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ABSTRACT

Market values of the invested assets are frequently published. For most insurance liabilities, there
are no published market values and, therefore, these have to be constructed. This construction can
be based on a best estimate and a price for the risks in the liabilities. This paper presents a model
explaining how the best estimate and the price of mortality risk can be constructed. Several
methods to describe the risks are already known. The purpose of this paper is to describe a method
to determine the mortality risk in a practical way.

1. INTRODUCTION

This paper describes a methodology that could be
used to calculate a fair value for mortality risk. It
offers a practical solution to analyzing the mor-
tality risk and deriving a market-value margin.
The market value of assets is, in most cases,
publicly available through markets for financial
instruments. This is not the case for the liability
side of the insurer’s balance sheet.

The market value of the insurance liabilities is
not publicly available and, in most cases, not readily
available or even unknown. Therefore, a market
value of liabilities (MVL) has to be constructed. The
model presented in this paper also can be useful for
pricing, profit testing, and reserve testing purposes.
Also, for other kinds of risk, like morbidity, similar
models can be developed.

In most cases the best estimate liability (BEL)
is available or can be determined. A reward for
risk should be added to the BEL—the market
value margin (MVM)— to come to a MVL, which is

MVL = BEL + MVM (1)

This paper presents a model to determine the
best estimate mortality (BEM). As with all the
other risks, the basis for the “mortality risk” is
the BEM. The BEM will give an expected loss
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level, but around this best estimate will be a dis-
tribution of possible loss-levels. This distribution
consists of several parts: the volatility, calamity,
and parameter uncertainty components.

The volatility component represents the nor-
mal fluctuations around the best estimate. The
calamity component represents the probability of
extremely adverse fluctuations attributable to a
certain event, such as an epidemic (like the Span-
ish Flu) or a catastrophe (like an earthquake).
There is also a parameter uncertainty that occurs
during the estimation of each parameter, that is,
the uncertainty that the parameter has been es-
timated properly.

2. BesT ESTIMATE MORTALITY

2.1 Introduction

For most purposes, such as pricing, embedded
value, profit testing, risk-adjusted return on cap-
ital, and fair value, “as good as possible” estima-
tion of the expected mortality is needed. The BEM
assumption should fit the expected mortality as
well as possible for the applicable group of in-
sured persons now and in the future. Conse-
quently, the BEM contains two main parts: (1) the
current mortality for a specified group of (in-
sured) persons and (2) the expected changes in
the level of this mortality in the future. The first
part we call the level of the mortality, the second
part the trend.

This paper describes several issues that can be
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important in estimating mortality, with attention
to the data needed for reliable estimation of both
the level and trend of mortality. Finally, it will
provide some practical models that can be used to
calculate a BEM assumption.

2.2 Important Issues in Finding the
BEM

2.2.1 The Level

Insured population mortality (for life insurance)
is not the same as population mortality. In gen-
eral, the mortality within the insured population
is lower because of underwriting. In some coun-
tries (e.g., the United States and the United King-
dom), special mortality tables have been devel-
oped for the insured population that vary
depending on the product type and based on sta-
tistics from insured populations. In other coun-
tries, population tables are used with adjustments
made to reflect insured experience. These adjust-
ments can be related to all ages (e.g., insured
mortality age & = population mortality x — 5) or
to adjust the mortality rates (“qx’s”) for a partic-
ular age.

Because aggregate age adjustments are less ex-
act, age dependent factors are used to adjust the
gx’s. Furthermore, if industry (i.e., insured) ta-
bles are used, the average industry mortality must
be compared with the company’s mortality expe-
rience to find how they differ.

The ideal estimation of the level requires a
statistical analysis covering several aspects of
mortality experience:

e The mortality within the specific company’s
own portfolio.

e The difference between the mortality of an in-
sured population and the entire population de-
pending on age, gender and, in some countries,
smoking status.

e The product type and goal of the product and
market involved for example mortgage or pen-
sions, term insurance, whole life or annuity.

e The issue year (select period).

e Underwriting procedures, for example, guaran-
teed issue, no medical exam, paramedical or
medical.

e Measurement in sums at risk (instead of num-
bers of policies).

