by the introduction of a supplementary factor 

(9) e ap = M ( a  ) • e -b 

The coefficient b measures the level of under-taxation of risk X by premium P. 
The coefficient b is positive in the case of under-taxation, which we will deal 
with later. Under these conditions, it can be easily shown that the counter-utility 
of the risk situation is no longer constant in time, but evolves as follows: 

(10) U(R,+1) = U ( R , )  . e b. 

Given the initial value of U(Ro)  according to (8), we have 

(11) U (t~,) = e-aR°+b' 

which generalises (6). 
An under-taxed premium (b > 0 )  leads therefore to an increase of the risk 

counter-utihty, an over-taxed premium (b < 0) to a decrease. 
The recurrent relation (10) defines the increasing counter-utility principle (or 

decreasing if b < 0). 
The evolution of a portfolio with a constant counter-utility, seen under point 

3 by the application of the zero utility principle, corresponds to the limit case 
b = 0  between the two cases b > 0  and b <0 .  

Formula (10) has an undoubtedly intuitive meaning. 

The Counter- Utility o f  Ru in  

In the case of an under-taxed portfolio (related to the counter-utility equivalence 
principle) it can be shown that if the definition (7) of the ruin counter-utility is 
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generalized by the introduction of the factor e-b, such that 

(12) U ( Z ) =  ~ e -b '  • e a z • g , ( z ) -dz ,  

then the ruin counter-utility keeps its standard value (8) 

(13) U ( Z )  = e - a  R o 

In expression (12), the coefficients a and b are bound by relation (9). The 
introduction of the factor e -b ' in (12) has the following meaning. The factor 
e -b' (b > 0) reduces the weight of future ruins in U(Z) :  the more distant the 
ruin the greater the reduction of U(Z) .  This corresponds to a "t ime stumping" 
phenomenon. The coefficient b is the time stumping coefficient and e -b  the 
stumping factor. 

For an aversion coefficient leading to the equivalence in counter-utility between 
premium and risk, the stumping coefficient b vanishes and (12) is identical to (7). 

The expression e -a Ro according to (13) is thus a practical measure of the risk 
situation of a portfolio: it takes into account by means of the risk coefficient a 
the size of the ruin amount, and by means of the stumping coefficient b, the 
imminence of the ruin. The notion of ruin counter-utility (12) can thus be used 
to measure the financial equilibrium of an insurance portfolio. This notion is 
more elaborate than that of ruin probability, which only considers the alternatwe 
"to be or to be no longer". 

5. FINITE TIME HORIZON 

A second interpretation of formula (12) leads to an estimation of the risk situation 
of a portfolio limited to a finite time horizon. 

If, in expression (12), we replace the ruin counter-utility at t, that is 

oo 

Io eaz " d z  g , ( z )  " 

by the length of the period (1 year) during which the said ruin might occur, 
expression (12) becomes 

e -b ' .  1 (b > 0) 
t = l  

whose signification is that of the future (up to infinity) subjected to the stumping 
process mentioned above. 

Let us designate by 8 this value, which we will call the "time horizon". Because 

e - eb 
t = l  - -  1 
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we find for the period O: 

(14) 

or inversely 

1 
O -  e b - 1  

0 + 1  
e b _ 

0 

The greater the stumping coefficient b the shorter the horizon; this is a natural 
property of a stumping phenomenon.  

If one accepts the notion of "time horizon", then expression (12) measures 
the ruin counter-utility in a "finite time horizon 0". The interpretation of 
expression (12) by means of the time horizon allows us to formulate an extension 
of the Cram6r-Lundberg 's  theory when considering the short and medium term. 
The formula considers the entire future until infinity, but reduces the "weight" 
of future events in function of their distance in time, just as the discount 
phenomenon with regards to payments in a distant future. 

6. RUIN AMOUNT AND PORTFOLIO LIFETIME 

The method used above to estimate the financial equilibrium of insurance 
portfolios allows developments in various directions. Here follows what can be 
deduced from e.g. relations (12) and (13) about the ruin amount and portfolio 
life-time if ruin occurs. 

In expression (12) g,(z) is the density function of the first ruin amount Z, at 
time t. The expression 

f: (15) g,*(z)=e"Z-b' .g,(z)/~ e"Z-h'.g,(z).dz 
t 1 

becomes the conditional density of amount Z, at t, (under the hypothesis that 
the ruin occurs) which takes into consideration the size of the ruin (by the factor 
e "z) and the distance in time of the occurrence of the ruin (by the factor e -b ,). 

Let us define 

(16) 

and 

(17) 

E*(ZIT<oo)= ~ z • g,*(z)" dz 
t = l  

o o  

'Io 
as the "mathematical expectations" of, respectively, the first ruin, amount Z 
and the portfolio life-time T, if ruin occurs, calculated with the modified densities 
g,* (z ). 
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These two mathematical expectations are related! 
Indeed, expressions (12) and (13) lead to the equality (18) 

(18) e-a Ro = ~ e -b ,  e a ~g,(z) dz. 

