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The win-first probability under interest force
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Abstract

In a classical risk model under constant interest force, we study the probability that the surplus of an insurance company reaches
an upper barrier before a lower barrier. We define this probability as win-first probability. Borrowing ideas from life-insurance
theory, hazard rates of the maximum of the surplus before ruin, regarded as a remaining future lifetime random variable, are
studied, and provide an original derivation of the win-first probability. We propose an algorithm to efficiently compute this
risk-return indicator and its derivatives in the general case, as well as bounds of these quantities. The efficiency of the proposed
algorithm is compared with adaptations of other existing methods, and its interest is illustrated by the computation of the expected
amount of dividends paid until ruin in a risk model with a dividend barrier strategy.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we propose a way to compute the probability that a risk process reaches an upper barrier (representing
a goal or a threshold for a dividend policy) before crossing a lower barrier (representing the ruin of the company,
or a threshold for insolvency penalties). We define this probability aswin-first probability.

We consider the compound Poisson risk model with a constant instantaneous interest forceδ. The surplus of an
insurance company at timet is modeled by the processRt , whereR0 = u andRt satisfies the stochastic differential
equation:

dRt = c dt − dSt + δRt dt.
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Here,u is the initial surplus,c the premium income rate, and the cumulated claims processSt is a compound Poisson
process given by the Poisson parameterλ and the distribution functionFW of the individual claim amountW, with
meanm. Assume thatc > λm. Denote byTu andT vu the respective times to lower or upper barrier, with initial
surplusu:

Tu = inf {t, Rt < 0} and T vu = inf {t, Rt ≥ u+ v}

with Tu = +∞ if ∀t ≥ 0, Rt ≥ 0 andT vu = +∞ if ∀t ≥ 0, Rt < u+ v. The non-ruin probability within finite time
t is

ϕδ(u, t) = P(Tu > t),

and the eventual non-ruin probability and ruin probability are respectively

ϕδ(u) = P(Tu = +∞) and ψδ(u) = 1 − ϕδ(u).

As c > λm, ct − St
a.s.→ +∞ ast → ∞. If δ = 0 (no interest force), for any (u, v) ∈ R2, T vu is an almost surely finite

stopping time and one can determine whether or notTu > T vu . However, ifδ > 0,

P(Rt → +∞ ast → +∞) �= 1

because there exists a thresholdy < 0 such that, if for somet > 0,Rt < y, then surely∀s > t, Rs < 0. This corre-
sponds to the definition of ruin under interest force ofGerber (1979). This phenomenon causes many generalizations
of the classical risk model to fail. Nevertheless, if for allt ≥ 0, Rt ≥ 0, thenRt →a.s.+∞ as t → ∞. This will
be very important to compute the win-first and the lose-first probabilities with constant interest force, respectively
defined as

WF (u, v) = P (T vu < Tu), LF (u, v) = 1 − WF (u, v).

These probabilities may provide risk and profit indicators with the same unit: subjectivity is reduced to the choice
of the lower boundu, which represents the event “lose”, and the upper boundv, which represents the event “win”.
Without upper barrier, one drawback of the probability of ruin is that its minimization often prescribes the cession
of the whole activity by the insurer to the reinsurer. Besides, it does not give any information about the possible
profit, even for very small ruin probabilities. It is interesting to combine it with a return indicator, and one of the
simplest compromises is to consider the probabilityWF(u, v) to reach a levelu+ v from initial surplusu before
being ruined. It has the advantage not to require constrained optimization techniques.

Risk and return indicators can be built from the win-first probability, such as the initial surplus required to
avoid a failure,uε(v) = inf {u,1 − WF(u, v) ≤ ε}, the objective levelv and confidence levelε being given, or the
maximal objective level that is reasonably achievablevε(u) = sup{v,WF(u, v) ≥ 1 − ε}, u andε being given. The
two barriers thus help to define synthetic risk-return indicators having the same unit, like (uε(v), v) and (u, vε(u)),
useful to compare reinsurance or investment strategies. Other quantities involving win-first probabilities can be
considered, such asE((Tu − T vu )+), E((T vu − Tu)+) . . .

Double barrier problems have been studied in the compound Poisson model without interest force bySegerdahl
(1970), Dickson and Gray (1984a,b), Wang and Politis (2002). We first give properties of win-first probabilities
in Section2.1, including a differential equation and a direct adaptation of a result ofSegerdahl (1942). We thus
obtain the win-first probability as a quotient of two non-ruin probabilities. A first way to tackle the problem of
numerically compute win-first probabilities would be to use existing methods (Brekelmans and De Waegenaere,
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2001; Sundt and Teugels, 1995, 1997; De Vylder, 1999) of computing ruin probabilities for some particular claim
amount distributions, or for smallδ, and to take the quotient. For exponentially distributed claim amounts, the
probability of ruin under constant interest force is well-known (seeSegerdahl, 1942, or Sundt and Teugels, 1995).
For general claim size distribution, bounds and Lundberg coefficients have been derived bySundt and Teugels
(1995, 1997), and several others.

Sundt and Teugels (1997)obtain bounds for the adjustment function.Konstantinides et al. (2002)obtain an
asymptotical two-sided bound for heavy-tailed claim size distribution from generalizing results of the classical case
δ = 0 to the general case. It is possible to use these bounds to get a two-sided bound for the win-first probability with
interest force with heavy-tailed claim size distribution. However, we do not need in our problem to compute ruin
probabilities, and we shall introduce an original method which is adapted to the present framework and more suitable
in the general case and for general interest forceδ than the method consisting in computing the two corresponding
ruin probabilities.

The formulation of the problem, and the quotient of survival probabilities suggest the possibility to study a
ruin-related survival function of some defective random variableθ, inspired from life-insurance theory. We study
in Section2.2, its hazard rate function and propose an algorithm to compute the win-first probabilities and its
derivatives, and a bound of the numerical error. A particular property of the hazard rates ofθ (seeTheorem 5) is
the key argument which makes the method so efficient. The algorithm and reasons for someone to want to use it
are detailed in Section3. In Section4, numerical examples are given to demonstrate the accuracy of the algorithm
and applications are proposed. In particular, computing expressions likeE[WF(u−W,W)] which involve win-first
probabilities are of real interest in models with dividends. For example,Frostig (2004)andGerber and Shiu (1998),
considered risk models with a dividend barrier, and computed the expected amount of dividends until timet and until
ruin, or optimal dividend strategies. These quantities are expressed in Section4.1in terms of win-first probabilities,
which correspond in this framework to the probability that the dividends are positive. We compare our method with
the one usingSundt and Teugels (1995)in Section4.3.

2. Win-first probability

In this section, we first adapt classical results of ruin theory to our framework. There is no essentially new idea
in Section2.1. This is the reason why we only state the results we shall need later. The proofs are similar as in the
caseδ = 0. We introduce in Section2.2, the new method we propose to compute the win-first probabilities in the
general case.

