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Abstract

In a classical risk model under constant interest force, we study the probability that the surplus of an insurance company reaches
an upper barrier before a lower barrier. We define this probability as win-first probability. Borrowing ideas from life-insurance
theory, hazard rates of the maximum of the surplus before ruin, regarded as a remaining future lifetime random variable, are
studied, and provide an original derivation of the win-first probability. We propose an algorithm to efficiently compute this
risk-return indicator and its derivatives in the general case, as well as bounds of these quantities. The efficiency of the proposed
algorithm is compared with adaptations of other existing methods, and its interest is illustrated by the computation of the expected
amount of dividends paid until ruin in a risk model with a dividend barrier strategy.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Inthis paper, we propose away to compute the probability that a risk process reaches an upper barrier (representing
a goal or a threshold for a dividend policy) before crossing a lower barrier (representing the ruin of the company,
or a threshold for insolvency penalties). We define this probabilityiagirst probability.

We consider the compound Poisson risk model with a constant instantaneous interestToresurplus of an
insurance company at timés modeled by the procesy, whereRp = u andR, satisfies the stochastic differential
equation:

th =cdr — dS[ + 8Rl dr.
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Here,u is the initial surpluse the premium income rate, and the cumulated claims praf;éss compound Poisson
process given by the Poisson parametand the distribution functiotty, of the individual claim amouni/, with
meanm. Assume that > Am. Denote byT, and7; the respective times to lower or upper barrier, with initial
surplusu:

T,=inf{t, R, <0} and T, =inf{t, R, > u + v}

with 7, = +ooif Vt > 0, R; > 0 and7,} = +o0if V¢ > O, R; < u + v. The non-ruin probability within finite time
tis

ps(u, 1) =P(T, > 1),
and the eventual non-ruin probability and ruin probability are respectively
gs(u) =P(Ty, = +o0) and ys(u) =1 — @su).

Asc > am,ct — S; 2+ oo ast — oco. If § =0 (no interest force), for anyi( v) € R?, T} is an almost surely finite
stopping time and one can determine whether orfhot 7). However, ifé > O,

P(R; — +ooast — +o0) # 1

because there exists a threshold 0 such that, if for some> 0, R; < y, then surelys > ¢, R; < 0. This corre-
sponds to the definition of ruin under interest forc&efber (1979)This phenomenon causes many generalizations

of the classical risk model to fail. Nevertheless, if foraft 0, R; > 0, thenR;, —254-00 ast — oo. This will

be very important to compute the win-first and the lose-first probabilities with constant interest force, respectively
defined as

WF (u,v) =P (I’ <T,),  LF(u,v) =1—WF(u,v).

These probabilities may provide risk and profit indicators with the same unit: subjectivity is reduced to the choice
of the lower bound:, which represents the event “lose”, and the upper baymehich represents the event “win”.
Without upper barrier, one drawback of the probability of ruin is that its minimization often prescribes the cession
of the whole activity by the insurer to the reinsurer. Besides, it does not give any information about the possible
profit, even for very small ruin probabilities. It is interesting to combine it with a return indicator, and one of the
simplest compromises is to consider the probabWitl(«, v) to reach a levek + v from initial surplusu before

being ruined. It has the advantage not to require constrained optimization techniques.

Risk and return indicators can be built from the win-first probability, such as the initial surplus required to
avoid a failureu.(v) = inf{u, 1 — WF(u, v) < ¢}, the objective level and confidence level being given, or the
maximal objective level that is reasonably achievahl@) = sup{v, WF(u, v) > 1 — ¢}, u ande being given. The
two barriers thus help to define synthetic risk-return indicators having the same unit; ik ¢) and ¢, v.(u)),
useful to compare reinsurance or investment strategies. Other quantities involving win-first probabilities can be
considered, such &((7, — T))+), E(T} — Tu)+) - -

Double barrier problems have been studied in the compound Poisson model without interest fsegeifalahl
(1970), Dickson and Gray (1984a,b), Wang and Politis (2002 first give properties of win-first probabilities
in Section2.1, including a differential equation and a direct adaptation of a resultegferdahl (1942We thus
obtain the win-first probability as a quotient of two non-ruin probabilities. A first way to tackle the problem of
numerically compute win-first probabilities would be to use existing methBdskélmans and De Waegenaere,
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2001; Sundt and Teugels, 1995, 1997; De Vylder, 2@8Zomputing ruin probabilities for some particular claim
amount distributions, or for smadl, and to take the quotient. For exponentially distributed claim amounts, the
probability of ruin under constant interest force is well-known Segerdahl, 1942r Sundt and Teugels, 1985

For general claim size distribution, bounds and Lundberg coefficients have been deri@emdtyand Teugels
(1995, 1997)and several others.

Sundt and Teugels (19908ptain bounds for the adjustment functidonstantinides et al. (2002)btain an
asymptotical two-sided bound for heavy-tailed claim size distribution from generalizing results of the classical case
§ = Otothe general case. Itis possible to use these bounds to get a two-sided bound for the win-first probability with
interest force with heavy-tailed claim size distribution. However, we do not need in our problem to compute ruin
probabilities, and we shall introduce an original method which is adapted to the present framework and more suitable
in the general case and for general interest féritean the method consisting in computing the two corresponding
ruin probabilities.

The formulation of the problem, and the quotient of survival probabilities suggest the possibility to study a
ruin-related survival function of some defective random varigbliespired from life-insurance theory. We study
in Section2.2, its hazard rate function and propose an algorithm to compute the win-first probabilities and its
derivatives, and a bound of the numerical error. A particular property of the hazard ratéseafTheorem % is
the key argument which makes the method so efficient. The algorithm and reasons for someone to want to use it
are detailed in SectioB In Sectiord, numerical examples are given to demonstrate the accuracy of the algorithm
and applications are proposed. In particular, computing expressio&WE(x — W, W)] which involve win-first
probabilities are of real interest in models with dividends. For exarkpéstig (2004 andGerber and Shiu (1998)
considered risk models with a dividend barrier, and computed the expected amount of dividends urdihtimatil
ruin, or optimal dividend strategies. These quantities are expressed in Sedtioterms of win-first probabilities,
which correspond in this framework to the probability that the dividends are positive. We compare our method with
the one usingundt and Teugels (1995) Section4.3.

