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Abstract: 

In this paper we propose the fair value model based on the risk neutral 

calculations methodology corresponding to the hypothetical secondary market 

of policies.  Similarly to the real insurers way of thinking and despite of the 

most theoretical approaches we do not consider policyholders being financially 

rational and therefore we do not use option pricing models to evaluate 

policyholders and embedded options (typically the surrender and paid-up 

option). After general introduction of the approach, we show possible way of 

liability value calculation using Gaussian short term interest rates model and 

incorporating different investment strategies and profit-sharing systems. 
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1 INTRODUCTION 
 
Since the introduction of the risk neutral framework for pricing the instruments traded on 

financial markets there were attempts to prepare similar framework for the life insurance 

products. However, the insurance community did not accept outcomes of such attempts and 

have reported the value creation using the embedded value or the accounting principles based 

on deferral and matching of income and costs (like US GAAP standards for insurance). 

We see two main problems of the advanced approaches to the life insurance liability 

evaluation suggested by the theoreticians.  

First problem are the assumptions on “financially rational” behavior of the policyholders 

(usually represented by pricing the policyholders options to surrender contract similar way as 

the financial options are priced). In fact it means assumption of arbitrage-free primary market 

of the life insurance contracts and at the end it leads to the assuming the worst scenarios from 

the insurer’s viewpoint. However, the everyday practice shows that this assumption is too far 

from reality and the insurers frequently count on the policyholder’s “irrational” behavior. 

The second problem is modeling of the investment strategy and profit sharing system on the 

liability value. For example the profit sharing rates are often determined by accounting 

yields, which may, of course, differ from the market interests, or the profit sharing rates 

might be based on the total profit of the book of the policies. The above-mentioned option-

pricing models are incapable to incorporate such effects - otherwise we have to appraise large 

group of the early-exercisable path-dependant instruments (and the contracts might be 

moreover mutually connected through the common yield on the provisions or other profit 

sharing rules). Even though there exist advanced approaches to appraise early-exercisable 

path-dependant instruments, it is probably impossible to apply them on the real book of 

policies without neglecting important product features. 

On the other hand the insurers identified the need of appropriate evaluation of their financial 

guarantees and sometimes also try to incorporate the dependence of the policyholder behavior 

on the financial market situation. However, the surrender rates development rules are usually 

based on actuarial judgment without (exact) knowledge of the surrender rates distribution 

inside the model. 

Our main target is offering a way to fill the gap between above-mentioned two groups of the 

liability appraisal models. We introduce the framework to create fair value models for life 

insurance, which are applicable in practice and allow to model policyholder's behavior 
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according to the development of the global environment. We believe that the suggested 

framework is a real base for evaluation of almost all life insurance products – contrary to the 

option-pricing approaches, which are usually focused on one special simplified product.  

Then we show the concrete models based on the above-mentioned framework with the 

realistic calculation of the profit sharing amounts according to the accounting and profit 

sharing rules used by many companies. Especially we introduce representation of the bonds 

portfolio backing life reserves allowing calculation of the financial revenues through the 

amortization of the bond and show the simulation results for one contract. 

 

 

2 FRAMEWORK FOR THE FAIR VALUE MODELS 

 

We assume that all the cash flows arising from the book of contracts are composed of the 

cash flows arising from individual contracts, so we can focus on the fair value of liabilities 

arising from particular contracts. The fair value of the liability arising from the portfolio is 

then calculated by summing up the fair values of the individual contracts. In practice it may 

be necessary to model whole book of with-profit policies together to set up realistic profit 

sharing rates, but the required changes are not crucial for the below introduced model. 

At first we will formulate the very general framework allowing the stochastic consideration 

of all effects with impact on the policy cash flow. Our model will be a generalized version of 

the multidecremental model with m causes of decrement described (in its traditional form) by 

[Gerber]. In subsequent we will assume that the decrements represent all premature policy 

termination causes (i.e. also the termination on policyholder’s demand). 

Let ( )Ptt
~},0G{,G, ≤Ω ∞  be the probability space with filtration }0G{ tt ≤  and let t denote 

the time from the valuation date. We will introduce following random variables and processes 

• T
~

 ... time of the decrement, 

• J
~

 ... cause of the decrement ( },,2,1{:
~

mJ K→Ω ), 

• Cj(t) ... claim payment in case of the decrement by the j-the cause at the time t, 

• EM(t) ... instantaneous rate of maintenance expenses at the time t (or more generally 

instantaneous rate of all cash flows arising from the contract in force except the 

premium and annuity payments), 
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• )(tEC
j  ... claim processing expenses in case of the decrement by the j-th cause at the 

time t (or more generally value of all cash flows arising from the contract in such case 

except the claim payment – for example the claw back of the commission), 

• )(tΠ  ... instantaneous rate of premium and annuity payments at the time t, 

• r(t) ... the instantaneous rate of interest at the time t. 

In case that there is defined policy term N (from the evaluation date), let C(N) denote the 

value of the payment in case of the contract maturity. All the above-defined processes are 

assumed as }0G{ tt ≤ adapted, ttTJT G⊆≤ }~)~,~{(σ  for any nonnegative t and )(NC  is NG  

measurable random variable. Let B(t) denote the value of bank account with initial amount of 

one unit, i.e. { }.d)(exp)(
0

ssrtB
t

∫=  

Let Q
~

 be the risk neutral probability measure (also called equivalent martingale measure). 

As we have stated above, we do not reckon the primary life-insurance market as arbitrage 

free. We will use the risk neutral probability measure corresponding to the hypothetical 

secondary insurance market, i.e. measure implied by the IAS definition of fair value as the 

amount for which an asset could be exchanged, or a liability settled, between knowledgeable, 

willing parties in an arm's length transaction. 