2.1. Adaptation of classical results and methods of ruin theory

Note thatWF (u, v) is nondecreasing with respect tou, nonincreasing with respect tov, and that

WF(u, v) = 0 for all u < 0 and WF(u, v) = 1 for all u ≥ 0, v ≤ 0.

Remark 1. In the special caseδ = 0, Rt = u+ ct − St corresponds to the classical risk process, andRt − R0
does not depend onR0 = u. In this case,u is not necessarily the initial reserve, andWF(u, v) corresponds to the
probability that the surplus processRt reachesR0 + v before reaching the barrierR0 − u, and does not depend on
R0.

Theorem 1. For v ≥ 0,w ≥ 0,

WF(u, v+ w) = WF (u, v) · WF (u+ v,w). (1)
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Proof. Foru ≥ 0, v > 0,w > 0, from stationarity and Markov property ofRt , earningv+ w before losingu may
be decomposed into: earningv before losingu and then earningw before losingu+ v. If v = 0 orw = 0 equality
is obvious. Foru < 0, both terms are equal to 0.�

Theorem 2. For u ≥ 0, v > 0,

∂

∂u
WF(u, v) − ∂

∂v
WF(u, v) = λ

c + δu
(WF(u, v) − E[WF(u−W, v+W))], (2)

∂

∂u
WF(u, v) − ∂

∂v
WF(u, v) = λ

c + δu
WF(u, v) · (1 − E[WF(u−W,W)]). (3)

Proof. From Poisson process properties, we get

WF(u, v) = (1 − λ�t) · WF
(
ueδ�t + c

δ
(eδ�t − 1), v−

(
u+ c

δ

)
(eδ�t − 1)

)
+ λ�t · E

[
WF

(
ueδ�t + c

δ
(eδ�t − 1) −W, v−

(
u+ c

δ

)
(eδ�t − 1) +W

)]
+ o(�t).

This heuristic argument shows that Eq.(2) may be derived with classical ruin theory tools. Foru = 0, we take the
convention that (∂/∂u)WF(u, v) is the right derivative ofWF(u, v). Note that in this case, the last term of Eq.(2)
disappears. Starting from(2), a direct application of(1) leads to

WF(u−W, v+W) = WF(u−W,W) · WF(u, v),

which provides the second equation.�

Inequalities between win-first probabilities and some finite-time ruin probabilities may be derived.

Proposition 1. For any u ≥ 0, v ≥ 0, we have

ϕδ(u) ≤ WF(u, v) ≤ ϕδ(u, τδ(u, v)), (4)

where τδ(u, v) = 1
δ

ln
(

1 + v
u+c/δ

)
if δ > 0, and τ0(u, v) = v/c.

Proof. Foru ≥ 0,v ≥ 0, if Tu = +∞ then the insurer earns almost surelyv before losingu, becauseRt →a.s.+∞
ast → ∞. It follows WF(u, v) ≥ P(Tu = +∞) = ϕδ(u). Now, if the insurer earnsv before losingu, time needed
to earnv is necessarily greater than the solutionτδ(u, v) of equation int:

ueδt + c

δ
(eδt − 1) = u+ v,

andTu > τδ(u, v). So,WF(u, v) ≤ P[Tu > τδ(u, v)].
Finally, considering limv→∞ WF(u, v), enables us to expressWF(u, v) as a quotient of survival probabili-

ties. �

Theorem 3. For u ≥ 0, v ≥ 0,

WF(u, v) = ϕδ(u)

ϕδ(u+ v)
. (5)
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In the special caseδ = 0, this result has been recently developed byWang and Politis (2002), and had also been
treated previously byDickson and Gray (1984b)andSegerdahl (1970). The idea is here exactly the same, and we
omit the proof of the extension, which is rather direct.

From Eq.(5), it is possible to derive an exact formula forWF(u, v) in the case of exponentially distributed claim
amounts (seeSegerdahl, 1942; Sundt and Teugels, 1995), and asymptotical equivalents and bounds for general
claim size distribution, as mentioned in the introduction.

2.2. Hazard rates of θ and applications

In this section we present an interesting interpretation ofWF(u, v). Let us change our notation for an instant and
write

vpu = WF(u, v).

Property(1) can be written

v+wpu =v pu ·w pu+v,

and corresponds to a simple classical formula, expressed in International Actuarial Notation (see Actuarial Mathe-
matics), stating that for a positive future lifetimeθ:

P(θ ≥ u+ v+ w|θ ≥ u) = P(θ ≥ u+ v|θ ≥ u) · P(θ ≥ u+ v+ w|θ ≥ u+ v).

This formula, based on elementary conditioning, illustrates the fact that someone agedu survivesv+ w years, if
he first survivesv years, and, being then agedu+ v, survivesw more years. So, it seems logical to look for a
nonnegative random variableθ such thatWF(u, v) = P(θ ≥ u+ v|θ ≥ u). Let θ be the positive, defective random
variable

θ = sup{Rt, t ≤ T0|R0 = 0}.

Define the survival function ofθ by S(x) = P(θ ≥ x), x ∈ R+, and its hazard rate by

µx = −S
′(x)
S(x)

= − ∂

∂x
ln(S(x)).

Theorem 4. For u ≥ 0, v ≥ 0, the win-first probability can be written as

WF(u, v) = P(θ ≥ u+ v|θ ≥ u) = S(u+ v)

S(u)
, (6)

with S(x) = P(θ ≥ x) = ϕδ(0)/ϕδ(x), x ≥ 0.

Proof. Let us first consider the caseu = 0, v ≥ 0. If T0 = +∞,Rt
a.s.→ +∞ ast → ∞, and upper barrierv is reached

after an almost surely finite timeT vu < T0. In this case, given thatT0 = +∞,WF(0, v) = 1 = P(θ ≥ v). If T0 < +∞,
upper barrierv is reached if and only ifθ ≥ v, andWF(0, v) = P(θ ≥ v). In every caseWF(0, v) = P(θ ≥ v), v ≥ 0.
Consider nowu ≥ 0, v ≥ 0. We have seen thatT0 = +∞ impliesθ ≥ u. SoP(θ ≥ u) ≥ ϕδ(0)> 0. Starting from
property(1), we haveWF(u, v) = WF(0, u+ v)/WF(0, u) = P(θ ≥ u+ v)/P(θ ≥ u). And the result is obvious
sincev ≥ 0.
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Foru ≥ 0, v ≥ 0, note that

µu+v = − ∂

∂v
ln WF(u, v).

This rate is finite and only depends on the sumu+ v. In the case of integer-valued claim amounts, we will see
thatµu is continuous and derivable at eachu ∈ R+ \ N. For u ∈ N, µu will be only right-continuous and right-
differentiable, so that we will take the convention that each derivative ofµ is its right derivative. We will take the
same convention for derivatives inu of WF(u, v). Given thatθ ≥ u, the conditional density ofθ is

fθu (x) = ∂

∂x
P(θ < u+ x|θ ≥ u) = WF(u, v) · µu+v.

