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Abstract. 
 
We propose a copula based statistical method of fitting joint cumulative returns between a 
market index and a stock from the index family to daily data. Modifying the method of 
inference functions for margins (IFM method), we perform two separate maximum likelihood 
estimations of the univariate marginal distributions, assumed to be normal inverse gamma 
mixtures with kurtosis parameter equal to 6, followed by a minimization of the bivariate chi-
square statistic associated to an adequate bivariate version of the usual Pearson goodness-of-
fit test. Our copula fitting results for daily cumulative returns between the Swiss Market 
Index and a stock in the index family for an approximate one-year period are quite 
satisfactory. The best overall fits are obtained for the new linear Spearman copula, as well as 
for the Frank and Gumbel-Hougaard copulas. Finally, a significant application to covariance 
estimation for the linear Spearman copula is discussed. 
 
Keywords :  copula, normal inverse gamma mixture, IFM method, bivariate chi-square 
statistic, daily cumulative return, covariance estimation 
 
 

AJUSTEMENTS COPULES DE RENDEMENTS CUMULATIFS 
 
 
Résumé. 
 
Nous proposons une méthode statistique de copule pour ajuster aux données quotidiennes des 
rendements cumulatifs bivariés associés à un indice de marché et une action particulière de 
cet indice. Par modification de la méthode des fonctions d’inférence pour marges (méthode 
IFM), nous estimons d’abord séparément par la méthode du maximum de vraisemblance les 
marges univariées, supposées de loi mixte normale inverse gamma de paramètre d’élongation 
égal à 6, et minimisons ensuite la statistique bivariée chi-carrée associée à une version 
bivariée appropriée du test habituel d’ajustement de Pearson. Nos résultats d’ajustement 
copule pour les rendements cumulatifs quotidiens de l’indice Suisse du marché et une action 
de cet indice pour une période approximative d’une année sont assez satisfaisants. Les 
meilleurs ajustements sont obtenus pour la nouvelle copule linéaire Spearman, ainsi que les 
copules de Frank et de Gumbel-Hougaard. Finalement, nous discutons une application 
significative à l’estimation de la covariance pour la copule linéaire Spearman. 
 
Mots clés :  copule, loi mixte normale inverse gamma, méthode IFM, statistique bivariée chi-
carrée, rendement cumulatif quotidien, estimateur de covariance 
 



 2

 
1. Introduction. 
 
     The present paper is a sequel and synthesis of work done in Hürlimann(2000a/b). We link 
empirical results on fitting univariate daily cumulative returns with the representation of 
bivariate distributions by copulas to study the statistical fitting of joint cumulative returns 
between a market index and a stock from the index family to daily data. 
     In Section 2, the following empirical fact on fitting univariate distributions to daily 
cumulative returns is recalled. The normal inverse gamma mixture distribution with kurtosis 
parameter equal to 6, obtained by mixing the inverse variance of a normal distribution with a 
gamma prior, usually beats the lognormal and the logLaplace under a chi-square goodness-
of-fit test with regrouped data. Therefore, our marginal distributions in bivariate fitting of 
cumulative returns are restricted to this analytically tractable two-parameter family of 
symmetric location-scale distributions. 
     Section 3 contains a short review of the representation of bivariate distributions by 
copulas. For our purposes, a number of attractive one-parameter families of copulas are 
retained. They include the copulas by Cuadras and Augé(1981), Gumbel(1960) and 
Hougaard(1986), Galambos(1975), Frank(1979), Hüsler and Reiss(1989), and Clayton(1978). 
The parameter of these copulas measures the degree of dependence between the margins. In 
case the widest possible range of dependence should be covered, one is especially interested 
in one-parameter families of copulas, which are able to model continuously a whole range of 
dependence between the lower Fréchet bound copula, the independent copula, and the upper 
Fréchet bound copula. Such families are called inclusive or comprehensive, and include the 
copulas by Frank and Clayton. Another simple copula with this property, first considered in 
Hürlimann(2000b), is the linear Spearman copula described in details in Section 4. 