We will also assume that the third party has to adopt the profit-sharing policy of the original 

insurer and takeover the assets portfolio underlying the life reserves - in other words we 

assume preservation of the original profit-sharing system without any inconsistencies. We 

consider all future payments from the profit sharing system as a liability of the insurer 

regardless of their legal enforceability since we consider all expected future profit shares as 

constructive obligation of the insurer. 

Because we want to calculate under the natural probability measure, we have to use the 

deflator technique described by [Mandl] or by [Duffie]. We can simply say that the deflator is 

the stochastic discounting factor defined (in the continuous case under some technical 

restrictions) as 

).(~

~
E)(~ 1 tB

Pd

Qd
tD t

−








= G  

 

Now we can write general formulae for the random variable representing "fair" present value 

of the future cash flows from the insurance contract 
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in case that there is the policy term N specified in the contact. The mean of the above defined 

random variable is the fair value of the liabilities arising from the contract, i.e. 

 ValueFairValue P~E= . (2.3) 

Above introduced framework is very general and allows to implement wide range of specific 

models including the models with the similar approach to the policy-holder options as the 

approach used by financial markets in the case of american options. However, due to the 

above mentioned reasons we will narrow our framework by specifying effects relevant for 

pricing on the hypothetical secondary market of insurance contracts. 

We will assume that the sides from the IAS Framework definition of the fair value do not 

consider stochastic development of factors that are specific for single policyholders and we 

will focus only on the factors common for all policyholders in the assessed book of policies 

(referred as non-specific factors in subsequent). For example we will not consider 

development of surrender probability (or occurrence) for each individual contract, but will 

consider the development of surrender rates for whole book of contracts (similarly for 

mortality assumptions etc). This approach corresponds to the practice of life insurers when 

assessing the liabilities from the insurance contracts. Stochastic consideration of non-specific 

variables does also mean that we assess all embedded derivatives according to the definition 

of [Engeländer]. Examples of the non-specific factor are the state of financial market, the 

expected future profit-shares or population mortality development. 

Let Ft denote the history of the non-specific factors relevant for the assessment in the time 

interval 〉〈 t,0 . Then )0F( tt ≤  is filtration and for any nonnegative t holds .GF tt ⊆  We will 

move from the probability space ( )Ptt
~},0G{,G, ≤Ω ∞  to the space ( )Ptt },0F{,F, ≤Ω ∞  

where P is the measure identical with the P
~

 on F∞. Similarly Q will be the restricted risk 

neutral measure, i.e. Q is the probability measure on ( )∞Ω F,  identical with Q
~

 on F∞. 
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For simplicity we assume that the insurance company determines the attributed profit shares 

according to the non-specific factors and that the maintenance expenses are considered being 

common for the whole book of contracts, i.e. that the )(),(),(),(),( trttEtEtC C
j

M
j Π  are Ft 

adapted random processes (and C(N) is FN measurable in case of the existing policy term N). 

We will also specify the model of policyholder behavior according to the development 

considered in Ft. We assume that  

 ( ) { }∫ ++−=≥
t

o mt ssstTQ d))(...)((expF~~
1 µµ  (2.4) 

 ( ) { },d))(...)((exp)(F~,~~lim 1
1

0 ∫ ++−=+≤≤=−

+→

t

o mjt
h

sssthtTtjJQh µµµ  (2.5) 

where )(),...,(1 ss mµµ  are continuous, Ft adapted random processes. The relation between the 

non-specific factors and the demographic development represented by )
~

,
~

( JT  is fully given 

by ),(),...,(1 ss mµµ  i.e. 

( ) }.)(),...,({F}~,~{ 1 tsssJT mt ≤⊆∩ µµσσ  

For subsequent calculations we will need process of insured sum in force at time t 

 { }∫ ++−=
t

o m ssstK d))(...)((exp)( 1 µµ  (2.6) 

and deflator restricted to Ft 
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Now we can move to the valuation in the space ( )Ptt ),0F(,F, ≤Ω ∞  by introducing random 

variable ValueF 

[ ]∞= FEValueValueF   

or   [ ]NValueValueF FE=  

in case that there is the policy term N. 

By substitution of Value and calculation we come to the expression 
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in case that there is the policy term N. 

Instead of the calculation according to (2.3) we define fair value as 

 [ ]ValueFFairValue PE= . (2.8) 

We came to the practicable fair-value definition. However there is only a general framework 

described above. In the subsequent section we show models that allow implementing the 

dependence between financial market situation and policyholder's behavior and also faithful 

modeling of the profit-sharing development. 

 

 

3 FAIR VALUE MODELS 

 

Now we focus on the fair value of the with-profits contracts. First of all we will specify 

causes of decrements, assumed cash flows and the relevant non-specific factors. To simplify 

the subsequent formulae we will consider only the payments between insurer and 

policyholder (i.e. premium, claim payments and surrender payments). The only considered 

non-specific factor will be the development of the financial market. 

Only two causes of decrement are assumed further – the death of the insured and the 

surrender. We denote )(tDµ  and )(tSµ  corresponding instantaneous rates from (2.4) and 

(2.5) where the )(tDµ  will be the deterministic function of time and )(tSµ  process 

dependent on the financial market development. 

