How Swiss Re manages mortality uncertainty

Presentation by Michael Eves to IAA Mortality Working Group, Saturday 12 October, 2013
Agenda

- Risk Measures
- Mortality Trend Model
- Modeling of Influenza Pandemic Risk
- Risk Assessment and Risk Management
- Options to reduce mortality exposure
- Modeling the future
Swiss Re uses 99% tail VaR with a one year time horizon as its risk measure.
Risks are diversified across the Group

- **P&C**: 28%
- **L&H**: 26%
- **Financial Market**: 39%

Risk Breakdown:
- **Credit**: 7%
- **Financial Market**: 27%
- **Credit spread**: 13%
- **Equity**: 13%
- **Foreign exchange**: 7%
- **Other FM risk**: 7%

L&H
- **Mortality trend**: 13%
- **Lethal pandemic**: 13%
- **Longevity**: -2%

P&C
- **Costing & Reserving**: 5%
- **Inflation**: 4%
- **TC North Atlantic**: 2%
- **Other P&C**: 7%

USD 27.2 billion
- **Standalone 99% shortfall**
 - based on 1-year Tail VaR

USD 16.7 billion
- **Group 99% shortfall after diversification**
 - between risk categories

Notes:
1. Simple sum, as of 31.12.2011, prior to diversification; both calculations are based on internal model figures, as disclosed in 2011 annual report.
Life & Health Risks

- Life and Health Risk is defined as the unexpected economic impact from mortality, longevity or morbidity obligations as well as persistency rates deviating from the levels assumed at outset in costing or subsequently in reserving.

- For each risk factor, the underlying causes of uncertainty can be categorised into one of the following:
 - Shock Risk: an extreme, one-off fluctuation, e.g. mortality claims caused by a lethal pandemic.
 - Trend Risk: a permanent or cumulative deviation from the expected outcome, e.g. deviation in mortality/morbidity claims resulting from a medical advancement.
 - Parameter Risk: uncertainty related to pricing or reserving parameters, principally due to insufficient relevant information.
 - Volatility: a non-extreme, random fluctuation.
Mortality Trend Model
Solvency II and Swiss Solvency Test

- Both Solvency Regimes define the SCR (Solvency Capital Requirement) as

\[\rho \left(\text{AC}_{T+1} - \text{AC}_T | F_T \right), \]

where

\[\text{AC}_T = A_T - L_T \]

denotes Available Capital (Assets minus Liabilities) today at time \(T \),

\[F_T \]

denotes a filtration representing today's information,

\[\rho \]

denotes a risk measure (VaR at 99.5%, expected shortfall at 99%), and

\[\text{AC}_{T+1} = A_{T+1} - L_{T+1} \]

denotes Available Capital one year into the future.

- Liabilities are affected by best estimate assumptions on future mortality rates \(\hat{q}_{x,t} \).

- Mortality Trend Risk in the one-year view of the SCR definition is the potential deviation of next year's best estimates from today's best estimates.

- Focus on systematic Mortality Trend Risk of given populations, e.g. UK males, US females, etc.
Ultimate view

- Usually, mortality models simulate an **ultimate view** of future mortality rates, e.g.
 - Lee-Carter model
 \[
 \ln(m_{x,t}) = \alpha_x + \kappa_t^{(1)} \beta_x
 \]
 - Age-Period-Cohort model
 \[
 \ln(m_{x,t}) = \alpha_x + \kappa_t^{(1)} + \gamma_{t-x}
 \]
 - Cairns-Blake-Dowd model
 \[
 \logit(q_{x,t}) = \alpha_x + \kappa_t^{(1)} + \kappa_t^{(2)} (\bar{x} - x) + \gamma_{t-x}
 \]
 - Plat model
 \[
 \ln(m_{x,t}) = \alpha_x + \kappa_t^{(1)} + \kappa_t^{(2)} (\bar{x} - x) + \kappa_t^{(3)} (\bar{x} - x)^+ + \gamma_{t-x}
 \]
 - Swiss Re's model
 \[
 \logit(q_{x,t}) = \alpha_x + \kappa_t^{(1)} + \kappa_t^{(2)} (x - x_{\text{center}}) + \kappa_t^{(3)} (x_{\text{young}} - x)^+ + \kappa_t^{(4)} (x - x_{\text{old}})^+ + \gamma_{t-x}
 \]

Historical and future life expectancy of UK males

Corresponding \(\kappa_t^{(1)} \) values for UK males
One-year view and ultimate view

