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In this paper we propose the fair value model basetthe risk neutral
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of policies. Similarly to the real insurers waytbinking and despite of the
most theoretical approaches we do not considecydwiders being financially
rational and therefore we do not use option pricimaglels to evaluate
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incorporating different investment strategies arafipsharing systems.
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1 INTRODUCTION

Since the introduction of the risk neutral framework for pricingitfs#ruments traded on
financial markets there were attempts to prepare simiamdwork for the life insurance
products. However, the insurance community did not accept outcomes dtsrpts and
have reported the value creation using the embedded value or the agrptntiples based
on deferral and matching of income and costs (like US GAAP standards for insurance)
We see two main problems of the advanced approaches to the lifanicesuliability
evaluation suggested by the theoreticians.

First problem are the assumptions on “financially rational” behawiothe policyholders
(usually represented by pricing the policyholders options to surrendéiact similar way as
the financial options are priced). In fact it means assumptiorbitfage-free primary market
of the life insurance contracts and at the end it leads to shenasy the worst scenarios from
the insurer’s viewpoint. However, the everyday practice showshisaassumption is too far
from reality and the insurers frequently count on the policyholder’s “irratidreddavior.

The second problem is modeling of the investment strategy and girafing system on the
liability value. For example the profit sharing rates arenoftetermined by accounting
yields, which may, of course, differ from the market interestsherprofit sharing rates
might be based on the total profit of the book of the policies. The ahewoned option-
pricing models are incapable to incorporate such effects - adeewe have to appraise large
group of the early-exercisable path-dependant instruments (and thactonnight be
moreover mutually connected through the common yield on the provisioothenr profit
sharing rules). Even though there exist advanced approaches to emgadysexercisable
path-dependant instruments, it is probably impossible to apply therheoreal book of
policies without neglecting important product features.

On the other hand the insurers identified the need of appropriateagoalof their financial
guarantees and sometimes also try to incorporate the dependence of the policyhalder be
on the financial market situation. However, the surrender deeslopment rules are usually
based on actuarial judgment without (exact) knowledge of thensiemreates distribution
inside the model.

Our main target is offering a way to fill the gap between abuoentioned two groups of the
liability appraisal models. We introduce the framework to créstevalue models for life

insurance, which are applicable in practice and allow to model poldgr's behavior



according to the development of the global environment. We believe hibatuggested
framework is a real base for evaluation of almost all iurance products — contrary to the
option-pricing approaches, which are usually focused on one special simplified product
Then we show the concrete models based on the above-mentioned framettotkewi
realistic calculation of the profit sharing amounts accordmmght accounting and profit
sharing rules used by many companies. Especially we introdpreseatation of the bonds
portfolio backing life reserves allowing calculation of the finahcevenues through the

amortization of the bond and show the simulation results for one contract.

2 FRAMEWORK FOR THE FAIR VALUE MODELS

We assume that all the cash flows arising from the book of ctstase composed of the
cash flows arising from individual contracts, so we can focus onath@dlue of liabilities
arising from particular contracts. The fair value of the ligb#rising from the portfolio is
then calculated by summing up the fair values of the individual acistrin practice it may
be necessary to model whole book of with-profit policies together tapsetalistic profit
sharing rates, but the required changes are not crucial for the below introducéd mode

At first we will formulate the very general frameworkaaling the stochastic consideration
of all effects with impact on the policy cash flow. Our modél e a generalized version of
the multidecremental model with causes of decrement described (in its traditional form) by
[Gerber]. In subsequent we will assume that the decrementseaprl premature policy

termination causes (i.e. also the termination on policyholder’s demand).
Let (Q,Gm,{Gt\Os t}, I5') be the probability space with filtratiofG,|0<t} and lett denote
the time from the valuation date. We will introddo#fowing random variables and processes

« T ...time of the decrement,

« J ...cause of the decrement (Q - {1,2,...,m}),

* G(1) ... claim payment in case of the decrement byjthe cause at the tinte
« EM() ... instantaneous rate of maintenance expenses &ntae (or more generally
instantaneous rate of all cash flows arising frdra tontract in force except the

premium and annuity payments),



C . . . .
* Ej(t) ... claim processing expenses in case of the decreyethiej-th cause at the

timet (or more generally value of all cash flows arisirggn the contract in such case
except the claim payment — for example the clavk leh¢he commission),

e T(t) ... instantaneous rate of premium and annuity gsysnat the timg

* r(t) ... the instantaneous rate of interest at the time t.
In case that there is defined policy teNn(from the evaluation date), I€&(N) denote the

value of the payment in case of the contract migtuAill the above-defined processes are
assumed afG,|0< t} adapted o{(T,J)T <t} O G, for any nonnegativeand C(N) is G,
measurable random variable. [Bft) denote the value of bank account with initial amtoof

one unit, i.e.B(t) = exp{[;r(s)ds}.

Let (5 be the risk neutral probability measure (alsoechkkquivalent martingale measure).

As we have stated above, we do not reckon the pyitifa-insurance market as arbitrage
free. We will use the risk neutral probability meaes corresponding to the hypothetical
secondary insurance market, i.e. measure implieth®yAS definition of fair value athe
amount for which an asset could be exchanged,l@abdity settled, between knowledgeable,
willing parties in an arm's length transaction

We will also assume that the third party has topadioe profit-sharing policy of the original
insurer and takeover the assets portfolio undeglyhe life reserves - in other words we
assume preservation of the original profit-sharsygtem without any inconsistencies. We
consider all future payments from the profit shgrsystem as a liability of the insurer
regardless of their legal enforceability since wasider all expected future profit shares as
constructive obligation of the insurer.

Because we want to calculate under the naturalghibty measure, we have to use the
deflator technique described by [Mandl] or by [Deff We can simply say that the deflator is
the stochastic discounting factor defined (in thmmtmuous case under some technical

restrictions) as

s =g 99
B(t) —E{dﬁ

Gt}B'l(t).