Without any real loss of generality we will assume that there is always the policy term N. We 

will also introduce the processes representing present value of particular cash flows. Let 

)(tFVP  denote present value of premium paid in the time interval (0,t), )(tFVD  and )(tFVS  

denote present value of death claims and surrender payments in the same interval. According 

to (2.7) we can write  

,d)()()()(d tttDtKtFVP Π=  

,d)()()()()(d ttDttCtKtFV D
DD µ=  

,d)()()()()(d ttDttCtKtFV S
SS µ=  

where )(tCD  and )(tCS  are payments in case of death and surrender. According to the 

definition .0)0()0()0( === SDP FVFVFV  
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In case that the MFV  denotes present value of maturity payment )()()( NDNCNKFVM = , 

formulae (2.7) can be rewritten to the form 

).()()( NFVNFVNFVFVValueF PSDM −++=  

 

3.1 Market processes models 

 

We will dominantly focus on the interest rate models, because the insurance companies do 

primarily invest into debt instruments as bonds and treasuries. For the faithful modeling of 

profit shares we need models that allow easy calculation of bond price at any time. For this 

reason and also to keep the calculations simple we have decided to use instantaneous interest 

rate diffusion models with normal distribution of instantaneous interest rate r(t). We will 

briefly introduce three models ordered according to their complexity. Let P(t,T) denote the 

price of zero-coupon bond maturing at T at time t  and f(t,T) denote forward interest rate at t. 

 

3.1.1 Hull-White model 

The simplest model we assume is a generalized form of the famous Vasicek model. The SDE 

of the r(t) is 

 ( ) ),(
~

dd)()()(d tWttrattr σθ +−=  (3.1) 

where )(
~

tW  is Q Wiener process, σ,a  are constant positive parameters and )(tθ  is the 

function calibrating the model yield curve at time zero to the curve observed on the market. 

This model provides explicit formulae for ),(tθ  bond prices and forward interests. 

 

We will use this model under the natural probability measure. Therefore we have to rewrite 

(3.1) to the form 

 ( ) ),(dd)()()(d tWttrattr σσλθ +−+=  (3.2) 

where )(tW  is the P-Wiener process and λ  is the risk price corresponding to the process 

).(tW  The deflator D(t) is then defined as 

( ){ })(d5,0)(exp)(
0

2 tWzzrtD
t

λλ −+−= ∫ . 

The disadvantage of this model is closely related to its simplicity. When we look at the 

forward interest SDE 
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tee
a

tWeTtf tTatTatTa d)1()(
~

d),(d )()(
2

)( −−−−−− −+= σσ  

we see that the yield curve development is very simple, especially that the forwards for the 

different maturities are perfectly correlated and that the long-term forwards may be almost 

stable (for higher values of a) or that the volatility of r(t) may grow into unrealistic heights 

(for lower a). We will therefore introduce two models that help to overcome this problem. 

 

3.1.2 Simple two-factor gaussian model 

The possible solution for the above-mentioned disadvantage is to introduce a model where 

the forward rates are driven by two (or more) Wiener processes with different impact on the 

different parts of the yield curve. At first we will introduce model inspired by [Baxter, 

Rennie]. The instantaneous interest rate is defined as 

 ),()()()( tytxttr ++= ϕ  (3.3) 

where )(tϕ  is deterministic function allowing calibration of the model to the initial yield 

curve and )(tx  and )(ty  are stochastic processes with initial value equal to zero and have 

stochastic differential equations under the risk-neutral probability measure 

)(
~

d)(d 11 tWtx σ=  and  

).(
~

dd)()(d 22 tWttyaty σ+−=  

 

The forward rates development is given by 

.d)1()(
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~

d)(
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2
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1
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211

tee
a

tT

tWetWdTtf
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tTa


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σσ
 

We observe that the shocks caused by the process )(
~

1 tW  have the same impact on all points 

of the yield curve while the shocks caused by )(
~

2 tW  have much stronger influence on the left 

side (i.e. on the forwards with a short time to maturity). 

 

Again we have to rewrite stochastic equations using Wiener processes under the natural 

probability P ( ))(),( 21 tWtW  

)(dd)(d 1111 tWttx σσλ +=  and 

),(dd)(d)(d 2222 tWttyatty σσλ +−=  
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where 1λ , 2λ  are corresponding risk prices. The deflator is 

( ){ }.)()(d)(5,0)(exp)( 22110

2
2

2
1 tWtWzzrtD

t
λλλλ −−++−= ∫  

 

3.1.3 General two-factor gaussian model 

This model is the most general model we consider. It is intimately described by 

[Brigo, Mercurio]. Similarly to the previously defined simple version the interest rate is 

),()()()( tytxttr ++= ϕ  

where )(tϕ  is the deterministic function allowing calibration of the model to the initial yield 

curve and )(tx and )(ty  are stochastic processes with initial value equal to zero and have 

stochastic differential equations under the risk-neutral probability measure 

)(
~

dd)()(d 111 tWttxatx σ+−=  and 

).(
~

d1)(
~

dd)()(d 2
2

2122 tWtWttyaty ρσρσ −++−=  

 

This model allows various shapes of the volatility curve (especially allows humped volatility 

curve that is often observed on the derivative markets) and therefore the model is 

recommended as a simple model suitable to calculate fair prices of interest derivatives. 

 

Under our assumptions of constant risk prices 1λ , 2λ  the processes )(tx and )(ty  develop 

according to equations 

( ) )(dd)()(d 11111 tWttxatx σσλ +−=  and 

( ) ),(d1)(dd)(1)(d 2
2

2122
2

2221 tWtWttyaty ρσρσρσλρσλ −++−−+=  

where ( ))(),( 21 tWtW  is a two dimensional Wiener process and the deflator formula is the 

same as in the case of simple two-factor model. 

 

3.1.4 Other assets categories 

According to the principle of parsimony we do not expect the insurance companies to model 

the yield development for high number of different assets (or asset classes). We support 

modeling of only few "not-interest" asset categories (and only in case that such categories 

represent a significant part of the assets backing the life reserves). The suggested approach is 
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to consider only bonds and shares yields (and sometimes also property and foreign currencies 

yields). 