In most cases, all these statistical relationships

cannot be precisely measured or only can be
partly measured. If that is the case, the most
important factors might be the use of the mortal-
ity of the specific portfolio and the use of sums at
risk as the amounts exposed. If an estimation of
mortality using age-dependent factors per prod-
uct type cannot be made (because the estimation
cells are too small), it may be possible to use
age-independent factors for product groups. For
example, products can be broadly grouped into
those with positive risk (term insurance, endow-
ment, and permanent life) and negative risk (pure
endowment and annuities).

Section 3.2 contains an example of how to
translate population mortality table into an in-
sured population mortality table.

2.2.2 The Trend

Because mortality rates change over time, it is
important to account for this in the BEM assump-
tion. For centuries, and especially in the 20th
century, the human life expectancy has increased
and should continue to increase in the future. Of
course the questions are, for how long and at what
level? An increasing life expectancy means de-
creasing mortality rates.

The historical decrease of the mortality rates is
a result of positive and negative impacts on the
health and mortality of humans. The change in
mortality in the past is mainly caused by several
factors, sometimes positive (+) and sometimes
negative (—):

Medical developments (+).
Environment (+ or —).
Behavior (+ or —).

New diseases, like AIDS (—).

The change in historical mortality was not con-
stant. Several changes in trends have occurred,
including periods of increasing mortality rates for
some age groups, for example, mid- to late-20s, as
accidental deaths became the primary cause of
death.

This all makes it difficult, if not impossible, to
predict the future mortality over a long period.
Although there is uncertainty, a prediction of a
future trend is necessary. Several methods to pre-
dict the future mortality exist and all are based on
analyzing historical data, with the addition of ex-
pert opinions (i.e., medical world expertise).
Some of the methods available are (1) cause of
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death, (2) structure, (3) child mortality, (4) acci-
dents, (5) constant part, (6) exponential part (ag-
ing), (7) general model (independent of cause of
death), and (8) expert opinion.

The advantages and disadvantages of using
each method as an indicator of future mortality
are given in the following subsections.

2.2.2.1T MobEeLING BY CAUSE oF DEATH

o Advantages: High level of science and better
analyses of observed effects.

e Disadvantages: Model hard to handle; difficult
to get the data and limited observations for
some cases; only a few years of predictions are
possible; when a cause of death disappeared in
the past, a new one always appeared (this is, of
course, difficult to model).

2.2.2.2 MODELING BY STRUCTURE

o Advantages: A good track on the mortality de-
velopment is possible; a change in the structure
of the mortality table is better to model; high
level of science.

e Disadvantages: Lots of parameters have to be
estimated; only a few years of predictions are
possible; difficult to get the necessary data.

2.2.2.3 GenerAL MoDEL

o Advantages: Simple to handle and, in most
cases, needed data is available.

o Disadvantages: Low level of science and the
past shows normal changes in trends.

2.2.2.4 Expert OPINION

e Advantages: Real medical changes in the future
are not reflected in the figures of the past and
expected shocks can be modeled.

e Disadvantages: No two experts expect the
same outcomes with respect to future mortal-
ity; the opinion of the expert will be rather
general, for example an increase of the life ex-
pectancy at age zero of x years; the result is not
yet a mortality table.

In practice, combinations of the above methods
can be used to estimate future trends. For exam-
ple, the Dutch model is a general model with
corrections for AIDS.

For all models, it is important to check the re-
sults. Don’t be just a statistical analyzer. Always

compare the results with already published results.
Always check with experts and look over the bor-
der. Compare the results with results in other coun-
tries. Be aware when comparing the future mortal-
ity of several countries that the mortality is more
likely to converge rather than diverge.

It is better to use raw population tables to pre-
dict future mortality trends. The use of industry
tables or special tables for a certain product to
establish trends is not advisable because changes
in underwriting procedures and the insured pop-
ulation can disturb the model. Also, using
smoothed tables based on Makeham models is not
recommended to estimate trends. Mortality de-
velopment using these models spreads special cir-
cumstances only applicable for a certain age
group over the whole table.