Hence, for example,LF(u, v) = P(θ < u+ v|θ ≥ u) = ∫ v0 WF(u, s)µu+s ds.
In the sequel, since we will use common actuarial tools, we will most often preferably write probabilities with

standard actuarial notations, usingtpx instead ofWF(x, t), and will also write:

µ(i)
u = ∂i

∂ui
µu, S(i)

u = ∂i

∂ui
S(u), tp

(i)
x = ∂i

∂xi
tpx, wp

(i)
u−w = ∂i

∂ui
wpu−w.

Note that, due to these definitions, we do not have an equality betweenS(i)
u andwp

(i)
u−w whenw = u.

Let us denote byCkn the binomial coefficient for integersk andn, 0 ≤ k ≤ n. �

Proposition 2. For u, v ≥ 0, we have

WF(u, v) = exp−
∫ u+v

u

µs ds, (7)

tp
(1)
x = tpx(µx − µx+t), tp

(k+1)
x =

k∑
i=0

Ciktp
(i)
x (µ(k−i)

x − µ
(k−i)
x+t ), k ≥ 0. (8)

Proof. Eq.(7) holds directly fromTheorem 4. Differentiations are straightforward.�

Proposition 3. A general link between unconditional survival function and hazard rate is given for x ≥ 0,k ≥ 0 by

S(1)(x) = −µxS(x), S(k+1)(x) = −
k∑
i=0

Cikµ
(i)
x S

(k−i)(x). (9)

Theorem 5. The hazard rate of θ and its right derivatives are as follows:

µu = αu(1 − E(Wpu−W )), µ(k)
u = α(k)

u −
k∑
j=0

C
j
kα

(k−j)
u E(Wp

(j)
u−W ), for u ≥ 0, k ≥ 0. (10)

with α(k)
u = k!λ(−δ)k(c + δu)−(k+1), αu = α(0)

u .

Proof. Direct from(3) and from(7).
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Note that first equation in previous relations could also be written:

µu = λ

c + δu

(
1 − E

[
1W≤u exp−

∫ u

u−W
µs ds

])
,

µu = λ

c + δu
((1 − FW (u)) + E[1W≤u · LF(u−W,W)]).

In particular, supposeW is a continuous random variable. It is clear thatWF(u−W,W) = 0 if W > u. It follows
from(5) thatµ0 = λ

c
and that∀u ≥ 0, 0≤ µu ≤ µ0. SinceWF(0, v) = exp− ∫ v0 µs ds > 0 for eachv > 0,µ+∞ =

limu→+∞ µu = 0. Furthermore, differentiation ofµu follows immediately from(7) and (5). �

Hence, whenW is a continuous random variable, the hazard rateµu is a continuous, decreasing function ofu,
such that

µ0 = λ

c
, lim

u→+∞µu = 0, µ′
0 = −λδ

c2 and lim
u→+∞µ

′
u = 0. (11)

Remark 2. For δ = 0, differentiation ofWF(u, v) makes sense, and computingµu, u > 0 in terms ofϕ0(u) leads
to

µu = ϕ′
0(u)

ϕ0(u)
.

We also check that, in the special caseδ = 0, formula(5) is a version of the classical risk theory formula

ϕ′
0(u) = λ

c
ϕ0(u) − λ

c
E[ϕ0(u−W)].

3. Algorithm

The recursive determination of hazard rateµu and its derivatives, for successive values ofu, gives a set of values
of S(u) and its derivatives up to a given order. Despite the purpose is here to find values of win-first probabilities,
this will eventually give results onψδ(u) whenψδ(0) is known.

The proposed iterative algorithm allows to re-use previous computed quantities, and then reduce the complexity
of the determination of the whole functionS. It gives many derivatives ofµu andS(u), and all numerical errors will
be bounded in a further section. No assumption is made neither on claim amounts nor on the interest forceδ, making
the context different from studies using smallδ (seeSundt and Teugels, 1995and Section4.3), and from the one
using particular distributions for claim amounts (seeKonstantinides et al., 2002; Brekelmans and De Waegenaere,
2001)

3.1. Approximations

In the sequel,W is assumed to be a random variable taking values in the setN
∗ of positive integers. Define

πi = P(W = i), i ∈ N.
This hypothesis is not so stringent: in practice, we may approach any continuous random variable by a discrete

one, and the discretization step may be chosen as small as necessary. Instead of taking this step smaller than 1, we
choose this step equal to 1 and change the monetary unit.

The restrictionπ0 = 0 can be easily eliminated: ifπ0 > 0, one may replaceπ0, π1, π2, . . . with 0, π1/(1 −
π0), π2/(1 − π0), . . . andλ with λ(1 − π0) (seeDe Vylder, 1999).



428 D. Rullière, S. Loisel / Insurance: Mathematics and Economics 37 (2005) 421–442

The main assumption we shall use for approximations is

Assumption. Hε
r : µ is locally polynomial of orderr on intervals [kε, kε+ ε[, k ∈ N.

We shall see further that even a choice liker = 2 andε = 0.5 gives numerically quite good results (see Section4.2),
and the precision of the algorithm increases rapidly for a better choice of these two parameters. In Section3.3, we
will derive bounds for each approximated quantity in the algorithm, in order to ensure the numerical validity of this
assumption. UnderHε

r , we get from ther first derivatives ofµ:

∀s ∈ [0, ε[, µ(x+ s) =
r∑
i=0

µ(i)(x)

i!
si, Forx ∈ εN, S(x+ ε) = S(x) exp

(
−
∫ ε

0

r∑
i=0

µ(i)(x)

i!
si ds

)
,

S(x+ ε) = S(x) exp

(
−

r∑
i=0

µ(i)(x)

(i+ 1)!
εi+1

)
. (12)

We can also deriveS(x+ ε) from derivatives ofS(x), but we choose to use the single hypothesisHε
r . In life insurance,

the hypothesis of constant hazard rate is often considered for survival lifetimes, and corresponds here to the order
r = 0. In practice, it is possible to get higher order derivatives ofµu since computation ofµ(r+1)

u may be replaced

with an approximation likeµu′left(r) = (µ(r)
u − µ

(r)
u−ε)/ε. However, one should keep in mind that, ifW takes values

in N, eachx ∈ N is a point of discontinuity for functionµ (seeFig. 4). So, using this approximation will give good
results, except foru ∈ N. Nevertheless, since numerical results are fine enough, and since the parameterr could be
chosen, we did not use this approximation.

Proposition 4 (approximation algorithm).Under hypothesis Hε
r , the following algorithm computes recursively

the values of S(u), µu, E[Wpu−W ] and all their derivatives up to a given order r. With S(0) = 1, and for u ∈ εN,
u ≤ umax, k ∈ N, k ≤ r:

wp
(k)
u−w = 1{k=0}

S(u)

S(u− w)
+ 1{k≥1}

k−1∑
i=0

Cik−1wp
(i)
u−w(µ(k−1−i)

u−w − µ(k−1−i)
u ), w = 1 . . . [u],

µ(k)
u = α(k)

u −
k∑
j=0

C
j
kα

(k−j)
u E(Wp

(j)
u−W ), S(u+ ε) = S(u) exp

(
−

r∑
i=0

µ(i)(u)

(i+ 1)!
εi+1

)
.