Let Si denote price of i-th category unit. We assume that the price development is given by 

[ ],)(
~

dd)()()(d tZttrtStS iiii ω+=  

where iω  is the volatility corresponding to the i-th category and )(
~

tZi  is a Wiener process 

under the risk-neutral measure Q. We can assume fixed correlations between the interest rate 

and the considered asset category ttWtZ ijji dˆ)(
~

d)(
~

d ρ=  and correlations between different 

asset categories .d)(
~

d)(
~

d ttZtZ ijji ρ=  

Because the dominant part of assets backing life reserves consists of the debt instruments as 

bonds and bank deposits, we will consider only one non-debt asset category with the unit 

price Z(t). For simplicity we will talk about this category as about shares. 

 

3.2 Modeling of policyholder's behavior 

 

Now we will suggest a simple method to model changes in policyholder's behavior expressed 

by )(),...,(1 tt mµµ  due to the development of global processes which history defines tF . 

Because we assume that only the financial market processes are the relevant global processes, 

we will assume deterministic mortality )(tDµ . We have to point out that )(tDµ  is not the 

expected mortality, but it is already adjusted by the risk margins according to (2.4) and (2.5).  

We assume that there is a connection between the state of the financial market and the 

policyholder's tendency to surrender policy. The hardest task during creation of the fair value 

model is to set-up appropriate relation between the surrender rates and the financial market 

development (and the expected future profit-shares).  

In the subsequent we will suggest very simple dependence – the big advantage of the below-

introduced approach is the easy analytical tractability of the surrender rate development 

allowing exactly controlling its behavior and simple interpretation of the dependence. 

It is clear that the main input for the policyholder's decision is the yield curve development 

(since the history of shares prices provides no information about a future development). We 

will assume that the policyholder has higher motivation to continue in case of lower interest 

rates because the minimum interest guarantee is more valuable than in case of higher interest 

rates. 
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Let )(tν  denote the expected force of surrender adjusted by the risk margins (corresponding 

to the policyholder specific risk of surrender). We require the probability of the "contract 

survival" defined by deterministic functions )(tν  and )(tDµ  to be equal to the expected 

"contract survival" probability arising from )(tSµ  and )(tDµ , i.e. 

 ( ) ( ) .d)()(expEd)()(exp
00 








+−=








+− ∫∫
t

SD
t

D zzzzzz µµνµ  (3.4) 

 

3.2.1 Surrender development for Hull-White model 

A simple possibility to define )(tSµ  development is to introduce stochastic equation 

 ( ) ),(dd)()()(d tWkttatt SS σµηµ +−=  (3.5) 

where )(tW  is the same P-Wiener process as in (3.2). Also the parameters a , σ  are the 

same as in the case of interest rate. 0>k  is the ratio between the volatility of the interest rate 

r(t) and )(tSµ . The deterministic function )(tη  is determined by (3.4). Of course 

).0()0( νµ =S  

When we compare expressions 

,)(dd))(()0()(
00 ∫∫ −−− +++=
t zatat zatata zWeezzeeertr σσλθ  

∫∫ −−− ++=
t zatat zatataS zWeekzzeeet
00

)(dd)()0()( σηνµ  

we see that the stochastic parts are equal except the multiplication by k. It does mean that 

both r(t) and )(tSµ  are sums of a deterministic function and a markov process with zero 

expected value and that the markov process is same for r(t) and )(tSµ  except the 

multiplication by k. 

The disadvantage of this simple approach is the possibility of negative force of surrender. In 

case of low )(tν  for some t it is necessary to (at least) introduce a non-constant parameter 

)(tσ  in (3.5) (or even parameters )(tσ  and )(ta ). Unluckily we are losing the simple 

interpretation of the relation between r(t) and )(tSµ . We can, of course, use completely 

different way to define )(tSµ  (for example linked to the ratio between market and 

guaranteed interest rate or to expected future profit shares), but we will probably get much 

more complicated and analytically untractable surrender rate process. 
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3.2.2 Surrender development for simple two-factor model 

Similarly to the previous case we will adopt a simple approach based on the multiplication of 

the processes x(t) and y(t) by constants k1 and k2. The force of surrender is then 

),()()()( 21 tyktxkttS ++=ψµ  

where the function )(tψ  guarantees validity of (3.4). 

As we can see, the relation between r(t) and )(tSµ  is similar as in the Hull-White model. The 

advantage is that the parameters k1 and k2 do not only determine the policyholder's sensitivity 

on the development of the interest rate, but also his sensitivity on the movements of different 

parts of the yield curve. For example k1 much higher than k2 means that the policyholder 

decisions depend mainly on the long-term yields. 

Also in this case we face the problem of negative force of surrender. Again it can be partially 

solved by replacing k1 and k2 by functions k1(t) and k2(t) or by complete change of the r(t) and 

)(tSµ  relation. 

 

3.2.3 Surrender development for general two-factor model 

The situation is nearly the same as in case of the simple two-factor model. Therefore we use 

the same expression for )(tSµ  

),()()()( 21 tyktxkttS ++=ψµ  

where the specifications of k1, k2 and )(tψ  are the same as in the section 3.2.2. 

 

3.3 Profit sharing systems 

One of the hardest (and often underestimated) problems of life portfolio projections is the 

corresponding modeling of provided profit shares according to the market development. 

Especially in case of traditional with-profits contracts the relation between the market yields 

and profit sharing rates is really complicated due to the insurer's internal accounting and 

profit sharing rules and also sometimes due to the discretionary features of the profit-sharing 

system - it is even often that the management determines the profit-sharing rates without 

explicit connection to a (however defined) part of the company profit. 

For modeling purposes we have to replace the discretionary features by some deterministic 

rules derived mainly from the past practice of the company. However, the companies do not 
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usually base their decisions on pure market yields and use accounting yields instead. 