By logarithmic derivation with respect to a of the last equation (we are reminded 
that b is related to a by (9)), we have, after some elementary algebraic 
simplifications: 

(19) - R o  = - b ' ( a ) .  E * ( T I T  < co/+ E * ( Z I T  < 0o). 

By also taking the logarithmic derivative of (9) with respect to a, we find that 

P = [In M ( a ) ] ' - b ' ( a )  

that is 

b'(a)  = [In M ( a ) ] ' - P .  

The first term of the right-hand expression is in fact 

(20) [In M ( a  )]' = M ' ( a )  = ~ x • e'~X . f ( x )  . dx = pu  
M ( a )  ~e "x . f ( x ) .  dx 

which is equal to the Esscher premium corresponding to the aggregate claim 
amount X. Thus 

b ' = P E - - P .  

Relation (19) becomes therefore 

- R o  = - ( P E - P )  " E * ( T I T  < oo) + E * ( Z I T  < oo) 

o r  

(21) Ro + E * ( Z I T  < oo) = (PE - P)  " E * ( T I T  < oO). 

This formula can be interpreted as follows: left-hand expression: R0+ 
E * ( Z I T < o o )  is, at the time of ruin, the average total loss of the company; 
right-hand expression: (PE - P ) .  E * ( T [ T  <oo) is, at the time of ruin, the average 
deficit in premiums in respect to the level of the Esscher premium and accumu- 
lated during the portfolio's life-time. It is to be noted that these are not average 
values in the usual statistical sense, but averages in the sense of the counter-utility 
theory, by means of the modified densities g,*(z) which take into account the 
phenomena of risk aversion and time-stumping. That a relation should exist 
between the company's total loss and the deficit in premium is not unnatural. 
It is perhaps surprising that this relation is that simple. 

In practice it is clear that it is not at all easy to calculate the expectations 
E * ( Z I T < o o )  and E * ( T [ T < o o ) .  Formula (21) allows at least an estimation of 
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one if there is a hint of the value of the other. It seems that the estimation of 
E * ( T I T < ~ )  is less tricky than that of E * ( Z I T < ~ )  to which many authors 
have applied themselves. 

7. A NUMERICAL EXAMPLE 

Given a portfolio with the following characteristics: 

Risk X (millions of francs) 

Claim Amount  
1 year 

X Prob (X = x) 

80 0.1 
90 0.2 E(X)  = 100 

100 0.4 Var (X) = 120 
110 0.2 
120 0.1 

M(a) =~o(e 8°~ + 2 e  9°a + 4 e  1°°~ + 2 e  l l°a  +e12°a) .  

Finance 

Risk premium P = 110 
Initial risk reserve R0 = 25 

Rum 

In the present example the annual surplus can only take values which are multiples 
of 10, and the initial risk reserve is 25, so that an eventual ruin amount will 
always be: Z = Zo = 5. In order to simplify, we will designate by q, the probability 
of the first ruin at T:  

(22) So g,(z) dz =q,. 

Probabihty of the First Ruin 

A direct calculation, by repeated convolutions, gives the following values for 
the probabilities of the first ruin for t = 1, 2, 3 . . . . .  

The long-term ruin probability ~ is 

(23) ~ = ~ q, = 0.002 446. 
t = l  
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TABLE 1 

R U I N  P R O B A B I L I T I E S  

Conditional 
Rum Probabihttes Rum probabfllttes 

t qr Accumulated q___..k_ = q, q ~* Accumulated 

(1) (2) (3) (4) (5) 

1 0.000 000 0 000 000 0 0 
2 0.000 000 0 000 000 0 0 
3 0 001 000 0 001 000 0.4088 0.4088 
4 0 000600 0 001 600 0 2453 0 6541 
5 0 000 360 0 001 960 0 1472 0 8013 
6 0.000 206 0 002 166 0.0842 0.8855 
7 0 000 118 0 002 284 00482 0 9337 
8 0 000 068 0.002 352 0 0278 0 9615 
9 0 000 039 0.002 391 0 0160 0.9775 

10 0.000 023 0 002 414 0 0094 0 9869 
11 0 000 013 0 002 427 0 0053 0.9922 
12 0 000 008 0.002 435 0 0033 0 9955 
13 0.000 005 0 002 440 0 0020 0 9975 
14 0 000 003 0 002 443 0 0013 0 9988 
15 0.000 002 0 002 445 0.0008 0 9996 
16 0 000 001 0 002 446 0.0004 1 0000 
17 0 0 002 446 0 1.0000 

First Case : Classical Theory, Infintte Time Horizon 

P r e m i u m  P = 110 a n d  r isk X a re  e q u i v a l e n t  in c o u n t e r - u t i l i t y ,  in t he  sense  of  

r e l a t i o n  (1), fo r  a = 0 .200  4 4 9 4 .  A c c o r d i n g  to  (8), ru in  c o u n t e r - u t i l i t y  U ( Z ) ,  

r isk c o u n t e r - u t i l i t y  U ( R , )  and  L u n d b e r g ' s  u p p e r  b o u n d  of  t h e  ruin p r o b a b i l i t y  

a re  iden t i ca l  

(24) O ( Z )  = U ( R , )  = e -~R° = 0 . 0 0 6  663 .  

