
 - 1 - 

MORTALITY AND DISABILITY RISKS IN LONG TERM CARE 
INSURANCE•• 
 
by Annamaria OLIVIERI* and Stefano FERRIº 
 
 
 
Abstract 
Demographical risks related to Long Term Care products are discussed. In particular, the risks 
deriving from mortality and disability trends are analysed, depicting possible scenarios in which 
insurance products will evolve and briefly illustrating how such risks can be faced. 
 
 
 
1. Introduction 
 
Long Term Care (LTC) is care required in relation to chronic (or long-lasting) bad health 
conditions. LTC insurance (LTCI) provides income support for the insured, who needs nursing 
and/or medical care, in the form either of a forfeiture annuity benefit or nursing and medical 
expense refunding. In some countries (e.g. Japan) LTC products are sold according to which the 
insured can choose, in case of a claim, between an annuity benefit or an appropriate care service 
provided by organizations offering nursing care services. Given the type of risks covered, LTC 
insurance has a lifetime duration. 
The common approach to the mathematical representation of LTC covers is multistate 
modelli ng. Actuarial theory has developed models easy to handle from a formal viewpoint. The 
major task in implementing such models is due to the fact that LTC covers are recent products 
and experience data are still scanty. Moreover, given their lifetime duration, these covers are 
affected by demographical trends. Because of the uncertainty in estimating the future levels of 
mortality and morbidity, considerable difficulties are therefore encountered in pricing and 
reserving. 
This paper is devoted to the analysis of the risks coming from uncertainty of future 
demographical trends. As it is well-known, such uncertainty suggests the adoption of projected 
tables. The use of mortality  projections for pricing (and reserving) life covers sold to the 
elderly, such as annuities, is extensively widespread; on the contrary, such practice is not 
common for health insurance. Difficulties for these latter covers originate from the several 
causes of uncertainty by which they are affected, namely mortality levels, morbidity rates, 
amount of claims (when expense refunding covers are dealt with). In particular, the paucity of 
sickness data relating to very old ages increases the difficulty in estimating claim frequencies 
and amounts. 
The main aim of this paper is to investigate the effects of uncertainty related to the future 
scenario in which a portfolio of LTC insurance will evolve, in terms of the risk borne by the 
insurer. For this purpose, projected mortali ty and disability tables for LTC covers are 
constructed, through which it is shown how the impact of demographical trends can be 
considerable on LTC portfolios. Some tools for facing such risks are then briefly discussed, in 
particular with regard to proper capital allocation strategies which can be adopted in conjunction 
with suitable pricing bases. 
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For the sake of simplicity, the following hypotheses are adopted throughout the paper. Insurance 
covers with only one level of disability and involving forfeiture benefits are considered. In 
particular, the paucity of data concerning annual claim amounts and frequencies suggests to 
disregard expense refunding covers (for which premiums are usually assessed with reference to 
the maximum amount insured). Randomness other than the demographical one is disregarded; 
in particular, a deterministic financial structure is adopted. Expense loading, profit assessment 
and reinsurance are not dealt with. Further, for brevity the characteristics of LTCI are recalled 
just for the types of policy dealt with in this paper, i.e. Stand Alone and Enhanced Pension 
covers. For a deeper description see, for example, Haberman, Pitacco (1999). In this paper, only 
the viewpoint of the provider of LTCI is considered. The economics of LTC, whose discussion 
goes beyond the scope of this paper, is for example dealt with in Chen (1994), Whynes (1996) 
and Zweifel (1996). 
The paper is organized as follows. In Section 2 the multistate approach is briefly recalled. In 
Section 3 demographical projections for LTCI are described. Section 4 and 5 deal with the 
analysis of mortali ty and disability risks for Stand Alone and Enhanced Pension covers, 
respectively. In Section 6 some tools to face LTC risks are discussed. Finally, Section 7 
concludes. 
 
 
2. Multistate model for LTC covers 
 
LTC covers, similarly to other health insurance products, are usually represented in terms of a 
multistate model (see, for example, Haberman, Pitacco (1999)). In this setting, it is assumed that 
the evolution of an insured risk can be described in terms of the presence of the risk itself, at 
every point of time, in a certain state belonging to a specified set of states (the state space) and 
that the events which give rise to cash flows of premiums and benefits correspond to transitions 
from one state to another state. 
In the case of LTC covers, the multistate model usually consists of the following states:         
state 1 = “healthy” , state 2 = “disabled at level I” , state 3 = “disabled at level II” , …,              
state N = “dead” . Considering one level of disability only, the multistate model depicted in 
Figure 2.1 is adopted where, according to the chronic character of LTC illness, it is assumed 
that no recovery (neither partial) is possible (i.e., disability is permanent). 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 – A three-state model for LTCI 
 
 
Upon entry into state 2, the LTC annuity is paid until death; in some covers (for example, 
Enhanced Pension) an annuity is paid also in state 1, but at a lower amount. The appraisal of 
insurer’s liabili ties (for pricing, reserving or risk investigations) requires information about the 
rates of disability (transition 1→2) and the rates of death both for healthy people (transition 
1→3) and disabled people (transition 2→3). This choice is discussed in Section 3. 
The basic tool for risk investigations (but also for pricing and reserving) is the so-called loss 
function which is defined as follows 

 1  2 
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loss function at time t = random present value at time t of future benefits 
- random present value at time t of future premiums 