From the second equation, quantities µ(0)
0 = α

(0)
0 andµ(k)

0 are given by the recursion, as the E(Wp
(j)
u−W ), j ≤ k are

derived from previously computed quantities wp
(j)
u−w.

Note thatα(k)
u = k!λ(−δ)k(c + δu)−(k+1), and that forw > u, wp

(j)
u−w = 0. The previous algorithm gives deriva-

tives of µ from order 0 to r. It also gives for eachu ≤ umax, u ∈ εN, S(u) and eventuallyψδ(u) =
1 − ϕδ(0)/S(u). To obtain derivatives ofWF and S, we can use(8) for (∂k/∂uk)WF(u, v) and following
relations:

∂k

∂vk
WF(u, v) = S(k)(u+ v)

S(u)
, S(k+1)(x) = −

k∑
i=0

Cikµ
(i)
x S

(k−i)(x), k ≥ 0. (13)
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Let i be a positive integer. We have seen thatS(i) = ϕδ(0)/ϕδ(i). In the special caseδ = 0, it is known thatϕ0(i) can
be exactly computable by classical formulae (seePicard and Lef̀evre, 1997; De Vylder, 1999):

ϕ0(i) =
(

1 − λm

c

) i∑
j=0

hj(j − i),

with hj(τ) = λτ
cj

∑j
k=1 kπkhj−k(τ) andhj(0) = e−λτ/c. This formula has the advantage to give exact values ifW is

integer-valued. Let us compare the number of loops involved in the computation ofS(i), i = 1, . . . , x by algorithm
(4) and the number of loops involved in the computation ofϕ0(i), i = 1, . . . , x by thePicard and Lef̀evre (1997)
algorithm. ComputingS(i), i = 1, . . . , x implies r2/2 loops fori = 1, . . . , x/ε, j = 1, . . . , iε, so that complexity
of algorithm(4) is quite proportional tor2x2/ε. Computingϕδ(i), i = 1, . . . , x requires loops fori = 1, . . . , x,
j = 0, . . . , i, k = 1, . . . , j, so that complexity of Picard-Lefèvre formula is quite proportional tox3. To approximate
a continuous distributionW byWd taking values in dN, time needed by algorithm(4) is proportional tor2x2/(d2ε)
againstx3/d3 for the Picard and Lef̀evre (1997)formula. Noting that hypothesisHε

1 means thatµ is linear on
intervals of length dε, one can useε = 1 andr = 1 if d is small. As both formulae lead to an approximation of
values obtained for a continuousW, the algorithm may be of a practical interest even in the caseδ = 0. Moreover,
we will see in Section3.4that the complexity of the algorithm can be reduced in this case.

3.2. Convergence for parameters r and n

The highest order of derivatives that are computed by the algorithm isr, andn = 1/ε is an integer that represents
the number of sub-periods in one unit of time. The hypothesis in approximation algorithm is that, on each sub-period,
µu is locally polynomial of orderr. The precision of the algorithm, at one step, is given byη, which represents the
number of decimal digits that one aims at obtaining. More precisely, 10−η represents the error in the approximation
of µu+ε by the Taylor expansion of orderr.

To improve the local precision of the algorithm, we can increase eithern or r; this may have different effects
on the complexity of the algorithm. We only give here informal considerations for the choice of the couple (n, r)
to minimize the complexity of the algorithm. It would be possible to get more rigorous results for that choice of
parameters, but they are omitted here in the interest of conciseness.

Note first that the remaining part in the Taylor expansion behaves like (µ(r+1))/((r + 1)!)εr+1. To simplify further
calculation, takeu = 0, sinceµ(r+1)(0) is known, equal toα(r+1)(0). In absolute value, the error is then comparable
to λ(δ/cn)r+1. If this last quantity is set to be equal to 10−η, then a link appears betweenr andn:

r = η ln(10)+ ln(λ)

ln(cn/δ)
− 1, n = δ

c
(λ10η)1/(r+1)

.

For a givenu the local complexity of the algorithm is then proportional to

c(r) = nr2 = δ

c
λ10η1/(r+1)

r2.

Trying to findr0 that minimizesc(r), we find, in the case where ln(λ10η) ≥ 8

r0 = 1

4

(
ln(λ10η) − 4 +

√
ln(λ10η)(ln(λ10η) − 8)

)
, n0 = δ

c
λ10η1/(r0+1)

.
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Sincen0 is here a real number, and should better be an integer greater than 1, and sincer must also be an integer, we
may choose the following parameters to ensure that required precision onµ is reached at the first point following
u = 0:

nopt = max(2, [n0] + (0 or 1)) and ropt =
[
η ln(10)+ ln(λ)

ln(cnopt/δ)

]
+ (0 or 1).

As an example, takeδ = 100%, so that we do not suppose thatδ is close to 0. Forλ = 1, c = 1 andη = 12
decimal digits, we getnopt = 9 andropt = 12. Withη = 16 decimal digits, we getnopt = 9 andropt = 16, so that
the complexity is multiplied by something less than 1.8 to reach 4 more decimal digits.

3.3. Bounds for µu, WF(u, v) and their derivatives

The algorithm makes only one approximation by replacingµu+ε with its Taylor expansion. Nevertheless, this
approximation is used recursively, so that even if the error is locally bounded, we cannot ensure that the global
result will be precise enough. For this reason, we must give exact bounds for the values we approximate.

For a functionfu of u, we will use the following notations:fu[−1] andfu[+1] will be bounds offu, such that
fu ∈ [fu[−1], fu

[+1]]. We define by this wayµ(k)
u

[σ], S(u)[σ] andβ(k)
u

[σ] , with β(k)
u = E[Wp

(k)
u−W ], for σ ∈ {−1,+1}.

For two bounded quantitiesa andb, we will use following arithmetic, that might be simplified when the signs
of a andb are known:

(a+ b)[σ] = a[σ] + b[σ], (a− b)[σ] = a[σ] − b[−σ], (ab)[σ] = max
σ1,σ2∈{−σ,σ}

{a[σ1]b[σ2]}, σ ≥ 0

(ab)[−σ] = min
σ1,σ2∈{−σ,σ}

{a[σ1]b[σ2]}, σ ≥ 0.

Note first that, whenu = 0, S(0)[+1] = S(0)[−1] = 1. From(8), we can boundwp
(k)
u−w from bounds ofµ(j)

u and

wp
(j)
u−w, j < k, w ≤ u. From(10), we can also boundµ(k)

u from bounds ofwp
(j)
u−w, j ≤ k. We get thenwp

(k)
u−w[σ]

andµ(k)
u

[σ] for σ ∈ {−1,+1}.
We will now use for a functionfu of u the following notations:fu[−2] andfu[+2] will be bounds offu, such that

∀s < ε, fu+s ∈ [fu[−2], fu
[+2]
]
.