Now we can write general formulae for the randomalde representing "fair" present value

of the future cash flows from the insurance contrac



Value=|c, (T) + ES (1)|B () —](n(t) —E™@)D(t)dt, 2.1)
or

Value=|c, (T) + ES ()|B(F) —](n(t) “E"()D)dt T <N,
N 0 (2.2)
Value= C(N) D(N) - [(N(t) -E" ©))D(t)dt T =N

in case that there is the policy teNrspecified in the contact. The mean of the abovieeid
random variable is the fair value of the liabiktiarising from the contract, i.e.

FairValue= E; Value. (2.3)

Above introduced framework is very general andvedl@ao implement wide range of specific
models including the models with the similar appto#o the policy-holder options as the
approach used by financial markets in the casenwdrigan options. However, due to the
above mentioned reasons we will narrow our framé&wryr specifying effects relevant for
pricing on the hypothetical secondary market ofitaace contracts.

We will assume that the sides from the IAS Framéwdefinition of the fair value do not
consider stochastic development of factors thatspeeific for single policyholders and we
will focus only on the factors common for all pgliolders in the assessed book of policies
(referred as non-specific factors in subsequentr Bxample we will not consider
development of surrender probability (or occurrgrioe each individual contract, but will
consider the development of surrender rates forlevitmok of contracts (similarly for
mortality assumptions etc). This approach corredpdo the practice of life insurers when
assessing the liabilities from the insurance catgreStochastic consideration of non-specific
variables does also mean that we assess all embeeddeatives according to the definition
of [Engelander]. Examples of the non-specific facdce the state of financial market, the
expected future profit-shares or population mastalevelopment.

Let R denote the history of the non-specific factorgvaht for the assessment in the time

interval (O,t) . Then (FI\Os t) is filtration and for any nonnegativénolds F, U G, . We will
move from the probability spacéQ,Gw,{Gt\Ost}, I5) to the space(Q,Fm,{E\Ost}, P)

whereP is the measure identical with tfe on F.. Similarly Q will be the restricted risk

neutral measure, i.Q is the probability measure c(@,Fw) identical With(-:) on k..



For simplicity we assume that the insurance compubatgrmines the attributed profit shares

according to the non-specific factors and thatntfagntenance expenses are considered being

common for the whole book of contracts, i.e. thed Cj(t),E“" (t),EjC(t),I'I(t),r(t) are k

adapted random processes (&(N) is Ry measurable in case of the existing policy t&mn
We will also specify the model of policyholder belma according to the development

considered in FWe assume that

OfF 2tF)=exd- [ ((9) +...+ () ds] (2.4)

hlmh'lcj(j‘ =jtsT<t+hR)=4 (t)exp{— [[((9+ ...+,um(s))ds}, (2.5)
where p,(9),...,14.,(s ) are continuous,fadapted random processes. The relation between the
non-specific factors and the demographic developmepresented bﬁ,j) is fully given
by 14,(9),....14.,(S), i.€.

(0T, 3} 0 F) O o{14(8),. .4 (9)| 5= 1.
For subsequent calculations we will need processsoired sum in force at tinte
KO = exd [ (4(9) + .+ () ds] (2.6)

and deflator restricted ta F

_cl= _ | dQ
D(t) = E[B()|F | = E[dﬁ

E}Bﬂa)

Now we can move to the valuation in the sp(a@er ,(E\Os t), P) by introducing random

variableValueF

ValueF= E[\/alue\Fw]

or ValueF= Eb/alue\ FJ

in case that there is the policy teNn

By substitution oValueand calculation we come to the expression

ValueF = zmlf[cj (t) + E° ()], (0K ) D(t) dt —T[I‘I (t) - EM ®]K ()D(t)dt

i=lo 0

J

or (2.7)

ValueF = Zm’,T[Cj (t)+ Ef(t)]uj (1) K (t) D(t)dt + C(N) K (N) D(N)-
- [l -e" koot



in case that there is the policy teNn
Instead of the calculation according to (2.3) wkraefair value as

FairValue= EP[VaIueF] : (2.8)
We came to the practicable fair-value definitiomwéver there is only a general framework
described above. In the subsequent section we shodels that allow implementing the
dependence between financial market situation atidymolder's behavior and also faithful

modeling of the profit-sharing development.

3 FAIR VALUE MODELS

Now we focus on the fair value of the with-profitentracts. First of all we will specify
causes of decrements, assumed cash flows andiélwantnon-specific factors. To simplify
the subsequent formulae we will consider only theynpents between insurer and
policyholder (i.e. premium, claim payments and ender payments). The only considered
non-specific factor will be the development of fimancial market.

Only two causes of decrement are assumed furthre—death of the insured and the

surrender. We denotg® (t and °(t ) corresponding instantaneous rates from (2.4) and

(2.5) where theu®(t )will be the deterministic function of time ang°(t process

dependent on the financial market development.
Without any real loss of generality we will assutinat there is always the policy teid We
will also introduce the processes representingegntesalue of particular cash flows. Let

FV,(t) denote present value of premium paid in the timerval (Ot), FV,(t) andFVg(t)
denote present value of death claims and surrgradgnents in the same interval. According
to (2.7) we can write
dFV,(t) = K(t) D(t) N (t)dt,
dFV, (1) = K()C, (1) £° (1) D(t)dt,
dFV,(t) = K Cs(t) #°() D)L,
where C, (t ) and C(t ) are payments in case of death and surrender. diccpito the

definition FV,(0) = FV, (0) = FV4(0) = O.



In case that thé=V,, denotes present value of maturity payntéryy = K(N)C(N)D(N , )
formulae (2.7) can be rewritten to the form
ValueF = FV,, + FV,(N) + FV¢(N)-FV,(N).