 
The loss function can be defined both at individual and portfolio level. We denote by L(t) the 
individual loss function and by LP(t) the portfolio loss function. Clearly, LP(t) can be obtained 
by summing up the individual loss functions with respect to the policies in-force at time t. 
Premiums and reserves are assumed to be calculated according to the equivalence principle, as it 
is quite common for life covers. Given a conservative hypothesis, describing the future scenario, 
premiums must be determined so that the expected present value of the loss function at time 0 is 
equal to zero. The reserve is then defined as the expected present value of the loss function at 
time t, based either on conservative hypotheses, in case a reserve on the safe-side must be 
assessed, or on realistic hypotheses, in case of a fair valuation of the reserve itself. A specific 
reserve must be set up for each state in which the policy is still in force; according to Figure 2.1, 
a reserve for healthy people and a reserve for disabled people are defined. 
 
 
3. Demographical scenarios 
 
The choice of a proper description of the future scenario is particularly difficult when LTC 
covers are dealt with for two main reasons: 
(i) LTC are recent products and insurance experience data are rather scanty in many countries; 
(ii) recent trends in mortality and morbidity witness significant changes that contribute in 

defining a moving scenario in which LTC products will evolve. 
Aspect (i) is usually overcome by resorting to population medical data, properly transformed to 
reflect selection of insured people with respect to the general population. Moreover, population 
medical data are usually in the form of prevalence rates, whereas inception rates are required for 
insurance pricing; hence, a transformation is necessary also in this regard. Such problems are 
not dealt with in this paper (see, for example, Gatenby (1991), Olivieri (1996) and Haberman 
and Pitacco (1999)). 
Aspect (ii) has emerged in recent years. Mortality trends at adult ages reveal decreasing annual 
probabilities of death (see for example Benjamin and Soliman (1993), Macdonald (1997), 
Macdonald et al. (1998)). In particular, the following phenomena are observed in populations 
including both healthy and disabled lives: 
(1) an increasing concentration of deaths around the mode of the density function of the future 

lifetime distribution (the so-called “curve of deaths”);  
(2) a forward shift of the mode of the curve of deaths. 
These changes clearly affect any cover involving lifetime benefits. In particular, whilst the 
former aspect reduces uncertainty since with higher probability the actual duration of life might 
coincide with its mode, the latter increases the risk inherent in the management of a policy, the 
magnitude of the above mentioned shift being unknown. 
In the case of health covers, such as LTC, risk emerges further from uncertainty concerning the 
time spent in the disability state. Actually, when living benefits are paid in case of disability it is 
not merely important how long one lives, but also how long he/she lives in a condition of 
disability. 
Although it is reasonable to assume a relationship between mortality and morbidity, the relevant 
definition is difficult due to the complexity of such a link and to the impossibility of defining 
and measuring disability objectively. Three main theories have been formulated about the 
evolution of senescent morbidity (as pointed out, for example, in Swiss Re (1999)). 
(i) “Compression theory” (see Fries (1980)): chronic degenerative diseases will be  postponed 

until the latest years of life because of medical advances. Assuming there is a maximum 
age, these improvements will result in a compression of the period of morbidity. 
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(ii) “Pandemic theory” (see Gruenberg (1977) and Kramer (1980)): the reduction in  mortality 
rates is not accompanied by a decrease of morbidity rates; hence, the number of disabled 
people will increase steadily. 

(iii) “Equilibrium theory” (see Manton (1982)): most of the changes in mortality are related to 
specific pathologies. The onset of chronic degenerative diseases and disability will be 
postponed and the time of death as well. 

The scenarios depicted by the above mentioned theories produce rather different consequences 
for the insurer; in particular, Compression theory suggests optimistic views, whilst Pandemic 
theory pessimistic ones. Although the most extreme scenarios can reasonably be looked at as 
unfeasible hypotheses, the deep differences among such theories imply a high level of 
uncertainty about the evolution of senescent morbidity. The adoption of projected tables for the 
evaluation of insured benefits seems then appropriate. However, since the three theories imply 
rather different scenarios, the mentioned uncertainty should be included in the actuarial model 
used for evaluating benefits. 
It should be pointed out that uncertainty in future mortality and senescent disability trends 
implies the risk of systematic deviations from the scenario used to calculate expected values 
(and in particular premiums and reserves), hence a model risk. The demographical risk inherent 
in LTC covers consists of a random fluctuation component (similarly to any insurance cover) 
and a systematic deviation component as well. 
In order to appraise the risk inherent in LTC covers, uncertainty of the future evolution of 
mortality and disability must be explicitly taken into account. To this aim, several scenarios 
must be considered, each one including a specific projection of mortality and disability trends 
which represents a possible realization of the actual future scenario. 
The traditional actuarial approach to demographical projections consists in extrapolations of 
(recent) trends as far as these can be perceived from observed data. However, the approach we 
adopt in this paper (commonly followed by demographers) leads to models expressing the basic 
characteristics of the evolving scenario in which demographical changes take place. In this latter 
approach, the use of analytical laws for mortality and disability rates is required, whose 
parameters are functions of the calendar year. The adequacy of the projection model can be 
checked comparing the behaviour of some quantities with the scenario characteristics suggested 
by the three theories mentioned above. So, possible scenarios have been defined (and their 
adequacy tested) in terms of the evolution of the expected time spent in the healthy state and in 
the disability state. 
Let us consider a person in state i at time t, where t denotes the time elapsed since policy issue. 
In a non-projected multistate context, denote by eij(t) the time expected to be spent in state j 
from time t, i.e. from age x+t (x representing the age at entry). Referring to the multistate model 
in Fig. 2.1, the following quantities can be defined: 

