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Abstract 

Weather derivatives are a relatively recent innovation, but according to the 
Chicago Mercantile Exchange (CME), are the fastest growing derivative market today.  
They are used to manage weather related risks which previously were exclusively 
handled by insurance products, and represent the latest product in the continuing 
convergence of financial and insurance research and markets.  A weather derivative pays-
off based upon the realization of an underlying weather index, much like stock index 
based derivatives pays-off based upon a realization of the underlying stock index.  The 
pay-off from a weather derivative can offset losses generated by adverse weather 
conditions.  The use of these derivatives creates new risks, however, depending upon 
whether an exchange traded derivative or an over-the-counter (OTC) derivative is used.  
This paper examines the effectiveness of using a basis derivative strategy in conjunction 
with an exchange traded weather derivative to mitigate credit risk inherent in OTC 
transactions, and basis risk inherent in exchange-traded transactions. We examine the 
effectiveness of this strategy for summer and winter seasons, with both linear and 
nonlinear hedging instruments.  Finally, we compare the effectiveness obtained using the 
CME and Risk Management Solutions, Inc. (RMS) weather indices. Results show that 
hedging methods are significantly more effective for winter than for summer, for both the 
CME and RMS weather indices, and for both linear and nonlinear basis derivative 
instruments.  It is also found that the RMS regional weather indices are more effective 
than the CME weather indices for creating a basis hedging strategy, and that the 
effectiveness weather risk management can vary significantly by region of the country. 
 
Keywords:   credit (default) risk, basis risk, weather risk management, hedging 

effectiveness  
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1. Introduction 
In 1997, with the deregulation of the energy and power industries in the US, 

energy companies faced increased financial exposure due to weather changes.  While 

previously the regulated, monopolistic setting of the power industry allowed the financial 

consequences of weather risks to be absorbed in their allowed pricing, with deregulation 

such risks were now not necessarily compensated.  To address this problem, the first 

weather related financial instrument was created1.   

Essentially, certain market participants saw they could address the adverse 

consequences of weather-related events in a manner similar to the securitization process 

used to mitigate the adverse consequences of commodity price risk in the commodity 

market.  By measuring and indexing various weather recordings across the US, one could 

create financial instruments whose pay off values were dependent upon the level of the 

recorded underlying weather index.   

Initially, only Over-the-Counter (OTC) trades on such derivative instruments 

were made; however in 1999, financial exchange-traded weather futures, and options on 

futures, began to be offered on the Chicago Mercantile Exchange (CME).  While OTC 

transactions, being private transactions, carry credit risk (the potential of counter-party 

default on the contract), CME transactions are contracts traded on the open market, are 

marked to the market, are guaranteed by the exchange, and do not carry credit (default) 

risk.  

On the other hand, by being constructed as standardized in form and in the 

location of the weather station reading underlying the weather index used for the CME 

contract, the weather derivative contracts traded on the CME possess a different risk: 
                                                 
1   This was a weather derivative contract based on Heating Degree Days in Milwaukee between Koch 
Industries and Enron Corporation (see Climetrics, RMS Inc. at www.climetrics.com)  
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basis risk. Basis risk for a market participant using a particular weather-indexed 

derivative involves the possibility that the location of the source of weather data used to 

specify the weather index underlying the derivative contract may not precisely match the 

location of the enterprise’s exposure to weather related loss.  Thus, an underlying 

substantive characteristic (or basis) of the contract may not match the location of the 

source of risk. 

Managing weather risk by trading weather derivatives is a rapidly growing 

business (c.f., Brockett, Wang, and Yang 2005; Golden, Wang and Yang 2007).  Indeed, 

the US Department of Commerce estimates that almost one third of all businesses are 

affected by weather related risks2, and in 2007 about 730,000 weather derivative 

contracts were traded worldwide3.  The total value of weather contracts traded on the 

CME in 2006 was $45.2 billion (USA Today 2008).  

In a weather derivative transaction, variables such as temperature, precipitation, 

wind or snow are measured and indexed covering a specified amount of time at a 

specified location.  A threshold limit regarding the actionable level of the measured 

variable is agreed upon by the buyer and seller. If the threshold limit is exceeded during 

the set timeframe, the buyer receives payment.  If the weather variable does not exceed 

the limit, the seller keeps the premium paid by the buyer. 

The most common weather derivatives are contracts based on indices that involve 

Heating Degree Days (HDD) for the winter season and Cooling Degree Days (CDD) for 

the summer season.  Using 65°F as the baseline, HDD and CDD values are determined 

by subtracting the day’s average temperature from 65°F for HDD and subtracting 65°F 

                                                 
2 See http://www.guaranteedweather.com 
3 According to the Weather Risk Management Association as quoted in USA Today 2008. 
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from the day’s average temperature for CDD values. If the temperature exceeds 65°F in 

the winter the HDD is 0; if the temperature is lower than 65°F in the summer the CDD is 

0 (since one does not need to heat in the winter if the temperature is above 65°F, and one 

does not need to cool in the summer if the temperature is below 65°F).  The CME creates 

HDD and CDD derivative instruments based upon temperature index values centered in 

fifteen US cities (see Appendix I).  Another company, Risk Management Solutions, Inc. 

(RMS)4 also supplies CDD and HDD indices for the management of weather risk. RMS 

produces ten regional indices; each is created by averaging the temperature index values 

centered in ten chosen cities within the region.  Derivative instruments can be created 

from the RMS indices as well. 