Appendix A presents an alternative smoothing
method. With this model, the structure of the
original table stays intact, but the stochastic
noise is smoothed away. Section 3 presents a
simple model, based on a general approach, that
can be used to estimate future mortality trends.

3. BEM, AN EXAMPLE

This model demonstrates a practical way to de-
velop a BEM assumption. In this example, popu-
lation mortality is used and the trend model is
based on population mortality. The first step is to
make a model for the future mortality because the
result has to be used to estimate the level.

3.1 Model to Estimate Trend

We want a generation mortality table, where the
mortality rates depend on age (x), gender and
calendar year (t): q(ux; t). To estimate the trend
for each age/gender separately, define a function,
f(x), such that the development of the mortality
occurs in the following way:

q(o; £ + 1) = f(2) X g (5 0). ()

Therefore,

q(a; t +a) = fla) X q(x; t). (3)

The trend factor f(x) can be estimated using histor-
ical data. As mentioned in Section 2, it is better to
use raw population mortality data. This data can be
smoothed using the algorithm in Appendix A.

It is useful, especially for smaller countries, to
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average several years (three to five years, depend-
ing on available data and size of the data set) in
order to reduce the volatility between years be-
cause sometimes mortality in a country has some
extra volatility attributable to cold winters, the
flu, and so forth. By observing experience over
several years, this extra volatility will be
smoothed away, at least partially.

The factor f(x) can be estimated in the follow-

ing way:
r qlx;t)
F) = \txit =) )

where t is the year of the last available table, p is
the number of years in the observation period and
t — p is the year of the last significant change in
trend observed in the data.

3.1.1 Trend Analyses

To define a significant change in trend, several
methods are available, depending on the data.
Two methods are:

e Spline functions: Through the use of a statisti-
cal technique and a certain confidence level,
past data can be analyzed. A significant change
in trend is evident, if the gx’s in a certain year
are not within a certain confidence interval,
based on an estimation using the observations
from earlier years. The method requires the
availability of sufficient data for each calendar
year. This method can also be applied using life
expectancies instead of mortality rates. The ad-
vantage of using life expectancies is that only
one change of trend year is found instead of one
for each age. Using gx’s can provide several
change of trend years.

o Graphical analysis: In this method, a change in
trend is found by pictorial analyses rather than
statistical analyses. Of course, this is less accu-
rate than the method described above, and the
result will include some subjective conclusions.

When adding new data annually the earlier es-
timated trend will change. If the change contin-
ues in the same direction there is an indication of
a significant change in trend. Still it is not clear
when the trend has changed.

Sometimes, good analyses of the data are not
possible, for example, when only few data are
available, or if data are only available over long

intervals. This would occur if mortality rates were
published only once in 10 years. In that case, it is
possible to look at surrounding countries.

3.1.2 Generation Table

Using one of the methods described in 3.1.1, the
t and t — p from formula (3) are defined and f(x)
can be estimated. Using the analysis described in
3.1.1, a generation table can be derived.

There is the danger that if each country devel-
ops its own future mortality table, they will not be
comparable. As mentioned before, the difference
in mortality between several countries is ex-
pected to converge in the future, not diverge.
Therefore the method developed for Europe starts
with the local trend but grades into an average
European mortality by 2040.

3.1.3 An Alternative Extrapolation Model for
Mortality

In modeling the mortality trend in several coun-
tries, for example, the European countries, we
must ensure that the final result for the separate
countries should not differ too much. If we use a
separate extrapolation model up to 2040 for each
country, we will get tables with too much spread
in the life expectancy. So, for countries with an
unclear trend or those with not enough informa-
tion, we determine that the mortality in 2040 will
be the same as the average mortality in Europe.
The present mortality is graded to the 2040 aver-
age mortality by interpolating, using a factor f(x),

such that
2040-j g (205 2040)
flx) = W’ (5)

where j is the year of the latest local table.
The generation table is defined by

q(a; j+ 1) = gl j) X f(x)". (6)

The problem with this method is that the trend,
which is observed at the local level, is completely
ignored. That is why another model is created in
which the mortality development factor is time
dependent, giving us f(x, t). In this case, the
generation table is defined by

q(ax; j+0) =qloe; 7) ¥ [ floesj+14), (7)

i=1
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where f(x; j) is the trend derived from the local
observations

L9 gl )
Sl §) = q(xii—a) (8)

a is derived from an analysis of the latest change
in trend in the observations (f(«; j) can, in this
case, be a “short-term trend”).