• e11(t): expected time spent in the healthy state for a healthy person, i.e. healthy life 
expectancy for a healthy person; 

• e12(t): expected time spent in the disability state for a healthy person, i.e. disability life 
expectancy for a healthy person; 

• e22(t): life expectancy for a disabled person. 
The total life expectancy for a healthy person, e1.(t), is simply given by the sum of the time 
spent in the healthy state and in the disability state, i.e. 
 
 e1.(t) = e11(t) + e12(t) (3.1) 
 
In a projected context, functions depend on the calendar year. Let y denote the calendar year in 
which the person enters insurance. So, expected values eij(t;y) (instead of eij(t)) shall be 
considered. In this framework, the theories mentioned above can be expressed in terms of the 
evolution of life expectancy, for any fixed t, as follows: 
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(i) e1.(t;y) increases as y increases, with a major contribution (in relative terms) from 
e11(t;y); 

(ii) e1.(t;y) increases as y increases, with a major contribution (in relative terms) from 
e12(t;y); 

(iii) e11(t;y) and e12(t;y) increase as y increases, at similar rates. 
In terms of li fe expectancies, the evolutionary theories on mortality and senescent morbidity 
mentioned above suggest the behaviours sketched in Fig. 3.1. 
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Figure 3.1 – Scenarios suggested by main theories 
 
 
In what follows, we focus on one generation of insureds only, entering the LTC covers (at age 
x) in the same year. Hence, the calendar year can be omitted in the notation. 
With reference to males aged 65 in current year, we have adopted five projected scenarios, 
whose relevant life expectancies are quoted in Table 3.1. Scenario HC has been taken as a 
starting point for the construction of projected scenarios H1, H2, …, H5, since it comes from 
cross-sectional observations of mortality and disability of elderly people. In particular, data on 
Italian mortality (taken from ISTAT surveys) and on British disability rates (taken from OPCS 
surveys) have been referred to. Analytical models have been used for representing mortality and 
disability; more precisely, mortality has been represented in terms of the Weibull l aw and 
disability in terms of the Gompertz law (details of the assumptions and models adopted are 
described in Ferri, Olivieri (2000)). For disabled lives, mortality rates have been obtained from 
those of healthy lives, assuming that the former keep higher than the latter (although specific 
data at this regard are lacking, such hypothesis seems quite reasonable). 
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HC 14.428 1.566 15.995 15.307 0.00% 0.00% 0.00 
H1 15.156 1.435 16.591 15.931 5.05% -8.41% 3.73% 
H2 16.042 1.563 17.605 16.983 11.19% -0.25% 10.07% 
H3 15.844 1.749 17.593 16.983 9.82% 11.65% 10.00% 
H4 15.501 2.073 17.574 16.983 7.43% 32.36% 9.88% 
H5 16.577 2.366 18.943 18.397 14.89% 51.05% 18.44% 

 
Table 3.1 – Life expectancies 

 
 
As it emerges from Table 3.1, the five projected scenarios have been built with reference to their 
impact on the expected time spent in the healthy and in the disability state. Firstly, note that in 
any projected scenario an increase of total life expectancy with respect to cross-sectional 
observations has been assumed. This is suggested by mortality trends in populations that include 
both healthy and disabled people. In absolute terms, and with comparison to scenario HC, the 
changes in e1.(0) mainly depend on the changes in e11(0). Therefore, consequences suggested by 
Compression, Equilibrium and Pandemic theory must be checked by looking at the relative 
contributions of e11(0) and e12(0) (as shown, for example, by the quantities 

1)0(e/)0(e )H(
j1

)H(
j1

C − , j=1,2, where )0(e )H(
j1  is the life expectancy calculated according to the 

generic scenario H). 
For the insurer, H1 represents a scenario that should involve lower costs than the others for two 
reasons. Firstly, there is a slight increase in total expected life. Secondly, the change in the time 
expected to be spent in the healthy state is larger in percentage than the one related to disability, 
which actually falls down to a negative value. This evolutionary hypothesis has therefore been 
chosen because it seems one of the best suited to represent consequences depicted by 
Compression theory. On the other side, H5 represents the scenario with presumably the highest 
costs involved since it assumes a fall in mortality rates accompanied by a substantial rise in 
disability rates, which imply a considerable increase in disability life expectancy as well as total 
life expectancy. Therefore, this scenario can reasonably express the Pandemic theory 
evolutionary hypothesis, although the latter does not lead to any particular increase in disability 
rates. However, this more pessimistic scenario can also reasonably include the risk of an 
underestimation of disability rates, given that cross-sectional observations have been obtained 
from population medical data and not from insurance experiences. Scenario H3 assumes a 
“medium” decrease in  mortality rates in respect of HC. Moreover, no change in respect of HC 
has been considered for disability rates. The result is a projection which is somehow 
intermediate between the above depicted scenarios, with a change in total life expectancies 
which receives almost equal (relative) contributions from changes in healthy and disability life 
expectancies. For this reason, scenario H3 can be considered as reflecting the evolutionary 
projection of Equilibrium theory. Finally, scenarios H2 and H4 depict projections that are 
intermediate between scenario H3 and the other two “extreme” scenarios H 1 and H5. As far as 
the hypotheses are concerned, it must be mentioned that an unchanged link has been assumed 
between mortality rates for healthy and disabled people. This choice has been suggested by the 
lack of specific observations on mortality of active and disabled lives. 
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4. Risk analysis for Stand Alone covers 
 