Since the financial impact of short bursts of cold or hot weather can be absorbed 

by most firms, most weather derivatives accumulate the HDDs or CDDs over a specified 

contract period, such as, one week, one month, or a winter/summer season. To calculate 

the degree days over a multi-day period, one aggregates the daily degree measure for 

each day in that period (c.f., Golden, Wang and Yang 2007 for the requisite formulae and 

for further discussion).  

Initially, energy companies were the main enterprises hedging weather risk by 

trading weather derivatives.  Today, diverse enterprises such as resorts, hotels, 

restaurants, universities, governments, airlines, farming and others are using weather 

derivatives to manage risk.  As the market for trading weather risk continues to grow, the 

enterprises who hedge weather risk using exchange-traded contracts want to minimize 

                                                 
4  Risk Management Solutions, Inc. is the world's leading provider of products and services for the 
quantification and management of natural hazard risks. 
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their basis risk and conversely, those who hedge using OTC contracts want to minimize 

their credit (counterparty default risk). 

Briys, Crouhy, and Schlesinger, 1993; Poitras, 1993; Moschini and Lapan, 1995; 

Vukina, Li, and Holthausen, 1996; Li and Vukina, 1998; Coble, Heifner, and Zuniga, 

2000 have conducted studies related to the problem of optimal hedging of basis risk.  

Other studies have analyzed optimal hedging strategies when the hedging enterprise faces 

credit risk.  (cf., Hentschel and Smith, 1997). Additional research has investigated the 

demand for insurance by policyholders who purchase insurance from credit-risky insurers 

but without consideration of basis risk (see, for example, Tapiero, Kahane, and Jacque, 

1986; and Doherty and Schlesinger, 1990).  

There is an OTC derivative instrument that mitigates the basis risk inherent in 

exchange-traded weather derivatives and lessens the hedger’s credit risk exposure 

compared to just using an OTC weather derivative. The hedging instrument is called a 

basis derivative (cf., Considine, 2000; MacMinn, 2000).  This OTC basis derivative 

combines a local temperature index and an exchange-traded temperature index to 

moderate the impact of the temperature difference between the location of the exchange-

traded derivative and the local weather index.  Using a basis derivative in conjunction 

with an exchange traded derivative can improve the basis risk exposure faced by the 

hedging enterprise.  Although the hedging enterprise again faces credit risk (basis 

derivatives are traded OTC) the basis derivative instrument is expected to be less volatile, 

being the difference between the local index and the exchange traded index.  This 

stability should lessen the enterprise’s credit risk exposure compared to an OTC weather 

contract written directly on the local index.   
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Additionally, when the basis derivative instrument is used in conjunction with an 

exchange-traded derivative it should improve the hedging enterprise’s basis risk position 

over the exchange-traded contract because it is calculated based on the difference 

between the specific location weather index and the closest regional location.  By setting 

up mathematical models and varying the model parameters in a simulation study, Golden, 

Wang and Yang (2007) analyzed the joint impact of basis risk and the tradeoff between 

basis risk and credit (default) risk regarding the effectiveness of the linear and nonlinear 

hedging models.  The actual indices used for trade, however, may behave slightly 

differently than the model-based indices, so it remains to examine the results for the real 

series and to ascertain if either of the two indices (CME or RMS) is superior regarding 

region, index or season.   

Accordingly, this paper empirically analyzes the effectiveness of using linear and 

nonlinear5 basis hedging instruments developed using either the CME or RMS weather 

indices.  Effectiveness is examined by: region of the country, source of the weather index 

used (CME or RMS), season of the year (summer or winter), as well as examining any 

potential interactive effects such as region by index, season by index , region by season, 

or region by index by season.  

2. Weather Hedging Models  

We adopt the utility-based hedging models from Golden, Wang and Yang (2007) 

with some modifications.  We assume the enterprise is attempting to hedge the negative 

effects weather-related events may have on the quantity demanded of their product or 

service. (e.g., energy producers need to hedge demand risk due to variations in the 

                                                 
5 By linear hedging instruments we mean derivative contracts such as futures and forwards whose pay off is 
linear in structure.  By nonlinear hedging instruments we mean derivative contracts such as options whose 
pay off is nonlinear (e.g., zero below the exercise threshold and linear thereafter). 
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quantity of energy demanded as a function of the weather, or a ski resort has interest in 

hedging against too many warm weather days, etc.)  We assume that the risk in the 

quantity demanded ( ) is mainly effected by a weather event, and we assume that the 

hedging enterprise wishes to choose weather derivatives to maximize an objective 

function defined to be the end of period terminal wealth. 

q

To hedge against the risk of a weather related loss, an enterprise will choose one 

or a combination of the following strategies. 

A.  Use an OTC derivative that is location specific to the site facing the 

weather risk.  This carries counterparty credit (default) risk but no basis 

risk.  

B. Use an exchange-traded derivative based on a regional weather data index 

or based on one of CME’s fifteen city weather index.  This strategy 

carries basis risk but no credit (default) risk.  

C. Employ a combination strategy and buy an exchange-traded derivative to 

mitigate the majority of the weather-related risk at minimal credit risk, 

and then supplement this with an OTC basis hedging derivative designed 

to decrease the enterprise’s basis risk. 