Especially the profit-sharing policies usually recognize the revenues from bonds using the 

amortization instead of the bond market price development (what significantly decreases the 

volatility of the return from investments and subsequently decreases the possibility that the 

interest rate guarantees provided to clients will be in-the-money).  

For that reason (and also because the bonds represent the dominant part of the assets backing 

life reserves) we will focus mainly on the profit-sharing behavior in case that the statutory 

reserves are backed by bonds, which price is recognized by amortization. 

 

3.3.1 General assumptions about the profit sharing system 

We will assume that the insurer does distribute a part of the financial profit to the 

shareholders. We will also assume that the company uses the bank account profit-sharing 

system (i.e. the credited profit shares are held on a separate account and are paid together 

with the claim or surrender payment from the primary insurance). 

Let V(t) denote statutory reserve of the original contract. V(t) is determined by Thiele 

differential equation and the contractual premium )(tΠ , the claim payment )(tc , the 

technical interest rate δ  and the 1st order mortality. V(t) is the base to calculate profit shares 

and the surrender payment. 

Deliberately we have decided that all below described profit sharing systems do meet the 

condition that PSRatio of the financial profit is allocated to the policyholders profit shares (or 

are marketed this way at least). As we will see, there are vast differences between the liability 

value arising from the systems despite of this unifying condition. 

Let us denote PS(t) the value of the credited profit shares corresponding to one unit of the 

sum insured and we assume that PS(t) fulfils equation (except the case of deferred crediting) 

 ( )( )[ ] ,d)()()()()(d ttPStRatePStPStVPSRatiotPS δδ +−+= +  (3.6) 

where RatePS(t) is the rate corresponding to the accounting interest return on financial assets 

backing the life reserves (and (X)+ is the maximum of 0 and X). 

For simplicity we specify the formulae for the claim and surrender payments 

),()()( tPStctCD +=  

 ( ) ),()()(1)( tPStVttCS +−= γ  (3.7) 

),()()( NPSNVNC +=  
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where )(tγ  determines the surrender penalty at time t. Now we will focus on the faithful 

modeling of the RatePS(t) according to the market state and the investment strategy of the 

insurer. 

 

3.3.2 Reserves backed by the bank account 

The simplest approach is to assume that the insurer invests only in the bank account. Under 

any accounting system the interest yield is then the instantaneous interest rate RatePS(t) = r(t) 

and from (3.7) we get 

( )( )[ ] .d)()()()()(d ttPStrtPStVtPS δδ +−+= +  

Assumption of this investment strategy is obviously unrealistic but we suppose it closer to the 

reality than the sometimes-used assumption of all investments in the shares-like assets. 

 

3.3.3 Reserves backed by the shares 

Even though we do not find it corresponding to the real situation, we will now define the 

system based on the assumption of all reserves invested into shares. However we will use the 

introduced approach when we will assume the investing concurrently into the bonds and 

shares. 

It is not possible to define continuous increase of credited profit shares as in (3.7) in this 

situation. We have to assume that the financial profit is calculated periodically in the 

equidistant times and that the insurer determines the increase of PS(t) at such times. Let 

denote h the considered period. The development of PS(t) is then determined by 

( ) hh ehkPSe
hkS

hkS
hkPShkVPSRatiohkPS δδ ))1((

))1((

)(
))1(())1(()( −+








−

−
−+−=

+

 

for all K,2,1=k  when for all t > 0 

).]([)( 1 hthPStPS −=  

It does mean that the process PS(t) has jumps in the multiples of h and is constant elsewhere. 

 

3.3.4 Reserves backed by the bonds maturing at the end of policy 

As we have said, the life insurers invest primarily into the long-term bonds. The simplest way 

to implement such strategy is to assume that the insurer holds only the zero-coupon bonds 
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maturing at the time N (i.e. the time of the policy maturity). For any time t between 0 and N 

we require that the bond portfolio has the accounting value at least equal to the statutory 

reserve ( ))()()( tPStVtK +  and also that the insurer does not sell the bonds in case that the 

portfolio accounting value is higher than the statutory reserve.  

We assume that ( ))()()( tPStVtK +  has continuous trajectories with existing right 

derivatives. Let BookV(t) denote the accounting value of the bond portfolio at the time t and 

FaceV(t) the corresponding face value. We will also denote AF(t) the amortization rate 

corresponding to the portfolio at the time t 

.
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)(
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1
)( 









−
=

tBookV

tFaceV

tN
tAF  

No new bonds are bought in case that the accounting value of the portfolio is higher than the 

statutory reserve, i.e. 

if BookV(t) > K(t)(V(t)+PS(t)) then 

d FaceV(t) = 0 and 

d BookV(t) = AF(t) BookV(t) d t. 

Otherwise company buys new bonds to keep equality between the statutory reserve and the 

accounting value of the bond portfolio, i.e. 

if BookV(t) = K(t)(V(t)+PS(t)) then 

( )[ ]
ttBookVtAF

t

tPStVtK
NtPtFaceV d)()(
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),()(d 1

++

−
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
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∂
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The above considered investment strategy allows building up a relatively simple model, but 

in practice we will observe significant differences between the model and the reality even at 

the beginning because the real bond portfolio will be probably quite different from the 

modeled one.  

There might be also problems in case of modeling asset portfolio backing reserves for whole 

book of contracts, which (of course) includes contracts with different maturities. For that 

reason it would be more precise to adapt the general model of the bond portfolio described in 

the next subsections. 
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3.3.5 General model of the bond portfolio 

For the purposes of the calculation we set following representation of the bond portfolio: 

• FaceV(t,s) denotes the total face value of (zero coupon) bonds held at time t with 

maturity at time s or earlier, 

• BookV(t,s) represents then the total book value at time t of (zero coupon) bond with 

face value 1 and maturity at time s. The appropriate amortization factor is then 

.
),(

1
ln

1
),( 









−
=

stBookVts
stAF  

The basic requirement is simple – at any time t between 0 and N the book value of the bond 

portfolio has to be equal to the statutory reserve at the same time, i.e. 