2. Win-first probability

In this section, we first adapt classical results of ruin theory to our framework. There is no essentially new idea
in Section2.1 This is the reason why we only state the results we shall need later. The proofs are similar as in the
cases = 0. We introduce in SectioB.2, the new method we propose to compute the win-first probabilities in the
general case.

2.1. Adaptation of classical results and methods of ruin theory

Note thatWF (u, v) is nondecreasing with respectitpnonincreasing with respect to and that
WF(u,v) =0 forallu <0 and WF(u,v)=1 forallu >0, v<O0.

Remark 1. In the special casé =0, R, = u + ct — S; corresponds to the classical risk process, &éd Rg
does not depend oRgp = u. In this casey is not necessarily the initial reserve, aWF(u, v) corresponds to the
probability that the surplus proce®s reachesRg + v before reaching the barrid®y — u, and does not depend on
Ro.

Theorem 1. Forv > 0,w > 0,

WF(u, v+ w) = WF (1, v) - WF (1 + v, w). ()
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Proof. Foru > 0,v > 0,w > 0, from stationarity and Markov property &, earningv + w before losing: may
be decomposed into: earnindgefore losing: and then earning before losing: + v. If v = 0 orw = 0 equality
is obvious. Fou < 0, both terms are equal to 0]

Theorem 2. Foru > 0,v > 0,

iWF(u, v) — EWF(u, V) = L(WF(M, v) — E[WF@u — W, v+ W))], 2)
ou Jv c+du
iWF(u, v) — EWF(u, v) = LWF(M, v) - (1 — E[WF®u — w, W))). 3)
ou v ¢+ du

Proof. From Poisson process properties, we get

WF(u, v) = (1 — AA7) - WF (u R I (u + 5) @2 — 1))
8 )
4+ AAL-E [WF <u M @ 1w (u + 5) @ — 1)+ W)} + o(AD).
1) 1)
This heuristic argument shows that Eg) may be derived with classical ruin theory tools. ko= 0, we take the

convention thatd/du)WF(u, v) is the right derivative ofWF(«, v). Note that in this case, the last term of Ef)
disappears. Starting frof2), a direct application of1) leads to

WF@u — W,v+ W) =WF(u — W, W) - WF(u, v),

which provides the second equatiori]

Inequalities between win-first probabilities and some finite-time ruin probabilities may be derived.

Proposition 1. For any u > 0,v > 0, we have
ps(u) < WF(u, v) < @s(u, ts(u, v)), 4)

where t5(u, v) = % In (1+ ﬁc/s) if § > 0,and to(u, v) = v/c.
Proof. Foru > 0,v > 0, if T, = 4+oco then the insurer earns almost surelyefore losing:, because&, —&5+oco

ast — oo. It follows WF(u, v) > P(T, = +00) = ¢s(u). Now, if the insurer earns before losing, time needed
to earnv is necessarily greater than the solutigu, v) of equation irv:

ue‘”—l—%(e‘”—l):u—i—v,

and7, > ts5(u, v). SO,WF(u, v) < P[T, > t5(u, v)].
Finally, considering lim_, .o WF(u«, v), enables us to expre8¥F(«, v) as a quotient of survival probabili-
ties. O

Theorem 3. Foru > 0,v > 0,

@s(u)

WF(M, U) = m

®)
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In the special casé& = 0, this result has been recently developedAgng and Politis (2002)and had also been
treated previously bpickson and Gray (1984k@ndSegerdahl (1970)The idea is here exactly the same, and we
omit the proof of the extension, which is rather direct.

From Eq.(5), itis possible to derive an exact formula M («, v) in the case of exponentially distributed claim
amounts (se&egerdahl, 1942; Sundt and Teugels, )99hd asymptotical equivalents and bounds for general
claim size distribution, as mentioned in the introduction.

2.2. Hazard rates of 6 and applications

In this section we present an interesting interpretatioWb{u, v). Let us change our notation for an instant and
write

vwp, = WF(u, v).
Property(1) can be written

v+wPy =v Py "w Putvs

and corresponds to a simple classical formula, expressed in International Actuarial Notation (see Actuarial Mathe-
matics), stating that for a positive future lifetirde

PO=u+v4+wbd>u)=PO>u+v0>u)-PO>u+v+wld>u+v).

This formula, based on elementary conditioning, illustrates the fact that someone sgedavesv + w years, if
he first survivesy years, and, being then agedt v, survivesw more years. So, it seems logical to look for a
nonnegative random variabdesuch thaWF(u, v) = P(6@ > u + v|0 > u). Let6 be the positive, defective random
variable

0 = SUgR;, t < To|Ro = O}.
Define the survival function of by S(x) = P(6 > x), x € R™, and its hazard rate by

_ S'(x)
Ux = S (x)
Theorem 4. Foru > 0,v > 0, the win-first probability can be written as

S(u + v)
Su)

with S(x) = P(0 = x) = ¢5(0)/9s(x), x=0.

:—%Mﬁ@»

WF(u, v) = P(0 > u + v|6 > u) = (6)

Proof. Letusfirstconsiderthecagse= 0, v > 0.If Ty = +o0, R; &% L ooast — 00, and upper barriaris reached
afteran almostsurely finite tir®’ < To. Inthis case, giventhdy = +00, WF(0, v) = 1 =P(0 > v).If T < +o0,
upper barriep is reached if and only # > v, andWF(0, v) = P(60 > v). In every cas®VF (0, v) = P(60 > v),v > 0.
Consider now: > 0, v > 0. We have seen thdy = +oo impliesd > u. SoP(6 > u) > ¢5(0) > 0. Starting from
property(1), we haveWF(u, v) = WF(0, u + v)/WF(0, u) = P(6 > u + v)/P(6 > u). And the result is obvious
sincev > 0.
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Foru > 0,v > 0, note that

ad
Hyty = —— In WF(u, v).
v

This rate is finite and only depends on the sur v. In the case of integer-valued claim amounts, we will see
that u,, is continuous and derivable at eacke R™ \ N. Foru € N, 1, will be only right-continuous and right-
differentiable, so that we will take the convention that each derivatiye isfits right derivative. We will take the
same convention for derivatives iof WF(u, v). Given that > u, the conditional density daf is

