Optimal Strategies for Ruin Probabilities and Expected Gains

Dr. Cary Chi-Liang Tsai and Dr. Gary Parker
Department of Statistics and Actuarial Science
Simon Fraser University

37TH ASTIN Colloquium
Lake Buena Vista, Florida, 19-22 June, 2007
Classical Surplus Process
(discrete time)

• $U_n = u + n \cdot c - S_n$: the surplus at time n
• $u = U_0$: the initial surplus
• c: the amount of premium received each period
• $S_n = W_1 + W_2 + \ldots + W_n$: the aggregate claims up to time n
• W_k: the sum of the claims in the kth period
• $W_1, W_2, \ldots W_n$ are i.i.d. r.v. distributed as W
• $c = (1 + \theta) \cdot \mathbb{E}[W]$
• θ: the relative security loading
• $\mathbb{E}(W) = \mathbb{E}(N) \cdot \mathbb{E}[X]$, and $N \sim \text{Poisson}(\lambda)$
Probability of Ruin

• $T = \min\{n: U_n < 0\}$ ($T = \infty$ if $U_n \geq 0$ for all n): the time of ruin (the first time that the surplus becomes negative)

• $\Psi(u) = \Pr\{T < \infty | U_0 = u\}$: the probability of ruin

• $\Psi(u,n) = \Pr\{T \leq n | U_0 = u\}$: the probability of ruin before or at time n (the dist. function of T)
Constant and Dynamic Premiums for Surplus Process
Buhlmann’s Credibility Premium

- **Case 1**: \(U_{n+1} = U_n + c - W_{n+1}, \) \(c = (1 + \theta) \; \mathbb{E}[W] \)

- **Case 2**: \(U_{n+1} = U_n + c_{n+1} - W_{n+1}, \)
 \[
c_{n+1} = (1 + \theta) \; \mathbb{E}[W_n] + \mathbb{E}[W] = \frac{1}{n} \sum_{i=1}^{n} W_i
 \]

- **Case 3**: \(U_{n+1} = U_n + c_{n+1,m} - W_{n+1}, \)
 \[
c_{n+1,m} = (1 + \theta) \; \mathbb{E}[W_{n,m}] + \mathbb{E}[W] = \frac{1}{m} \sum_{i=h}^{m} W_i
 \]

where \(m = \min(n,k), \) \(h = \max(n-k,0)+1 = n-m+1 \)

- \(v: \) the expected process variance, \(a: \) the variance of the hypothetical means

- **Note**: \(k = \infty, \) \(m = n, \) \(Z_{n,m} = Z_n \) and \(h = 1, \) **Case 3** => **Case 2**
 \(k = 0, \) \(m = 0, \) \(Z_{n,m} = 0 \) and \(h = n+1, \) **Case 3** => **Case 1**
Strategies

• Premium scheme:
 1: constant, 2: cred, 3: cred10, 4: cred3

• DL modifier: deductible and policy limit
 1: none, 2: deductible, 3: policy limit, 4: both

• Size modifier: sizes of deductible and policy limit
 1: k=∞, 3: M=3, 4: M=4, 5: M=5

where deductible, \(D = \frac{E[X]}{M} \) and policy limit \(L = E[X] \times M \)

\[c_1 = (1 + \theta) \frac{E[N] \cdot E[Y]}{D/L} \]

\(\theta \) is the r.v. with \(D/L \) on \(X \)

• 40 strategies in total

• Goal: which strategies reduce ruin probability most?
A sample path
Claims Distributions and Parameters

• 3 mixtures for frequency(F) and severity(S):
 Low F / High S: \[\lambda = E[N]=1 \quad \text{and} \quad E[X]=100\]
 Mid F / Mid S: \[\lambda = E[N]=10 \quad \text{and} \quad E[X]=10\]
 High F / Low S: \[\lambda = E[N]=100 \quad \text{and} \quad E[X]=1\]
 All three mixtures have equal mean \(E[W]=100\)

