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Abstract: The various copulas in the actuarial and statistical literature differ not so much 

in the degree of association they allow, but rather in which part of the distributions the 

association is strongest. In property and casualty applications there is interest in copulas 

that emphasize correlation among large losses, i.e., in the right tails of the distributions. 

Several copulas that have this characteristic are discussed. In addition, univariate func-

tions of copulas are introduced that describe various aspects of the copulas, including tail 

concentration. Univariate descriptive functions can be thought of as an intermediate step 

between the several zero-dimensional measures of association (Kendall, Spearman, Gini, 

etc.) and the multi-dimensional copula function itself. 
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Copulas are just joint distributions of unit uniform variates. They become especially use-

ful when the unit uniform variates are viewed as probabilities from some other distribu-

tions. Then the percentiles of the other distributions can be recovered by inverting these 

probabilities. Copulas thus provide a ready method for simulating correlated variables, 

e.g., in a DFA model. Quite a few copulas are available for this, and they have differing 

characteristics that lead to different relationships among the variables generated. This pa-

per reviews several popular copulas, introduces some others, and discusses methods for 

selecting those that may be most appropriate for a given application. In particular, the be-

havior of the copulas in the right and left tails is used as a way to distinguish among 

copulas that produce the same overall correlation. 

 

The organization of the paper is first to review copula methods in general, then examine 

several specific copulas, and finally look at measures that can be used to identify key 

characteristics of copulas. These are applied to some correlated loss data as an example. 

1 .  G e n e r1 .  G e n e r a l  C o n s i d e r a t i o n sa l  C o n s i d e r a t i o n s   

Copulas Defined 

A joint distribution function F(x,y) can be expressed as a function of FX(x) and FY(y), the 

individual (or marginal) distribution functions for X and Y, i.e., as F(x,y) = C(FX(x),FY(y)). 

There has to be a function C defined on the unit square that makes this work, because 

FX(x) and FY(y) are order preserving maps of the real line or some segment of it to the unit 

interval. This can be defined by C(u,v) = F(FX-1(u),FY-1(v)). Then C(FX(x),FY(y)) = F(FX-

1(FX(x)),FY-1(FY(y))) = F(x,y). The function C(u,v) is called a copula. For many bivariate dis-

tributions, the copula form is the easiest way to express and generate the joint probabili-

ties. 

 



Copulas work in the multi-variate context as well, but this paper mainly focuses on joint 

distributions of two variates. A copula is a joint distribution of two uniform random vari-

ates U and V with C(u,v) = Pr( U≤ u, V≤v). Also, c(u,v) will be used to denote the corre-

sponding probability density, which is the mixed second partial derivative of C(u,v). The 

simplest copula is the uniform density for independent draws, i.e., c(u,v) = 1, C(u,v) = uv.  

Conditioning with Copulas 

The conditional distribution can be defined using copulas. Let C1(u,v) denote the first par-

tial derivative of C(u,v). When the joint distribution of X and Y is given by F(x,y) = 

C(FX(x),FY(y)), then the conditional distribution of Y|X=x is given by: 

 

 FY|X(y) = C1(FX(x),FY(y)) 

 

For example, in the independent case C(u,v) = uv, the conditional distribution of V given 

that U=u is C1(u,v) = v = Pr(V<v|U=u). This is of course independent of u. 

 

If C1 is simple enough to invert algebraically, then the simulation of joint probabilities can 

be done using the derived conditional distribution. That is, first simulate a value of U, 

then simulate a value of V from C1, the conditional distribution of V|U. 

Correlation 

The usual correlation coefficient based on the covariance of two variates is not preserved 

by copulas. That is, two pairs of correlated variates with the same copula can have differ-

ent correlations. However, the Kendall correlation, usually denoted by τ, is a constant of 

the copula. That is, any correlated variates with the same copula will have the τ of that 

copula. 

 

There are different ways of defining τ, but the simplest may be τ = 4E[C(u,v)] – 1. For in-

dependent variates with C(u,v) = uv, E[C(u,v)] = ¼, so τ = 0. Also, for perfectly correlated 

variates U = V, E[C(u,v)] = ½, so τ will be 1. Thus the scaling makes τ look like a correla-

tion coefficient. The key measure though is E[C(u,v)], which is a basic constant of a copula 

and generalizes to the case of several variates. 
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2 .  S o m e  P a r t i c u l a r  C o p u l a s2 .  S o m e  P a r t i c u l a r  C o p u l a s   

Some well-known copulas and a few designed particularly for loss severity distributions 

are reviewed here. 

Frank’s Copula 

Define gz = e-az – 1. Then Frank’s copula with parameter a ≠ 0 can be expressed as: 

 C(u,v)  = -a-1ln[1 + gugv/g1], with conditional distribution 

 C1(u,v) = [gugv+gv]/[gugv+g1]   

  c(u,v) = -ag1(1+gu+v)/(gugv+g1)2 and Kendall’s τ of 

      τ(a)  = 1 – 4/a + 4/a2 ∫0
a t/(et-1) dt 

For a<0 this will give negative values of τ. 