Note that, whenu = 0,S(0)[+2] = 1, and sinceS is decreasing,S(0)[−2] ≤ S(ε)[−1]. The sign ofα(k)
u is the same

as the one of (−1)k. Sinceα(k)
u is thus either increasing or decreasing inu, depending onkmod 2, we remark that

α(k)
u

[σ] = k!λ(−δ)k(c + δu)−(k+1), σ = −1,0,+1, α(k)
u

[−2] = 1{kmod 2=0}α(k)
u+ε + 1{kmod 2=1}α(k)

u ,

α(k)
u

[+2] = 1{kmod 2=0}α(k)
u + 1{kmod 2=1}α(k)

u+ε.

Using suchα(k)
u

[σ] , we can easily check that(8) and (10)can be adapted to get boundswp
(k)
u−w[σ] andµ(k)

u
[σ] for

σ ∈ {−2,+2}.
The knowledge of bounds ofµ(k)

u+s, s < ε will allow us to derive bounds of the derivative form of Taylor’s
remainder, and then bounds ofS(u). Fors ∈ [0, ε], µu+s is a continuous andr + 1 times differentiable function of
s. We have

µu+s =
r∑
k=0

µ(k)
u

k!
sk + R(r)

u,s with R(r)
u,s = µ

(r+1)
u∗

(r + 1)!
sr+1, u∗ ∈ [u, u+ ε[.
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Sinceµ(r+1)
u∗ is bounded, we can boundR(r)

u,s, and thenS(u+ ε):

S(u+ ε)[σ] = S(u)[σ] exp

(
−

r∑
k=0

µ(k)
u

[−σ]

(k + 1)!
εk+1 + µ(r+1)

u
[−2σ]

(r + 2)!
εr+2

)
, σ ∈ {−1,+1}.

The only difficulty to build the bounding algorithm is the following: sinceS(u) is decreasing inu, a good lower bound
for S(x), x ∈ [u, u+ ε[ is given by the lowest value ofS(u+ ε), so that we can proposeS(u)[−2] = S(u+ ε)[−1].
Nevertheless, the calculation ofS(u+ ε)[−1] from S(u)[−1] usesµ(r+1)

u
[+2], that is then calculated fromS(u)[−2].

Using such a bound gives thenS(u)[−2] as a computable function of itself. We have built both a formal computation
algorithm, in order to get the root value ofS(u)[−2], and also a fixed-point algorithm, starting fromS(u)[−2] = 0.
Nevertheless, since the last term of Taylor expansion becomes very small for large values ofr, such precise bounds
of S(u)[−2] could be replaced withS(u)[−2] = 0. The great acceleration resulting of this choice can be exploited to
increaser or n = 1/ε, for example, and thus the precision of the algorithm. We will see with numerical figures that
this approximation is sufficient to get very precise results. Indeed, it only changes bounds for ther + 1th derivative
order ofµu and has an impact comparable toµ(r+1)

u
[+2]εr+2/(r + 2)!. The problem does not hold forS(u)[+2] since

the better bound we can propose isS(u)[+2] = S(u)[+1]. Note that, by construction,S(u)[−1] andS(u)[+1] give
bounds forS(u), not for its approximationS(u)[0] , which can be outside the interval.

Proposition 5 (bounding algorithm).Bounds for µu, E[Wpu−W ], S(u) and their derivatives up to order r are
given by following algorithm, with initialization values S(0)[−1] = S(0)[+1] = 1.For u = 0, . . . , umax by step ε, for
k = 0, . . . , k + 1, and for σ0 = +1,+2,

S(u)[+2] = S(u)[+1], S(u)[−2] = 0, wp
(0)
u−w[σ] = S(u)[σ]

S(u− w)[−σ] , σ = ±σ0,

wp
(k)
u−w[σ] =

k−1∑
j=0

C
j
k−1(wp

(k−1−j)
u−w (µ(j)

u−w − µ(j)
u ))[σ], u ≥ 1, k ≥ 1, σ = ±σ0,

µ(k)
u

[σ] = α(k)
u

[σ] − 1{u≥1}
k∑
j=0

C
j
k(α

(k−j)
u E[Wp

(j)
u−W ])[−σ], σ = ±σ0,

S(u+ ε)[σ] = S(u)[σ] exp

(
−

r∑
k=0

µ(k)
u

[−σ]

(k + 1)!
εk+1 − µ(r+1)

u
[−2σ]

(r + 2)!
εr+2

)
, σ = ±1.

This algorithm is quite similar to the first one we proposed. Some remarks can be done for its practical implemen-
tation.

First, we had better use only integer arguments, so that forn = 1/ε, n ∈ N, we preferably replaceu with an index
i = 0, . . . , numax, wherei denotesnu.

Second, for each value ofu, we do not use previous valueswp
(k)
u0−w andE[Wp

(k)
u0−W ], u0 < u. In the algorithm,

these quantities do not need to depend onu, and that spares stocking memory.
Third, many quantities, likeE[Wp

(k)
u−W ] or like Taylor integrated approximation in the exponential, can be

computed in previous sums giving respectivelywp
(k)
u−w andµ(k)

u .
We may check at each step if the precision of the computer is high enough. If not, it is possible to change lower

and upper bounds in order to include, at each step, the maximum numerical computer error.
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At last, bounds for derivatives ofS andWF(u, v) with respect tou andv are given forσ ∈ {−2,−1,1,2} by

S(k+1)[σ] (x) = −
k∑
i=0

Cik(µ
(i)
x S

(k−i)(x))[σ],
∂k

∂vk
vpu

[σ] = S(k)(u+ v)[σ]

S(u)[−σ] , k ≥ 0,

∂k

∂uk
vpu

[σ] =
k−1∑
i=0

Cik−1(vp
(k−1−i)
u (µ(i)

u − µ
(i)
u+v))[σ], k ≥ 1.

3.4. Further results and improved algorithm

We have seen that, given the survival functionS(x) for x ∈ [0, u], it is possible to deduce exactly as many
derivatives ofµu andwpu−w as wanted, and to get then an approximation ofS(u+ ε). The previous algorithm was
constructed on this idea. Fork varying from 0 to a given derivative orderr, let us recall here equations that are used
in this exact differentiation step (w ≤ u):

wp
(k)
u−w = 1{k=0}

S(u)

S(u− w)
+ 1{k≥1}

k−1∑
i=0

Cik−1wp
(i)
u−w(µ(k−1−i)

u−w − µ(k−1−i)
u ), (14)

µ(k)
u = α(k)

u −
k∑
j=0

C
j
kα

(k−j)
u E(Wp

(j)
u−W ), (15)

α(k)
u = k!

λ

c + δu

( −δ
c + δu

)k
. (16)

This step was of complexity proportional tour2. We will see here that it is sometimes possible to reduce this
complexity to something proportional to ln(u)r2. To do so, we shall denote byΩν a random variable distributed
asW∗2ν = W1 + · · · +W2ν , withΩ0 = W . The law ofΩν can be easily constructed for integer claim amountW,
since fork ∈ N:

P[Ω0 = k] = P[W = k], P[Ων+1 = k] =
k∑
i=0

P[Ων = i]P[Ων = k − i], k ∈ N, ν ≥ 0.

