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ASTIN M E M O I R S  

BY PAUL JOHANSEN 

NOUS avons pens6 que les assurances contre l'incend~e pouvaient 
aussi s '6tayer du calcul. (T. J. Barrois, 1835) 

To a mathematician 25 is a very uninteresting number:  Just the 
square of a small prime. For a historian it means an epoch. If 25 years 
bring us back to one of the cataclysms of recent history, then it is worth 
looking back at them. (S. Vajda, 1964) 

A few years ago at the ASTIN colloquium in Washington Rober t  Beard presented 
a paper  about  the early history of ASTIN.  The paper  is published in volume 9 
of the Astin Bulletin. 25 years ago Beard was in the epicenter of the events or 
rather he was the epicenter himself. Therefore,  it could be regarded as superfluous 
if so soon after I give my own version of the same events. 

In the home of my grandparents  I had much fun from an old-fashioned 
stereoscope. Looking into two glasses at two photographs taken of the same 
object  from slightly different positions, your view gained a new dimension. In 
other words you could look behind the nearest objects and feel a certain depth 
in the picture. It is my hope that the reader being familiar with Beard 's  story 
and now reading a new version seen from a slightly different personal point of 
observation, might gain a more detailed view of what happened.  

But let us start from the beginning. Several old friends have supported and 
supplemented my memory,  and I am very grateful to them. 

2.1 

The early actuarial activities in the field of life assurance are well known. The 
investigations of the statistics of human mortality, the mathematical  model of 
the mortality table, and the invention of commutat ion symbols made possible 
the mathematical  foundation some 200 years ago of scientific life assurance. 
Each step of the evolution was smoothly communicated to specialists in various 
countries, and thus the aspect of the actuary as a life assurance mathematician 
developed during the last century. The Institute of Actuaries was founded in 
London in 1848, and several other national associations were born during the 
next generation. An international Permanent  Commit tee  was established in 1897 
in order to promote  actuarml collaboration across borders. 

2.2 

Life assurance was not the only field of mathematical  activity in insurance. 
One phenomenon which from of old attracted the attention was how the fire 
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64 JOHANSEN 

risk varies with the size of the exposed objects. This forms a striking parallel to 
the variation of mortality risk with age. Tariffs based upon fire risk premium 
rates increasing with the sums insured were introduced in Denmark  in 1857. 
Even before tha t - - in  1835- -a  French industrialist, Th6odore  Joseph Barrois 
had worked out a mathematical  model describing this phenomenon.  The same 
model was independently published by a Russian, Sergius von Sawitsch in 1909. 
Much later similar results are presented by various other authors, including 
P. O. Berge and myself. In Italy, d 'Addar io  studied the simultaneous variation 
of outbreaks of fires and average damage degrees. His results were published 
in 1940. It is characteristic that in the beginning each author was acting alone. 
Each knowing little of the works of his predecessors had to start practically from 
scratch. As a result the total effect of all the efforts was not much greater than 
that of each individually. The multiplicative effect of collaborating in the research 
did not come to work. 

2.3 

In the United States quite a different type of risk was studied by a large group 
of mathematicians and statisticians working in the field of workmen 's  compensa-  
tion insurance. According to the law at that t ime in the States, this insurance 
line was written exclusively by specialized companies,  and for that reason the 
group in quest ion--organized in 1914 in the Casualty Actuarial Socie ty- -had 
not much contact with actuaries working in life assurance or other fields. 

Workmen ' s  Compensat ion includes policies each covering a substantial num- 
ber of persons and with many indemnity payments  each year. As the risk varies 
from one policy to the other according to variations of protection, experience 
rating is useful. So the system of Credibility was developed to decide what weight 
can be put upon the actual loss experience of the individual risk covered by the 
pohcy when assessing next year 's  premium rate. 

2.4 

About  1920 a group of Italian actuaries had studied the mathematical  and 
statistical bases for evaluating loss reserves in certain non-life fields, and on the 
agenda of the 1934 congress in Rome  we find the theme of assessing premiums 
and loss reserves in accident and third party liability insurance. Italian speakers 
proposed formation of an international group of actuaries to promote  studies 
of this subject. Such a group, however, did not materialize. 

In 1937 at the Paris congress, several themes on the agenda concerned non-life 
insurance questions. The subject of reinsurance explicitly covered both life and 
non-life. One subject considered a possible international statistic of employers '  
liability insurance and one was devoted to the mathematics  of fire and general 
insurance. In this section also problems from marine insurance were discussed 
and an international working group was formed to follow up this discussion. 
Herman  Wold and Paul Qvale were among its members  and Paul Riebesell was 
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appointed Chairman of the group. As the international tension increased during 
the next few years, this group, however, never really started working. In other 
circumstances it might have developed into an ASTIN group. 

2.5 

Between the two World Wars two monographs of general insurance theory 
were published--N. Sergovskij: Emffihrung in die Theorie der Feuerver-  
sicherung, Prague 1931, and Paul Riebesell: Einfi.ihrung in die Sachversicherungs- 
mathematik, Berlin 1936. 

Both authors regard for instance the fire premium rate as a product of an 
ignition probability and an average loss degree. These two factors are by definition 
regarded as independent.  Reinsurance techniques were described and these as 
well as general risk theory were based upon the classical individual aspect of 
risk, and statistical independence of the individual claims was presumed. 

These books were quickly outdated as a result of the progress of the statistical 
science. 

2.6 

In 1909 Filip Lundberg had given the first version of his revolutionary general 
risk theory. Lundberg's first works are extremely difficult reading. Only many 
years later the collective risk theory was made more generally accessible by 
Harald Cram6r and his school in the new language of stochastic processes. 
Cram6r has told me that when he was a young actuary of the Swedish Supervision 
Board, he was asked to study Lundberg's  works with the words: Try to explain 
the meaning of this, it is an attempt to bring some mathematical order into fire 
insurance. 

The collective risk theory does not limit itself to one specific insurance line. 
It considers the total flow only of premium payments and loss payments of a 
portfolio, and this portfolio can be a mixture of insurance lines and even of life 
and non-life. The study of the risk theory is equally important for life and non-life 
actuaries. 

3.1 

Before the last turn of the century, Danish' insurance companies were mostly 
specialized, each writing one line only: fire, life, or accident. Each company had 
a great number of part-time agents with maybe the strictly necessary knowledge 
of one insurance form. During and after the twenties this pattern totally changed. 
The companies got together into groups or took up new lines of insurance, and 
each larger unity built up a staff of professional exclusive agents to become 
insurance advisers covering all the insurance requirements of its clientele. Often 
a group includes a life company or life was taken up by a non-life company, or 
vice versa. Similar organizing changes took place in other Scandinavian countries 
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and this evolution implied that quite a number  of life actuaries became involved 
in non-life problems. 

3.2 

In 1934 I was working as an actuary in a newly founded life depar tment  of 
an old fire insurance company. By and by I became involved in fundamental  
questions concerning reinsurance of fire risks. Here  in a humble way I tried to 
take into account a hint of the collective risk theory. 

My first opportunity to meet  foreign colleagues with similar problems was 
during the centenary celebrations of the Institute of Actuaries in 1947. In London 
I paid a visit to Ernest Eldridge, a friend of the company with which I worked, 
and he introduced me to Rober t  Beard who had quite recently converted to 
non-life work. We decided on the spot to keep m touch in order to form a link 
between the few British and Scandinavian actuaries interested in the mathematics  
of general insurance. On that day a lifelong companionship and friendship was 
founded. 

3.3 

At that time my daily work was still within life assurance. But in my spare 
hours I worked as a statistical adviser to a group of small mutual companies 
writing mainly fire insurance of rural buildings, an insurance form which according 
to law was managed by special companies only. In that capacity I had taken 
over from Gunnar  Benktander  who had established common risk statistics. 
Hereby  I worked out a mathematical  model describing the increase of the fire 
risk rates with the size of the buildings. Later, in 1957,I published a paper  on 
that model at the congress of New York. By queer accident this model was a 
special case of the one that Barrois had described some 120 years before. Later,  
1959, I was appointed actuary of the Nye Danske af 1864, being the first to 
occupy such a position with a Danish non-life company. 

4.1 

During the 1947 London centenary another  valuable first contact was made 
when Franckx, Hillary Seal, Steven Vajda, and Boleslaw Monic met and discussed 
non-life actuarial problems. Monic, a manager  of a reinsurance company was 
to play a leading role in the coming international organization. It was his firm 
view that something should be done and he suggested the arrangement  of an 
international competition. 

This was the origin of the competi t ion arranged by Monic's  company, 
Algemeene  Herverzeker ing Maatschappij .  It took place in 1951-1952, and the 
jury was composed by Monic, Franckx, Vajda, and Bruno de Finetti, and the 
theme was non-proport ional  reinsurance. The top prizes in the competit ion were 
awarded to Hans Am m et e r  and to Jean Sousselier. 
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By that initiative a strong continental group of actuaries was formed. This 
t 

group which was mainly initiated by the efforts of Monic and Franckx, took an 
active part  in the founding process of ASTIN.  The abbreviation of Actuarial 
STudies In Non-life insurance into ASTIN is due to Franckx. 

4.2 

The first post-war international actuarial congress was held in 1951 in 
Scheveningen. Here  Eldridge had arranged a special meeting on excess of loss 
reinsurance. The meeting became a great success with 4 papers submitted and 
59 persons present. Among  the speakers were Monic, Beard, and de Jongh. I 
must confess that although I took part in the congress I did miss that meeting 
which was the first roll-call of future ASTIN members.  

Monic had persuaded de Jongh to take the Chair although de Jongh was not 
convinced that the congresses were the right forum for excess of loss studies. In 
1950 he had tried to found a special excess of loss center with Riebesell, but 
this was interrupted by Riebesell 's  death. 

4.3 

In July, 1953 a Scandinavian initiative was taken to found an actuarial study 
group on non-life matters.  H. Hel lemann and H. Colding-Jcrgensen were work-  
ing as actuaries in the tariff organizations of general insurance in Norway and 
Denmark ,  respectively, and they sent an invitation to their colleagues in similar 
positions in Sweden and Finland to join them. This resulted in the formation of 
the Nordic Tariff-organizations'  Actuaries (NTA) and already in November ,  
1953 this group had its first meeting in Ehrendal,  Sweden. Present were 14 
actuaries working in the tariff organizations of the four countries or the attached 
companies.  The meeting took two full days and the main subject was the scope 
of the future co-operat ion on these matters in Scandinavia, but also various 
specific mathematical  models and applications of risk theory were dealt with 
and a possible extension of the co-operat ion to other parts of the world. 

During the next few years similar meetings were held in Norway, Denmark ,  
and Finland. At the t ime when a second meeting was to be organized in Sweden, 
it was decided to convert  the NTA meeting into the ASTIN colloquium of 
R~ittvik and so the specific NTA activities ended. 

The NTA had a letter club where stencilled papers on recent research were 
circulated. Through me a close contact to ASTIN was established, and at one 
NTA meeting a new draft of the ASTIN rules was worked out which became 
the lay-out for the actual ASTIN rules. 

During the NTA period the interest for non-life problems was growing in 
Scandinavian actuarial associations. Several papers on non-life problems were 
read at the meetings. In Denmark  where I was President of the Society from 
1953 to 1959 we had normally one non-life subject each year. In Sweden the 
Board of the Society was supplemented with a member  having special insight 
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in general !nsurance. In 1954 the first candidate for that seat was Ingvar 
Sternberg. 

5.1 

The Council of the Permanent  Committee for International Actuarial Con- 
gresses--now the International Actuarial Association--held its annual meeting 
in Brussels on September 26th, 1953. The President was A. Th6ate and the 
General  Secretary, Charles Boels, by tradition chosen among the members of 
the Belgian delegation. Present were 21 members from 8 countries. Among 
those present for the first time were Edouard Franckx and myself. For us this 
should be the beginning of a close collaboration and of a very long service on 
this Committee. 

Towards the end of the meeting Prof. Engelfriet of Holland informed the 
Council that he had heard of the recent establishment of a new international 
association of actuaries outside the Permanent  Committee, and he asked if any 
member could give information about this group and its aims. 

Franckx replied that some actuaries would like to form an international group 
interested in the application of actuarial techniques to problems of non-life 
branches. The group was not to be considered as dissident from the Permanent  
Committee but quite on the contrary hoped to have the support and the patronage 
of the Committee.  

The President thanked Franckx and expressed the interest of the meeting. He 
promised all possible help on the part of the Committee towards the achievement 
of the object which the promoters of this new association had in view. 

5.2 

In a circular letter of November,  1953 the group presented itself like this: 
"A  number of persons interested in insurance have noticed that whereas the 

study of life assurance, thanks to the contributions of actuaries of all countries, 
has attained a remarkable degree of scientific development,  the theory of non-life 
branches has hardly been touched. 

Judging by the response from various countries, it seems that it would be 
worth while to make a common effort in order to try to fill this gap in the 
scientific field. 

For this purpose the undersigned have formed a Preparatory Committee 
and one of them, Monsieur Franckx, has had the opportunity to submit a 
summary of its aims to the Council of the Comit6 Permanent des Congr~s 
Internationaux d'Actuaires at a meeting held on 26th September, last. 
Through its President the Comit6 Permanent promised to lend all possible 
support to the project. 

If, as we hope, you share our interests in the matter, the Preparatory Committee 
would be pleased if you will join them by becoming a founder member at the 
proposed Association for Actuarial Studies in Non-life Insurance (ASTIN). 
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If you think that our efforts deserve to be more widely known, we shall be 
grateful if you will mention them to other colleagues and let us have their names 
and qualifications. 

We attach suggested Articles of Association, but this is only a first draft and 
we shall welcome any criticism or alternative proposals. 

It is hoped that it will be possible, on the occasion of the forthcoming 
International Congress in Madrid, to arrange a private meeting of all founder 
members  in order to proceed with the formation of the Association." 

5.3 

This letter was signed by Ammeter ,  de Finetti, Franckx, de Jongh, Monic, 
Sousselier, and Vajda. With the letter followed the draft rules of the association. 
The content of these rules was in short that the aim was co-operat ion and 
exchange of scientific information between persons interested in the actuarial 
aspects of insurance, mainly connected with branches other than life. The 
association should publish papers on topics related to its aims and a bulletin 
containing notes of general interest to members .  The association should hold 
discussion meetings as and when convenient and conferences not less frequently 
than every three years. 

The association should establish contact both locally and internationally with 
other bodies of similar interest. Nothing specifically was ment ioned about  the 
contact with the Permanent  Committee.  

The wording of these rules caused some doubt  among the members  of the 
Council. Several were in doubt  whether this association merited the support  of 
the Permanent  Committee.  In a letter to Franckx the Bureau stated that the 
question of support  to ASTIN would be restudied at the next commit tee  meeting 
in Madrid. Until then, the ASTIN Preparatory Commit tee  should not talk too 
much about  this support.  

5.4 

On June 2nd, 1954 the Council of the Permanent  Commit tee  met in Madrid 
before the opening of the 14th international congress. The agenda had a special 
item: Possibility of forming a new international association of actuaries (ASTIN). 

The President, Th6ate recalled the circumstances in which this question came 
before the Permanent  Commit tee  at the last meeting, and read the letter which 
he had sent to ASTIN in order to avoid any misinterpretation of the minutes 
of the meeting. 

Several members  drew attention to the fact that the actuarial associations of 
the different countries had often taken an interest in actuarial matters other 
than those proper  to the life branch, various questions relating to non-life business 
having in fact been dealt with at previous congresses. As both the Permanent  
Commit tee  and the national actuarial associations had shown their interest in 
actuarial development  in all fields, the technical study of non-life matters could 
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easily be conducted within the f ramework of the existing associations without 
it being necessary to form an independent international organization. 

Sir George  Maddex suggested the format ion--wi thin  the f ramework of the 
Permanent  Committee---of  sub-commit tees  for the technical study of non-life 
problems. 

Albert  Linton said that in the United States the Casualty Actuarial Society 
was dealing with questions other than life, but up to now that Society had not 
developed to any great extent. I stated that in Scandinavia a number  of members  
of the national actuarial societies had founded a group for studies in non-life 
actuarial problems and that thts group was eager to get in contact with colleagues 
in other countries. 

Franckx reaffirmed that the creation of ASTIN was not in conflict with the 
Permanent  Commit tee .  The statutes of ASTIN could be altered to avoid being 
interpreted as in conflict with those of the Permanent  Committee.  He  did not 
refuse to contemplate  the setting up of a special non-life sub-commit tee  under 
the Permanent  Commit tee .  

It was pointed out that the 14th congress would discuss questions which did 
in effect come into the scope of ASTIN.  

Concluding, it was decided that the Permanent  Commit tee  should reestablish 
contact with the ASTIN officials and at Sir George  Maddex'  suggestion, Th6ate 
and Boels were asked to look into the matter  again with Franckx. 

5.5 

The ASTIN meeting during the congress developed as planned and among 
the speakers were Bertil Almer,  Ammeter ,  and Sternberg. A preliminary ASTIN 
commit tee  was elected: Beard, Franckx, Monic, and myself. 

The audience of the meeting, however, was very small. It had proved impossible 
to announce the meeting through the official channels of the congress, so only 
a handful of directly addressed people had some kind of clandestine gathering. 
But there was Spring in the air when the founding fathers closed this first ASTIN 
meeting. 

5.6 

The following meeting of the Permanent  Commit tee  was held in Brussels on 
September  24th, 1955. Here,  Professor Marchand submitted a plan for modifying 
the regulations of the Permanent  Commit tee  to allow for the co-operat ion of 
this body with ASTIN.  In short his plan was that sections formed by a number  
of members  for studies of special problems might be recognized. Each such 
section should be represented on the Council of the Permanent  Commit tee  by 
at least one member .  

In general the proposal of Marchand was supported in the following discussion. 
It was stated that all members  of the Permanent  Commit tee  might participate 
in the work of such sections. It was decided that the Permanent  Commit tee  
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should be represented on the Board of a section by at least one member ,  and 
not vice versa. 

The question was raised, if persons who were not actuaries could become 
members  of these sections. Here,  Franckx stated that indeed it would be so. 
These persons, nevertheless, would not be ordinary members  of the section, but 
only invited to participate in the work of the section on account of their special 
knowledge. 

It was approved that the Bureau should prepare a new wording of the 
regulations to embody the various considerations put forward, to be submitted 
to the next general meeting in September ,  1956. 

5.7 

During the following year a new proposal was worked out in complete agree- 
ment with the founder members  of ASTIN,  and after approval by the national 
associations the modifications were submitted to the Council. These modifications 
allowed for sections formed by a number  of members  for studies of special 
problems. Each section should have its own regulations~ previously approved 
by the Council and should elect its committee,  except for the member  appointed 
by the Permanent  Commit tee .  

The wording was accepted by the Council to be put before the coming 15th 
congress in New York and Toronto.  I could confirm that any member  of the 
Permanent  Commit tee  had the right to participate in the work of the section 
and that the members  of the ASTIN section, in my view, should be full members  
of the Permanent  Committee.  

5.8 

Next time the Council held its meeting in New York before the opening of 
the congress. The draft rules for the ASTIN section were approved by the 
Council and Sir George  Maddex was nominated the first delegate of the Per- 
manent  Commit tee  to the ASTIN committee.  

Before the next annual meeting Charles Boels, the General  Secretary of the 
Permanent  Commit tee  suddenly died. As his successor was appointed Edouard  
Franckx. In September,  1958 at the Council meeting in Brussels, I gave a report  
on the first activities of ASTIN.  I said that it had not been easy to constitute an 
effectively working international group, but it was my conviction that those 
involved were on the right way. I promised that in future more should be heard 
about  ASTIN activities. 

6 

The recognition process as we have seen was long and tedious. What  was 
wrong or what went wrong? Maybe the first a t tempt  was regarded a little 
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suspicious because Monic represented a young reinsurance company with new 
ideas of reinsurance treaties. 

An original strong support  came from Scandinavia and Marchand's  initiative 
was important.  

The opposition at a certain point was predominant  in Britain where actuaries 
were interested in life only and general insurance was dealt with by the Chartered 
Institute. There  was a fear that outsiders should flood the actuarial profession 
and therefore the question of admission of non-actuaries to ASTIN could be a 
crucial point. It was only the whole-hearted efforts of Beard, a generally estimated 
former  life actuary and the support  of George  Maddex who as the Government ' s  
Actuary had an immensely recognized position that made possible a British 
opening to ASTIN.  

In the United States up to the congress of 1957 there was an approach between 
life and non-life actuaries. Francis Perryman who has held in great esteem by 
both sides played a decisive role. 

In France, a small number  of actuaries were very much occupied with bonus 
in motor  insurance and at an early stage, Marcel Henry issued an invitation to 
Franckx to a meeting which should be the first ASTIN colloqmum in la Baule. 

7 

Finally the great day had come, the day for which we had worked hard and 
looked forward to through ten long years. The formation of ASTIN was formally 
accepted, and one of the themes of the congress papers had been chosen by the 
Preparatory Committee.  A cocktail party was given in our honour by the Casualty 
Actuarial Society, and our activities during the congress were officially recognized 
and properly announced. Everything went smoothly. 

At 2.30 p.m. on October  16th 1957 the inaugural meeting took place at the 
Hotel Commodore .  The President of the Casualty Actuarial Society, Doc Master-  
son presided and 46 persons were attending. You can read about all that 
happened in volume 1 of the Astin Bulletin. 

Franckx gave a report  on behalf of the Preparatory Commit tee  and papers 
on former  non-life actuarial activities were presented by Lars Wilhelmsen, 
Longley-Cook,  Ammeter ,  Depoid,  and de Finetti. 

The first ASTIN commit tee  as proposed by Doc Masterson was unanimously 
accepted and also the draft of the rules. Besides George  Maddex, who was 
appointed by the Permanent  Committee,  the committee was composed of the 
four members  of the Preparatory Committee,  and in addition Francis Perryman 
and Carl Philipson. At the first meeting of the new committee with George  
Maddex in the Chair these appointments  were made 

Chairman Johansen 
Vice-Chairman Perryman 
Editor Franckx 
Secretary Beard 
Treasurer  Monic 
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8.1 

A question with high priority was the organizing of the Bulletin. Besides the 
editor an editorial panel was formed consisting of Ammeter ,  de Finetti, Depoid,  
Engelfriet, Longley-Cook,  and C.-O. Segerdahl. 