The linear Spearman copula represents a mixture of perfect dependence and 
independence. If  X  and  Y  are uniform(0,1),  XY =   with probability  0≥θ   and  Y  is 
independent of  X  with probability  θ−1 , then  ),( YX   has the linear Spearman copula with 
the positive dependence structure. In the statistical literature it has been considered by 
Konijn(1959) and motivated in Cohen(1960). The chosen nomenclature for this copula 
suggests that it has piecewise linear sections and that the parameter of dependence  θ   
coincides with Spearman’s grade correlation coefficient. Besides the useful fact that this 
copula is suitable for analytical calculation, it has many important properties. It satisfies two 
extremal properties, one of which is related to a conjecture by Hutchinson and Lai(1990). Of 
great significance for financial modelling is its simple tail dependence structure. The 
coefficient of (upper) tail dependence coincides with the dependence parameter  θ , which 
implies asymptotic positive dependence in case  0>θ . This is a desirable property in 
insurance and financial modelling because data often tend to be dependent in their extreme 
values. In contrast to this, the ubiquitous Gaussian copula yields always asymptotic 
independence, unless perfect correlation holds. 
     The main issue of copula fitting is discussed in Section 5. We apply a method close in 
spirit to the method of inference function for margins or IFM method studied in McLeish and 
Small(1988), Xu(1996), and Joe(1997), Section 10.1. This estimation method proceeds by 
doing two separate maximum likelihood estimations of the univariate marginal distributions, 
followed by an optimization of the bivariate likelihood as a function of the dependence 
parameter. In our proposal, we do not maximize the bivariate likelihood. Instead, we 
determine the dependence parameter, which maximizes the p-value (respectively minimizes 
the bivariate chi-square statistic) of a bivariate version of the usual Pearson goodness-of-fit 
test. The reason for considering a modified method lies in the observation that the IFM 
method reduces the  p-value in some cases rather drastically, leading eventually to a rejection 
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of the model. Our copula fitting results for daily cumulative returns between the Swiss 
Market  Index and a stock in the index family for an approximate one-year period are quite 
satisfactory. In particular, the analytically tractable linear Spearman copula does very well. 
The Frank and Gumbel-Hougaard copulas provide competitive best overall fits. 
     Finally, Section 6 illustrates our estimation results at a significant application. First, based 
on a general covariance formula for the linear Spearman copula, derived in Theorem 6.1, we 
show that for the linear Spearman copula model with the chosen normal inverse gamma 
mixture margins, the Spearman grade correlation coefficient coincides with the Pearson linear 
correlation coefficient. This allows one to compare the standard product-moment correlation 
estimator with the estimated dependence parameter from the linear Spearman copula fitting. 
We observe a considerable discrepancy between the absolute values of both estimators, but 
on a relative scale both estimators rank the strength of dependence quite similarly. 
 
 
2. Fitting univariate cumulative returns. 
 
     There exist many distributions, which are able to fit the daily cumulative returns on 
individual stocks and corresponding market indices. As the application of the penalized 
likelihood scoring method by Schwartz(1978) suggests (so-called Schwartz Bayesian 
Criterion), it is reasonable to restrict the attention to two-parameter distributions, as shown in 
Hürlimann(2000a). The only analytically tractable distributions we retain for comparative 
purposes are the lognormal, the logLaplace, and a normal inverse gamma mixture with fixed 
kurtosis equal to  6. 
     Let  X  represent the daily cumulative return of a market index or a stock in the index 
family. If  ),(ln~ σµNX   follows a lognormal distribution, then its distribution is clearly  

( )σ
µ−Φ= x

X xF ln)( , with  )(xΦ   the standard normal distribution. The random variable  
),(ln~ σµLX   follows a logLaplace distribution provided one has 
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The use of a logLaplace distribution in Finance has been somewhat motivated in 
Hürlimann(1995). The normal inverse gamma mixture model is constructed as follows. Let 

)( θX   be conditional on  θ   normally distributed with mean  µ   and variance  θ/1 , and 

suppose  θ   follows a conjugate gamma prior  0),,( 2
2
1 >Γ ααc . Then  ),,(~ αµ cNIX Γ   has 

the normal inverse gamma mixture density 
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If  ,...3,2,1,2 == υα υ   is an integer, the random variable  Z⋅υ   has a Student t-

distribution  with  υ   degrees of freedom. The substitution  2
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from which one derives the distribution function 
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The kurtosis takes values in  [ )∞,3 , and is therefore capable to model leptokurtic data, a 
typical feature of observed financial market returns, which tend to have heavier tails than 
those predicted by a normal distribution. This model, first suggested by Praetz(1972), has 
been fitted to stock returns by Blattberg and Gonedes(1974) and Kon(1984) (see 
Taylor(1992), Section 2.8). These authors find maximum likelihood estimates for  α   
between  2

3   and  3. With the suggested restriction to two-parameter distributions our 
proposal is  3=α , which yields a kurtosis parameter  6,2 =Zγ . This choice is motivated by 

the fact that it yields the less dangerous model among those models for which  [ ]3,2
3∈α . For 

comparison, the kurtosis parameter of the logLaplace is also equal to  6, an additional 
argument for this choice. 
     As an application we have fitted the daily cumulative returns of the SMI (Swiss Market 
Index) as well as some typical stocks from this index family using the maximum likelihood 
method. In our calculations we use the so-called scoring method, where the observed data is 
grouped into a finite number of classes (Hogg and Klugman(1984), chap. 3.7 and 4.3, 
Klugman et al.(1998)). We find that the model  )3,ˆ,ˆ( cNI µΓ   beats the lognormal and the 
logLaplace under a chi-square goodness-of-fit test with regrouped data as in 
Hürlimann(2000a), Table 6.5. In view of this satisfactory empirical result, our marginal 
distributions in bivariate fitting of cumulative returns are assumed to be throughout  

)3,,( cNI µΓ   distributions. 
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3. Bivariate cumulative returns from copulas. 
 