0
fo () = 2 PO < u+x10 = u) = WF(u, v) - -
X

Hence, for exampld,F(u, v) = P(0 < u + v|0 > u) = fé’ WF(u, s) ity ds.
In the sequel, since we will use common actuarial tools, we will most often preferably write probabilities with
standard actuarial notations, using instead oWF(x, r), and will also write:

. . ; 9
= 7!1«14, S,El) = S(u) ng) = ;tp)m wp(ul) w = EW S wPu—w-

Note that, due to these definitions, we do not have an equality bemﬁ%amdwpft) w» Whenw = u.
Let us denote bf’; the binomial coefficient for integeksandn, 0 < k <n. O

Proposition 2. For u, v > 0, we have

u+v
WF(u, v) = exp—/ s ds, @)

P = p(tx — sy, <"+1)—ch P& — &0, k> o, ®)

Proof. Eg.(7) holds directly fromTheorem 4Differentiations are straightforward.C]

Proposition 3. A general link between unconditional survival function and hazard rate is given for x > 0,k > 0 by

k
SO = —peS@). €)= = st (). ©)

Theorem 5. The hazard rate of 6 and its right derivatives are as follows:

Hu = au(l - E(Wpu—W))v :u(uk) = Olflk) Z Cj (k ])E(Wp(j) foru >0, k>0. (10)
j=0

with o®) = kIA(=8) (¢ + su)~*+D), o, = o0,

Proof. Direct from(3) and from(7).
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Note that first equation in previous relations could also be written:

)\' u
oy (1—E [ﬂwfu exp—/nw,usdsD,

(A= Fw() + E[fw<y - LF@u — W, W)]).

M

Hu = c+déu

In particular, suppos#® is a continuous random variable. It is clear thdfE(u — W, W) = 0 if W > u. It follows
from (5)thatug = %and thatu > 0,0 < u, < wo. SinceWF(0, v) = exp— f(;’ usds > Oforeachy > 0,100 =
lim,_ 100 ny = 0. Furthermore, differentiation ¢f, follows immediately from(7) and (5) O
Hence, wher is a continuous random variable, the hazard rgtés a continuous, decreasing function:of
such that
A . AS .
Ho= . lim p, =0, no = - and lim u/ =0. (12)

u——+o0 C u——+o00

Remark 2. Foré§ = 0, differentiation ofWF(u, v) makes sense, and computiag, u > 0 in terms ofpo(u) leads
to

_ 9o(u)
po(u)’

u

We also check that, in the special case 0, formula(5) is a version of the classical risk theory formula

) = = ofu) — “Elgpolu — W)

3. Algorithm

The recursive determination of hazard rateand its derivatives, for successive valuesa dgfives a set of values
of S(u) and its derivatives up to a given order. Despite the purpose is here to find values of win-first probabilities,
this will eventually give results otfs(x) wheni5(0) is known.

The proposed iterative algorithm allows to re-use previous computed quantities, and then reduce the complexity
of the determination of the whole functidhlt gives many derivatives qf,, andS(x), and all numerical errors will
be bounded in a further section. No assumption is made neither on claim amounts nor on the inteig shikicey
the context different from studies using smalseeSundt and Teugels, 19%5hd Sectior.3), and from the one
using particular distributions for claim amounts ($@mstantinides et al., 2002; Brekelmans and De Waegenaere,
200))

3.1. Approximations

In the sequelW is assumed to be a random variable taking values in th&'setf positive integers. Define
7 =P(W=1i),i eN.

This hypothesis is not so stringent: in practice, we may approach any continuous random variable by a discrete
one, and the discretization step may be chosen as small as necessary. Instead of taking this step smaller than 1, wi
choose this step equal to 1 and change the monetary unit.

The restrictionzg = 0 can be easily eliminated: ifp > 0, one may replaceyg, 1, 72, ... with 0, r1/(1 —

70), w2/(1 — 7o), ... andA with A(1 — o) (seeDe Vylder, 1999.
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The main assumption we shall use for approximations is
Assumption. H;: u is locally polynomial of order on intervals ke, ke + ¢[, k € N.

We shall see further that even a choice like 2 ande = 0.5 gives numerically quite good results (see Secii@

and the precision of the algorithm increases rapidly for a better choice of these two parameters. Ii3S&etion

will derive bounds for each approximated quantity in the algorithm, in order to ensure the numerical validity of this
assumption. UndeH?, we get from the- first derivatives ofu:

" D) e T @Dy .
Vs € [0, e[, u(x +5) = Z K’ i'(x)s’, Forx € eN, S(x + &) = S(x) exp (—/0 Z Miil(x)s’ ds) ,
! —

i=0

i)
S(x+¢&) = S(kx) exp( Z c +(i‘))' z+l> ) (12)

We can also deriv&(x + ¢) from derivatives of(x), but we choose to use the single hypothégisin life insurance,
the hypothesis of constant hazard rate is often considered for survival lifetimes, and corresponds here to the orde
r = 0. In practice, it is possible to get higher order derivativeg psince computation qﬁ,([“) may be replaced

with an approximation likge, "¢ = () — 1) )/e. However, one should keep in mind thatyiiftakes values
in N, eachx € N is a point of discontinuity for functiop (seeFig. 4). So, using this approximation will give good
results, except fog € N. Nevertheless, since numerical results are fine enough, and since the paraztnatébe
chosen, we did not use this approximation.