The heavy commitments  falling on Franckx in connection with the 16th 
congress to be held in Brusseis made it necessary that he should be relieved of 
his editorial work and so Beard took over provisionally besides his secretarial 
job. He  had a t remendous load of work and did it well. 

8.2 

It was decided that the office of Chairman should rotate rather frequently so 
that many nations successively can have that honour. Therefore,  a long series 
of actuaries from many countries have already served their two years '  term and 
given their devotion and inspiration to ASTIN. 

From an early stage the treasury has been handled from Brussels, this being 
practical as the fees are paid together with those of the IAA.  The  secretarial 
work has always been done in London. They both speak and write English so 
well, these Britons. 

During the first 25 years quite a number  of ASTIN members  have served on 
its committee.  We owe them thanks but they will not be named here. Some of 
them have passed away. We miss them and mourn them. 

8.3 

The  15th ASTIN colloquium is organized in Loen,  Norway, and the 16th in 
1982 in Brussels will coincide with ASTIN 's  25 years. 

Much work has been done in order to prepare and organize these meetings. 
I can speak about it because I was involved with the colloquium of Randers.  
Each has had its specific melody and each has introduced new ideas and added 
to the success of ASTIN.  Again, I can speak about it being the only one who 
has participated in all these colloquia. 

From the beginning we tried to create some efficient tools for international 
collaboration. A few days of intensive work, often in a place remote  from the 
temptat ions of the big cities and without too much social activity, can bring your 
research a long step forward. With a much smaller audience than the big 
congresses it is possible to create an intimate a tmosphere  of discussion and the 
dialogue can sometimes become a wonderful mathematical  ping-pong. 

For practical reasons the languages have always been restricted to English 
and French only. Participants in the colloquia must have knowledge of both 
languages in order to get the full result of the dialogue. On the other hand, any 
speaker  should do his utmost to speak slowly and clearly. Whichever language 
he uses, it will be a foreign language to the majority of the audience. With this 
linguistic restriction we can avoid too much cos t ly - -and  not always ef fec t ive- -  
translation, which can be a hindrance to the spontaneity of the exchange of views. 
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9 

Strange things have happened which can enlighten the memoirs of an old 
ASTIN fan, like th~ story of a certain Lady Evelyn who never turned up. I had 
suggested an informal meeting in Brussels with Beard and Maddex and received 
a cryptic answer by telegram: 

M E E T I N G  E V E L Y N  F R I D A Y  S A T I S F A C T O R Y  SIR G E O R G E  A N D  
MYSELF STOP B E A R D .  

The mysterious Lady was an error of interpretation, Evelyn instead of evening. 
In some places a Secretary is even more equal than others. During the 

colloquium of Sopot, Poland the imperial suite of the fine, old hotel was offered 
to our Secretary, Peter Green,  while the Chairman had to be content with a 
more modest  room like those of the other participants. 

At the same colloquium a commit tee  was formed to thoroughly formulate the 
themes of the coming meeting in Randers to attract the intere~ of Eastern 
European actuaries. In that commit tee  were participants from Finland, Poland, 
and Czechoslovakia, and in a moment  of inspiration I asked them to finish the 
text, polish the words, and check the result. 

10 

At intervals ASTIN 's  eternal crisis has been discussed. As probably in all 
similar associations there are some members  who want to know a little about 
everything and others who know practically everything about very little, and 
this little is often regarded as of still less practical use by the first. 

By this feud lowbrows and highbrows may still influence each other. Some 
find this fighting awful. I do n o t - - I  find it reciprocally much inspiring. ASTIN 
must have room for both theorists and practicians in order to thrive and until 
now we have had many fine representatives of both camps. ASTIN must always 
keep the nose in the sky and the feet planted in solid soil. 

11 

During the first 25 years ASTIN has grown from a handful of members  to 
well over 1000. 12 volumes of the Bulletin contain most of the papers presented 
at the colloquia, the subject varying from specific mathematical  models or 
statistics from various non-life insurance fields to fundamental  basic research. 

What  will happen in the future? The general technological, economic, and 
social development  will certainly continue. This will inevitably imply that new 
risks will arise and grow, which will call for new kinds of insurance coverage. 
Enormous  risk accumulation will call for more insurance coverage and new 
thoughts in reinsurance. 

In this process technical specialists will be needed with the background of a 
qualified actuarial education. This will be a challenge to ASTIN and to its 
members.  



T H E  F U T U R E  OF ASTIN* 

By H A N S  B U H L M A N N  

My assistants at ETH have a wall ca lendar--not  with the usual pictures of Swiss 
mountains, hills and lakes, but with "quotations for intelligent people".  Recently, 
the quotation for the week read as follows: "Even the future is no longer what 
it used to be in the past". 

Observe that also in this supposedly intelligent approach it seems impossible 
to speak about the future without referring to the past. I shall not deviate from 
this rule. Of course, my task is greatly simplified by the fact that Paul Johansen 
has just entertained you in a charming way about the past 25 years of ASTIN 
and the earlier endeavors leading to the foundation of ASTIN. 

In the year 1693, Edmond Halley constructed the first mortality table based 
on mortality data from Breslau which he had obtained through the intervention 
of Leibniz. This can be regarded as the starting point of actuarial sctence. In my 
opinion it can however not be considered as the starting point of the actuarial 
profession. Why? Yes, Halley's table was used for some eighty years because 
subsequent information coincided with his estimate of mortality. Yes, De Moivre, 
in his classic textbook of 1725, performed ingenious calculations of annuities, 
based on the same table. Yes, Si.issmilch published the first basic and substantial 
work of demography in 1741 bu t - -here  comes the big bu t - -no  government (and 
nobody else sold annuity insurance at that time) made use of the available 
scientific method to calculate annuities. Perhaps the first statistical results to be 
taken seriously were the Northampton tables of 1780, devised by Richard Price. 
Incidentally, this date coincides reasonably well with the first valuation by William 
Morgan in 1786. Hence, I think that either of these dates may be taken, at the 
earliest, as the start of the actuarial profession, a profession being by definition 
a dedicated group of people acceptedby society for the performance of a particular 
skill. Let me make my point explicit: We have historical evidence of the existence 
of actuarial science about 90 years prior to the emergence of the actuarial 
profession. Had I gone back to Johan de Witt and Johannes Hudde instead of 
Edmond Halley, this span would even exceed 100 years T 

Of course, ASTIN is still within these first 100 years of endeavor. If for the 
sake of time comparison you agree that I identify Halley with Filip Lundberg, 
ASTIN's  chance to create a profession within 100 years extends until 2009 or 
approximately to its fiftieth anniversary in 2007. With this outlook we have 
touched upon one of the essential purposes of ASTIN: to create a profession, 
the profession of the non-life actuary, according to the defimtion just given: "a 
dedicated group accepted by society for the performance of a particular skill". 
Has this possibly been achieved already? The answer varies from country to 
country. It is a clear "yes"  for countries where the non-life actuary has a function 
by law or where common practice is such as if the function were stipulated by 

* Presented at the 25th Anmversary celebrauon of ASTIN, September 27th, 1982, LJSge, Belgmm. 
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law. In how many countries has this point already been reached? In some, but 
undoubtedly the professional standing of the life actuary is still far ahead of the 
non-life actuary's. In the historical perspective the non-life side is, however, not 
doing too badly. Observe that by the time shift agreed upon we are still 14 years 
prior to the Northampton tables and 20 years prior to Morgan's reserve calcula- 
tions, hence 82 years before the foundation of the Institute of Actuaries! 

Being still in the moulding period of the profession, it might be appropriate 
to look at this moulding process in more detail. What made this process start? 
The background for it must be seen in a development of the thinking in this 
century. This development--philosophically speaking--is characterized by a 
change of attitude against determinism. According to your personal taste, you 
may trace this back to the theoretical developments in quantum mechanics or 
to the social conditions of a crowded depersonalized world or simply to a 
philosophical reaction against the exaggerated determinism of the 19th century. 

Mathematics as a highly specialized language for the scientist has organized 
this new philosophical attitude in an axiomatically based discipline called proba- 
bility theory. Statisticians have become aware that the probabilistic view would 
highly increase the scientific value of their conclusions when interpreting data. 
This led to the creation of a new science called mathematical statistics. Economists 
have incorporated risk and uncertainty into their theories. Operation researchers 
have designed strategic decision schemes for a non-deterministic environment 
and engineers have started to review their traditional pragmatic safety concepts 
on the basis of probabilistic models. 

The interaction of this new attitude in science has also had its impact on the 
actuarial community. This interaction took place and is still taking place in two 
directions: 

1. It allowed a new understanding of the concepts underlying the already 
existing actuarial activity. 

2. It opened new fields of activity for the actuary, especially---of course-- in 
the non-life branches. 

1. We have probably forgotten that in the last century mortality tables were 
considered a~ laws of nature, and some time earlier, e.g., by Si.issmilch, even as 
an example of divine order. It was left to our century to reinterpret this basic 
tool of the life actuary as a table of probabilities. With this understanding, it 
was now possible not only to calculate mean value premiums and mean value 
reserves but also fluctuation loadings, contingency reserves, retentions and sol- 
vency margins. Life assurance has become probabilistic. Looking backwards, it 
seems extremely astonishing that it had not always been that way. The answer 
to this puzzle might be found in the fact that in the traditional forms of life 
assurance the savings component predominates heavily over the risk component.  
In spite of this side remark it is clear that the techniques of the life actuary have 
been substantially refined since the advent of probabilistic methods and that 
these methods have opened new possibilities in life assurance. There is, of course, 
room for further refinement. 
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2. The first new fields which have opened up to actuarial activity in the non-life 
area are sickness insurance and workmen 's  compensation.  These branches stand 
somewhere  between the long-term nature of life assurance and the short- term 
nature of fire. For this reason, actuaries had always been in close connection 
with developments  in these fields, and quite successfully so. But then actuaries 
were asked to put their skdls to work in motor  insurance. As you know, in this 
line of business we have seen a t rmendous improvement  in both thinking and 
practice over the last 25 years. It is fair to say that many actuaries have 
substantially contributed to this progress. Then came fire insurance, aviation, 
marine. In all these areas one can find pieces of actuarial work which have deeply 
influenced practical development.  

This process of interactwn of modern thought with our actuarial profession 
and with the whole insurance industry is what ASTIN is all about. What  keeps 
the process gomg~ 

It is, first of all, people who keep It going. And the diversity of people makes 
it a fascinating group indeed. Here  are influential managers who by their decisions 
can set the style and tone in the industry. Whether  another  branch of insurance 
should go sctentific or not depends very much on their judgment.  Here  are the 
practical actuaries who bring the knowledge of the problems. They are faced 
daily with risk selection, risk rating and possibly reserving. Their  participation 
in the process is motivated by their longing for a bet ter  understanding of their 
problems and for good solutions to them. And here are the theoretically minded 
researchers. Carrying the torch of modern methods, they hope to demonstra te  
the power of these methods, being sometimes possibly more motivated by 
scientific recognition than by the aim to solve all of the industry's problems. If 
you now imagine all the possible mixtures of the types just described, you have 
a more or less realistic picture of the group. 

The fact that ASTIN comprises all these people is a necessary condition for 
the interaction process to go on. Without the support  of the managers,  the work 
of the non-life actuary would have little chance to be accepted by the industry; 
without the practicing actuaries the process would end in an ivory tower, and 
without the theoreticians solutions would remain ad hoc. 

The fact that this diversified group gets together i s - -on  the other h a n d - - n o t  
sufficient for the functioning of the interaction process. The key to interaction 
and, let me add, to a successful future of ASTIN,  is communication.  This is a 
commonplace  remark,  but I still make it because we must realize that this may 
be our severest problem in the next twenty-five years. Paul Johansen has told 
us that ASTIN has grown from a handful of members  to well over  1000, say by 
a factor of 50. Assuming that communication possibilities and their consequences 
are proportional to the number  of pairs of members ,  the communicat ion problems 
must have increased in the proportion of 1 : 2500. 

This implies a completely different interaction style. It must also mean that 
not all channels of communicat ions can function any longer, simply because the 
number  of possibilities is getting too high. This has to be accepted because it is 
unavoidable. 
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But r emember  that historically we are stdl in the pre -Nor thampton  table 
period. Hence,  many things still have to be done. Can they be achieved? How? 
We must improve communication! Here  are some concrete proposals: 

1. Encourage the formation of formal or informal small interaction groups 
by vertical splitting (leading to national ASTIN groups) as well as by horizontal 
splitting (grouping according to special interests like e.g., RESTIN,  Oberwolfach, 
etc.). These smaller groups are the places where the spark must catch and we 
must see to it that we create as many of these occasions as possible. 

2. The most important  turntable of communication is the ASTIN colloquia. 
How can they fulfil this function as the number  of participants gets bigger and 
bigger 9 We must realize that in the past the glamor of these colloquia has greatly 
derived from the spontaneity of the discussions and from the fact tha: contribu- 
tions were not necessarily presented in a perfectly polished form. Tf.is ideal 
setting for small meetings is not necessarily optimal for larger ones. I submit 
that we should try to have more survey talks on both theoretical and practical 
progress. The average colloquium participant profits more from such lectures 
than from so-called discussions where, for the most part, authors speak about 
their own papers. 

3. The Astin Bulletin should be used more frequently for publication of 
practical work. When have we seen the last publication illustrating the application 
of a useful method with real data? (I can assure you that the lack of such papers 
is not due to the policy of the editorial board.) 

4. Communicat ion is finally a matter  of personal style and commitment .  We 
all must take our communication partners seriously and put more effort into 
understanding what the other person has to say to us than into what we want 
to say to him. 

I hope that these proposals sound reasonable to you. Of course, it is easy to 
make them, but here comes another  crucial point. Interaction not only requires 
people and communication facilities; it also needs time. The interaction process 
simply cannot take place if nobody has time to interact. Unfortunately,  this time 
problem is rather unevenly distributed in our group. Using my classification of 
ASTIN members ,  let us count out the managers,  because they don ' t  have time 
by definition. Academics seem to be more fortunate as far as time allowance is 
concerned. But it is most deplorable that, according to my experience, the 
practical actuaries are given too little time by their employers to work seriously 
on fundamental  problems. In the daily routine of the practical actuary, urgency 
is constantly superseding importance. Of course, there are exceptions, but not 
enough of them. May I add at this juncture that also ASTIN as an organization 
has this time problem. Without a permanent  secretariat,  and with a committee 
spread all over  the world, typically meeting three times in four years, we are 
trying to keep together an organization of more than a thousand members  and 
to publish a journal appearing twice a year. It sometimes seems to me that the 
functioning of ASTIN is a miracle. 
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Well having now reached the level of miracles why not express some wishful 
projections for the next 25 years: 

1. The techniques of the life and the non-life actuary should move closer to 
each other. Both the life actuary exploring the behavior of homogeneous risks 
over time and the non-life actuary modelling heterogeneous risks in a short-term 
period can contribute something to each other. 

2. The non-life actuary incorporating time more naturally into his models 
should develop a clear methodology for loss reserving. At the next jubilee of 
ASTIN it might be commonly accepted that--with the exception of case reserves 
for extraordinary claims---claims reserving clearly lies within actuarial responsi- 
bility. 

3. The life actuary might use risk analytic methods for the analysis of the 
asset part of the balance sheet. This seems, indeed, the part of his business most 
vulnerable to chance fluctuations. Hence, by the year 2000, like his probabilisti- 
cally-minded colleagues in engineering, he will argue on the solid basis of a 
stochastic model to explain his solvency safety factors, and he will advise the 
insurance company on investment strategies geared to a model of fluctuating 
assets. 

Let me stop with these three wishes. We must - - I  repeat this in view of the 
historical perspect ive--have patience. But history teaches us even more: Could 
de Witt and Halley, De Moivre and Siissmilch ever have foreseen the economic 
and social consequences of their intellectual endeavours? I believe that the 
ultimate effect of the interaction process between scientific thought and pro- 
fessional practice can neither be forecast nor planned. The interaction process 
itself is--as I said before - -a  miracle. Let me then wish for ASTIN on its 25th 
anmversary that the miracle will go on! 
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L A R G E  CLAIMS IN I N S U R A N C E  M A T H E M A T I C S *  

JEF L. TEUGELS 

Katholieke Universitett te Leuven, Belgium 

L A D I E S ,  G E N T L E M E N ,  

I take great pleasure m addressing this audience. As you might know I 'm a 
mathematician with a deep interest in insurance mathematics.  As such, it is my 
sincere opinion that the gap between practising actuaries and theoretical 
researchers can be made substantially smaller. If my contribution can help in 
bridging the gap, I will feel fully compensated for the effort it took to prepare 
this lecture and the results contained therein. 

The simple fact that we meet  on the occasion of the sixteenth ASTIN Col- 
loquium gives me a challenging opportuni ty to help in creating a platform on 
which both theoreticians and practitioners can meet.  

The subject of my lecture stems from a long interest in large claims: What  
are they? Are they really dangerous 9 Is there a way to get them under control? 
Can one recognize them in practical situations? 

I like to express in simple mathematical  terms some results that might help 
in acquiring better  msight on the impact of large claims in insurance mathematics.  
Perhaps, no result will be of immediate applicability as reality is too complicated 
to be described by the simplicity of the results to follow. Nevertheless the latter 
can be considered as building blocks of a real world in which one has to tackle 
large claims in theory as well as in practice. 

1. W H A T  A R E  L A R G E  CLAIMS ~ 

On other occasions I have tried to set up mathematical  definitions of what one 
might call a large claim. None of these approaches seemed to satisfy the prac- 
titioners. What  could we do better  than inquire with people in practice, what 
they meant  by large claims? Here  is an anthology of the main answers to the 
question stated above. 

ANSWER 1. Large claims are the upper 10% largest claims. 

It is not quite clear why 10 is used? I see two main reasons why this answer is 
put forward. The lay out of claim statistics very often has extremely broad 
intervals for the highest claims; secondly, many reinsurance treaties use propor-  
tional reinsurance. 

ANSWER 2. Every claim that consumes at least 5% of the sum of claims, or 
at least 5% of the net premiums. 

* Invited Lecture at the 16th ASTIN Colloquium, 27-30th  September,  1982, Liege, Belgmm. 

ASTIN BULLETIN Vol 13, No '2 



82 TEUGELS 

This description might be appropriate  for small portfolios although it is again 
not very precise. 

ANSWER 3. Every claim for which the actuary has to go and see one of the 
chief members of the company. 

Alternatively every claim overshooting a preassigned quantity. Needless to say 
that stop-loss reinsurance treaties trigger off this reply. 

ANSWER 4 .  

T: 
A: 
T: 
A: 
T: 
A: 
T: 

Hidden m the following exchange of thoughts. 
Mister actuary, what do you mean by large claims? 
They don ' t  exist. 
Sorry, I don ' t  quite understand. 
Well, large claims don ' t  exist since we reinsure dangerous portfolios. 
But how do you find out whether or not a portfolio is dangerous? 
This is clear: we watch for large claims. 
But, what do you mean by large claims? 

From the above answers we can draw some conclusions: 
- -  practitioners believe in large claims; 
- -  they don ' t  precisely know how to define them; 
- -  the reinsurance treaties used m their company give guidelines on how to 

deal with large claims. 

Almost  all respondents gave some explicit examples of what they consider to 
be large claims. There  is of course the classical set: earthquakes,  tornados, air 
crashes, floods, etc. At least two other samples were illustrated with actual data. 

EXAMPLE 1. Portfolio of fire insurance for wooden houses in Scandinavia. 
apart  f rom small fires, sometimes a burning house sets the surrounding forest 
on fire and threatens other houses in the immediate  vicinity. 

EXAMPLE 2. Portfolio of schoolbus insurance. The typical course of life of 
a bus looks as follows: the first 8 to 10 years the bus is used on long distance 
trips; then the bus is employed on one day excursions; the bus ends its career 
as a schoolbus. It is not hard to forecast that lack of good maintenance makes 
schoolbuses accident prone. 

How does one transform the above vague quotations into hard mathematical  
terms? Scanning the existing literature dealing with large claims we find that 
there is often agreement  on the claim size distribution of large claims. The 
non-existence of certain moments  or the use of so-called "shadow claims" suggest 
that fat-tailed distributions like the Pareto-distributions are appropriate  models 
for dealing with large claims. 
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2 HOW D A N G E R O U S  A R E  L A R G E  C L A I M S ?  

To get some feeling for the danger resulting from large claims we deal with the 
classical ruinproblem. Assume that consecutive claims occur, according to a 
Poisson process, {N(t); t I>0} with parameter  A > 0 .  Call these successive claim 
amounts B~, B2 . . . .  and assume that they are independent  with common distri- 
bution of B, say B(x) = P{B ~<x} where B(0) = 0. We assume moreover  that the 
claims sizes are independent  of the Poisson process. The risk reserve accumulated 
up to time t is given by 

N(t)  

Y ( t ) = u + c t -  E B, 
I - 1  

where u i~; the initial reserve and c is the loading corresponding to premium 
payments.  

We are interested in the distribution of the time of ruin, i.e., T,  = 
inf{t: Y ( t ) < 0 } ( =  +oo if no such t exists), where u refers to the initial reserve. 
Our  basic assumptions are the following. 

A(i): c = 1, this is established by a proper  choice of the time scale; 
A(ii): p ~AEB < 1, on the average the income per unit time exceeds the 

expenses; 
A(iii): 1 - B ( x )  --x-"L(x) where a I> 1 and L a slowly varying function (B 

is of Pareto-type).  

We write 

(1) P{T. ~< t} = P{T.  < ~ }  - P { t  < T. < ~}.  