Though copulas have been introduced since Sklar(1959) their use in insurance and 
finance is more recent (e.g. Carriere(1994), Frees et al.(1996), Frees and Valdez(1998), 
Embrechts et al.(1999), Li(1999), Klugman and Prasa(1999), Bouyé et al.(2000), 
Hürlimann(2000b)). A lot of background on copulas can be found in Schweizer and 
Sklar(1983), Hutchinson and Lai(1990), Dall’Aglio et al.(1991), Rüschendorf et al.(1996), 
Benes and Stepen(1997), Joe(1997), Nelsen(1999). 

Recall that the copula representation of a continuous multivariate distribution allows for a 
separate modelling of the univariate marginals and the multivariate or dependence structure. 
Denote by  ),...,( 1 nFFR   the class of all continuous multivariate random variables  

),...,( 1 nXX   with given marginals  iF   of  iX . If  F  denotes the multivariate distribution of  

),...,( 1 nXX , then the copula associated with  F  is a distribution function  [ ] [ ]1,01,0: →nC   
that satisfies 
 

n
nnn RxxxxFxFCxF ∈== ),...,()),(),...,(()( 111 .   (3.1) 
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is the unique copula satisfying (2.1) (theorem of Sklar(1959)). 
     In the present paper we are only interested in the joint cumulative returns between a 
market index and a stock from the index family, that is in the most important bivariate case  

2=n . Joe(1997) and Nelsen(1999) provide extensive lists of one-parameter families of 
copulas  ),( vuCθ , where  θ   is a measure of dependence, from which we retain the following 
candidates for copula fitting. 
 
Cuadras-Augé (1981) 
 

[ ] [ ] 10,),min(),( 1 ≤≤= − θθθ
θ uvvuvuC .    (3.3) 

 
Gumbel-Hougaard (Gumbel(1960), Hougaard(1986), Hutchinson and Lai(1990)) 
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Galambos (1975) (Joe(1997), p. 142) 
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Frank (1979) 
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Hüsler-Reiss (1989) (Joe(1997), p. 143) 
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with  )(xΦ   the standard normal distribution. 
 
Clayton (1978) (Kimeldorf and Sampson(1975a), Cook-Johnson(1981)) 
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In all these copula families, the parameter  θ   of the joint cumulative distribution  

[ ])(),(),( yFxFCyxF YXθ=   associated to a random couple  ),( YX   measures the degree of 
dependence between  X  and  Y. The larger  θ   is in absolute value, the stronger the 
dependence. A positive value of  θ   indicates a positive dependence. Sometimes one is 
especially interested in one-parameter families of copulas, which are able to model 
continuously a whole range of dependence between the lower Fréchet bound copula  

)0,1max( −+ vu , the independent copula  uv , and the upper Fréchet bound copula  ),min( vu . 
Such families are called inclusive or comprehensive. The extensive list by Nelsen(1999), p. 
96, contains only two one-parameter inclusive families of copulas, namely those by 
Frank(1979) and Clayton(1978)  also considered above. Another one, considered first in 
Hürlimann(2000b), is described in the next Section. 
 
 
4. The linear Spearman copula. 
 
     Consider the linear Spearman copula, which is defined as follows. For  [ ]1,0∈θ   one has 
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and for  [ ]0,1−∈θ   one has 
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For  [ ]1,0∈θ   this copula is family B11 in Joe(1997), p. 148. It represents a mixture of 
perfect dependence and independence. If  X  and  Y  are uniform(0,1),  XY =   with 
probability  θ   and  Y  is independent of  X  with probability  θ−1 , then  ),( YX   has the 
linear Spearman copula. This distribution has been first considered by Konijn(1959) and 
motivated in Cohen(1960) along Cohen’s kappa statistic (see Hutchinson and Lai(1990), 
Section 10.9). For the extended copula, the chosen nomenclature linear refers to the 
piecewise linear sections of this copula, and Spearman refers to the fact that the grade 
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correlation coefficient  Sρ   by Spearman(1904) coincides with the parameter  θ . This 
follows from the calculation 
 

[ ] θρ θ =−⋅= ∫ ∫
1
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),(12 dudvuvvuCS ,    (4.3) 

 
where a proof of the integral representation is given in Nelsen(1991). The linear Spearman 
copula, which leads to the so-called linear Spearman bivariate distribution, has a singular 
component, which according to Joe should limit its field of applicability. Despite of this it has 
many interesting and important properties and is suitable for analytical computation. 
     For the reader’s convenience, let us describe first two extremal properties. Kendall’s  τ   
for this copula equals using Nelsen(1991) : 
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Invert this to get 
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Relate this to the convex two-parameter copula by Fréchet(1958) defined by 
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The linear Spearman copula satisfies the following extremal property. For  0≥τ   the upper 
bound for  Sρ   in Fréchet's copula is attained by the linear Spearman copula, and for  0≤τ   
it is the lower bound, which is attained. 
     In case  0≥τ   a second more important extremal property holds, which is related to a 
conjectural statement. Recall that  Y  is stochastically increasing on  X, written  )( XYSI , if  