A Stand Alone LTCI provides a fixed amount annuity in the case of LTC need. The amount of 
the annuity can be defined as a function of the disability level. Since we have considered one 
level of disability only, we assume that only one level of benefit is provided. For brevity, we 
adopt a constant and unitary amount of yearly benefit. Of course, variable benefits could be 
considered, in particular due to mechanisms of benefit indexing. However, in order to interpret 
numerical results more easily, such aspects have been disregarded. Financial risks have also 
been disregarded; in particular a constant investment yield has been considered. 
The risk for the insurer is measured through the variance of its loss function, which has been 
evaluated at time 0 (i.e. at policy issue). A homogenous portfolio has been considered, i.e. a 
group of policies entering at the same time and age, with the same amount insured, similar in 
terms of risk class, etc. The same amount of premium is required to such policies, to be paid at 
entry. 
The variance of the loss function can be evaluated either disregarding or considering uncertainty 
concerning the future evolution of mortality and disability. In the former approach (which can 
be defined “deterministic”), a (projected) scenario is assigned; different scenarios can be 
compared in terms of the different value they imply for the chosen measure of risk. The range of 
variation of such a measure gives an idea of how different a result can be from what we expect 
it is. In the latter approach (“stochastic” approach) a set of scenarios is considered, to which a 
probability distribution is assigned. In this case, it could be interesting to analyse not only the 
variance of the loss function, but also the probability of being the portfolio loss function greater 
than a given value, i.e. of events like LP(t) > λ, where λ is a given value. 
Let us assume that N homogeneous insurance covers are issued at time 0; the entry state is state 
1 (healthy). Adopting at first a deterministic approach, let us consider a given scenario H, i.e. a 
given set of hypotheses concerning mortality and morbidity. The variance of the individual loss 
function at time 0, var(L(0) | H), can be easily calculated (details for this result and the 
following ones are described in Ferri, Olivieri (2000)). Assuming that the N insureds are 
independent risks, it turns out that the variance of the portfolio loss function, var(LP(0) | H), is 
proportional to that of the individual loss function 
 
 var(LP(0) | H) = N var(L(0) | H) (4.1) 
 
In particular, if we consider the following index (briefly referred to as risk index) 
 

 
π

=
N

)H|)0(Lvar(
r

P
)H(  (4.2) 

 
where π is the individual single premium, we find out 
 

 
π

=
)H|)0(Lvar(

N

1
r )H(  (4.3) 

 
Expression (4.3) in particular shows that the risk borne by the portfolio, per unit of single 
premium, reduces as the initial size of the portfolio increases. This is due to the fact that when a 
given demographical scenario is considered, the only risk accounted for is that of random 
fluctuations, which is a pooling risk. 
In Table 4.1 the expected value, variance and risk index for a given policy are quoted, 
calculated under the different projected scenarios described in Section 3. For comparison, also 
the values calculated under the cross-sectional scenario are shown. A person aged 65 at time 0 is 
considered; an annual investment yield equal to 3% has been assumed. 
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 Expected value 
E(L(0) | H) 

Variance 
var(L(0) | H) 

Risk index 
r(H) 

HC 0.9182 - π 6.7486 2.8291 
H1 0.8530 - π 6.3709 2.9591 
H2 0.9292 - π 6.9278 2.8328 
H3 1.0370 - π 7.5455 2.6488 
H4 1.2261 - π 8.5930 2.3909 
H5 1.3871 - π 9.6543 2.2400 

 
Table 4.1 – Stand Alone; individual loss function 

 
 
Under the heading “Expected value”, the numerical values represent the expected value of 
liabilities for the various scenarios. Adopting the equivalence principle, the single premium π is, 
in each case, equal to such values whence the expected value of the loss function is zero. A 
safety loading can however be added, especially if the projected scenarios are meant as realistic 
representations of the possible future actual scenario. The expected value and variance of the 
portfolio loss function can be found simply by multiplying both quantities by the initial size of 
the cohort. The risk index has been calculated assuming that the single premium is equal to the 
expected value of liabilities under each scenario. At the portfolio level, the risk index can be 