It is well-known (see: P. Embrechts  and N. Veraverbeke  (1982). Estimates for 
the probability of ruin with special emphasis on the possibility of large claims. 
Insurance Math. Econom. 1, 55-72)  that under A(i), (ii), (iii) ruin in finite t ime 
satisfies the asymptotic equality 

(2) P{T,,<oo}~ p [1-/~(u)] forx~oo 
1-p 

where /~ (u )  = (EB) -1 ~' [1 - B ( y ) ]  dy. (This specific result can also be found in 
B. von Bahr (1975). Asymptot ic  ruin probabilities when exponential  moments  
do not exist. Scand. Actuarial J. 6-10. )  A few trial calculations show that even 
for very large u, this probability may be considerable if a is small or (and) if p 
is close to 1. 

Looking back at (1) one might hope that the term P{t< T, <oo} will lower 
the above probability considerably. However  A(i), (ii), (iil) imply that for all 
u >I 0 and t --~ co (a full proof will be published later) 

/ ° 1 (3) P[t < ~,  < ~ ] - - p ( 1  - p ) ' - ~ [ 1  - /~( t ) ]  1 +~p"t~")(u) 
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which for u large reads 

Pit  < Tu < m] ~ p ( 1  - p ) - ~ [ 1  - /3 ( / ) ]  

independently of u. Hence some of the probability of getting ruined in [0, t] can 
be shifted to It, m) by increasing u ; however ruin remains highly probable.  It is 
obvious from the above considerations that something has to be done. Listening 
to the practitioner reinsurance might be appropriate.  

3. is REINSURANCE HELPFUL? 

Let us rephrase the question somewhat  to get a result with broader  applicability. 
Instead of A(iii) we would like to impose a condition that mainly allows small 
claims. Although the condition B(iv) is somewhat  technical one might vaguely 
interpret it as meaning that 

1 - B ( x ) < K e  -Sx 

for some 6 > 0 so that high claims are very improbable.  Let A(s) = s -3,  [1 - b  (s)] 
where b (s) = E [exp - sB] is the Laplace transform of the claim size B. We assume 

B(i): c = 1 ; 
B(ii); p < l ;  
B(iii): B(x )  is a non-lattice distribution; 
B(iv): there exist a value K > 0 such that A(--K) = 0. 

The results corresponding to (2) and (3) are now: Under  B(i), (ii) and (iv), there 
exists a constant C1 such that (see the above mentioned paper  by Embrechts-  
Veraverbeke)  

(4) P { T , , < m } - = C l e  ~" a s u ~ m .  

Also (see J. L. Teugels (1982). Estimation of ruin probabilities. Insurance Math. 
Econom. 1, 163-175)  for a constant C2 and u and t large 

(5) P{t < Tu < m} ~ C2 e -°Uu e -0't-3/2 

for a constant v 6 (0, K) and a constant 0 > 0 .  Actually v is defined by A ' ( - v )  = 0 
while 0 = - A ( - v ) .  

The interpretation of (4) and (5) is that if the initial reserve u is large enough, 
ruin in [0, T]  and in IT, ~ ]  is highly improbable.  Alternatively one might say 
that under the B-conditions no reinsurance is anymore necessary. 

Turning back to large claims, stop-loss reinsurance is based on a retention 
M ,  the corresponding truncated distribution has no tail and hence for constants 
CM, VM and 0M by (5) 

(6) P{t < T, < m} ~ CMU e -oM, e -OMit--a~2. 

A basic problem is how to determine M in such a way that after one year ruin 
is only possible with a small probability, starting with initial reserve u. Now 
one can get some rough estimates on vM and 0M. 
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(7) 

I f 1 - p  / 
~ M l ° g l l +  p q~/ 

where ¢ = a-~p.M, ~ = E Y ,  a = E Y  2 and A = g - ' M { 1  - B ( M ) } .  Also 

(8) 

. apVM 
~ VM (1 --p) + 2 ~  (1 - e  °MM) 

OM + VMp (1 OWM~ 
~< VM(1--p) - e x p - ~ - ) .  

These formulas are interesting as first approximation in that the dependence on 
M and p Is emphasized. The larger M, the smaller VM and 0M; the closer p is 
to 1 the smaller VM and 0M. 

The more information one has about the claim size distribution the more 
precision can be obtained for VM and 0M. We will return to these results in a 
forthcoming publication. 

To get a quick overview of the differences between the situations described 
in 2 and 3 I propose to introduce isoruines, i.e., curves in the (t, u) plane that 
give the same probability of ruin. Three typical cases are depicted in fig. 1. Here  
e = P{~,  ~ t}. The full lines correspond to an exponential distribution with A = ½, 

= 1 while the dotted lines come f r o m / ~ ( x )  = 2/¢r arctan x and p =½, a = 2. 
For fixed time the initial reserves for the Pareto-type case are much larger 

than for the exponential  case. Also the infinite horizon values are very different. 
For example for the exponential case u =7 .9  gives e =0 .01  while for the 
Pareto-type case u = 69.4. 

Let me point out that there are two types of isoruins i.e., P [ T ,  ~< t] and P [ T ,  > t] 
with quite different characteristics. 

4. HOW CAN ONE D E T E C T  L A R G E  CLAIM S?  

We like to formulate an approach which might be useful in practice if suitably 
adapted. A characteristic of existing reinsurance procedures is that estimated 
retentions and premiums are based on past year 's  data. Perhaps one realizes an 
overall loss in the portfolio; in other cases like largest claims reinsurance and 
E C O M O R ,  estimates are based on the largest claims registered during the year. 
Unfortunately the ordering of claims in increasing order is a t ime consuming 
undertaken even for a computer .  More important  is that the ruin disaster is only 
discovered at the end of the book-keeping year. 

The following procedure tries to do better. We assume that claims are Pareto 
distributed so that 1 - B ( x )  = x -~ (x >i 1) with unknown a. We look at the claims 
as they come in: any time a claim is reported bigger than all previous claims we 
get a warning. More precisely we look at the sequence of so-called record times 
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LARGE CLAIMS IN INSURANCE MATHEMATICS 87 

and record values. 

N1 = 1, X1 =B1 

N2=inf{l:Bz>Xl}, X2=BN2 

N3=inf{l:Bt>X2}, X3=BN~ 

It is easy to show that 1/cz can be excellently estimated by the sequence of 
warning values. Indeed, for any k, 1/k log Xk is an unbiased, efficient estimator 
for l/oz. (Alternatively the sample mean of the log B, could be used to estimate 
1/o~). 

If we are afraid for example that the average claim EB should be infinite we 
can construct confidence intervals for 1/a and check whether or not the value 
1 belongs to it. In this sense consecutive warnings could lead to an alarmingly 
low value of a. 

To be more precise let us denote by p~'~ (/3) the probability that all estimates 
of 1/a based on the first n warning values suggest that a < f l - t ,  i.e., 

For example we give a short table for B = 1 and n = 1, 2, 3, 4, 5. 

/3=1 1 2 3 4 5 

4 0 01832 0.00168 0 00020 0 00001 4 10 -6 
3 0.04979 0 00991 0.00253 0 00072 0.00022 
2 0 13533 0.05495 0 02727 0.01487 0.00858 
1.5 0.22313 0 12447 0.08193 0 05825 0.04334 

For example, assume c~ = 4. Any time a warning value suggest that ~ < 1 we 
sound the alarm. The first warning results in a fake alarm with probability 
0.01832. A second fake alarm is so improbable that we better drop the hypothesis 
that a = 4 (or even cz/> 4). 

Similarly, 5 consecutive alarms make a >t 1.5 already quite unlikely. 
Any time a warning leads to an alarm, the company might ponder to take 

reinsurance and that while the claims are still coming in. 
Although this and allied procedures look promising refinements are necessary 

since in a sample of size n there are on the average only log nwarning or record 
values. 

5. CONCLUSIONS 

We have only indicated some major items where recent mathematical develop- 
ments can help the practitioner to get a better understanding of reality. 
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As I hope to continue research in the area of primary reinsurance I hope to 
get inspiring suggestions from you. Let  me mention a few topics on which the 
practit ioner has acquired insight, indispensable for the theoretician: 

- -  what are the rules of thumb used in practice to decide about  reinsurance? 
- -  how are the retentions chosen? 
- -  what premium principles are used? 
- -  who makes  the final decision? 
- -  can you provide examples (or even data) on portfolios where large claims 

do occur? 

Let me finally draw a parallel between insurance mathematics and statistics. 
In both fields there are researchers and practitioners; in both areas a gap is felt 
in between theory and practice; fortunately in both domains practitioners and 
theoreticians meet  in fruitful conferences. 

There  is one more parallel that nicely applies to myself: not too many people 
in actuarial sciences have to worry about large claims. On the statistical side, 
few statisticians are involved in the study of the corresponding area of statistics, 
namely that of so-called outliers. If you feel that my interest in large claims is 
unsound, then do with me as with outliers in statistics: get them out. But if you 
feel that large claims are important ,  help me in getting a better  understanding 
of what they are and what you would really like to do with them. 

Thank you for you kind attention. 
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ASYMPTOTIC B E H A V I O U R  OF COMPOUND DISTRIBUTIONS 
AND STOP-LOSS PREMIUMS 

BY BJt21~RN SUNDT 

University of Oslo / Eidgen6ssische Technische Hochschule (Ziirich ) 

A B S T R A C T  

The paper gives some asymptotic results for the compound distribution of 
aggregate claims when the claim number distribution is negative binomial. The 
case when the claim numbers are geometrically distributed, is treated separately. 

1. I N T R O D U C T I O N  

1A. Let ,~,  £2 . . . .  be independent identically distributed random variables (the 
independent severities) on (0, co) with cumulative distribution F. Let r7 be a 
random variable (the claim number), independent of the ~,'s with distribution 
on the non-negative integers defined by 

(1) 

Let 

P" =Pr(n =n)=(a +n-1)  (a > O , O < p < l ) .  

= ~ .~, (a > O) 

(,~ = O) 

(the total aggregate claim amount). Then the cumulative distribution of ~ is 

(2) O(s )=  ~. p.F"'(s). 
n~0  

The idea of the present paper is to develop asymptotic expressions when s~'oo 
for 

(i) the tail 

H(s)= 1 - G ( s ) ;  

(ii) the stop-loss premium 
oo 

K(s) = ~(max (~-s, 0)) = f~ H(x) dx; 

The present  research was supported by Association of Norwegian Insurance Companies  and The  
Norwegian Research Council for Science and the H u m a n m e s  I am grateful to Hans  Buhlmann,  
William S Jewell, and Andr6 Dubey for useful discussions concerning the paper, and to Ragnar  
Norberg for suggesting several Improvements  
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(iii) the densi ty  

or  the point  probabi l i ty  

d 
g(s) = Ys G(s) 

gs = Pr (g = s). 

lB .  We are going to use some  nota t ion  and results f rom Feller  (1971): 
If A and B are functions,  by the nota t ion  A(s)--B(s) as s tends to, say, a, 

we shall mean  that  the rat io A(s)/B(s) tends to 1 as s tends to a. 
We  shall call the severi ty  distr ibution F ar i thmet ic  if it is concen t ra ted  on the 

set  {A, 2A, 3A, . . . .  } for some  A, and we shall call the largest  such A the span of 
the distr ibution.  When  we t reat  ar i thmet ic  distr ibutions,  we shall for  convenience  
assume that  the span is equal  to one;  general  span- length  is ob ta ined  by rescaling. 

We shall say that  a function A is u l t imately  m o n o t o n e  if there exists a y such 
that  A (x) is m o n o t o n e  for  all x > y. 

It is a s sumed  that  there  exists a K satisfying 

1 
(3) P-= Io.~> e 'x  dF(x), 

and that  

(4) u =PI0.~o> xe~XdF(x) 

is finite. 

2. G E O M E T R I C A L L Y  D I S T R I B U T E D  C L A I M  N U M B E R  

2A. In the presen t  section we are going to assume that  p ,  satisfies (1) with a = 1, 
that  is, 

p ,  = p " ( 1  - p ) .  

Then  the distr ibution G satisfies the identi ty 

(5) G ( s ) = l - p + p  f G(s-x)dF(x),  ( s > 0 )  
Jc 0.s] 

as is seen by rewri t ing (2) as 

G ( s ) =  ~ p"(1-p)F"'(s) 
r l ~ 0  

It* 
= l - p + p  2., p"(1-p)(F *F)(x) 

r i c O  

= 1-p +p(G*F)(s). 
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We see that (5) has the form of a renewal equation with defective distribution 
pF. This means that we can apply results from renewal theory. In subsections 
2B-C we do this for the non-arithmetic case, m subsection 2D for the arithmetic 
case. 

2B. Assume that F is non-arithmetic. Then by formulae (6.7) and (6.16) of 
Chapter XI in Feller (1971) we get 

H ( s ) - - - 1 - P e - ~ ,  ( s T Y ) .  
K V  

From this we can also easily obtain an asymptotic expression for the stop-loss 
premium K (s). 

T H E O R E M  1. The stop-loss premium K (s ) satisfies 

K ( s )  1 - P  -,s 2 e , (s1'oo). 
K V 

PROOF. By using L'H6pital 's  rule we get 

lim K ( s )  = lim - H ( s )  1 - p  
s,r~ e -Ks st~o - K  e - ' s  x 2 u  

which proves the theorem. Q.E.D. 

2C. If F has a density f, then G has an atom 

(6) G(0) =p0 

at zero, and for s > 0 a density 

(7) g(s)= Z "" p,.f (s). 
n = l  

THEOREM 2. The density g(s)  satisfies 

1 - - p  -Ks 
g ( s ) -  e , ( s ~ ) .  

/1 

PROOF. We use L'H6pital 's  rule: 

1 ) _1 g(s) l i m H ( S ) = l i m  - g ( s  = lim _~,. 
Ku s i s  e -Ks sr~--K e -~s K s ~  e 

From this follows the theorem. Q.E.D. 

2D. In this subsection we shall assume that the distribution F is arithmetic 
with unit span, and we introduce 

fk = Pr (£, = k), (k = 1, 2 . . . .  ). 
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Then  

fxl 
F(x)  = ~ f,, (x >10). 

THEOREM 3. 

(8) 

(9) 

When s goes to infinity through the integers, we have 

(1 -p)e '~ 
(l) K(s) ~ u(e" - 1) 2 e-"S 

1 - p  
(ii) H ( s ) ~ - -  e -~" 

t , ( e ' -  1) 

- - P  --t¢$ 
~ e (iii) g~ ue 

PROOF. For  the whole  p roof  s will always deno te  a non-nega t ive  integer.  
(i) In the presen t  case (5) becomes  

G ( s ) = l - p + p  ~ G(s-i) f , .  
t e l  

As G(s - i )  = 0 for i > s ,  we may  extend the sum to infinity, 

G ( s ) =  1 - p + p  ~ G(s-i)f , .  
t e l  

In t roduc t ion  of  H (s ) = 1 - G (s ) gives 

H(s)=p ~ H(s- i ) f , .  

We get 

and thus 

By using 

we obtain  

x - s  x = s  t = l  

K ( s ) = p  ~ K ( s - i ) [ , .  

K ( s - i ) = ~ ( § ) + t - s ,  ( i = s + l , s + 2  . . . .  ) 

K(s)=p ~ (~(~)+i-s)f ,+ ~ K(s-i)pf, .  
t ~ 5 + [  I - - I  
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Multiplying this equat ion by e ~s and introducing 

f~ = pf, e ~' 

and 

give 

(10) 

K*(s) = K ( s )  e "* 

K*(s)=pe ~" ~ ( ~ ( g ) + i - s ) f , +  ~ K*(s-i)f ,*.  
I ~ s + ]  t = l  

Considered as point  probabili t ies * * f , ,  f 2 , .  • • defines a p roper  probabil i ty distri- 
but ion because of (3). Hence  (10) is a p roper  renewal equat ion,  and the renewal  
theorem (Karlin and Taylor ,  1975, p. 81) gwes 

l i m K * ( s )  1 ~ .~ = -  pe (~(g) + i - ] ) f , .  
s~co  V I = 0  t = l + l  

In the following deve lopment  we use that  

~(~) = ~ ( r ~ ) ~ ( ; , ) =  p 
1 - p  

~(£1). 

We have 

v h m K * ( s ) =  ~ pe ~' ~ ( ~ ( § ) + i + 1 - ] ) / , + 1  
s ' t co  I = 0  l = l  

=p ~ f,+~ ~ ( ~ ( e ) + i + l - i ) e "  
t = O  1 = 0  

co ~ ~ 0 + 1 )  

~o f, [ e e ~ _ - l ~ ( g ) + ~ o  ~ ] e  •' 
= P , =  + 1  - -  1 = k = t  

I~ ' (g )  [1  1 \ +  ~ k 
=Ple _l ) ,Z.ot:+'   o,Xo e''] 

[ ~'(2) e "~k+" ] 
,=o k=0 e " - - I  

- P ['~'(£)+ ~ f,+l ~ (e~'k+l)--l)] 
e ~ -- 1 ,7o k ~0 

r- co _ ~ ( 1 + 2 )  K 

_ [ . +~o[,  (e ~z7._~l e ) ) ]  P ,~'(x) +l (i + 1 
e" - 1  

_ p [~,(£)+e e" (pl_.) ] (1-p) e ~ =  
e" - 1 - 1 - 1 - ~ (£)  (e" - 1) 2 " 

From this follows (i). 
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( i i )  As 

we get 

which proves (ii). 
(iil) As 

SUNDT 

H(s) = K(s)  - K ( s  + 1), 

lim H ( s )  e "' = l i m  K ( s )  e ~ - e  -K lim K(s + 1)  e "~'+1~ 
s t ~  sTco stoo 

= (1  - e  - ~ )  l i m  K ( s )  e ~', 
stoO 

gs = H ( s ) - H ( s  + 1), 

the proof of (iii) goes as the proof of ( i i ) .  

This completes the proof of Theorem 3. Q.E.D. 

3. NEGATIVE BINOMIALLY DISTRIBUTED CLAIM NUMBER 

3A. We shall now drop the restriction a = 1 in (1). Then we have the following 
theorems: 

THEOREM 4. I f  

R(s) =e~'H(s)  

is ultimately monotone, then 

(11) H(s) - -  s '~-1 e -~, 

P R O O F .  L e t  

(s too). 

O (t) = Io.=) e -,x dF(x ), (t !> --K ) 

(12) ¢r( t )=Io~}e- 'SdO(s )=(1  l - p ,  -pO( t ) )  ~ '  ( t > - K )  

w(t)=Io.~)e-"R(s)ds--l--°~(t--K)t--K ' ( O < t < K ) .  

We want to show that 

R (s) - K F(a-----) s (s 1' o0) 

By Theorem 4 on p. 446 in Feller (1971) this is equivalent to 

, , ,o,. 
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Let 

We have to show that 

(13) 

We have 

( vt ) ~ ( t ) .  
¢ ( t ) = K \ l _ p ]  

lim tp(t) = 1. 
t,Lo 

l i m ~ ( t ) = l i m  1 - o - ( t - K ) (  vt "~ 
,~o ,~o t---K \ l - p ]  K 

= hm °'(t - K) (1 v-~tp)~ ,~0 

= h m (  vt )~ 
,,Lo 1 - p d ) ( t - K )  " 

As, by L'H6pital 's  rule, 

/,'t t,' v 
lim = h m  1, 
,,to 1 - p d ) ( t - K )  ,~o -poD'( t -x)  -pc~'(-K) 

(13) holds, and hence the theorem is proved. Q.E.D. 

T H E O R E M  5. f f  (11) holds, then 

(14) K ( s ) ~ K ~ a )  s e , (s ~' oo). 

PROOF. L'H6pital 's  rule gives 

K(s)  - H ( s )  
lim - ~ - - . : . z z = l i m  ~-1 + (a  1)s~-2e ,too s e ,Too -Ks e - "  - -,s 

rs H(s)  
=l im 

sto~ K s - a  + 1 Ks ~-x e-~'  

' = l i m  ~ - 1  - ~  = - 7 7 "  
s,~o Ks e 

which proves the theorem. Q.E.D. 
3B. If F has a density f, then G has an atom P0 at zero, and for s > 0 a density 

g(s) given by (7). Then we have the following theorem. 

T H E O R E M  6. I f  (11) holds, the density g(s ) satisfies 

g(s) ~ s ~-1 e -~s, (s T oo). 
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PROOF. L ' H 6 p i t a l ' s  rule  gives 

1 = h m  . - 1  - 
K F ( a )  ,'too s e ~ 

- g ( s )  
= l i m  _Ks~_l -~, -Ks ,Too e + (a - 1)s ~-2 e 

KS g(s) g(s) 
= l i m  ~-1 _ ~ , - l i m  ~-1 . . . .  

s , ~  Ks - a  + 1 Ks e ,too Ks e 

and this p roves  the  t h e o r e m .  Q . E . D .  

3C. The  as sumpt ion  tha t  R(s)  is u l t ima te ly  m o n o t o n e ,  ~s awkward ,  as it s eems  
very difficult to show that  it is satisfied. As,  when the condi t ion  holds,  

with 

R ( s ) - R * ( s ) ,  (s I 'm)  

oc--I 
R*(s )=KF(a  ) s , 

which is m o n o t o n e l y  increas ing  to infinity for  a > 1, cons tan t  for a = 1, and  
m o n o t o n e l y  dec reas ing  to zero  for a < 1, the  condi t ion  must  mean  that  R(s)  is 

u l t ima te ly  m o n o t o n e l y  increasing for  a > 1 and u l t imate ly  m o n o t o n e l y  decreasing 
for a < 1 ; for  a = 1 we canno t  say whe the r  the u l t imate  m o n o t o n y  is increas ing 
or  decreas ing ,  but  in that  case it does  not  ma t t e r  as we then have the t h e o r e m s  
of Sec t ion  2. 

In the  a r i t hme t i c  case the  a s sumpt ion  of u l t imate  m o n o t o n y  of R(s)  does  not  
hold  as R(s)  then increases  con t inuous ly  when s Is a non - in t ege r  and  dec reases  
in j u m p s  at integers .  But  in this case T h e o r e m s  4 and 5 cannot hold as for  a = 1 
(9) and  (8) con t rad ic t  (11) and (14). 

