Draft

INTERNATIONAL ASSOCIATION OF INSURANCE SUPERVISORS

ISSUES PAPER ON INSURANCE SECURITIZATION

October 2002
SECURITIZATION IN GENERAL

1. A securitization involves a simple financial concept: the future cash flows that can be expected from a particular source (e.g., receivables or loan repayments) serve to back up a financial instrument for sale to an investor. When a business entity (“the originator”) engages in a securitization, it first transforms the cash flows into a tradable instrument and then transfers the attendant risks\(^1\) from the entity to capital market investors who, in turn, expect a return commensurate with the risks. Depending on the source, different cash flows can of course have different risk characteristics.

2. In such manner, securitizations give rise to non-traditional sources of capital market financing. These sources both complement and supplement the more traditional sources of debt and equity financing available to a business. For insurance and reinsurance businesses in particular, the securitization concept has proven to provide an attractive alternative source of capacity.

3. From the point of view of an investor in capital market instruments, the ability to purchase a securitized instrument facilitates the optimization of his investment portfolio as it adds a further opportunity to diversify. Moreover, as we shall see shortly, the securitized instruments can be structured to appeal to a wide variety of investors’ risk and return preferences by “slicing” the risk/return characteristics into “tranches”. The whole process lends itself to creating wide investor appeal, and, hence, securitizations have the salutary effect of broadening the scope of the entire market\(^2\).

4. For the types of securitizations that are of greatest interest to us – namely, insurance-linked securitizations – there is a further attraction for investors: insurance risks, such as catastrophic risk, tend to be uncorrelated to other, more typical, capital market risks (e.g., interest rate risk, currency risk, economic risks, etc.). Portfolio theory holds that the addition of uncorrelated risks to an investment portfolio reduces the overall risk of the portfolio. Hence, it seems counter-intuitive but true that, by purchasing an insurance-linked security (“ILS”) based on

1 Credit risk, interest rate risk or prepayment risk on mortgages, for instance.
2 Securitizations are part of a wider range of financial methods known as “structured finance”.
catastrophic risk for instance, an investor can diminish the overall risk of his entire investment portfolio.

TYPES OF SECURITIZATIONS

Asset-backed securitizations in general

5. The cash flows from either assets or liabilities can be transformed into a securitized instrument. Historically though, asset-backed securities (“ABSs”) were developed first. In the early 1980s, credit card issuing companies and banks seized upon opportunities to securitize some of their receivables. Typically, these financial institutions would issue commercial notes backed by the expected credit card or loan payments from a particular pool of customers. Mortgage lenders, including life insurance companies, also became early users of asset-backed securitizations. In fact, the notes they issued (also known as Collateral Mortgage Obligations or CMOs), which were backed by payments from the residential mortgages they made, quickly generated a multi-billion dollar market.

6. Since then, all sorts of other asset types have been successfully securitized. Today, companies of every nationality, size, type, and credit rating routinely raise capital by issuing ABSs in the capital markets. If a company has a pool of performing assets (e.g., trade receivables) of sufficiently high quality, then an asset securitization offers the advantage of overcoming the capital-raising limitations that,

3 For banks, the capital requirements of the Basel Capital Accord were a prime motivation for pursuing securitizations. The Accord, for instance, requires banks to hold 8% of credit-card receivables as regulatory capital, money that could otherwise be deployed to more profitable opportunities.

4 RepublicBank of Delaware was the first bank to securitize credit-card payments from its customers in 1987. See McDonald, L. (1999) Best’s Review, April Issue.

5 In the early nineties, insurance firms allocated significant portions of their investment portfolios to so-called “toxic waste” tranches of CMOs. These investments allowed them to circumvent investment restrictions in other derivatives. These tranches became extremely volatile in the increasing interest rate environment encountered in 1994. The CMO market almost collapsed as liquidity rapidly disappeared, and many insurers and reinsurers suffered heavy losses.

6 For instance, the wage remittances of Moroccan workers to their home country, the singer David Bowie’s future revenues from his early records, the expected income from patrons of British pubs, student loans, utilities’ stranded costs, the receivables of automobile dealers, aircraft leases, municipal revenues, commercial loans, and a host of other exotic assets have all found a ready market for securitizations. The most recent trend is the securitization of the entire future cash flows generated by the operations of a company – whole business securitizations, that is. See Trincal, E., Are whole business securitizations next? Institutional Investor Newsletters, August 25, 2001.
say, declining performance, high leverage or third-world location might impose.

7. Even when assets are of doubtful quality (i.e., the expected cash flows are unlikely to materialize), a financial guarantee or a seemingly exceedingly generous stack of collateral (e.g., the face value of the collateral greatly exceeds the face value of the notes) will often serve to seal the deal. Insurance and reinsurance companies are frequent participants in such credit enhancement activities.

8. As can be seen, asset-backed securitizations are now commonplace. The methodologies for structuring, pricing, and accounting for these types of transactions have become well established, familiar, and efficient. Similarly, the regulatory framework for both originators and investors is well settled, with banking, securities and insurance regulators sharing oversight. The pool of candidates for asset-backed originations is plentiful and the number of potential investors is large. The market attracts significant liquidity and secondary markets make for transparency and efficient pricing.

Liability-based securitizations in general

9. Liability-based securitizations have had a less spectacular history. While asset-backed securitizations span the spectrum of all types of business, liability-based securitizations are mostly confined to the insurers and reinsurers. This is only natural however, given that other financial institutions tend to focus on the asset-side of their balance sheets while insurers and reinsurers focus on the liabilities.

10. Liability-based securitizations were first suggested in 1973. Though clearly derived from more developed asset-based securitizations methodologies, they were much slower to evolve however. For many in the insurance industry, the original promise shown by these new

7 The recent events at Enron have cast some doubt on this however as regulatory agencies, such as the Securities and Exchange Commission in the United States, are re-examining the role that transformer vehicles play in all securitizations. The same tools that are used to create asset-backed securities were used by Enron to construct an elaborate camouflage for the off-balance sheet transactions that ultimately caused its collapse.

8 The one exception is the Tokyo Disneyland transaction (see page___), in which insurance-linked risks were transferred to the capital markets by a non-insurance firm.

methods has fallen short of expectations. While asset-backed securitizations have grown at the rate of 30% annually into a $2.5 trillion market, the market for liability-based securities is much smaller. Since inception, only about $10 billion of these types of securities have been issued, with about $2.5 billion currently outstanding. Most of these have been in the form of catastrophe bonds, also known as “CAT bonds”. Since 199610, over $5 billion of these CAT bonds have been issued and annual issuance is expected to grow to more than $5 billion by the year 2003.

11. Two methodologies are currently in use for liability-based securitizations in the insurance sector:

(i) contingent capital instruments, designed to pre-finance insurance-related losses but without a transfer of the underlying insurance risks from insurer to capital market investors;

10 The first CAT bond transaction was attempted by USAA in 1996 but was withdrawn without explanation.
(ii) insurance-linked instruments, designed to finance insurance-related losses with a transfer of the underlying insurance risks from the insurer to capital market investors.

12. By transferring insurance-related risks to the capital markets, insurance-linked securities (“ILSs”) provide insurers and reinsurers with new tools for diversifying risks. Prior to securitizations, the purchase of reinsurance and retrocessional capacity were the only options. Hence, these types of securitizations are both a substitute for and a complement to the more traditional reinsurance arrangements of the past.

13. ILSs continue to remain the subject of much debate. Moreover, it would appear that many firms treat their forays into the market with the caution of experimentation. Investor interest continues to be limited, though it is certainly expanding, as we shall see. The costs both from a pricing standpoint as well as transaction costs remain high compared to reinsurance and compared to other more familiar or standardized financial instruments. Individual transaction capacity also tends to be much more modest in size.

14. Nonetheless, while the liability-based market remains embryonic, many experts forecast significant increases in growth in years to come, particularly in an environment of hardening markets for insurance. Many of these experts point to the spectacular growth of asset-backed securities as a model for ILSs. Their expectations remain untested.

15. Immediately after the events of September 11, 2001, there were heightened expectations for the insurance-linked securitizations market. Steep increases in reinsurance premiums were expected to make securitizations relatively more attractive. Indeed, spreads for catastrophe bonds, for instance, widened significantly in the secondary market. It would appear however that the influx of new capital into the reinsurance industry after 9/11 (ranging to about $28 billion to date) has mitigated the expected surge in securitizations. Spreads for insurance-

11 See, for example, Bault, T., Still talking different languages. Reactions, December 2001, page 30.
linked securities have narrowed again and today they are only about 10% wider than pre – 9/11.

16. Both asset-backed and liability-based securitizations are of interest to insurance regulators. Insurance and reinsurance firms are major players in both markets as originators and as investors. Moreover, an active market, including a secondary market, in CAT bonds has now developed. Insurance and reinsurance firms are active participants in this market.

THE PROCESS FOR ASSET-BACKED SECURITIZATIONS

17. In an asset-backed securitization, a firm issues securities whose costs are determined by the quality of the specific assets that back the securities. Because these assets secure the borrowing, and because they may be of higher quality than the entire firm, an asset-backed securitization typically results in both an increase in borrowing capacity and a lower cost of capital for the firm. In addition, the securitization moves the particular assets off the originator’s balance sheet, thereby reducing the firm’s leverage. ABSs also facilitate the release of regulatory capital. That capital can then be put to more productive use, possibly at a cost lower than the normal cost of capital.

18. On the demand side, investors continue to show a healthy appetite for asset-backed securities as the volatility of equity markets world-wide and the economic uncertainties of a recession have driven investors into the relative safety of fixed-income securities. Strong demand has also been supported by the existence of a liquid secondary market, which reflects the origination of larger-size issues and the increasing use of master trust structures that enable an originator to place numerous issues through a single program.