3.1 Market processes models

We will dominantly focus on the interest rate magddiecause the insurance companies do
primarily invest into debt instruments as bonds &edsuries. For the faithful modeling of
profit shares we need models that allow easy catiom of bond price at any time. For this
reason and also to keep the calculations simplbeave decided to use instantaneous interest
rate diffusion models with normal distribution afstantaneous interest rat@). We will
briefly introduce three models ordered accordinghteir complexity. LetP(t,T) denote the

price of zero-coupon bond maturingTaat timet andf(t,T) denote forward interest ratetat

3.1.1 Hull-White model
The simplest model we assume is a generalized dbthee famous Vasicek model. The SDE
of ther(t) is

dr(t) = (6(t) —ar(t))dt + o dW(t), (3.1)
where V\~/(t) is Q Wiener processa,o are constant positive parameters af(t) is the

function calibrating the model yield curve at timero to the curve observed on the market.

This model provides explicit formulae fék(t), bond prices and forward interests.

We will use this model under the natural probapifiteasure. Therefore we have to rewrite
(3.1) to the form

dr(t) = (6(t) + Ao —ar(t))dt + cdW(t), (3.2)
where W(t) is theP-Wiener process and is the risk price corresponding to the process

W(t). The deflatoD(t) is then defined as
D(t) = ex;{— [[(r@+05+)dz- /]W(t)}.

The disadvantage of this model is closely relatedts simplicity. When we look at the

forward interest SDE



—_ 2
df(t,T)=0ce™dw(t)+ g (L-e =) e g
a

we see that the yield curve development is verypkmespecially that the forwards for the
different maturities are perfectly correlated ahdttthe long-term forwards may be almost
stable (for higher values @) or that the volatility ofr(t) may grow into unrealistic heights

(for lowera). We will therefore introduce two models that hidgvercome this problem.

3.1.2 Simple two-factor gaussian model

The possible solution for the above-mentioned digathge is to introduce a model where
the forward rates are driven by two (or more) Wrgm@cesses with different impact on the
different parts of the yield curve. At first we Wihtroduce model inspired by [Baxter,

Rennie]. The instantaneous interest rate is defased

r(t) = (1) + x(t) + (1), (3.3)
where @(t) is deterministic function allowing calibration tfie model to the initial yield
curve andx(t) and y(t) are stochastic processes with initial value eqoiadero and have
stochastic differential equations under the risktrad probability measure

dx(t) = o, dW,(t) and

dy(t) = —ay(t)dt + g, dW, (t).

The forward rates development is given by

df(t,T) =0, dW,(t) + o, 2T dW, (t) +

2
o a(T-t)~ ——a(T-
+{012(T—t)+?2(1—ea”‘))ea(T"}dt.

We observe that the shocks caused by the prd&p@); have the same impact on all points

of the yield curve while the shocks caused@(t) have much stronger influence on the left

side (i.e. on the forwards with a short time to umi&y).

Again we have to rewrite stochastic equations usiigner processes under the natural
probabilityP (W, (t),W, (t))
dx(t) = A,0,dt + g, dW,(t) and
dy(t) = A,0,dt —ay(t)dt + g, dW,(t),



where A, A, are corresponding risk prices. The deflator is

D(t) = exp{— [[(r@+ 052 + A2))dz- A, W, (1) - A,W, (t)}.

3.1.3 General two-factor gaussian model

This model is the most general model we considerislintimately described by

[Brigo, Mercurio]. Similarly to the previously dekd simple version the interest rate is
r(t) = @(t) + x(t) + y(t),

where ¢(t) is the deterministic function allowing calibratiofithe model to the initial yield

curve andx(t)and y(t) are stochastic processes with initial value eqoatero and have

stochastic differential equations under the risktrad probability measure

dx(t) = —a, x(t)dt + g, dW,(t) and

dy(t) = -a, y(t)dt + g, pdW, (t) + 0, {1~ p* AW, t).

This model allows various shapes of the volatidityve (especially allows humped volatility
curve that is often observed on the derivative mig)k and therefore the model is

recommended as a simple model suitable to calctdatprices of interest derivatives.

Under our assumptions of constant risk priegs A, the processex(t) and y(t) develop
according to equations
dx(t) = (Ao,—a x(t))dt + o, dW,(t) and

dy(t) = (/]1 o,p+A,0, V1= :02 —a, y(t) )dt +0, pdW(t) + o, v1- :02 dW, (1),
where (V\/l(t),Wz(t)) IS a two dimensional Wiener process and the deflidrmula is the

same as in the case of simple two-factor model.

3.1.4 Other assets categories

According to the principle of parsimony we do ngpect the insurance companies to model
the yield development for high number of differexsisets (or asset classes). We support
modeling of only few "not-interest" asset categerfand only in case that such categories
represent a significant part of the assets badkiadife reserves). The suggested approach is

10



to consider only bonds and shares yields (and soregtalso property and foreign currencies
yields).
Let S denote price of-th category unit. We assume that the price deveéoy is given by

ds () = S ()|r)dt +w, dZ (1)},
where w, is the volatility corresponding to theh category an(fi (t )s a Wiener process
under the risk-neutral measu@e We can assume fixed correlations between theeistteate
and the considered asset categdi/i (t)dVVj (t) = p, dt and correlations between different
asset categoriecicfi (t)dZ~j (t) = p; dt.
Because the dominant part of assets backing Iferves consists of the debt instruments as

bonds and bank deposits, we will consider only paoe-debt asset category with the unit

priceZ(t). For simplicity we will talk about this categoag about shares.

3.2 Modeling of policyholder's behavior

Now we will suggest a simple method to model chariggolicyholder's behavior expressed

by p, (t),...,1,,(t) due to the development of global processes whitbry definesF, .
Because we assume that only the financial marketesses are the relevant global processes,
we will assume deterministic mortality® (t . We have to point out that®(t i not the

expected mortality, but it is already adjusted gy tisk margins according to (2.4) and (2.5).