found dividing by N what quoted in Table 4.1. 
As far as the consequences of the various projections are concerned, moving from scenario H1 
to H5 implies an increasing expected cost of benefits and an increasing risk for the insurer as 
well , as shown by the variance of the loss function. However, in relative terms risk declines 
with the severity of the projection, as shown by the index r(H), because a higher premium results. 
The Stand Alone is anyway a risky product, since the variance of the loss function has a large 
magnitude when compared to premiums.  
Figures 4.1 and 4.2 show the variance profile of a policy in the healthy and in the LTC state, 
respectively, under the different scenarios. In the disability state the variance of the loss function 
is affected by mortality only; hence in Figure 4.2 only scenarios involving different mortali ty 
levels are considered (actually, in scenarios H2 and H4 the same mortality levels than scenario 
H3 have been assumed, such scenarios differing in terms of disabil ity levels only – see Table 
3.1). Risk, in terms of variance of the loss function, decreases with time. Moreover, the variance 
profile varies with the projection, the lowest being implied by H5. This witnesses that in our 
projections the mortality assumptions have been chosen so that they imply a stronger 
concentration of the curve of deaths and forward shift of its mode (see Section 3). Risk 
decreases with time also when the healthy state is considered. However, the different 
projections induce profiles that cross each other. This is due to the interactions between 
mortality and disability levels. Figure 4.1 shows that in the first years of the coverage, the 
variance of the loss function is mostly affected by disability levels (actually, the variance of the 
loss function for a healthy person is higher under scenarios H4 and H5, which imply the highest 
inception rates); as time passes, the effect of mortality concentration becomes predominant (in 
the latest years scenario H5, which is based on the highest mortali ty levels as well, produces the 
lowest variance). 
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         Figure 4.1 – Stand Alone;                                            Figure 4.2 – Stand Alone; 
                             variance of the loss function;                                        variance of the loss function; 
                             healthy state                                                                  LTC state 
 
 
As far as the risk profile at portfolio level is concerned, the variance of the portfolio loss 
function at time t is affected both by variability of payments at individual level and by 
variability of the portfolio composition. It is therefore difficult to interpret the behaviour of 
var(LP(t) | H) in terms of the consequences produced by the different scenarios. We have then 
preferred to calculate the variance of the portfolio loss function only in relation to three assigned 
patterns of the number of healthy and disabled people, based on the number expected to be in 
each state and on a normal approximation of deviations from the expected value (we denote by 
min, med and max such patterns, according to the hypotheses assumed for their calculation). In 
Figure 4.3 the profiles of the variance of the portfolio loss function are depicted, for a portfolio 
of initial   N = 1,000 insureds. 
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Figure 4.3 – Stand Alone; variance of the portfolio loss function 
                                                      for given patterns of the size of the portfolio 
 
 
In the sequel, scenario H3 is adopted as premium and reserving basis. Hence π = 1.0370. This 
choice is suggested by the fact that H3 is the intermediate scenario, in terms both of the expected 
value and variance of liabilities. Obviously a safety loading could be explicitly included in this 
premium considering either the risk of the cover (in terms of the variance of the loss function) 
or an appropriate function of the different premium levels resulting from the other projected 
scenarios. In Fig. 4.4 and 4.5 the reserves for a healthy and disabled insured are respectively 
depicted. 
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        Figure 4.4 – Stand Alone;                                             Figure 4.5 – Stand Alone; 
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Let us now adopt a stochastic approach. The risk analysis is therefore performed considering 
explicitly uncertainty in demographical projections, but still adopting scenario H3 as pricing and 
reserving basis. To this aim we consider the five projected scenarios Hk (k = 1, 2, …, 5) of 
Table 3.1, interpreting each of them as a possible outcome of the actual future mortality and 
disability rate levels. Then, a weight ρk is linked to scenario Hk (k = 1, 2, …, 5), representing the 

“degree of belief” of such hypothesis. Clearly, 15
1k k =ρ∑ = . Risk analyses are still performed at 

time 0 only. 
Referring to a homogeneous portfolio, with the same characteristics described above, and 
assuming that the insureds are independent risks under each scenario, the expected value and 
variance of the portfolio loss function at time 0 are now given by the following expressions 
 

 ∑
=
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It turns out 
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It must be stressed that now the variance of the portfolio loss function depends on N2. More 
precisely, the first term of var(LP(0)), which is proportional to N, gives account of random 
fluctuations around expected values, whilst the second term, which is proportional to N2, 
expresses systematic deviations of observed values from expected ones. The relevant systematic 
risk is due to the uncertainty about the future demographical scenario and is a generalization of 
the longevity risk, which affects long term li fe insurance products such as annuities (see, for 
example, Olivieri (2001)). In terms of the risk index (now denoted simply by r, since it does not 
depend on a particular scenario) we have 
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The first term in the expression of the risk index r is similar to (4.3); actually it relates to the 
(pooling) risk of random fluctuations, which reduces with the size of the portfolio. The second 
term is constant with respect to the size of the portfolio; it shows the risk of systematic 
deviations, which is a non-pooling risk. Note also that as N increases, the risk index r tends to a 
positive value, represented by its systematic component. 
In Table 4.2 the expected value and variance of the loss function are quoted. As an example, we 
have chosen the following weights: ρ1 = ρ5 = 0.05, ρ2 = ρ4 = 0.15, ρ3 = 0.6; note that the most 
realistic scenario has been adopted for pricing and reserving, whilst the extreme scenarios (i.e. 
scenario H1 and H5) occur with a low probability. What emerges from Table 4.2 is the heavy 
riskiness linked to systematic deviations. As mentioned above, the so-called longevity risk, 
related to changes in mortality and disability levels, can be measured with the systematic 
component of the variance of the loss function. However, to a large extent the risk of random 
fluctuations keeps higher than that of systematic ones. It can be found out that, in our example, 
when N > 528 the non-pooling component of the variance is predominant, whilst when N < 528 
the pooling component is larger than the other. 
 