Proposition 4 (approximation algorithm)Under hypothesis HE, the following algorithm computes recursively
the values of S(u), u, Blw pu—w] and all their derivatives up to a given order r. With S(0) = 1, and for u € €N,
u SMmax,kGN,kfr:

S(u) 1— 1
wl’i)w = 1{k=0}m + L1y ZCk 1wP (M(k ) §," 0y, w=1...[u],

i=0
k

o . w®(u
n® =l =3 clalMEwpy), S+ e) = Sw) ex"( Zo +(1>)' )
j=0

©) _ ( )

From the second equation, quantities |1

)

and,u( ) are given by the recursion, as the E(Wp(J w) J <kare

derived from previously computed quantities ., p,(,zw.

Note thata®) = kIA(—8)*(c + su)~*+D, and that forw > u, ,p\ , = 0. The previous algorithm gives deriva-
tives of u from order O tor. It also gives for eachu < umax u €¢N, S(u) and eventuallyys(u) =
1— ¢5(0)/S(u). To obtain derivatives oMWF and S, we can use(8) for (3*/du*)WF(u, v) and following
relations:

S® (i + v)

k
S sEE) = =3 CuPst(r), k=0 (13)

i=0

8—WF( V) =
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Leti be a positive integer. We have seen th@} = ¢5(0)/¢s(i). In the special case= 0, it is known thatpg(i) can
be exactly computable by classical formulae (Bemard and Lefvre, 1997; De Vylder, 1999

poli) = (1— “") S G —i).
=0

with (1) = % Si_1 kmkh k() andh j(0) = —7/¢_This formula has the advantage to give exact valu#isis
integer-valued. Let us compare the number of loops involved in the computatiff).of= 1, ..., x by algorithm
(4) and the number of loops involved in the computatiorpgfi),i = 1, ..., x by thePicard and Lefvre (1997)
algorithm. Computings(i), i = 1, ..., x impliesr2/2 loops fori = 1, ...,x/e, j = 1, ..., ie, So that complexity
of algorithm (4) is quite proportional to-2x2/s. Computinges(i), i = 1, ..., x requires loops foi =1, ..., x,
j=0,...,i,k=1,..., j,sothat complexity of Picard-L&fre formula is quite proportional &5. To approximate
a continuous distributiof’ by Wy taking values in 8, time needed by algorithif#) is proportional ta-?x?/(d?¢)
againstx3/d°® for the Picard and Le#vre (1997)formula. Noting that hypothesi&; means thaj is linear on
intervals of length ¢, one can use = 1 andr = 1 if d is small. As both formulae lead to an approximation of
values obtained for a continuolig the algorithm may be of a practical interest even in the éasé®. Moreover,
we will see in Sectior.4that the complexity of the algorithm can be reduced in this case.

3.2. Convergence for parameters r and n

The highest order of derivatives that are computed by the algorithpargln = 1/¢ is an integer that represents
the number of sub-periods in one unit of time. The hypothesis in approximation algorithm is that, on each sub-period,
W, is locally polynomial of order. The precision of the algorithm, at one step, is givembwhich represents the
number of decimal digits that one aims at obtaining. More precisely] i€presents the error in the approximation
of u,+. by the Taylor expansion of order

To improve the local precision of the algorithm, we can increase eitlogr-; this may have different effects
on the complexity of the algorithm. We only give here informal considerations for the choice of the cougle (
to minimize the complexity of the algorithm. It would be possible to get more rigorous results for that choice of
parameters, but they are omitted here in the interest of conciseness.

Note first that the remaining part in the Taylor expansion behavesif&e®) /((r + 1))e"*1. To simplify further
calculation, take: = 0, sincen"t1(0) is known, equal te"+1)(0). In absolute value, the error is then comparable
to A(8/cn)"t1. If this last quantity is set to be equal to1Q then a link appears betweemandn:

_n In(10)+In(»)

1)
1, n=-(10n)Yr+D,
In(cn/$) c

For a giveru the local complexity of the algorithm is then proportional to
1)
c(r) = nr? = Sx100Y 00,2,
C

Trying to findrg that minimizes:(r), we find, in the case where ki{0") > 8

ro = % (|n(,\10'7) — 4+ /IN(107)(In(%107) — 8)) . no= g,\loﬂl/“oﬂ).
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Sinceng is here areal number, and should better be an integer greater than 1, andhsirst@lso be an integer, we
may choose the following parameters to ensure that required precisionsoreached at the first point following
u=0:

n In(10)+ In(X)

nopt = Max(2 [ng] + (0orl)) and ropt= [ In(cnopt/d)
op

:|+(OOI’1)

As an example, také = 100%, so that we do not suppose tlas close to 0. Folh =1, ¢ =1 andn =12
decimal digits, we getopt = 9 andropt = 12. Withn = 16 decimal digits, we getopt = 9 andropt = 16, so that
the complexity is multiplied by something less than 1.8 to reach 4 more decimal digits.

3.3. Bounds for w,, WF(u, v) and their derivatives

The algorithm makes only one approximation by replaging. with its Taylor expansion. Nevertheless, this
approximation is used recursively, so that even if the error is locally bounded, we cannot ensure that the global
result will be precise enough. For this reason, we must give exact bounds for the values we approximate.

For a functionf, of u, we will use the following notationsf,[=X and f,[*1 will be bounds off,, such that
fu € [£7Y, 7,411 We define by this way (011, 5(u)le] andg®lel, with g0 = B[y p®) 1, for o € {~1, +1}.

For two bounded quantitiesandb, we will use following arithmetic, that might be simplified when the signs
of a andb are known:

(a+ b)[”] = qlol ¢ b[”], (a — b)[ff] — glol — b[_”], (ab)["] — max {a[ffl]b[ﬂzlh >0

01,02€{~0,0}

@)1= min {(ddpldy 5 >o0.

01,02€{—0,0}

Note first that, whem = 0, S(0)+% = 5(0)~Y = 1. From(8), we can bound,p®’,, from bounds of..{’ and
WP i <k, w < u. From(10), we can also boung(® from bounds of,p\” . j < k. We get then,p®)  []
andu Ol for o € {—1, +1).