The structure of asset-backed securitizations

19. The typical structure of an asset-backed securitization consists of a transfer of assets to a Special Purpose Entity (“SPE”). The SPE serves to separate the legal ownership of the assets from the originator. As evidence that such a separation has indeed been effected, the originator generally secures a legal opinion that certifies that the sale of the assets to the SPE represents a “true sale”. The prime determinant of whether a
“true sale” in fact has been achieved is whether or not the originator retains any or all of the risks pertaining to those assets. No actual physical transfer of assets need be involved however to make a securitization effective. Such so-called “synthetic” transfers are common\(^\text{13}\).

20. The SPE can be a corporation, a partnership, or a trust. It is quite common for an SPE to take the form of a trust because the formation of a trust is a relatively simple matter. A corporation, on the other hand, requires directors, equity, articles, and may subject its shareholders to double taxation. The main concern is less over form however and more over whether or not the originator manages to perfect the segregation of the assets within the entity whatever its form. For, failure to do so, if the originator should go bankrupt, might then cause the reversion of the assets to the originator, rather than to the benefit of the investors.

21. An effective SPE can be described as an off-balance-sheet, non-consolidated\(^\text{14}\) entity with the following characteristics:

 (i) Non-affiliation with the originator;

 (ii) Independence from the originator; and

 (iii) Bankruptcy-remoteness from the originator.

22. Given its separation from the originator, the SPE’s credit risk is based solely on the quality of the assets transferred to it. The originator’s credit rating is irrelevant. With its own frequently enhanced credit rating, the SPE can then proceed to issue a variety of investment and non-investment grade tranches of securities with appeal to a variety of classes of investors.

23. A simple schematic structure of an asset-backed securitization would look as follows:

\(^{13}\) Enron, for instance, formed and owned an SPE to purchase its Houston headquarters and then lease it back to the company. Investors purchased notes from the SPE in order to fund the building. For tax and accounting purposes, this arrangement permitted Enron to remove mortgage debt on the building from its balance sheet while still claiming the interest thereon as a tax deduction.

\(^{14}\) A company can keep a SPE off its balance sheet under U.S. GAAP so long as an independent third party owns a controlling equity interest equivalent to at least 3% of the fair value of its assets. In the wake of Enron, FASB may raise this to 10%.
An illustration of ABSs: Collateral Mortgage Obligations.

The basis of a CMO is a mortgage loan from a financial institution to the purchaser of a home. The loan is usually repaid with regular monthly payments composed of principal and interest on the loan.

To obtain additional funds for more mortgage loans, a financial institution either accumulates pools of loans with similar characteristics together to create securities or sells the mortgage loans to issuers of mortgage securities. In either case, a stream of income from repayments by homeowners within the different pools backs up the securities.

The fact that a homeowner can prepay the mortgage by selling, refinancing, or otherwise paying off the loan has of course a significant impact on the pattern of these payments within the pool.

The mortgage collateral is placed into a protective trust structure, maintained exclusively for the benefit of investors. The originator then creates a multi-class issue, known as “tranches”. Different tranches attract different types of principal and interest payments. Investors are thus offered securities that have appeal to different investment objectives as different tranches have different cash flow characteristics.

In an environment of falling interest rates, CMO investors may find that their principal is returned to them sooner than expected (“call risk”) or, when interest rates are rising, later than expected (“extension risk”).

The “plain vanilla” type of CMO provides for the tranches to be paid in sequence. The trust would issue different classes of bonds, typically classified as A, B, C, and Z, with various maturities and
coupon rates. The different tranches are then retired in sequence by targeting all principal returns to only one tranche at a time. For example, A, B, C, and Z all receive scheduled interest payments, but principal will only be paid to tranche A. This will continue until A, B, and C are retired, at which point tranche Z, which received no interest and principal until A, B, and C are retired, will begin to pay both principal and interest to the investor.

24. Life insurance securitizations have also been structured along similar lines:

An illustration of a life insurance premium asset-backed securitization. Hannover Re has been at the forefront of this type of securitization. Named L1 to L4, these transactions been facilitated by an Irish SPE, Interpolis Re, and have provided for the securitization of 75% quota-share reinsurance for its book of European business (50 million euros in L1), European and North American business in L2 in 1999, emerging Asian markets business in L3 in 1999, and German-speaking countries business in L4 in 2000. More recently, Converium Reinsurance has engaged the same SPE to securitize a book of German, French, and Italian life reinsurance business. These types of securitizations are designed to relieve surplus constraints caused by the requirement to write off acquisition expenses in the year in which they are incurred.15 A frequent problem in these transactions is the fact that investors do not wish to assume underwriting risk. Hence, the Converium deal for instance, includes a conventional stop-loss reinsurance coverage in order to protect the cash flows expected by investors.

15 This issue does not arise under U.S. GAAP.
25. Life insurance companies have also used life insurer funding agreements to back publicly offered notes. Over $50 billion of these notes have been issued, mostly to non-U.S. investors. The programs are known as European Medium-Term Notes ("EMTN"), and, more recently, U.S. insurance regulators have permitted Global Medium-Term Notes to be distributed to U.S. investors as well. These notes had the following structure:

Structure of Funding Agreement Securitization

- **Life Insurance Co.**
- **Investment Bank**
- **Securitization Vehicle**
- **Indenture Trust**
- **Institutional Investors**

THE PROCESS FOR LIABILITY-BASED SECURITIZATIONS

Contingent capital instruments in general

26. These instruments are designed to allow the originator to pre-finance defined losses. Since traditional financing often becomes onerous or unavailable after a major loss, contingent capital arrangements can provide a level of comfort and assurance. The contingent instruments typically provide for the issuance of shares of stock -- often preferred
stock -- upon the occurrence of a pre-specified event at a pre-specified price.

Contingent debt instruments

27. In a typical transaction, an insurer issues notes – usually contingent surplus notes backed by surplus earnings\(^{16}\) -- to an investment trust set up by a financial intermediary. The arrangement gives the insurer the right, under specified circumstances, to issue surplus notes to the trust in exchange for cash or liquid assets. Investors capitalize the trust in the agreed upon amount in return for participating in the benefits of the trust. The trust invests these proceeds in high-grade securities. Contingent surplus notes, paying an agreed upon interest rate, are issued to the investors by the trust. The insurer pays fees to the trust in exchange for the commitment to purchase the insurer’s surplus notes.

\(^{16}\) Surplus is an insurance company’s statutory net worth. Surplus notes are subordinated debt obligations but are considered equity capital for statutory purposes.
An illustration of a contingent capital transaction: The Nationwide Mutual surplus notes deal. In 1995, Nationwide Mutual purchased an option to issue up to $400 million in surplus notes to a guaranteed buyer, that being a Nationwide trust. Investors purchased bonds issued by the trust. Ten-year U.S. Treasury securities fully back these bonds. If Nationwide exercises its option to issue surplus notes to the trust, the collateral backing of Nationwide trust bonds would change from Treasuries to the surplus notes. The trust would sell its holdings of Treasuries in order to purchase the surplus notes from Nationwide. Coupon payments were the same at 9.22%, regardless of whether the Treasuries or the surplus notes back the payments.

The Nationwide Mutual Contingent Surplus Note Transaction

Contract Inception

```
Nationwide

Nationwide Contingent Surplus Note Trust
$400 MM Invested in Treasuries

Investors

$400 MM
Contingent Surplus Notes
Treasury Rate + 220 bps

$400 MM
Contingent Surplus Notes
```

Post-Event

```
Nationwide

Nationwide Contingent Surplus Note Trust

Nationwide Surplus Notes

Investors

Proceeds from sale of Treasuries
Surplus Notes paying 9.22%

Contingent Surplus Notes 9.22%
```
Thus an insurer can tailor the transaction to his specific needs. Investors can earn a higher return by investing in a contingent surplus note trust than by investing directly in the high-grade securities. The trust can pay higher returns as a result of the fees collected on behalf of investors from the insurer. Investors receive periodic payments of principal and interest, even after the insurer suffers a catastrophic loss.

28. There are some drawbacks to arrangements of this sort. State insurance department approval is required for the issuance of surplus notes. The notes subordinate claims to other claims on the insurer and can only be repaid with the consent of the department of insurance.

Contingent equity instruments

29. Another form of contingent financing is a catastrophe equity put. The put gives an insurer the right to sell a specified amount of its stock, most often common stock, to investors at a predetermined price if catastrophe losses surpass a specified trigger. The insurer thus faces counterparty risk and change in control risks in this type of transactions. The counterparty risk can be minimized by collateralization and the change in control risk can be mitigated by the issuance of preference stock instead of common shares.

30. Again there are significant drawbacks to equity puts. Investors face the risk that they will end up owning or controlling shares in an insurer that is no longer viable. The risk can be minimized by allowing for the exercise of the put only within certain loss limits. Moreover, investors also bear the risk of downward price movements in the insurer’s stock.

The transfer of insurance risk: Insurance-linked securities

31. As stated earlier, ILSs transfer risk from the originator of the transaction to capital market investors. While most of ILS activity has involved the transfer of catastrophe risks to the market, other types of risk are also thought to be ripe for securitization. These include personal lines in automobile and homeowners insurance, workers’ compensation.

17 CatEputs are service mark of Aon Corporation.
coverages, political risk exposures and D&O coverages, as well as life and health insurance18.

32. As we saw earlier, several transactions in Europe have involved life insurance premiums, while at least one transaction involved the transfer of credit risks to the capital markets.

18 It is interesting to note that initial investigations into the feasibility of insurance-linked derivatives focused on health insurance securitizations. The Chicago Board of Trade, for instance, first investigated an indexed product based on medical claims reported to ten different Blue Cross/Blue Shield companies. That pursuit was abandoned in favor of catastrophe-linked securities. To date, there have been no known securitizations of health-related exposures. See McDonald, L., Beyond Catastrophes. Best’s Review, April 1999.
An illustration of credit risk transfer: The Gerling Credit transaction. In 1999, Gerling Credit Insurance of Cologne, Germany originated $500 million three-year bond issue linked to credit risk. The transaction was structured to attract investment grade investors. It consisted of an AA-rated tranche priced in Deutschmarks at 45 basis points over Euribor; an A-rated tranche priced at 85 basis points over Euribor; and a BBB-rated tranche at 170 basis points over Euribor. The bonds are linked to an index in order to mitigate moral hazard with respect to the underlying credit risks.