A s  the  ruin  a m o u n t  is c o n s t a n t  by  n a t u r e  ( Z  = z0 = 5), t he  in t eg ra l  in (7) can  be  

w r i t t e n  b e c a u s e  of  (22)  
oO cO 

Io eaZ'gt(z)'dz=eaZ° fo gf(z)'dz=eaZ°'q'" 
E x p r e s s i o n  (7) t h e r e f o r e  b e c o m e s  

U ( Z ) = e  ~*o. ~ q, 
t = l  

f r o m  w h i c h  w e  can  c o n c l u d e  tha t  

U ( Z )  e - ~  R ° _  0 .006  663 = 0 . 0 0 2  446 .  
qt = eaZo = e a z o ,= 1 2 . 7 2 4  397 

W e  find the  v a l u e  o b t a i n e d  by d i r ec t  ca l cu l a t i on ,  a c c o r d i n g  to  (23). 
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Second Case: Extended Theory, Finite Time Horizon 

If we fix the  hor izon  0 (Table  2, first co lumn) ,  the  co lumns  (2), (3) and  (4) give, 
respect ive ly ,  the values  of the  avers ion  coefficient  a, the  s tumping  coefficient  b 
and the s tumping  fac tor  e -b. W e  find in co lumn (5) the  value of the  ruin 
coun te r -u t i l i ty ,  accord ing  to  the  fo rmu lae  (12) or  (13): 

TABLE 2 

RUIN COUNTER-UTILITIES 

0 a b e -b U(Z) 
(1) (2) (3) (4) (5) 

3 0 239 340 0.287 68 0.750 00 0.002 520 
5 0.225 743 0.182 32 0.833 33 0.003 540 

10 0 214 008 0 095 31 0.909 09 0.004 747 
oo 0 200 449 0 000 00 1 000 00 0 006 663 

The  above  tab le  s ta tes  that  the  i m p r o v e m e n t  of the  measu re  U ( Z )  chosen  to 
e s t ima te  the financial  secur i ty  of a por t fo l io  is not  radical  when  we br ing  fo rward  
the infinite hor izon to a 10-year  hor izon,  for e x a m p l e ;  the  reduc t ion  is more  
a p p r e c i a b l e  if we switch to a hor izon of 5 or  3 years .  This  is conform to the  
known p r o p e r t y  which s ta tes  that  if ruin occurs ,  it usual ly  occurs  in the  nea r  
future.  A compar i son  be tween  the ruin p robab i l i t i e s  a ccumula t ed  ove r  a pe r iod  
of t years  ( table  1, co lumn 3) and the ruin coun te r -u t ih t i e s  in a hor izon of 0 

years  ( tab le  2, co lumn 5) gives the fol lowing:  

TABLE 3 
COMPARISON BETWEEN RUIN PROBABILITIES AND RUIN 

COUNTER-UTILITIES 

t Accumulated Rum 0 Rum Counter-Utdlty 
Years Probab~hties Years wtth Horizon 0 

3 0 001 000 3 0 002 520 
5 0 001 960 5 0 003 540 

10 0 002 414 10 0 004 747 
co 0.002 446 co 0 006 663 

It can be  s ta ted  that ,  for a c o m m o n  pe r iod  t = 0, the  ra t ios  be tw e e n  the  two 
measu re s  of ruin (p robab i l i ty  and counte r -u t i l i ty )  a re  r a the r  s table .  

Relation (21) between Average Ruin Amount and Average Portfolio Life-Time, 
if Ruin Occurs 

The  por t fo l io  unde r  cons ide ra t ion  gene ra t i ng  cons tan t  ruin a moun t s  ( Z  = z0 = 5), 
the  cond i t iona l  p robab i l i t i e s  g,*(z) (in the  sense of  the  coun te r -u t i l i t y  theory)  
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are reduced, for b = 0 (that is without stumping phenomenon) to the usual 
conditional probabilities (Z takes only the value z0 = 5) 

g,*(z)=q,/ ~ q,=q,*. 
t=l 

The calculation of E(T) on the basis of the probabilities in Table 1, column 4, 
gives us 

E(TIT < ~)= 4.407. 

The direct calculation of the Esscher premium according to (20) gives us 

Pz = 116.803. 

The relation (21) 

Ro+ E*(Z[T < ~)= (P~-P) • E*(TIT < ~) 

is verified, because 

25 + 5 = (116.803 - 110) • 4.407. 
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