This third strategy, C, is intended to reduce the risk of weather-related loss while 

simultaneously improving the credit (default) risk by creating a hedge that corrects for 

the difference between CME traded derivatives and OCT local weather derivatives. 

Analyzing the effectiveness of this third strategy is the focus of this paper. 

 In order to analyze the impact of credit risk, we need to model the likelihood of 

counterparty default.  To this end, let θ  denote the proportion of the required payoff on a 
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weather derivative that will actually be paid to the hedging enterprise. Here, we take θ  as 

either 1 or 0 (i.e., the counterparty either performs entirely or fails to perform entirely). 

The probability distribution of θ  is defined as pob == )1(Pr θ  and pob −== 1)0(Pr θ . 

The default risk is represented by pob −== 1)0(Pr θ . The hedging enterprise and the 

weather derivative issuer may have different perceptions about the issuer’s default risk, 

but through the process of resolving a price and entering into a weather derivative 

contract, they essentially agree to a subjective probability distribution for the issuer’s 

default risk (possibly only implied). This subjective or market probability distribution is 

defined as spob == )1(Pr θ  and for default risk spob −== 1)0(Pr θ . The subjectively 

agreed upon common non-default risk parameter  may or may not be the same as the 

“true” or real likelihood of non-default 

sp

p . 

Our analysis employs a mean-variance approximation to the hedger’s utility based 

objective function; , where W  denotes the hedger’s e

of period wealth and 0>

)|( θW)| 2λσθW −(E)|( θWu nd =

λ  denotes the hedger’s risk aversion parameter.  It is assum

that the market sets prices such that the observed prices reflect the expected value of th

pay off including expenses and profit loadings (referred to as actuarially fair or unbiased 

pricing).  

ed 

e 

lt

)0,lt−

)0

To compare the effectiveness of using of a basis derivative, we first consider the 

baseline situation, A above, wherein a linear OTC weather derivative contract drawn on a 

local weather index is used.  Let  be the strike price of the contract, and let  denote 

the local weather index used to write the contract.  Let denote the 

payoff for a put option on the weather index, and denote the payoff 

lT

max(p
lr =

max( l
c

l tr −=

lT

,lT
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for a call option on the weather index.  Let  denote the hedge ratio used for the local 

weather forward derivative contract.   

lllh −

(lllh

Without consideration of credit (default) risk, the final wealth resulting from a 

hedged forward contract with a price of )][ ll tTE −− is simply 

)()]([ llllllllll tThtThEqW −+−−= −−  where q represents the (uncertain and weather 

related) demand quantity.6  However, taking into consideration the possibility of credit 

(default) risk, this final wealth is  

)()]([ c
lll

c
l

p
llll rhrrhEqW +−−= −− θθ l

p
l r− ,          (1)  

since default on the contract only occurs if the counterparty is forced to pay (when 

> ), and in this situation default occurs with probabilitylT lt θ .  

Suppose now that the weather related quantity of goods or services demanded of 

the enterprise employing the hedging strategy can be decomposed such that there is a 

portion which is systematically related to the local weather index and a portion which 

constitutes non-systematic or idiosyncratic non-weather dependent individual variation in 

demand (see, for example, Davis, 2001). This may occur, for example, because of the 

particular sensitivities of the hedging enterprise (e.g., better insulation, better snow 

plows, etc.).  We express this relationship as εβα ++q lt= , where  is the 

non-systematic quantity risk, which is assumed to be independent of the weather indices.  

The optimal hedging problem is: 

),0(~ 2
εσε N

)|()|( 2 θλσθ WWEMAX
lh − ,  

                                                 
6 We assume that the hedger’s price risk has been totally hedged by other instruments. Thus, the weather 
hedging problem is equivalent to hedging the quantity risk only. The tick sizes of all the weather 
derivatives in this paper are assumed to be one. 
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subject to spob == )1(Pr θ . 

Performing the maximization using (1) we derive the optimal hedge ratio as7 

c
l

p
l

p
l

c
l

p
l

c
ll

p
ll

rrsrssrrs

rtrts
lll pppp

p
h

,
2222

,,*

2)( σμσσ

βσβσ

−−++

+−
=− .             (2) 

 In an unbiased market with prices set at their expected values, the mean-variance 

objective ( ) is equivalent to a variance minimization 

objective ( ). The minimum variance of the hedger’s final wealth when 

using the OTC contract and the linear local hedging strategy with credit risk is 

, subject to 

)|()|( 2 θλσθ WWEMAX h −

)|(2 θσ WMINh

)]([ *
lllhWVar − obmin llV − = p== )1(Pr θ . That is,  

c
ll

p
ll

c
l

p
l

p
l

c
l

p
ll

ttlllrtlllrrlll

rlllrlllrllltll

hphph

pphhphV

,
*

,
*

,
2*

222*22*22*222
min

222

)(

βσσβσ

μσσσσβ ε

−−−

−−−−

−+−

−++++=
.        (3) 

We turn now to the exchange traded weather hedging alternative involving the use 

of an exchange-traded linear contract.  This contract involves basis risk, so we also add 

an adjustment compensating for basis risk via a basis derivative risk hedge that “corrects” 

for the difference between the local weather index tl  required for the hedging 

enterprise and the index  used by the exchange in creating a traded derivative.  This 