33. Non-insurers have also taken advantage of transferring insurance-linked risks into the capital markets.

The Tokyo Disneyland transaction: The owner and operator of Tokyo Disneyland is Oriental Land Co. (hereinafter “Oriental”), a non-insurer. Tokyo Disneyland is built to withstand a powerful earthquake. But such an earthquake would greatly disrupt its flow of visitors. Accordingly, Oriental issued two separate CAT bonds. A Cayman-incorporated SPV issued $100 million in floating rate notes for a five-year period. Payments are based on parametric triggers related to magnitude, location, and depth of a quake. The notes are BB+ rated by S&P and by Duff & Phelps and pay 3.1% over LIBOR. Oriental also originated a second issue of $100 million in floating rate extendible notes that are A-rated and, when parametrically triggered by an earthquake, provide capital following the business disruption caused by the earthquake.

34. Since the purchase of reinsurance is usually a viable alternative to an insurance-linked securitization, a potential originator must weigh the costs and benefits of either approach. The following are some of the factors to be considered.

Originating an insurance-linked securitization: Factors for consideration

35. A firm can diversify from its reliance on the traditional markets: An insurer, reinsurer, or other firm may find it prudent to diversify its sources of insurance and reinsurance capacity so as not to be fully dependent on the traditional market. ILSs permit firms to alleviate the
impact of capacity constraints within the reinsurance market. Pricing and availability in the traditional reinsurance market are constrained by risk concentrations, by modest capacity based on $186 billion in industry surplus, and by catastrophic events. Reinsurance pricing tends to be cyclical or spiked in nature. Capital markets can provide a stable alternative to reinsurance. It has been argued that capital markets can more readily absorb losses of USD 50-100 billion\(^ {19} \), though that remains untested by the ILSs market. To date, there have been no major events covered by ILSs and investors have yet to react to the experience of losing all or part of the principal amount invested.

36. **A firm can find coverage for hard to place risks:** The traditional reinsurance market does not cover certain risks, such as financial risks (e.g. interest and exchange rate risk). Furthermore, repeated losses (e.g., losses from windstorms in Florida) have led to reinsurance becoming very expensive or totally unavailable. Securitization can provide alternative capacity for the coverage of these difficult to place risks.

37. **ILSs can free up capital for more productive activities:** Capital to satisfy regulatory requirements can be freed up to support additional underwriting or to enhance returns on shareholders’ capital.

38. **ILSs can provide multi-year cover at a fixed price:** Securitizations covering several years at a fixed price are now common, in contrast to reinsurance, which is usually priced annually\(^ {20} \). This has a two-fold benefit:

\(^ {19} \) In 1992 Hurricane Andrew caused USD 19.6 billion of insured losses and could have caused more than USD 50 billion of insured losses had it hit Miami, only a few miles away. Since total reinsurance capacity in 1992 was approximately USD 200 billion, a USD 50 billion loss would have represented 25% of the industry’s capital base at that time. It is also estimated that it would have caused insolvencies of 36% of US property/casualty insurers. In 1994 the Northridge Earthquake and in 1991 Typhoon Mireille resulted in USD 13.5 billion and USD 6.5 billion respectively. Ten insurers were rendered insolvent. This caused a doubling of reinsurance premium rates and a reduction in the catastrophe coverage available to primary insurers. Although reinsurance capacity in 1999 was estimated to be around USD 300 billion, insured values have also been rising due to growing population densities, increased wealth, and increasing concentrations of property in endangered areas. It is thought that a disaster on a similar scale to Hurricane Andrew today would cause considerably more damage and it is feared that the (re)insurance industry would not have the capital to meet another such disaster. The impact of the events of September 11, 2001 on the industry remain to be seen.

\(^ {20} \) Multi-year reinsurance contracts of 2 or 3 years’ duration are becoming more common. Nonetheless, securitizations still have an edge, given that securitized transactions of 7 to 10 years’ duration appear to be feasible.
(i) Reduced exposure to the volatility of traditional reinsurance pricing; and
(ii) Lower the administration costs through amortization and removal of the need to renegotiate a new reinsurance program every year. Fixed cost, such as underwriting fees, can be amortized over multiple years.

39. **ILSs can provide multi-peril, multi-line, multi-party, multi-jurisdiction, and multi-contract coverage:** Several perils from several parties, cutting across multiple lines in a variety of jurisdictions can be covered concurrently e.g., European wind and Japanese typhoons can be combined with U.S., Japanese, and Turkish earthquakes. Several drawbacks to such arrangements however also exist:

(i) The investors may want to be compensated for taking the risk that market conditions might change while they are locked in; and
(ii) The underlying risks may also change over time, hence creating a need for periodic re-assessment or re-calibration.

40. **ILS can reduce disclosure requirements:** Compared with a traditional reinsurance contract, the submission requirements for substantiating a claim in a securitization may be minimal, as in the case of non-indemnity triggers. This may result in cost reductions as well as litigation relief for the originator.

41. **ILSs can reduce credit risk:** The quality of reinsurance security is an important issue in assessing a ceding insurer’s capacity to pay claims. Major catastrophes however exacerbate the risk of insolvency, and thus add to credit risk. A securitization mitigates this risk because the potential claims are fully or partially (depending on the type of trigger) collateralized in the SPE. The money from the sale of the securitized instruments is invested in a fund established exclusively for the payment of claims.

42. **ILSs can reduce the likelihood of future contract disputes and can speed up the claims payments process:** Depending on the trigger, securitized transactions are expected to respond quickly and cleanly to a
loss event. Unlike traditional reinsurance, where contractual disputes and delays in paying claims are not uncommon, ILSs generally have clear triggers.

43. **ILSs add competition and potential cost savings to reinsurance markets:** Costs are a major determining factor in the choice of a securitization over reinsurance. The pricing of the security, together with the transaction costs, needs to be competitive. When reinsurance rates rise, as they did in the early 1990s, interest in securitization increases; when reinsurance rates fall, the associated costs make securitization transactions less competitive.

In 1999, transaction costs for a securitization were estimated to be US$1 million. Fixed costs are high because of the number of parties involved. Costs are also high because each transaction is unique and documentation is not yet standardized, although there is some evidence that more standardization is occurring. Costs have been coming down however.

Certainly, other costs associated with a securitization may be lower than for a reinsurance contract. For example, securitization minimizes the likelihood of disputes, a common and costly aspect of reinsurance; and securitizations are often arranged with an offshore SPE where the cost of regulation is lower. Moreover, capital market investors do not require a stand-by charge such as a reinsurer requires when setting aside capacity. Such charges can be steep even when reserving capacity for extremely low loss probability events.

The structure of a typical insurance-linked securitization: Issuing a catastrophe bond

44. CAT bonds evolved in the mid-1990s to provide additional capacity to insurers and reinsurers. Following Hurricane Andrew in 1992 and the Northridge Earthquake in 1994, property catastrophe reinsurance became scarce and for some insurers unavailable. Pricing skyrocketed when available at all. That experience caused firms to explore alternatives. Based on the experience with asset-backed securitizations, the following figure illustrates what a simple insurance-linked securitization might look like:
45. The fundamentals of CAT bond are simple: A firm transfers a portion of its catastrophic risk to the capital markets by issuing a taxable bond. The return of principal on CAT bonds is tied directly to the occurrence of low probability/high severity catastrophic events such as earthquakes and hurricanes. Some bonds are principal-protected in the sense that the originator may pay back all or part of the principal over a number of years after the catastrophic event. Others put the entire amount of principal at risk.

Depending on the amount of risk transferred, the bonds will either be rated as investment grade or non-investment grade. The rating is established by independent rating agencies that make their own assessment of the amount
of risk that the bonds are subject to. The interest rate on the bonds will depend on the ratings from these rating agencies. Of course, the risks can be sliced into different tranches, each with different terms and with different ratings. The interest rates can range from 2.5% to 15% above LIBOR (currently about 4%) depending on their ratings21.

46. All insurance-linked securitizations face the same issue: the originator wants to purchase loss coverage with the same regulatory, accounting, and tax treatment as reinsurance. Investors however are generally not licensed to sell insurance or reinsurance products and are more interested in purchasing capital market securities. Hence, each securitization must find a means for transforming reinsurance payments into capital market returns. Historically, this transformation has been achieved through use of a Special Purpose Vehicle (“SPV”).

Transformer vehicles: Special purpose vehicles

47. In a typical CAT bond, the originator enters a reinsurance or financial contract with a Special Purpose Vehicle (“SPV”, sometimes also referred to as a Special Purpose Reinsurance Vehicle of “SPRV”)22. The originator pays premiums to the SPV in order to purchase reinsurance protection.

48. The SPV will be a fully-funded, bankruptcy-remote entity, most likely domiciled in a jurisdiction with favorable tax and regulatory environments such as Cayman Islands, Bermuda, and Ireland23. The SPV serves to transform the reinsurance premium into insurance-linked securities sold to investors. While the entire SPV represents the reinsurance security, it is capitalized with only a small amount of common equity, typically $12,000. The common equity is typically not at risk and is often assigned to a charitable trust as one more indicia of separation between originator and SPV.