- One-year view can be constructed by (semi-)nested simulations as follows

 - Run model to determine today's best estimates based on historical mortality rates and to simulate future mortality rates, say, 10000 realizations
 - Use each of the 10000 realizations of next year's mortality rates as additional historical data and re-run the model to get 10000 best-estimate mortality rates
 - One-year view imposes new challenges, e.g. fast algorithms to estimate and re-estimate parameters, consistency between one-year and ultimate view required
Multi-population model

- **Two step approach**

 1. Model mortality trend of the total population (blue line)

 2. For each population the difference to the mortality trend of the total population is modeled (main ingredient is to model differences of $\kappa_t^{(1)}$ as AR(1) process)
Summary

- Focus on one-year view
- Consistency between one-year and ultimate view
- Calibration of model's ultimate view to historical data
- Fast algorithms allow (semi-)nested simulations
- Multi-population model
- Details can be found in the article "Modeling the Mortality Trend under Modern Solvency Regimes", M. Börger, D. Fleischer, N. Kuksin, ASTIN Bulletin (to appear January 2014)
Modeling of Influenza Pandemic Risk

Risk Modeling Workshop

24 April 2012
Pandemic Model - Background

- 1918 unique event in 420 years with high mortality
 - 5.2 excess deaths per 1000 in the USA (vs. 0.4 in 1957 & 0.17 in 1968)
 - unusually, impacted young adults most heavily
 - high incidence of viral pneumonia / cytokine storm

- 1957 / 1968 pandemics – return to typical mortality intensity and pattern: most excess deaths confined to infants and elderly; use of antibiotics; better knowledge; behavioural changes etc

- 2009 pandemic – infection risk highly skewed to young; low infectivity; low lethality; still uncertainty about serological attack rate by age

- Model
 - attempts to identify baseline variables and understand their importance and interaction (e.g. lethality, spread characteristics, age profile, proportion bacterial /viral, age-specific susceptibility)
 - incorporates most of these factors into an SIR model (susceptible, infected, recovered individuals, with defined rates of flow between groups)
 - uses ‘event based’ modelling which randomly selects certain key factors from a range of defined possibilities based on history and current conditions, e.g. basic reproduction number (R_0), lethality, antiviral success
Factors that complicate comparison of pandemics

<table>
<thead>
<tr>
<th></th>
<th>Understanding of viruses</th>
<th>Social distancing (available, even if not used)</th>
<th>Antibiotics</th>
<th>Pandemic Vaccines</th>
<th>Anti-virals</th>
<th>R₀ value (spread capability)</th>
<th>Lethality (death per infection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1918</td>
<td>X</td>
<td>√</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>2.1</td>
<td>1.1%</td>
</tr>
<tr>
<td>1957</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√ but too late</td>
<td>X</td>
<td>1.6</td>
<td>0.275%</td>
</tr>
<tr>
<td>1968</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√ but too late</td>
<td>X</td>
<td>1.89</td>
<td>0.054%</td>
</tr>
<tr>
<td>2009</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>small effect</td>
<td>√</td>
<td>1.45??</td>
<td>unknown – very low</td>
</tr>
<tr>
<td>today</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√ often too late</td>
<td>√</td>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>

- Inferring current risk based on past total mortality is inappropriate
- Model must reliably imitate spread dynamics & changes that have occurred
Spread model – calculation process

- Model begins with infected people in any one of the 37 territorial entities
- Population cells: 5yr age groups, 37 countries, disease state (susceptible, infected by duration, recovered, dead, vaccinated)
- Model is based on daily iterations: cells change incrementally on a daily basis (i.e. gradually changing new infections, deaths)
- Specified within each population cell:
 - mixing between ages, mixing rates, mortality per infection, viral /bacterial disease progression, travel propensity, share of meds
- At each time, number of infections in each cell dependent on previous day’s:
 - susceptibles; no. contacts (of both uninfected and infected); number infected in groups with which contact occurs; transmission prob. (affected by stage, antivirals, vaccines)
- Intervention affects one/some of the above, slowing infection and/or reducing mortality
Calculating spread
(process day by day)

- Using Susceptible/Infected/Recovered (SIR) cells the model calculates spread at discrete time intervals, each lasting 24 hours

Day 1	Model run begins with a number of people infected in any chosen country, and in any chosen age group
Day 2	Number infected by Day 2 is a mathematical function based on underlying contagiousness of those already infected on Day 1 and the number of contacts they have with susceptible people
Day 3	As the days go by, more people become infected, fewer remain susceptible, and the proportion of contacts with people who have recovered becomes increasingly large
etc…	Eventually the pool of susceptible people is sufficiently depleted (and the pool of recovered people sufficiently large) that the number of new infections starts to decrease
etc…	Pandemic has peaked; number of new infections drops rapidly
Demographic characteristics

Number of contacts by age group and age profile of those contacts

- Young adults have more than 3x as many contacts with other people as the elderly.
- Ageing populations tend to have lower spread values, especially as mixing rates peak among young adults.