 ( ) ),,(d),()()()( stFaceVstBookVtPStVtK s

t
∫
∞

=+  (3.8) 

We assume (of course) validity of (3.8) for t = 0. More generally we can assume that the 

statutory reserve has to be equal or lower than the book value of bonds and prevent possible 

sales of bonds from the portfolio but we will neglect this effect since it is not so important 

according to our calculations. 

To implement the model in practice we have to specify the investment strategy and find out 

equations for FaceV(t,s) and BookV(t,s) assuring (3.8). It is necessary being cautious about 

the complexity of the strategy to keep the model computable. Therefore we have developed it 

for the simple investment strategy that should be sufficient in most cases. 

 

3.3.6 Purchase of bonds with constant time to maturity 

Let’s assume that at any time t the insurer buys (zero coupon) bonds with time to maturity D, 

i.e. maturing at time t+D. For simplicity we also assume that there are no bonds with maturity 

at time D or later in the portfolio at the beginning of the calculation (this assumption is just 

technical and can be eliminated by splitting the portfolio into the part bought before the 

calculation date and the rest). 

Then it is simple to define the development of BookV(t,s) 

 
.),(),(

,),(),(),(
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+<=
∂

∂
 (3.9) 
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Let’s assume that FaceV(t,s) is continuous function on >+<×>< DTT ,0,0  with t-

derivatives and right s-derivatives. (3.8) is valid in case that 
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when the statutory reserve ( ))()()( tPStVtK +  is continuous. This condition is satisfied in 

case that PS(t) is continuous (for example in case that PS(t) develops according to (3.6)). 

However, in practice we will sometimes need a model allowing jumps in the bond 

distribution represented by FaceV(t,s) – for example in case that we will consider shares in 

the asset portfolio or to incorporate the starting portfolio precisely. Therefore we split 

FaceV(t,s) in two functions - FaceVCont(t,s) and FaceVDiscr(t,s). 

).,(),(),( ztFaceVztFaceVztFaceV ContDiscr +=  

FaceVCont(t,s) matches up to conditions for FaceV(t,s) in previous "continuous" situation (i.e. 

is continuous and the required derivatives exists). For any t FaceVDiscr(t,s) is constant relative 

to s except the finite number of discontinuity points, where FaceVDiscr(t,s) is right-continuous. 

Condition (3.8) is satisfied if FaceVCont(t,s) develops according to 
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and FaceVDiscr(t,s) develops according to 
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 (3.12) 

The rate for profit sharing is 

 

∫
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and the credited profit shares development is calculated by (3.6). 

 

3.3.7 Purchase of bonds with constant time to maturity and shares 

Now we can combine the profit sharing systems described in the subsections 3.3.3 and 3.3.6. 

Let's assume that the company holds α  of its assets in the shares and the rest in bonds (and 

that the insurer buys the new bonds with the time to maturity D as in 3.3.6). 

For the reasons presented in 3.3.3 we assume the period of shares evaluation with length 

h > 0. This assumption will cause jumps in the value of asset portfolio and (subsequently) in 

the value of reserve. Therefore we will need to use the FaceVCont(t,s) and FaceVDiscr(t,s) 

representation of the bond portfolio. We will denote RateBond(t) the instantaneous rate of the 

appreciation of bonds 

 .
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To have the correct representation of the portfolio we have to change the condition (3.8) to 

( ) ).,(d),()()()()1( stFaceVstBookVtPStVtK s

t
∫
∞

=+−α  

The simplest way of defining a profit sharing system is to assume continuous crediting of the 

profit from the bond portfolio with jumps in the credited profit shares corresponding to the 

appreciation of shares 
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 (3.15) 

Unluckily the (3.15) system separates sharing of profits from bonds and from shares. The 

insurer bears full loss from one asset category even though there is profit on the second. This 

is, of course, not realistic. Therefore we need to implement the deferred crediting of profit 

shares, which allows sharing part of total financial profit from longer period. 

 

3.3.8 Deferred crediting of profit shares 

The idea of the deferred crediting is simple - the insurer accumulates all the instantaneous 

financial profits and losses (more precisely the part belonging to policyholders) into a special 

fund BRes(t) and at the end of a year credits a part of this fund to the policyholder. In case 

that the BRes(t) is negative at the end of the year the insurer resets its value to 0. Assuming 

the same investment strategy as described above (i.e. α  in shares, rest in bonds) we get 
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The main question is how the insurer determines the credited profit-shares at the end of the 

year. 

Yearly crediting of the profit shares 

This is the simplest considered system. Insurer credits to policyholder whole amount 

accumulated in BRes(t). However such system corresponds to real situation since many 

insurers determine the credited profit shares from the yearly financial profit. In such case 
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There are insurers that do not distribute all BRes(t) at the end of the year and keep some 

buffer to co-finance possible future financial losses and to smooth the profit sharing rates. 

Two subsequent systems allow such buffer creation. 

Crediting constant percent of BRes 
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The first one assumes that at the end of the year the insurer credits Φ BRes(t) to the 

policyholders (0 < Φ  < 1). PS(t) develops according to 
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Keeping constant ratio between BRes and statutory reserves 

This system is inspired by [Grosen, Jørgensen] who assumed that the company tries to keep 

the BRes at a minimum level of Γ ( ))()()( tVtPStK +  at the end of the year (Γ > 0). The 

system is then described by 
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 (3.20) 

 

 

4 SIMULATIONS RESULTS 

 

The simulations were prepared for one endowment policy with the term of 20 years. The 

insured person was assumed to be a 40 years old male at issue of the policy. The input force 

of surrender )(tν  was assumed to be high at the beginning of the contract and decreasing to 

the level of approx. 6% and the surrender penalty (defined in % of the statutory reserve) was 

linearly decreasing form 15% at the policy issue to zero at the end of the policy term. 