“correction” is done by creating an OTC contract with strike price  based on the 

difference in indices  ( ).  The resulting hedging model (for strategy C) is 

el tt −

dt

et

dt

dT

el tt −=

)()(

)]([)]([
c

d
p

dlbdeelbe

c
d

p
dlbdeelbe

rrhtTh

rrhEtThEqW

−+−+

−−−−=

−−

−−

θ

θ
,            (4) 

                                                 
7  Details of this and other optimizations which are not provided in the paper can be obtained from the 
authors. 
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where  and with the put and call derivate 

designation being symbolized by superscripts.  Here.  and  are the hedge ratios 

of the exchange-traded weather futures contract and the basis weather forward, 

respectively. The optimal hedging problem in strategy C involves optimally selecting a 

hedge ratio for both the exchange traded derivative and for the basis derivative 

simultaneously; i.e., , subject to 

)0,max( dd
p

d tTr −=

MAX
eh

)0,max( dd
c

d Ttr −=

|()|( 2λσθ WWE
lb

−
−

lbeh −

)θ

lbdh −

, dlb h− spob == )1(Pr θ . 

Upon maximization, the optimal linear basis hedge ratios are determined to be 
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Similarly, the minimum variance of the final wealth when using linear basis hedging is 

, subject to )],([ **
min lbdlbelb hhWVarV −−− = pob == )1(Pr θ . That is,  

c
de

p
de

c
dl

p
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p
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Turning now to the nonlinear local and basis hedging models (i.e., those involving 

instruments with nonlinear payoff functions such as put and call options) we write  

p
lnll

p
lnll rhrhEqW −− +−= θθ )( ,             (8)   

and  

p
dnbd

p
enbe

p
enbe

p
dnbd rhrhrhErhEqW −−−− ++−−= θθ )()( .    (9) 
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where  and  denote the nonlinear local hedging and the nonlinear basis hedging 

respectively. In a manner similar to the derivations in Golden, Wang and Yang (2007) 

and to the derivation of (2)-(3) and (5)-(7), we can obtain the optimal nonlinear hedge 

ratios and the nonlinear local and basis minimum final wealth variances: 

nl nb

22
,*

**

*

)1( p
l

p
l

p
ll

rsr

rt
nll p

h
μσ

βσ

−+

−
=− ,                (10) 

222
,

22

2
,,,*

******

*****

)1()1( p
d

p
e

p
d

p
e

p
d

p
e

p
e

p
dl

p
d

p
e

p
el

rrsrrsrr

rrtrrrt
nbd pp

h
μσρσσ

σβσσβσ

−+−

−
=− ,          (11)  

222
,

22

2
,,,,

2

*

******

*******

)1()1(

)1(

p
d

p
e

p
d

p
e

p
d

p
e

p
d

p
el

p
d

p
e

p
dl

p
el

p
d

rrsrrsrr

rrtrrrtsrtrs

nbe pp

pp
h

μσρσσ

σβσσβσσβμ

−+−

−+−
=− ,   (12) 

*

**

,
*

222*22*222
min

2

)(

p
ll

p
l

p
ll

rtnll

rnllrnlltnl

ph

pphphV

σβ

μσσσβ ε

−

−−−

+

−+++=
,     (13) 

and  

****

***

,
**

,
*

,
*

222*22*22*222
min

222

)(

p
d

p
e

p
dl

p
el

p
d

p
d

p
el

rrnbdnbertnbdrtnbe

rnbdrnbdrnbetnb

phhphh

pphphhV

σσββσ

μσσσσβ ε

−−−−

−−−−

+++

−++++=
,  (14) 

where, ,   and  are the payoffs of the put options with optimal strike prices*p
lr

*p
er

*p
dr

8.  

The hedging effectiveness of the linear and nonlinear basis hedging is measured 

by  

ll

lbll

V
VV

−

−− −

min

minmin         (15) 

and  

                                                 
8 The optimal strike prices were determined by simulation. 
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nl

nbnl

V
VV

−

−− −

min

minmin         (16) 

respectively.  These ratios express the extent to which the use of the basis derivative in 

conjunction with an exchange traded derivative (strategy C) has reduced the uncertainty 

in final wealth compared to the simpler hedging strategy A that uses a local weather 

index with associated credit (default) risk. While the formulae to this point are general, in 

the numerical empirical results which follow we shall assume a strong dependence of 

demand on weather ( ) and, by rescaling if necessary, that 02 =εσ 1=β .  

3. Weather Data Used for Empirical Analysis9  

 The CME offers futures and options on futures for fifteen selected cities 

throughout the United States (see Appendix I). The CME selected these cities because of 

population, variability in their seasonal temperatures, and their extensive use in OTC 

derivative trading.  On the other hand, the RMS framework is comprised of ten indices 

made up of data gathered from ten regions with ten cities in each region.   The RMS 

selected these regions because they represent significant meteorological patterns, 

predominant weather risk trading places, population, and correlations with other weather 

stations throughout the regions.  To construct a weather index for a particular region, 

RMS collects HDD and CDD data from ten city weather stations within the region and 

averages them.10     

 There are 100 separate city weather records used in the RMS data set.  Of these, 

13 are locations that are also used by the CME derivative products, (and hence would 

have no basis risk when compared to the CME index).  Accordingly, we have used the 87 
                                                 
9 Data provided by Earth Satellite Corporation, the weather data provider to the CME and  RMS. 
10 The RMS regional indices are not currently exchange traded, however OTC contracts can be created 
using them. 
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remaining city locations for the comparative assessment of basis risk hedging 

effectiveness.  The most common contract terms in the weather derivative market are 

seasonal (summer season and winter season), monthly, and weekly.11  In this paper, we 

only consider seasonal contracts.12  The CME index is either an HDD or CDD index for 

the particular city being traded.  We compare the RMS indices with the CME indices to 

determine which index provides better basis hedging results. 