21 Recent issues have also used Eubor rates as benchmarks.
22 For historical reasons, the “SPE” nomenclature is more common in asset-backed transactions, while insurance-linked securitizations tend to employ the “SPV” or “SPRV” terminology. In practice, there is no difference between the two.
23 It is essential to ensure that the SPV is tax neutral. While in the United States the NAIC has adopted a model law for insurance-linked SPV’s, and at least the States of Illinois and South Carolina have enacted the model law, an on-shore facility simply is not economically feasible under current tax law. Only in an offshore entity can the funds provided by investors be protected from taxation. In the U.S., for instance, thin capitalization rules and other tax rules make tax neutrality unlikely. Such offshore entities usually require offshore Board of Directors meetings.
49. For firms that report according to U.S. Generally Accepted Accounting Principles ("GAAP"), a preference share tranche of at least 3% is often included in order to avoid consolidation under GAAP. The preference shares usually have principal and interest components like the notes. The spread is often higher however given that these shares are often structured to take a hit on a “first dollar loss” basis. In other words, after a qualifying event, preferred shareholders would suffer losses before the investors in the bonds would lose anything. For this reason, preference shares may pay higher coupon rates than the notes and would be sold to specialist investors. The spread is generally 1% to 1.5% wider than for the remainder. The remainder of the SPV’s capitalization consists of capital raised through the issuance of notes.

50. The SPV may have to obtain an insurance license for an additional fee and may be subject to insurance department regulation in its domicile. Whether a license is necessary or not is determined by the contractual arrangements between the originator and the SPV.

51. The type of contract between originator and SPV will be determined by a legal analysis of the risks transferred. Typically, if the transaction is indemnity based, then a traditional reinsurance contract will be entered into between the originator and the SPV. If, on the other hand, the transaction is parametric or index based, the contract will be of a financial nature. Hence, if it is reinsurance, the SPV will generally need to be licensed as a reinsurer in its domicile. No such license will be required when the contract is financial in nature.

52. The SPV exists solely for the purpose of covering the particular catastrophic losses. If the specified event does not occur, the SPV is obligated to pay principal and interest on the bonds. If the specified event occurs, the SPV is obligated to pay losses under the contract and not obligated to pay principal and interest on the bonds, in whole or in part.

53. The SPV’s obligations under the reinsurance or financial contract are collateralized by the proceeds from the sale of CAT bonds to investors. These funds are then invested in a trust and swapped into a floating LIBOR-based rate of return with appeal to investors. The sum of the LIBOR-based rate of return plus reinsurance premiums paid by the
originator to the SPV would in turn be paid to investors as coupon on their investment in the CAT bonds. In the event that the specified catastrophe occurs, funds in the collateral trust would be paid to the originator, thus reducing or eliminating the amount in trust available to be returned to investors at bond maturity.

54. One of the first securitizations of catastrophic risks was originated by USAA in 1997. The format employed by USAA -- commonly referred to as the Residential Re transaction, the registered name of the SPE employed by USAA – has become a model for most CAT bond transactions since. A description of the transaction follows. Since then, U.S. quake risks in California and the Midwest, U.S. wind exposures, Japanese quake and typhoon exposures, French windstorms -- all have been the subject of successful CAT bond issues. As an alternative to the issuance of CAT bonds, some recent transactions have extended the concept to the use options on CAT bonds. The Allianz transaction, described below is an example of such a transaction.

An illustration: The Residential Re transaction. In 1997, USAA originated a securitization of $477 million in CAT bonds, representing 80% of $500 million of its aggregate losses from an East Coast hurricane in excess of $1 billion in one year. One tranche, $164 million in AAA rated notes, was principal-protected at LIBOR plus 273 basis points. The other tranche, $333 million in BB rated notes, placed both principal and interest at risk at LIBOR plus 576 basis points. The cost of the transaction to USAA was the equivalent of a 6% rate-on-line plus transaction fees of another $10 million or so. The transaction is more fully described in the following figure:
An illustration: The Allianz transaction in CAT bond options. In 1999, Allianz, the German insurer, originated a three-year CAT bond option for European wind and hail exposures. Gemini Re, a Cayman SPV, facilitated the transformation of $150 million in losses in excess of DM360 million into a put option for CAT bonds from investors. The investors receive a commitment fee. The trigger is reset annually in order to permit Allianz to maintain a 3.6% loss probability. Accordingly, Allianz manages to retain considerable flexibility in terms of its right, but lack of obligation, to acquire coverage from the option holders.
Such flexibility can be extremely valuable given the high volatility of retrocessional alternatives. Other insurers and reinsurers have engaged in similar “optionable” deals (e.g., Yasuda in 1998 and SOREMA in 1999).

The components of a CAT bond

55. The specific components of the transactions are looked at further:

The contract between the originator and the SPV: The issue of whether a reinsurance contract or a financial contract is appropriate was discussed in paragraph 51. Under the terms of the contract, the originator pays a premium – in the case of a reinsurance contract, the premium is the equivalent to the rate-on-line for a typical reinsurance construct – to the SPV.

The SPV and the investors: The SPV sets up a collateral trust. Funding for the collateral trust comes from the investors in the CAT bonds issued by the SPV. These bonds offer an interest coupon equal to:

1. LIBOR plus or minus the swap spread; plus
2. The premium or rate-on-line paid into the SPV by the originator.

The return of principal to investors under the terms of the notes is usually dependent on the amount of CAT-related obligations owed by the SPV under its contract with the originator. A number of transactions have provided for the repayment of all or part of the principal (with or without interest) even after an SPV has paid out all of its funds to the originator for claims stemming from qualifying event. Not infrequently, such principal repayments are tied to a future commencement date, with payouts ranging over a period of time.

The swap contract: The proceeds from the investors, now placed in the collateral trust, are then invested in high credit quality assets. The specific types of assets that qualify are generally the subject of

24 For a more detailed discussion regarding the various components and participants, see Lehman Brothers, California Earthquake Authority: Review and application of capital market products. May 2001.
25 The swap spread results from swapping the interest payments on the assets in the collateral trust with the swap counterparty.
negotiation between the originator, the placement agent, and the rating agencies. There is inevitably a difference between the market interest rate on these assets over the time of the bond and the spread required by investors when the bond is closed. In order to ensure that investors are paid a market interest rate, a counterparty is engaged to swap the investment earnings on the collateral to LIBOR plus or minus the swap spread. The amount of the spread above or below LIBOR depends on the type of swap, the identity of the counterparty, and the credit quality and investment yield earned on the assets.

56. There are at least two types of swap arrangements that are in use in these types of transactions. The originator generally makes the choice, depending on his risk preferences.

(i) A basis swap converts the interest earned on the collateral investments to a LIBOR or EUBOR basis, but the originator retains the credit risk of the underlying assets as well as the risk of assets being liquidated at a value below par (known as “collateral liquidation/spread risk”).

(ii) A total return swap also converts the interest earned to a LIBOR or EUBOR basis, but the swap counterparty assumes the credit risk and the liquidation/spread risk of the underlying assets. In essence, the swap counterparty guarantees both the LIBOR or EUBOR based interest rate and the full return of principal. Thus, principal default would occur only if both the counterparty and the collateral defaulted.

Other transformer vehicles: Protected cells

57. Instead of an SPV, an originator can use a protected cell structure to accomplish insurance-linked securitization. Though statutory in nature, a protected cell does not give rise to a separate corporate entity. Hence there are no capital requirements. Instead, an existing insurer or reinsurer contributes assets to a protected cell within its existing corporate structure and, by law, the cell segregates these assets from the remaining general assets of the company. The assets within the cell are only available to creditors of the protected cell. Other creditors must
assert their claims against the remaining general assets of the firm, but not against the assets within the protected cell.

58. In the United States, the protected cell is regulated separately for solvency and can only operate with the prior approval of a plan of operation by the insurance regulator. Because there is no separate corporate entity however, the protected cell is thought to overcome the tax drawbacks of a domestic securitization. The entire tax status and bankruptcy-remoteness of protected cells remains untested and uncertain in the United States however.

59. Other jurisdictions have also adopted the protected cell approach. Guernsey was in fact the first jurisdiction to permit protected cell companies. In Guernsey, a captive insurer can effect a securitization through the use of a protected cell for instance. Royal Bank of Scotland, for example, has applied a protected cell approach both to the conversion of insurance into ISDA (“International Swaps and Derivatives Association”) products and to a synthetic securitization of a portfolio of derivative products\(^\text{26}\).

60. As a further alternative to the use of SPV’s or protected cells in insurance-linked securitizations, the Chicago-based INEX exchange offers special purpose limited syndicates (“SPLSs”). The INEX Board of Trustees and the Illinois Department of Insurance must approve each transaction and each exercises oversight over INEX transactions. An insurer can launch a securitization by transferring the particular risks to a full member INEX syndicate. That syndicate then retrocedes the risks to an SPLS, which in turn sets up a collateral trust account to secure its obligations.

61. The minimum capitalization of the SPLS is $30,000. While subject to U.S. federal and state income taxes, the SPLS is not subject to premium taxes. Under regulations issued by the Illinois Department of Insurance, investors are not in the business of insurance solely for investing in this type of a transaction. The trust must be administered in Illinois and all assets must be located in Illinois.

In 2000, Vesta Fire Insurance Corp. securitized a $50 million layer of property loss exposures. The following is a description of the transaction:
An INEX illustration: The Vesta transaction: In March of 2000, the Inex Insurance Exchange announced the formation of Vesta Capital Insurance Syndicate, Inc. (hereinafter “Vesta Capital”), a new underwriting syndicate member owned by Vesta Insurance Group (hereinafter “Vesta”). The INEX Board of Trustees and the Illinois Department of Insurance had approved Vesta Capital for membership. Vesta Capital was capitalized at $30 million. In July of 2000, Vesta Fire Insurance Company, a wholly-owned subsidiary of Vesta Insurance Group, completed a $50 million securitization of property loss exposures to Northeastern United States hurricane exposures and Hawaiian storms. A SPLS named NeHi Re facilitated the transaction, which involved $8.5 million in equity investments and $41.5 million in ILSs. NeHi Re’s obligations are fully secured by a fully funded trust agreement. Payments are triggered by computer modeling done by Applied Insurance Research and risks and attachment points are recalculated each year of a three-year term.