• 3 distributions for individual claim size \(X\)
 LT (Light-Tailed): \(\text{Weibull}(\alpha,\theta) \) with \(\alpha > 1\)
 RT (Neutral-Tailed): \(\text{Exponential}(\beta)\)
 HT (Heavy-Tailed): \(\text{Pareto}(\tau,\theta) \) with \(\tau > 1\)
 All three distributions have equal mean \(E[X]\)
Underlying Severity Distributions

<table>
<thead>
<tr>
<th>Severity dist’n X</th>
<th>Light-tailed</th>
<th>Neutral-tailed</th>
<th>Heavy-tailed</th>
<th>E[X]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low severity</td>
<td>Weibull (2, 1/Γ (1.5))</td>
<td>Exponential (1)</td>
<td>Pareto (3, 2)</td>
<td>1</td>
</tr>
<tr>
<td>Mid severity</td>
<td>Weibull (2,10/Γ (1.5))</td>
<td>Exponential (10)</td>
<td>Pareto (3, 20)</td>
<td>10</td>
</tr>
<tr>
<td>High severity</td>
<td>Weibull (2,100/Γ (1.5))</td>
<td>Exponential (100)</td>
<td>Pareto (3, 200)</td>
<td>100</td>
</tr>
</tbody>
</table>
Probabilities for claims with D/L

<table>
<thead>
<tr>
<th></th>
<th>Probabilities</th>
<th>Weibull</th>
<th>Exponential</th>
<th>Pareto</th>
</tr>
</thead>
<tbody>
<tr>
<td>M=2</td>
<td>P(X<D)</td>
<td>0.178</td>
<td>0.393</td>
<td>0.488</td>
</tr>
<tr>
<td></td>
<td>P(D<X<L)</td>
<td>0.779</td>
<td>0.471</td>
<td>0.387</td>
</tr>
<tr>
<td></td>
<td>P(X>L)</td>
<td>0.043</td>
<td>0.135</td>
<td>0.125</td>
</tr>
<tr>
<td>M=3</td>
<td>P(X<D)</td>
<td>0.083</td>
<td>0.283</td>
<td>0.370</td>
</tr>
<tr>
<td></td>
<td>P(D<X<L)</td>
<td>0.916</td>
<td>0.667</td>
<td>0.566</td>
</tr>
<tr>
<td></td>
<td>P(X>L)</td>
<td>0.001</td>
<td>0.050</td>
<td>0.064</td>
</tr>
<tr>
<td>M=4</td>
<td>P(X<D)</td>
<td>0.048</td>
<td>0.222</td>
<td>0.298</td>
</tr>
<tr>
<td></td>
<td>P(D<X<L)</td>
<td>0.952</td>
<td>0.760</td>
<td>0.665</td>
</tr>
<tr>
<td></td>
<td>P(X>L)</td>
<td>0.000</td>
<td>0.018</td>
<td>0.037</td>
</tr>
</tbody>
</table>
Monte Carlo Simulations

• 11 initial surpluses \(u \)
 0, 200, \ldots, 2000 for low frequency and high severity
 0, 20, \ldots., 200 for mid frequency and mid severity
 0, 2, \ldots., 20 for high frequency and low severity

• Generate number of claims \(n \) from \textit{Poisson}(\(\lambda \)) first, then claims \(X_1, X_2, \ldots, X_n \) for each year

• 1000 paths for \(U_n \) up to \(n=100 \) for each case

• Ruin probability,
 \[\Psi(u) = \# \text{ of } \{ U_k < 0 \text{ for some } k \leq 100 \mid U_0 = u \} / 1000 \]
Poisson(1)/EXP(100) Neutral-Tailed Low Frequency/High Severity without D/L
Poisson(10)/EXP(10) Neutral-Tailed
Mid Frequency/Mid Severity without D/L
Poisson(100)/EXP(1) Neutral-Tailed
High Frequency/Low Severity without D/L
Poisson(1)/EXP(100) Neutral-Tailed Low Frequency/High Severity, Cred_3 and K=3
Poisson(10)/EXP(10) Neutral-Tailed Mid Frequency/Mid Severity, Cred_3 and K=3
Poisson(100)/EXP(1) Neutral-Tailed High Frequency/Low Severity, Cred_3 and K=3
Poisson(1)/EXP(100) Neutral-Tailed
Low Frequency/High Severity, Cred_3 and D+L
Poisson(10)/EXP(10) Neutral-Tailed
Mid Frequency/Mid Severity, Cred_3 and D+L
Poisson(100)/EXP(1) Neutral-Tailed
High Frequency/Low Severity, Cred_3 and D+L
Ruin Probability Reduction