4. Results 

The analysis presented in this paper concerns the effectiveness of basis hedging 

under the assumption that the subjective perceived counterparty default risk probability ps 

(which was incorporated into the weather derivative contract’s price) is the same as the 

actual likelihood of default p, that is, when the market implied default risk is the true 

default risk.13  For the CME index, concerning the computation of the basis hedging 

effectiveness for a basis derivative centered at any of the 87 local cities, there would be 

fifteen different CME based city indices (with derivative instruments) against which the 

basis hedging effectiveness could be compared. CME table entries in Appendix II are the 

maximum  comparison measurements obtained using the fifteen CME city indices.  This 

is done because the closest of the fifteen cities geographically may not be the best city 

index to use for basis risk hedging.  

                                                 
11 See Climetrix, RMS, at www.climetrix.com.  
12 Winter season is November 1 through March 31, and summer season is May 1 through September 30. 
April and October are often referred to as the shoulder months, and not considered in this paper. 
13 Three alternative default risk levels were considered: pob −== 1)0(Pr θ  = 0.10, 0.05, and 0.01.  There 
was no statistically significant difference between the effectiveness of basis risk hedging in either the linear 
or nonlinear hedging scenario across the three default risk levels, and hence in all that follows only the 
results for the default risk level p=.05 are presented. Also examined was the scenario wherein the hedger 
assumed there would be no default risk and the market actually had default risk (a mismatch between the 
subjective assessment of risk and the true risk).  These latter results are not presented here but are available 
from the authors. 
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 Similarly, in computing an RMS index for any given city, there are ten 

measurements of basis hedging effectiveness obtained by using the ten RMS regional 

weather indices and the RMS basis hedging effectiveness for a city is defined as the 

maximum of these ten measurements.  Appendix II presents the computed effectiveness 

measure for the 87 cities in the summer and winter seasons using both the CME and RMS 

weather indices and utilizing both linear and nonlinear basis hedging. 

A three-way Analysis of Variance (ANOVA) ascertained if region of the country, 

season of the year, or the weather index used (CME or RMS) had a statistically 

significant impact on the effectiveness of using basis risk derivatives with respect to 

hedging the uncertainty in final wealth.  Separate ANOVAs were carried out for linear 

hedging [equation (15)] and nonlinear hedging [equation (16)] effectiveness.  Also 

considered was the possibility of interaction effects (e.g., it might be that RMS is more 

effective in the Northeast during the winter, etc.), so interactions were also assessed 

statistically.  The outcomes of these analyses are presented in Table 1. 
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Table 1.  ANOVA of the Effectiveness of Basis Risk Hedging According to Region, 
Index and Season for Linear (forwards and futures) Hedging Instruments and 
Nonlinear (options) Hedging Instruments. 
 
Source   DF  Sum of Squares F-Value       p < 

Linear Hedging Effectivenessa 
Modelb

 39 27.00 2.48 .0001 
Region 9 14.71 5.86 .0001 
Index 1 2.74 9.81 .0019 
Season 1 3.07 11.01 .0010 
Region x Index 9 1.12 0.45 .9082 
Region x Season 9 4.23 1.68 .0921 
Index x Season 1 0.59 2.12 .1464 
3-way interaction 9 0.53 0.21 .9928 
Error 308 85.99   

Non-Linear Hedging Effectiveness c 

Modeld  39 14.28 6.10 .0001 
Region 9 7.33 13.57 .0001 
Index 1 1.28 21.24 .0001 
Season 1 3.89 64.69 .0001 
Region x Index 9 0.59 1.09 .3681 
Region x Season 9 0.60 1.12 .3492 
Index x Season 1 0.37 6.21 .0132 
3-way interaction 9 0.22 0.41 .9271 
Error 308 18.50   
                                                 
a The dependent variable is the effectiveness measure (15) 
b R 2 = 0.24 
c The dependent variable is the effectiveness measure (16) 
d R 2 = 0.44 

 

As can be observed, the models incorporating region, season and index explain a 

highly significant amount of the variance in the effectiveness of hedging uncertainty in 

both the linear hedging and nonlinear hedging contexts (p<.0001).  Moreover, the main 

effects of region, index used and season were all statistically significant for both linear 
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and nonlinear hedging methods.  This implies that that the levels of basis risk hedging 

effectiveness differed significantly across regions, seasons, and indices used.  For 

example, the average effectiveness measure for the CME index in the winter season in 

the Northeast region is much higher than the average effectiveness for the CME index in 

the winter season in the Southeast region.  Figure 1 presents the average effectiveness 

measure for linear basis risk hedging across seasons and across regions, and Figure 2 

presents the same information for nonlinear basis risk hedging. 

 

Figure 1 Average Effectiveness Of Linear Basis Hedging
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Figure 2 Average Effectiveness of Nonlinear Basis Hedging 
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 From the ANOVA table we observe that there was also a marginally significant 

interaction between region and season for linear hedging instruments and a significant 

interaction between index used and season for nonlinear hedging instruments.  All other 

interaction effects were not statistically significant.  