Loss triggers in a CAT bond structure
62. The trigger is probably the single most significant design feature of a CAT bond. It determines how the originator of the transaction recovers its losses after a catastrophic event. While a reinsurance contract generally indemnifies a cedent for actual losses, CAT bonds can be structured with non-indemnity types of triggers such as parametric or industry-wide loss triggers.

63. In designing a particular trigger for an intended transaction, an originator must consider two types of risks:

(i) “Tail risk” arises because claims can continue to develop and increase above the amount paid and reserved at the end of a loss development period. Investors usually limit that loss development period to no more than 18 months by providing for a commutation of all losses thereafter to the originator. The Northridge earthquake provides an excellent example of how significant tail risk can be. In February of 1994 for instance, industry losses from the quake were estimated at $7.3 billion. By July of 1995, the final estimate had reached $12.5 billion.

(ii) “Basis risk” is associated with differences between the originator’s actual losses and the amount of losses indicated by the trigger. This type of risk exists only in transactions that apply a non-indemnity type of trigger.

The two types of risk can of course work either for or against an originator.

64. There are methods for an originator to mitigate, but not eliminate, tail risk and basis risk. To mitigate tail risk, an originator can proceed in one of two ways:

(i) The firm can enter into a reinsurance contract of unlimited duration with a reinsurer. Most likely, that reinsurer would then wish transform that risk by securitizing all or a portion thereof with an indemnity-or an index-triggered securitization.
(ii) Alternatively, an originator can enter into a specific tail risk reinsurance contract with an SPV in conjunction with its own indemnity-triggered securitization.

65. To mitigate basis risk, an originator can either:

(i) Purchase indemnity reinsurance from a transformer or a fronting reinsurer, which then proceeds with an index-triggered securitization of the associated risk; or

(ii) Proceed with a direct index securitization with additional reinsurance for basis risk.

Regardless of the type of trigger, each and every securitization involves a further type of risk, namely “model risk”. Modeling methodologies and technologies of an extremely complex nature are an essential part of each of these transactions. Hence, the assumptions regarding the model’s choice of variables for specification, the sensitivities of these variables to various assumed conditions, and the existing correlations among these variables, are of vital importance to matching the model with the reality of catastrophic loss for a particular originator. One might add that thoughtful, careful, and thorough modeling under a wide variety of conditions and assumptions is also an excellent way to minimize excessive basis risk.

Indemnity triggers

66. An “indemnity” trigger links recovery to the actual loss incurred by the originator. The bond’s attachment, defined as the point where insured losses exceed an amount certain, determines when the principal invested begins to be tapped. The exhaustion point is reached when the principal has been fully tapped. The entire process is modeled of course so as to generate investor interest. Hence, an indemnity trigger creates model risk and tail risk but no basis risk. As will be seen shortly, indemnity triggers, while seemingly simple and attractive from an originator’s point of view, actually also entail an additional risk: an indemnity trigger adds a potential liability risk because of certain disclosure requirements.

67. A further drawback to an indemnity trigger is the potential for adverse selection. Since the particular risk zones that are part of the
securitization are typically selected and agreed upon in advance, while of course an ongoing flow of risks in and out of the zones in to the normal course of business continues, investors tend to become concerned about the quality of the business flow. Moreover, investors tend to have concerns regarding the claims settlement process. Indeed, with an indemnity trigger, incentives favoring moral hazard or sloppy claims handling might in fact created. Claims can be inflated or at least not carefully scrutinized when losses reach into the layer covered by the securities. Hence, it is common to find investors demanding shared participation by the originator in the transaction so as to align the interests of the two parties. 10% plus from attachment to exhaustion usually satisfies investors’ concerns.

LET’S PROVIDE A DETAILED DESCRIPTION OF AN INDEMNITY TRIGGER IN A SPECIFIC TRANSACTION

Index triggers

68. Instead of an indemnity trigger, a securitization can be structured with an “index” trigger. The trigger links the monies recovered by an originator from investors after a catastrophe to an insurance index (e.g., the Property Claims Service index, the Guy Carpenter index). Complex modeling is used to establish a significant correlation between the behavior of the index and losses that can be expected from the originator’s portfolio of risks after a specified event. The idea is establish a match between the actual losses likely to be incurred by the originator after the event, the amount to be recovered from investors, and the distribution of losses by firms that make up the index. In order to achieve such a match, the originator’s distribution of business must bear some similarity to the distribution of business for the firms within the index. Index triggers generate both tail risk and basis risk.

69. Lloyd’s syndicate 33, Hiscox, has recently securitized a $33 million bond via an SPRV called St. Agatha Re. The bond would cover losses from earthquake in either California or the New Madrid region. The trigger consists of two parts: firstly a low level parametric trigger, and secondly a modeled trigger. The Qualifying Event trigger is parametric but the purpose of this is merely to set a realistic trigger for a loss
calculation, i.e. to eliminate the numerous small earth tremors but to set the level well below the magnitude where significant losses occur. It is only earthquakes of magnitudes above 7 where losses are likely to occur to the bond, so the parametric trigger has no influence on the expected loss of the bond. If the event were deemed to qualify via the parametric trigger, the modeling service, RMS, would then use the fixed model to calculate estimated insured losses for the notional industry portfolio. If the Index Loss calculated exceeded certain dollar amounts then a loss payment would be triggered. The earthquake exposures of Hiscox Syndicate 33 are only relevant to the extent that the syndicate must have experienced losses of at least the amount paid under the reinsurance agreement with St Agatha Re.

Parametric triggers

70. A “parametric” trigger links recovery to the physical characteristics of the event that causes the losses (e.g., hurricane intensity, earthquake magnitude). Losses from the event may or may not match actual losses incurred but, since event parameters are quickly available, parametric triggers generate basis risk but no tail risk. Parametric structures are unlike other triggers. Clearly they add an increased risk of actual losses not matching recoveries. Basis risk tends to go up in these types of transactions therefore. Moreover, the modeling is very different because the probabilistic loss distributions are based exclusively on the physical parameters of the event. Whether quality underwriting or efficient claims management occurs after the event is irrelevant. Hence, unlike in the case of indemnity or index triggers, underwriting or claims practices need not be disclosed to investors. Lower disclosure needs also lessen the likelihood of potential litigation with investors. By the same token, rating agencies and investors scrutiny of the transaction is lower. Parameters tend to be more transparent and objective than indemnity or index calibrations. Hence, investors generally prefer this type of structure. This preference usually is reflected in slightly lower yields being needed to make the deal work.

71. In the Tokyo Disneyland transaction (discussed in paragraph 33), the payout is dependent solely upon the magnitude, location and depth of an earthquake, not on actual property damage. There are in fact two transactions, referred to as Concentric, Ltd. and Circle Maihama, Ltd.
Concentric, Ltd. provides Oriental Land (the owner of Tokyo Disneyland) with earthquake-contingent capital, while Circle Maihama, Ltd. provides it with earthquake-contingent financing. In both cases, there are three rings around a central point at the center of Tokyo Disneyland. The Inner Circle has a radius of 10km, the Inner Ring a radius of 50km, and the Outer Ring a radius of 75km. In order to trigger coverage, an earthquake with an epicenter within the Outer Ring and with a depth of less than or equal to 101km must occur. In the case of Circle Maihama, Ltd. the contingent financing is triggered if the magnitude of the earthquake is at least 6.5, 7.2 or 7.6 on the Japanese Meteorological Agency (JMA) scale for the inner circle, inner ring, and outer ring respectively. In the case of Concentric, Ltd. the principal payout is on a sliding scale depending on the JMA magnitude, and in which radius the epicenter lies. For the inner circle, the payout ranges from 25% at magnitude 6.5 to 100% at 7.5, for the inner ring it is 25% at 7.1 up to 100% at 7.7, while for the outer ring it is 25% at 7.6 up to 100% at 7.9.

Modeled loss triggers

72. A “modeled loss” trigger resembles both an index and a parametric trigger. The originating firm’s portfolio is stored in a modeling firm’s risk model. When the event occurs, the modeling firm calculates the modeled loss on the portfolio by using the physical parameters of the event. Hence, location and magnitude, for instance, determine the model’s payout.

An illustration of a modeled trigger transaction: The St. Agatha Re transaction. Hiscox Syndicate 33, one of the larger Lloyd’s syndicates, recently entered into a catastrophe bond transaction designed to protect it against a major earthquake either in California or in the New Madrid region of the US. The bond secures up to US$33 million of property losses excluding liability over three years until April 15, 2005. The bonds were priced at 675 basis points over LIBOR and rated BB+ by Standard & Poor’s. The deal uses a modeled loss index as the trigger, and the index is based on two industry models run by Risk Management Solutions (RMS) that measure insurance industry exposure in the two zones. The Qualifying Event trigger is parametric but the purpose of this is merely to set a realistic trigger for a loss calculation, i.e. to eliminate the numerous small earth tremors but
to set the level well below the magnitude where significant losses occur. It is only earthquakes of magnitudes above 7 where losses are likely to occur to the bond. So the parametric element of the trigger has no influence on the expected loss of the bond. If the event were deemed to qualify RMS would then use the fixed model to calculate estimated insured losses for the notional industry portfolio. If the Index Loss calculated exceeded certain dollar amounts then a loss payment would be triggered. The loss payment amount is on a predetermined sliding scale based on the Index Loss. The earthquake exposures of Hiscox Syndicate 33 are only relevant to the extent that the syndicate must have experienced losses of at least the amount paid under the reinsurance agreement with St Agatha Re.