The development of f(x;j + 1) is in such a way
that

t

q(x;j+¢)=q(a; j) X [] flae; 5 +1)  (9)

i=1
and defining

flao; j+ 1) = fla; ) X e (10)
SO

t

a(x;j +6) = qa; 6) X ] foe; e (11)

=1
and
qoc; j + ) = q(oc; J) X fla; ) X e V20 (12)

In Equation (12), it is clear that as t increases, the
third factor will dominate the middle factor. In
other words, the local trend, f(x; j), will become
less important as time goes on.

We can solve a(x) from Equation (12) by taking
the logarithm

log q(x;j +t) — log q(x; j)

=t><logf(x;j)+oc(x)><;><t><(t+1)

alx) = log q(x;j + t) —log q(x; j) — t X1og f(ax; j)

1
§><t><(1+t)

(13)

After doing this, some extra conditions (to con-
trol the model) can be added:

e If g(ae;j) < q(x;j +t),useforj<p=j+t
q(x; p) = q(x; )

o Ifq(oe;5) > q(o;j + t) and g(oe; j + p) < q(x;5 +
t),useforj +p=r<j+t:qx;r)=q(x;j+t).

The results are that, in several cases, we ana-
lyzed the impact of this alternative approach to

mortality trends. These cases depend on the dif-
ference between the local and average gx at this
moment and the difference in local (= f(x;j)) and
average trend. With the average g(x) at this mo-
ment at 0.01, we analyzed the cases shown in
Table 1. Figures 1-4 show the impact of this
model.

3.2 Model to Estimate the Level

The level of mortality (this is the mortality for the
specified insured group) will be expressed in
terms of the entire population mortality using a
correction factor on the gx’s. Therefore,

qins(x; t) =fac(x) X onp(x; t)7 (14)

where q,,,,(x; t) is calculated using the methods
mentioned under 3.1.

The factor fac(x) can be found using observa-
tions in the most recent years. Use as much in-
formation as possible, but be sure that the ob-
served populations in former years are similar to
the recent population. The factor is the ratio be-
tween the loss because of mortality and the risk
premium based on q,,,(x; t). When X, ; is the
possible loss for risk i in year j (so claim-reserve)
and L; is the actual loss in year j, we get (in this
case, the factor in age-independent):

%L
= . . 15
fac 2j 2 Olpop(x; ])Xi,j (15)
3.3 BEM Assumption
The BEM assumption can now be defined as
qpe(; t) = fac X q,e,(x; t), (16)

or, when it was possible to find an age-dependent
level,

qBE(xv t) Zfac(x) X q;mp(x; t) (17)

Table 1
Examples
Case | Local Trend | International Trend | Local q(x; j)
1 0.99 0.98 0.012
2 1.01 0.99 0.012
3 1.01 0.99 0.008
4 0.98 0.99 0.012
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Figure 1
Example Case 1

—#—Model —4—International —#—Local|

4. THE MARKET VALUE MARGIN OF THE
MoRrTtAuTY Risk
The literature indicates that MVMs are only
added to the best estimate liabilities when the
risk is not diversifiable. I would like to add the
word “fully” to this definition. There is no MVM
when the risk diversified fully away adds more
of the same risk. Suppose that the standard
deviation o(n;..;..) reflects n different risks.
Then, in formulas
on;..;..)

lim —— =0, (18)

n—x

there is no MVM. The solvency margin and the
economic capital cover these risks.

There are several ways to calculate the MVM or
MVL: using the cost of capital, the B-method
(known from the financial world), the PH-trans-
form, and the Esscher transform.

