Number of IBNR Claims and Multivariate Compound Poisson Distribution

Louis G. Doray, Ph.D., A.S.A.
Université de Montréal, Canada

Support: NSERC, FCAR
Plan of Paper

• 1- Introduction and notation
• 2- The pgf of the claims number
• 3- A Poisson model
• 4- A negative binomial model
• 5- References
1- Introduction

Claim incurred but not reported: IBNR
Jewell’s model: homogeneous Poisson Process for number of claims incurred.
Generalizations:
 1- delay probabilities varying over years
 2- non-homogeneous Poisson process
 3- N~Compound Poisson distribution
Assumptions of model

Discrete time period model with
Exposure period \(\{1,2,\ldots,T\} \)
Observation period \(\{1,2,\ldots,k\}, k>T \)
Reporting independent of incurral
Maximum possible value \(m \) for lag
Notation

\(N_i \): # of claims incurred in accident period \(i \)
\(R_{ij} \): # of claims incurred in accident period \(i \),
reported \(j \) periods later (\(j=0,1,\ldots, m \))
\(U_i \): # of IBNR claims at end of obs. period
\(R_i \): # of claims reported by end of obs. period
2- The pgf of the claims number

Pgf of \(N_i \): \(\exp \{ \lambda [P_i(z)-1] \} \)

Prop. 1: Joint pgf of r.v. \(R_{ik}, k=0,1,\ldots,m-1 \)

Marginal pgf of \(R_{ij} \)

Expressions for mean, variance, covariance

Specific distributions for \(N_i \): Poisson, NB
Multi-period model

Assume N_1, \ldots, N_T independent with compound Poisson distribution

Derive pgf of total # of claims in exposure period (Compound Poisson distribution)
3- A Poisson model

Expression for MLE’s of parameters

Identifiability problem with:
- non-parametric distribution for reporting lag W
- certain continuous distributions for W

Use modified discrete distribution for reporting lag
4- A negative binomial model

- \(N_i : \) Negative binomial \((s, 1-p)\)
- Joint distribution of \((R_{i0}, \ldots, R_{i,k-i})\):
 Negative multinomial

Results: Marginal distribution of \(R_{ij} \sim \)
Negative binomial

Components \(R_{ij} \) not independent of each other, as with Poisson assumption
4- A Negative binomial model

- Marginal distribution of U_i: NB
- Covariance between U_i and $R_{ij} > 0$
- Total number of IBNR claims $U_1 + \ldots + U_T = \text{Sum of ind. NB}(s, --)$
 Representable as a C.P. distribution
- Conditional distribution of U_i given $(R_{i0}, \ldots, R_{i, k-i})$ also Negative binomial
5- References