 To illustrate the seasonal effect on hedging effectiveness using linear derivatives, 

Figure 3 presents the difference in linear basis hedging effectiveness for the winter and 

summer seasons. We observe that the linear basis hedging for the winter season is 

generally more effective than for the summer season.   Similarly, Figure 4 shows the 

difference between the effectiveness for the CME index using nonlinear hedging 

instruments, and again shows that basis risk hedging is more effective during the winter 

than during the summer.  The ANOVA results show these differences are significant. 
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Figure 3: The difference in CME linear basis risk hedging effectiveness between 
winter and summer seasons (LHEwinter - LHEsummer).  
(Miami, FL with a value of -6.13 is not shown in this figure.) 
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Figure 4: The difference in CME nonlinear basis risk hedging effectiveness between 
winter and summer seasons (NHEwinter – NHEsummer).  
(Miami, FL with a value of -1.27 is not shown in this figure.) 
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5. Effectiveness of the CME Indices Compared to RMS Indices for Basis Hedging 

The difference in the linear basis hedging effectiveness for winter and summer 

seasons using the CME and the RMS indices is displayed in Figures 5 and 6.  Consistent 

with the significant main effect of index in the ANOVA, we observe that, in general, 

linear basis hedging is more effective using weather derivatives written on the RMS 

indices than the CME indices. For the winter season, linear basis hedging is more 

effective using weather derivatives written on the RMS indices for 67 of the 87 cities; 

and there are nearly 30 cities whose linear basis hedging effectiveness is at least 0.10 

higher using the RMS indices than using the CME indices. The difference is only 0.05 or 

less for 13 of the 20 cities whose linear basis hedging effectiveness is higher using the 

CME indices. The difference in linear basis hedging effectiveness between the CME and 

the RMS indices is more pronounced for the summer season. The linear basis hedging 

model is more effective using weather derivatives written on the RMS indices for 80 of 

the 87 cities for the summer season; and there are more than 60 cities whose linear basis 

hedging effectiveness is at least 0.10 higher using the RMS indices. 
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Figure 5: The difference in linear basis hedging effectiveness between the CME and 
the RMS winter season indices (LHERMS – LHECME).  
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Figure 6: The difference in the linear basis hedging effectiveness between the CME 
and the RMS summer season indices (LHERMS – LHECME).  
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Similar results apply to the nonlinear basis hedging model. The difference in the 

nonlinear basis hedging effectiveness between the CME and the RMS indices for winter 

 21



Addressing Credit and Basis Risk in Weather Derivatives 

and summer seasons is displayed in Figures 7 and 8. Generally, the nonlinear basis 

hedging is also more effective using weather derivatives written on the RMS indices than 

the CME indices.  In addition, the difference exhibits a pattern similar to the linear basis 

hedging model effectiveness. The nonlinear basis hedging model is more effective using 

weather derivatives written on the RMS indices for 64 of the 87 cities for the winter 

season, and 75 of the 87 cities for the summer season.  

Figure 7: The difference in nonlinear basis hedging effectiveness between the RMS 
and the CME winter season indices (NHERMS – NHECME).  
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Figure 8: The difference in nonlinear basis hedging effectiveness between the RMS 
and the CME summer season indices (NHERMS – NHECME). 
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6. Conclusion 

This paper has explored the effectiveness of using a basis derivative hedging 

strategy (involving either linear or nonlinear derivative instruments) in an attempt to 

mitigate both credit and basis risks inherent in OTC and exchange-traded weather 

derivatives. We find, using actual weather data, that linear and nonlinear basis hedging 

are both much more effective for the winter season than for the summer season, a finding 

which should be of use to potential hedgers deciding whether or not to use weather 

derivatives and how to implement a weather derivative strategy.  

This article shows that the effectiveness of hedging using a basis risk derivative 

varies significantly across regions of the country.  Moreover, concerning the 

effectiveness difference between the two most popular types of standardized weather 

indices, generally the RMS regional indices are more effective than the CME city indices 

for implementing a basis hedging strategy. These results have important implications for 
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determining which type of index to use to create a hedging strategy to control weather 

related financial consequences for enterprises contemplating weather risk management in 

different parts of the United States and in different seasons. 
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Appendix I: The CME Trading Cities and Weather Stations 
 
Station Name Symbol Region State City 
Atlanta Hartsfield International Airport ATL Southeast GA Atlanta 
Boston Logan International Airport BOS Northeast MA Boston 
Chicago O'Hare International Airport ORD Midwest IL Chicago 
Cincinnati Northern Kentucky Airport CVG Midwest KY Covington 
Dallas-Fort Worth International Airport DFW South Central TX Dallas 
Des Moines International Airport DSM Plains IA Des Moines 
Houston Bush Intercontinental Airport IAH South Central TX Houston 
Kansas City International Airport MCI Plains MO Kansas City 
Las Vegas McCarran International Airport LAS Southwest NV Las Vegas 
Minneapolis-St. Paul International Airport MSP Northern Plains MN Minneapolis 
New York La Guardia Airport LGA Northeast NY New York 
Philadelphia International Airport PHL Mid-Atlantic PA Philadelphia
Portland International Airport PDX Pacific Northwest OR Portland 
Sacramento Executive Airport SAC Southwest CA Sacramento 
Tucson International Airport TUS Southwest AZ Tucson 
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Appendix II: The Effectiveness of Basis Risk Hedging for 87 cities 
 