 

 
N 

Expected value 
E(LP(0)) 

Variance 
var(LP(0)) 

Pooling risk 

))0(Lvar(

))H|)0(L(var(EN
P

 

Systematic risk 

))0(Lvar(

))H|)0(L(Evar(N
P

2
 

1 0.020 7.671 99.81% 0.19% 
10 0.205 78.017 98.14% 1.86% 

100 2.048 910.743 84.07% 15.93% 
528 10.814 8,087.207 49.99% 50.01% 

1,000 20.480 22,164.267 34.55% 65.45% 
10,000 204.802 1,527,326.669 5.01% 94.99% 
100,000 2,048.021 145,841,666.960 0.52% 99.48% 

 
Table 4.2 – Stand Alone; portfolio loss function 

 
 
It must be stressed that the stochastic approach leads to a rather different risk assessment than 
the deterministic one. However, the risk of systematic deviations although neglected in the 
deterministic approach is obviously present any time a future behaviour is concerned. The 
advantage of the stochastic approach is that it allows to explicit such risk, whilst in a 
deterministic setting only random fluctuations can be formally represented. 
With reference to Table 4.2, note that having adopted H3 for premium calculation, the expected 
value of the loss function is not zero. At this regard, as mentioned above, a loading could be 
explicitly included into the premium so that E(LP(0)) = 0. Obviously, a (further) loading could 
also be determined in relation to the variance of the loss function. 
In Table 4.3 the risk index is quoted for different initial sizes of the portfolio, both in the 
deterministic and in the stochastic approach. Note that whilst for N = 1 the two approaches lead 
to a similar risk evaluation (the magnitude of the relative risk is the same), for N > 1 the latter 
approach leads to a relative riskiness which is higher and has a positive limiting value. As 
already explained, this is due to the systematic component of the variance of the loss function. 
We finally point out that arguments similar to the above ones hold when a different set of 
weights ρk is chosen (unless they lead back to the deterministic case). 



 - 12 - 

 
 

 
N 

Deterministic approach 
r(H3) 

Stochastic approach 
r 

1 2.64885 2.67082 
10 0.83764 0.85175 
100 0.26488 0.29101 

1,000 0.08376 0.14356 
10,000 0.02649 0.11917 
100,000 0.00838 0.11645 

… … ... 
∞ 0 0.11615 

 

Table 4.3 – Stand Alone; risk index 
 

 
Finally, in Figure 4.6 three possible profiles of var(LP(t)) are depicted, related to three patterns 
of the size of the portfolio, which have been chosen considering the expected size of the 
portfolio and a normal approximation of deviations from the expected portfolio size itself. 
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Figure 4.6 – Stand Alone; variance of the portfolio loss function 
                                                      for given patterns of the size of the portfolio 

 
 
 

5. Risk analysis for Enhanced Pension covers 
 
The Enhanced Pension product consists in a straight life annuity uplifted in case the annuitant 
becomes disabled (according to a given definition of LTC disability). For a given amount of 
single premium, the cost of the uplift is met by a reduction in the initial pension income. 
With reference to the multistate model of Fig. 2.1 assume that a healthy person at retirement is 
eligible  for a traditional straight life annuity (basic pension), with annual amount b. He/she can 
switch this benefit to a combination of an annuity while he/she is in state 1 with annual amount 
b1, b1 < b, and an LTC annuity (enhanced pension) with annual amount b2, b2 > b. The single 
premium is given by the actuarial value of the basic pension; once b – b1 is chosen, it is then 
possible to calculate the LTC benefit b2, which obviously depends on the technical basis 
adopted for performing such calculation. The individual loss function is the (random) present 
value of benefits payable in state 1 and state 2. The portfolio loss function is the sum of the 
individual loss functions. 
Let us consider a homogeneous portfolio of Enhanced Pension covers, which are independent 
under any given demographical scenario. We have adopted scenario H3 as pricing and reserving 
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basis. Taking b = 1, we have π = 13.1496. Choosing b1 = 0.9, we then find b2 = 2.2110. Note 
that a great increase in benefits can be obtained in case of LTC disabil ity, which is funded by a 
modest decrease in the current benefit. 
Table 5.1 shows the expected value and variance of the individual loss function under the 
various scenarios (all hypotheses are the same than in Section 4). In particular, the risk index 

has been obtained relating )H|)0(Lvar(  to the single premium, calculated according to 

scenario H3. Considerations similar to those concerning the Stand Alone cover can be 
expressed. Note in particular that, due to the different levels of benefits, H4 is the most risky 
scenario. However, the relative riskiness of the Enhanced Pension is significantly lower than 
that of the Stand Alone. This is due to the fact that in the Enhanced Pension cover benefits are 
paid starting from policy issue, whence a high initial funding, i.e. a high single premium, is 
required. In the Stand Alone case, on the contrary, the occurrence of benefit payment is random, 
whence a lower premium is necessary. 
 
 

 Expected value 
E(L(0) | H) 

Variance 
var(L(0) | H) 

Risk index 
r(H) 

HC 12.0136 – π 47.8556 0.5261 
H1 12.3126 – π 43.2333 0.5000 
H2 13.0130 – π 41.6292 0.4907 
H3 13.1496 – π 43.7139 0.5028 
H4 13.3891 – π 47.2853 0.5229 
H5 14.3708 – π 46.3433 0.5177 

 
Table 5.1 – Enhanced Pension; individual loss function 

 
 