Remark also that ifS is given on [0, u], we can easily deduceΩνpu−Ων from S. We will see that sinceW ≥ 1 we
will only need law ofΩν whenΩν ≤ u, i.e. forν ≤ ln(u)/ ln(2).

We previously gave derivatives for almost all relations, except an important one:

Proposition 6. By derivation of actuarial property of win-first probabilities:

s+tpx = spx · tpx+s, s+tp(k)
x =

k∑
j=0

C
j
ksp

(j)
x tp

(k−j)
x+s . (17)

Consider first the caseδ = 0. In this case,α(k)
u = (λ/c)1{k=0}. Aswpu−w = 0 whenw > u, injecting(15) into (14)

gives

W1p
(k+1)
u−W1

= λ

c

k∑
i=0

CikW1p
(i)
u−W1

EW2[W2p
(k−i)
u−W2

] − λ

c

k∑
i=0

EW2[CikW2p
(k−i)
u−W1−W2W1p

(i)
u−W1

].
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UsingProposition 6, we get then the following theorem, reducing the complexity of differentiation step to something
proportional to ln(u)r2:

Theorem 6. When δ = 0, and if S(x) is given on x ∈ [0, u], then all derivatives of Ωνpu−Ων are given by the
following recursion: for ν from [ln u/ ln 2] down to 0, for k from 0 to r:

β(k+1)
u,ν = 1{2ν≤u}

(
−λ
c
β

(k)
u,ν+1 + λ

c

k∑
i=0

Cikβ
(i)
u,νβ

(k−i)
u,ν

)
, k ≥ 0, δ = 0

with β(k)
u,ν = E[Ωνp

(k)
u−Ων ].

Consider now the caseδ > 0. In this case, note that

C
j
kα

(j)
u α

(k−j)
u = α(0)

u α
(k)
u with α(0)

u = λ

c + δu
. (18)

Assume thatu is given and define ˜µ(k)
x = µ(k)

x /α
(k)
u , t p̃x(k) = tp

(k)
x /α

(k)
u and α̃(k)

x = α(k)
x /α

(k)
u . Substituting(18) in

(14) and (15)yields:

wp̃
(k+1)
x−w = γk

k∑
i=0

wp̃
(i)
x−w(µ̃(k−i)

x−w − µ̃(k−i)
x ) with γk = −λ

(k + 1)δ
, (19)

µ̃(k)
x = α̃(k)

x − α(0)
u

k∑
j=0

α̃(k−j)
x E(Wp̃

(j)
x−W ), (20)

and from(17),

s+t p̃(k)
x = λ

c + δu

k∑
j=0

sp̃
(j)
x tp̃

(k−j)
x+s . (21)

Eqs.(19)–(21)could be useful for computations and for further analysis, since they avoid to compute binomial
terms in the recurrence or factorials in the Taylor’s expansion:

r∑
k=0

µ(k)
u

(k + 1)!
εk+1 = λε

c + δu

r∑
k=0

µ̃(k)
u

k + 1

( −δε
c + δu

)k
.

This improvement being quite simple, the resulting algorithms for approximation and bounds are omitted here.
Other extensions may be found forδ > 0 by similar arguments as in the caseδ = 0. Injecting(20) into (19), and

using the actuarial property, we can get an expression depending on quantitiesα̃
(k)
u−w,w ≤ u. Since these quantities

are bounded, with̃α(k)
u−w ∈ [1, (1 + δ(u/c))k+1], we can derive recursive bounds forβ̃(k)

u,ν = E[�νp̃
(k)
u−�ν ] as a function

of β̃(k)
u,ν+1, for k ≥ 0 andδ > 0. We can thus construct bounds forβ̃u = β

(k)
u,0, µ̃(k)

u andµ(k)
u . The complexity of the

differentiation step is then proportional to ln(u)r2 instead ofur2, but the obtained bounds are less precise than in
previous bounding algorithm. Nevertheless, this approach might be useful when looking for analytic bounds ofβ̃

(k)
u,ν.
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4. Applications and numerical results

4.1. An example of application: payment of dividends

Let us now modify our processRt with an horizontal dividend barrier strategy. Starting fromu, if the surplus
reaches the upper barrieru+ v, all the premium income and the interests (at rateδ) are paid as dividends until the
next claim, i.e. during an exponentially distributed timeξ, with parameterλ. We shall show here that it is possible
to determine the total amount of dividends that will be paid until the process reaches the lower barrier 0, and that
this cumulative amount of dividends depends on win-first probabilities and on quantities which are computed in
the previous algorithm. The total expected amount of dividends is given here as a simple example, and depending
on the purpose of the study, one may introduce either a discounting factor or other parameters. We shall keep in
mind that the total dividend amount might be here represented by a defective random variable. Denote byDi the
cumulative amount of dividends that is paid during theith period of payment, distributed asD = ∫ ξ0 eδs ds, whereN

is the number of payment periods, andT is the total amount of dividendsT =∑N
i=0Di. We also useN0 andT0, the

random variables distributed asN andT given thatN > 0. For any random variableX, we will denote respectively
by FX andfX its distribution and density function. From the memoryless property of the modified risk process,
N0 − 1 is a geometric random variable with parameterβu+v = E[WF(u+ v−W,W)], and it is easy to get the
classical results:

P[N = 0] = 1 − WF(u, v) and P[N = k] = WF(u, v)βk−1
u+v(1 − βu+v), k ≥ 1,

and if λ > δ andβu+v < 1, supposing thatu andv are fixed, with the notationω = WF(u, v) andβ = βu+v, the
distribution function and the mean of the cumulated amount of dividends are as follows:

P[T ≤ x] = (1 − ω) + ω(1 − β)
∞∑
k=1

βk−1FD∗k (x), E[T ] = WF(u, v)

(1 − βu+v)(λ− δ)
.

The expected value only depends onλ, δ, WF(u, v) andβu+v, which we are able to compute with as much precision
as necessary.

Proposition 7. If there exists R such that E[eRD] = 1/β, then we can get, by application of Smith’s theorem:

lim
x→∞P[T ≤ x] = (1 − ω) + ω lim

x→∞ e−Rx
∫∞

0 ā(y) dy∫∞
0 (1 − Ḡ(y)) dy

,

with ā(y) = (1 − β) eRyFD(y), dḠ(y) = βeRyfD(y), FD(y) = 1 − (1 + δy)−λ/δ, and fD(y) = λ(1 + δy)(−λ/δ−1).

This simple example shows how quantitiesβ = E[WF(u+ v−W,W)] andω = WF(u, v) naturally appear in the
computation of the expected dividends (Fig. 1).

4.2. Numerical results

The results presented hereafter have been obtained forλ = 1 andc = 1.05. W is first exponentially distributed
with parameter 1, and then discretized withFd(id) defined on each interval [id, id + d[, such that:

Fd(id) = 1

d

∫
[id,id+d[

FW (x) dx.
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Fig. 1. Sample path ofRt , with θ andθu = (θ − u)+ (δ = 20%).