 

C1 can be inverted, so correlated pairs u,v can be simulated using the conditional distribu-

tion. First simulate u and p by random draws on [0,1]. Here p is considered a draw from 

the conditional distribution of V|u. Since this has distribution function C1, v can then be 

found as v = C1-1(p|u). The formula for this, which can be found from the formula for C1, 

is: 

  v = -a-1ln{1+pg1/[1+gu(1–p)]} 

 

Once u and v have been simulated, the 

variables of interest X and Y can be simulated 

by inverting the marginal distributions, i.e., x 

= FX-1(u) and y = FY-1(v). 

 

The copula density is graphed here. As with 

many copulas there is a degree of 

concentration near 0,0 and 1,1. This often 

weakens considerably in the inversion back to X and Y, which is usually a non-linear 

transformation. Some of the copulas below have even greater concentration in the tails. 
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Gumbel Copula 

This copula has more probability concentrated in the tails than does Frank’s. It is also 

asymmetric, with more weight in the right tail. It is given by: 

C(u,v)  = exp{- [(- ln u)a + (- ln v)a]1/a}, a ≥ 1. 

C1(u,v) = C(u,v)[(- ln u)a + (- ln v)a]-1+1/a(-ln u)a-1/u 

c(u,v) = C(u,v)u-1v-1[(-ln u)a +(-ln v)a]-2+2/a[(ln u)(ln v)]a-1{1+(a-1)[(-ln u)a +(-ln v)a]-1/a} 

τ(a)  = 1 – 1/a 

Unfortunately, C1 is not invertible, so another 

method is needed to simulate variates. 

 

Embrechts, etal.1 discuss the Gumbel copula and 

give a procedure to simulate uniform deviates 

from it. First simulate two independent uniform 

deviates u and v. Next solve numerically for s>0 

with ues = 1 + as. Then the pair [exp(-sva), exp(-s(1-

v)a)] will have the Gumbel copula distribution. As 

shown in this graph, the Gumbel copula has a 

high degree of tail concentration, with more emphasis in the right tail. 

Heavy Right Tail Copula and Joint Burr 

For some applications actuaries need a copula with less correlation in the left tail, but high 

correlation in the right tail, i.e., for the large losses. Here is one: 

C(u,v) = u + v – 1 + [(1 – u)-1/a + (1 – v)-1/a – 1]-a  a>0 

C1(u,v) = 1 – [(1 – u)-1/a + (1 – 

v)-1/a – 1] -a-1(1 – u)-1-1/a 

c(u,v) =  (1+1/a)[(1 – u)-1/a + 

(1 – v)-1/a – 1] -a-2[(1 – u)(1 – 

                                                 
1 Embrechts, McNeil and Strauman Correlation and Dependency in Risk Management in the XXX 

ASTIN Colloquium Papers 
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v)]-1-1/a                                               τ(a) = 1/(2a + 1) 

 

The conditional distribution given by the derivative C1(u,v) can be solved in closed form 

for v, so simulation can be done by conditional distributions as in Frank’s copula. 

 

 

 

Frees and Valdez2 show how this copula can arise in the production of joint Pareto distri-

butions through a common mixture process. Generalizing this slightly, a joint Burr distri-

bution is produced when the a parameter of both Burrs is the same as that of the heavy 

right tail copula.  

 

Given two Burr distributions, F(x) = 1 – (1 + (x/b)p)-a and G(y) = 1 – (1 + (y/d)q)-a, the joint 

Burr distribution from the heavy right tail copula is: 

 

 F(x,y) = 1 – (1 + (x/b)p)-a – (1 + (y/d)q)-a + [1 + (x/b)p + (y/d)q]-a  

 

The conditional distribution of y|X=x is also Burr: 

 

 FY|X(y|x) = 1 – [1 + (y/dx)q]-(a+1), where dx = d[1 + (x/b)p/q] 

 

By analogy to the joint normal, this can be called the joint Burr because the marginal and 

conditional distributions are all Burr. In practice, the degree of correlation can be set with 

the a parameter, leaving the p and q parameters to fit the tails, and b and d to set the 

scales of the two distributions. 

Kreps’ Partial Perfect Correlation Copula Generator 

                                                 
2 EW Frees and EA Valdez, “Understanding Relationships Using Copulas,” North American Actuar-

ial Journal, vol.2, #1, pp. 1-25 
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A method for generating copulas that are mixtures of perfectly correlated and independ-

ent variates has been developed by Rodney 

Kreps3. This is easier to describe as a 

simulation procedure, and then look at the 

copulas.  

 

The basic idea is to draw two perfectly 

correlated deviates in some cases and two 

uncorrelated deviates otherwise. More 

specifically, let h(u,v) be a symmetric 

function of u and v from the unit square to the unit interval. To implement the simulation, 

draw three unit random deviates u, v, and w. If h(u,v) < w, simulate x and y as FX-1(u) and 

FY-1(v) respectively. Otherwise take the same x but let y= FY-1(u). Thus some draws are in-

dependent and some are perfectly correlated. The choice of the h function provides a lot 

of control over how often pairs will be correlated and what parts of the distributions are 

correlated. 