We assume that there is a connection between #te ef the financial market and the

policyholder's tendency to surrender policy. Thedbat task during creation of the fair value
model is to set-up appropriate relation betweenstiteender rates and the financial market
development (and the expected future profit-shares)

In the subsequent we will suggest very simple ddpece — the big advantage of the below-
introduced approach is the easy analytical tralylonf the surrender rate development
allowing exactly controlling its behavior and siraphterpretation of the dependence.

It is clear that the main input for the policyhaldedecision is the yield curve development
(since the history of shares prices provides norinfation about a future development). We
will assume that the policyholder has higher mdiorato continue in case of lower interest
rates because the minimum interest guarantee is wabnable than in case of higher interest

rates.

11



Let v(t) denote the expected force of surrender adjustettidoyisk margins (corresponding
to the policyholder specific risk of surrender). \Wagjuire the probability of the "contract

survival" defined by deterministic functions(t) and x°(t) to be equal to the expected

"contract survival" probability arising fronqw®(t 3nd ° (t ), i.e.

exp{—j(,uD (2) + v(z))d z} = Eexp{—j(,uD (2) + ,us(z))d z}. (3.4)

3.2.1 Surrender development for Hull-White model

A simple possibility to defingz°(t Jevelopment is to introduce stochastic equation

duS(t) = (7(t) -aps®)dt + ko dw(t), (3.5)
where W(t) is the samd-Wiener process as in (3.2). Also the parameterss are the
same as in the case of interest r&te.0 is the ratio between the volatility of the intdreste
r(t) and w°(t). The deterministic function(t) is determined by (3.4). Of course
#*0) =v(0).

When we compare expressions

r(t)=rOe™ +e™ [e(@(2) +A0)dz+oe™ [ e dW(2),

S — —at —at t az —at t az
wS(t) =v(0)e™ +e Le n(z)dz+koe joe dW(2)
we see that the stochastic parts are equal exicephtltiplication byk. It does mean that
both r(t) and w°(t ) are sums of a deterministic function and a mangmcess with zero

expected value and that the markov process is same(t) and °(t) except the

multiplication byk.
The disadvantage of this simple approach is thsipitisy of negative force of surrender. In

case of lowy(t) for somet it is necessary to (at least) introduce a nontamparameter

o(t) in (3.5) (or even parameterg(t) and a(t)). Unluckily we are losing the simple
interpretation of the relation betwee(t) and #°(t). We can, of course, use completely

different way to define #°(t )(for example linked to the ratio between marketl an

guaranteed interest rate or to expected futuratpgbéres), but we will probably get much
more complicated and analytically untractable sudes rate process.

12



3.2.2 Surrender development for simple two-factor model

Similarly to the previous case we will adopt a diengpproach based on the multiplication of
the processext) andy(t) by constant&; andk,. The force of surrender is then

K@) =) + ko x(1) + K, y(),
where the functiony(t) guarantees validity of (3.4).

As we can see, the relation betwe@hand #°(t ) is similar as in the Hull-White model. The

advantage is that the parameterandk, do not only determine the policyholder's sengitivi
on the development of the interest rate, but als@énsitivity on the movements of different
parts of the yield curve. For exampte much higher thark, means that the policyholder
decisions depend mainly on the long-term yields.

Also in this case we face the problem of negatored of surrender. Again it can be partially

solved by replacing; andk; by functionsk;(t) andkx(t) or by complete change of thg) and
13(t) relation.

3.2.3 Surrender development for general two-factor model

The situation is nearly the same as in case o$ithele two-factor model. Therefore we use

the same expression fer°(t )

1) =) +k X(t) + k, Y(O),

where the specifications &f, k; and¢/(t) are the same as in the section 3.2.2.

3.3 Profit sharing systems

One of the hardest (and often underestimated) @noblof life portfolio projections is the
corresponding modeling of provided profit sharesoading to the market development.
Especially in case of traditional with-profits cratts the relation between the market yields
and profit sharing rates is really complicated doehe insurer's internal accounting and
profit sharing rules and also sometimes due taiberetionary features of the profit-sharing
system - it is even often that the management métes the profit-sharing rates without
explicit connection to a (however defined) partref company profit.

For modeling purposes we have to replace the disney features by some deterministic

rules derived mainly from the past practice of ¢benpany. However, the companies do not

13



usually base their decisions on pure market yieldd use accounting yields instead.
Especially the profit-sharing policies usually rgoze the revenues from bonds using the
amortization instead of the bond market price dgwalent (what significantly decreases the
volatility of the return from investments and sulpsently decreases the possibility that the
interest rate guarantees provided to clients wlilasthe-money).

For that reason (and also because the bonds raptisedominant part of the assets backing
life reserves) we will focus mainly on the profitesing behavior in case that the statutory
reserves are backed by bonds, which price is réezediby amortization.

3.3.1 General assumptions about the profit sharing system

We will assume that the insurer does distribute aat pf the financial profit to the
shareholders. We will also assume that the compmeg the bank account profit-sharing
system (i.e. the credited profit shares are heldh @eparate account and are paid together
with the claim or surrender payment from the priyriasurance).

Let V(t) denote statutory reserve of the original contr&t) is determined by Thiele

differential equation and the contractual premidn(t), the claim paymentc(t), the

technical interest raté and the T order mortality \V(t) is the base to calculate profit shares
and the surrender payment.
Deliberately we have decided that all below desctilprofit sharing systems do meet the
condition thatPSRatioof the financial profit is allocated to the polimtders profit shares (or
are marketed this way at least). As we will seerdlare vast differences between the liability
value arising from the systems despite of thisyumgf condition.
Let us denotd’St) the value of the credited profit shares corredpun to one unit of the
sum insured and we assume tR&t) fulfils equation (except the case of deferrediitieg)
dPS(t) = [PSRatidV (t) + PS(t))(RateP$t) - 3), + PS(t) d]dt, (3.6)
whereRateP§) is the rate corresponding to the accounting @siereturn on financial assets
backing the life reserves (and)( is the maximum of O anx).