<table>
<thead>
<tr>
<th>Tail Type</th>
<th>Heavy-Tailed</th>
<th>Regular-Tailed</th>
<th>Light-Tailed</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF / HS</td>
<td>1+1+1</td>
<td>0.3439</td>
<td>1+1+1</td>
</tr>
<tr>
<td></td>
<td>4+1+1</td>
<td>0.2582</td>
<td>4+1+1</td>
</tr>
<tr>
<td></td>
<td>4+4+3</td>
<td>0.0894</td>
<td>4+4+3</td>
</tr>
<tr>
<td>MF / MS</td>
<td>1+1+1</td>
<td>0.4525</td>
<td>1+1+1</td>
</tr>
<tr>
<td></td>
<td>4+1+1</td>
<td>0.3552</td>
<td>4+1+1</td>
</tr>
<tr>
<td></td>
<td>4+4+3</td>
<td>0.1348</td>
<td>4+4+3</td>
</tr>
<tr>
<td>HF / LS</td>
<td>1+1+1</td>
<td>0.2960</td>
<td>1+1+1</td>
</tr>
<tr>
<td></td>
<td>4+1+1</td>
<td>0.2594</td>
<td>4+1+1</td>
</tr>
<tr>
<td></td>
<td>4+4+3</td>
<td>0.1213</td>
<td>4+4+3</td>
</tr>
</tbody>
</table>

• Factor_1: Premium Scheme: 1-constant, 2-cred, 3-cred10, 4-cred3
• Factor_2: DL Modifier: 1-None, 2-D, 3-L, 4-D+L
• Factor_3: Size Modifier: 1-M=∞, 3-M=3, 4-M=4, 5-M=5

• Conclusion: in general, the strategy with cred3, high deductible and lower policy limit (4+4+3) can significantly reduce classical ruin probability for all cases, especially for Heavy-Tailed case.
Conclusion for Ruin Probabilities

- \(\Psi_{(HF,LS)}(u) \leq \Psi_{(MF,MS)}(u) \leq \Psi_{(LF,HS)}(u) \)
- credibility premium schemes can reduce the ruin probability except some small \(u \)
- \(\Psi_{(4,1,1)}(u) \leq \Psi_{(3,1,1)}(u) \leq \Psi_{(2,1,1)}(u) \)
- strategy (4,4,3) produces lower ruin probability than (4,1,1), (4,2,3) and (4,3,3) for most \(u \) for MS/MF and LF/HS risks
- strategy (4,4,3) yields smaller ruin probability than (4,4,4) and (4,4,5) except for very few low \(u \).
Ruin Ratio, Gain Ratio and Index (I)

- **S**: the set of forty strategies \{ (i, j, k) | i, j = 1, 2, 3, 4 and k = 1, 3, 4, 5 \}
- \(\bar{U}_s(u,n) \): the average surplus at time \(n \) over 1000 simulations for \(u > 0 \) and strategy \(s \) in \(S \);
- \(\bar{G}_s(n) = \bar{U}_s(u,n) - u \): the average gain at time \(n \) over 1000 simulations for strategy \(s \) in \(S \)
- \(\bar{G}(n) = \max \{ \bar{G}_s(n) : s \in S \} \): the largest average gain at time \(n \) over 1000 simulations among \(s \) in \(S \)
- \(\bar{\Psi}_s(u,n) \): the average ruin probability by or at time \(n \) over 1000 simulations for \(u > 0 \) and strategy \(s \) in \(S \)
Ruin Ratio, Gain Ratio and Index (II)