Chart source: see Pandemic influenza: A 21st Century model for mortality shocks
Age profile of lethality – bacterial and viral

Age profile of mortality by two main categories - pandemic influenza

- Age profile: bacterial pneumonia
- Age profile: viral pneumonia/ARDS/cytokine storm effects

<table>
<thead>
<tr>
<th>Year</th>
<th>% of mortality due to bacterial pneumonia</th>
<th>% of mortality other causes: viral pneumonia/ARDS/cytokine storms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1918</td>
<td>57%</td>
<td>43%</td>
</tr>
<tr>
<td>1957</td>
<td>95%</td>
<td>5%</td>
</tr>
<tr>
<td>1968</td>
<td>100%</td>
<td>0%</td>
</tr>
</tbody>
</table>
One key parameter, for example:
Age profile of lethality

- Low lethality pandemics (1957 and 1968) are assumed to be entirely due to bacterial pneumonia (U-shaped).
- Mortality in high lethality pandemics (1918) is a combination of the two causes (W-shaped).
- Impact of each of the two causes changes proportionally as lethality increases.

Chart sources: see Pandemic influenza: A 21st century model for mortality shocks.
Other key parameters

- Age profile of lethality
- Contagiousness (by age & duration since infection)
- Behavioural factors (by age & clinical status)
- Susceptibility to infection (by age)
- Population age structure (for each geographical entity)
- Daily contacts (by age)
Fit to historic events

- Frequency of pandemics: approximately 1 / 30 years on average
- 1918 – using $R_0 = 2.1$, and death-per-infection of 0.011 for USA
 - Fit numbers of deaths, lethalities, date of peak, etc
- 1957/1968 – much less data, so tested lethality curves mainly, and used published data on R_0 values
- Algorithm developed to produce age profile of lethality:
 - model automatically produces age profile depending on lethality level
- In generating event set use 2009 demographic equivalent:
 - R_0: 1918=2.1; 1957=1.6; 1968=1.89; (2009=1.45?)
 - Baseline lethality: 1889=0.00375; 1918=0.011; 1957=0.002753; 1968=0.00054
Randomise using historical events

Two main uncertainties in generating distributions of R_0 and lethality

- distribution type: tested log normal, gamma, extreme value (generalised Pareto), Weibull and normal distributions
 - sensitivity to distribution shape is low (5% max change)

- small sample of past events
 - parameters uncertain
 - sensitivity to parameter variability is high
Moving 1918 to today

- **Demographics:**
 - Population age structure: rate of spread changes as populations age - older people mix less, children have higher viral shedding
 - Population density/ living conditions: tested effect of this on R_0

- **Underlying health status**
 - higher life expectancy = better underlying health status, especially in developing world

- **Antibiotics:**
 - approximately 57% of deaths in 1918 assumed mainly due to bacterial pneumonia
 - bacterial pneumonia deaths predominantly in elderly and very young
 - antibiotics reduce bacterial pneumonia deaths by 60-80%
 - access varies by country
Moving 1918 to today

- **Antivirals:**
 - makes infected people less infectious to others: slower spread, reduced peak, lower serological attack rate
 - lower lethality: when effective and available assume 38% reduction in viral pneumonia mortality & 67% reduction in bacterial pneumonia mortality
 - potential usage varies by country
 - maximum access is 65%, accounting for need for rapid administration
 - further constrained by country stockpile and supply rates
 - antivirals assumed to be effective in 3/4 of pandemics

- **Travel:**
 - has been tested and has minimal impact
 - travel restrictions delay entry of the virus into countries, but given the growth patterns when it does eventually reach a country (which it almost always will), the impact on final mortality outcomes is small
Simulated 1918 pandemic, then & now...

The graph shows the cumulative effect on mortality rates of selected changes between 1918 (the “Base”) and 2006.