 

For instance, h can be set to 0 or 1 in some interval like j < u,v < k to provide independ-

ence or perfect correlation in that interval, or it could be set to a constant p to provide cor-

relation in 100p% of the cases in that interval. Another choice is h(u,v) = (uv)a. This creates 

more correlation for larger values of u and v, with a controlling how much more.  

 

The graphs here illustrate the case where h(u,v) = 

(uv)0.3 and both X and Y are distributed Pareto 

with F(x) = 1 – (1 + x)-4. The correlated and un-

correlated instances clearly show up separately, 

in either the log or regular scale. For larger val-

ues of a, h(u,v) is smaller, so it is less likely that 

                                                 
3 R. Kreps 2000 “A Partially Comonotonic Algorithm For Loss Generation,” ASTIN Colloquium Pa-

pers 



PP Max Data Pairs t = .5 

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

0 0 . 2 0 . 4 0 . 6 0 . 8 1

PP (uv)^a Data Pairs  τ τ =.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

h(u,v) exceeds the random value w and thus less likely that the case u=v will be selected. 

For small values of a, on the other hand, h(u,v) will be larger, approaching one as a goes 

to zero. Thus h(u,v)>w is more likely, so u=v will also be more likely. 

 

The partial perfect correlation copula generator thus provides a good deal of flexibility 

and control over how much correlation is incorporated and where in the distribution it 

occurs.  

 

To describe the copulas that result, it will be 

convenient to adopt the notation used in spread-

sheets where a logical expression in parentheses 

will evaluate to zero if the expression is false and 

one if it is true.  Thus (u=v) is one if u=v and zero 

otherwise, etc. 

 

Although Kreps considers more general 

situations, a relatively simple copula results in the case where h(u,v) breaks out as a 

product of a univariate function evaluated at u and v, i.e., h(u,v) = h(u)h(v). If we define 

H(x) = ∫0
xh(t)dt, the copula formulas become: 

 

C(u,v) = uv – H(u)H(v) + H(1)H(min(u,v)) 

C1(u,v) = v – h(u)H(v) + H(1)h(u)(v>u) 

c(u,v) = 1 – h(u)h(v) + H(1)h(u)(u=v) 

 

For a concrete example, pick an a between zero 

and one, and let h(u) = (u>a). Thus if both u and 

v exceed a, the simulated values of u and v will 

be identical, and otherwise they will be independent. If x>a, H(x) =  ∫a
xdt = x – a, and if 

not, H(x) = 0. Thus H(u) = (u – a)(u>a). Also, H(1) = 1 – a, and H(min(u,v)) = [min(u,v) – 

a](u>a)(v>a). The copula formulas above can then be computed directly for this h. The 

Kendall correlation is τ(a) = (1 – a)4.  Sometimes this copula is called PP max, for partial 



0.001

0.01

0.1

1

10

100

Normal Copula Log Scale ττ =.5 

perfect max function. The scatter plot of a simulated sample is graphed above for the case 

τ = ½.  

 

Another example is to take h(u) = ua. Then H(u) = ua+1/(a+1), and H(1) = 1/(a+1). Here,  

τ(a) = 1/[3(a+1)4] + 8/[(a+1)(a+2)2(a+3)]. As a increases, this approaches zero, reflecting 

the fact that selecting u=v becomes less likely, and at a = 0, τ =1, as this gives the perfect 

correlation case. 

 

The graph shows simulated pairs for the case τ = 

½. More correlated pairs occur at higher values of 

u and v, as can be seen from the growing paucity 

of independent pairs when going to the upper 

right. 

The Normal Copula 

Useful for its easy simulation method and 

generalized to multi-dimensions, the normal 

copula is lighter in the right tail than the Gumbel 

or HRT, but heavier than the Frank copula. The left tail is similar to the Gumbel’s. 

 

To define the copula functions, let N(x;m,v) denote the normal distribution function with 

mean m and variance v, N(x) abbreviate N(x;0,1), and B(x,y;a) denote the bivariate normal 

distribution function with correlation = a. Also let p(u) be the percentile function for the 

standard normal, so N(p(u)) = u. Then with parameter a, which is the normal correlation 

coefficient: 

 

C(u,v) = B(p(u),p(v);a) 

C1(u,v) = N(p(v);ap(u),1-a2) 

c(u,v) = 1/{(1-a2)0.5exp([a2p(u)2-2ap(u)p(v)+a2p(v)2]/[2(1-a2)])} 

τ(a) = 2arcsin(a)/π   

 

The Kendall tau is somewhat less than a.  The following table shows a few values. 



a 0.15643 0.38268 0.70711 0.92388 0.98769 

ττ   0.10000 0.25000 0.50000 0.75000 0.90000 

  

Simulation uses the conditional distribution C1. Simulate p(u) from a standard normal 

and then p(v) from the conditional normal C1. The standard normal distribution function 

can then be applied to these percentiles to get u and v. 