We have takend = 1. As explained in Section3.1, in order to cancelπ0 = P(W = 0), the Poisson parameterλ has
been modified intoλ(1 − π0), and theπi have been changed too. This discretization procedure if fully described in
De Vylder (1999). This explains values forx = 0 in Figs. 2 and 3. The observation of the evolution ofµx, x > 0
for integer-valued claim amounts confirm that it is nonincreasing, but not continuous. This is a classical fact in ruin
theory, and it explains that we usually observe discontinuity points that really exist, even if exact computations are
carried out. Let us explain, for example, that ifδ = 0,µx = µ0 for eachx < 1. Note thatθ = sup{Rt, t ≤ T0|R0 = 0}.
Starting from 0, the random variableθ keeps growing, as a survival lifetime, until the first claim. If the claim occurs
beforeθ reaches the value 1, then ruin occurs since the claim amount is a positive integer. As long asθ < 1, for
δ = 0, the probability thatθ stops growing is directly linked with the hazard rate of the time of the first claim, which
is constant and equal to the modifiedλ. If θ has reachedx > 1, situation is more complex, since the probability that
θ stops growing will also depend on the claim amount.

The analysis of derivatives of hazard rates (seeFigs. 4 and 5) may be important to understand approximations that

are made in the proposed algorithm. Replacingµ
(k+1)
iε with the approximationµiε′left(k) = (µ(k)

iε − µ
(k)
(i−1)ε)/ε gives

good results foriε /∈ N, but it must be done keeping in mind the discontinuity ofµx and of its derivatives on atoms
of the distribution of the claim amount (seeTables 1 and 2). Despite discontinuities of hazard rates ofθ (seeFigs. 2
and 3), survival functionS(x) is continuous (seeFig. 6), and tends toϕδ(0) asx → +∞. This function is sufficient
to obtain all values ofWF(u, v) = S(u+ v)/S(u), u, v > 0. Of course, in the special caseδ = 0, computation of
probabilities of ruin and non-ruin are already well-known, and may be computed for example with classical formulae
(seePicard and Lef̀evre (1997)or Rullière and Loisel (2004)). We retrieveS(u) by computing the ratioϕ0(0)/ϕ0(u)
(seeTable 3). We shall remember that, foru > 0, although the computation ofϕ0(u) is exact, it does not use
previous computations ofϕ0(x), x = 1, . . . , u− 1. This implies, especially if discretization ofW is really accurate,
a computation time that could be important. It is thus interesting to propose another way to determineWF(u, v)
that would help to understand the structure ofθ. In Table 3, we see that approximation algorithm gives quite precise
results for small values of convergence parametersn andr, and that precision increases rapidly whenr becomes
larger.

To give an idea of the convergence of the bounding algorithm, we have taken convergence parametersn = 2
andr = 100. Keepingc = 1.05,λ = 1, we obtain quantities inTables 4–8, in both casesδ = 0.05 or 1.2. Rather
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Fig. 2. Aspect ofµ for integer-valuedW andδ = 0.

than proposing very near bounds for each quantity, we preferred showing only decimals that were in common in
lower and upper bounds. The great number of correct digits shows that the algorithm gives very thin bounds when
r becomes large. It may help measuring quality of analytical approximations, and also helps comparing precision
of the algorithm with the existing one in the literature. This last point will be developed in Section4.3. In Table 6,
we gives bounds for the 10 first-order derivatives ofS andµ. Whenr is large enough, bounds remain very thin also
for these derivatives, and are far much precise than the one that could be obtained by successive finite differences
on thin intervals of lengthε. This result comes directly from the fact that(5) gives at pointx exact values of

Fig. 3. Aspect ofµ for integer-valuedW andδ = 0.05.
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Table 1
Some values of derivatives ofµ for δ = 0 andε = 0.01

iε µ
(1)
iε µ′left

iε

4.95 −0.02858 −0.02860
4.96 −0.02854 −0.02856
4.97 −0.02850 −0.02852
4.98 −0.02846 −0.02848
4.99 −0.02842 −0.02844
5 −0.02380 −0.17041
5.01 −0.02378 −0.02379
5.02 −0.02376 −0.02377

Table 2
Some values of derivatives ofµ for δ = 0.05 andε = 0.01

iε µ
(1)
iε µ′left

iε

4.95 −0.03185 −0.03188
4.96 −0.03179 −0.03182
4.97 −0.03173 −0.03176
4.98 −0.03166 −0.03169
4.99 −0.03160 −0.03163
5 −0.02763 −0.16936
5.01 −0.02758 −0.02761
5.02 −0.02753 −0.02756

these derivatives, whenS is given on [0, x]. Only approximations onS, that are numerically very precise, have
an impact on these derivatives. At last, we have bounded, foru = 5 andv = 4, terms appearing in differential
equation(3):

∂

∂u
WF(u, v) − ∂

∂v
WF(u, v) = λ

c + δu
WF(u, v) · (1 − E[WF(u−W,W)]).

Only decimals that are in common in lower and upper bounds are written inTables 7 and 8. As λ was modified to
eliminate the massP [W = 0], we easily verify this differential equation, in both casesδ = 0.05 and 1.2. Convergence
parametersn = 2 andr = 100 give in both cases, for the equality, a better precision than the 120 decimal digits
we used for calculations. An interesting result of the algorithm is that it also gives all derivatives up to a given

Table 3
Exact values ofϕ0(u) by the Picard–Lef̀evre formula and approximations ofS(u) (δ = 0)

u ϕ0(u) ϕ0(0)/ϕ0(u) S(u)(n=2,r=2) S(u)(n=2,r=7)

0 0.047619048 1 1 1
1 0.086942973 0.547704386 0.5477043856 0.5477043856
2 0.125654634 0.378967699 0.3789347571 0.3789676986
3 0.163135685 0.291898413 0.2918589855 0.2918984132
4 0.199174553 0.239081985 0.2390475932 0.2390819852
5 0.233726482 0.203738350 0.2037113041 0.2037383494
6 0.266813025 0.178473475 0.1784528790 0.1784734745
7 0.298480705 0.159538110 0.1595224001 0.1595381102
8 0.328784306 0.144833700 0.1448214757 0.1448336999
9 0.357780267 0.133095791 0.1330859961 0.1330957906

10 0.385524138 0.123517681 0.1235095719 0.1235176811
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Fig. 4. Aspect of derivative function of hazard rateµ′
x, x /∈ N andδ = 0.

order, with respect tou or in v, of WF(u, v). To give a concise illustration of Section4.1, Fig. 7draws the evolution
of average cumulative dividends that may be paid each time the process reaches the upper barrier without having
reached the lower one. This simple, natural example is based on quantities computed in approximation or bounding
algorithm. It is given here in a simplified environment, and introduction of other economical parameters, such as a
discounting factor, would require further analysis.

Fig. 5. Aspect of derivative function of hazard rateµ′
x, x /∈ N andδ = 0.05.
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Fig. 6. Aspect of survival functionS(u) = WF(0, u) for δ = 0 and 0.05.