We will now use for a functiory, of u the following notations;,[=2 and £, [*2] will be bounds off,,, such that
Vs <&, futs € [.fu[_z]v fu[+2]]-

Note that, whem = 0, S(0)-*2] = 1, and sinces is decreasings(0) =2 < S(¢)l-1. The sign otz is the same
as the one of{1)*. Sincea(® is thus either increasing or decreasingjmlepending ot mod 2, we remark that

o = ki (=8) e + )Y, o =-1.0.+1, O = 1ymoazals + Lymoa 2y,
Ol(uk)HZ] = 1{k mod 2=O}a(uk) + l{k mod 2:1}011(4]25-

Using suche®] we can easily check thg8) and (10)can be adapted to get boungs® , [° and ;)] for
o€ {-2,+42}.

The knowledge of bounds qifﬁs, s < ¢ will allow us to derive bounds of the derivative form of Taylor’s
remainder, and then bounds&f:). Fors € [0, €], u,+s is a continuous and+ 1 times differentiable function of
s. We have

r M(k) M(r*+1)
Huys =Y k—“!s" +RY, with RO, = mer’ u* € [u, u+ ¢l

k=0
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(r+1) -

Sinceu,. ' is bounded, we can bouﬂdf,)s, and thenS(u + ¢):

M( )[—o] (ur+1)[—2<7]

S(u + &)l = @)l exp( Z < (k+ 1)| e

8r+2> , oe{-1+1}.

The only difficulty to build the bounding algorithm is the following: sir{&) is decreasing in, a good lower bound

for S(x), x € [u, u + €[ is given by the lowest value (i + ¢), so that we can proposgu)=2 = S(u + ¢)l-11.
Nevertheless, the calculation 8u + &)= from S(u)l~1 usesuU+DH21 that is then calculated fromi(u)l 2.
Using such a bound gives thé(u)l 2! as a computable function of itself. We have built both a formal computation
algorithm, in order to get the root value §¢x)[~2, and also a fixed-point algorithm, starting fraftu)[=2 = 0.
Nevertheless, since the last term of Taylor expansion becomes very small for large valisgbfprecise bounds

of S(u)[=2 could be replaced witli()[=2 = 0. The great acceleration resulting of this choice can be exploited to
increase orn = 1/¢, for example, and thus the precision of the algorithm. We will see with numerical figures that
this approximation is sufficient to get very precise results. Indeed, it only changes bounds-fer itie derivative
order ofu, and has an impact comparablgstDI+21e+2 /(- + 2)I. The problem does not hold f6u)!+2] since

the better bound we can proposesig)l*2 = S(u)[*1l. Note that, by constructior§(u)[=1 and ()" give
bounds forS(u), not for its approximatiors(«)[%, which can be outside the interval.

Proposition 5 (bounding algorithm)Bounds for (., Elw pu—w], S(u) and their derivatives up to order r are
given by following algorithm, with initialization values S(O)~1 = S(O)+U = 1. Foru = 0, ..., umax by step ¢, for
k=0,...,k+1,and for oo = +1, +2,

S(u)[al

B 0
S(M)[+2] — S(u)[+1], S(u)[ 2 = 0, wpP i)w[g] W’

o = *oop,

w21 = ZCk W, = u w = 1k = 1 0 = oo,
p00] — @l _y ZCJ(a(k DELy pD D, o = oo,
j=0

[o] _ o( o] p=el o pfblel

This algorithm is quite similar to the first one we proposed. Some remarks can be done for its practical implemen-
tation.
First, we had better use only integer arguments, so thatforl/e,n € N, we preferably replacewith an index
i=0, ..., numax Wherei denotesiu.
Second, for each value af we do not use previous valug$sz‘o)_w and]E[Wpff())_W], uo < u. In the algorithm,
these quantities do not need to dependipoand that spares stocking memory.

Third, many quantities, Iikd*:[Wpf,"ZW] or like Taylor integrated approximation in the exponential, can be

computed in previous sums giving respectivg})ﬁklw anduﬁtk).
We may check at each step if the precision of the computer is high enough. If not, it is possible to change lower
and upper bounds in order to include, at each step, the maximum numerical computer error.
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At last, bounds for derivatives sfandWF(«, v) with respect ta: andv are given foro € {—2, —1, 1, 2} by

o SO (u + v)lel
(k+1)[0] E i 0, gk=1) (,yy[o] o] —
S ('x) C (,LL S (.X)) ’ avk vpu - S(u)[ia] ’ k Z 0’

o kvpu ZCk O Sl (7 LETILE) A B

3.4. Further results and improved algorithm

We have seen that, given the survival functi®fx) for x € [0, u], it is possible to deduce exactly as many
derivatives ofu, and,, p,_,, as wanted, and to get then an approximatioS(@f+ ¢). The previous algorithm was
constructed on this idea. Fbwvarying from O to a given derivative orderlet us recall here equations that are used
in this exact differentiation stepu( < u):

k—1
S(u) 1 1

w2, = Loy g =0y T L= > Choanp (i = ), (14)

i=0
)=o) Zcf EEGw P y). (15)

j=0
A -5 \*
) =kt ——— : (16)
c+déu \c+éu

This step was of complexity proportional ta®. We will see here that it is sometimes possible to reduce this
complexity to something proportional to n¢2. To do so, we shall denote kg, a random variable distributed
asW*2' = Wy + ... + W, with 29 = W. The law of£2, can be easily constructed for integer claim amadint
since fork € N:

P[0 =k =P[W =K. P2, 1=K=> PlR,=i]P[2,=k—i]. keN, vx>0.
i=0

Remark also that if is given on [Q «], we can easily deducg, p,—, from S. We will see that sincéV > 1 we
will only need law of$2, when&2, < u, i.e. forv < In(u)/ In(2).
We previously gave derivatives for almost all relations, except an important one:

Proposition 6. By derivation of actuarial property of win-first probabilities:

k
k
+iDx = sPxiPets  spPD = Z clrp$5. 17)

Consider first the case= 0. In this casee®) = (1/c)1ji=0}. AS y pu—w = 0 Whenw > u, injecting(15)into (14)
gives

k+1 k
Wlplg—W)l Z Clepu) Wlez[szla vllzz] - ZEWZ[CkWZPM W)l W2W1p:(:) Wl]
i=0 i=0
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UsingProposition 6we get then the following theorem, reducing the complexity of differentiation step to something
proportional to Ing)r?:

Theorem 6. When § = 0, and if S(x) is given on x € [0, u], then all derivatives of @, pu—g, are given by the
following recursion: for v from [In u/ In 2] down to 0, fork from O to r:

k
A A S
BT = 122 (‘Cﬂi,)wrl T Z Cfﬁ&?vﬂ%”) ., k=0,6=0
i=0

with 8% = Elo,p% 5 1
Consider now the case> 0. In this case, note that

C,{a(uj)a,(lkfj) =a@a®  with o = (18)

c+du’

Assume that is given and defing® = u® /a0 5 ® = p® /4 anda®) = ) /a®). Substituting(18) in
(14) and (15Yyields:

k
et T _ —A
Wbl = i ; whlLy (0855 — D) with e = (k+1)5° 49
k ‘ ‘
a0 = 50 _ 4O Z =Dy f’ijlw)a (20)
j=0
and from(17),
AN () o)
S+f~§ck) = ¢+ ou jz_%siﬂﬁf)zﬁm’ : (21)

Egs.(19)-(21)could be useful for computations and for further analysis, since they avoid to compute binomial
terms in the recurrence or factorials in the Taylor’s expansion:

~ k
i o Sl P i pd (s .
:o(k+1)! c+8uk20k+l ¢+ éu

This improvement being quite simple, the resulting algorithms for approximation and bounds are omitted here.
Other extensions may be found ®r 0 by similar arguments as in the case: 0. Injecting(20) into (19), and
using the actuarial property, we can get an expression depending on quéaffﬂl;jp&; < u. Since these quantities

are bounded, witﬁff‘lw € [1, (1 + 8(u/c))**+1], we can derive recursive bounds ﬁﬁf)u = E[Qvi?g(zgv] as afunction

of B ;. fork = 0 :ands > 0. We can thus construct bounds for = %), 2% andu®). The complexity of the
differentiation step is then proportional to #)(? instead ofur2, but the obtained bounds are less precise than in
previous bounding algorithm. Nevertheless, this approach might be useful when looking for analytic bcﬁﬁ,ﬁds of
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4. Applications and numerical results

4.1. An example of application: payment of dividends

Let us now modify our procesk; with an horizontal dividend barrier strategy. Starting franif the surplus
reaches the upper barrieH v, all the premium income and the interests (at Btare paid as dividends until the
next claim, i.e. during an exponentially distributed tinavith parametei. We shall show here that it is possible
to determine the total amount of dividends that will be paid until the process reaches the lower barrier 0, and that
this cumulative amount of dividends depends on win-first probabilities and on quantities which are computed in
the previous algorithm. The total expected amount of dividends is given here as a simple example, and dependinc
on the purpose of the study, one may introduce either a discounting factor or other parameters. We shall keep ir
mind that the total dividend amount might be here represented by a defective random variable. Danotieeby
cumulative amount of dividends that is paid during tiieperiod of payment, distributed &s—= fg € ds, whereN

is the number of payment periods, afdb the total amount of dividends = Zilio D;. We also us&Vp andTp, the
random variables distributed dsandT given thatN > 0. For any random variablg, we will denote respectively

by Fx and fy its distribution and density function. From the memoryless property of the modified risk process,
No — 1 is a geometric random variable with parameggr, = E[WF(u + v — W, W)], and it is easy to get the
classical results:

P[N =0] =1—WF(u,v) and P[N =k] = WF(u, )85:1(1 - Butr), k=1,

and if A > § andB8,+, < 1, supposing that andv are fixed, with the notatiom = WF(«, v) and8 = 8,1, the
distribution function and the mean of the cumulated amount of dividends are as follows:

i 00 1 B WF(u, v)
P[T <] = (1 )+ (1 ﬂ);ﬂ FD*k(X), E[T] = (l — ,Bquv)()‘ _ 3)

The expected value only dependsigi, WF(«, v) andg,+.,, which we are able to compute with as much precision
as necessary.

Proposition 7. If there exists R such that E[eRP] = 1/B, then we can get, by application of Smith’s theorem:

Jo~ aly)dy
Joo =Gy dy’

lim P[T <x]=(1—-o)+o lim e ®
X—> 00 X—> 00

with a(y) = (1 — B) €X' Fp(y), dG(y) = R’ fp(y), Fp(y) = 1 — (1 + 8y) /%, and fp(y) = A(1+ 8y) /5=,

This simple example shows how quantitigs= E[WF(u + v — W, W)] andw = WF(u, v) naturally appear in the
computation of the expected dividendsd. 1).

4.2. Numerical results

The results presented hereafter have been obtained-fot andc = 1.05. W is first exponentially distributed
with parameter 1, and then discretized wit(id) defined on each intervaid, id + d[, such that:

1
Fylid) = = / Fw(x) dx.
d Jidid+d
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Fig. 1. Sample path aR,, with 6 and6, = (0 — u)+ (8 = 20%).

We have taked = 1. As explained in SectioB.1, in order to cancetg = P(W = 0), the Poisson parametehas
been modified inta.(1 — 7p), and ther; have been changed too. This discretization procedure if fully described in
De Vylder (1999) This explains values far = 0 in Figs. 2 and 3The observation of the evolution of,, x > 0
for integer-valued claim amounts confirm that it is nonincreasing, but not continuous. This is a classical fact in ruin
theory, and it explains that we usually observe discontinuity points that really exist, even if exact computations are
carried out. Letus explain, forexample, that i 0, 1, = ugforeache < 1. Notethat = sugR;, t < To|Ro = 0}.
Starting from 0, the random variatd&keeps growing, as a survival lifetime, until the first claim. If the claim occurs
befored reaches the value 1, then ruin occurs since the claim amount is a positive integer. As toaglasor
8 = 0, the probability tha# stops growing is directly linked with the hazard rate of the time of the first claim, which
is constant and equal to the modifiedf 6 has reached > 1, situation is more complex, since the probability that
0 stops growing will also depend on the claim amount.