3 .  D i s t i n g u i s h i n g  a m o n g  c o p u l a s3 .  D i s t i n g u i s h i n g  a m o n g  c o p u l a s   

A few functions are introduced here to help illustrate different properties that can distin-

guish the various copulas. These functions can also be approximated from data, and so 

can be used to assess which copulas more closely capture features of the data. 

Tail Concentration Functions 

Given a copula, right and left tail concentration functions can be defined with reference to 

how much probability is in regions near <1,1> and <0,0>. For any z in (0,1) define: 

L(z)  =  Pr(U<z,V<z)/z2 and R(z) = Pr(U>z,V>z)/(1 – z)2   

 

In terms of the copula functions, L(z) is just C(z,z)/z2.  To calculate R(z), note that 

1 - Pr(U>z,V>z) = Pr(U<z) + Pr(V<z) - Pr(U<z,V<z) = z + z – C(z,z). 

Then R(z) can be calculated by R(z) = [1 – 2z +C(z,z)]/(1 – z)2.  
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These functions are graphed for a few copulas below. As L(1) = R(0) = 1, the L and R func-

tions are easily distinguished on the graphs. Also, the higher correlations have higher tail 

concentrations.  



The Gumbel has fairly high concentrations in both tails, but the right tail is heavier. The 

relative strength of the left tail gets less as the correlation decreases. The heavy right tail 

copula has about the same right tail concentration as the Gumbel, but it has less in the left 

tail. The Frank copula is basically symmetrical between the left and right tails. Both tails 

are less concentrated than the Gumbel but the left tail concentration is about the same as 

in the heavy right tail copula. The PP Max L(z) function is somewhat different, as the 

variates are independent in the left tail. Thus for low z, L(z) = 1.  The lower the correla-

tion, the longer the L function stays at 1. Note also that the right tail function is strong 

even for low overall correlation. The PP Power copula has functions similar to the Gum-

bel, although for low correlation the L function is nearly flat, and the R function is high 

for even low τ. The tails of the normal copula show more concentration than did the 

Frank, but usually not as strong as the Gumbel, particularly in the right tail. 

Cumulative Tau 

Recall that tau is defined as –1+4∫0
1∫0

1 C(u,v)c(u,v)dvdu. A cumulative tau can be defined 

as J(z) = –1+4∫0
z∫0

z C(u,v)c(u,v)dvdu/C(z,z)2. 

 

The full double integral is a probability weighted average of C(u,v), i.e., EC(u,v). To com-

pare to this, the partial integral has to be divided by the weights, hence the first C(z,z) in 

the denominator.  This quotient will give the average value of C(u,v) in the square from 

(0,0) to (z,z). This will increase as a function of z for any copula. 

 

The second C(z,z) divisor expresses this average relative to C(z,z), i.e., shows how the av-

erage C compares to the maximal C in the square. This may or may not increase as a func-

tion of z, which makes it a more interesting property of the copula.  

 

The normalization to the range of a correlation is a matter of convenience and familiarity, 

and gives J(1) = τ. The integration can be done numerically, although for some copulas, 

formulas are given in Appendix 1. Looking at the graphs shows that for each correlation, 

the shape of the J function varies noticeably from one copula to another. This provides a 

way of narrowing down the choice of copulas given data or other criteria. All the graphs 
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end up at τ for z=1, but can start off with high or low correlation, and can increase or de-

crease at varying rates. 

Cumulative Conditional Mean 

A function of interest is the conditional expected value of V|U=z. However this is often 

difficult to estimate from data, as there are usually not too many values of V for any given 

value of U.  So a related function is chosen: the expected value of V given U<z. Let 

 



 M(z) = E(V|U<z) = ∫0
z∫0

1 vc(u,v)dvdu/z 
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Since E(V) = ½, every copula will have M(1) = ½, so the differences in M among copulas 

will be for lower values of z and the shape of the curve approaching z = 1.  

Often the integral has to be done numerically, but for a few copulas it is done explicitly in 

Appendix 2. Graphs of this function for several copulas are shown below. For this func-

tion, the lower τ is, the closer the values stay to ½. 

 

 

 



Copula Distribution Function 

Genest and Rivest4 define a function K(z) = Pr(C(u,v)<z). Although C(u,v) approaches one 

as u and v approach one, it is possible that C is low for most values of u and v, which 

would make K(z) high for most z’s. Or C could grow fairly quickly through lower values 

of u and v, which would tend to make K(z) smaller.  

 

For a sample of n pairs of observations (xj,yj), K(z) can be estimated by first calculating the 

empirical F(x,y) at each observation as 1/(n–1) times the number of other observations 

that are lower in both variables. Then for any z, the empirical K(z) is the proportion of 

points with this empirical distribution function less than or equal to z. 