I used an MVM based on a factor times the
standard deviation of the underlying distribution.

Figure 3
Example Case 3
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Figure 2
Example Case 2
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This factor led to a 90% one-sided confidence
interval. Of course, this 90% depends on the risk
aversion of the buyer and also the whole market
situation at that moment (see Hardy and Panjer
1998).

Other than in the PH-transform and Esscher
methods, the distribution itself doesn’t change
because of adding an MVM. The MVM in the
method presented in this paper can be seen as
just consisting of a buffer.

5. DEerINITION OF THE MORTALITY Risk
Mortality risk can be divided into four sub risks:
volatility, calamity, uncertainty level, and uncer-
tainty trend.

5.1 Volatility

Volatility is the risk that actual size of claims
differs from expected, assuming the estimated
parameters (in the BEM) is true. Volatility is the

Figure 4
Example Case 4
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result of the randomness of the claim process.
Normally it is assumed that individual claims
are mutually independent. This allows the as-
sumption that the number of deaths can de
drawn from a binomial distribution, which sim-
plifies the modeling process. In reality, the
number of claims is not completely indepen-
dent when people are exposed to the same risk.
Examples include more than one person in a
car accident or plane crash, cold winters, and
small epidemics.

These nonindependent risks are difficult to
model. Therefore, I recommended using a some-
what more dangerous distribution that has a fat-
ter tail. An example of such a distribution around
the number of claims would be a Poisson distri-
bution.

Another important factor to consider is the
spread of the sums at risk (net amounts at risk).
This can have a huge impact on the volatility.

5.2 Calamity

Calamity is the risk of a one-time claim level of
extreme proportions attributable to a certain
event. This event will not change the parameters
directly, but can be seen as a one-year shock.
Examples of calamity risk are:

o Epidemics like the Spanish Flu in 1918. Millions
of people died all over the world because of this
disease. In the United States alone, an esti-
mated 500,000 extra deaths occurred.

e Natural catastrophes, such as an earthquake,
flood, or meteorite strike.

e Terrorist attacks with biochemical or chemical
weapons.

This kind of risk is difficult to model because
there are a very limited number of observations.
Therefore, we can not estimate the capital by
looking at the tail of any mathematical distribu-
tion. We must on expert opinions for this.

5.3 Uncertainty Level

Estimating the right level of mortality (see Sec-
tion 3.1) will bring an uncertainty with it. Obser-
vations needed to produce the estimations will be
volatile. This volatility (in the past) makes it dif-
ficult to find the right level. One rule is: The more
observations we have, the smaller this uncer-
tainty will be. Because uncertainty level is, in

fact, a result of volatility in the past, the distribu-
tion used to estimate this uncertainty is taken
from existing mathematical distributions and are
similar to the volatility models. In calculating
margins from the uncertainty level, it is also im-
portant to consider the extra risk because of the
spread of the sums at risk.

5.4 Uncertainty Trend

In the estimation of the trend, there will be un-
certainty. As shown in Section 2, the best esti-
mate trend is based on one of the past trends or
can be a partial average of the trends in the past.
Medical developments and other factors can
make an estimated trend obsolete. One example
is finding a cure for a (at this moment) fatal and
frequent disease, which will cause a downward
shock in the mortality rates.

The only possibility we have to model the un-
certainty trend is to use several possible trends
experienced in the past. A problem in modeling
the trend uncertainty is the fact that the trends
used in the different ages will be correlated in a
rather complex way. To avoid this complexity,
the liabilities are modeled, not the gx’s. By mod-
eling the liabilities, the correlation between the
ages will automatically be included in the model.

6. THE MARKET VALUE MoORTALITY Risk

6.1 The MVM Volatility

If we take out all the extra fluctuations, like the
impact of cold winters and calamity, the limit of
formula (18) will go to zero. The volatility, calcu-
lated in this way, will not have an MVM; the
solvency margin and the economic capital will
cover the volatility.