In this paper we present three result tables corresponding to the scenario with the constant 

yield curve equal to 4.5 % p.a. and to the general two-factor model described in section 3.1.3. 

Parameters of the interest-rate process was σ1 = 0.004, a1 = 0.03, σ2 = 0.008, a2 = 0.2 and 

ρ = 0.3. 

Each table includes results for different profit sharing systems. Table 1 corresponds to the 

best-estimate approach, table 2 includes results of stochastic simulation of the interest rates 

with the deterministic surrender rates and finally the table 3 represents the results considering 

the stochastic surrender rates (k1=1, k2=1). 

At first we show impacts of different investment strategies as described above, neglecting the 

possibility of investing all asset into the shares. In case of buying the new bonds with 
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constant time to maturity we assume 4 different values of the time to maturity – 1, 2, 4 and 8 

years to show impact of investing into the instruments with different durations. Finally the 

effect of the delayed crediting is shown under the 3 above described set-ups (using yearly 

crediting of the profit-shares). 

As we can see (and is well known) the best estimate leads to the misleading value of the 

liability from the policy. (The investment strategy does not influence the value of the liability 

in our case due to the flat yield curve input.) Only the effect of the profit-sharing deferral is 

shown – especially we can see that the buffer relative to the statutory reserve creation sharply 

decreases the insurer's liability value. The above described surrender penalty is the reason of 

the positive margin in case the guaranteed and the interest rate equality. 

 

Profit sharing New bonds Technical interest rate 
system time to maturity 5.0% 4.5% 4.0% 3.5% 3.0% 2.5% 

Instantaneous interest rate X 4.3 -76.8 -96.6 -118.3 -141.8 -167.3 
Bonds to maturity of policy 20 - t 4.3 -76.8 -96.6 -118.3 -141.8 -167.3 
Bonds – new bonds with 1 4.3 -76.8 -96.6 -118.3 -141.8 -167.3 
    constant time to maturity 2 4.3 -76.8 -96.6 -118.3 -141.8 -167.3 
 4 4.3 -76.8 -96.6 -118.3 -141.8 -167.3 
 8 4.3 -76.8 -96.6 -118.3 -141.8 -167.3 
Shares and bonds 1 4.3 -76.8 -96.6 -118.3 -141.8 -167.3 
    shares evaluated monthly 2 4.3 -76.8 -96.6 -118.3 -141.8 -167.3 
     bonds const. time to mat. 4 4.3 -76.8 -96.6 -118.3 -141.8 -167.3 
    (shares ratio α 40%) 8 4.3 -76.8 -96.6 -118.3 -141.8 -167.3 
Bonds – new bonds with 1 4.3 -76.8 -96.6 -118.3 -141.8 -167.3 
     Time to maturity equal to 2 4.3 -76.8 -96.6 -118.3 -141.8 -167.3 
     minimum of constant 4 4.3 -76.8 -96.6 -118.3 -141.8 -167.3 
     And time to matur. of policy 8 4.3 -76.8 -96.6 -118.3 -141.8 -167.3 
Deferred crediting 1 4.3 -76.8 -98.0 -121.0 -146.0 -173.0 
    100% credited at the end  2 4.3 -76.8 -98.0 -121.0 -146.0 -173.0 
     of year 4 4.3 -76.8 -98.0 -121.0 -146.0 -173.0 
    (shares ratio α 40%) 8 4.3 -76.8 -98.0 -121.0 -146.0 -173.0 
Deferred crediting 1 4.3 -76.8 -99.9 -125.1 -152.3 -181.8 
    75% credited at the end  2 4.3 -76.8 -99.9 -125.1 -152.3 -181.8 
     of year 4 4.3 -76.8 -99.9 -125.1 -152.3 -181.8 
    (shares ratio α 40%) 8 4.3 -76.8 -99.9 -125.1 -152.3 -181.8 
Deferred crediting 1 4.3 -76.8 -127.6 -153.3 -179.8 -208.3 
    keeping 2% of statutory 2 4.3 -76.8 -127.6 -153.3 -179.8 -208.3 
     reserve in the buffer 4 4.3 -76.8 -127.6 -153.3 -179.8 -208.3 
    (shares ratio α 40%) 8 4.3 -76.8 -127.6 -153.3 -179.8 -208.3 

Table 1 Deterministic projection – liability value corresponding to insured sum 10 000 
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Profit sharing New bonds Technical interest rate 