For simplicity we specify the formulae for the cheaand surrender payments
C:D (t) = C(t) + PS(t)1
Cs(®) = [L-yM)V () + PS(1), (3.7
C(N) =V(N) + P(N),

14



where y(t) determines the surrender penalty at tim&low we will focus on the faithful

modeling of theRateP®) according to the market state and the investraategy of the

insurer.

3.3.2 Reserves backed by the bank account

The simplest approach is to assume that the ingavests only in the bank account. Under
any accounting system the interest yield is thennbktantaneous interest rirateP®) =r(t)
and from (3.7) we get

dPS(t) = [(V(t) + PSH))(r (t) - 3), + PS(t) 3]dt.
Assumption of this investment strategy is obviouslyealistic but we suppose it closer to the
reality than the sometimes-used assumption ohadistments in the shares-like assets.

3.3.3 Reserves backed by the shares

Even though we do not find it corresponding to teal situation, we will now define the
system based on the assumption of all reservestenénto shares. However we will use the
introduced approach when we will assume the inmgstioncurrently into the bonds and
shares.

It is not possible to define continuous increaseredited profit shares as in (3.7) in this
situation. We have to assume that the financiafitpis calculated periodically in the
equidistant times and that the insurer determihesiricrease oPSt) at such times. Let
denoteh the considered period. The developmer®§t) is then determined by

S(kh)

P = PSRaidy (-3 + P o0

—ef’hj +P(k -Dh) "

forall k =1,2,... when for allt >0

PS(t) = PS([h7't]h).

It does mean that the procdsSt) has jumps in the multiples bfand is constant elsewhere.

3.3.4 Reserves backed by the bonds maturing at the end of policy

As we have said, the life insurers invest primainkp the long-term bonds. The simplest way

to implement such strategy is to assume that therén holds only the zero-coupon bonds

15



maturing at the tim&l (i.e. the time of the policy maturity). For anyngt between 0 andll
we require that the bond portfolio has the accagntialue at least equal to the statutory

reserveK(t)(V(t)+ PS(t)) and also that the insurer does not sell the bamdase that the

portfolio accounting value is higher than the statyireserve.

We assume thatK(t)(V(t)+ PS(t)) has continuous trajectories with existing right
derivatives. LeBook\t) denote the accounting value of the bond portfatithe timet and
Face\(t) the corresponding face value. We will also dendEt) the amortization rate

corresponding to the portfolio at the time

AF(t) = Nl_t In[

FaceV(t)j
Book\Ut)
No new bonds are bought in case that the accounéihug of the portfolio is higher than the
statutory reserve, i.e.

if Book\(t) > K(t)(V(t)+PSt)) then

d Face(t) =0 and

d Book\(t) = AF(t) Book\(t) dt.
Otherwise company buys new bonds to keep equaditywd®en the statutory reserve and the
accounting value of the bond portfolio, i.e.

if Book\(t) = K(t)(V(t)+PSt)) then

dFaceV(t) = P, N)(O[K(t) (V(gt): PSON _ Ak BookV(t)j dt and

d Book\(t) = KG[K(U (V;t): PS(t))] — AF(t) Book\(t) J + AF(t) BookV(t)}dt.

The above considered investment strategy allowsslingi up a relatively simple model, but
in practice we will observe significant differendaestween the model and the reality even at
the beginning because the real bond portfolio Wwél probably quite different from the
modeled one.

There might be also problems in case of modelisgtgsortfolio backing reserves for whole
book of contracts, which (of course) includes cactls with different maturities. For that
reason it would be more precise to adapt the genmerdel of the bond portfolio described in
the next subsections.
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3.3.5 General model of the bond portfolio

For the purposes of the calculation we set foll@gniepresentation of the bond portfolio:
* Face\(t,s) denotes the total face value of (zero couponylbdreld at time with
maturity at times or earlier,
* Book\{t,s) represents then the total book value at tiroie(zero coupon) bond with
face value 1 and maturity at tirseThe appropriate amortization factor is then

AF(t,s) = 1 In 1 .
s—t | BookV(t,s)

The basic requirement is simple — at any tinhetween 0 andll the book value of the bond

portfolio has to be equal to the statutory resatvibe same time, i.e.
K(t)(V(t) + PS(t)) = j Book\(t, s) d, FaceM(t, s), (3.8)
t

We assume (of course) validity of (3.8) for 0. More generally we can assume that the
statutory reserve has to be equal or lower tharbtiodk value of bonds and prevent possible
sales of bonds from the portfolio but we will negjl¢his effect since it is not so important
according to our calculations.

To implement the model in practice we have to dpabie investment strategy and find out
equations foFace\(t,s) and Book\(t,s) assuring (3.8). It is necessary being cautiousifib
the complexity of the strategy to keep the modehpatable. Therefore we have developed it

for the simple investment strategy that shouldufécsent in most cases.

3.3.6 Purchase of bonds with constant time to maturity

Let's assume that at any tirhéhe insurer buys (zero coupon) bonds with time&turity D,
i.e. maturing at timé+D. For simplicity we also assume that there arearalb with maturity
at timeD or later in the portfolio at the beginning of tb&culation (this assumption is just
technical and can be eliminated by splitting thetfpbo into the part bought before the
calculation date and the rest).