 

Genest and Rivest show how to calculate K for a number of copulas. In particular,  

Copula K(z) 

Gumbel z(1 – ln z1/a) 

Frank z + a–1(1–eaz)ln[(1–e–az)/(1–e–a)] 

4 .  F l i p p i n g  a  C o p u l a4 .  F l i p p i n g  a  C o p u l a   

The notation S(x) = 1 – F(x) is often used to describe the survival function Pr(X>x). The 

joint survival function S(x,y) = Pr(X>x, Y>y) is not 1 – F(x,y), however, as that would be 

the probability that either X>x or Y>y, but not necessarily both. In fact, S(x,y) = 1 – FX(x) – 

FY(y) + F(x,y), i.e., Pr(X>x, Y>y) = 1 – [Pr(X<x) + Pr(Y<y)] + Pr(X<x, Y<y). 

 

Similarly for a copula C(u,v) = Pr(U<u, V<v) the survival function of the copula, i.e., 

CS(u,v) = Pr(U>u, V>v), is CS(u,v) = 1 – u – v + C(u,v). Since C(FX(x),FY(y)) = F(x,y), we 

have CS(FX(x),FY(y)) = S(x,y). 

 

For a copula C, define CF(u,v) = CS(1 – u, 1 – v) = u + v – 1 +C(1 – u, 1 – v). Then 

CF(SX(x),SY(y)) = CS(FX(x),FY(y)) = S(x,y). Note that CS is not a copula as it is zero at (1,1), 

                                                 
4 C Genest and L Rivest 1993 “Statistical Inference Procedures for Bivariate Archimedean Copulas,” 

Journal of the American Statistical Association 88: 1034–1043. 



but CF is a copula. We will call CF the flipped copula of C.  When the flipped copula is ap-

plied to the survival functions it gives the joint survival function for the copula. However, 

the flipped copula can be applied to distribution functions, and then it can have quite dif-

ferent properties than the original copula has. The next copula is an example. 

Clayton’s Copula 

This copula has a heavy concentration of probability near (0,0) so it correlates small losses. 

It is not intuitively interesting for property-liability claims, but it may have some applica-

tion. 

 

C(u,v) = [u-1/a + v-1/a – 1]-a  a>0 

C1(u,v) = u-1-1/a[u-1/a + v-1/a – 1] -a-1 

c(u,v) =  (1+1/a)[uv]-1-1/a[u-1/a + v-1/a – 1] -a-2 

τ(a) = 1/(2a + 1) 

 

What is interesting here is that the heavy right tail copula is actually the flipped Clayton 

copula. The tau is the same for both copulas5, and the tail concentration functions are 

swapped. This is actually how the HRT copula was defined, and suggests defining other 

copulas by flipping known copulas. The copula would have to have some asymmetry to 

make this worthwhile. One candidate would be Gumbel’s copula. 

The Flipped Gumbel 

Gumbel’s copula is heavier in the right tail than the left. Flipping it would produce a cop-

ula with the opposite property: 

 

C(u,v)  = u + v – 1 + exp{-([-ln(1–u)]a +[-ln(1–v)]a)1/a}, a ≥ 1. 

C1(u,v)=1–exp{-([-ln(1–u)]a +[-ln(1–v)]a)1/a}{[-ln(1–u)]a +[-ln(1–v)]a}1/a –1[-ln(1–u)]a-1/[1–u] 

c(u,v) =(1–u)-1(1–v)-1{[-ln(1–u)]a +[-ln(1–v)]a}-2+1/a[ln(1–u)ln(1–v)]a-1 x 

                                                 
5 Tau for a sample is the average value of sign[(u – x)(v – y)] among all distinct pairs (u,v), (x,y). 

This value is the same for the flipped pairs (1–u, 1–v), (1–x, 1–y), so tau will be the same for the 

original and the flipped sample for any copula. 



[a+{[-ln(1–u)]a +[-ln(1–v)]a}1/a –1]exp{-([-ln(1–u)]a +[-ln(1–v)]a)1/a} 

τ(a)  = 1 – 1/a 

5 .  A p p l i c a t i o n s5 .  A p p l i c a t i o n s   

Loss Adjustment Expense 

Two recent actuarial papers fit parameters to the joint distribution of loss and loss ad-

justment expense for a liability line using 1500 claims supplied by Insurance Services Of-

fice, Inc. The two studies may or may not have used the same data, but they present scat-

ter plots that are similar. They both use copulas to describe the joint distribution. 

 

There were a couple of methodological differences between the two papers. Frees and 

Valdez6 assume Pareto marginals for both distributions, but compare fits for several copu-

las. Klugman and Parsa7, on the other hand, compare fits for a number of severity distri-

butions, but select Frank’s copula arbitrarily. The papers may have taken different ap-

proaches to the censoring of claims by policy limits as well. Klugman and Parsa say they 

omit claims for which either loss or expense is zero, so they can get true severity distribu-

tions for both. Frees and Valdez probably do this as well. 