6.2 The MVM Calamity

It is difficult to find the existing mathematical
distributions for the calamity risk because there
are only a limited number of observations. The
only real calamity the civilized world experienced
in the last century was the Spanish Flu in 1918.
That epidemic doubled the expected number of
deaths for age groups important to insurance
companies. Medical and reinsurance experts have
indicated that such a calamity could occur only
once in every 100-year period.
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Of course, the real risk depends on the geo-
graphic location and the geographic spread of the
risks. The MVM can be based on the rates pro-
vided by reinsurers or calculated as an average
market price to hold the money needed (cost of
capital) for the calamity risk (for example, 10%
over the impact of 100% extra mortality).

6.3 The MVM Level

Because of the volatility observed in the past, there
is never a 100% certainty that the level of the BEM
is correct. As with volatility, a mathematical distri-
bution, compound Poisson can be defined and used
to calculate the MVM for uncertainty level.

Let’s look at a method to determine the MVM for
uncertainty level using the compound Poisson dis-
tribution based on a 90% confidence interval. The
level uncertainty is nothing more than a translation
of a possible mistake in estimation caused by the
volatility in observations from the past.

We are concerned that the results we have
observed in the past are not representative of true
mortality. To capture a nearly worst-case sce-
nario, assume that the results are those obtained
in Figure 5 at the 10™ or 90" percentile (which-
ever is the adverse result for the given situation).
Further assume that the true mortality rates are a
constant multiple f of the observed rates.

For each life let X; be the sum at risk and let I,
be zero if the life lives and one if the life dies.
Total losses are then X, I.X;. The expected value
of the total losses is 2; q;(x)X;, where g,;(x) is the
“true” probability for life i.

Assuming the number of deaths is Poisson dis-
tributed (Poisson is a bit conservative and leads

Figure 5
Best Estimate Could Be Wrong

/\\

Obs. —
estimated BE

\

Obs. +
estimated BE

Real BE

to simple answers), the total loss will be com-
pound Poisson distributed.

In actuarial theory, there are several ways to
calculate a 90" percentile in a compound Poisson
distribution. Some examples are: Panjers recur-
sion; the use of a shifted gamma, Esscher approx-
imation, and the normal power approach.

Here we will use the normal power approach.
Special in the case of the compound Poisson distri-
bution, it leads to very simple formulas and, in most
cases, to accurate results. The normal power ap-
proach is based on the Cornish-Fisher expansion.
(See Kendall and Stuart 1977). In most cases, we
use three moments; in very skewed distributions, it
is advisable to use more (e.g., four) moments. The
model in this paper is based on three moments.

The normal power approach uses the first three
central moments of the distribution to compare
with the standard normal distribution.

S_M<‘+V(32—1)

P 6] S 6

~®(s). (19)

In case of a one-sided 90% confidence interval:
2

s
D(s) = 90%, so s = 1.28 and e 0.11.

Therefore, where ¢ represents the total loss be-
cause of mortality,

Cobs = Creal + O-real(1~28 + 0'11’.Yreal)' (20)

The “real” parts in this formula are, of course,
not known yet so we have to translate them into
known figures. Therefore, we define a translation
factor f, which is age independent, to translate
known mortality rates into the “real” ones. In the
following, X is the loss attributable to the death of
an insured person:

Creal = z Qreal(‘x)X
:f 2 qobs(x)X-

chobs (21)

Also, the best estimate mortality (see Section 2)
derived from the observations can be used.

As known from the compound Poisson distri-
bution:
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Oreal = \fE qreal(x)X2 Table 3
/ Example of Level Uncertainty
= \/fz QUI)s(x)XZ
Iy Caculation Level Uncertainty
= \Sf Oobs- (22) Portfolio 1 2 3
o/p 0.038 0.044 0.138
; ; y 0.038 0.049 0.155
The Tops CAN be calculated using the population Observed 0971 0827 0629
mortality. MVL Neg risk 0.925 0.777 0.519
Also: f MVL Pos risk 1.020 0.879 0.805
o 2 QVeOLl(x))(3
o (60 =F X quulx; . (26)
A mot\ X5 t)=fX qobs\ X5 t). 26
_fz qobs(‘x))(3
(\‘?0-0178)3 As an example, three different portfolios are cre-
ated with a simulation approach. Each of these
_ Yobs _ (23) portfolios will have its own risk profile. Portfolio 1
\/j has 100,000 risks, all the same insured sum; port-