Then it is simple to define the developmenBobk\{t,s)

0BookV
t,s8) = AF(t,s)BookMt,s) s<t+D,
oo (9= AF(t5)Book\(t,9 3.9)

Book\t,s) =P(s—-D,s) s=t+D.
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Let's assume thaFace\(t,s) is continuous function or<0,T >x<0,T +D > with t-

derivatives and right-derivatives. (3.8) is valid in case that

aFaceV(t’ 2)=- aFaceV(u) 2<t+D,
ot d.s
t+D
OFaceV 5 =| KOV +PSO) [ 220K ¢ ) d, FaceMty) +  (3.10)
ot ot ot
+(1-P(t,t + D))aFaaC:V(t,t)} ! 7>t+D

P(t,t+D)

+

when the statutory reservlé(t)(V(t)+PS(t)) is continuous. This condition is satisfied in

case thaPSt) is continuous (for example in case tR&t) develops according to (3.6)).
However, in practice we will sometimes need a modkbwing jumps in the bond
distribution represented yace\(t,s) — for example in case that we will consider share
the asset portfolio or to incorporate the startpaytfolio precisely. Therefore we split
Face\(t,s) in two functions FaceVF°"{t,s) andFace\P*(t,s).

FaceV(t, z) = FaceV™* (t, z) + FaceV*"(t, 2).
Face\*°"{t,s) matches up to conditions fBace\(t,s) in previous “continuous” situation (i.e.
is continuous and the required derivatives exigts).anyt Face\P*°(t,s) is constant relative
to s except the finite number of discontinuity pointdereFace\VP(t,s) is right-continuous.
Condition (3.8) is satisfied Face\*°"{t,s) develops according to

ont ont
M(t’z):_w(t,t) forz<t+D,
ot +
oFaceV ™ 1 [o(k@V(H)+PS))
ot ’ P(t,t + D) d.t
t+D
_ J' aBgf)kV(t, y) dy FacevCont(t’ y) _ (311)
t
4D ont
- [ PBY(1.y) d, Faceve=t.y) + - P+ ) TR0V e
t oS

forz=t+D

andFace\P*(t,s) develops according to

18



FaceV*™™ (t,z) =lim, _, (FacevDiscr (t - h,z) — FaceV>* (t - h,t))
fort<z<t+D,
FaceV™*(t,z) =lim, _, FaceV™**(t-h,z)+ (3.12)
+P(,t+ D)[K MV () + PSE) - lim,, . Kt =h)(V(t-h) + PS(t =)+
+(L-P(t,t+D))lim, . FaceV** (t-h,t)]  forz>t+D.

The rate for profit sharing is

t+D

J' AF(t,s) BookM(t, s)d, FaceMt, s)
RateP$t) = -

(3.13)

t+D

I Book\(t, s)d, Facet, s)
t

and the credited profit shares development is tatled by (3.6).

3.3.7 Purchase of bonds with constant time to maturity and shares

Now we can combine the profit sharing systems d&sdrn the subsections 3.3.3 and 3.3.6.
Let's assume that the company holdof its assets in the shares and the rest in bamds
that the insurer buys the new bonds with the tioneaturityD as in 3.3.6).

For the reasons presented in 3.3.3 we assume thd pg shares evaluation with length
h> 0. This assumption will cause jumps in the valiasset portfolio and (subsequently) in
the value of reserve. Therefore we will need to tieeFace\F°"(t,s) and Face\P(t,s)
representation of the bond portfolio. We will demBateBong) the instantaneous rate of the

appreciation of bonds

t+D

I AF(t,s) BookV(t,s)d, FaceV(t,s)
RateBondt) = -

(3.14)

t+D

I Book\(t, s)d, FaceMt,s)
t
To have the correct representation of the portfeiohave to change the condition (3.8) to
A-a)K@t)(V(t) + PS(t)) = j Book\(t,s) d, FaceMt, s).
t

The simplest way of defining a profit sharing systis to assume continuous crediting of the
profit from the bond portfolio with jumps in theectited profit shares corresponding to the

appreciation of shares
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dPS(t) = [PSRatidl- a)(V (t) + PS(t))(RateBondt) - ), + PS(t) d]dt
for tO{kh|k=01..}

PS(kh) = PSRatiar (v ((k -Dh) + PS((k —1)h))[% _ eah] ., (315)

+lim PS(kh~1) for k=12,...

Unluckily the (3.15) system separates sharing ofitsr from bonds and from shares. The
insurer bears full loss from one asset category éveugh there is profit on the second. This
is, of course, not realistic. Therefore we needrtplement the deferred crediting of profit

shares, which allows sharing part of total finahprafit from longer period.

3.3.8 Deferred crediting of profit shares

The idea of the deferred crediting is simple - itgurer accumulates all the instantaneous
financial profits and losses (more precisely the palonging to policyholders) into a special
fund BRegt) and at the end of a year credits a part of gl fto the policyholder. In case
that theBRegt) is negative at the end of the year the insuregteeits value to 0. Assuming
the same investment strategy as described abever (in shares, rest in bonds) we get
dBRegt) = PSRaticK (t)(V (t) + PS(t))[((L- a)RateBond) - §)dt +ad(InS(t))] 0<tO{12..},
BRegk) = max0; l![rE\+[BRe$k —h) - K(k)(PS(k) - PS(k - h))ﬁ kO{12..},

The main question is how the insurer determinescthdited profit-shares at the end of the
year.

Yearly crediting of the profit shares

This is the simplest considered system. Insureditsreto policyholder whole amount
accumulated inBReg¢t). However such system corresponds to real sitnagioce many
insurers determine the credited profit shares filmenyearly financial profit. In such case

dPS(t) =dPS({t)dt for 0<tO{12,..}

max0; lim BRegk — h)}
PS(k) = r!lrQ PS(k — h) + PSRatioc hﬂ‘;(k) for kO{12..}.

There are insurers that do not distributeBfle¢t) at the end of the year and keep some
buffer to co-finance possible future financial kessand to smooth the profit sharing rates.
Two subsequent systems allow such buffer creation.

Crediting constant percent ofBRes
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The first one assumes that at the end of the yearirisurer creditsd BRegt) to the
policyholders (0 <® < 1).PSt) develops according to
dPS(t) =JdPS(t) dt for, 0<t{L2..}
0, P t!lﬂ)l BRegk —h) }

PS(k) = lim PS(k ~h) + <0

for kO{12..}.