If F has a dens i ty  f, the  fo l lowing l e m m a  gives a condi t ion  equ iva len t  to 
u l t ima te  m o n o t o n y  of R(s)  when ~ e 1. 

LEMMA 1. Assume that F has a denstty f and that a ¢ 1. Then R(s)  ts 
ultimately monotone if and only t[ there exists an s~ such that ]:or all s > so 

g(s) 
- - < K ,  (a > 1) 
H(s)  

g(s) 
H(s) > K, (a < 1). 

PROOF. For  s > 0  

dR 
- - = e ~ S ( K H ( s ) - g ( s ) ) ,  
ds 

and hence  

dR o g(s) 
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But because of the ultimate monotony of R(s) there must exist an s~ such that 
for all s >s~, dR/ds <>0 as a ~ 1. This proves the lemma. Q.E.D. 

The author believes that the assumption of ultimate monotony of R(s) in 
Theorem 4 may be replaced by the assumption that the distribution F is 
non-arithmetic, but has not been able to prove this result. An indication that 
the result holds, is that it holds in the special case a = 1 as shown in subsection 
2B. Another indication is given by the following example. 

EXAMPLE. Let the severity distribution F be defined by the density 

f (x ) =/3 e-B ~, 
Then the Laplace transform of F is 

(x >0, /3  >0).  

13 (15) 4, (t;/3) =/3 +----~, 

and from (12) follows that the Laplace transform of G is 

o'(t) = (1 - p  + pq~ (/; fl(1 -p)))~. 

By expanding we get 

~r(t)= ~ (7)(l-p)"-'p'*(t;[3(1-p))'. 
I = 0  

As ~ ( t ; f l ( 1 - p ) ) '  Is the Laplace transform of the distribution F(s; i , /3(1-p))  
defined by 

b~ Io' F(s;a ,b)=F~ r"-le-brdr, (s,a,b>O) 

we get 

H ( s ) =  ~ (7)(1-p)~-'p'(1-F(s;i,/3(1-p)). 
i = 0  

Assume that a is an integer. Then 

H ( s ) =  ~ (7)(1-p)~-'p'(1-F(s;i,/3(1-p)). 
I = 0  

As by L'H6pital 's rule 

lim 1-F(s; i '/3(1-P))=t~(1-p)]~-I ' 

we get 

(16) H(s) 1 (/3(1 -p)p)°s "-1 e -tm-p~s 
13(1 - p ) F ( a )  

( i < a )  

(i = a )  

(s t oo). 
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F r o m  (3) and  (15) we get  

tha t  is, 

(17) 

and  inser t ing  this in (4) gives 

1 /3 

p f l - ~ '  

K = / 3 ( l - p ) ,  

1 
(18) ~, = 

~p 

By inser t ing  (17) and (18) in (16) we arr ive  at (11), which then holds also in 
the  case when ot is an in teger  and  F is the  exponen t i a l  d i s t r ibu t ion .  
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SOME N U M E R I C A L  ASPECTS IN T R A N S I E N T  RISK T H E O R Y *  
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ABSTRACT 

We give some actual possibilities for computing numerical values in the classical 
risk models both in transient and asymptotical cases by introducing the concept 
of normed model. Some recent approximations are tested on numerical examples. 

We also emphasize the interest of these methods to compute  waiting time 
distributions (transient and stationary cases) in queueing theory. 

1 .  MODELS CONSIDERED 

1.1. Risk Model 

We will limit our attention to the classical Cram6r-Lundberg  model for which 
we have the following characteristics: 

(1) The claim number  process is a Poisson one with parameter  A. Let (A.).=~ 
be the sequence of interarrival times between claims so that 

(1.1) E(A,) = ~ - ' .  

Following the current notation, N(t) (t >/0) represents the total number  of claim 
occurrences on (0, t]. 

(ii) The process of successive claim amounts is a sequence of non negative 
i.i.d, random variables (B , ) ,~ i  wtth d.f. B( .  ) such that 

(1.2) E(B,)=/3  

and this process is independent of (A, ) ,~ t .  
(iii) The premium income process has a constant rate per unit of time: c. To  

avoid certain ruin on [0, oo), we must have: 

(1.3) '~<  1. 
C 

So, we can define rh the security loading by 

(1.4) c = A/~(1 +'0).  

* Presented at the 16th Astm Colloquium, September 27-30th, 1982, Ligge, Belgium 

AS.TIN BULLETIN Vol 13, No 2 



1 0 0  J A N S S E N  A N D  D E L F O S S E  

Every risk model is thus characterized by a triple (A, B(x),  r/). Now define, 

N ( t )  

(1.5) S ( t )=  ~ S ,  
r l= l  

with the usual convention that a summation over a void indice set is 0, and 

(1.6) R (t) = u + c  • t - S( t)  

where u, supposed to be positive, is the initial reserve. Of course, if F(x ,  t) is 
the d.f. of S(t) ,  we have 

(1.7) F(x ,  t )=  ~ e - h '  (At)----'~B~*(x) 
n = 0  / ' l!  

where B"*  represents the n-fold convolution of B. 
If T is the random variable, possibly defective, defined by 

(1.8) T = inf {t: R (t) < 0} 

we have for the probabilities of non-ruin the following definitions: 
(a) on a finite horizon time [0, t] 

(1.9) ~b (u, t) = P [T  > t] 

(b) on a finite horizon time [0, co) 

(1.10) 4~(u) = lim ~(u, t). 
I~oo 

For the ruin probabilities, we have, of course 

(1.11) 4~(u, t )=  1 - 4~(u, t) 

(1.12) ~(u)  = 1 - $ ( u ) .  

1.2. N o r m e d  R i s k  Models  

1.2.1. First S e m i - N o r m e d  Relat ion 

Let R0 and R1 be two risk models characterized respectively by (1, B( .  ), ,q) and 
(X, B( . ) ,  n). 

If ~o(U, t) and d~l(u, t) are corresponding non-ruin probabilities, we want to 
find a relation between &0 and d~l. To do so; let us remark that from (1.7) 

(1.13) Fo(x, t) 
t" 

= e - '  ~.wB(x) 
n D O  

(1.14) Fl(x ,  t) = e -~' ( B ( x )  
n ~ O  . 

so that 

(1.15) F~(x, t) = Fo(x, At) 

or Sl( t )  has the same distribution as So(At). 
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Now, from (1.9) 

(1.16) ¢ l(u, t )=  P[S1(t')<~ u + c1" t', t ' e  [0, t]] 

with c~ = ;t ./3. (1 + r/) by (1.4). For Ro, we have Co = (1 + r/). 1 "/3. Using (1.15), 
we get 

O l(u,  t) = P[So(At ' )  ~< u + X • Co" t', t ' • [0, t]] 

= P[So(t") ~ u + Cot", t" • [0, At]] 

and finally 

(1.17) Ca(u, t) = Co(U, At). 

1.2.2. S e c o n d  S e m i - N o r m e d  R e l a t i o n  

Following Pfenninger (1974), we can also normalize the claim size distribution. 
Let us consider the risk model R ~ and R2, where R2 is characterized by (X,/3'(. ), 
r/) with 

(1.18) B ' ( x ) =  B ( f l x )  

i.e., B ' ( x )  is the d.f. of the random variables 8, , / f l .  
We have 

Ca(u, t) = P[S1 (t') ~ u + A •/3. (1 + r/)t', t ' •  [0, t]] 

FN(t') ] 
= PL,~o B,  <~u +A '/3'  (1 + r/)t', t ' •  [0, t] 

= P [ .~o  /3 rN"'~ B~ ~ u-+'~ ( 1 / 3  + n)t ' ,  t ' •  [0, t]] 

= P [ S 2 ( t ' ) < ~ +  A (1 +'0)t ' ,  t' • [0, t]] 

and finally 

(1.19) 

1.2.3. N o r m e d  R e l a t i o n  

t) 

Combining the two preceding steps, we get the so-called normed relation for 
the risk models R~ and R3 respectively characterized by (A ,B( . ) ,~ )  and 
(1, B ' ( . ) ,  ~): 

(1.20) ¢ , (u ,  t )=  03(~ ,  h .t) 

R3 is called the n o r m e d  model .  
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This relation gives some simplification for numerical computation, especially 
for tabulation purposes. For example, in the M /M/1  model for which 

0 ~ x <O  

B(x)= 1 - e  -~' x i>0  

characterized shortly by the triple (A, tz, n), the normed model R3 is given by 
the triple (1, 1, ~) so that we have only one parameter,  the security loading. 

From the numerical point of view, it suffices to treat this model to obtain 
results for any model with triple (A, ~, r/). 

2. T H E  Q U E U E I N G  M O D E L  

We will only consider the classical M / G / 1  model for which A is the rate of 
arrivals and/3 ( .)  the d.f. of the service time, with mean/3. If/V'(t) (t I> 0) represents 
the total number of arrivals on [0, t] and W, the waiting time of customer number 
n (we suppose that Wo = 0, i.e., a time 0, a service is just beginning) it can be 
shown (Janssen (1977)) that 

(2.1) P[WR,~  <<- u] = ~(u,  t) 

(2.2) lim [W~. )  ~< u] = ~(u)  

where 4~(u, t) and 4~(u) are the non-ruin probabilities of a risk model character- 
ized by A- as claim number process parameter,  by/~(x)  as claim size distribution 
and by c = 1 as premium rate. The security loading of this corresponding risk 
process is, of course, given by 

I 
(2.3) c = ( l + r / ) A ' / ~  or " 0 = - - - 1 .  X./3 

Consequently, to every M / G / 1  queueing model, characterized by X and/3(x),  
corresponds a risk process with parameters (Tt,/~(x), (1/7q3)- 1). Inversely every 
result for the Cram6r-Lundberg model (A,B(x) ,  1'1) can be transposed for a 
M / G / 1  queueing model with parameters 

1 

(i+n)t~ 

/~(x) = B(x ) .  

For a fixed ~ and a given B(x),  we can see the relation between the normed-model 
non-ruin probability ~ba(u, t) and the waiting time distribution. We have: 

(2.4) 
u t 
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3. NON-RUIN PROBABILITY IN THE TRANSIENT CASE FOR THE M / G / 1  MODEL 

Theoretically, two principal methods are used to solve this problem: the first 
method is based upon the double Laplace transform of O(u, t) and the second 
one upon the previous determination of 0 (0, t). 

3.1. Cramgr-Arfwedson- Thorin 

The equation of Thorin (1968), valid in the general case G I / G / 1  is: 

Io' I£  ° (3.1) O(u, t )=  dK(v) O ( u + c v - x , t - v ) d B ( x ) + l - K ( t )  
co 

where K (t) = 1 - e - " ' .  It gives the double Laplace-Stieltjes transform of & (u, t) = 

(3.2) ~(s, z) = - z (1  -s/s~(z))/(1 -cs  - z  -/3(s))  

where Sl(Z) is the only root with a negative real part in the Lundberg equation: 

(3.3) l - z  + c . s - / ~ ( s )  =0,  

/~(s) being the Laplace-Stieltjes transform of B (x). 
For the M / G / 1  model, Cram~r (1955) and Arfwedson (1950) obtained this 

result by using the integro-ditterential equation 

(3.4) 

This was also found by Beekman (1966) using results of Donsker and Baxter 
(1957) about processes with stationary independent increments. 

Theoretically, thus, the problem is worked out, but we have to use twice the 
Laplace Inversion. However, we dispose of fiable algorithms for this inversion 
(Piessens (1969), Stroud and Secrest (1966)), but this needs some care: the 
Laplace inversion of a good approximation of a given function is not surely a 
good approximation of the Laplace inversion of this function. Some precautions 
are thus required if we want to compute & (u, t) by means of a double inversion 
of ~(s, z); probably for this reason, there are few results needing such double 
transformation in the risk theory literature. 

However, if B(x) is an exponential polynomial, i.e., if 

(3.5) B ( x ) = l -  ~ boe -~°x, b o > 0 , / 3 o > 0  v = l , 2 , . . . r n ,  ~ b o = l  

then the problem can be solved with only one inversion. In this case, ,~(u, z), 
the Laplace transform of &(u, t), is given by 

(3.6) O(u, z ) =  1 -  ~ go(z) e-" ~ 

where s2u(z) are the rn roots of the Lundberg equation with a positive real part. 
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Furthermore,  in this case, this equation ~s a polynomial one and the roots are 
easily obtained by well-known algorithms (Bairstow, Newton-Raphson) (see 
e.g., Wikstad (1977), Stroeymeyt (1977)). 

It is also possible to approximate a general claim size distribution by an 
exponential polynomial; this was tested by Thorin and Wikstad (1977) for a 
lognormal distribution. 

3.2. Prabhu-Beties-Seal 

The well-known relations of Prabhu (1961) can be used here: 

Io' (3.7) q~(u,t)=F(u+ct, t ) -c  q~(O,t-O)f(u+cO, O)dO 

110' (3.8) ~(0,  t ) = ~  F(y,t) dy, 

where f(x, t) : O/Ox F(x, t). 
Although the function F(x, t) is very difficult to handle directly, the use of 

the Laplace transform and an integration give the non-rum probability. 

3.3. Direct Results for M / M / 1  and M / D / 1  Models 

M / M / 1  model, i.e., the model with the following claim size distribution: 

B(x)--{~-e-~ x--oX <O' 

is the really well-known model in risk theory, it has a direct solution in terms 
of a modified Bessel function of first class; some subroutines give very accurate 
values of this function (see e.g. Stroeymeyt (1977)). 

The M / D / 1  model with a deterministic claim amount can also be directly 
solved (see e.g., Seal (1974)). 

4.  TH E ASYMPTOTIC NON-RUIN P R O B A B I L I T Y  

For a general M / G / 1  model, we have: 

~b(u) = lim ~(u, t )=  q~(u, 0) (4.1) 

where 
o o  

oh(u, z) = So e-Z'd'cb(u' t). 

Thus, only one inversion of a Laplace transform is needed and we avoid some 
problems raised by the double inversion. Furthermore,  in some special cases, 
the value is explicitly given. If B(x) is an exponential polynomial (3.5), Cram6r 
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(1955) gives an explicit formula: 

(4.2) &(u) = 1 -  

where Rk, k = 1, 2 . . . .  m, denote the 

Ck e-Rk u 
k = l  

m roots of the Lundberg equation, a 
polynomial one in this case; Ck, k = 1, 2 . . . .  m, are simple functions of those 
roots. Especially, if B(x) is an exponential, we have the following expression: 

1 -n/(l+,) u 
(4.3) ~ ( u ) =  1 - 1 + n  e 

For the M / D / 1  model, a recursive formula exists to compute ~ (u). 
As pointed out by Bohmam (1971) the computation of asymptotic non-ruin 

probabilities is now easy to do even with a common desk computer. 

5. SOME NUMERICAL RESULTS IN THE TRANSIENT CASE 

We will restrict ourselves to three models already treated in the literature: 
Model A or M/M/1  model (see e.g., Seal (1974), Stroeymeyt (1977)) 

A = I  

B(x)  = {01 -x x < 0  
- e  x ~ 0  

=0.1 .  

Model B or M / D / 1  model (see e.g., Seal (1974)) 

A = I  

B(x) = {01 x < 0  
x ~ l  

~ = 0 .  

Model C (see e.g., Stroeymeyt (1977)) 

A = 2  

0 x < O  
B ( x ) =  1 - 0 . S e - ° T x - 0 . 2 e - X  x ~ 0  

~7 = 0.037234. 

These models do not give rise to special computational difficulties, they are 
useful to test some approximations and bounds, and to test different methods. 

5.1. The Accuracy of the Laplace Inversion Methods 

To test the precision of the Laplace inversion methods, we give in Table 1 the 
real values of the non-ruin probability computed by means of a Bessel modified 
function for the model A (Column 1.i). The same values are computed by the 
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TABLE 1 

MODEL A VALUES OF 0(0, T) 

T (1 1) (1 2) (1 3) 

0 1 0.90965 0 90321 0.89887 
0 2 0 83561 0 82978 0 82586 
0 3 0 77429 0 76905 0 76547 
0 4 0 72295 0 71817 0 71497 
0.5 0 67952 0.67527 0.67230 
0.6 0.64242 0.63589 0 63589 
0 7 0 61043 0 60688 0 60453 
0 8 0.58260 0.57942 0 57726 
0 9 0.55819 0 55530 0 55335 
1 0 0.53660 0 53400 0 53223 
2 0 0 40714 0 40621 0.40554 
3 0 0 34479 0 34442 0.34421 
4 0 0 30669 0.30656 0.30649 
5 0 0 28040 0 28035 0 28034 
6 0 0 26088 0.26086 0.26086 
7 0 0 24566 0 24566 0 24566 
8.0 0 23337 0 23337 0 23337 
9 0 0 22319 0 22319 0.22319 

10 0 0 21457 0 21457 0 21457 
100 0.11001 0 11001 0.11002 
200 0.09902 0.09902 0 09897 

(1.1) Dtrect computation 
(1 2) Stroud and Secrest method 
(1 3) Plessens method 

Stroud and Secrest method  (Column 1.2) and by the Piessens method  (Column 
1.3) for the model  A, for different values of t and for u = 0. 

To  obta in  those values, the P rabhu-Bef i e s -Sea l  relat ions (3.7) and (3.8), 
were used. It can be po in ted  out  that the non - ru in  probabi l i t ies  ob ta ined  by 
Laplace inversion are qui te  similar to the non - ru in  probabil i t ies  "direct ly"  
computed ,  except for small values of r 

In Table  2, we give the non - ru in  probabiht ies  for the model  C ob ta ined  by 
the Stroud and Secrest method  (2.1) and by the Piessens method  (2.2), for u = 0. 

He re  also, it can be remarked  that those methods  give nearly the same values 
except for small values of r 

5.2. Approximations ofF(x,  t) by Means o[ Normal Power Approximation 
and F-[unction 

The form of the P rabhu-Bef i e s -Sea l  relat ions suggests that an approximat ion  
of F(x, t) can provide a good approx imat ion  of the n o n - r u i n  probabil i ty.  But 
those approx imat ions  of F(x, t) are only valid for large t, and thus they bring a 
lot of imprecis ion in the integral 

Io 'f(cO t-O)dO in (3.7). + u ,  O) ,/,(0, 
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TABLE 2 
MODEL C VALUES OF ~b(O,t) 

t (2 1) (2 2) 

0 1 0.82524 0.82914 
0 2 0 71305 0 71638 
0.3 0 63429 0 63511 
0 4 0 57240 0 57458 
0.5 0.52601 0.52779 
0.6 0 48913 0 49057 
0.7 0 45904 0 46020 
0 8 0 43396 0.43489 
0 9 0.41267 0.41347 
1 0 39432 0 39496 
2 0 29016 0.29023 
3 0 24180 0 24180 
4 0 21252 0 21251 
5 0 19239 0 19239 
6 0 17748 0 17748 
7 0.16586 0 16586 
8 0 15648 0.15648 
9 0.14871 0 14871 

10 0 14213 0 14213 

(2 1) Stroud and Secrest method 
(2 2) Plessens method 
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However ,  some of those methods  will provide an acceptable approximat ion  of 
(0, t), when t is not  too small. 
Bohman  and Esscher  (1963) and Cram6r  (1955) give approximat ions  o f F ( x ,  t) 

in terms of ~(x) .  the reduced normal  distribution function. Norma l  Power  
approximat ions  are proposed  by Pesonen (1975) and by Taylor  (1978). A 
F-funct ion was also proposed  by Seal (1978). 

In our  examples,  the best me thod  to calculate ~ (0, t) seems to be the Normal  
Power  approximat ion  f rom Taylor  (1978). 

Table  3 contains some values of  ~b(0, t) and of this approximat ion  for the 
M / M / 1  model.  The  method  of Taylor  consisting of an approach  of ~b(u, t) by 
means  of ~b (0, t) + (1 - 4~ (0, t)). G (w, t) involves some numerical  complicat ions:  
for one  certain value of the security loading, 7, negative numbers  are obta ined  
for a variance. Fur thermore ,  this me thod  occasionally involves some surprising 
results: an approximat ion  for ~ ( l ,  10) is smaller than the approximat ion  for 
4~(1,100). Taylor  thinks that the considerat ion of higher order  momen t s  could 
give more  accuracy but, of course,  this will lead to complicat ions f rom the 
numerical  point  of view. 