   

Linear Hedging of Basis 
Risk 

Nonlinear Hedging of 
Basis Risk 

   Winter Summer Winter Summer 

Region State City name CME RMS CME RMS CME RMS CME RMS

Mid-Atlantic NJ Atlantic City 0.88 0.94 -0.1 0.16 0.9 0.89 0.03 0.28 

Mid-Atlantic MD Baltimore 0.88 0.9 0.77 0.89 0.88 0.89 0.78 0.8 

Mid-Atlantic WV Charleston 0.68 0.85 0.81 0.76 0.82 0.86 0.77 0.8 

Mid-Atlantic NJ Newark 0.91 0.95 0.57 0.74 0.91 0.93 0.64 0.7 

Mid-Atlantic PA Pittsburgh 0.92 0.93 0.66 0.83 0.91 0.88 0.83 0.86 

Mid-Atlantic VA Richmond 0.8 0.91 0.48 0.77 0.8 0.93 0.44 0.77 

Mid-Atlantic VA Roanoke 0.8 0.89 0.53 0.8 0.72 0.78 0.63 0.72 

Mid-Atlantic VA Dulles 0.89 0.93 0.59 0.81 0.85 0.93 0.59 0.84 

Mid-Atlantic PA Williamsport 0.88 0.93 0.55 0.69 0.85 0.91 0.71 0.74 

Midwest OH Columbus 0.94 0.91 0.69 0.84 0.93 0.92 0.74 0.85 

Midwest MI Detroit 0.93 0.96 0.68 0.87 0.84 0.93 0.77 0.92 

Midwest MI Grand Rapids 0.76 0.86 0.64 0.8 0.81 0.9 0.62 0.68 

Midwest IN Indianapolis 0.95 0.97 0.83 0.94 0.94 0.97 0.91 0.91 

Midwest KY Louisville 0.88 0.86 0.73 0.79 0.85 0.87 0.81 0.81 

Midwest WI Madison 0.94 0.9 0.77 0.77 0.94 0.87 0.88 0.83 

Midwest WI Milwaukee 0.93 0.95 0.68 0.73 0.94 0.92 0.71 0.78 

Midwest IL Peoria 0.91 0.94 0.71 0.8 0.92 0.89 0.87 0.81 

Mountain States ID Boise 0.52 0.68 0.43 0.55 0.42 0.58 0.31 0.63 

Mountain States WY Casper 0.51 0.8 -0.2 0.66 0.66 0.83 -0.1 0.55 

Mountain States WY Cheyenne 0.51 0.84 -0.8 0.52 0.7 0.78 -0 0.56 

Mountain States CO Colorado Springs 0.54 0.68 -0.6 0.41 0.76 0.82 0.2 0.24 

Mountain States CO Grand Junction 0.24 0.42 -0.3 0.66 0.61 0.65 0.02 0.67 

Mountain States ID Pocatello 0.47 0.73 0.22 0.74 0.46 0.74 0.02 0.81 

Mountain States CO Pueblo 0.36 0.61 -0.1 0.38 0.45 0.64 -0 0.15 

Mountain States NV Reno 0.58 0.44 0.21 0.42 0.77 0.66 0.34 0.45 

Mountain States UT Salt Lake City 0.52 0.77 0.18 0.72 0.36 0.57 0.37 0.74 

Mountain States NV Winnemucca 0.39 0.54 0.41 0.56 0.68 0.71 -0.1 0.4 

Northeast NY Albany 0.91 0.97 0.46 0.7 0.91 0.95 0.2 0.79 

Northeast VT Burlington 0.9 0.95 0.13 0.73 0.79 0.86 0.4 0.77 

Northeast NH Concord 0.89 0.96 -0.6 0.52 0.88 0.94 0.12 0.58 

Northeast CT Hartford 0.94 0.97 0.56 0.92 0.94 0.95 0.59 0.87 

Northeast NY New York City 0.95 0.96 0.63 0.76 0.87 0.94 0.63 0.73 

Northeast NY New York City 0.91 0.9 0.66 0.74 0.85 0.84 0.73 0.8 

Northeast ME Portland 0.95 0.95 -0.1 0.66 0.84 0.91 0.45 0.75 

Northeast RI Providence 0.93 0.96 0.51 0.83 0.88 0.93 0.87 0.82 

Northeast NY Rochester 0.86 0.95 0.52 0.83 0.85 0.94 0.57 0.79 
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Linear Hedging of Basis 
Risk 