Keeping constant ratio betweerBRes and statutory reserves
This system is inspired by [Grosen, Jgrgensen] agsomed that the company tries to keep
theBResat a minimum level of K (t)(PS(t) +V(t)) at the end of the yeaF & 0). The

system is then described by

dPS(t) =dPS(t)dt for 0<tO{12..}

max0; lim BRegk —h) - K (k)(V (k) + PS(k))}
PS(k) = lim PS(k —h) + nef 0 (3.20)

for kO{12..}.

4 SIMULATIONS RESULTS

The simulations were prepared for one endowmeritypalith the term of 20 years. The
insured person was assumed to be a 40 years o&lanasue of the policy. The input force

of surrender/(t) was assumed to be high at the beginning of th&adrand decreasing to

the level of approx. 6% and the surrender pendkifirfed in % of the statutory reserve) was
linearly decreasing form 15% at the policy issuedm at the end of the policy term.

In this paper we present three result tables qooreging to the scenario with the constant
yield curve equal to 4.5 % p.a. and to the gerteralfactor model described in section 3.1.3.
Parameters of the interest-rate process @yas 0.004,a, = 0.03,0, = 0.008,a, = 0.2 and
p=0.3.

Each table includes results for different profiashg systems. Table 1 corresponds to the
best-estimate approach, table 2 includes resulsdoghastic simulation of the interest rates
with the deterministic surrender rates and fintlly table 3 represents the results considering
the stochastic surrender rates=(, ko=1).

At first we show impacts of different investmemnasegies as described above, neglecting the

possibility of investing all asset into the sharbs.case of buying the new bonds with
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constant time to maturity we assume 4 differentieslof the time to maturity — 1, 2, 4 and 8
years to show impact of investing into the instrateewith different durations. Finally the
effect of the delayed crediting is shown under 3habove described set-ups (using yearly
crediting of the profit-shares).

As we can see (and is well known) the best estirtestds to the misleading value of the
liability from the policy. (The investment stratedges not influence the value of the liability
in our case due to the flat yield curve input.) Ytfle effect of the profit-sharing deferral is
shown — especially we can see that the bufferivel&d the statutory reserve creation sharply
decreases the insurer's liability value. The almsrribed surrender penalty is the reason of

the positive margin in case the guaranteed anahtbeest rate equality.

Profit sharing New bonds Technical interest rate
system time to maturity 5.0% 4.5% 4.0% 3.5% 3.0% 2.5%
Instantaneous interest rate X 4.3 -76.8 -96.6 -118.3 -141.8 -167.3
Bonds to maturity of policy 20 -t 4.3 -76.8 -96.6 -118.3 -141.8 -167.3
Bonds — new bonds with 1 4.3 -76.8 -96.6 -118.3 -141.8 -167.3
constant time to maturity 2 4.3 -76.8 -96.6 -118.3 -141.8 -167.3
4 43 -76.8 -96.6 -118.3 -141.8 -167.3
8 4.3 -76.8 -96.6 -118.3 -141.8 -167.3
Shares and bonds 1 4.3 -76.8 -96.6 -118.3 -141.8 -167.3
shares evaluated monthly 2 4.3 -76.8 -96.6 -118.3 -141.8 -167.3
bonds const. time to mat. 4 4.3 -76.8 -96.6 -118.3 -141.8 -167.3
(shares ratio a 40%) 8 4.3 -76.8 -96.6 -118.3 -141.8 -167.3
Bonds — new bonds with 1 4.3 -76.8 -96.6 -118.3 -141.8 -167.3
Time to maturity equal to 2 4.3 -76.8 -96.6 -118.3 -141.8 -167.3
minimum of constant 4 4.3 -76.8 -96.6 -118.3 -141.8 -167.3
And time to matur. of policy 8 4.3 -76.8 -96.6 -118.3 -141.8 -167.3
Deferred crediting 1 4.3 -76.8 -98.0 -121.0 -146.0 -173.0
100% credited at the end 2 43 -76.8 -98.0 -121.0 -146.0 -173.0
of year 4 43 -76.8 -98.0 -121.0 -146.0 -173.0
(shares ratio a 40%) 8 4.3 -76.8 -98.0 -121.0 -146.0 -173.0
Deferred crediting 1 4.3 -76.8 -99.9 -125.1 -152.3 -181.8
75% credited at the end 2 4.3 -76.8 -99.9 -125.1 -152.3 -181.8
of year 4 4.3 -76.8 -99.9 -125.1 -152.3 -181.8
(shares ratio a 40%) 8 4.3 -76.8 -99.9 -125.1 -152.3 -181.8
Deferred crediting 1 4.3 -76.8 -127.6 -153.3 -179.8 -208.3
keeping 2% of statutory 2 4.3 -76.8 -127.6 -153.3 -179.8 -208.3
reserve in the buffer 4 4.3 -76.8 -127.6 -153.3 -179.8 -208.3
(shares ratio a 40%) 8 4.3 -76.8 -127.6 -153.3 -179.8 -208.3