5.3. The De VyMer Approximation 

De Vylder  (1978) proposed  to approach  the asymptot ic  non-ruin  probabil i ty of a 
M / G / 1  model  by non-ru in  probabil i ty of a M / M / 1  model  with such paramete r s  
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TABLE 3 

Model A Model C 
T (1) (2) (3) (4) T (1) (2) (3) (4) 

0.1 0.46003 1 55294 0 90136 0 90965 0.1 044025 1.20985 0 85731 0 82914 
02  0.44370 1.19918 086913 0.83561 02  041618 093522 075184 071638 
03 0.43134 103439 081417 0.77429 0.3 0.39816 0.80241 0.65527 063511 
04  042104 093164 075267 0.72295 04  038333 0.71731 058645 057458 
05 041208 0.85861 070029 067952 0.5 037057 0.65557 0.53537 052779 
0 6 040408 0.80266 0 65686 0 64242 0.6 0.35930 0.60755 0 49576 049057 
07  039681 0.75765 062056 061043 0.7 0.34918 056851 046396 046020 
0.8 039013 072021 058981 0.58260 08  033998 053578 0.43772 043489 
0.9 038394. 0.68828 056340 055819 09  033154 0.50774 041561 041347 
10 037814 066052 0.54043 053660 1.0 0.32373 048330 039665 0.39496 
2 0 0 33420 049466 0.40750 0 40714 2 0 0.26745 0 33895 0.29046 0 29023 
3 0 0 30422 0.41030 0.34484 0 34479 3.0 0 23245 0.27019 0 24185 0 24180 
4 0 0 28162 0 35665 0 30668 0 30669 4 0 0 20804 0 22980 0.21253 0 21251 
5 0 0 26372 0.31910 0 28038 0.28040 5 0 0 18993 0 20341 0 19239 0 19239 
60  024910 029131 0.26086 026088 6.0 0.17590 0.18488 017748 017748 
7.0 0.23690 0 26995 0 24564 0.24566 7 0 0 16470 0 17112 0 16586 0 16586 
8.0 022655 0.25306 023335 023337 80  015553 016045 015648 015648 
90  021764 023941 022317 022319 9.0 0.14785 0.15187 0.14871 014871 

100 020989 0.22815 021455 021457 10.0 0.14133 0.14477 0.14213 014213 
20.0 0 16577 0 17309 0 16815 0 16816 20 0 0 10583 0.10785 0 10648 0 10649 

400 0 13453 0 13913 013621 013621 400 008092 008233 008143 0.08143 

(1) Normal-Power Approximations of 4,(0, t) (two terms) 
(2) Normal-Power Approximations of 4,(0, t) (one term) 
(3) G. C Taylor Approx,matlon of 4,(0, t). 
(4) 4, (0, t). 

tha t  t h e  two  r e s e r v e  p r o c e s s e s  R( t )  h a v e  the  s a m e  first m o m e n t s .  D e  V y l d e r  

e m p h a s i z e d  t h e  fac t  tha t  t h e  ini t ial  r e s e r v e  m u s t  be  l a rge  and  s u p p o s e d  tha t  this  
a p p r o x i m a t i o n  can  also be  used  fo r  t r a n s i e n t  p robab i l i t i e s .  In  T a b l e  4, we  c o m p a r e  

s o m e  resu l t s  of  this  a p p r o x i m a t i o n  fo r  t he  m o d e l  B and  the  m o d e l  C. If  this 

a p p r o x i m a t i o n  is no t  g o o d  for  smal l  va lues  of  u, this  v e r y  s i m p l e  m e t h o d  g ives  
a c c e p t a b l e  v a l u e s  fo r  i m p o r t a n t  v a l u e s  of  u (u = 10). 

5.4.  Some Easily Computable Bounds in Transient Case 

W e  f o u n d  it i n t e r e s t i n g  to  e x a m i n e  s o m e  eas i ly  c o m p u t a b l e  b o u n d s ,  to  tes t  

a p p r o x i m a t i o n s  o r  c a l c u l a t i o n s  by m e a n s  of  L a p l a c e  i n v e r s i o n  and  to e l i m i n a t e  

s o m e  a b e r r a n t  resul ts .  

(1) GerberMinoration: G e r b e r  (1973)  g ives  a m i n o r a t i o n  b a s e d  u p o n  m a r t i n g -  

ales.  It can  be  i m p r o v e d  fo r  t he  M / M / 1  m o d e l .  T h i s  m i n o r a t i o n  c a n n o t  be  used  
wi th  a null  ini t ia l  r e s e r v e  e x c e p t  for  t h e  M / M / 1  m o d e l .  F o r  t he  M / M / 1  n o r m e d  
m o d e l ,  t he  G e r b e r  m ino ra t~on  t a k e s  t he  f o l l o w i n g  f o r m :  

- min  ( 1 - r )  e x p  - r u - c r t + t  . ~h(u, t) ~ 1 ~c- l l / c - r< l  
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T A B L E  4 

1 0 9  

Model B 

u = 0  u = 1 u = 2  

t (1) (2) t (1) , (2) t (1) (2) 

1 0 7 3 5 7 6  0 2 6 2 1 8  1 0 9 1 9 7 0  0 7 5 2 8 8  1 098101  093381  
2 060901  0 18674 2 0 8 3 4 5 7  0 6 1 6 8 0  2 0.94171 0 8 4 8 7 9  
3 0.53106 0 1 5 2 8 4  3 0 7 6 5 4 8  0.53420 3 0 8 9 8 6 6  0 7 7 7 6 7  
4 0 4 7 6 9 7  0 13252 4 0 7 0 9 8 8  0 4 7 7 6 3  4 0 8 5 7 5 8  0 7 2 0 1 0  
5 0 4 3 6 6 2  0.11861 5 0 6 6 4 3 7  0.43584 5 0.82000 0 6 7 2 9 7  
6 0 40503 0 10833 6 0 62638 0 4 0 3 3 7  6 0 78607 0.63369 
7 0 3 7 9 4 4  0.10032 7 059411  037721  7 0 7 5 5 5 2  0 6 0 0 4 0  
8 0 3 5 8 1 5  0 0 9 3 8 7  8 0 5 6 6 3 0  0 3 5 5 5 4  8 0 7 2 7 9 6  0 5 7 1 7 6  
9 0 3 4 0 0 8  0 0 8 8 5 2  9 054201  0 3 3 7 2 2  9 0 7 0 3 0 0  0 5 4 6 8 0  

10 0 3 2 4 5 0  0 0 8 3 9 9  10 0.52057 0 3 2 1 4 7  10 068031  052481  

u = 3  u = 4  u = 5  u = 6  

t (1) (2) t (1) (2) t (1) (2) t (1) (2) 

1 0 99634 0 98491 1 0 99941 0.99695 1 0 99992 0.99944 1 0 99999 0 99991 
2 098231  0 9 4 8 4 0  2 0.99528 0 9 8 4 3 8  2 0 9 9 8 8 8  0 9 9 5 7 3  2 0 9 9 9 7 6  0 9 9 8 9 3  
3 0 9 6 1 2 4  0 9 0 6 2 3  3 0 9 8 6 6 9  0 9 6 4 4 9  3 0 9 9 5 8 6  0.98776 3 0 9 9 8 8 3  0 9 9 6 1 2  
4 0 9 3 6 9 8  0 8 6 5 1 3  4 097461  0 9 4 0 9 4  4 0 9 9 0 6 3  0 9 7 6 2 7  4 099681  0.99118 
5 091181  0 8 2 7 1 7  5 0 9 6 0 2 4  0 9 1 6 1 3  5 0.98342 0 9 6 2 3 7  5 0 9 9 3 5 8  0.98428 
6 0.88695 0 79275 6 0.94455 0.89139 6 0 97466 0.94701 6 0.98917 0 97581 
7 0 86298 0 7 6 1 6 8  7 0 9 2 8 2 2  0 86741 7 0 9 6 4 7 5  0 9 3 0 9 1  7 0.98372 0.96615 
8 0 8 4 0 1 6  0 7 3 3 6 3  8 091171  0.84449 8 0 9 5 4 0 5  0 9 1 4 5 3  8 0 9 7 7 4 1  0.95564 
9 0 81859 0 70822 9 0.89533 0:82278 9 0 94283 0 89822 9 0 97039 0 94458 

10 0 7 9 8 2 7  0 6 8 5 1 3  10 0 8 7 9 2 5  0 8 0 2 3 0  10 0.93132 0.88216 10 0.96283 0.93319 

U = 7  U = 8  U = 9  U = 1 0  

t (I) (2) t (1) (2) t (1) (2) t (1) (2) 

1 1 0.99999 1 1 1 1 1 1 1 1 1 
2 0 9 9 9 9 5  0 9 9 9 7 5  2 0 9 9 9 9 9  0 9 9 9 9 5  2 1 0.99999 2 1 1 
3 0 9 9 9 6 9  0 9 9 8 8 6  3 0 9 9 9 9 3  0.99968 3 0 9 9 9 9 8  0 9 9 9 9 2  3 1 0 9 9 9 9 8  
4 0 99899 0 99694 4 0 99970 0.99901 4 0.99992 0 99969 4 0 99998 0.99991 
5 0 99768 0 99386 5 0.99921 0 99774 5 0.99975 0 99921 5 0 99993 0.99974 
6 0 99566 0 98962 6 0 99836 0.99579 6 0.99942 0.99838 6 0.99980 0 99941 
7 0 99291 0 98434 7 0 99708 0.99314 7 0 99886 0 99714 7 0 99958 0.99887 
8 0 9 8 9 4 8  0 9 7 8 1 9  8 0 9 9 5 3 5  0 9 8 9 8 1  8 0 9 9 8 0 5  0 9 9 5 4 6  8 0.99922 0 9 9 8 0 7  
9 0 9 8 5 4 3  0.97132 9 0.99317 0.98586 9 0 9 9 6 9 5  0 99334 9 0.99870 0 99700 

I0 0 9 8 0 8 2  0 9 6 3 8 9  10 0 9 9 0 5 5  0 9 8 1 3 6  10 0 9 9 5 5 5  0.99078 10 0.99799 0 9 9 5 6 3  
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TABLE 4 (continued) 

Model C 

t (1) (2) t (1) (2) 

1 0 99164 0 99166 21 0 66608 0.66583 
2 0.97316 0.97313 22 0.65748 0 65724 
3 0.95019 0.95009 23 0.64930 0 64905 
4 0.92596 0.92581 24 0 64150 0 64125 
5 0 90206 0.90187 25 0.63405 0.63380 
6 0.87917 0,87895 26 0,62693 0,62668 
7 0 85758 0 85734 27 0.62012 0 61987 
8 0.83735 0.83711 28 0 61359 0 61334 
9 0 81847 0 81821 29 0 60733 0 60708 

10 0 80084 0,80059 30 0 60132 0 60106 
11 0 78440 0 78413 31 0 59554 0 59528 
12 0 76902 0 76876 32 0 58998 0.58972 
13 0 75463 0.75437 33 0 58463 0 58437 
14 0 74115 0 74089 34 0 57947 0.57921 
15 0.72848 0.72821 35 0 57450 0.57423 
16 0 71655 0.71629 36 0 56970 0 56942 
17 0 70531 0 70505 37 0.56506 0 56478 
18 0 69469 0 69443 38 0.56058 0.56029 
19 0.68464 0 68439 39 0 55624 0 55595 
20 0 67512 0 67487 40 0.55204 0.55174 

(1) ~b(10, t). 
(2) De Vylder approximation of ~b(10, t) 

Taking the derivative, it can be easily proved that the minimum is attained for 

x/1 +4(u  + c t ) t -  1 
0 = l -  

2(u + ct) 

(2) Gerber Majorat ion:  when the initial reserve is null, Gerber (1979) gives 
a majoration of d~(0, t) 

~b(0, t) <~ 1 -  -+ 
ct c - Al3 

(3) B e e k m a n - B o w e r s  Minoratton: Beekman and Bowers (1972) proposed a 
very simple minoration of ~b (u, t) 

1 - a ~ t  ~< ~b(u, t). 
u 

Of course, for large values of t, this minoration becomes negative. 
(4) Bounds based upon the asymptotic non-ruin probability: The asymptotic 

non-ruin probability is generally easy to compute: either explicit formula exist 
or only one Laplace inversion provides it. With these probabilities, it is possible 
to construct bounds for small values of t, bearing in mind that, especially in this 
case, different values were observed for Laplace inversion (see Delfosse 1980). 
(4a) Minoration: 

4,(u) 
- -  ~ c ~ ( u ,  t ) .  
cb(u +ct) 
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TABLE 5 

BOUNDS AND A P P R O X I M A T I O N S  DESCRIBED IN 5 4 
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Model A u = 0 

t (1) (4a) ~(0, t) (4b) (2) 

0 1 0 77724 0.90950 0.90965 0 90992 
0 2 0 62707 0 83472 0 83561 0 83727 
0 3 0 52256 0 77188 0 77429 0 77857 
0.4 0.44734 0 71834 0.72295 0 73076 
0 5 0.39140 0 67218 0.67952 0 69139 
0 6 0 34857 0 63197 0.64242 0 65855 
0 7 0.31491 0.59664 0 61043 0.63079 
0 8 0 28788 0.56534 0.58260 0.60699 
0 9 0 26576 0 53744 0 55819 0 58635 
1 0 0 24736 0 51239 0 53660 0 56822 
2.0 0 15722 0.35553 0.40714 0.45858 
3.0 0 12549 0.27841 0 34479 0 40224 
4 0 0 11015 0 23273 0 30669 0 36567 
5 0 0.10166 0.20265 0 28040 0.33926 
6 0 0 09666 0 18143 0.26088 0.31894 
7 0 0.09369 0.16572 0 24566 0 30263 
8 0 0 09199 0.15369 0.23337 0.28915 
9.0 0.09115 0 14421 0 22319 0 27775 

10 0 09091 0 13659 0.21457 0.26794 
100 0.09091 0 09091 0 11001 0.13061 
200 0 09091 0 09091 0.09902 0 11145 

0.18181 
0 13636 

ModelA'  u = 1 0  

(4a) (3) (1) ~b[lO, t) (4b) 

6 
7 
8 
9 

10 
100 
20O 

0.1 0.99423 0 99800 0.99998 0 99999 0 99999 
0 2 0 98869 0 99600 0 99994 0 99998 0.99998 
0 3 0.98321 0 99400 0.99988 0.99997 0 99997 
0 4 0 97784 0 99200 0 99980 0 99995 0 99995 
0 5 0 97259 0 99000 0.99969 0 99992 0.99993 
0.6 0.96744 0 98800 0 99956 0.99989 0.99990 
0 7 0 96420 0 98600 0.99941 0.99985 0.99987 
0.8 0 95746 0 98400 0.99923 0 99980 0 99983 
0 9 0.95261 0 98200 0 99902 0.99975 0.99979 
1 0.94787 0 98000 0 99879 0 99969 0.99974 
2 0 90517 0 96000 0.99488 0.99865 0 99895 
3 0.86972 0 94000 0 98833 0 99677 0,99757 
4 0.83996 0 92000 0.97965 0 99410 0 99566 
5 0 81473 0.90000 0 96942 0 99077 0 99332 

0.79317 0 88000 0.95816 0 98689 0 99061 
0 77463 0 86000 0 94629 0.98258 0.98761 
0 75858 0 84000 0 93413 0.97796 0.98440 
0 74462 0 82000 0 92190 0 97311 0.98103 
0 73242 0.80000 0 90978 0 96810 0 97754 
0 63375 0 0 63374 0.73947 0 78760 
0.63374 0 0 67334 0 68217 0 72116 
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(4b) Majoration. 

1 
&(u, t) G O ( u ) . F ( u  +ct, t).  (when t ~< u/c).  

(c~ * F(x, t)l . . . . . .  ) 

In Table 5, we present these bounds for the model A for u = 0  and for u = 10; 
in Table 6, the same bounds for the model C, for u = 10. 

T A B L E  6 
BOUNDS AND APPROXIMATIONS DESCRIBED IN 5 4 

Model C u = 10 

t (4a) (3) (2) ~b(10, t) (4b) 

1 0 83201 0 89871 0 93398 0 99164 0 99346 
2 0 71966 0.79741 0 85465 0 97316 0 98010 
3 0.63941 0 69612 0 78205 0 95019 0 96382 
4 0 57937 0.59482 0 71969 0 92596 0 94665 
5 0 53287 0 49353 0 66688 0 90206 0.92956 
6 0.49588 0 39223 0 62208 0 87917 0 91300 
7 0 46582 0 29094 0 58387 0 85758 0 89715 
8 0.44098 0.18964 0 55101 0 83735 0 88210 
9 0 42016 0 08835 0 52254 0 81847 0.86784 

10 0 40250 0 0 49767 0 80084 0 85436 
20 0.31268 0 0 35744 0 67512 0 75213 
30 0 28239 0 0.29932 0 60132 0 68634 
40 0 26982 0 0 26935 0 55204 0 63950 

C O M M E N T S  

These bounds are rather crude for certain values, but a package of these 
majorations and minorations does not take much computer time and allows to 
ehminate some inexact values. Our minoration &(u)/q~(u+ct) shows that 
~b(0, 0.1) and ~b(0, 0.2) are too small in Model A and in Model C; for those 
values, the obtained non-ruin probabilities were the most different. 

These minorations and majorations are also interesting to limit the use of 
precise but time-consuming methods: those bounds can be used to restrain the 
area of possible computations, if we allow some parameters of the model to 
vary. For example, the calculation of the bounds (4a), (4b) takes 16 times less 
calculation time than the computation of an exact value by the Laplace inversion. 
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C A L C U L  DES PRIMES ET M A R C H A N D A G E *  

DANIELLE BRIEGLEB ET JEAN LEMAIRE 

Universitg Libre de Bruxelles 

PART I 

Two premtum calculation principles by negotiation. Using, as main tools, 
the classical risk exchange model by Borch and 
the bargaining models of Nash and Kalai-Smorodinsky,  

we define two new premium calculation principles, whose main goal is to take 
explicitly into account the attitude towards risk of the policy-holders. Those 
principles are neither additive nor iterative, but they nevertheless possess several 
important  properties: the premium is translation-invariant, it does not depend 
neither on the reserves nor on the portfolio of the company;  it takes into account 
all the moments  of the claim distribution; it is independent of the policy-holder 's 
wealth but Increases with his risk aversion. 

PART II 

Coalitton against an insurance company. While computing the core of this risk 
exchange, we show that it can be of the policy-holder 's interest to coalize in 
order to obtain premium cuts. 

PREMIERE PARTIE: DEUX PRINCIPES DE CALCUL 

DES PRIMES PAR NEGOCIATION 

Le module d '6change de risques de Borch entre plusieurs compagnies d 'assu- 
rances soucieuses d'am61iorer leur situation en formant  un pool de r6assurance 
a fair I 'objet  de tr~s nombreuses publications. Ce n'est que depuis quelques 
ann6es cependant  que l 'on semble s'~tre apergzu que le m~me mod61e pouvait  
~tre utilis6 pour d6crire toute 6conomie d'6change, en particulier le contrat 
d 'assurance simple entre un assur6 et sa compagnie.  Si l 'on suppose que les 
pr6f6rences de I'assur6 peuvent  6tre d6crites par  une fonction d'utilit6 exponen-  
tlelle, et que l 'assureur est indiff6rent au risque en premi6re approximation,  les 
contrats Pareto-opt imaux consistent en une couverture complete du risque, 
moyennant  le paiement  d 'une prime que le crit~re de Pareto-optimali t6 ne 
permet  pas de d6terminer. 

Parmi les dift6rents modules de marchandage pr6sent6s en th6orie des jeux 
et en 6conomie math6matique,  les plus satisfaisants nous semblent  ~tre ceux de 
Nash et de Kalai-Smorodinsky.  Nous allons appliquer ces deux mod61es ~ la 

* Presented at the 16th Astm Colloqumm, September 27-30, 1982, L~6ge, Belgmm. 
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n6gociation que constitue la signature d'un contrat d'assurance. Cela nous 
permettra de d6terminer un trait6 uniqt/e sur la courbe Pareto-optimale. En 
d'autres termes, les deux modules de marchandage vont nous permettre de 
d6finir deux nouveaux prmcipes de calcul des primes, principes dont nous 
~tudierons les propri~t6s. 

2. LE MODELE CLASSIQUE D ' ~ C H A N G E  DE RISQUES 

Soient [J1 . . . . .  J , ]  n agents 6conomiques soumis ~t un risque. Jj est caract6ris6 par 
1. sa fonction d'utilit6 u~(x), suppos6e h d6riv6e premi/~re positive et h d6riv6e 

seconde non-positive, et 
2. sa situation initiale JR, ~ (x~)], oh Rj est le montant dont il dispose, et ~ (x , )  

est la fonction de r6partition des d6bours h venir. 
Les agents vont chercher h am61iorer leur situation en concluant un trait6 

~t M 

d'6change de risques :=[y~( . f )  . . . . .  y,(£)], avec ~ _ ~ y ~ ( . ~ ) = ~ j = l x ,  oh 
y~($) = y~(x~ . . . . .  x , )  est le montant pay6 par l 'agent ./~, apr6s 6change, si les 
d6bours pour les n participants s'61~vent respectivement h Xl . . . . .  x,. La sig- 
nature d'un tel trait6 modifie l'6valuation de la situation de J~ de 

oO 

U~(x,) = U~[R,, F~(x,)] = I0 u , ( R , - x , )  dF~(x,) 

e n  

( ;)  = ~0 u,[R, - y, (.f)] dF(~) u, 

ofa 0 est l 'orthant positif de E n et F(.~) la fonction de r6partition de la distribution 
n- dimensionnelle des d6bours. 

Un trait6 ] e s t  dit Pareto-optimal s'il n'existe aucun Y' qui lui soit pr6f6rable, 
c'est-h-dire tel que Uj(~')~U~(~) pour tout j, avec au moins une in6galit6 
stricte. L'ensemble des 6changes Pareto-optimaux a 6t6 caract6ris6 par Borch 
(1960): 

THEOREME 1. g est un traits Pareto-optimal ss'il existe n constantes positives 
k l . . . . .  k.,  telles que, avec une probabilitg 1, 

k , u ; [R , -  y,(.Z)] = k , u i [ R , -  y,(~)] i = 1 . . . . .  n. 

Un tel trait6 est unique lorsque les kj sont fix6s. Sauf cas de d6g6n6rescence 
des ~(xj) ,  il existe une infinit6 de k I conduisant hun trait6 Pareto-optimal, m~me 
lorsque l'on impose la condition de rationalit6 individuelle, qui exige qu'un agent 
n'accepte jamais un trait6 qui d6t6riore sa situation initiale: U1()7).~ U~(x~)Vj. 

La multiplicit6 des solutions provient du fait que dans la d6finition de la 
Pareto-optimalit6 ne figure aucun axiome de partage. La coop6ration permet 
d'accro~tre le bien-~tre global, mais rien n'est dit quant ~ la mani~re de r6partir 
ce b6n6fice entre ies participants. Chacun a int~r~t ~ obtenir une valeur de k~ 
la plus grande possible, de mani6re ~ payer le moins possible. Nous avons une 
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situation o/I les int6r~ts des joueurs sont partiellement compI6mentaires (globale- 
ment, le march6 a int6r~t ~ signer un trait6 Pareto-optimal) et partiellenlent 
contradictoires (une lois la surface Pareto-optimale atteinte, tout gain d'utilit6 
pour un agent ne peut se faire qu'au d6triment d'un autre). 