Nonlinear Hedging of 
Basis Risk 

   Winter Summer Winter Summer 

Region State City name CME RMS CME RMS CME RMS CME RMS

Northern Plains MT Billings 0.66 0.86 0.09 0.65 0.66 0.83 0.36 0.74 

Northern Plains ND Bismarck 0.79 0.91 0.6 0.83 0.83 0.88 0.57 0.74 

Northern Plains MN Duluth 0.86 0.8 -0.5 0.29 0.88 0.74 0.34 0.72 

Northern Plains ND Fargo 0.88 0.89 0.67 0.73 0.89 0.91 0.88 0.87 

Northern Plains MT Helena 0.44 0.7 0.02 0.65 0.62 0.78 0.27 0.77 

Northern Plains MT Missoula 0.58 0.72 0.21 0.44 0.79 0.84 0.26 0.54 

Northern Plains SD Rapid City 0.79 0.93 0.63 0.81 0.75 0.83 0.68 0.83 

Northern Plains MN Rochester 0.97 0.89 0.66 0.67 0.94 0.9 0.72 0.69 

Northern Plains SD Sioux Falls 0.88 0.86 0.76 0.66 0.89 0.89 0.78 0.78 

Pacific Northwest OR Eugene 0.71 0.73 0.58 0.55 0.7 0.77 0.31 0.55 

Pacific Northwest ID Lewiston 0.54 0.68 0.42 0.67 0.86 0.89 0.52 0.69 

Pacific Northwest OR Medford 0.38 0.44 0.66 0.73 0.59 0.63 0.56 0.76 

Pacific Northwest WA Olympia 0.8 0.78 -0.7 -1.1 0.88 0.84 -0.3 -0.6 

Pacific Northwest OR Pendleton 0.7 0.79 0.65 0.86 0.81 0.84 0.68 0.88 

Pacific Northwest OR Salem 0.85 0.8 0.71 0.78 0.86 0.89 0.8 0.73 

Pacific Northwest WA Seattle 0.63 0.6 0.59 0.35 0.8 0.78 -0.3 0.05 

Pacific Northwest WA Spokane 0.74 0.82 0.49 0.81 0.83 0.89 0.54 0.79 

Pacific Northwest WA Yakima 0.69 0.79 0.55 0.82 0.79 0.81 0.57 0.84 

Plains MO Columbia 0.87 0.89 0.66 0.87 0.89 0.89 0.85 0.87 

Plains KS Dodge City 0.59 0.65 0.53 0.66 0.65 0.73 0.58 0.67 

Plains IA Dubuque 0.93 0.84 0.77 0.68 0.95 0.86 0.88 0.81 

Plains NE North Platte 0.71 0.77 0.47 0.67 0.74 0.8 0.44 0.69 

Plains NE Omaha 0.91 0.89 0.74 0.77 0.91 0.89 0.73 0.74 

Plains IL Springfield 0.9 0.91 0.65 0.7 0.92 0.93 0.68 0.7 

Plains MO St. Louis 0.92 0.92 0.72 0.82 0.93 0.94 0.78 0.84 

Plains KS Topeka 0.96 0.97 0.75 0.87 0.94 0.97 0.8 0.72 

Plains KS Wichita 0.84 0.88 0.48 0.6 0.86 0.86 0.76 0.78 

South Central LA Baton Rouge 0.69 0.83 0.41 0.52 0.63 0.72 0.6 0.69 

South Central AR Little Rock 0.86 0.89 0.51 0.79 0.88 0.93 0.64 0.83 

South Central TX Lubbock 0.82 0.75 -0.4 0.25 0.78 0.72 0.14 0.33 

South Central LA New Orleans 0.73 0.72 0.64 0.56 0.7 0.71 0.48 0.7 

South Central OK Oklahoma City 0.86 0.83 0.57 0.67 0.86 0.86 0.85 0.87 

South Central TX San Antonio 0.87 0.81 0.05 0.42 0.89 0.79 -0.1 0.2 

South Central LA Shreveport 0.83 0.91 0.64 0.79 0.84 0.95 0.84 0.92 

South Central OK Tulsa 0.77 0.75 0.46 0.64 0.76 0.78 0.69 0.7 

Southeast AL Birmingham 0.81 0.91 0.55 0.81 0.85 0.92 0.71 0.77 

Southeast SC Charleston 0.63 0.88 -0.1 0.68 0.72 0.83 0.39 0.79 

Southeast NC Charlotte 0.61 0.82 0.27 0.49 0.79 0.87 0.37 0.66 
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Linear Hedging of Basis 
Risk 

Nonlinear Hedging of 
Basis Risk 

   Winter Summer Winter Summer 

Region State City name CME RMS CME RMS CME RMS CME RMS

Southeast MS Jackson 0.64 0.84 0.38 0.71 0.68 0.83 0.72 0.89 

Southeast FL Miami -6.2 -4.9 -0 0.04 -1.7 -0.6 -0.5 0.04 

Southeast AL Mobile 0.64 0.82 0.61 0.56 0.6 0.8 0.47 0.66 

Southeast TN Nashville 0.77 0.76 0.75 0.79 0.77 0.84 0.52 0.6 

Southeast NC Raleigh 0.67 0.88 0.34 0.81 0.75 0.89 0.34 0.72 

Southeast FL Tampa -0.1 0.58 -0.1 0 0.32 0.77 -0.2 0.01 

Southwest NM Albuquerque 0.6 0.46 0.03 0.33 0.55 0.43 -0.1 0.47 

Southwest CA Bakersfield 0 0.21 -0 0.41 0.5 0.17 0.03 0.07 

Southwest CA Fresno 0.52 0.67 0.29 0.57 0.11 0.21 0.53 0.6 

Southwest CA Long Beach -0.4 0.12 -0.1 0.28 0.72 0.75 -0 0.26 

Southwest CA Los Angeles 0.15 0.37 -0 0.13 0.65 0.64 0.2 0.37 

Southwest AZ Phoenix 0.53 0.61 -0 0.29 0.79 0.79 0.34 0.44 

Southwest AZ Winslow 0.42 0.39 0 0.34 0.34 0.34 0.17 0.55 

 