Table 1 Deterministic projection — liability value corresponding to insured sum 10 000
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Profit sharing New bonds Technical interest rate
system time to maturity 5.0% 4.5% 4.0% 3.5% 3.0% 2.5%
Instantaneous interest rate X 63.8 12.7 -34.4 -77.4 -117.0 -154.0
Bonds to maturity of policy 20 -t 0.4 -61.2 -100.3 -125.7 -149.7 -175.5
Bonds — new bonds with 1 55.1 35 -43.3 -85.4 -123.5 -159.0
constant time to maturity 2 475 -4.8 -51.2 -92.1 -128.8 -162.9
4 35.5 -18.0 -63.8 -102.4 -136.2 -167.8
8 19.6 -36.4 -80.5 -114.7 -144.3 -172.5
Shares and bonds 1 959.7 927.9 893.8 857.3 818.2 776.6
shares evaluated monthly 2 959.1 927.3 893.1 856.6 817.6 775.9
bonds const. time to mat. 4 958.0 926.2 892.0 855.4 816.4 774.7
(shares ratio o 40%) 8 956.7 924.8 890.6 854.0 814.9 773.3
Bonds — new bonds with 1 55.1 3.5 -43.3 -85.4 -123.5 -159.0
time to maturity equal to 2 47.6 -4.6 -51.1 -92.0 -128.7 -162.8
minimum of constant 4 35.9 -17.6 -63.4 -102.1 -136.0 -167.7
and time to matur. of policy 8 20.7 -35.2 -79.4 -114.0 -143.8 -172.4
Deferred crediting 1 218.0 172.8 126.9 80.7 34.1 -12.9
100% credited at the end 2 216.3 170.9 125.0 78.9 324 -14.6
of year 4 2134 167.9 122.1 75.9 29.4 -17.4
(shares ratio o 40%) 8 209.7 164.2 118.3 72.1 25.7 -20.8
Deferred crediting 1 186.0 137.9 89.4 40.8 -7.9 -57.2
75% credited at the end 2 184.2 135.9 87.6 39.0 -9.7 -58.8
of year 4 181.3 132.9 84.4 35.9 -12.8 -61.7
(shares ratio o 40%) 8 177.4 129.0 80.5 31.9 -16.7 -65.3
Deferred crediting 1 139.1 90.4 42.0 -5.8 -53.0 -99.6
keeping 2% of statutory 2 137.0 88.2 39.8 -7.9 -55.0 -101.4
reserve in the buffer 4 133.4 84.5 36.0 -11.5 -568.3 -104.5
(shares ratio o 40%) 8 128.6 79.6 31.2 -16.3 -62.8 -108.6

Table 2 Stochastic interest rates — liability valueorresponding to insured sum 10 000

Profit sharing New bonds Technical interest rate
system time to maturity 5.0% 4.5% 4.0% 3.5% 3.0% 2.5%
Instantaneous interest rate X 83.9 30.2 -19.6 -65.1 -106.8 -145.6
Bonds to maturity of policy 20 -t 26.2 -40.2 -84.7 -113.1 -137.5 -162.9
Bonds — new bonds with 1 75.4 20.9 -28.7 -73.4 -113.8 -151.1
constant time to maturity 2 68.0 12.7 -36.8 -80.5 -119.5 -155.3
4 56.4 -0.5 -49.8 -91.4 -127.6 -160.9
8 41.5 -18.7 -67.0 -104.7 -136.4 -166.0
Shares and bonds 1 996.9 964.6 930.0 893.0 853.5 811.3
shares evaluated monthly 2 996.6 964.3 929.7 892.7 853.1 810.9
bonds const. time to mat. 4 996.0 963.7 929.1 892.0 852.4 810.2
(shares ratio o 40%) 8 995.5 963.2 928.5 891.5 851.9 809.7
Bonds — new bonds with 1 75.4 20.9 -28.7 -73.4 -113.8 -151.1
time to maturity equal to 2 68.1 12.8 -36.7 -80.4 -119.4 -155.3
minimum of constant 4 56.7 -0.3 -49.6 -91.2 -127.5 -161.0
and time to matur. of policy 8 42.3 -17.9 -66.4 -104.4 -136.6 -166.6
Deferred crediting 1 240.4 194.0 146.9 99.5 51.8 3.6
100% credited at the end 2 238.7 192.2 145.1 97.7 50.1 1.9
of year 4 236.0 189.3 142.2 94.9 47.2 -0.8
(shares ratio o 40%) 8 232.6 185.8 138.8 914 43.8 -3.8
Deferred crediting 1 208.8 159.3 109.6 59.7 9.7 -40.7
75% credited at the end 2 207.0 157.5 107.8 57.9 7.9 -42.4
of year 4 204.1 154.5 104.7 54.9 4.9 -45.2
(shares ratio a 40%) 8 200.5 150.8 101.0 51.2 1.2 -48.6
Deferred crediting 1 161.3 111.0 61.1 11.8 -36.9 -84.8
keeping 2% of statutory 2 159.2 108.8 58.9 9.7 -38.9 -86.8
reserve in the buffer 4 155.6 105.1 55.1 6.0 -42.2 -89.9
(shares ratio o 40%) 8 150.9 100.3 50.4 1.3 -46.7 -93.9

Table 3 Stochastic interest rates and force of suender — liab. value corresponding to insured sum 1000
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Results of stochastic calculations show that theemolatile is the accounting interest from
the asset portfolio the bigger is the insurerwilitg value. In fact we can see that the strategy
of buying long-term bonds and amortizing the puseharice leads to the lowest liability
value at all. It explains why many life insurerg ukis strategy.

Comparing the results with deterministic and stetihaorce of surrender we observe that
the liability has increased by the amount approkéhyacorresponding to one monthly
premium. However the increase in the liability \eals diametrically lower than in the case of
replacing the best estimate with stochastic interates, even this change is definitely

significant from the life insurer's perspective.

5 CONCLUSION

We have developed framework for the fair value tizat be used in practice, shown specific
models originating from the model and especiallyvage developed the representation of
the bond portfolio allowing the projection corresding to the real practice of many life

insurers. The framework and above-shown models wesgired by the approach of the

insurance practitioners and therefore it is notpssing that some of its features may
resemble the recently developed models used irtipga¢iowever, most of the practically

used models are based on approximate assumpti@hshaim architecture does often not
allow stochastic and dynamic modeling of all th@ariant features.

Unluckily, the calibration of above described madallowing stochastic development of

surrender rates requires actuarial judgment siheeould be nearly impossible to reliably

estimate the parameters from the past.
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