 

Frees and Valdez used the K(z) function to select among copulas. Plotting the empirical 

K(z) against the values from several copulas, they found the Gumbel looked best. It also 

gave the best value for the Akaike information criterion, which equivalent to finding the 

copula with the highest maximum likelihood in this case, as all the copulas they tried had 

one parameter. The best fit was produced by the Gumbel copula with a = 1.453. This gives 

τ = 0.31. Klugman and Parsa estimate the Frank a = 3.07438, which also gives τ = 0.31. 

 

                                                 
6 EW Frees and EA Valdez, “Understanding Relationships Using Copulas,” North American Actuar-

ial Journal, vol.2, #1, pp. 1-25. 

7 SA Klugman and R Parsa, 1999 “Fitting Bivariate Loss Distributions with Copulas,” Insurance: 

Mathematics and Economics 24, pp. 139-148. 



A convenient way to compare heavy-tailed severity fits is to look at the median and the 

heaviness of the tail, which can be quantified as the smallest positive moment that does 

not converge. For the Pareto, for example, this is just the shape parameter.  

 

If we express the Pareto as F(x) = 1 – (1+x/b)–a , then Frees and Valdez find: for loss, a = 

1.122, b = 14,036, and for expense, a = 2.118 and b = 14,219. Klugman and Parsa find the 

best severity fits with the inverse Burr, which can be expressed as F(x) = (1+(x/b)–c)–a. 

They estimate8 for loss, a = 1.046 = c, b = 11,577.7, and for expense, a = 1.57658, b = 

10,100.2, c = 0.573534. The table below converts these parameters to median and tail 

heaviness ( = c for the inverse Burr). There is reasonably close agreement among these 

values except for the tail heaviness for loss expense, for which the divergence is a little 

greater. 

 Loss Median Loss Tail Expense Median Expense Tail 

Frees & Valdez 12,000 1.12 5500 2.12 

Klugman & Parsa 12,275 1.05 5875 1.58 

 

Neither paper looked at the heavy right tail copula. For τ of 0.31, this is not too different 

from the Gumbel. In fact it is similar to the Gumbel in the right tail and more like the 

Frank in the left tail. This suggests that the joint Burr discussed above, which is built from 

the HRT copula, may provide a reasonable approximation to the loss and expense distri-

bution, particularly in the right tail. This could be useful for excess-of-loss reinsurance es-

timates, especially when data is scarce. Recall that the joint Burr distribution is given by:  

 

 F(x,y) = 1–(1+(x/b)p)-a –(1+(y/d)q)-a +[1+(x/b)p +(y/d)q]-a  

 

                                                 
8 The inverse Burr with a = c they call the inverse paralogistic, which is a name I coined some years 

ago. For the loglogistic, F(x) = 1–(1+(x/b)a)–1, whereas the Pareto has F(x) = 1–(1+(x/b)1)–a, so the 

combined form F(x) = 1–(1+(x/b)a)–a could be called the paralogistic. The inverse of a distribution 

in this context is the distribution of 1/X from that distribution, which generates the inverse Burr, 

inverse paralogistic, etc. 



MD & DE Joint Empirical Probabilities

The a parameter comes from the HRT copula, with τ = 1/(1+2a). For τ = 0.31, the implied 

a is 1.11. The tail heaviness factors are ap and aq, so p and q can be estimated from these 

parameters for this value of a. The tail heaviness can be estimated from available data or 

industry values could be used. A simple choice given the table above would be to take the 

loss factor as 1.11, which would give p = 1. A reasonable choice for q might be 1.5. Finally, 

b and d can be estimated from the respective medians. E.g., for b and p, the median is 

b(21/a –1)1/p. For a = 1.11, then, b = (median)1.151/p. The medians from Klugman and Parsa 

with p = 1 and q = 1.5 give (rounded):  

 

 F(x,y) = 1–[1+x/14150]-1.11–[1+(y/6450)1.5]-1.11+[1+x/14150 +(y/6450)1.5]-1.11  

Given a loss of x, the conditional distribution of loss expense is also Burr: 

 FY|X(y|x) = 1–[1+(y/dx)1.5]–2.11 with dx = 6450 +11x 2/3  

Simulated Hurricane Losses 

A simulation of n=727 losses from a hurricane loss generator for a sample data set of 

Maryland and Delaware exposures will be used as an example of copula estimation. As 

the emphasis is on the copula, not the 

marginal severities, the simulated 

losses were converted to probabilities 

by dividing the loss ranks for each 

state by n+1=728. The probability pairs 

were grouped into 20 intervals of 5% 

probability in each state for the graph 

above. The graph shows there is a 

positive relationship between the loss 

probabilities for the two states, with 

some degree of concentration near (0,0) 

and (1,1). This is given in table form in 

Appendix 3. A scatterplot of the 

empirical probabilities is shown below.  
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The usual estimate for the Kendall tau is to compute the average value over all pairs of 

observations (ui,vi), (uj,vj), i<j of sign[(ui – uj)(vi – vj)]. In this case the estimate is τ = .4545.  