73. While indemnity triggers provide the closest match between an originator’s risk and its capital markets protection, non-indemnity triggers allow an originator to avoid detailed information disclosure in an offering memorandum. Because of heightened concern pertaining to the potential legal liability associated with erroneous disclosures in such a memorandum, some originators opt for a hybrid approach to securitizations. An originator enters into a traditional indemnity-triggered agreement with a transformer vehicle, which in turn transfers the risk to capital market investors by using an index-triggered securitization. The use of the transformer adds 1% to 1.5% to the cost of the transaction. The recent Western Capital transaction provides an example of this type of approach.
An illustration of a transformer: The Western Capital transaction. The California Earthquake Authority ("CEA") entered into a reinsurance contract with Swiss Re for $100 million in CAT coverage. Swiss Re then entered into a financial contract with a Bermudan SPV, Western Capital Limited. Investors were given LIBOR plus 5.1% notes. A 3% tranche of preference shares was priced at LIBOR plus 6.35%. The financial contract is tied to an industry-wide trigger of California earthquake property losses, once the losses exceed a certain level. Swiss Re retained the basis risk between the indemnity-based reinsurance contract and the index-based securitization. The CEA thus managed to avoid detailed public disclosures regarding its operations. Moreover, as a quasi-public body, the CEA managed to avoid any direct links between itself and an offshore entity such as the SPV.

The role of the modeling agencies in the securitization process

74. Independent modeling is a crucial component to providing investors with confidence in the level of risk involved in the investment. Modeling firms provide an analysis of the risk pertaining to the securitization. A number of companies are recognized for their expertise in modeling. These include Risk Management Services Inc., EQE International Ltd., and Applied Insurance Research, Inc.

75. From a practical standpoint, it is extremely helpful to an originator to know that the major rating agencies have done extensive examinations and testing of these firms’ models, and hence, a transaction can be brought to a successful closing more efficiently when one or more of these firms’ models is employed.
The risk analysis results also become a major component of the analysis performed by the rating agencies. Moreover, the modeling firm also provides a number of the key ingredients for the ultimate offering circular for the transaction. Of utmost significance is the loss-exceedance curve developed by the modeling firm. The following is an example of loss exceedance curve developed for the Residential Re transaction[^27]:

[^27]: See also Laurenzano, V. L. and Latza, W. D., Securitization of insurance risk. Insurance Securitization Educational Program of the National Association of Insurance Commissioners, San Francisco, December 4, 1999.
The loss exceedance curve is the result of repeated simulations of catastrophic events on the insurer’s book of business. It tracks the cumulative probabilities of losing various amounts of insured losses from catastrophic events for this particular book of business. It also provides the benchmarks that rating agencies and investors will wish to examine:

(i) The frequency loss, reflected by the exceedance probability at the point of attachment in the reinsurance contract, provides an answer to the question: “What is the likelihood that the investors will lose any money?”

(ii) The depletion loss, reflected by the exceedance probability at the point of exhaustion in the reinsurance contract, provides an answer to the question: “What is the likelihood that the investors will lose everything?”

(iii) The expected loss, reflected by the product of frequency and severity along the exceedance curve,
provides an answer to the question: “How much is an investor expected to lose on average?”

An illustration of the use of modeling. Assume for example that the originator of a securitization is faced with the loss exceedance curve described in Figure ___. Assume that he wishes to purchase reinsurance for a hurricane event for a single year, with a 20% co-insurance clause. Assume further that the originator is satisfied with a BB rating, that the one-year frequency loss has a 1% probability, the one-year depletion loss has a 0.30% probability, and the one-year expected loss has a probability of 0.60%. Then the reinsurance contract must provide coverage for 80% of $500 million of aggregate insured losses (subtract $1.0 billion from $1.5 billion along the Loss axis) from a single hurricane in one year. The 1% exceedance probability at the attachment point of $1 billion means coverage for a 1 in 100 year event. The 0.30% loss probability at depletion means that investors have 1 in 333 chance of losing all their investment and a 1 in 100 chance of losing some of their investment. The average aggregate expected loss for investors is $2.4 million (i.e., $0.006 \times (0.8 \times $500\text{ million}) = $2.4\text{ million}).

28 Taken from Laurenzano and Latza, ibid., pages 18-20.
The role of the rating agencies in the securitization process

78. While a number of different rating agencies rate ILSs, a rating from at least one of either Moody’s or Standard & Poor’s is critical. A second rating will still be necessary but a rating agency such as Duff & Phelps/Fitch IBCA can be a satisfactory alternative. CAT bonds are subjected to the same rigorous ratings methodology and stress testing as traditional fixed income securities. The rating process will include an extensive analysis of potential default and recovery rates. Most CAT bonds have been rated in the BB range, though some have been B, BBB, and higher.

79. The rating methodology and testing tend to focus on matters such as (1) the justification for the historical sampling period used and the sensitivity of results to using other assumptions; (2) the reliability of the historical data sets; (3) the sensitivity of results to varying event parameters. The rating firms will also consider (4) the terms and structure of the transaction; (5) the attachment points, the expected loss, and the confidence intervals around mean probabilities; (6) if an indemnity transaction, the underwriting guidelines and historical loss experience, claims handling practices, and reserving practices; (7) the bankruptcy remote status of the SPV; (8) the investors’ priority over other creditors of the SPV; (9) the credit rating of the counterparty to the swap; and (10) the credit quality of the collateral.

80. Before reaching a final rating, the rating firm will also make a comparison of the security’s risk characteristics with those of other rated bonds. In this respect, the attachment probability of a CAT bond is treated similarly to credit default probability of an ordinary bond and the expected loss of the CAT bond is similar to the assumptions regarding the recovery amounts of an ordinary bond.

81. Rating agencies differ in their approach to rating CAT bonds:

Standard & Poor’s focus is on attachment probability. The firm puts a BBB+ ceiling on CAT bond ratings.

Moody’s focus is on the expected loss. While it does not impose a specific ceiling on CAT bond ratings, the firm does
perform extensive sensitivity analysis with its own proprietary models.

Fitch’s focus combines both the attachment probability and the expected loss. The firm requires 95% and 99% confidence intervals for both parameters from the modeling firm.

82. From a rating standpoint, a securitization is most feasible when the attachment point is in the supercat or top layers of exposure. The supercat layer with expected losses of 0.25% or less will usually attract an investment grade rating. The top layer, ranging from an expected loss of greater than 0.25% to 3.00%, will qualify for non-investment grades ranging from BBB to B. Working layers with an expected loss
greater than 3.00% generally are too risky for capital markets investors. These markets more closely resemble equity markets but with few investors and practically no liquidity.

83. Second event securitizations are also feasible. These provide protection for future events after a single event, or series of events, exhausts the originator to a predetermined level. Typically, coverage is for events with a 1 in 200 or a 1 in 250 year probability. Once triggered, this structure provides protection attaching above the remaining and reinstated layers for any subsequent events. These bonds are attractive to investment grade investors since they cannot experience a loss until after a significant event has already occurred. Market capacity is about $800 million and an equivalent rate-on-line is about 1.5% to 2.0%.

The role of other participants in the securitization process

84. Compared to traditional reinsurance, a CAT bond securitization requires a significantly greater number of specialized professionals. A variety of different professionals are engaged largely to provide confidence and comfort to investors. The product of their efforts is a well-documented offering circular which details the risks and the operating mechanics of the securitization. Key service providers include:

Legal counsel: In the typical transaction, the underwriter of the securities and the originator will retain separate legal counsel. The originator’s counsel however generally also represents the SPV.

Indenture Trustee: The trustee performs his obligations on behalf of the SPV, including the payment of principal and interest, the registration of the securities, and the maintenance of the collateral accounts.

Administrator: The administrator acts on behalf of the SPV and facilitates general banking services, record keeping, filings and correspondence with regulators, and correspondence with investors relating to the securities or the swap.

29 See Lehman Brothers, ibid.
Verification Agent: The agent verifies the trigger and calculates the resulting principal reductions on the securities.

Loss reserve specialist: the specialist performs an independent actuarial analysis whenever an index or an indemnity trigger is part of the transaction. He verifies loss reserves over the term of the securitization and provides a commutation calculation at the end of the extension period.

Fiscal Agent: The agent is responsible for the preference share tranche, including the book-entry system, the payment of dividends, and the redemption of the shares.

85. An illustration of transaction costs related to the various parties involved in a transaction follows\(^30\). The illustration is typical of a $100 million securitization of CAT risks:

<table>
<thead>
<tr>
<th>Securitization expenses</th>
<th>Upfront costs</th>
<th>Ongoing costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling costs</td>
<td>$300,000</td>
<td></td>
</tr>
<tr>
<td>SPV administrator</td>
<td>$ 20,000</td>
<td>$ 30,000</td>
</tr>
<tr>
<td>Claims review</td>
<td>$ 50,000</td>
<td></td>
</tr>
<tr>
<td>Loss reserve specialist</td>
<td>$ 20,000</td>
<td></td>
</tr>
<tr>
<td>Rating agencies</td>
<td>$150,000</td>
<td></td>
</tr>
<tr>
<td>Swap costs</td>
<td></td>
<td>$ 50,000</td>
</tr>
<tr>
<td>Legal counsel (u/w)</td>
<td>$400,000</td>
<td></td>
</tr>
<tr>
<td>Legal counsel (f/a)</td>
<td>$ 5,000</td>
<td></td>
</tr>
<tr>
<td>Fiscal agent</td>
<td>$ 10,000</td>
<td>$ 20,000</td>
</tr>
<tr>
<td>Indenture trustee</td>
<td>$ 40,000</td>
<td>$ 25,000</td>
</tr>
<tr>
<td>Legal counsel (i/t)</td>
<td>$ 15,000</td>
<td></td>
</tr>
<tr>
<td>Legal counsel (tax)</td>
<td>$ 25,000</td>
<td></td>
</tr>
<tr>
<td>Fees</td>
<td>$ 50,000</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$ 50,000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$1.1 million approx.</td>
<td>$150k approx.</td>
</tr>
</tbody>
</table>

Capital markets distribution of CAT bonds

\(^{30}\) See Lehman Brothers, ibid.
The investor base for CAT bonds continues to expand. This is particularly true for money managers, who are thought to be the most stable class of investors. The following classes of investors are frequent participants in these transactions:

Money managers: These are the biggest players and include mutual and pension funds. They tend to be “value-added” investors. Liquidity is important to them, especially when participating in multi-year deals. Some are motivated purely by the spread, while others look for the portfolio effect.