Then using formula (20),

Yobs
\/7
O :fcobs + 1‘280-0113 \/.7 + (O'llo-obs’Yobs - Cobs)'

Cobs :fcobs + \/?o-ohs 1.28 +0.11

(24)
The V/f can be solved using the quadratic for-

mula. Define

D = U(Z)bsl'282 - 4cobs(0-1100bs'yobs - Cobs)-

—-1.280,,, + \D |’
2C0bs ’

Then, f= [ (25)
If the unwanted observation is in the left tail (as
in case of positive risks) we should use —1.28
instead of 1.28. All the numbers needed in the
formula can easily be found using the portfolio
and a known mortality table.

Using f we can calculate the MVL by transform-
ing the qx’s as follows:

Table 2
Example Observation of Level Mortality
(Whole Population: q, = 0.007)

Observed Mortality Rate

Portfolio 1 2 3
Observation 0.006797 0.005789 0.004543

folio 2 has 100,000 risks, insured sum uniform
spread between 1 and 1,000; and portfolio 3 has
100,000 risks, 90% insured sum between 1 and
1,000, 10% between 1 and 10,000,000.

The average population mortality rate is 0.007.
Several deviations from the average mortality de-
pending on sum insured are included. The obser-
vation simulation over one year gives us the re-
sults in Table 2. The results of the calculations
are shown in Table 3. It is clear that the MVM
(difference between observed and MVL) is highest
when using the fat tailed portfolio 3.

6.4 The MVM Trend

There are several ways to calculate an MVM for
the uncertainty trend. As mentioned previously,
it is difficult to calculate the MVM for an uncer-
tainty around the separate mortality rates be-
cause of the complex correlation between these
mortality rates. Therefore, it is advisable to cal-
culate MVM for the uncertainty trend over the
liabilities by calculating the impact of other pos-
sible trends on the liabilities.

To find the other possible trends, analyze the
history. For example, suppose we have yearly
mortality data from 1950 to 1995 (see Figure 6).
We base the best estimate trend on the average
trend between 1980 and 1995. Within the 45
years of observations, nine separate trends over
five-year periods are observed, that is, the average
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Figure 6
Example of Several Observed Trends (Male age 45)
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trend between 1950 and 1955 (i =
1960 (i = 2), and so forth.’

Similar to the method used to calculate the best
estimate mortality assumption, we find nine sets
of factors: f;(x) (i = 1 to 9). With each set f(x), a
generation table can be calculated: q,(x; t + a) =
fi(x)* X qp.(2; t). With each generation table, i
liabilities (liab) can be calculated. This results in
nine different liabilities.

With these nine liabilities, a standard deviation
can be calculated:

1); 1955 and

9 (/1 1 2
e N . og2) [ .
Strend = 4/ (9 21: lmbi) (9 lleabl) . (27)

The trend uncertainty calculated is defined to be
a Student t distribution with 8 degrees of free-
dom. This distribution is used because of the
limited number of observations and the fact that
a rather fat tail is needed to account for possible
medical developments such as a cure against an
important nowadays-deadly disease. In the Stu-
dent (8) distribution the 90% confidence interval
is based on 1.40 standard deviations. This gives:

MVMLrend =1.40 X Strend- (28)

Tt is better to take just multiyear periods, rather than periods be-
tween significant changes in trends because the latter will overesti-
mate the trend uncertainty.

76 81 86 91 96

Table 4 shows a simple example where this
technique is used to calculate the uncertainty
trend around a net-single premium for some
products. The calculation is done for a term in-
surance, a pure endowment and an endowment
(i.e., the sum of term and pure endowment). The
effect of netting between the (positive) term in-
surance and the (negative) pure endowment is
clear to see by summing the result of the two.