<table>
<thead>
<tr>
<th>Year</th>
<th>Deaths/1000 (in the general population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>24.0</td>
<td></td>
</tr>
</tbody>
</table>

1. 2006 population structure (spread rate and age profile of mortality)
2. ... plus underlying health changes relative to US (US assumed unchanged)
3. ... plus antibiotics
4. ... plus antiviral treatment
5. ... plus vaccines
Canada is among the countries appearing to be least impacted, with estimated 1-in-200-year excess mortality at around 0.7‰ in an insurance-age population.
Modelling results: Selected developing countries

Insured-age excess mortality due to pandemic influenza, selected developing countries

Countries expected to experience higher levels of mortality include India, Pakistan and Indonesia, due to high population density, along with a weak capacity to reduce contact rates (India shown).

The healthcare systems of these countries are also weaker than in developed countries, almost no antivirals are available.
Modelling results: Sensitivity analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sensitivity Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_0 and lethality fit of historical data: parameter error</td>
<td></td>
</tr>
<tr>
<td>Pre-pandemic partially effective vaccine</td>
<td></td>
</tr>
<tr>
<td>Contact modification</td>
<td></td>
</tr>
<tr>
<td>Proportion of deaths `bacterial pneumonia’/'viral pneumonia and cytokine storm’ causes</td>
<td></td>
</tr>
<tr>
<td>Lower underlying mortality – health improvements in the United States</td>
<td></td>
</tr>
<tr>
<td>Probability of pandemic occurring</td>
<td></td>
</tr>
<tr>
<td>Population density effects</td>
<td></td>
</tr>
</tbody>
</table>

Weighted excess mortality (per 1000)
Risk Assessment and Risk Management
Risk Tolerance

- The Board of Directors is ultimately responsible for the Group’s governance principles and policies, including the Group Risk Policy, which establishes both the guiding principles of risk management as well as the overall risk tolerance of the Group.

- Risk tolerance represents the maximum amount of risk that Swiss Re is willing to accept within the constraints imposed by its capital and liquidity resources, its strategy, its risk appetite, and the regulatory and rating agency environment within which it operates.

- A key responsibility of Risk Management is to ensure that Swiss Re’s risk tolerance is applied throughout the business. In particular, the Group’s risk tolerance forms the basis for risk management in our business planning process. Both our risk tolerance and risk appetite – the amount of risk we seek to take – are clearly defined and are translated into a consistent limit framework across all risk categories.
Risk tolerance
Basis for risk steering and limit setting

The risk tolerance represents the amount of risk Swiss Re is willing to accept within the constraints imposed by its capital and liquidity resources, its strategy, its risk appetite, and the regulatory and rating agency environment. It is based on the following objectives:

- Maintain capital and liquidity that are sufficiently attractive from a client perspective, and that meet regulatory requirements and expectations ("respectability criteria")
- Be able to continue to operate following an extreme loss event ("extreme loss criteria"):

 Extreme loss event
 Respectability target
 Regulatory capital requirements

 Do we hold enough capital (survival)?
 Can we meet all our obligations as they fall due (operation)?

 Regulatory capital
 Rating capital
 Liquidity stress test
 Related liquidity requirements

 Capital adequacy requirements
Risk Capacity Limits

- Risk capacity limits are established to control risk exposure accumulations at different levels.
- For Life and Health, three types of risk capacity limits are currently in place:

<table>
<thead>
<tr>
<th>Type of limit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-level risk capacity limits</td>
<td>Aggregate limits based on Tail-VaR which govern the acceptance of all life and health risks, with separate individual limits for mortality and longevity risk</td>
</tr>
<tr>
<td>Product capacity limits</td>
<td>To restrict risk-taking on certain non-core business lines. e.g. country level Catastrophe Excess of Loss and Stop Loss limits.</td>
</tr>
<tr>
<td>Concentration limits</td>
<td>To control concentration and volatility risk. e.g. per life retention limits for individual business; accumulation limits on buildings in densely populated areas.</td>
</tr>
</tbody>
</table>

- In addition, authority limits control risk origination by specifying the oversight required. All large, complex, or unusual transactions are reviewed and require approval from Risk Management.
Risk Management

- Risk Management ensures a pre-emptive approach to managing current and emerging threats
 - Risk tolerance limits
 - Capital cost assessment
 - Large transaction approvals
 - Portfolio monitoring and performance measurement

- Risk Management based on four principles
 - **Controlled risk-taking.** Clearly defined risk policy and risk control framework.
 - **Clear accountability.** Individuals are accountable for the risks they take on.
 - **Independent risk control.** Dedicated specialised units in Risk Management monitoring risk-taking activities.
 - **Open risk culture.** Risk transparency, knowledge sharing and responsiveness to change are integral to risk control.
Options to reduce mortality exposure
Longevity Risk

Longevity risk provides a hedge against Swiss Re’s mortality business. Swiss Re also holds other risks which are not correlated with longevity risk. It is unlikely that several unrelated extreme events will occur at the same time. This reduces the capital that is required for a well diversified reinsurer.