Hedge funds: Financing is a major consideration for these investors. They were larger players prior to the 1998 crisis precipitated by the implosion of Long Term Capital Management but can still be relied on for at least $20 million per deal. Liquidity is the prime consideration.

International banks: As a group, they generally invest $25 to $40 million per deal. They are motivated purely by the floating rate spread. Historically, they favor one-year deals but have recently also participated in multi-year transactions.

Dedicated CAT money: This represents a fast-growing category of participants. Generally, these investors prefer single peril securities. They are also good candidates for common and preferred equity tranches.

Life insurers: They are motivated purely by the spread and generally prefer multi-peril deals. Unlike traders, they buy and hold long-term and look for a “liquidity premium”. Because their investment portfolio is subject to regulatory oversight, the identity and quality of the rating is critical.

Reinsurers: CAT bonds offer lower rated reinsurers the ability to participate in risk diversifications where they were otherwise previously excluded.
87. The distribution of investors for catastrophe securitizations underwritten by Goldman Sachs, for instance, is as follows:31:

The Distribution of Investors in ILSs.

88. Recent problems in the credit markets have also worked in favor of a broader range of distribution opportunities, particularly since CAT instruments are considered to be uncorrelated to other market risks. Other reasons include the following:

Outstanding historical performance: The performance of CAT has matched the expectations and, to date, investors have not experienced any losses. Most offerings have been for risks with a 1% probability of loss or less.

Low volatility of spreads: Risk spreads relative to other assets have remained stable.

More issuance of notes with longer maturities: Early ILSs, like Residential Re, were one-year notes. More recent issues have 3 to 5

31 See Goldman Sachs, Presentation to the California Earthquake Authority, Property Catastrophe Securitization, January 2002.
year maturities and there is talk of 7 to 10 year deals. Hence, originators can expect expense savings and investors can achieve lock-ins of attractive spreads for longer periods of time.

More securitizations allow for greater diversification: Investors can now assemble a diverse portfolio of uncorrelated catastrophe risks without a disproportionate exposure to a single risk.

Attractive returns relative to similarly rated corporate securities: CAT bonds have traded at significantly wider spreads than corporate bonds.

CAT Bond Spreads vs. Corporate Bond Spreads

![CAT Bond versus Corporate Bond Spreads to LIBOR](image)

89. Liquidity is also an important consideration for investors. Both the supply and the demand for investment grade securities are significantly larger than for below investment securities. Only a limited number of investors are permitted to invest in below investment grade securities. Hence, investment grade bonds have a broader market and more favorable rates, but are generally only available at the supercat and top layers or as second event coverage.

90. The current market capacity constraints for CAT bonds are about $400 million for non-investment grade bonds (0.5% to 1.5% expected loss range) with terms up to about 5 years. Their equivalent rate-on-line (ratio of net cost to coverage limit) is in the 4.0% to 6.0% range in the current market. For investment grade securities (where the expected loss
is less than 0.40%), capacity is about $600 million with terms up to 5 years and with an equivalent rate-on-line of 2.0% to 4.0% depending on the investment grade. The largest catastrophe risk transaction in the capital markets was the June 1998 Residential Reinsurance II transaction at $450 million.

The pricing of insurance-linked securities

91. The offering spread is generally determined after a pre-pricing period in which potential investors have an opportunity to evaluate preliminary offering documents. Road shows, investor meetings, and “price talk” stimulate an assessment of what the market clearing level price might be. Factors such as similar transactions in the past, modeling results, the existing “risk bucket”, reinsurance rates, and theoretical price levels form the basis for the ultimate pricing of the securities. The typical timeline for taking a deal to market is about 12 weeks.

92. Risk may also be transferred to the capital markets by using other financial instruments such as options, futures, and swaps. Exchange-traded options are standardized and, in the past, included the Chicago Board of Trade catastrophe options based on the PCS catastrophe loss indices. Over-the-counter options can be tailored to meet the requirements of the parties.

Accounting issues pertaining to ILSs.

93. The accounting for various forms of ILSs is dependent upon the structure of the ILS, and may differ between securities that are indemnity triggered and those using non-indemnity triggers. In addition, the accounting for derivative type ILSs may also be affected by the degree to which they effectively hedge an insurer’s exposures. The accounting is also, in general, affected by whether the coverage transfers underwriting risk.

94. At least three accounting systems have promulgated rules that would cover ILSs: US Generally Accepted Accounting Principles (US GAAP), US Statutory Accounting Principles (US SAP) and International Accounting Standards (IAS).
95. US GAAP, in FAS113, and US SAP, in SSAP62, require that transactions that receive reinsurance accounting treatment must transfer uncertainty in the form of both the net cash flows from premiums and claims (“underwriting risk”) and the timing of those cash flows (“timing risk”).

96. The disclosure requirements of International Accounting Standard (IAS) 32 “Financial Instruments: Disclosure and Presentation” apply in respect of financial reinsurances that principally transfer financial risk: specifically, there are disclosures regarding price risk, credit risk, liquidity risk and cash flow risk.

97. The International Accounting Standards Board has published a paper in the form of a draft statement of principles on insurance. This “DSOP” on insurance would define an insurance contract as one where there must be “a reasonable possibility that an event affecting the policyholder or other beneficiary will cause a significant change in the present value of the insurer’s net cash flows arising from the contract.”

98. It seems likely therefore that the basic requirements for uncertainty inherent in both US GAAP and US SAP will be followed by the IASB, although there may be some differences. As such, an indemnity based ILS transaction through an SPRV will likely receive underwriting treatment as ceded reinsurance under these three regimes.

99. In addition, a fully funded indemnity based ILS issued through a protected cell company will also receive full underwriting treatment under US SAP [SSAP74].

100. Under the IAS DSOP, “Catastrophe bonds” would be regarded as insurance contracts [para 1.38 (j)], and therefore a direct issuance of a catastrophe bond by an insurer would presumably be treated in an equivalent manner as ceded reinsurance. More controversially however, the investor in a catastrophe bond would probably be required to treat the catastrophe bond as an insurance contract: the DSOP states that “Any entity that issues an insurance contract (is) an insurer whether or not the issuer is regarded as an insurer for legal or supervisory purposes”. The purchaser of a catastrophe bond is presumably the entity exposed to “identified risk of loss from events occurring … within a specified period”. There is a concern that this current version of the
DSOP would have the effect of discouraging investment in catastrophe bonds, as many potential purchasers need to be able to account for catastrophe bonds as investments.

101. Within the US, both the NAIC’s Special Purpose Reinsurance Vehicle Model Act and the Protected Cell Company Model Act address the status of the purchaser of an insurance securitization. Securitizations are not deemed to be insurance or reinsurance contracts and therefore those persons involved in an insurance securitization will not be deemed to be conducting potentially unlicensed insurance or reinsurance business solely by virtue of their involvement with an insurance securitization as investors. As such, investments in securitizations are treated as investments as opposed to assumed reinsurance.

102. Non-indemnity transactions, whether index based or modeled triggered, have less certain accounting treatment. Under US SAP, a recent interpretation has indicated that a modeled trigger transaction would not qualify for pure reinsurance treatment but would be accounted under the forthcoming rules for insurance securitizations.

103. Non-indemnity transactions will likely be treated as derivatives. US GAAP, US SAP and IAS have standards that cover derivatives.

104. Under US GAAP, FAS113 requires that all derivatives be valued in the balance sheet at fair value, while changes in derivative value are recognized in income unless the derivative qualifies as a hedge. While traditional life and property and casualty insurance contracts are excluded from the scope of the statement, an index linked insurance derivative would likely be included due to the existence of basis risk. Under FAS 133 Fair Value hedging applies to recognized assets and liabilities and unrecognized firm commitments, which would include a written insurance contract which the insurance derivative was intended to hedge. In these circumstances, the change in derivative fair value goes to current income and the change in fair value of hedged item goes to current income to the extent the derivative is effective, with the net effect that any ineffectiveness is recognized in earnings currently.

105. Under US SAP, SSAP86 the accounting for a highly effective hedge follows the accounting for the underlying asset or liability. Highly
effective has the same meaning as in FAS 80 – either an 80%/125% correlation rule or an R-squared of 0.80 or higher using regression.

106. There are, however, problems with how one measures effectiveness. In particular, with catastrophic coverages: what is the correlation or regression analysis value of a 0:0 event – that is, if the catastrophe doesn’t occur, was the hedge effective or not? As a result, the American Academy of Actuaries, and the NAIC’s Casualty Actuarial Task Force, do not believe that either the 80%:125% rule or a regression analysis rule work for derivatives designed to respond to low frequency high severity events. They recommend a two stage test based on Tail Value At Risk, and standard deviation measures. This issue has not been finalized as yet, as the NAIC’s Insurance Securitization Working Group has adopted the 80%/125% rule and hence the difference will need to be worked out in the final formulation of US Statutory Accounting Principles for securitization transactions. One possibility may be to differentiate the hedge effectiveness tests for high severity low frequency events from the rest.

107. The NAIC’s Insurance Securitization working group has proposed accounting treatments for index linked covers: if effective, new detail lines will be added to the income statement “Premium Ceded – Derivative” and “Losses Incurred – Derivative”, and an “Insurance Derivative recoverable” line will be added to the balance sheet. The derivative will therefore receive underwriting treatment. However, if the hedge is ineffective, changes in fair value would be accounted as unrealized gains and losses through surplus.

