Risk Margin for a Non-Life Insurance Run-Off

Mario V. Wüthrich

ASTIN Colloquium
Madrid, June 19-22, 2011
Claims reserving in non-life insurance

| a.y. \(i \) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|-------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1 | 13'109 | 7'246 | 982 | 706 | 358 | 257 | 339 | 161 | 334 | 172 | 35 | 205 | 56 | 32 | 2 | 7 | 1 |
| 2 | 14'457 | 7'581 | 589 | 487 | 124 | 74 | 128 | 50 | 474 | 12 | 72 | 63 | 141 | 286 | 2 | 10 |
| 3 | 16'075 | 6'597 | 1'081 | 299 | 154 | 551 | 29 | 21 | 16 | 65 | 98 | 415 | 280 | 24 | 27 |
| 4 | 15'682 | 7'782 | 1'001 | 587 | 477 | 179 | 44 | 18 | 65 | 240 | 7 | 64 | 4 | 17 |
| 5 | 16'551 | 7'155 | 921 | 946 | 473 | 69 | 168 | 198 | 220 | 17 | 6 | 4 | 7 |
| 6 | 15'439 | 8'357 | 1'070 | 451 | 822 | 15 | 21 | 30 | 559 | 54 | 18 | 123 |
| 7 | 14'629 | 7'016 | 1'181 | 773 | 1'393 | 442 | 42 | 73 | 55 | 105 | 14 |
| 8 | 17'585 | 8'703 | 1'335 | 316 | 396 | 303 | 77 | 44 | 766 | 777 |
| 9 | 17'419 | 8'522 | 1'125 | 695 | 282 | 434 | 244 | 157 | 70 |
| 10 | 16'665 | 8'705 | 1'539 | 702 | 118 | 132 | 1'969 | 14 |
| 11 | 15'471 | 8'274 | 1'372 | 1'261 | 593 | 425 | 84 |
| 12 | 15'103 | 8'290 | 3'416 | 882 | 370 | 1'122 |
| 13 | 14'540 | 8'102 | 929 | 556 | 83 |
| 14 | 14'590 | 7'746 | 1'104 | 589 |
| 15 | 13'967 | 7'548 | 1'088 |
| 16 | 12'930 | 7'181 |
| 17 | 12'539 |

Table: Observed incremental payments \(D_I = \{ X_{i,j} ; i + j \leq I \} \) with \(I = 17 \).

- **Predict** and **value** the cash flows in \(D^c_I = \{ X_{i,j} ; i + j > I \} \)!
(Nominal) best-estimate reserves

- Model within a stochastic framework the incremental payments $X_{i,j}$.

- The (nominal) best-estimate reserves at time I for the outstanding loss liabilities $X_{i,j}$, $i + j > I$ (lower triangle), are then given by

 $$R_I = \sum_{i+j>I} \mathbb{E} [X_{i,j} | D_I].$$

- These predictors $\mathbb{E} [X_{i,j} | D_I]$ have minimal prediction variance (optimal).

- For (stochastic) discounting we refer to W.-Merz [5].
Bayesian chain-ladder model

- Within the Bayesian chain-ladder model the best-estimate reserves are given by, see Bühlmann et al. [1],

\[R_I = \sum_{i=I-J+1}^{I} C_{i,I-i} \left(\prod_{j=I-i}^{J-1} \hat{f}_j^{(I)} - 1 \right), \]

where

- \(C_{i,j} = \sum_{l=0}^{j} X_{i,l} \) cumulative payments,
- \(\hat{f}_j^{(I)} = \mathbb{E} [F_j | D_I] \) posterior chain-ladder factors given information \(D_I \),
- \(F_j \) unknown chain-ladder factors (modeled stochastically with prior distributions).

- In many cases the (nominal) best-estimate reserves \(R_I \) can be calculated analytically.

- For more details we refer to W.-Embrechts-Tsanakas [4].
Technical provisions

| deterministic best-estimate reserves ⟷ stochastic claims payments |

- Solvency II Directive 2009/138/EC:
 "liabilities shall be valued at the amount for which they could be transferred, or settled, between knowledgeable willing parties in an arm’s length transaction."

- The resulting amount is called **technical provisions**.

- The technical provisions are the sum of the **best-estimate reserves** and the **market-value margin (MVM)** (also called risk margin).