Table 4
Exact decimal digits ofS(u) andµu by bounding algorithm (δ = 0.05)

u S(u) µu

0 1 0.60201957983672159848045355222718012624208463711260
1 0.55536753143898948033704731623796351501937756358898 0.37291709040266536547962244132582576831761412574029
2 0.39571061661657290808739908681011144489297103305312 0.25151862906429592201939126794787995307626601247085
3 0.31717796643173124672644036387953769101531776076477 0.17561721629275419932396285268627620586636125028427
4 0.27241949864280665916591655760301981552636588391855 0.12463074207617205987829396215227588738956312457840
5 0.24475728269819191947606478608113230139779082228707 0.088983882528775672523830328545016100434528133542912
6 0.22684151014642003046567015318789865261680613384077 0.063489602807296175860368607790255643020687513766155
7 0.21492640570772406604762219996119093708403247013515 0.045055660722929856034785799235531431265782502796578
8 0.20689527993852467459282972172931079384070536660447 0.031695402749427521457236730930928679745933711961554
9 0.20145762751247551497216845937090037598532454531247 0.022050837923035677891605896212785430522573468958071

10 0.19778202146032724398088007977799747009305673079175 0.015147834698460297368806746234185068943442859266538

Table 5
Exact decimal digits forS(u) andµu by bounding algorithm (δ = 1.2)

u S(u) µu

0 1 0.60201957983672159848045355
1 0.66933517879990261091566493 0.16207556315205895533649587
2 0.59730976442093773603118302 0.05441722349579981821432819
3 0.57494353077840354664777459 0.01938689080540239232950103
4 0.56725683117542653295887268 0.00703790102742977713159014
5 0.56452041446391119585445702 0.00257056467920173233831039
6 0.56353310298614385390522442 0.00094069917249684588476497
7 0.56317486756630610711255072 0.00034444955377647221733089
8 0.56304453577548005640595134 0.00012614794861816208792551
9 0.56299704696737238590046541 0.00004620339806683924991726

10 0.56297972609520189881409116 0.00001692406622986125300514
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Table 6
Exact decimal digits of right derivativesS(u)(k) andµ(k)

u (u = 5, δ = 0.05)

k S(u)(k) µ
(k)
u

0 0.244757282698191919476064786081132301397790822287 0.088983882528775672523830328545016100434528133542
1 −0.021779453291678248139853343964504022264773000051−0.027629483673356369324950664995212902914462559697
2 0.008700537659492416889348321750556619101482134957 0.004781759780650901141178540920815767739921848509
3 −0.003148088249731182436118591683531570999288924430 0.001184056174728555633066782660597992807695785290
4 0.001023929174136961425000957228656082809071769453 0.000079184281921029225092433587328484379390687953
5 −0.000604885236309820279361901997938225188501618568−0.000402623545415252800623317732679845596127644524
6 0.000349960969975695293643389220473108020035197533−0.000386370000451382731645846489531581540120338400
7 −0.000098690210126223893537006123193270538997311567−0.000179180225484452079551481731074750159874505135
8 0.000162013429988748369733435193279071491692638059 0.000076722640836791688533098696105266989982210445
9 −0.000075506148302808719759688754740222191140782554 0.000264991262234335480487532290438883180373071878

10 −0.000008701456970729554583982507829971722968348809 0.000285704192102520471952411764658858649021463062

Table 7
Exact decimal digits of quantities in differential equation by bounding algorithm (δ = 0.05)

Quantity Value foru = 5, v = 4, δ = 0.05

WF(u, v) 0.8230914532618470298053719011486982427784142006271074. . .
(∂/∂u)WF(u, v) 0.0550920169557785632478932959551552772017674284516602. . .
(∂/∂v)WF(u, v) −0.01814985623171288470150842179406380159358909721724867. . .
E[WF(u−W,W)] 0.816998441718484612223534760053005148559101965324086718334. . .
λ/(c + δu) 0.486246583714275137234212484491183948118606822283255511917. . .

Table 8
Exact decimal digits of quantities in differential equation by bounding algorithm (δ = 1.2)

quantity Value foru = 5, v = 4, δ = 1.2

WF(u, v) 0.9973014837771890777610838. . .
(∂/∂u)WF(u, v) 0.00251754925126551481612193. . .
(∂/∂v)WF(u, v) −0.000046078717447606893398087. . .
E[WF(u−W,W)] 0.97133065720571295060131280. . .
λ/(c + δu) 0.08966249061397981253964201841681406. . .

4.3. Comparison with other methods

Sundt and Teugels (1995)proposed several methods to computeψδ(u). Each one is based on the value ofψδ(0). If
these methods are used to computeS(u) = WF(0, u) = (1 − ψδ(0))/(1 − ψδ(u)), then the result obtained depends
on the value ofψδ(0). Sundt and Teugels (1995)proposed for example a recursive algorithm that we rewrite with
our notations:

ϕδ(hk)
[−1] = γ−


cϕδ(0) +

k∑
j=1

ϕδ(h(k − j))[−1]f+
j


 ,

ϕδ(hk)
[+1] = γ+


cϕδ(0) +

k−1∑
j=1

ϕδ(h(k − j))[+1]f−
j


 .

with γ− = 1/(c + δhk), γ+ = 1/(c + δhk − f+
1 ), and, in the special case of integer-valued claim amounts,f+

k =
δh+ λhP[W ≥ hk], f−

k = f+
k+1, h ≤ 1.f1 = (λ+ δ)h. Note that the corresponding formulae for this quantities in
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Fig. 7. Average cumulative dividends as a function of premium ratec (δ = 0.05).

Sundt and Teugels (1995)(top of page 12) have to be switched. Let us try to minimize

∆ϕh
k

= ϕδ(hk)
[+1] − ϕδ(hk)

[−1]

under the (very) optimistic hypothesis that forj < k,∆ϕh
k−j

= 0. Note that

ϕδ(u)F (u) > E[ϕδ(u−W)1W≤u].

Hence, after some omitted computations, withu = hk,

∆ϕh
k
>

(ϕδ(hk) − ϕδ(0))(λ(1 − F (hk)) + δ)

c + δhk
h, (22)

As an example, in the caseδ = 0, we can get fromTable 3values for the right member of(22). With same numerical
parameters, the minoration of∆ϕh

k
changes from values 10−3 to 10−5 whenhk ∈ [1,10]. To get the same precision

level 10−η as inTable 4, would require anh smaller than 10−η+5, and a much higher complexity in 1/h2 than with
our method. One must add to this problem the error possibly made inϕδ(0), which was supposed to be avoided, and
the propagation error due to∆ϕh

k−j
, j ≤ k.

Other methods might not be more efficient, except in the case whereϕδ(0) is precisely bounded, for as well small
or large values ofδ. Besides, the adjustment functions do not in general provide directly two-sided bounds for ruin
probabilities. They are particularly adapted to the case of large initial reserve, which does not correspond to the
assumption made here. This shows that the method consisting in taking the quotient of two non-ruin probabilities
(computed with methods efficient for that problem) is not adapted to our framework, and that the algorithm proposed
in Section3 is more convenient to this problem.
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