)Pr( xXyY =>   is a nondecreasing function of  x  for all  y. Similarly,  X is stochastically 

increasing on  Y, written  )( YXSI , if  )Pr( yYxX =>   is a nondecreasing function of  y  for 
all  x. (Note that Lehmann(1966) speaks instead of positive regression dependence). If  X  and  
Y  are continuous random variables with copula  ),( vuC , then one has the equivalences 
(Nelsen(1999), Theorem 5.2.10) : 
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The Hutchinson-Lai conjecture consists of the following statement. If  ),( YX   satisfies the 
properties (4.8), then Spearman's  Sρ   satisfies the inequalities 
 

{ }.2,min311 2
2
3 τττρτ −≤≤++− S    (4.10) 

 
The upper bound  22 ττ −   is attained for the one-parameter copula introduced by Kimeldorf 
and Sampson(1975b) (see also Hutchinson and Lai(1990), Section 13.7). The lower bound is 
attained by the linear Spearman copula, as shown already by Konijn(1959), p. 277. 
Alternatively, if the conjecture holds, the maximum value of Kendall's  τ   by given  Sρ   is 
attained for the linear Spearman copula. Note that the upper bound  τρ 2

3≤S  has been 
disproved recently by Nelsen(1999), Exercise 5.36. The remaining conjecture  

22311 ττρτ −≤≤++− S   is still unsettled. 
     As an important modelling characteristic, let us show that the linear Spearman copula 
leads to a simple tail dependence structure, which is of interest when extreme values are 
involved. Recall that the coefficient of (upper) tail dependence of a couple  ),( YX   is defined 
by 
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provided a limit  λ   in  [ ]1,0   exists ( { }uxXxuQX ≥≤= )Pr(inf)(   denotes a quantile 

function of  X). If  ( ]1,0∈λ   then the couple  ),( YX   is called asymptotically dependent (in 
the upper tail) while if  0=λ   one speaks of asymptotic independence. Tail dependence is an 
asymptotic property of the copula. Its calculation follows easily from the relation 
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For a linear Spearman couple one obtains 
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Therefore, unless  X  and  Y  are independent, a linear Spearman couple is always 
asymptotically dependent. This is a desirable property in insurance and financial modelling, 
where data tend to be dependent in their extreme values. In contrast to this, the ubiquitous 
Gaussian copula yields always asymptotic independence, unless perfect correlation holds 
(Sibuya(1961), Resnick(1987), Chap. 5, Embrechts et al.(1998), Section 4.4). 
 
 
5. Bivariate copula fitting. 
 
     Our view of multivariate statistical modelling is that of Joe(1997), Section 1.7 : 
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“Models should try to capture important characteristics, such as the appropriate density 
shapes for the univariate margins and the appropriate dependence structure, and otherwise be 
as simple as possible.” 
 
To fulfill this, a bivariate model should satisfy some desirable properties (Joe(1997), Section 
4.1, Klugman and Parsa(1999)) : 
 
a) The bivariate distribution and/or density should preferably have a closed-form 

representation, at least numerical evaluation should be possible. 
b) The marginal distributions and/or densities should belong to the same parametric 

family and numerical evaluation should be possible. 
c) A parameter of the model should describe the dependence between the margins and 

cover a wide range of dependence. 
d) The model should be sufficiently flexible to fit the available data. 
 
     Modelling bivariate cumulative returns with the copulas of Sections 3 and 4 yields a 
closed-form representation for the bivariate distribution, which can be numerically evaluated 
provided the margins follow  )3,,( cNI µΓ   distributions. Therefore the properties a) and b) 
are fulfilled. The parameter  θ   in our copulas, which models the dependence, covers the 
relevant range of positive dependence lying between the independent copula and the upper 
Fréchet bound copula, hence c) is satisfied. It remains to analyze point d), that is the effective 
fitting of the chosen copulas to actual data. Statistical inference is done by specifying the 
estimation method and a bivariate goodness-of-fit test. 
     To estimate the 5 parameters  ( )θµµ ,,,, YYXX cc   of a copula-based bivariate model  