U2 

Point de / 
d6saccord 

/ 

U, = U~(X~) 

~ ~ e  Pareto-optlmale 

Espace du .leu 

\ 
Uz = U2(X2) 

U, 

Ce module a fait l'objet de nombreuses 6tudes (Biihlmann et Jewell (1979), 
Gerber (1978), Lemaire (1977), Baton et Lemaire (1981) . . . .  ) dans le cas o~ 
les agents ~conomiques sont des compagnies d'assurances d6sireuses de former 
un pool de r6assurance. Ce n'est que fort r6cemment (Moffet (1979), Bardola 
(1981)) que l'on semble s'~tre aper~u que le m~me module pouvait s'appliquer 
au march~ ~ deux agents form6 par une compagnie d'assurances Jl et un assur6 
potentiel J2. 

Gerber (1974a, b), Leepin (1975) et d'autres auteurs ayant mis en 6vidence 
les propri~t~s fort int6ressantes des fonctions d'utilit6 exponentielles du type 

u , ( x ) = l - ( 1 - e - " ~ ) ,  
a 

nous nous limiterons h ce cas particulier. De plus, comme il est 6vident que 
l'aversion au risque de la compagnie est infiniment plus faible que celle de 
I'assur6 (./'2 raisonne en mllliers de francs, Ix en millions) nous pouvons, en 
premiere approximation, representer le comportement de Jx par une fonction 
d'utlllt6 lin6aire. Nous avons donc 

Ix: assureur. R6serves initiales R x 
Portefeuille existant de fonction de r6partition Fl(xl)  
Utilit6 ul (x )=x .  
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./2: assur6. Fortune initiale R2 
Risque h assurer de fonction de r6partition F 2 ( X 2 )  

Utilit6 UE(X) = ( l / a ) (1  -e-aX). 

En posant k l = 1 (les kj ne sont d6finis qu'h une constante multiphcative pros), 
l 'application du th6or~me 1 donne 

k2 e-a[R2-y2(x"x2)] = 1 
ou 

y2(xl'x2)=R2-~l°gk2a et Yl(XI'X2)=XI+X2--y2(xI'x2)" I 

Par cons6quent I'assureur prend ~ sa charge la totalit6 du risque moyennant  le 
paiement d 'une prime P(x2) = y2(xl, x2), fix6e dis  que k2 est d6termin6. L'assur6 
c~de h la compagnie tout son avoir R2, moins une constante qui d6pend de son 
aversion au risque a: plus celle-ci est grande, plus le montant que ./2 est dispos6 
/a c6der est 61ev6. On calcule facilement 

I'utiht6 mitiale de la compagme 
/. oo 

= Jo (R i -x l )  dFl(xl) =R1-E(xl )  Ul(Xl) 

l'utiht~ initiale de l'assur~ 

U2(x2) = ~- (1 - e  -a(R~-x2)) df2(x2) = l_a [1 -e-aU2M2(a)] 

05 M2(a) est la fonction g~n~ratrice des moments du risque h assurer calcul~e 
au point a. En supposant l ' ind~pendance entre les variables xl et x2 on calcule 

l'utilit6 finale de la compagnie 
oo oo 

= R I  + R 2  - E ( x i )  - E ( x 2 )  _ 1  log k2 
a 

l'utilit6 finale de I'assur6 

oo ~1_[1 ( ~ )  
u z ( ; )  = a = ~ 

le gain d'utilit6 pour la compagnie 

Ui(~) - Ul(Xl) = R2 - E(x2) _1_ log k2 
a 

le gain d'utilit6 pour l'assur6 

U2(;)-U2(x2)= l [e-aU2M2(a)-~2] - -  , a 
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Cecl d6montre ~ nouveau l 'opposition des int&&s des deux protagonistes: 
l 'assureur va essayer d 'obteni r  le plus petit k2 possible, alors que I'assur6 poursuit 
le but inverse. I1 va donc s '&ablir  une n6gociation entre J~ et .12 dans le but de 
se mettre d 'accord sur une valeur de k2. En d 'autres  termes, les deux agents 
doivent n6gocier pour d6terminer la prime. 

3 .  M O D f ~ L E S  D E  M A R C H A N D A G E  ,~ D E U X  J O U E U R S  

Un jeu de marchandage ~ deux joueurs est un couple (S, d), of a 
S est un ensemble convexe compact  repr6sentant les paiements r6alisables 
dans l 'espace Euclidien ~ deux dimensions E 2 des utilit6s des joueurs;  d 
est le point de d6saccord form6 par les utilit6s initiales des joueurs. 

Notons B I 'ensemble de tous les couples (S, 4). 
Une solution est une rOgle qui associe h tout jeu de marchandage un paiement  

r6alisable; il s 'agit doric d 'une fonction f .  B ~ E 2 telle que f(S, ,~) est un 616merit 
= (X 1, X2) de S pour tout (S, aT) de B : fl  (S, it) = x l, f2 (S ,  d) = x 2. 

Il est 6vident qu'aucun joueur  ne va accepter une solution qui n 'est  pas 
rationnelle individuellement. Nous pouvons donc limiter S ~ l 'ensemble des 
points .~ tels que x, I> d,, i = 1, 2. 

Les concepts de solution qui semblent  les plus satisfaisants au point de vue 
axiomatique sont dues, I'un ~ Nash (1950), I 'autre ~ Kalai et Smorodinsky (1975). 

3.1. Le Modkle de Nash 

AXIOME 1. Ind~pendance par rapport aux reprdsentations dquivalentes des 
utilit~s. 

La solution n'est  pas affect6e par une transformation lin6aire positive effectu6e 
sur les utilit6s des joueurs. Pour tout (S, d) et tous hombres r6els a, > 0 ,  b, 
(i = 1, 2), soit (S', d ')  le jeu d6fini par S'  ={~ E E213.~ E S tel que y, = a,x, +b,} 
et d~ = a,d, +b,, i = 1, 2. Alors f,(S', d')= a,l~(S, d )+b , ,  i = 1, 2. Cet axiome ne 
f a r  que refl6ter l ' information contenue dans les fonctions d'utilit6; puisque 
celles-ci ne sont d6finies qu'~ une transformation lin6aire pros, il doit en &re 
de m~me de la solution. 

AXIOME 2. Sym~trie 

Tout jeu sym&rique a une solution sym&rique. Un jeu est sym&rique si 
(i) dl = d2, 
O0 (x~,x2)~S~(x2,  x l )~S  

L'axiome exige que, dans ce cas, fl(S, d) =/2(S, d). 
Comme  la propri6t6 pr6c6dente, cet axiome demande que la solution ne 

d6pende que de l ' information contenue dans le module; si les joueurs ne peuvent  
&re diff6renci6s par les r~gles du jeu, une permutat ion ne peut modifier la 
solution. Si les participants ont m~me fonction d'utilit6, m~me fortune initiale 
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et si l'espace du jeu est sym6trique, la solution doit accorder le m~me gain en 
utilit6 & chacun. 

AXIOME 3. Pareto-optimalitd 

V(S, d) e B, si 2 et y E S sont tels que y, > x, i = 1, 2, alors f(S, d) # ~. 

AXIOME 4. lnd6pendance par rapport aux alternatives non pertinentes 

La solution ne change pas si l'on retire de l'espace du jeu tout point autre 
que le point de d6saccord ou la solution elle-m~me. 

Un 6nonc6 6quivalent de l'axiome est le suivant: soient (S, d) et (T, d) deux 
jeux tels que T contient S e t  que f (T,  d) est un 616ment de S. Alors f,(S, d) = 
[ , ( T , d ) , i =  l , 2 .  

Cet axiome exprime le genre de n6gociation que ie module de Nash est cens~ 
representer; il exprime une propri~t6, de structure du processus de marchandage: 
pendant celui-ci, l 'ensemble des points susceptibles d'etre choisis se r6tr~cit 
progressivement, de telle sorte qu'h la fin du marchandage la solution n'est en 
comp6tition qu'avec des points extr~mement voisins, et non avec des alternatives 
plus 61oign6es ~limin6.es pendant les premieres phases de la n6gociation. 

THEOREME 2. f l  existe une et une seule solution satisfaisant aux 4 axiomes ; 
c'est le point maximisant le produit des gains d'utilitd des ]oueurs. C'est donc la 
fonction f = F  ddfinie par F(S, d )=~ ,  telle que ; ~>d et que ( x x - d l ) ( x 2 - d 2 ) >  
( y l - d l ) ( y 2 - d 2 )  Vy # x  esq. 

THEOREME 3 (Roth, 1980). Le gain d'utilitd que la solution de Nash accorde 
fi un joueur crogt lorsque I'aversion au risque de son adversaire augmente. En 
d'autres termes F,(S', d ' )>F,(S ,  aT), otJ (S', aT') est obtenu d partir de (S, aT) en 
remplacant le joueur Jj # J, par quelqu ' un qui a plus peur du risque. 

CRITIQUE. Si les trois premiers axiomes ont 6t6 6pargn6s par les critiques, il 
n'en va pas de m~me de I'axiome 4. Kalai et Smorodinsky ont r6sum6 ces 
attaques par l'exemple suivant 

Jeu n° l :  

Jeu n °2: 

l'espace de marchandage est iimit6, par le polygone reliant les points 
(0, 0), (0, 1), (0,75, 0,75) et (1, 0). 
l'espace de marchandage est limit6 par le polygone reliant les points 
(0, 0), (0, 1), (1, 0,7) et (1, 0). 

On constate que, quel que soit le gain de J~, J2 peut obtenir plus dans le jeu 
n°2 que dans le jeu n° l . . I2  a donc de bonnes raisons de r6.clamer un montant 
plus 6Aev6 dans le jeu n°2. Or, la solution de Nash est (0,75, 0,75) dans le jeu 
n° l ,  et (1, 0,7) dans le jeu n°2, ce qui ne satisfait pas & la demande de ./'2. 
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U2 

Solutions de Nash 

Jeu N ° 1 
Jeu N"2  

ui 

3.2. Le module de Kalai-Smorodinsky 

Ces deux auteurs ont pr6sent6 un autre module, qui reprend les axiomes 1 h 3, 
mais remplace le 4~me axiome par le suivant. 

A X I O M E  5. Monotonie 

Si, quelle que soit la demande de son adversaire, les r~gles du jeu sont telles 
qu'un joueur re~oit plus dans un jeu que dans un autre, la solution lui accorde 
un gain sup&ieur dans le premier jeu. 

m 

D6signons par b(S)=(bbb2)  le point "id6al" form6 par les demandes 
maximales des joueurs: b, = max {x,l(xl, x2)~ S}. L'axiome peut alors s'6noncer 
sous la forme suivante: si (T, d) et (S, d) sont deux jeux tels que T contient 
Se t  b(S) = b(T), alors f (T,  d) ~>f(S, d). 

Soit G(S, d) la solution qui consiste h chercher le point d'intersection entre 
la courbe Pareto-optimale et la droite joignant d h b~ Doric G ( S , d ) = £  tel 
que £ ~ S ,  ( x l - d l ) / ( x 2 - d 2 ) = ( b l - d O / ( b 2 - d 2 )  et . g ~  pour tout ; ~ S  tel 
que (yl - d l ) / ( y 2 - d 2 )  = (bl - d l ) / ( b 2 - d 2 ) .  

T H E O R E M E  4. II existe une et une seule solution satisfaisant aux axiomes 1, 
2, 3 et 5: c'est G(S, d). 

THEOREME 5 (Roth, 1980). Le gain d'utilit( que la solution de Kalai-  
Smorodinsky accorde & un foueur croft lorsque l'aversion au risque de son adver- 
saire augmente. 
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u2 

Point idSal 

( b .  b2) 

Ui 

La solution de Kalai-Smorodinsky ne satisfait pas bien stir h l 'axiome 4, 
puisque G(S, d) d6pend non seulement du point de d6saccord mais aussi du 
point id6al. On peut cependant montrer  que G(S, d) est ind6pendant des 
alternatives qm ne d6terminent pas le point id6al. Donc G(S, d) (tout comme 
d'ailleurs F(S, d)) satisfait h I'axiome 6. 

AXIOME 6. Inddpendance par rapport aux alternatives autres que le point de 
dgsaccord et le point iddal. 

Si (S, d) et (T, d) sont deux jeux tels que T contient S, 6(8) = b(T)  et [(T, d) 
est un 616merit de S, alors [(S, d) =/ (T ,  d). 

Si la solution de Kalai-Smorodinsky a I'avantage de satisfaire ~ l 'axiome de 
monotonie,  elle n'est cependant pas exempte de critiques. On peut par exemple 
montrer  (Roth, 1980) qu'il est impossible de gSn6raliser ce concept ~t un jeu 
plus de deux joueurs, alors que le module de Nash a d6jfi fait l 'objet de telles 
extensions (voir par exemple Lemaire (1973)). 

THEOREME 6. Pour un /eu de marchandage a 3 joueurs ou plus, il n'existe 
aucune solution Pareto-opttrnale, syrndtrique et monotone. 
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On constate une propri6t6 de dualit6 entre les deux solutions propos6es: le 
point s6lectionn6 par le module de Nash correspond au rectangle de plus grande 
surface h l 'int6rieur de S, tandis que le point isol6 par Kalai -Smorodinsky 
correspond au rectangle de plus petite surface ~ I 'ext6rieur de S. 

On trouve d 'autres  concepts de solution en th6orie des jeux. Ils ne nous 
paraissent cependant  pas adapt6s fi notre probl~me. Par exemple les solutions 
qui consistent fi s61ectionner le trait6 le plus "p roche"  du point id6al, au sens 
d 'une certaine norme, ne peuvent nous convenir car elles ne sont pas ind6pen- 
dantes d 'une transformation lin6aire effectu6e sur les utilit6s des joueurs. 

4. C A L C U L  DES PRIMES 

Les deux modules de marchandage d6crits en Section 3 nous permet tent  d'isoler 
un point sur la courbe Pareto-optimale,  c 'est-h-dire de d6terminer k2 et la prime. 

4.1. Solution de Nash 

Nous devons maximiser le produit 

al-[R2-E2(x2)-1_l°gk2][e-"R~M2(a)-~-2] 

Posons 

A =R2-E2(x2) 

B = e - " R ~ M 2 ( a )  

~ : ( A - ~ - I ° g k 2 ) ( B - ~ 2  ) 

d~ 1 1 
=0¢=~A . . . . .  logk2 13k2+ = 0. 

dk2 a a a 

Cette 6quation d6termine k2, et donc la prime P(x2), en fonction des constantes 
A, B et de l 'aversion au risque a. 

On v6rifie que 

4.2. Solution de Kalai-Smorodinsky 

b I -~ R 1 - E 1 ( x  | )  - E 2 ( x 2 )  + 1_ l o g  M 2 ( a )  
a 

b~ = 1_ [1 - e - ° r ~ - ~ l ] .  
a 
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L'6quation de la droite reliant le point de d6saccord et le point (bl, b2) est 

ul-(R1-El(x1)) 
1 

U 2 - - - -  ( 1  -e-'m2M2(a)) 
a 

1 1 
- log M2(a) -E2(x2) - e-"n~[M2(a) - e ~'~>] 
a a 

Les 6quations param6triques de la courbe Pareto-optimale sont 

u l = Rl  -El(x1) -E2(x2)  -1 -  log k2+R2 
a 

u 2 = -  1 -  . 
a 

Apr~s remplacement et calculs, on obtient 

(A-~l°gk2)(B-e-aa)-(a+l-I°gB)(B-~2)=O'a 

6quation qui d6termine implicitement k2 et la prime P(x2). 

5. PROPRII~TI~S 

En d~terminant un trait6 d'assurance unique, nous avons en fait d6fini deux 
nouveaux principes de calcul des primes: le principe de Nash et le principe de 
Kalai-Smorodinsky. Quelles sont les propri~t~s de ces principes? 

1. La prime contient un chargement de sgcuritJ. 
La prtme pure vaut E2(X2), la prime effective P(x2) = y2(x1, x2). 

P(x2) -E2(x2) = R2 _1_ log k 2 -  E2(x2). 
a 

Le second membre est le gain d'utilit6 que la compagnie obtient par le trait6. 
Comme les deux modules consid6r6s condmsent ~t une solution individuellement 
rationneile, P(x2) est bien une prime charg6e. 

2. La prime ne peut dgpasser le montant maximum des sinistres (no ripoff 
condition ) 

Cette propri6t6 r6sulte du fait que le contrat conduit n6cessairement ~ un gain 
d'utilit6 pour l'assur& 

3. La prime far  intervenir tousles moments de la distribution des sinistres (de par 
le pr6sence de la fonction g6n6ratrice des moments). 

4. La prime est ind~pendante des reserves Ra et du portefeuille de la compagnie 
d' assurance. 

5. La prime est ind~pendante de la fortune R2 de l'assur~. 

D6montrons cette propri6t6 pour ie principe de Nash. 
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THEOREME 7. La prime, calcul~e selon le principe de Nash, ne depend pas de R2. 

DI~MONSTRATION. La prime v a u t  P ( x 2 )  = g 2 - ( l / a )  log k2,  a v e c  

1 k2 e-aR2M2(a) 1 
(1)  R 2  - E 2 ( x 2 )  4- log k2 = 0.  

a a a 

Ajoutons fi R2 une quantit6 arbitraire a et v6rifions que P ( x 2 )  n e  change pas. 

1 
P ' ( x 2 )  = R E  + a -- - -  log k~, 

a 

06 

(2) 
1 k~e-atR:+'~ME(a) 1 

R2 + a  - E 2 ( x 2 )  -I log k~ = 0. 
a a a 

k2 et k~ sont li6s par la relation k~ = k E e  a~ (il suffit pour s'en convaincre 
d'effectuer le remplacement dans (2), qui se r6duit alors fi (1). Par cons6quent 

1 
P ' ( x 2 )  = R 2  + a - - l o g  (k2 e ~ )  

a 

1 
= R E + O r  - - -  l o g  k 2 - ~  

a 

= P ( x  2). 

En fait les propri6t6s 3 et 4 r6sultent du fait qu'une modification de R1 o u  R 2  

entra~ne une transformation lin6aire d 'une fonction d'utilit6 exponentielle. 

6. La prime croft avec l'aversion au risque de l'assur~ 
Cette propri6t6 est une cons6quence imm6diate des th6or~mes 3 et 5 et du 

fait que le chargement de s6curit6 de l 'assureur n'est rien d 'autre que son gain 
d'utilit6. 

7. La prime est invariante par translation P(x2 4- c )  = P ( x 2 )  + c 

La d6monstration de cette propr16t6 est fort semblable fi celle de la propri6t6 
4, en posant cette fois k~ = k2 e-aC 

Par contre de nombreux contre-exemples permettent  de v6rifier que les deux 
prmcipes de calcul des primes ici d6finis ne satisfont ni ~ la propri6t6 d'additivit6 
ni fi celle dqt6rativit6. 

8. Exemple 
Nous reprenons ici les donn6es utilis6es par Moffet (1979). 
Distribution du cofit des sinistres pour l'assur6 

x2 0 1 2 3 4 5 7 10 15 20 

Prob. 0,3 0,05 0,06 0,08 0,1 0,13 0,15 0,07 0,04 0,02 

La prime pure vaut 4,21. 
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Nous devons, pour obtenir la prime, r6soudre les 6quations suivantes: 

1 
1. Principe de Nash: 35,79 - 1_ log k2 - e-4°aM2(a) + -  = 0. a a 

2. Principe de Kalai-Smorodinsky: 

(35,79-al- log k2) (e-4°aM2(a )-e-aS'79a)-(35,79-40 M2(a )) 

× (e-'°aM2(a )-~2) = O. 

La r6solution de ces deux 6quations pour diff6rentes valeurs de a conduit aux 
r6sultats repris ci-dessous. Le tableau indique la prime ainsi que les gains en 
utilit6 des deux joueurs. 

NASH KALAI - S MORODI NS KY 
a P ul u2 P ul u2 

0,01 
0,05 
0,1 
0,25 
0,5 
1 

4,259 0,05 3,42 x 10 -2 
4,482 0,27 4,60 x 10 -2 
4,824 0,61 1,82 x 10 -2 
6,425 2,21 5,01 x 10 -4 
9,866 5,66 1,62 x 10 -6 

13,747 9,54 3,73 x 10 -11 

4,259 0,05 3,42 x 10 -2 
4,482 0,27 4,60 x 10 -2 
4,824 0,61 1,82 × 10 -2 
6,442 2,23 4,97 x 10 -4 

10,142 5.93 1,53 x 10 -6 
14,230 10,02 3,48 x 10 -11 

Lorsque l'averslon au risque de l'assur6 est faible, le jeu est presque 
sym6trique; la prime ne d6passe que de peu la prime pure. Le principe de 
Kalai-Smorodinsky est plus avantageux pour l 'assureur que le principe de Nash: 
la prime est 16g~rement plus 61ev6e. 

6. CONCLUSIONS 

La science actuarielle a connu ces derni~res ann6es, avec l'6tude de nombreux 
principes de calcul des primes, une 6volution fort int6ressante. Le pilier principal 
de l 'actuariat traditionnel, le principe d'6quivalence---que l'on appelle 
aujourd'hui le principe de l'esp6rance math6mat ique--a  perdu un peu de son 
r61e central suite h l ' introduction de principes de plus en plus sophistiqu6s. L'on 
a commenc6 par introduire des param~tres de la distribution des sinistres autres 
que ia moyenne (variance, 6cart-type, coefficient d'asym6trie, semi-variance . . . .  ). 
Puis des concepts en provenance de l '6conomie math6matique ont fait irruption 
en actuariat et les principes les plus r6cents introduisent la situation du march6 
et les pr6f6rences de comportement  des protagonistes. Les deux principes de 
calcul pr6sent6s ici vont encore plus loin: nous avons d6termin6 des primes par 
marchandage, en nous basant uniquement sur l 'attitude des agents 6conomiques 
en pr6sence de risques, en faisant totalement abstraction du principe 
d'dquivalence et de la prime pure. 
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Si l 'on pensera sans doute ~ juste titre que nous sommes all~s trop loin, il 
n 'emp~che que nos deux principes v~rifient un ensemble de propri6t6s satis- 
faisant: la prime contient un chargement  de so'curitO., elle ne peut d0.passer le 
montant  maximum des sinistres, elle ne do'pend ni des to'serves de l 'assureur, ni 
de la fortune de I'assuro', ni du portefeuille de la compagnie.  Elle fait intervenir 
tous les  moments  de la distribution des sinistres et est invariante par translation. 
Bien stir cet ensemble de proprio'to's ne peut soutenir la comparaison avec celles 
vo'rifio'es par le principe de l'utilit6 nulle, par exemple. N6anmoins cela ne doit 
pas nous falre perdre de vue la qualit6 ~ notre sens fondamentale  des deux 
principes lci pr6sent6s, ~ savoir le fair d ' introduire explicitement dans le calcul 
des primes le compor tement  de l 'assur& Les principes de calcul des primes 
introduits pr6c6demment semblent  avoir fait la part un peu trop belle aux 
compagnies en oubliant que dans tout contrat d 'assurance il y a une autre partie 
tout aussi importante:  l 'assur& Nous avons tent6 ici de r6tablir I'~quilibre en 
introduisant dans le raisonnement l 'at t i tude vis-h-vis du risque de ce dernier. 