 

 An empirical copula can also be built 

at each point by counting the other 

points that are less in both states. As 

there are n–1 other pairs, the count 

divided by n–1 can be taken as an 

estimate of the copula at that point. 

For this data, the maximum empirical 

copula value is 0.9821 and the average 

is 0.36363. Four times this less 1 is 

another estimate of tau, and this also 

is 0.4545. 

 

Empirical L and R functions can be computed similarly. An estimate for L(z) can be ob-

tained as C(z,z)/z2 where C(z,z) is computed as the proportion of pairs with u and v both 

less than z. Then with this C, R is estimated by by R(z) = [1 – 2z +C(z,z)]/(1 – z)2. These 

functions are graphed at the left. Since both 

tails are fairly concentrated, single-tailed 

copulas like the HRT, PP Max, and Clayton 

are not indicated. The right tail looks a little 

light for the PP Power and Gumbel as well, 

so the Frank and normal copulas are likely 

to fit the best. 

 

An empirical cumulative tau can also be calculated. For each z, the empirical C(u,v) can be 

computed for each (u,v) pair with 

both u and v less than z. Then the 

average of these values estimates the 

average copula in the square from 



M(z) for MD|DE<z

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1

LR Function for DE/MD and Fits

10

100

Data

Frank

Normal

PP Power

(0,0) to (z,z). This divided by C(z,z), times four less one, is the estimate of J(z).  

 

The graph of this at right is not like the J(z) for any of the copulas for small values of z, 

but the empirical calculation is based on few points when z is small. For larger z it is most 

similar to J for the Frank copula. 

 

The M(z) function can be calculated either 

for DE|MD or MD|DE. The graph at 

right shows MD|DE. It is most like the M 

function for the normal copula. 

 

The descriptive functions thus suggest 

that the normal and Frank copulas are the 

most likely to fit this data.  

 

Maximum likelihood estimation of the parameter was performed for several of these 

copulas. The parameter and the maximal likelihood are shown below. As all the copulas 

here have a single parameter, the ordering of the likelihood function is the same as those 

from the various information criteria such as AIC, etc. 

 

 HRT Gumbel Frank Normal Flipped Gumbel 

Parameter 0.968 1.67 4.92 0.624 1.68 

Ln Likelihood 124 157 183 176 161 

Tau 0.34 0.40 0.45 0.43 0.40 

 

The partial perfect copulas are difficult to estimate by MLE, as it is rare to have observa-

tions with exactly equal marginal probabilities. Nonetheless these copulas may be reason-

able as scenario generators. An 

alternative is to estimate the parameter 

by matching tau. For the PP Power 

copula this gives a = 0.314. However for 
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this data some of the descriptive functions seem to make this copula unlikely.  

The likelihood function favors the Frank copula in this case. Some of the functions are 

graphed for the fit and the data for this and in some cases some other copulas at left and 

below. 

 

The L and R functions are combined in the graph at the left. R(z) is shown for z>0.5, and 

L(z) for z<0.5. The normal copula looks like a closer fit than the Frank in the right tail and 

in some of the left tail. The PP Power appears to be too heavy in the right tail for this data 

set. 

 

The graph at right shows the J(z) function for the 

data and the normal and Frank copulas. The two 

copulas provide quite different fits to this data, 

but it is a subjective matter as to which is better, 

with the Frank probably having the edge for its 

close fit for z>0.5. The Frank copula has a lower 

sum of squared errors, but this disappears if the 

first two points (at –1) are omitted. 

 

M(z) for the data and the Frank and normal copulas is graphed below. The normal copula 

seems to give the better fit for 

small events, and the Frank 

looks better in the middle of the 

range. 

 

The K(z) function also has an 

empirical version. For any z this 

can be calculated as the propor-

tion of empirical values of 

C(u,v) that are less than z. A 

scatterplot of the empirical K as 



a function of the Frank K is shown at left, along with the line x=y. The values are very 

close. This supports the fit, but the fit problems in the tails are difficult to discern with this 

function. 

 

Even though the Frank copula provides the best fit according to the likelihood function, 

the normal copula might be a more useful fit for reinsurance applications, given its better 

match in the right tail. 

6 .  C o n c l u s i o n6 .  C o n c l u s i o n   

Copulas provide a convenient way to model and simulate correlated variates. A number 

of copulas with varying shapes are available for modeling various types of relationships. 

Shape differences among copulas can be discerned using the descriptive functions. This 

can be helpful both in fitting copulas to data and in using informed judgment to select a 

copula for a given application. 

 

Statisticians have identified a fair number of copulas9. The use of the descriptive functions 

provides an avenue for researching their properties. The hurricane model fit shows that a 

copula intermediate between the Frank and normal copulas could be useful, and some of 

the copulas in the literature may in fact be like that.  

 

There may also be more descriptive functions that can reveal other aspects of a copula. 

For instance, the J and M functions looked at average probabilities between 0 and z. Mir-

ror functions could look at the same probabilities between z and 1, analogous to the way 

that R mirrors L. A version of J dividing by C(z,z) instead of C(z,z)2 could be useful also. 