Examples in Fig. 5.1 to 5.5 are similar to those considered in Section 4. Similar arguments hold. 
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               Figure 5.1 – Enhanced Pension                                   Figure 5.2 – Enhanced Pension; 
                                     variance of the loss function                                       variance of the loss function 
                                    healthy state                                                                 LTC state 
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Figure 5.3 – Enhanced Pension; variance of the portfolio loss function 
                                                 for given patterns of the size of the portfolio 
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           Figure 5.4 – Enhanced Pension;                                     Figure 5.5 – Enhanced Pension;  
                                reserve for healthy people                                               reserve for disabled people 
 
 
Turning to the stochastic approach, the analysis is performed considering explicitly uncertainty 
of the future scenario. Numerical evaluations, performed under the same hypotheses of Section 
4, are quoted in Tables 5.2 and 5.3 and in Figure 5.6. Similar considerations hold. In particular, 
the size of the portfolio that let random fluctuations and the systematic risk have the same 
contribution to the variance of the loss function is 368; if N > 368, the systematic component is 
more important, whilst the contrary holds when N < 368. Such result is not fully comparable to 
the Stand Alone case, due to the different level of benefits. 
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N Expected value 
E(LP(0)) 

Variance 
var(LP(0)) 

Pooling risk 

))0(Lvar(

))H|)0(L(var(EN
P

 

Systematic risk 

))0(Lvar(

))H|)0(L(Evar(N
P

2
 

1 0.035 44.164 99.73% 0.27% 
10 0.346 452.422 97.35% 2.65% 

100 3.464 5,602.351 78.62% 21.38% 
368 12.748 32,431.008 49.98% 50.02% 

1,000 34.641 163,836.229 26.88% 73.12% 
10,000 346.408 12,419,634.573 3.55% 96.45% 
100,000 3,464.082 1,202,323,573.901 0.37% 99.63% 

 
Table 5.2 – Enhanced Pension; portfolio loss function 

 
 

 
N 

Deterministic approach 
r(H3) 

Stochastic approach 
r 

1 0.50280 0.50538 
10 0.15900 0.16176 
100 0.05028 0.05692 

1,000 0.01590 0.03078 
10,000 0.00503 0.02680 
100,000 0.00159 0.02637 

… … ... 
∞ 0 0. 02632 

 
Table 5.3 – Enhanced Pension; risk index 
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Figure 5.6 – Enhanced Pension; variance of the portfolio loss function 
for given patterns of the size of the portfolio 

 
 
 
6. Tools to face the longevity risk 
 
In the previous Sections the risk coming from the uncertainty of future mortality and morbidity 
levels (i.e. the longevity risk in a generalized sense) has been highlighted. Results obviously 
depend on the hypotheses adopted; however, the severity of the systematic risk is to a large 
extent independent of our choices. Hence, it is important to investigate how this risk can be 
faced. 
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Among the tools available to the insurer to face LTC risks, a simple increase in the safety 
loading does not seem easily feasible, due to competition on insurance markets. A primarily role 
should be played by the allocation  of a suitable capital, i.e. tailored to the severity and features 
of the risks affecting the portfolio. This capital can therefore be referred to as solvency reserve; 
in this sense, its amount must be determined so that a given solvency requirement is fulfilled. 
Usually, solvency requirements involve a comparison between assets and liabilities. Let us 
denote by A(t) the (random) value of assets pertaining to the portfolio at time t and by Y(t) the 
random value of liabilities at the same time. Referring to Olivieri, Pitacco (2001), we say that 
the required solvency reserve at time 0 is the initial value of assets A*(0) such that the 
probability that assets keeps higher than liabilities within a given time horizon is equal to an 
accepted level. In other words, the following condition must be satisfied 
 

 ε−=








≥−∧
=

1)0(),0(A|0)t(Y)t(APr *
T

0t
I  (6.1) 

 
where ε is the accepted probability of ruin, T is the time horizon within which the insurer 
solvency is investigated and I(0) collects all information available at time 0 about the portfolio 
and the scenario in which the portfolio will evolve; in particular, I(0) embeds the available 
information on the demographical scenario. Denoting by n the maximum duration of the 
policies at time 0 (coinciding with the maximum age less the age at entry), where Y(n) = 0, it 
can be checked that 
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 (6.2) 

 
Hence, the required initial reserve is the one which allows to get to a final positive value of 
assets, with an assigned probability. Finally, we call required solvency margin at time 0, M*(0), 
the difference between the required solvency reserve and the portfolio single premium, i.e. 
 
 M*(0) = A*(0) – N π (6.3) 
 
In Table 6.1 and 6.2 some results are shown, relating to a homogeneous portfolio of Enhanced 
Pension policies (see Olivieri, Pitacco (2001)); the results have been obtained through stochastic 
simulation. In Table 6.1 a deterministic approach is adopted (results have been obtained 
referring to scenario H3), whilst in Table 6.2 a stochastic approach has been assumed, under the 
same hypotheses of the previous Sections. The huge difference between the results is therefore 
due to the types of risks faced by the solvency reserve; in Table 6.1 only random fluctuations 
are accounted for, whilst in Table 6.2 systematic deviations are also considered. 
 