system time to maturity 5.0% 4.5% 4.0% 3.5% 3.0% 2.5% 
Instantaneous interest rate X 63.8 12.7 -34.4 -77.4 -117.0 -154.0 
Bonds to maturity of policy 20 - t 0.4 -61.2 -100.3 -125.7 -149.7 -175.5 
Bonds – new bonds with 1 55.1 3.5 -43.3 -85.4 -123.5 -159.0 
    constant time to maturity 2 47.5 -4.8 -51.2 -92.1 -128.8 -162.9 
 4 35.5 -18.0 -63.8 -102.4 -136.2 -167.8 
 8 19.6 -36.4 -80.5 -114.7 -144.3 -172.5 
Shares and bonds 1 959.7 927.9 893.8 857.3 818.2 776.6 
    shares evaluated monthly 2 959.1 927.3 893.1 856.6 817.6 775.9 
     bonds const. time to mat. 4 958.0 926.2 892.0 855.4 816.4 774.7 
    (shares ratio α 40%) 8 956.7 924.8 890.6 854.0 814.9 773.3 
Bonds – new bonds with 1 55.1 3.5 -43.3 -85.4 -123.5 -159.0 
     time to maturity equal to 2 47.6 -4.6 -51.1 -92.0 -128.7 -162.8 
     minimum of constant 4 35.9 -17.6 -63.4 -102.1 -136.0 -167.7 
     and time to matur. of policy 8 20.7 -35.2 -79.4 -114.0 -143.8 -172.4 
Deferred crediting 1 218.0 172.8 126.9 80.7 34.1 -12.9 
    100% credited at the end  2 216.3 170.9 125.0 78.9 32.4 -14.6 
     of year 4 213.4 167.9 122.1 75.9 29.4 -17.4 
    (shares ratio α 40%) 8 209.7 164.2 118.3 72.1 25.7 -20.8 
Deferred crediting 1 186.0 137.9 89.4 40.8 -7.9 -57.2 
    75% credited at the end  2 184.2 135.9 87.6 39.0 -9.7 -58.8 
     of year 4 181.3 132.9 84.4 35.9 -12.8 -61.7 
    (shares ratio α 40%) 8 177.4 129.0 80.5 31.9 -16.7 -65.3 
Deferred crediting 1 139.1 90.4 42.0 -5.8 -53.0 -99.6 
    keeping 2% of statutory 2 137.0 88.2 39.8 -7.9 -55.0 -101.4 
     reserve in the buffer 4 133.4 84.5 36.0 -11.5 -58.3 -104.5 
    (shares ratio α 40%) 8 128.6 79.6 31.2 -16.3 -62.8 -108.6 

Table 2 Stochastic interest rates – liability value corresponding to insured sum 10 000 

 
Profit sharing New bonds Technical interest rate 

system time to maturity 5.0% 4.5% 4.0% 3.5% 3.0% 2.5% 

Instantaneous interest rate X 83.9 30.2 -19.6 -65.1 -106.8 -145.6 
Bonds to maturity of policy 20 - t 26.2 -40.2 -84.7 -113.1 -137.5 -162.9 
Bonds – new bonds with 1 75.4 20.9 -28.7 -73.4 -113.8 -151.1 
    constant time to maturity 2 68.0 12.7 -36.8 -80.5 -119.5 -155.3 
 4 56.4 -0.5 -49.8 -91.4 -127.6 -160.9 
 8 41.5 -18.7 -67.0 -104.7 -136.4 -166.0 
Shares and bonds 1 996.9 964.6 930.0 893.0 853.5 811.3 
    shares evaluated monthly 2 996.6 964.3 929.7 892.7 853.1 810.9 
     bonds const. time to mat. 4 996.0 963.7 929.1 892.0 852.4 810.2 
    (shares ratio α 40%) 8 995.5 963.2 928.5 891.5 851.9 809.7 
Bonds – new bonds with 1 75.4 20.9 -28.7 -73.4 -113.8 -151.1 
     time to maturity equal to 2 68.1 12.8 -36.7 -80.4 -119.4 -155.3 
     minimum of constant 4 56.7 -0.3 -49.6 -91.2 -127.5 -161.0 
     and time to matur. of policy 8 42.3 -17.9 -66.4 -104.4 -136.6 -166.6 
Deferred crediting 1 240.4 194.0 146.9 99.5 51.8 3.6 
    100% credited at the end  2 238.7 192.2 145.1 97.7 50.1 1.9 
     of year 4 236.0 189.3 142.2 94.9 47.2 -0.8 
    (shares ratio α 40%) 8 232.6 185.8 138.8 91.4 43.8 -3.8 
Deferred crediting 1 208.8 159.3 109.6 59.7 9.7 -40.7 
    75% credited at the end  2 207.0 157.5 107.8 57.9 7.9 -42.4 
     of year 4 204.1 154.5 104.7 54.9 4.9 -45.2 
    (shares ratio α 40%) 8 200.5 150.8 101.0 51.2 1.2 -48.6 
Deferred crediting 1 161.3 111.0 61.1 11.8 -36.9 -84.8 
    keeping 2% of statutory 2 159.2 108.8 58.9 9.7 -38.9 -86.8 
     reserve in the buffer 4 155.6 105.1 55.1 6.0 -42.2 -89.9 
    (shares ratio α 40%) 8 150.9 100.3 50.4 1.3 -46.7 -93.9 

Table 3 Stochastic interest rates and force of surrender – liab. value corresponding to insured sum 10 000 
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Results of stochastic calculations show that the more volatile is the accounting interest from 

the asset portfolio the bigger is the insurer's liability value. In fact we can see that the strategy 

of buying long-term bonds and amortizing the purchase price leads to the lowest liability 

value at all. It explains why many life insurers use this strategy. 

Comparing the results with deterministic and stochastic force of surrender we observe that 

the liability has increased by the amount approximately corresponding to one monthly 

premium. However the increase in the liability value is diametrically lower than in the case of 

replacing the best estimate with stochastic interest rates, even this change is definitely 

significant from the life insurer's perspective. 

 

 

5 CONCLUSION 

We have developed framework for the fair value that can be used in practice, shown specific 

models originating from the model and especially we have developed the representation of 

the bond portfolio allowing the projection corresponding to the real practice of many life 

insurers. The framework and above-shown models were inspired by the approach of the 

insurance practitioners and therefore it is not surprising that some of its features may 

resemble the recently developed models used in practice. However, most of the practically 

used models are based on approximate assumptions and their architecture does often not 

allow stochastic and dynamic modeling of all the important features. 

Unluckily, the calibration of above described models allowing stochastic development of 

surrender rates requires actuarial judgment since it would be nearly impossible to reliably 

estimate the parameters from the past. 
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