- The **MVM** is a **reward for risk bearing** of the (non-hedgeable) run-off risks of the outstanding loss liabilities.
Market-value margin (MVM)

- The **technical provisions** (market-consistent value) for the outstanding loss liabilities are then given by

\[R^+_I = R_I + \text{MVM}_I. \]

- **How should we calculate** MVM_I?

- It should reflect the uncertainties in the prediction of \(\sum_{i+j>I} X_{i,j} \) using the predictor R_I.

- A risk averse agent asks for a **reward (MVM)** for bearing possible shortfalls during the run-off of the outstanding loss liabilities.
Different MVM approaches

- Full **cost-of-capital approach** is rather complex. Leads to nested simulations. Therefore, approximations are used:
 - expected run-off scaling approach: is **NOT risk-based**, but currently used in Solvency II,
 - split of total uncertainty approach (see Salzmann-W. [2]).

- **Expected utility theory approach**

- **Probability distortion approach**, see W.-Embrechts-Tsanakas [4], W.-Merz [5]
 - straightforward,
 - well-known in life insurance.
Probability distortion approach

The technical provisions at time I for the outstanding loss liabilities $X_{i,j}$, $i + j > I$ (lower triangle), are then given by

$$R_I^+ = \sum_{i+j>I} \frac{1}{\varphi_I} \mathbb{E} [\varphi_{i+j} X_{i,j} | D_I],$$

where $(\varphi_k)_{k \geq 0}$ is a probability distortion satisfying:

1. $(\varphi_k)_{k \geq 0}$ is a density process, i.e.
 - φ_k is strictly positive, \mathbb{P}-a.s.,
 - $(\varphi_k)_{k \geq 0}$ is $(\sigma \{D_k\})_{k \geq 0}$-adapted,
 - $(\varphi_k)_{k \geq 0}$ is a martingale, i.e. $\mathbb{E} [\varphi_{k+1} | D_k] = \varphi_k$, with $\varphi_0 \equiv 1$ (normalization).

2. The sequence $\frac{1}{\varphi_k} \mathbb{E} [\varphi_{i+j} X_{i,j} | D_k]$, for $k \geq 0$, is a super-martingale.

These assumptions imply

$$R_I^+ \geq R_I \quad \text{and} \quad \text{MVM}_I \overset{\text{def.}}{=} R_I^+ - R_I \geq 0.$$
Explicit probability distortion choice

- In W.-Embrechts-Tsanakas [4] we provide an explicit choice for the probability distortion \((\varphi_k)_{k \geq 0}\) in the Bayesian chain-ladder model.

- It provides technical provisions

\[
\mathcal{R}_I^+ = \sum_{i=I-J+1}^{I} C_{i,I-i} \left(\prod_{j=I-i}^{J-1} \hat{f}_{j}^{(I+)} - 1 \right),
\]

where

\[
\hat{f}_{j}^{(I+)} = \left(\hat{f}_{j}^{(I)} - 1 \right) h_{j}^{(I)}(\alpha_1, \alpha_2) + 1 \geq \hat{f}_{j}^{(I)},
\]

with
- \(h_{j}^{(I)}(\alpha_1, \alpha_2) \geq 1\) (distortion function) with
- \(\alpha_1\) risk-aversion parameter for process uncertainty,
- \(\alpha_2\) risk-aversion parameter for parameter uncertainty.
Interpretation

- Chain-ladder factors $\hat{f}_j^{(I)}$ correspond to a second order life table,
- risk-aversion-adjusted factors $\hat{f}_j^{(I+)} \geq \hat{f}_j^{(I)}$ to a first order life table.
- Technical provisions satisfy

$$R_I^+ = \sum_{i=I-J+1}^{I} C_{i,I-i} \left(\prod_{j=I-i}^{J-1} \hat{f}_j^{(I+)} - 1 \right)$$

$$\geq \sum_{i=I-J+1}^{I} C_{i,I-i} \left(\prod_{j=I-i}^{J-1} \hat{f}_j^{(I)} - 1 \right) = R_I.$$

- Market-value margin is given by

$$MVM_I = \sum_{i=I-J+1}^{I} C_{i,I-i} \left(\prod_{j=I-i}^{J-1} \hat{f}_j^{(I+)} - \prod_{j=I-i}^{J-1} \hat{f}_j^{(I)} \right).$$
Expected run-off of reserves: private liability insurance

MVM(1) = Solvency II approach
MVM(2) = split of total uncertainty approach, Salzmann-W. [2]
MVM(3) = probability distortion approach, W.-Embrechts-Tsanakas [4]
References