The analysis of derivatives of hazard rates (Sigs. 4 and bmay be important to understand approximations that

are made in the proposed algorithm. Replaqu‘{ﬁ ) with the apprommaﬂow,s"e“( ) = (u f’;) — ug‘) 1 8)/8 gives
good results fore ¢ N, but it must be done keeping in mind the discontinuity:@fand of its derlvat|ves on atoms
of the distribution of the claim amount (s&ables 1 and 2 Despite discontinuities of hazard rate®dbeeFigs. 2
and 3, survival functionS(x) is continuous (seEig. 6), and tends tgs;(0) asx — +oo. This function is sufficient
to obtain all values oWWF(u, v) = S(u + v)/S(u), u, v > 0. Of course, in the special cage= 0, computation of
probabilities of ruin and non-ruin are already well-known, and may be computed for example with classical formulae
(seePicard and Lefvre (1997pr Rulliere and Loisel (2004)We retrieveS(z) by computing the rati@g(0)/¢o(u)
(seeTable 3. We shall remember that, for > 0, although the computation @fp(x) is exact, it does not use
previous computations @fp(x), x = 1, ..., u — 1. Thisimplies, especially if discretization ®f is really accurate,
a computation time that could be important. It is thus interesting to propose another way to detsfifine)
that would help to understand the structur@.dh Table 3 we see that approximation algorithm gives quite precise
results for small values of convergence parameteandr, and that precision increases rapidly whelmecomes
larger.

To give an idea of the convergence of the bounding algorithm, we have taken convergence parameters
andr = 100. Keeping: = 1.05, A = 1, we obtain quantities ifiables 4-8in both casesg = 0.05 or 1.2. Rather
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Fig. 2. Aspect ofx for integer-valued¥ ands = 0.

than proposing very near bounds for each quantity, we preferred showing only decimals that were in common in
lower and upper bounds. The great number of correct digits shows that the algorithm gives very thin bounds when
r becomes large. It may help measuring quality of analytical approximations, and also helps comparing precision
of the algorithm with the existing one in the literature. This last point will be developed in Sekc8oim Table §

we gives bounds for the 10 first-order derivatives aindu.. Whenr is large enough, bounds remain very thin also

for these derivatives, and are far much precise than the one that could be obtained by successive finite difference
on thin intervals of lengtle. This result comes directly from the fact th@&) gives at pointx exact values of

0.6 1
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0.2

0.14

0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 3. Aspect ofx for integer-valued¥ ands = 0.05.
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Table 1

Some values of derivatives pffor § = 0 ande = 0.01

i ey et

4.95 —0.02858 —0.02860
4.96 —0.02854 —0.02856
4.97 —0.02850 —0.02852
4.98 —0.02846 —0.02848
4.99 —0.02842 —0.02844
5 —0.02380 —0.17041
5.01 —0.02378 —0.02379
5.02 —0.02376 —0.02377
Table 2

Some values of derivatives pffor § = 0.05 ands = 0.01

ie ne et

4.95 —0.03185 —0.03188
4.96 —0.03179 —0.03182
4.97 —0.03173 —0.03176
4.98 —0.03166 —0.03169
4.99 —0.03160 —0.03163
5 —0.02763 —0.16936
5.01 —0.02758 —0.02761
5.02 —0.02753 —0.02756

these derivatives, whefiis given on [Q x]. Only approximations or$, that are numerically very precise, have
an impact on these derivatives. At last, we have boundedy fer5 andv = 4, terms appearing in differential
equation(3):

A
c+ du

iWF(u, v) — EWF(u, V) = WF(u, v) - (1 — E[WF(u — W, W)]).
ou av

Only decimals that are in common in lower and upper bounds are writt€abiles 7 and 8As 1 was modified to
eliminate the masB[W = 0], we easily verify this differential equation, in both cases 0.05and 1.2. Convergence
parametera = 2 andr = 100 give in both cases, for the equality, a better precision than the 120 decimal digits
we used for calculations. An interesting result of the algorithm is that it also gives all derivatives up to a given

Table 3

Exact values ofo(u) by the Picard—Lefvre formula and approximations 8€«) (5 = 0)

u wo(u) ©0(0)/po(u) S(u)(n=2.r=2) Su)(pn=2,r=7)
0 0.047619048 1 1 1
1 0.086942973 0.547704386 0.5477043856 0.5477043856
2 0.125654634 0.378967699 0.3789347571 0.3789676986
3 0.163135685 0.291898413 0.2918589855 0.2918984132
4 0.199174553 0.239081985 0.2390475932 0.2390819852
5 0.233726482 0.203738350 0.2037113041 0.2037383494
6 0.266813025 0.178473475 0.1784528790 0.1784734745
7 0.298480705 0.159538110 0.1595224001 0.1595381102
8 0.328784306 0.144833700 0.1448214757 0.1448336999
9 0.357780267 0.133095791 0.1330859961 0.1330957906

10 0.385524138 0.123517681 0.1235095719 0.1235176811
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Fig. 4. Aspect of derivative function of hazard ratg, x ¢ N ands = 0.

order, with respect to or in v, of WF(u, v). To give a concise illustration of Sectidnl, Fig. 7draws the evolution

of average cumulative dividends that may be paid each time the process reaches the upper barrier without havin
reached the lower one. This simple, natural example is based on quantities computed in approximation or bounding
algorithm. It is given here in a simplified environment, and introduction of other economical parameters, such as a
discounting factor, would require further analysis.
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Fig. 5. Aspect of derivative function of hazard rate, x ¢ N ands = 0.05.
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Fig. 6. Aspect of survival functio§(u) = WF(0, ) for § = 0 and 0.05.
Table 4
Exact decimal digits of(«) andyu, by bounding algorithmd = 0.05)
u S(u) M
0 1 0.60201957983672159848045355222718012624208463711260
1 0.55536753143898948033704731623796351501937756358898  0.37291709040266536547962244132582576831761412574029
2 0.39571061661657290808739908681011144489297103305312  0.25151862906429592201939126794787995307626601247085
3 0.31717796643173124672644036387953769101531776076477  0.17561721629275419932396285268627620586636125028427
4 0.27241949864280665916591655760301981552636588391855  0.12463074207617205987829396215227588738956312457840