[ ])(),(),( yFxFCyxF YXθ= ,  where  )(xFX , )(xFY   are  )3,,( XX cNI µΓ ,  )3,,( YY cNI µΓ   
distributed, we apply a method close in spirit to the method of inference function for margins 
or IFM method studied in McLeish and Small(1988), Xu(1996), and Joe(1997), Section 10.1. 
A simple case of the IFM method consists of doing two separate maximum likelihood 
estimations of the univariate marginal distributions, followed by an optimization of the 
bivariate likelihood as a function of the dependence parameter. This procedure is 
computationally simpler and less time-consuming compared with a simultaneous estimation 
of all parameters from the bivariate likelihood. A statistical theory of the IFM method is 
developed in Joe(1997), Section 10.1. Proceeding similarly, we perform two separate 
maximum likelihood estimations of the univariate margins, followed by an estimation of the 
dependence parameter. However, we do not maximize the bivariate likelihood, except for 
comparison purposes in the Tables 5.1 and 5.2. Instead, we determine the dependence 
parameter, which maximizes the p-value (respectively minimizes the bivariate chi-square 
statistic) of a bivariate version of the usual Pearson goodness-of-fit test. We note that an 
application of the uniform test by Quesenberry(1986) for testing  Y  given  X  and  X  given  
Y, as proposed in Klugman and Prasa(1999), Section 5, is only satisfactory in one way. 
Testing the stock return Y  given the index return  X  is accepted, while testing the index 
return X  given the stock return  Y  is rejected. 
     Let us describe in more details our estimation of the dependence parameter  θ . We 
assume the parameters  YYXX cc ,,, µµ   have been determined using two separate maximum 
likelihood estimations. Given  1+n   daily observations  iI   of a market index and  1+n   

daily prices  iS   of a stock in the index family, let  
i

i
i I

I
X 1+= ,  

i

i
i S

S
Y 1+= ,  ni ,...,1=   be the 

daily cumulative returns used for statistical fitting. 
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     First, we want to validate the estimation of the marginal distributions using two separate 
univariate Pearson chi-square tests. Following Hürlimann(2000a), Section 6, the raw data  

iX   is regrouped into  6  classes  ( ] ( ] ( ]652110 ,...,,,,, vvvvvv , where the boundaries  svi '   are 
chosen such that the number of observations  621 ...,,, λλλ   in the corresponding classes are as 
much symmetrically distributed as possible ( 13 =v   appears adequate). This arrangement is 
motivated by the fact that the  )3,,( cNI µΓ   is a symmetric distribution. The data  iY  is 
regrouped into  6  similar classes  ( ] ( ] ( ]652110 ,...,,,,, wwwwww   with observations  

621 ...,,, ηηη   in each class. One obtains two separate chi-square statistics 
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In the examples below we report the  p-values  YX pp ,   corresponding to  22 , YX χχ   for a chi-
square distribution with  3  degrees of freedom. If these values are sufficiently high, the 
marginal distributions have been fitted in a satisfactory way. 
     Next, to create a meaningful bivariate chi-square statistic, we look at the number of 
observations  jiz ,   in the  36  two-dimensional intervals  ( ] ( ]jjii wwxvv ,, 11 −− ,  6,...,1, =ji . By 
Moore(1978/86) (Klugman et al.(1998), p. 121) regroup these intervals in  10  larger 
rectangular interval classes as follows. Recommended is an expected frequency of at least  
1%  in each class and a  5%  expected frequency in  80%  of the classes. With  250=n   daily 
observations over an approximate one-year period the following rectangular regrouping in  10  
classes  10,...,1, =kCk , appears adequate (at least in our examples) : 
 
              0w  

0v  
              1w                2w                3w                4w                5w                6w  

 

1v  
1C  1C  1C  1C  1C  1C  

 
2v  

1C  3C  5C  5C  5C  2C  

 
3v  

1C  6C  7C  8C  5C  2C  

 
4v  

1C  6C  9C  10C  5C  2C  

 
5v  

1C  6C  6C  6C  4C  2C  

 
6v  

2C  2C  2C  2C  2C  2C  

 
Our bivariate chi-square statistic is constructed from this configuration as follows. Consider 
the fitted or expected number of observations  jif ,   in each of the  36  two-dimensional 

intervals  ( ] ( ]jjii wwxvv ,, 11 −−   given by 
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[ ]

[ ].)(),(),(,6,...,1,

,),(),(),(),( 1111,

yFxFCyxFji

wvFwvFwvFwvFnf

YX

jijijijiji

θ==

+−−⋅= −−−−  (5.2) 

 
Through summation of  jiz , ’s, respectively  jif , ’s, one obtains the number of observations  

kO , respectively the expected number of observations  kE , in each class  10,...,1, =kCk . The 
bivariate chi-square statistic is then defined by 
 

( )∑
=

−
=

10

1

2
2

k k

kk

E
EO

χ .     (5.3) 

It is now possible to obtain for each copula numerical values of  θ , which minimize  2χ   
respectively maximize the bivariate  p-value corresponding to  2χ   for a chi-square 
distribution with  4  degrees of freedom. For comparisons the value of the bivariate negative 
log-likelihood is also of interest. It is defined by 
 