Table 4

Simple Example of Trend Uncertainty

1 2

Trend Term Pure End 1+2
51-56 0.091591 0.385952 0.477544
56-61 0.093998 0.383763 0.477761
61-66 0.108993 0.371087 0.480081
66-71 0.093744 0.384229 0.477973
71-76 0.082652 0.393559 0.476211
76-81 0.072914 0.401589 0.474502
81-86 0.076196 0.398958 0.475154
86-91 0.071073 0.402989 0.474062
91-96 0.070131 0.403957 0.474088
BE 0.070568 0.403498 0.474066
SD 0.013319 0.011226 0.002097
1,4*SD 0.018647 0.015717 0.002936<—=MVM
BE + MVM 0.089215 0.419215 0.477002<—=MVL
MVM/BE 26.4% 3.9% 0.6%
MALE AGE 45 45 45
DURATION 20 20 20
D.o.F 8
Conf. Int. 90%
Student 1.4
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APPENDIX A

THE VAN BROEKHOVEN ALGORITHM

In the actuarial world, several methods are
known to smooth rough mortality tables. The
method presented in this paper was made in the
Netherlands in 1992 to smooth rough mortality
rates for the purpose of extrapolating mortality
rates into the future.

This algorithm is designed to smooth raw mortal-
ity date without losing the structure of the mortality
table. A traditional smoothed table (for instance,
with Makeham), will have lost part of the structure
of the original raw table. This is because using
Gompertz or Makeham functions increasing expo-
nential functions are estimated over the whole or
great part of the age range. In reality, mortality rates
don’t behave exponentially; they even can decrease
over some small age groups.

One example is that the accident hump for
males between the ages 20-25 leads, in some
countries, to a decreasing mortality during some
years above age 25. The Makeham function would
lead to increasing mortality rates over all ages.

Still, the development of mortality in time will be
different in the range of ages where the accident
hump appeared, compared to the other age
groups.

The algorithm described in this note keeps de-
viations like the accident hump intact. Also, the
resulting deviation of the mortality trend in this
special age group will be more accurate. The
algorithm is based on a moving average. How-
ever, the average will not be taken just linearly,
but weighted with an exponential function of
the second degree and after a transformation.
In this way, a better fit to the original raw data
results.

Starting with the raw mortality observations
for age x and calendar year t, which are defined
as QR(x, t), we get the following trans-
formation from the Makeham or Gompertz
methods:

Sf(x, t) = log[—log{1 — QR(x, t)}]
We define the matrix X as

1 x—5 (x—5)°

1 x+5 (x+5)°

and Y as

Figure 7
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Figure 8
Smoothing Tables
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flx —5,1t)

flx +5,¢)
Then f'(x, t) follows:
fle, ) =[1, x, 2*](X'X)'X'Y
and

(x,0)

glx,t) =1 — oo,

In other words, the whole process can be seen

Table 5
Test Fit of the Smooth Data
Using Life Expectancy

Life Expectancy Male (the Netherlands, 1991-1995)
Age Raw Standard Algorithm
0 74.240 74.808 74.245
45 31.274 31.303 31.275
65 14.599 14.590 14.596
90 3.373 2.932 3.373

as fitting a second-degree polynomial by least
squares to the 11 observations surrounding the
point of interest. Then the fitted value replaces
the observed value. Using the raw mortality
data for the Netherlands over the period
1991-95, this smoothing method is shown in
Figures 7 and 8. Clearly, there is a high number
of “changes of signs,” and the smoothed data
still follows the original structure of the raw
data.

In the Figure 7 the difference (%) between the
original raw data and the smoothed data is pre-
sented both for the algorithm and the standard-
smoothing method, based on Makeham. In Figure
8, for the ages 15-40, the raw mortality rates and
the smoothed mortality rates are given. Another
test of how the smoothed data fit the original raw
data can be seen in the calculation of life expect-
ancy (see Table 5). Of course, the difference must
be as small as possible.

Discussions on this paper can be submitted until
October 1, 2002. The author reserves the right to reply
to any discussion. Please see the Submission Guide-
lines for Authors on the inside back cover for instruc-
tions on the submission of discussions.