- **Diversification**: Global Reinsurers cover a wide range of non-correlated risks
- **Opposite Risk**: Significant book of mortality business
- ** Consolidation**: Reduce risk through the consolidation of lots of portfolios

Large diversified global reinsurers have significant expertise and a strong rationale to write and hold longevity risks.
External retrocession and ILS

- Swiss Re uses retrocession to other reinsurers to manage the risk exposure in the life and health book.

- In addition, Insurance-linked securities (ILS) are a key part of Swiss Re’s overall strategy to reduce “peak” risk exposures.

- Extreme mortality events such as pandemic influenza and terrorism events in the U.S., Canada or Australia are some of Swiss Re’s “peak” perils. Hedging these risks in the capital markets is an important tool for Swiss Re in managing its risk capital efficiently.

- We have developed capabilities in risk assessment, structuring, transformation, and distribution that enable us to transfer life insurance risks to the capital markets to complement our traditional retrocession instruments.

- Since pioneering the securitization of extreme mortality risk in 2003, Swiss Re has regularly issued ILS, such as VITA bonds, to transfer risk to the capital markets.
Modelling the future
Developing predictive models of longevity

Integrated Risk factors and Impairment Scenarios

- Complementary approach to
 - stochastic mortality models
 - blending between current mortality improvements and long-term assumptions over defined horizons

- Bringing together:
 - Swiss Re experience (data and expert knowledge)
 - Large patient medical databases in different countries
 - External networks capturing expert opinion

- Causal-based mortality predictions, evaluating factors such as:
 - Promotion and adoption of healthy lifestyle choices
 - Advances in screening and diagnostic technology
 - Pharmaceutical pipeline and its likely impact
Deep analysis of mortality experience
Patient medical data (GPRD) mortality split by duration and calendar year since heart attack (MI)
IRIS – multi-state model of mortality
Global and disease-specific factors to consider

General drivers to diagnosis and survival

Individual risk factors
- Age, gender, diet, smoking – smoking considerations:
 - Taxes and restrictions
 - Current treatments (buproprion)
 - Future treatments (vaccines)

Healthcare funding
- Public vs private funding
- Disease-based patient advocacy groups' influence
- Allocation of resources towards cure vs prevention

Patient interaction
- Health awareness
- Trust and confidence in advice given
- Use of clinical guidelines to improve quality of care

Research & development
- Public vs commercial sponsors
- Regulators' attitude to developments
- Disease-focused approach vs global impact of ageing

Disease types and disease progression

Healthy

Circulatory
- Stroke, angina, heart attack

Respiratory
- Chronic obstructive pulmonary disease

Multiple diseases

Death

Risk factors
- Family history
- Obesity
- Having children later in life
- Not breast feeding

Factors involved in assessing specific example disease

Early detection
- Digital mammography
- MRI for high-risk
- Gail algorithm (own factors)
- Klaus algorithm (family history)

Medical innovations
- Growth factor inhibition
- Future of personalised medicine (e.g. tumour profiling)

Current approaches
- Targeting DCIS
- Surgery with node follow-up
- Adjuvant radiotherapy
- Herceptin, Tamoxifen

Clinical trials pipeline
- Phase II (230 trials*)
- Phase III (56)
- e.g. pertuzumab (limits cancer growth)
Output from scenario testing in IRIS
Distribution of health/disease across age groups in 20 years
Expert opinion from Swiss Re conferences
Which will have the highest impact on future longevity?

1. Stem cell therapy
2. Genetic testing
3. Vaccines
4. Monoclonal antibodies
5. Monitoring technology
6. Nanomedicine
Legal notice

©2013 Swiss Re. All rights reserved. You are not permitted to create any modifications or derivatives of this presentation or to use it for commercial or other public purposes without the prior written permission of Swiss Re.

Although all the information used was taken from reliable sources, Swiss Re does not accept any responsibility for the accuracy or comprehensiveness of the details given. All liability for the accuracy and completeness thereof or for any damage resulting from the use of the information contained in this presentation is expressly excluded. Under no circumstances shall Swiss Re or its Group companies be liable for any financial and/or consequential loss relating to this presentation.
Thank you