[ ]

[ ].),(),(),(),(ln

),()()(1lnln

1111

6

1

6

1
,

0000

−−−−
= =

+−−⋅−

+−−⋅=−

∑∑ jijijiji
i j

ji

YX

wvFwvFwvFwvFz

wvFvFvFnL
  (5.4) 

 
Following the IFM method described above, one can obtain numerical values of  θ , which 
minimize  Lln−   under a  p-value of at least  5% (the model should not be rejected at this 
significance level). Our examples show that the IFM method reduces the  p-value of  2χ   
sometimes rather drastically. For this reason, we prefer the proposed bivariate minimum chi-
square or maximum  p-value estimation method. 
     In our examples, we start with a comparison of fit based on the IFM method. Tables 5.1 
and 5.2 report copula fitting results for daily cumulative returns between the SMI index and a 
stock in the index family for the one-year period between September 29, 1998 and September 
24, 1999. For the Credit Suisse Group stock the Gumbel-Hougaard copula maximizes the 
bivariate log-likelihood, the linear Spearman copula yields the highest  p-value. For the 
Novartis stock the Clayton copula maximizes the bivariate log-likelihood, the Frank copula 
yields the highest  p-value.  
 
Table 5.1 :  IFM method for Credit Suisse Group stock 
 
 

location-scale parameters :   
.051511031.0,001624799.1
,030403482.0,000656016.1

==
==

YY

XX

c
c

µ
µ

 

model θ  p-value ( )minln L−  Xp  Yp  
Gumbel-Hougaard 2.65 13.5 599.4 74.9 84.9 
Galambos 1.97 13.1 600.3 74.9 84.9 
Hüsler-Reiss 2.48 5 602.9 74.9 84.7 
Frank 9.25 16.7 604.4 75.6 82.9 
Cuadras-Augé 0.665 31.1 610.8 75.9 83.5 
Linear Spearman 0.52 66.7 614.2 76.6 83.4 
Clayton 3.58 5 629.5 76.4 85.1 



 12 

Table 5.2 :  IFM method for Novartis stock 
 
 

location-scale parameters :   
.035275623.0,000225799.1
,030403482.0,000656016.1

==
==

YY

XX

c
c

µ
µ

 

model θ  p-value ( )minln L−  Xp  Yp  
Clayton  2.25 30.7 592.8 75.4 93.8 
Frank 6.9 32.5 593 75.6 93.4 
Gumbel-Hougaard 2.23 11.6 594.9 75.1 93.4 
Galambos  1.57 11 595.1 75 93.3 
Hüsler-Reiss 2.03 9.5 596 75.1 93.3 
Cuadras-Augé 0.619 5.5 611.5 75.9 93.5 
Linear Spearman 0.474 25.7 612.7 76.7 93.6 
 
 
The Tables 5.3 to 5.8 report comparisons of fit using the bivariate minimum chi-square 
estimation method for  6  pairs of daily cumulative returns between the SMI index and a 
stock in the index family for the same one-year period. Except for the Nestlé stock, whose 
fitted marginal distribution is rejected, we find in most cases satisfactory fits, in particular for 
the SMI stocks Credit Suisse Group, Sulzer, Novartis and UBS. The rejected fit of the Nestlé 
marginal distribution may be due to the fact that the extreme values of the daily returns were 
rather moderate between  -6%  and  6%. The fit of the Swisscom stock is not rejected but less 
satisfactory. Rather surprisingly, the highest bivariate p-value is obtained for the very 
tractable linear Spearman copula (except for the Swisscom stock). Except for the Cuadras-
Augé (UBS) and Clayton copulas (Credit Suisse Group and Swisscom), the  p-values seem 
sufficiently high. In our view the linear Spearman, Frank and Gumbel-Hougaard copulas 
provide the best overall fits for the analyzed pairs. 
 
 
Table 5.3 :  Bivariate maximum p-value method for Credit Suisse Group stock 
 
 

location-scale parameters :   
.051511031.0,001624799.1
,030403482.0,000656016.1

==
==

YY

XX

c
c

µ
µ

 

model θ  ( )maxvaluep −  Lln−  Xp  Yp  
Linear Spearman  0.495 71.8 614.5 76.6 83.4 
Cuadras-Augé  0.64 36.9 611.3 76 83.3 
Gumbel-Hougaard 3.05 28.8 601.4 74.7 85.4 
Galambos 2.37 28.2 602.8 74.6 85.5 
Frank 10.6 26.4 605.7 75.5 83 
Hüsler-Reiss 3.15 26.4 609.5 74.5 85.5 
Clayton 3.83 5.7 632.2 76.4 85.1 
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Table 5.4 :  Bivariate maximum p-value method for Novartis stock 
 