108. The working group also proposes asymmetrical treatment of over and under recoveries that arise as a result of basis risk. Under recoveries would effectively remain in underwriting, but over recoveries would be accounted for in investment income. However, the actuarial profession disagrees with this approach and believes that over recoveries should be accounted for in underwriting. No final decision has yet been made by the NAIC on this issue.

109. The NAIC has issued a Statement of Statutory Accounting Principles relating to indemnity covers in Protected Cells [SSAP 74]: The cost of purchasing coverage from a Protected Cell (the equivalent of a reinsurance premium in a normal insurance transaction) is deducted from written and earned premium. Accordingly, the coverage receives
full underwriting accounting treatment in the accounts of the ceding insurer. A purchase of a fully funded indemnity triggered security from a protected cell by an insurer is accounted for as an investment under US SAP. The income does not increase premiums written and earned. As such, there is an asymmetry between cedant and assuming entity. This asymmetry is deliberate, in that the intention is not to force the purchaser of an ILS to account for it as an insurance transaction.

CATASTROPHE RISK SWAPS

110. A catastrophe risk swap entails an exchange of exposures with a counterparty. The objective of swapping is to either reduce the aggregate of a particular kind of CAT risk within a portfolio of insured risks or to diversify by adding CAT risks. Thus, a typical counterparty would have non-correlating exposures available for swapping.

111. A typical party interested in a swap would be one with excessive exposures to a single kind of CAT risk, one that might have excess capital or one wishing to include foreign CAT risks in its portfolio of risks.

112. A number of swap deals have been transacted: Tokio Marine exchange earthquake exposures with State Farm hurricane exposures in a $200 million transaction, and Renaissance Re has done two $50 million swaps with Japanese counterparties. In addition, Mitsui and Swiss Re entered into a $33.8 million agreement to exchange premium for a traditional catastrophe cover via an ISDA (“International Swap and Derivatives Association, Inc.”) format. There are also some pending swaps of catastrophic life insurance exposures.

An illustration of a CAT swap: The Tokio Marine deal. Tokio Marine is the largest non-life insurer in Japan, and hence has huge Japanese earthquake and typhoon exposures. In order to diversify these risks, the firm engaged in a CAT swap with Swiss Re through Tokio Millenium Re. The swap is an aggregate of three separate $150 million exchanges of catastrophe risks. Japanese earthquake risk is swapped against California earthquake risk; Japanese typhoon risk is swapped against Florida hurricane risk; and Japanese typhoon risk is also swapped...
against French windstorm risk. Each swap has different trigger points based on indemnity levels, reference portfolios, and industry indices. The entire transaction of $450 million in CAT risks is renewable annually.

113. A swap can be performed in two different ways:

(i) Trade the risk on a pure technical basis by exchanging layers which have equivalent attachment points and expected loss probabilities; or

(ii) Trade the risk on a fair market value basis by exchanging layers of equivalent market clearing rates on line. For example, a 2% risk in the United States may be more expensive in the market place than a 2% risk in Japan or Europe, and therefore the market rate rather than the frequency of loss is used to trade the risks.

114. There are two types of CAT risk swap structures:

(i) Back-to-back reinsurance contracts; and
(ii) ISDA swaps.

115. Under a back-to-back reinsurance structure, each company simply issues mirror reinsurance contracts to the other and offsets a notional (nominal) premium. Typically, the parties exchange a pre-defined risk with little or no initial exchange of premium. Premium payments are made only if the risk exposures do not match. The contract can be set up on an annual or multiple year basis.

116. ISDA swaps have potential fiscal and accounting problems when foreign companies are involved. However, details at this juncture are unclear. It is expected that any development will be in the future.

EXCHANGE-TRADED DERIVATIVES

117. Insurers that want protection against catastrophic losses can buy exchange-traded catastrophe options and futures. A derivative is an instrument whose value is derived from another financial instrument or
product. The most common derivatives are in the form of options, futures, or swaps. Options impose no obligation whereas futures impose an obligation.

118. An exchange-traded CAT option is a standardized contract based on a specific catastrophe index. The index reflects the catastrophe experience of a large set of insurers or the entire property and casualty insurance industry. The contracts entitle the buyer of the option to a cash payment from the seller if a catastrophe causes the index used to rise above a certain strike price specified in the option.

119. In the past, insurers and investors could trade options based on a catastrophe index compiled by PCS on the Chicago Board of Trade (CBOT) or on a Guy Carpenter Catastrophe index on the Bermuda Commodities exchange (BCOE). Both of these markets were, however, shut down due largely to lack of interest. The use of organized exchanges and standardized, index-based contracts would make it easier for investors and insurers to liquidate positions. Moreover, the use of clearinghouses by exchanges largely does away with counterparty risk.

120. THIS SECTION CAN BE EXPANDED CONSIDERABLY – HOW USEFUL IS THAT GIVEN THAT THERE ARE NEXT TO NO TRADES IN THESE DERIVATIVES?

WEATHER DERIVATIVES

121. It is estimated that weather conditions impact 80% of worldwide business activity. Businesses such as soft drink makers, breweries, ice cream manufacturers, utilities, construction and clothing manufacturers are weather-dependent. Weather derivatives are financial instruments designed to assist in managing weather-related risks. These are comparatively new risk management tools, the first transaction having taken place in 1997. Since then, the market has expanded rapidly into a flourishing over the counter (OTC) trade.

122. There are a number of drivers behind the growth of the weather derivative market. Primary among these is the convergence of capital markets with insurance markets. In the late nineties, the insurance
industry faced a cyclical downturn in traditional underwriting premiums, and hence had excess risk capital available for hedging weather risk.

123. At the same time, 1997 was the year of heavy publicity regarding climatic changes related to EL Niño, and many American and foreign companies had to consider the possibility of significant earnings declines due to an unusually mild winter forecast. The ability to hedge weather conditions via weather derivatives hence became an attractive option. The deregulation of the energy market in Europe and the United States has provided further incentives for growth in the weather derivatives market. Moreover, these types of financial instruments, much like ILSs, are thought to be uncorrelated to other market risks. Hence, an investor can benefit from their overall effect on portfolio risk.

124. Any business with an exposure to the weather can use these derivatives to protect its revenues or its earnings against adverse weather conditions. Weather derivatives are particularly well suited to hedge against volume rather than price risks. For the latter type of risk, the more normal options and futures markets provide more appropriate instruments.

125. The derivatives are based on different underlying weather indices. Some commonly used indices are heating and cooling degree-days, rainfall, snowfall and wind speed.

126. A company has a number of alternatives in structuring a weather deal. The first alternative is to buy cooling degree day options (CDD) for the summer season, or a heating degree day options (HDD) for the winter season. CDD options protect against excessively cool summers while HDD options protect against excessively warm winters. Both HDD and CDD calls and puts are available.

(i) A Cooling Degree Day (CDD) measures the warmth of the daily temperature compared to a standard of 18 °C. The degree days specification is as follows:

\[
\text{Daily CDD} = \text{Max} \left(0; \text{daily average temperature} - 18 \, ^{\circ}\text{C}\right)
\]
(ii) A Heating Degree Day (HDD) measures the coldness of the daily temperature compared to a standard of 18 °C. Its degree days specification is as follows:

\[
\text{Daily HDD} = \max (0; 18 \, ^\circ\text{C} - \text{daily average temperature}).
\]

127. The weather derivatives market is liquid and there is an active secondary market. Reinsurance companies, in particular, have been active participants.

128. One participant in this market is Scandic Energy of Sweden. An example of a specification for a Scandic HDD call option contract follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather station</td>
<td>Stockholm Arlanda</td>
</tr>
<tr>
<td>Index</td>
<td>HDD</td>
</tr>
<tr>
<td>Type</td>
<td>Call</td>
</tr>
<tr>
<td>Period</td>
<td>January 2002</td>
</tr>
<tr>
<td>Strike</td>
<td>500 HDDs</td>
</tr>
<tr>
<td>Nominal</td>
<td>1 SEK/HDD</td>
</tr>
<tr>
<td>Max payout</td>
<td>200 SEK</td>
</tr>
</tbody>
</table>

The price of this particular call option on HDD can be computed as follows:

\[
Payout = \min (\max (\text{Total (HDD)} - \text{Strike}; 0); \text{Max payout})
\]

Assume now that Total (HDD) = 600 SEK. Then the payout for this particular the specification of HDD option is as follows:

Payout = \min (\max (600 - 500; 0); 200)
Payout = \min (100; 200)
Payout = 100 SEK

In this case, the company buying this option will be paid if the month of January in Stockholm is severe.
129. Weather derivatives differ from weather-related insurance contracts. The insured under an insurance contract must prove financial loss due to weather in order to be compensated. Payouts from weather derivatives however are based solely on the actual weather outcome, regardless of specific impact of such weather on the holder of the derivative.

130. Insurance contracts are usually designed to protect the holder from extreme weather events such as earthquakes and typhoons, and they do not work well with the uncertainties of more normal weather. Weather derivatives, on the other hand, can be constructed for any eventuality in weather conditions.

131. There is further advantage to weather derivatives. Those entities that benefit from a cold winter can transact with parties that benefit from a warm winter. Both parties can hence hedge their risks through a common transaction. An insurance contract, on the other hand, is a zero-sum game: one party gains and the other party loses.

REGULATORY ISSUES

132. One of the factors critical to the successful development of ILS is an appropriate regulatory and legal structure. The group has identified a number of issues in that regard:

 How does the regulator exercise jurisdiction?

 How can separateness between the SPV and the originator best be achieved?

 Who will be permitted to issue or invest in ILS?

 What controls need to be in place to monitor exposure?

 What investment restrictions must be in place for an SPV?

 What constraints must be put in place for insurers who invest in ILS?

 What impact does an insurance-linked securitization have on capital?
What financial reporting requirements need to be put in place for originators and investors?

How should the investment be recorded?

What impact do tax rules have on ILS?
How can regulatory arbitrage be avoided?

133. To be completed.