- \(\overline{\Psi}_s(n) = \frac{1}{10} \sum_{u} \overline{\Psi}_s(u,n) \): the average ruin probability by or at time \(n \) over 10 \(u > 0 \) for strategy \(s \) in \(S \)
- \(\overline{\Psi}(n) = \min \{ \overline{\Psi}_s(n) : s \in S \} \): the smallest average ruin prob. by or at time \(n \) over 10 \(u > 0 \) among \(s \) in \(S \)
- \(GR_s(n) = \frac{\overline{G}_s(n)}{G(n)} \leq 1 \): a gain ratio for the study period \(n \) and strategy \(s \) in \(S \)
- \(RR_s(n) = \frac{\overline{\Psi}(n)}{\overline{\Psi}_s(n)} \leq 1 \): a ruin ratio for the study period \(n \) and strategy \(s \) in \(S \)
- \(\text{Index}_s(n) = GR_s(n) \times RR_s(n) \leq 1, s \in S \)
Conclusions for RR, GR and Index

• to maximize the average gain $\bar{G}_s(n)$, strategies w/o D or L imposed should be adopted; strategies w/o D produce higher gains than strategies with D; strategy $(2,1,1)$ is the overall best;

• to minimizing the average ruin probability $\bar{\Psi}_s(n)$ adopt a modified credibility premium (cred3); the best DL indicator and DL size modifier depends on the type of risk and tail distribution; strategy $(4,4,3)$ is the overall best;

• to maximize $Index_s(n)$, strategy $(4,3,3)$ is the overall best choice
Value at Risk: Definition

- \(\text{VaR}(\alpha) = \inf\{t: S_X(t) \leq \alpha\} = 100(1-\alpha) \text{th percentile of } X \) where \(S_X \) is the survival function (sf) of \(X \).
- \(\text{VaR}(\alpha) \) is non-increasing in \(\alpha \)
- for the continuous surplus process, \(\Psi(u) = S_Z(u) \), the sf of the maximal aggregate loss \(Z \).
- in our discrete time case, we similarly define \(\text{VaRs}(\alpha, n) = \inf\{u: \Psi_s(u,n) \leq \alpha\} \) for the confidence level \(1-\alpha \), study period \(n \) and strategy \(s \)
Value at Risk: Figure
Rates of Return

- total rates of return for \(u \) and \(n \) years

\[
TRR_s(u, n) = \frac{G_s(n)}{u} = \frac{U_s(u, n) - u}{u}
\]

- annualized rates of return for \(u \) and \(n \) years

\[
ARR_s(u, n) = \sqrt[n]{\frac{U_s(u, n)}{u}} - 1 = n\sqrt{TRR_s(u, n)} + 1 - 1
\]

- given \(\alpha \) and \(n \), we want

\[
\max_{s \in S} \frac{U(VaR_s(\alpha, n), n) - VaR_s(\alpha, n)}{VaR_s(\alpha, n)}
\]
Conclusions for ARR

- \(ARR_s(VaR_s(\alpha, n), n) \) is decreasing in \(n \) for most types of risks
- \(ARR_s(LF / HS) < ARR_s(MF / MS) < ARR_s(HF / LS) \) for all three tail types
- \(ARR_s(HT) < ARR_s(NT) < ARR_s(LT) \) for most cases of for all three mixtures of frequency and severity
Ordering Diagram Based on ARR

- HT / LF / HS < HT / MF / MS < HT / HF / LS
 - ^ ^ ^
 - NT / LF / HS < NT / MF / MS < NT / HF / LS
 - ^ ^ ^
 - LT / LF / HS < LT / MF / MS < LT / HF / LS

strategy (4, 3, 3) (cred3, L only, and M=3) is the overall best based on ARR for all cases
Overall Conclusions

- the schemes we have proposed can be applied by property and casualty insurers in a variety of business lines with individual claims following specific loss distributions.
- first identifies the risk attributes of the nine combinations of tail type, frequency and severity that best corresponds to its line of business;
- then decides which strategy should be adopted based on the maximization of gain, the minimization of ruin probability or both.