D E U X I ~ M E  PARTIE COALITION CONTRE UNE C O M P A G N I E  D 'ASSURANCES 

Dans ce qui precede, nous avons appliqu6 le tho'or~me de Borch ~ un micro- 
marcho' formo' par un assur6 et un assureur. Rien ne nous emp~che bien stir 
d 'a jouter  des joueurs au raisonnement.  Dans ce qui suit, nous allons introduire 
un troisi6me joueur, ./3, un assur6 caract6rls~ par sa situation JR3, F3(x3)] et sa 
fonction d'utilit~ u3(x), que nous supposons o'galement exponentielle, de para- 
m~tre b. Nous supposons l 'indOpendance entre les risques des 3 joueurs. 

Par application du tho'or~me de Borch, nous obtenons que l 'assureur Jl  va 
reprendre la totalit~ des risques de ses partenaires, moyennant  le pa iement  de 
primes P(x2) et P(x3). 

Y I(XI,  X2, X3) = X1-" X 2 '4"X3 - - P ( x 2 ) - P ( x 3 )  

yz(x ~, x2, x3) = P(x2) = R2-  ~ log k2 
a 

1 
y3(Xl ,  X2, X3) = P ( x 3 )  = R 3  - ff l o g  k3. 

L'introduction d 'un deuxi~me assuro' permet  d 'a jouter  une dimension au pro- 
blame. En effet les assur6s disposent maintenant  d 'une alternative ~t l 'assurance 
pure et simple: ils peuvent  s'o'changer leurs risques sans no'cessairement passer 
par l 'assureur. Ils peuvent  o'galement utiliser cette possibilito' suppl6mentaire 
comme menace dans le but d 'obtenir  des primes moins o'levo'es. C'est  ce que 
nous allons d6montrer  en calculant le coeur du march6. 

DI~FINITIONS 

1. Soit N = {Jl . . . . .  J,} les agents du march6 d'~change de risques, et S cA/" 
toute coalition de joueurs. Un trait~ ~' domine ~ par raport  ~ S si Y' est 
r~alisable pour S et si u~ (~')i> u~(~)Vf ~ S (avec au moins une in6galit6 stricte). 
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2. Y' domine ~ s'il existe une coalition S telle que Y' domine ~ par rapport 
cette coalition. 
3. Le coeur du march6 est l 'ensemble des trait6s non domin6s. 
Le coeur est donc un ensemble stable, puisqu'aucune coalition n'a int6r~t 

quitter le march6. 

Le coeur d'un march6 d'Schange de risques a 6t6 caract6ris6 r6cemment par 
Baton-Lemaire  (1981) dans le cas particulier ofJ tous les agents utilisent une 
fonction d'utilit6 exponentielle (de paramStre c, pour J,). 

THEOREME 9. Un trait( appartient au coeur d'un march( d'(change de risques 
d utilit(s exponentielles si et seulement si 

y l ( x l  . . . . .  X . )  = q l ( x t  + "  • " + X . )  + y , ( O ) ,  

a v e c  

1/cl 

1/c, 

y,(0) =0 
I = l  

E y,(O)~< E ( p S _ p N )  V S = N ,  S # 0 ,  
I~S I~S 

oil 
= (z I ) 

1 Z lOgMk [ 1 / c ,  
Pt8 C I kES  IE 

est la prime qu ' appliquerait Ji dans la coalition S s 'il utilisait le principe de l'utilit( 
exponentielle. 

Dans le cas de notre march6/ i  3 joueurs, le th6or~me est d'application car 
les fonctions d'utilit6 lin6aires peuvent ~tre consid6r6es comme un cas particulier 
des fonctions exponentielles. 

Nous avons 
ql = 1, q2=q3 = 0  

y 1(0) = - P ( x 2 )  - P ( x 3 ) ,  y2(O) = P(x2), y3(O) = P ( x 3 ) .  

Nous pouvons par cons6quent calculer 

Coalition 

{1} 

{2} 

{3} 

Primes 

p~l~ =E(xl)  

p{22 ~ = 1_ log M2(a) 
a 

p~3~ = b 1_ log Ms(b) 
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Coalition 

{1 2 3} 

{1 2} 

11 3t 

I2 31 

Primes 

p~123~ = E(xl) +E(x2) +E(x~) 
pp2~ = El(x,) +E2(x2) 

p~131 = E1 (Xl) + E 3 ( x 3 )  

P~2123} = pi31231 = 0 

p~12~ = 0 

P(3 TM = 0 

Dans cette coalitron, J'2 et J3 se passent des services de l'assureur. 
J2 prend ~ sa charge une fraction (1/a)/(1/a + l / b )  des deux 
risques, et J3 la fraction compl6mentaire (1/b)/(1/a + 1/b). Donc 

[ 1)] 
P1223}=l-a l°gM2(1/a+ l/b)+l°gMa(1/a+ l/b 

1 1 1 p1323'=~[logMs(1/a +log Ms 
+ I /b )  ( 1 / 0 +  1 . ) ] "  

Nous sommes maintenant en mesure d'~crire les 6 conditions d'existence du 
coeur. 

1. S = {1}. La condition yl(0) ~<PP~ - P ~  s'6crit 

P(X2) + e ( x 3 )  I> E2(x2)  + E s ( x 3 )  

ou  

R2 +Ra _1_ log k2 -~- log k3 ~ E2(x2)  + E3(x3).  a O 

I1 s'agit de la condition de rationalit6 individuelle pour l'assureur, qui n'acceptera 
le march6 que si la prime totale pergue est au moins 6gale/~ la prime pure. 

2. s = t2}. 

y2(O) ~ e~=l - P~' 

¢:t,P(x2) ~< ! log M2(a)-0 a 

¢OR2 - 1 log k2 ~< 1 log M2(a). 
a a 

C'est la condition de rationalit6 individuelle pour ./2, qui n'acceptera pas une 
prime trop 61ev6e. 

3. $ = 13}. 

Ra-~ log k3~< ~ log M3(b ) 

(condition de rationalit6 individuelle pour J3). 
4. S = {1,2}. 

y l(0)+y210)-<EPP2~-P~]+[P~'2'-P~] 

1 
¢:::)R 3 - - f f  log k3 ~ E(x3 ) .  
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Cette condition de rationalit6 collective pour la coalition {1,2} exige que J3 paye 
une prime charg6e, faute de quoi il sera plus int6ressant pour J1 et Jz de se 
s6parer de ./3. 

5. S = 11,3} 

R2 _ !  log k2 ~ E2(x2) a 

(condition de rationalit6 collective pour {1, 3}). 
Remarquons que les conditions 4 et 5 rendent la premiere superflue. 

6. S = {2,3} 

y2(0) + y3(0) ~ [e~23r _ P72 + [ p ~ 2 3 r  _ p~]  

¢~P(x2)+P(x3)=R2 - a  1- l°g k2 +R3 -F-log k3 1 

1 1 
\a(1-+l-'~[l°gM2(1/a+l/b)+l°gM3(1/ab] + l / b ) ] "  

Cette condition de rationalit6 collective pour la coalition form~e par les deux 
assures repr6sente l'61~ment nouveau: si la prime r6c lam~ par I'assureur est 
trop forte, il est pr~f6rable pour J2 et J3 de ne pas traiter avec lui, et de partager 
leurs risques. 

La condition 6 restreint eftectivement l'ensemble des solutions admissibles en 
faveur de ./2 et .,/"3. En effet, comme 1/(1/a + 1/b)~<a nous avons 



CALCUL DES PRIMES ET MARCHANDAGE 131 

EXEMPLE. Supposons  que les deux assur6s soient  soumis  au m~me risque, 

distr ibu4 selon un loi F, de m o y e n n e  1,2 et de var iance 1,25 ( B a t o n - L e m a i r e  
(1981)). Supposons  que RE = 10, R3 = 5, a = 0,4, b = 0,8. On  v6rifie que le coeur  
du march4 est d4 te rmm6 par les condi t ions  

1,2 ~< P(x2) ~< 1,6 

1,2 ~< P(x3) ~ 2,6 

2,4 ~< P(x2) + P(x3) ~ 2,8. 

J2 est prOt ~ payer  une  pr ime al lant  jusque  1,6. J3, ayant  plus peur  du risque, 
est m~me dispos6 ~ aller jusque  2,6. En  se coalisant,  cependan t ,  J2 et J3 peuven t  
l imiter la somme de leurs primes ~ 2,8. 
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A R E M A R K  O N  T H E  P R I N C I P L E  O F  Z E R O  U T I L I T Y  

BY HANS U. GERBER 

Untversity of Lausanne, Switzerland 

Let  u(x) be a utility function,  i.e., a function with u ' ( x ) > 0 ,  u " ( x ) < 0  for all x. 
If S is a risk to be insured (a r a n d o m  variable) ,  the p r e m i u m  P = P(x) is ob ta ined  
as the solution of the equat ion  

(1) u(x) =E[u(x +P-S)] 

which is the condi t ton that  the p r e m i u m  is fair  in te rms  of utility. It is clear that  
an affine t rans format ion  of u genera tes  the same  principle of p r e m i u m  calculation. 
T o  avoid this ambigui ty ,  one  can s tandardize  the utility funct ion in the sense that  

(2) u ( y )  = 0, u ' ( y )  = 1 

for  an arbi trar i ly chosen point  y. Al ternat ively ,  one  can consider  the risk aversion 

(3) r(x) = -u"(x) /u ' (x )  

which is the same for all affine t r ans format ions  of a utility function. 
Given  the risk aversion r(x), the s tandardized  utility function can be re t r ieved 

f rom the fo rmula  

(4) u ( x ) =  exp - r(u)du dz. 

It  is easily verified that  this expression satisfies (2) and (3). 
The  following l emma  states that  the grea ter  the risk aversion the grea te r  the 

p remium,  a result  that  does  not surprise.  

LEMMA. Let ul (x)  and u2(x) be two utihty functions wtth corresponding risk 
aversions rl(x), rE(X). Let P, denote the premium that is generated by u,(i = 1, 2). 
lrf rl(x) >I r2(x) for all x, it follows that Pl(w) ~ P2(w) for any risk S and all w. 

PROOF. P, = P , (w)  is ob ta ined  as the solut ion of the equa t ion  

(5) u , (w)=E[u , (w+P, -S ) ] ,  i = 1 , 2 .  

We s tandardize  ul and u2 such that  

(6) u,(w)=O, ui(w)= 1. 

Using (4), with y = w, we can express  u, in te rms  of r,. Since rl(x)~r2(x) for  all 
x, it follows that  

(7) ul(x)~<u2(x) f o r a l l x .  

ASTIN  B U L L E T I N  Vol 13, No 2 
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Using (5), (6), (7) we see that 

(8) E[u2(w + P 2 -  S)] = E[ul(w + P 1 - S ) ] ~  E[u2(w + P1-S ) ]  

Since u2 is an increasing function, the inequality between the first term and the 
last term means that P~ ~P2.  Q.E.D. 

The lemma has some immediate consequences: 

APPLICATION 1. The exponential premium, P = ( l / a )  log E[ e~S ], is an increas- 
ing function of the parameter a. 

PROOF. Let al >a2.  Use the lemma in the special case r,(x) = a, (constant) to 
see that the exponential premium (parameter al) exceeds the exponential pre- 
mmm (parameter a2). Q.E.D. 

APPLICATION 2. Suppose that r(x ) is a nonincreasing funcnon. Then P = P(x ) 
as determined from (1) Is a nonincreasing function of x for any risk S. 

PROOF. Let h >0 .  Use the lemma with rl(x) = r(x), re(x) =r(x +h) tosee  that 
P(x) ~ P ( x  +h). Q.E.D. 

REMARKS. (1) The last two proofs are simpler than the original proofs given 
by Gerber (1974, p. 216) for the first application and by Leepin (1975, pp. 31-35) 
for the second application. 

(2) For a small risk S (i.e., a random variable S with a narrow range) P(x) is 
approximately E[S] + r(x) var [S]/2. Thus the converse of the Lemma (Pl(w)~- 
PE(W) for all S implies that &(x)I> rE(X)) is trivial. 

(3) In Pratt 's terminology (1964) the premium P is a (negative) bid price. 
However, Pratt 's discussion focusses essentially on (what he calls) the insurance 
premium Q, which is defined as the solution of the equation 

(9) u (x - Q) = E[u (x - S)] 

and which should be interpreted as the largest premium someone with fortune 
x and liability S is willing to pay for full coverage. The counterpart of the Lemma 
(with P,(w) replaced by Q,(w)) has been discussed by Pratt (1964, p. 128). A 
short proof of this counterpart is obtained if one standardizes u 1 and u2 such that 

(10) u,(w - O 1 ) = 0 ,  u~(w - O 1 ) =  1. 

Details are left to the reader. 
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A P R I C I N G  M O D E L  IN A SENSITIVE I N S U R A N C E  M A R K E T  

B Y  F R A N C O  M O R I C O N I  

Institute of Mathematics, University of Rome 

1. I N T R O D U C T I O N  

A great attention has been devoted, in the actuarial literature, to premium 
calculation principles and it has been often emphasized that these principles 
should not only be defined in strictly actuarial terms, but should also take into 
account the market  conditions (Biihlmann (1980), de Jong (1981)). 

In this paper  we propose a decision model to define the pricing policy of an 
insurance company that operates in a market  which is stratified in k risk 
classes ~j. 

It is assumed that any class constitutes a homogeneous collective containing 
2¢', independent risks Sj (t) of compound Poisson type, with the same intensity Aj. 
The number  n, of risks of cd, that are held in the insurance portfolio depends on 
the premium charged to the class by means of a demand function which captures 
the concept of risk aversion and represents the fraction of individuals of ~ that 
insure themselves at the annual premium x,. 

With these assumptions, the return Y on the portfolio is a function of the 
vector x = (x~, xz . . . . .  xk) of the prices charged to the single classes (and of the 
time) and x is therefore the decision policy instrument adopted by the company 
for the selection of the portfolio, whose optimal composition is evaluated accord- 
ing to a risk-return type performance criterion. 

As a measure of risk we adopt the ultimate ruin probability q(w) that, in the 
assumptions of our model, can be related to a safety index r, by means of 
Lundberg-de Finetti inequality. Even though it has been widely debated in the 
actuarial field, the use of q (w) offers undentable operat ional  advantages. In our 
case the safety index r can be expressed as a function of x and therefore, in the 
phase of selecting an efficient portfolio, it becomes the function to be maximized, 
for a given level M of the expected return. 

For ~', a quadi'atic approximation can be given that seems to be acceptable as 
long as the aggregate loading is not " too high". An assumption that does not 
exclude, among other things, the possibility of heavy loadings in a number  not 
too large of individual cases. 

Once the form of the efficient frontier has been determined,  the final step of 
the decision problem of the company is to select the portfolio that maximizes a 
utility function of the form u(M, V), that is the portfolio represented as the 
tangency point between the efficient frontier and the "highest possible" 
indifference curve. It could be pointed out that, in the model, the validity of 
variance as a risk measure of the' portfolio does not depend on the possibility 
of achieving an acceptable quadratic approximation of the utility function, but 
on the goodness of the approximation obtained for the ruin probability, that we 
have chosen as a stability criterion for the company. 

ASTIN BULLETIN Vol 13, No 7. 
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It is to be noted that, in our assumptions, we can achieve a stratification more 
refined than the one obtained solely based on the characteristics of the risk 
process S(t), since we can consider classes that differ only for the risk aversion. 
This can be related to the introduction of a multivariate measure of risk aversion 
inside the collective, as suggested, e.g., by Sengupta (1981). 

On the other hand the form and the rationale of the results continue to be 
valid in all the cases in which we can obtain an expression that relates q(w) to 
the decision variables 0.e., the prices) and the endogenous quantities of the risk 
process. This is the case, for example,  in the martingale assumptions on Y(t), 
as discussed by de Finetti (1939) and developed by Gerber  (1981) in the study 
of an autoregressive model. 

2. T H E  M O D E L  

2.1. Preliminaries 

Let us consider the risk process {S(t); t ~0}, that represents the sum of claim 
amounts incurred in [0, t) in a given insurance portfolio. The accumulated claims 
up to time t can be represented as a random sum 

N(t)  

S ( t ) =  E X,, 
r = l  

with d.f. Fs(X, t)= P{S(t)~x}.  The process {N(t); t ~-0}, with distribution p,(t), 
(n = 0, 1 . . . .  ), counts the number  of claims in [0, t) and the set of r.v. {Xr; r = 
1, 2 . . . .  } represents the amount  of the rth claim incurred in [0, t). We can suppose 
that the m.g.f. Xr(u) =E{e "x'} is finite for some u # 0. 

We shall assume that the collective premium function of the risk (sum of 
premiums earned in the time interval [0, t)) is non-random and we shall denote 
it by w (t) = E{S(t)} + l(t), that is as a sum of the (aggregate) net premium E{S(t)} 
and the (aggregate) risk loading l(t). As generally accepted in the actuarial 
literature, we shall assume l(t)i> O, since we shall disregard investment income 
m premium calculation. In fact, as shown by Kahane (1979), negative loadings 
could be justified by considerations on the cost of the capital and on the rates 
of investment. Meaningful loading formulas are obtained for instance by choosing 
l(t) to be proportional  to the expected value (supposed as positive) or to the 
variance of S(t), that is 

l(t)=rlE{S(t)}, "0 I>0, 

o r  

l(t) = 3 Var {S(t)}, /3 I> O. 

Besides the investment income, we shall neglect also the administrative costs 
and we shall indicate by Y(t)= lr(t)-S(t)  the return on the insurance portfolio 
up to time t. Then the liquidity of the company can be represented by the risk 
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reserve R(t) = w + Y(t), being w = R(0)  the initial free capital; namely we have 

NO) 

R(t) = w +E{S(t)}+l( t)-  ~ X,. 
r = l  

One of the most natural assumptions on the process S(t) is that the r.v. Xr 
are independent with common d.f. Fx(x) independent  on time and such that 
Fx(O) = 0 (positive risk sums). If we suppose, following F. Lundberg,  that N(t) 
is a Poisson process with intensity A, the risk process S(t) becomes a compound 
Poisson process, with m.g.f. 

~os(U, t) = exp {At[x(u) - 1]}, 

where 2((u) is the common m.g.f, of the Xr, and with expected value E{S(t)} = 
AE{X}t. Fur thermore  the risk loading becomes a linear function of time, i.e., 
l(t) = l. t, whether one uses the expected value principle or the variance principle. 

2.2. The Risk Classes 

The foregoing classical model can be used to describe the riskiness of the portfolio 
of a given insurance line. Let  us now suppose that the insurance market  relative 
to this hne is stratified in k risk classes cCj, (j = 1, 2 . . . . .  k) according to the 
following hypotheses 

(a) .AC stochastically independent individual risks are in the market.  
• k 

(b) The class % is a homogeneous  collective consisting of Nj (being ~ = 1  N~ = 
vV') risks S~(t) which are compound Poisson processes with the same intensity A,. 
The classes are assumed to be ordered in such a way that A1 ~<A2~ < • • • ~<Ak. 

(C) The m.g.f. ,V(u) is the same for all the classes• 
(d) For any individual risk in the class % the premium x,t= (A,E{X}+I~)t is 

charged• Therefore  x~ and lj represent the annual premium and the annual loading 
relative to these risks, respectively. 

Denoting then by n, the number  of risks of the class cCj that are held in the 
portfolio, for the property of infinite divisibility one has A = ~k=l A~n~ and the 
return on the whole portfolio 

Y( t )=  x,n, t -  ~ ~S,(t) 
I 1 i = 1  ~j  

has m.g.f. 

(2.1) q~v(u, t ) = exp { (~ l  xjn,) ut + [X(-u ) - l  ] (~ l  Ain~)t }. 

2.3. Anti-Selection 

In this situation, if a company A decided to collect an aggregate annual premium 
zr(1) = ~ to protect  itself against unfavourable outcome of the risk process, it 
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could be led to charge to each contractholder the "average"  premium 7r/n, with 
k 

n =~,=1 nr In fact such a choice would offer the advantage of minim~izing the 
administrative costs. But if it were possible to know the risk class to which the 
contracts (not necessarily all of them) belong, it would be easy for a competing 
firm B to collect policies concerning low-risk individuals, by charging them a 
premium less then 7r/n. On the other hand, the individuals that are more exposed 
to risk would be spurred to insure themselves with the company A, considering 
as advantageous the average premium 7r/n. The  effect of such an anti-selection 
mechanism would then be an alteration of the company A ' s  portfolio composi-  
tion, such that it would increase even considerably the probability of a negative 
evolution of the process Y(t ) .  So the choice of the value 7r would turn out to 
be inadequate. 

Therefore  if we make the necessarily schematic and simplifying assumption 
that the company and the policyholders are in a state of perfect information on 
the parameters  of the risk process and in particular on the value of the intensity 
h~, the choice of the premiums will have a significant influence on the composition 
of the portfolio. 

REMARK. The assumption of perfect information finds a different formulation 
within the subjectivistic theory of probability. In fact in this context it means 
that the parts are in agreement on the values of the probabilities. The problem 
was discussed, e.g., by Pressacco (1979), who questioned whether a subjective 
fair price can be given an objective meaning. 