5 0.24475728269819191947606478608113230139779082228707  0.088983882528775672523830328545016100434528133542912
6 0.22684151014642003046567015318789865261680613384077  0.06348960280729617586036860779025564302068751376615¢
7 0.21492640570772406604762219996119093708403247013515  0.04505566072292985603478579923553143126578250279657¢
8 0.20689527993852467459282972172931079384070536660447  0.03169540274942752145723673093092867974593371196155¢
9 0.20145762751247551497216845937090037598532454531247  0.02205083792303567789160589621278543052257346895807
10 0.19778202146032724398088007977799747009305673079175  0.01514783469846029736880674623418506894344285926653
Table 5
Exact decimal digits fo(x) andu,, by bounding algorithmd = 1.2)
u S(u) M
0 1 0.60201957983672159848045355
1 0.66933517879990261091566493 0.16207556315205895533649587
2 0.59730976442093773603118302 0.05441722349579981821432819
3 0.57494353077840354664777459 0.01938689080540239232950103
4 0.56725683117542653295887268 0.00703790102742977713159014
5 0.56452041446391119585445702 0.00257056467920173233831039
6 0.56353310298614385390522442 0.00094069917249684588476497
7 0.56317486756630610711255072 0.00034444955377647221733089
8 0.56304453577548005640595134 0.00012614794861816208792551
9 0.56299704696737238590046541 0.00004620339806683924991726
10 0.56297972609520189881409116 0.00001692406622986125300514
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Table 6
Exact decimal digits of right derivative®(u)® andu® (« = 5,5 = 0.05)

k SG)® ud

0.244757282698191919476064786081132301397790822287 0.08898388252877567252383032854501610043452813354
—0.02177945329167824813985334396450402226477300005%0.027629483673356369324950664995212902914462559697
0.008700537659492416889348321750556619101482134957 0.00478175978065090114117854092081576773992184850
—0.003148088249731182436118591683531570999288924430 0.00118405617472855563306678266059799280769578529
0.001023929174136961425000957228656082809071769453 0.00007918428192102922509243358732848437939068795
—0.0006048852363098202793619019979382251885016185680.000402623545415252800623317732679845596127644524
0.0003499609699756952936433892204731080200351975330.000386370000451382731645846489531581540120338400
—0.00009869021012622389353700612319327053899731156+0.000179180225484452079551481731074750159874505135
0.000162013429988748369733435193279071491692638059 0.00007672264083679168853309869610526698998221044
—0.000075506148302808719759688754740222191140782554 0.00026499126223433548048753229043888318037307187
—0.000008701456970729554583982507829971722968348809 0.00028570419210252047195241176465885864902146306:

OOWooO~NOOULAWNPEFEO

=

Table 7
Exact decimal digits of quantities in differential equation by bounding algorithaa 0.05)

Quantity Value fou = 5,v =4, = 0.05

WF(u, v) 0.8230914532618470298053719011486982427784142006271074. . .
(8/0u)WF(u, v) 0.0550920169557785632478932959551552772017674284516602. . .
(8/v)WF(u, v) —0.01814985623171288470150842179406380159358909721724867. ..
E[WF(u — W, W)] 0.816998441718484612223534760053005148559101965324086718334. ..
A/(c + Su) 0.486246583714275137234212484491183948118606822283255511917. ..

Table 8
Exact decimal digits of quantities in differential equation by bounding algorithaa {.2)

guantity Value fox = 5,v=4,§ =12

WF(u, v) 0.9973014837771890777610838. ..
(8/0u)WF(u, v) 0.00251754925126551481612193. . .
(8/0v)WF(u, v) —0.000046078717447606893398087. ..

E[WF(u — W, W)] 0.97133065720571295060131280. ..

A (c + du) 0.08966249061397981253964201841681406. ..

4.3. Comparison with other methods

Sundt and Teugels (199p)oposed several methods to compié:). Each one is based on the value/g{0). If
these methods are used to comptfe) = WF(0, u) = (1 — v5(0))/(1 — v5()), then the result obtained depends

on the value of{rs(0). Sundt and Teugels (199pyoposed for example a recursive algorithm that we rewrite with
our notations:

k
es(M)H =y~ | cps(0)+ > sl — DU
j=1

k—1
es(MR)FY =y | cs(0)+ D sk — j)IH £
j=1

with y= = 1/(c + 8hk), y™ = 1/(c + Shk — f1+), and, in the special case of integer-valued claim amoqgjts;
8h + AhP[W > hk], f, = fk++1' h < 1. f1 = (» + 8)h. Note that the corresponding formulae for this quantities in
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Fig. 7. Average cumulative dividends as a function of premiumddse= 0.05).
Sundt and Teugels (1998pp of page 12) have to be switched. Let us try to minimize

Ay = o5 — ps(ri)

under the (very) optimistic hypothesis that fok &, Ay = 0. Note that

9s(u) F(u) > Elps(u — W)Tw<u].

Hence, after some omitted computations, witk: 1k,

a0 = OGO F() +5), )
k ¢+ dhk

As an example, in the cage= 0, we can get fronTable 3values for the right member ¢22). With same numerical
parameters, the minoration ﬂwa changes from values 18to 10-° whenhk € [1, 10]. To get the same precision

level 107" as inTable 4 would require ark smaller than 107+°, and a much higher complexity iry £2 than with
our method. One must add to this problem the error possibly maggh which was supposed to be avoided, and
the propagation error due 0, ) ,] <k.

Other methods might not be more efficient, except in the case wh@¥is precisely bounded, for as well small
or large values o8. Besides, the adjustment functions do not in general provide directly two-sided bounds for ruin
probabilities. They are particularly adapted to the case of large initial reserve, which does not correspond to the
assumption made here. This shows that the method consisting in taking the quotient of two non-ruin probabilities
(computed with methods efficient for that problem) is not adapted to our framework, and that the algorithm proposed
in Section3 is more convenient to this problem.
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