Even though that would increase from zero for every copula, there could be shape differ-

ences among copulas that would show up in QQ plots.  It would also be possible to define 

more functions over non-rectangular parts of the unit square, such as the region where 

C(u,v) is less than z, as in the K function, or sections like u and v both less than z. 

 

                                                 
9 E.g., see R Nelson, An Introduction to Copulas, Springer Lecture Notes in Statistics, 1999 



This paper focused on bivariate copulas but many of the concepts can be generalized to 

the multi-variate case. The descriptive functions have multi-variate analogs except for 

M(z) which would have to be done pairwise. Only the normal and partial perfect copulas 

fully generalize to multi-variate forms that allow specification of all pairwise correlations, 

but there are other multivariate copulas10. 

 

In summary, actuaries now have a number of copulas to chose among and a number of 

techniques for refining that choice, yet more copulas and more techniques could still be 

worth uncovering. 

                                                 
10 See H. Joe, Multivariate Models and Dependence Concepts, Chapman and Hall, 1997 



Appendix 1 Appendix 1 ––  J(z) J(z)   

For a copula with distribution function C(u,v) define: 

 I(z) = ∫0
z∫0

z C(u,v)c(u,v)dvdu. Then J can be expressed as: 

 J(z) = 4I(z)/C(z,z)2 – 1. 

For the following distributions the formula for 4I(z) is given. 

Gumbel: 

(2–1/a)exp[21+1/aln(z)] – 4(-ln(z))a(1–1/a) ∫y
∞

 e–2w w–a dw, where y = -21/aln(z) 

Heavy Right Tail: 

8z –8+ 4(2y–1)–a + [4a(1–z)2 +2(1+(2y–1)–2a)(a+1)]/[2a+1] + 8a∫1
y (w+y –1)–a–1w–a dw, 

where y=(1–z)–1/a.  

Partial Perfect Max 

z4 + (z>a)(a4 – 4a3 + 2(1 + 2z)a2 – 4az + 2z2 – z4) 

Partial Perfect Power 

z4 +4(a+1)–2[(y4–2y3/3+y2/2)(a+1)–2 +za+3(a2+3a+4)(a+2)–1(a+3)–1 –z2(a+2)(a2+2a+2)(a+2)–2], 

where y=za+1. 

 

 



Appendix 2 Appendix 2 ––  M(z) M(z)   

Partial Perfect Maximum 

M(z) = ½ – ½ (z > a)(1 – a)(1 – z)(z – a)/z 

Partial Perfect Power 

M(z) = ½ + (za+1 – za)/[(a+1)(a+2)] 

 

 





Appendix 3 Appendix 3 ––  Delaware and Maryland Probabilities by Range Delaware and Maryland Probabilities by Range  

Range Upper Limits - Maryland 

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 

0.05 7 9 2 8 1 0 3 1 2 1 0 0 0 0 1 0 0 1 0 0 

0.1 2 7 9 5 4 1 0 1 5 1 0 1 0 0 0 0 0 0 0 0 

0.15 10 5 2 3 6 1 4 2 0 1 0 1 0 0 0 1 0 0 1 0 

0.2 2 4 2 3 2 6 5 1 2 4 1 0 0 0 1 0 1 1 1 0 

0.25 2 2 2 1 4 5 2 3 3 4 4 2 0 1 0 0 0 0 0 1 

0.3 3 0 3 4 4 0 5 3 3 1 2 6 0 0 1 0 0 0 0 2 

0.35 3 0 3 4 1 2 2 2 5 2 2 4 3 0 0 1 1 0 0 1 

0.4 2 1 2 4 2 1 1 2 2 3 3 2 2 2 1 1 0 0 2 4 

0.45 1 1 1 0 3 4 4 3 2 0 4 3 1 2 1 2 1 0 0 3 

0.5 1 1 0 0 1 6 1 1 1 1 3 1 4 1 5 1 2 3 0 3 

0.55 1 3 1 0 1 2 3 4 3 1 3 0 5 4 4 1 1 0 0 0 

0.6 1 2 3 1 2 2 0 1 1 6 1 2 1 1 3 4 0 2 2 1 

0.65 1 0 4 3 0 1 1 2 2 2 4 0 3 5 1 1 0 2 2 3 

0.7 0 1 2 0 1 3 1 3 2 3 2 2 3 3 3 2 0 1 3 1 

0.75 0 0 1 0 3 2 0 0 0 3 3 2 1 3 2 5 8 3 0 0 

0.8 0 0 0 0 1 1 1 4 1 0 2 2 1 3 2 3 7 2 3 4 

0.85 0 0 0 0 0 0 2 3 0 0 1 3 7 3 1 1 6 5 3 1 

0.9 0 0 0 0 0 0 1 1 2 3 0 2 5 3 1 5 2 7 4 1 

0.95 0 0 0 0 0 0 0 0 0 0 2 2 1 5 7 4 4 3 6 2 

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 5 3 7 9 9 
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