 
 
 
 
 
 
 
 
 



 - 17 - 

 
 

N 

 
 

N π 

ε = 0.01 
 

A*(0) 

 

πN

)0(M*
 

ε = 0.025 
 

A*(0) 

 

πN

)0(M*
 

ε = 0.05 
 

A*(0) 

 

πN

)0(M*
 

100 136,035 151,443 11.326% 149,401 9.825% 147,179 8.192% 
500 680,175 715,539 5.199% 709,534 4.316% 705,451 3.716% 

1,000 1,360,350 1,402,735 3.116% 1,396,460 2.654% 1,390,785 2.237% 
2,000 2,720,700 2,787,999 2.474% 2,780,099 2.183% 2,769,741 1.802% 
3,000 4,081,050 4,174,577 2.292% 4,157,763 1.880% 4,141,550 1.482% 
4,000 5,441,401 5,525,220 1.540% 5,512,469 1.306% 5,503,452 1.140% 
5,000 6,801,751 6,906,187 1.535% 6,892,375 1.332% 6,876,162 1.094% 

 
Table 6.1 – Enhanced Pension; required solvency reserve and margin (deterministic approach) 

 
 

 
 

N 

 
 

N π 

ε = 0.01 
 

A*(0) 

 

πN

)0(M*
 

ε = 0.025 
 

A*(0) 

 

πN

)0(M*
 

ε = 0.05 
 

A*(0) 

 

πN

)0(M*
 

100 136,035 154,963 13.914% 151,612 11.451% 148,973 9.511% 
500 680,175 754,323 10.901% 741,187 8.970% 721,460 6.070% 

1,000 1,360,350 1,501,214 10.355% 1,483,238 9.034% 1,437,263 5.654% 
2,000 2,720,700 2,991,104 9.939% 2,965,069 8.982% 2,886,963 6.111% 
3,000 4,081,050 4,480,350 9.784% 4,447,603 8.982% 4,296,875 5.288% 
4,000 5,441,401 5,965,233 9.627% 5,929,172 8.964% 5,761,719 5.887% 
5,000 6,801,751 7,452,583 9.569% 7,412,720 8.983% 7,226,563 6.246% 

 
Table 6.2 – Enhanced Pension; required solvency reserve and margin (stochastic approach) 

 
 
When dealing with ways to fund such required solvency reserve, proper reinsurance 
arrangements must be focussed. It goes beyond the scope of this paper to discuss such topic. We 
just mention that a stop-loss-like reinsurance treaty can represent a feasible solution in this 
respect, as suggested by Olivieri, Pitacco (2001). 
 
 
 
 
7. Final remarks 
 
Demographical risks affecting LTCI have been dealt with, with particular regard to those 
emerging from mortality and disability trends. The main contribution of the paper consists in 
discussing the necessity of constructing mortality and disability projected tables, which aspects 
must be considered to this scope and what analyses can be performed once projected tables are 
available. In the near future, further discussion is then required on tools to face LTC risks. As 
mentioned in the paper, tools to consider are capital allocation and reinsurance. Moreover, the 
examples presented show that when several benefits are granted, such as in the Enhanced 
Pension product, the magnitude of the premium required to the policyholder determines a 
reduction in the (relative) severity of the risk. So, a proper combination of benefits, which 
obviously involves commercial advantages, deserves deeper investigations as a way to face 
risks coming from mortality and disability trends. 
 
 



 - 18 - 

 
References 
 
Benjamin J. and A.S. Soliman (1993), Mortality on the move, Actuarial Education Service, 

Oxford 
Chen Y. (1994), Financing Long-Term Care: an intragenerational social insurance model, The 

Geneva Papers on Risk and Insurance, 19(73): 490-495 
Ferri S. and A. Olivieri (2000), Technical bases for LTC covers including mortality and 

disability projections, Proceedings of the ASTIN 2000 International Colloquium, Porto 
Cervo (Italy): 295-314 

Fries J.F. (1980), Aging, natural death and the compression of morbidity, N. Engl. Journal of 
Medicine: 303 

Gatenby P. (1991), Long Term Care, Paper presented to the Staple Inn Actuarial Society, 
London 

Gruenberg E.M. (1977), The failure of success, Milbank Memorial Foundation Q./Health 
Society: 55 

Haberman S. and E. Pitacco (1999), Actuarial models for disability insurance, Chapman & Hall 
/ CRC, Boca Raton 

Kramer M. (1980), The rising pandemic of mental disorders and associated chronic diseases and 
disabilities, Acta Psychiatrica Scandinavica: 62 

Macdonald A.S. (ed.) (1997), The second actuarial study of mortality in Europe, Groupe 
Consultatif des Association d’Actuaires des Pays des Communautes Europeennes, Oxford  

Macdonald A.S. et al. (1998), An international comparison of recent trends in population 
mortality, British Actuarial Journal, 4 : 3-141 

Manton K.G. (1982), Changing concepts of morbidity and mortality in the elderly population, 
Milbank Memorial Foundation Q./Health Society 

Olivieri A. (1996), Sulle basi tecniche per coperture “Long Term Care”, Giornale dell’ Istituto 
Italiano degli Attuari, 49: 87-116 

Olivieri A. (2001), Uncertainty in mortality projections: an actuarial perspective, Insurance: 
Mathematics & Economics, 29(2): 231-245 

Olivieri A. and E. Pitacco (2001), Facing LTC risks, Proceedings of the XXXII International 
ASTIN Colloquium, Washington (USA) 

Swiss Re (1999), Long Term Care Data Pack, London 
Whynes D.K. (1996), The provision and finance of Long-term Care in the United Kingdom, The 

Geneva Papers on Risk and Insurance, 21(79): 271-283 
Zweifel P. (1996), Providing for Long-term Care: Insurance vs. Trust Saving, The Geneva 

Papers on Risk and Insurance, 21(79): 284-292 
 