 

location-scale parameters :   
.035275623.0,000225799.1
,030403482.0,000656016.1

==
==

YY

XX

c
c

µ
µ

 

model θ  ( )maxvaluep −  Lln−  Xp  Yp  
Linear Spearman  0.399 56.4 614.3 76.6 93.5 
Frank  6.9 32.5 593 75.6 93.4 
Clayton 2.18 31.1 592.8 75.3 93.8 
Cuadras-Augé 0.547 15.6 612.9 76 93.4 
Gumbel-Hougaard 2.23 11.6 594.9 75.1 93.4 
Galambos 1.56 11.1 595.1 75 93.3 
Hüsler-Reiss 2.17 10.3 596.5 75 93.3 
 
 
Table 5.5 :  Bivariate maximum p-value method for UBS stock 
 
 

location-scale parameters :   
0477182.0,0016621.1

,030403482.0,000656016.1
==

==

YY

XX

c
c

µ
µ

 

model θ  ( )maxvaluep −  Lln−  Xp  Yp  
Linear Spearman  0.403 38 629.6 77.1 52.3 
Clayton 2.42 25.3 648.2 76.7 49.6 
Frank 7.43 14.5 633 76.7 54.2 
Gumbel-Hougaard 2.38 14.1 626.9 76.8 52.6 
Galambos 1.69 14 629 76.8 52.6 
Hüsler-Reiss 2.34 13.8 638.6 76.8 52.5 
Cuadras-Augé 0.55 5.5 634 76.7 54 
 
 
Table 5.6 :  Bivariate maximum p-value method for Nestlé stock 
 
 

location-scale parameters :   
03362619.0,00096518.1

,030403482.0,000656016.1
==

==

YY

XX

c
c

µ
µ

 

model θ  ( )maxvaluep −  Lln−  Xp  Yp  
Cuadras-Augé  0.5 34 604.1 79.1 0 
Gumbel-Hougaard  2.11 32.1 579.9 80.8 0 
Linear Spearman 0.377 31.5 606.1 78.8 0 
Galambos 1.42 31.2 579.5 80.8 0 
Hüsler-Reiss 2.01 29.7 578.9 80.9 0 
Frank 6.34 29.3 584.9 75.6 0.1 
Clayton 2.03 2.5 592.2 75.8 0 
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Table 5.7 :  Bivariate maximum p-value method for Sulzer stock 
 
 

location-scale parameters :   
0466025.0,0014062.1

,030403482.0,000656016.1
==

==

YY

XX

c
c

µ
µ

 

model θ  ( )maxvaluep −  Lln−  Xp  Yp  
Linear Spearman  0.264 69.7 649.1 76.8 46.7 
Gumbel-Hougaard  1.77 64.9 636.9 77.1 47.9 
Galambos  1.09 64.9 637.8 77.1 47.9 
Hüsler-Reiss 1.62 64.8 639.9 77 48 
Frank 4.72 50.8 641.8 76.3 48.7 
Cuadras-Augé 0.382 46.2 649.9 76.7 47.8 
Clayton 1.45 24.3 634.9 76.2 42.7 
 
 
Table 5.8 :  Bivariate maximum p-value method for Swisscom stock 
 
 

location-scale parameters :   
05098643.0,00071313.1

,030403482.0,000656016.1
==

==

YY

XX

c
c

µ
µ

 

model θ  ( )maxvaluep −  Lln−  Xp  Yp  
Cuadras-Augé  0.151 15.9 700.6 75.6 18.2 
Frank 2.09 12.8 695.7 75.3 18.1 
Linear Spearman 0.094 9.1 703.7 75.2 18.3 
Gumbel-Hougaard 1.22 8.5 696.3 75.7 18 
Galambos 0.47 7.9 696.6 75.9 18 
Hüsler-Reiss 0.84 7.7 697 75.9 17.9 
Clayton 0.36 2.5 701.9 72 18.4 
 
 
6. Covariance estimation with the linear Spearman copula. 
 
     To present a practical illustration of our estimation results, it is useful to compare standard 
empirical values of the linear correlation coefficient with the estimated linear correlation 
coefficient from a fitted copula. This is of interest because for heavy tailed data the standard 
product-moment correlation estimator has a very bad performance, and there is a need for 
more robust estimators (e.g. Lindskog(2000)). In view of the importance of correlation 
measures in modern finance (mean-variance portfolio theory, CAPM models), this is a highly 
relevant issue. 
     Extreme, synchronized rises and falls of indices and stocks occur infrequently, but more 
often than what is predicted by a bivariate normal model. Since the linear Spearman copula 
has a simple tail dependence structure capable to model extreme values (end of Section 4) 
and our copula fitting was quite satisfactory, we focus on the evaluation of the covariance for 
this copula. The following general result has been first derived in Hürlimann(2000b). 
 