The possibility of different probability evaluations has been considered, e.g., 
by de Ferra (1968) and Volpe di Prignano (1974). In these cases the "advan-  
tageousness" of an insurance contract can be studied by defining an indifference 
premium that differs from the net premium both in consideration of the risk 
aversion and because of the diverse evaluations of the probabilities. The import-  
ance of these problems has also been emphasized by Rothschild and Stiglitz 
(1976), who studied the equilibrium in a competit ive insurance market  in a state 
of imperfect information. 

In any case, the dependence of premium determination upon the market  
conditions is the basic assumption in the economic models of insurance market  
proposed,  e.g., by Biihlmann (1980) and de Jong (1981). 

2.4. D e m a n d  Function and  Risk  Averswn  

We are thus led to introduce in the model a dependence of n~ on the premium 
charged to the class ~,, i.e., nj = nl(x,), (j = 1, 2 . . . .  , k). Following Cacciafesta 
(1970), we shall make the rather natural assumption 

n,(x) =Wjd, (x) ,  (1 = 1, 2 . . . . .  k),  

where the d e m a n d  function de(x) (that we, for sake of simplicity, shall treat as 
a real-valued function) represents the fraction of individuals of the class % that 
insure themselves at the annual premium x and therefore it expresses the 
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sensitivity of ~ to the price that is charged. If one were to represent this function 
(for given/)  as a set of random variables {d~ (x); x ~ 0}, with probabihty distribu- 
tions that are chosen based on statistical observations, besides procedural and 
estimative complications, the highly significant relation between demand function 
and risk aversion would be mistreated. 

Instead of strictly describing the function dl(x), it therefore appears more 
significant to refer to a deterministic model characterized by 

I 1, for 0 ~< x < Xf{X},  

Xt* - -  X 
(2.2) d / ( x ) = ]  I,* ; f°rArE{X}~<x~<x'*' 

/ 
[0 ,  fo rx  >x~*, 

with xj* = A~{X}+I~*, l,* I>0, (I = 1, 2 . . . . .  k). Evidently x,* can be seen as a 
measure of the risk aversion of the class ~ as a whole. It is interesting to note 
that the function dr(x) can be interpreted as the probability that an individual 
of ~'j chosen at random insures himself, provided that the decisions of the 
individuals are stochastically independent;  in this case n,(x) is to be understood 
as the expected number. 

If we accept the assumption that the risk to which an individual is exposed is 
small relative to his wealth c, i.e., E{S(1)}<< c, if his utility function u(z) can be 
expanded in a Taylor series around c and if we limit ourselves to a second-order 
approximation, then we obtain a quadratic utility function 

u(c +z) = z -½r(c)z 2, 

where r(c)=-u"(c)/u'(c) is the Arrow-Prat t  (local) risk aversion, or, in other 
terms, the (local) propension to insurance (in the actuarial applications r is 
generally supposed as a decreasing function of c). If all the individuals of the 
class ~1 have the same value r~ of risk aversion, then x,* and l~* represent 
respectively the maximum acceptable premium and the maximum acceptable 
loading by each one of them. 

Because of the Poisson assumptions on the risk process, one can prove that 

(2.3) l j* --~ ½r, A~E{X2}; 

by expressing l~* according to the variance principle, i.e., l~* =3,* Var {S,(1)}, 
relation (2.3) gives: 3j* = ½r,. 

The foregoing considerations suggest, among other things, that it includes in 
the model the possibility of a stratification more refined than the one obtained 
solely based on the characteristics of the risk process S(t), since one can take 
in consideration classes that differ only for the risk aversion (without contradicting 
the hypotheses made in (2.2)). 

The introduction of the functions nj(x) brings about that all the variables 
endogenous to the risk come to depend upon the choice of the vector x of the 
prices charged to the classes. From relation (2.1) one can, for example, derive 



140 MORICONI 

the expression of the expected return on the portfolio 

(2.4) M(x, t )=E{Y(x ,  t)} = N,l,d,(x,) t 
I 1 

and that of the variance of the portfolio return 

[' ] (2.5) V(x, t) = Var {Y(x, t)} = ~1 3'~,~,d,(x~) E{X2}t. 
I 

2.5. The Probability of Ruin 

Because of the form of the demand curves that we have assumed, the charging 
of a premium xj >x~* is entirely equivalent to a refusal by the company of the 
risks belonging to the class %; the choice of the price vector thus seems to be 
a significant and reliable means for the portfolio selection. 

The process Y(x, t) can be evaluated in terms of risk-return, that is by defining 
a performance criterion explicitly in terms of expected return and of portfolio 
risk and by choosing the best composition according to this criterion. 

Many and plausible measures of risk can be proposed and adopted, but in 
our case it is natural to consider the probability of ruin before time t, q(w, t), 
which moreover is the most investigated stability criterion in the actuarial 
literature and is also widely adopted in the administrative policy of the insurance 
companies. As can be seen, for example, in Seal (1979), it is generally rather 
complicated to evaluate q(w, t) and this is also the case in models based on 
Poisson assumptions. It is instead rather easy to obtain useful results in the 
asymptotic case, i.e., for q(w) = lim,~o q(w, t). 

In fact, with the assumptions of our model, the following classical result holds 

(2.6) q(w )~< e -Tw, 

-~- being the negative root of 

(2.7) E{e "v")} = 1. 

The inequality (2.6) was derived by F. Lundberg (1909) and by de Finetti 
(1939) using different methods, z, known as safety index, is also called adjustment 
coefficient, e.g., by Gerber  (1981), who proposed a martingale theoretic approach 
to the ruin problem. 

Generally, the right-hand side of (2.6) does not represent the ruin probability 
but provides an upper bound for it. However we are dealing with an "efficient" 
bound, because relation (2.6) becomes an equality when the graph of the 
realizations of the process Y(t) can not jump the barrier -w ,  that is if at the 
time of ruin there remains no margin of insolvency (Dubourdieu (1952)). 
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From equations (2.1) and (2.7), - r  is the negative root of 

EL1 x,n,(x,) 
(2.8) x ( - u ) - I  = - u  E~=, a,n,(x,)" 

Because of the independence of such an expression from the time variable it 
is therefore sufficient to refer to a single-period model, as it was reasonable to 
expect, due to the fact that Y(t) is a process with independent increments. All 
the endogenous quantities characteristic to the model will then be single-period 
(annual) quantities. 

It is interesting to derive a quadratic approximation by using the property 
X(-u) = 1 - E { X } +  u2E{X2}/2 +o(u2).  From (2.8) we then obtain 

E,~o~ x,n,(x,) 
u E { X } -  E { X  2}-~ u Z~ ' X,n,(x,)' 

which provides 

1 Ejk=~ ~lfl ,  (x,) = 2 M (x), 
(2.9) r -~ 2 E{X2 } k 

Z,=x Y,A,d, (x,) V(x) 

where we denote M(x)=M(x,  1) and V(x)= V(x, 1). It should be pointed out 
that since the approximation is valid near the origin, then the less the quantity 
~=1 x,n,/~,k=] a,n, exceeds the value of the derivative of X(u) at the point u = 0, 
the better  the approximation is. This means that the results which we shall obtain 
will be much better, the closer we get to the fairness condition in the whole 
portfolio. 

REMARK. The evaluation of the stability of an insurance company with an 
infinite planning horizon can raise doubts of a conceptual nature and in fact, in 
the past, the suitability of using the ultimate ruin probability has been widely 
debated (for a review, see Ammeter ,  Depoid and de Finetti (1957, p. 59)). The 
question has not remained limited strictly to the actuarial setting; for example, 
Mass6 (1964) has made use of the index q(w) to compare the two notions of 
complete strategy and incomplete strategy. More recently, Ammeter  (1970) has 
applied the ultimate ruin probability criterion in the study of the solvency problem 
of the european life insurance companies. 

The parameter r has been used even lately by Amsler (1978), who introduced 
it in his "general equilibrium equation of a collective risk", obtaining from it 
the definition of a solvency index. 

3. SELECTING THE OPTIMAL INSURANCE PORTFOLIO 

3.1. The Programming Problem 

In the foregoing model the main problem faced by the company is to choose 
the price vector x so as to constitute an efficient portfolio, which has the maximum 
safety index for a given level M of the expected return. It has then to solve the 
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following programming problem 

max r(x)  

(3.1) M(x) = M  I>0 

x, ~A,, (j = 1, 2 . . . . .  k), 

where the lower bounds on the x~ are due to the fact that we have excluded 
negative loadings. 

Since the factor 1/E{X 2} seems to be irrelevant in the optimization problem, 
one can put this quantity equal to 1, as for example would be the case if S(t) 
were an ordinary Poisson process (unit jumps, X (u) = e u). For sake of simplicity 
we shall indeed confine ourselves to this case, from now on, by putting moreover  
E{X} = 1. Obviously, with these hmitations the expected value principle and the 
variance principle turn out to coincide and we shall write l~ = rhAr It can be noted 
that in this case n, directly represents the Arrow-Pra t t  risk aversion in so far 
as, within the limits of the quadratic approximation of the utility function, one 
has ~1 = ½ r/. 

Recalling equation (2.9), problem (3.1) is equivalent to 

I min V(x) 

(3.2) IM(x )  = M ~ 0  

[x ,~a , ,  ( j = l , 2  . . . . .  k); 

we are thus led to a mean-variance model. 
Obviously, it is sufficient to study the problem (3.2) within the interval D of 

the Euclidean k-space Rk: 

D =-{xlA, ~<x, ~<x,*;j = 1, 2 . . . . .  k}. 

In fact all the intervals for which x ,>xj* for one or more values of I, that 
correspond to the exclusion of some risk classes, are equivalent to the cases 
x~ = x~* and therefore are represented by intervals on the boundary of D. 

Hence the problem (3.2) takes on the following explicit formulation 

k N I r 1 2 q 
133) z x, +(2 

t ~ 1  771 I_ A t J 

a,~<x,~-,L(l+n,*), ( 1 = 1 , 2  . . . . .  k). 

This programming problem differs from those typical to the mean-variance 
models that are used in the portfolio analysis in that the objective function is 
linear, whereas the constraint is a quadratic function which contains the linear 
terms but in which the mixed terms are missing. The latter characteristic depends 
on the hypothesis of independence among the risks. 
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3.2. Dertving the Efficient Prices 

The constraint equation represents, when M varies in R +, a portion of elliptic 
paraboloid in k + 1 dimensions, whose vertex has the following coordinates 

k 

(3.4a) M* =¼ 2 X,h,rb*, 
I o l  

(3.4b) xl = t l  + % ) A i ,  ( j = l , 2  . . . . .  k). 

Therefore the maximum expected return M* is obtained by choosing x coinciding 
with the center C of D, whose coordinates are just given In (3.4b) (see fig. 1). 
Furthermore, in C we have 

k 

(3.5) v *  = 2 
I=1 

M ~ 

/ 

/ 
/ 

Q3 

f l \ 

\ 

C~Qa 

\ 

O -~ Qo V 

FIGURE 1 Efficient frontier with four risk classes. 

To solve the conditional extremum problem, let us set up the Lagrangian 
function 

L(x, I-~)= V ( x ) + t x [ M - M ( x ) ] .  

From the equations O/Ox I L(x, ~) = 0 we obtain 

(3.6) x , = ~  + rtj* +2 , ( ] = 1 , 2  . . . . .  k). 

These are the parametric equations of a straight hne ~7 which passes through 
the center C of the interval D and coincides with its "upward" diagonal (i.e., 
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( x , , x 2  . . . . .  x~*)) the straight line passing through points (Ai, A2 . . . . .  Ak) and * * 
only if the values of rlj* are all equal. 

By substituting (3.6) in the constraint equation, one has 

(3.7) 
1 M * - M  

• , , . .  

The negative roots of (3.7) are to be discarded because, as it is easy to verify, 
they correspond to points with maximum variance. Therefore  all the points of 
the straight line @ that are lower than C are to be discarded as inefficient. Then 
equation (3.7), modified in this manner, leads to the parametric equations of 6, 
x I =xl (M) .  To obtain the efficient frontier it is sufficient to substitute these 
expressions of x I into the objective function, thus attaining V = V(M)  and 
therefore, passing to the inverse function, the equation 

M =  
(3.8) - -  - - - -  1 = 1  k ~-1 V + M *  1 

E--k N, Ai ~ __YJA I 4 ~ X~A,.~ 
1=1 n,* 1=1 n~* ,=1 n, 

It is to be noted that the qonstant term in (3.8) is nonnegative and vanishes 
if and only if the ~* values are all equal. In fact, by indicating by A({~*}) the 

, . . . k • 

weighted arithmetic mean of the "01, with wmghtmg factors X/hl/~l=l YlAI, ~t 
can be written, keeping in mind (3.4a) 

1 
~ ,~ ~ A i [ A  ({.r/i, }) 1 

A ({1/'0~*})] 

and the conclusion is drawn by observing that the quantity between square 
brackets is the difference between the arithmetic and the harmonic mean. 

In order that equation (3.8) represents an effictent frontier it is necessary to 
bound it to suitable values of V. Above all we shall disregard values greater 
than V*, in so far as they provide levels of expected return less than M*  (and 
in fact they are the points lower than C, which we have discarded because of 
the inversion of V = V(M)).  Values of the variance that are decreasing from 
V* corresponds to points of @ which move upwards away from C, until they reach 
the boundary of D. We shall denote by Ok-~ the intersection point between ff 
and this boundary. If all the rl~* were to be equal, the point Ok-1 would 
coincide with the vertex tx~*, x2* . . . . .  xk*) of D, that we shall indicate by Oo and 
that corr.esponds to values of M and V equal to zero (empty portfolio). Instead, 
in the general case, the first class to be excluded will be the one corresponding 
to the least ~*. 

Let us then consider a permutation q of the subscripts {/} such that 

r/q*1 ~ * * ' l ' i l q 2  ~ • • • _ ~  ~ ~ T 1 q k .  
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The coordinates of the point Qk-1 will then be expressed by 

x , (Qk_ l ) =( lq  r/q*1 +r/~)A,,  (1 = 1, 2 , . .  . ,  k), 
2 

which provide 

r/q*l 
v l o k _ , )  = v *  Z 

- 2 I=1 ~'-~' 
2 

, - 1  ~ " 

The value V(Qk-l)  is the minimum possible variance relative to an efficient 
portfolio made up of k risk classes. For lower values of V we are led in practice 
to a problem in k -  1 dimensions, until the increase of the prices charged will 
not bring to the exclusion of the class cgq2. This wall happen in a point Qk-2 with 
coordinates 

t( ) 
1+ ~q2 ~* A I, f o r j # q l  

x , ( O k - 2 )  = 

Ix,*, for . /=q , .  
The efficient portfolios composed of k -  1 risk classes are represented by the 
points of the line-segment Qk-tQk-2,  laying on the boundary of D and the 
efficient frontier has the same expression as in (3.8), provided that now we bound 
it to the values of V contained between V(Qk-2) and V(Qk-1) and the sums 
range over the remaining k - 1 classes. By continuing to increase the prices, the 
progressive elimination of all the risk classes will be brought about, until one 
reaches, in Qo, the emptying out of the portfolio. 

The complete efficient frontier can be expressed by 

• ~ Y " ' a " ; ~ - ' I - v 2 +  ~ N~,aq,) M--(5, (5, 
1 * .A/'q,a., Nq ,a .m.  J _ 

(3.9) +4  , i nq*, ,=, , 

forV(Ok_. )<V-~-V(Ok-~+t) .  ( s = 1 . 2  . . . . .  k). 

where we denote C = Ok, and the points Ok- .  have coordinates 

i( * ,) 
1+ ~qs ' t -r l l '  Ai, forj#ql,q2,...,q~-~ 

xl(Ok_~) = 2 

[x~*, f o r j  --- ql, q2 . . . . .  q,-1. 

In the space R k the efficient portfolios are represented by the points of the 
broken line COk-I . . .  OlO0. 
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In the plane (V, M)  the efficient frontier has the shape of a "chain" of arcs 
of parabola that are joined together in the points Qk-s and which are ever more 
convex from C to Q0. 

3.3. Maximizing the Expected Utility of the Company 

Once the efficient frontier has been determined,  the analysis of the decision 
problem of the company ~s concluded by choosing the portfolio that represents 
the best trade-off between mean and variance, that is by maximizing a utility 
function of the form u (M, V). By introducing a set of indifference curves in the 
(V, M)  space, the optimal portfolio is represented by the tangency point between 
the efficient frontier and the indifference curve corresponding to the highest 
possible level of the utdity. 

If we suppose, for example,  that the initial free capital w is large relative to 
the expected return on the portfolio, i.e., if w >>M*, then it is possible, 
analogously as was done in sect. (2.4), to approximate  the utility function of the 
company by the quadratic utility function 

u(w +z)=z  -~rc(w)z 2, 

with the related indifference curves 

2 
V = - M  2 + ~ ( M  - U ) ,  

rc~w) 

where U is the level of expected utility corresponding to the curve and re(w) 
represents the Ar row-Pra t t  measure of risk aversion of the insurance company.  

However  it is to be noted that, with our assumptions, the suitability in using 
the variance as a measure of the riskiness of the portfolio does not rely on the 
accuracy of the quadratic approximation of the company 's  utility function, but 
on the goodness of the approximation made for the probability of ruin. 

4. ILLUSTRATION OF RESULTS IN T H E  TWO-CLASSES CASE 

Let us now discuss and illustrate the results obtained in section (3) in the case 
in which the risk market  is made up of only two risk classes qgl and ~2, with 
A1 <A2. Furthermore,  let suppose that ~ t  is characterized by a level of risk 
aversion greater  tl an ~2, i.e., ,!/1" >'OF. 

The problem finds a simple geometric  representat ion in the plane (x~, x2) (see 
fig. 2). We see that the level lines M ( x ) = M  of the expected return constitute 
a set of ellipses with center C (the center of rectangle D) ,  axes parallel to the 
coordinate axes and size decreasing as M increases. The maximum expected 
return will then be attained by choosing the premiums x~ = x~(C). The level lines 
V(x) = V of the variance instead form a set of parallel straight lines with slope 
-N~r /~ /2¢ '2~  that come closer to the origin as V increases. 
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x2~ 

~2 
R 

T Ol Oo 

l I y 
O ,~1 x* xl 

FIGURE 2. CO~Qo. Efficmnt prices, ROo Market portfohos, RT Propomonal Ioadmgs 

The efficient portfolio relative to the choice of a return level M is therefore 
represented by the tangency point between the ellipse M ( x )  = M and the "high- 
est" possible variance level line. In this manner we obtain the straight line 

Az 1 , 

which passes through C and intersects the boundary xz =x ~  of D in the point 
O1, having abscissa x l(Ol) = [1 + (r/~ - n 1")/2]a 1. Of course, from 6 are to be 
discarded, besides the points above 01, even those below C, that correspond to 
inefficient portfolios (maximum V for given M).  The prices indicated by 01 
generate the mixed portfolio with minimum variance; in order to achieve lesser 
values of V it is necessary to operate with only one class, choosing the prices 
on the line-segment O~Oo. 

If the two classes were to have an equal degree of risk aversion, i.e., if 
r/l* = ~ = ~*, the locus of the efficient solutions would be given by 

( " 
x,=X,  1+-~ -+  , 

with 

7 "  
0~<1<~ T ,  ( / ' = 1 , 2 )  

/z 
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and the points Q1 and Qo would coincide. In this manner a premium-making 
policy of rather intuitive significance would be confirmed, that is the charging 
to both the classes of a loading equal to the same percentage n of the net 
premium. In our case, instead, being '0~ >r/2*, it turns out that the efficient 
choices consist in overloading the more risk averse class Cgl by increasing the 
percent loading r/A~ by the quantity (r/1" -r/2")/2.  

Another  interesting result consists in the fact that a diversification of the 
portfolio is not always efficient, because if small values of the variance (line- 
segment O~O0) are desired, then the expected return is maximized by insuring 
only individuals that are of the more risk averse class. 

Finally, let us compare the policy of the efficient prices with that of the prices 
that determine a natural, or market, portfolio, that is a portfolio that contains 
both the risk classes in the same proportion with which they are present on the 
market. By solving the equations 

n,(x,) :4 
- -  = - -  

k k 

X n, Ix, ) X :4 
I = 1  I ~ 1  

(I = 1, 2), 

one easily obtains the parametric equations 

x, =x,* - dn,*a,,  

0~<d~<l, 

(1 = 1, 2), 

that represent the diagonal of D passing through Oo. As can be seen, it is a 
matter of charging to the two classes a loading which is equal to a same fraction 
( 1 - d )  of the respectwe maximum percent loading 7"/,* and this policy will turn 
out to be efficient if the classes are characterized by a different degree of risk 
aversion. 
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Ragnar Norberg pointed out to me that there is an incorrectness in the proof 
of the basic theorem on pages 50-51. Nevertheless by a slight modification the 
proof becomes complete. Instead of (3.6) one should use the bound 

]rkl~< R~l + R~2. 
l.lk 

With (for e > 0) 

E 1 r¢~ R~z := ( ~ " . ~ ,  IX, l'lu,~tyk,.y~2,(X,)) 

U, := [Ps - e ,  Ps +e ]  (U~ denoting the complementary set of Ue). 

By the reasoning following formula (3.6) one can conclude with the theorem of 
dominated convergence: 

hm R ~ = 0  k l  
k ~ o o  

lim supRa2 ~ E ( I X ,  I " 1u,(g,)) .  
k ~ o o  

Since F is by assumption continuous, the last expression can be made arbitrar{ly 
small (by suitable choice of e), implying statement (3.7) of the proof. 

ERRATUM 

P. TER BERG (1980). TWO Pragmatic Approaches to Loglinear Claim Cost 
Analysis. Astin Bulletin 11, 77-90. 

Formula (5.7) contains an annoying printing error The correct formula reads: 

(5.7) Or/ ,9~' \/..t r Yr 

This correction is important if one maximizes the loglikelihood function via 
Newton's method, which needs the inverse of (5.7). 
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