Theorem 6.1.  Let  ( )YX ,   be distributed as  [ ])(),(),( yFxFCyxF YXθ= , where  ),( vuCθ   is 
the linear Spearman copula, and the continuous and strictly increasing marginal distributions 
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are defined on the open supports  ),( XX ba , ),( YY ba . For an arbitrary differentiable function  
)(yψ , assume the following regularity assumption holds : 

 

[ ] [ ] .0)()()()(lim

,0)()(lim

1 =




 −

=

∫ −

→

→

y

a YYXYby

Yay

YY

Y

ydFyFFyFXEy

yFy

θψ

ψ
   (RA) 

 
Then one has the covariance formula 
 

[ ] [ ] [ ]( )[ ])()()sgn()(, 1 YXEYFFEYXCov YX ψθθψ θ ⋅−⋅= − ,  (6.1) 
 
where one sets 





=)(yFY
θ

,0),(

,0),(

<

≥

θ

θ

yF

yF

Y

Y     (6.2) 

 
with the abbreviation  )(1)( yFyF YY −= . 
 
Proof.  Let us first derive the regression function  [ ].yYXE =  The conditional distribution of  
X  given  yY =   equals for  0≥θ  
 

[ ]




=
∂

∂
= )(),()( yFxF

v
C

yxF YX
θ

[ ]
[ ],)(),()1(

,)(),()(
1

1

yFFxxF

yFFxxFxF

YXX

YXXX

−

−

<−

≥+

θ

θ
  (6.3) 

 
and for  0<θ  





=)( yxF
[ ]

[ ].)(),()(

,)(),()1(
1

1

yFFxxFxF

yFFxxF

YXXX

YXX

−

−

≥−

<+

θ

θ
   (6.4) 

 
Through calculation one obtains the regression formula 
 

[ ] [ ] ∫∫ ∞−

∞
−−=

0

0
)()(1 dxyxFdxyxFyXE     (6.5) 





=
[ ] [ ] [ ]( )
[ ] [ ] [ ]( ) ,0,)(

,0,)(
1

1

≤−⋅+

≥−⋅−
−

−

θθ

θθ

yFFXEXE

yFFXEXE

YX

YX     (6.6) 

 
which is a weighted average of the mean  [ ]XE   and the quantile  [ ])(1 yFF YX

−   respectively  
[ ])(1 yFF YX

− . To obtain the stated covariance formula, one uses the well-known formula by 
Hoeffding(1940) and Lehmann(1966), Lemma 2, to get the expression 
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[ ] [ ]
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dxdyyxFyYxFyF
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Y

XXY
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YX

ψ

ψ

ψ

ψψ

 (6.7) 

 
Furthermore, from (6.6) one obtains 
 

[ ] [ ] [ ] [ ][ ]).)(()sgn( 1 yYYFFEXEyYXEXE YX ≤−⋅=≤− − θθθ   (6.8) 
 

Inserted in (6.7), a partial integration yields 
 

[ ] [ ] [ ]

[ ] [ ]
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 (6.9) 

 
which implies (6.1) by the regularity assumption.  ◊ 

 
The application of this result to margins from a symmetric location-scale family is simple. 
 
Corollary 6.1.  Under the assumptions from Theorem 6.1 suppose that  








 −
=

X

X
ZX c

x
FxF

µ
)( ,  







 −
=

Y

Y
ZY c

x
FxF

µ
)( ,  [ ] [ ]YEXE YX == µµ , , and  )()( zFzF ZZ =− . 

Then one has 

[ ] [ ])(,)(, YYCov
c
c

YXCov
Y

X ψθψ = .    (6.10) 

 

Proof.  The result follows from (6.1) noting that   [ ] ( )Y
Y

X
XYX y

c
c

yFF µθµθ −+=− )sgn()(1 .  ◊ 

 
Example 6.1. 
 
In case  ),,(~ αµ XX cNIX Γ ,  ),,(~ αµ YY cNIY Γ ,  1>α , one has   [ ]XVarcX )1(2 −= α ,  

[ ]YVarcY )1(2 −= α . For  yy =)(ψ   the regularity assumption (RA) holds, hence  

[ ] [ ] [ ]YVarXVarYXCov θ=, . In this special situation Spearman’s correlation coefficient  θ   
coincides with Pearson’s linear correlation coefficient. It is therefore possible to compare the 
standard product-moment correlation estimator with the estimated  θ   obtained from the 
linear Spearman copula fitting. Results for some stocks from the SMI index family are found 
in Table 6.1. 
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Table 6.1 :  linear correlation estimators for the linear Spearman copula 
 
Stock Product-moment estimator Fitted estimator 
Credit Suisse Group 0.829 0.495 
UBS 0.708 0.403 
Nestlé 0.777 0.377 
Novartis 0.798 0.399 
Sulzer 0.663 0.264 
Swisscom 0.285 0.094 
 
The discrepancy between both estimators is considerable. However, on a relative scale both 
estimators rank the strength of dependence similarly. 
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