SURVIVE A DOWNSWING PHASE
OF THE UNDERWRITING CYCLE

Vsevolod K. Malinovskii

http://www.actlab.ru
AGENDA

1. Introduction: underwriting cycles due to random surrounding and due to competition
2. Price in the years of soft and hard market and portfolio size functions
3. Portfolio size models in the years of soft and hard market
4. Annual risk reserve process and annual probabilities of ruin
5. Admissible risk reserve and premium controls
6. Conclusion: a strategy beating the downswing phase of the cycle
1. Introduction: underwriting cycles
due to random surrounding and due to competition

References (economics)

References (modelling)

Long-term variations called “business cycles”, are typically common for the most insurers and have several potential causes.

Understanding the driving forces of the underwriting cycles is a paramount theoretical and important practical problem.

- Cycles attributed to the fluctuations due to random surroundings, to volatile interest rates, or to random up- and down-swings of the risk exposure in the portfolio. Deficiencies are introduced by the exterior ambiguities limited by the so-called scenarios of nature.

- Such fluctuations can not be foreseen and their dynamics is known deficiently since its origin used to be exogenous with respect to the insurance industry.
- It causes inevitable errors in the rate making, and irregularly cyclic underwriting process ensues.

- Adaptive control strategies fighting back cycles due to scenarios of nature were proposed in the multiperiod framework

\[
\begin{align*}
\mathbf{w}_0 & \xrightarrow{\gamma_0} \mathbf{u}_0 \xrightarrow{\pi_1} \mathbf{w}_1 \cdots \xrightarrow{\pi_{k-1}} \mathbf{w}_{k-1} \xrightarrow{\gamma_{k-1}} \mathbf{u}_{k-1} \xrightarrow{\pi_k} \mathbf{w}_k \cdots .
\end{align*}
\]
Cycles attributed to the strategies of aggressive insurers seeking for greater market shares, and by the consequent industry response.

- At the first stage, the response lies in concerted reduction of the rates, sometimes below the real costs of insurance.
- This makes some companies ruined, and agrees with the observation that insurance cycles are correlated with clustered insolvencies.
- For instance (see [Feldblum 2007] with reference on Best’s Insolvency Study [Best’s 1991]), US industry-wide combined ratios peaked at 109% in 1975 and 117% in 1984. The insurance failure rate, or the ratio of insolvencies to total companies, peaked at 1.0% in 1975 and 1.4% in 1985.
 - Insolvencies appear a driving force behind the competition–originated cycles.
 - After elimination of the exceedingly aggressive and unwise agents, or just weaker carriers, the prices increase uniformly over the industry.
- The upswing phase of the cycle follows.
2. Price in the years of soft and hard market and portfolio size functions

- The insurance price P^M prevailing in the market is called market price, or market price factor.
- The year of soft market occurs for a particular insurer when the market price factor is below the averaged losses E_Y, i.e. as $E_Y > P^M$. The year of hard market for a particular insurer occurs otherwise, i.e. as $E_Y < P^M$.
- The insurer applies maintaining market share control if $P = P^M$. The insurer applies conserving capital control if $P = E_Y$. The insurer applies mixed control, if $P^M < P < E_Y$, as $P^M < E_Y$ (soft market), and $E_Y < P < P^M$, as $E_Y < P^M$ (hard market).
- Without lack of generality, the set \mathcal{P} of price controls introduced above may be written as

$$P_\gamma = \gamma P^M + (1 - \gamma)E_Y, \quad \gamma \in [0, 1],$$

with $P_1 = P^M$ and $P_0 = E_Y$.

1 In the case of soft market (i.e., $E_Y > P^M$) prices P below P^M cause excessive danger of ruin, while prices P above E_Y yield excessively high rate of elimination of portfolio. Both are claimed unreasonable. The similar arguments are true in the case of hard market.
• For $\gamma \in [0, 1]$ and for the insurer’s price $P_\gamma \in \mathcal{P}$, the value
\[
d_\gamma = P_\gamma - P^M = (1 - \gamma)(EY - P^M)
\]
is called insurer’s price deficiency with respect to the market price P^M.

• For $\gamma \in [0, 1]$ and for the prices $P_\gamma \in \mathcal{P}$ with deficiency $d_\gamma = P_\gamma - P^M$, introduce the family
\[
\mathcal{L} = \{\lambda_{d_\gamma}(s), \ 0 \leq s \leq t\}
\]
of continuous non-negative functions of time, called portfolio size functions.

• Assume that $\lambda_{d_\gamma}(0) = \lambda$. The value λ is referred to as the initial portfolio size.

• In the case of $d_\gamma = 0$ (neutral market or maintaining market share control, $P_1 = P^M$) set $\lambda_{d_\gamma}(s) \equiv \lambda$, $0 \leq s \leq t$.

• When $d_\gamma > 0$ (soft market and $\gamma \in [0, 1)$), the portfolio size functions $\lambda_{d_\gamma}(s)$ must be monotone decreasing in s and $\lambda_{d_\gamma_1}(s) < \lambda_{d_\gamma_2}(s)$ for all $0 \leq s \leq t$, as $d_\gamma_1 > d_\gamma_2$.

• When $d_\gamma < 0$ (hard market and $\gamma \in [0, 1)$), the portfolio size functions $\lambda_{d_\gamma}(s)$ must be monotone increasing in s and $\lambda_{d_\gamma_1}(s) < \lambda_{d_\gamma_2}(s)$ for all $0 \leq s \leq t$, as $d_\gamma_1 > d_\gamma_2$.
3. **Portfolio size models in the years of soft and hard market**

- Selecting \(L \), wise is to address to practice.
- [Subramanian 1998], p. 39:

 “Surveys of policyholders have consistently demonstrated some reluctance to switch insurers. In a survey of 2462 policyholders by Cummins et al. [Cummins et al. 1974], 54% of respondents confessed never to have shopped around for auto insurance prices. To the question “Which is the most important factor in your decision to buy insurance?”, 40% responded the company, 29% the agent, and only 27% the premium. A similar survey of 2004 Germans (see [Schlesinger et al. 1993]) indicated that, despite the fact that 67% of those responding knew that considerable price differences exist between automobile insurers, only 35% chose their carrier on the basis of their favorable premium. Therefore, we will assume that, given the opportunity to switch for a reduced premium, one-third of the policyholders will do so”.
Following that remark, assume that in the year of hard market, i.e. as \(d_\gamma > 0 \),
\[
\lambda_{d_\gamma}(s) = \lambda \cdot r_{d_\gamma}(s), \quad 0 \leq s \leq t, \quad \gamma \in [0, 1],
\]
where

- \(0 \leq r_{d_\gamma}(s) \leq 1 \) is the rate of those who remained in the portfolio by time \(s \leq t \),
- \(m_{d_\gamma}(s) = 1 - r_{d_\gamma}(s) \) is the complementary rate function by time \(s \leq t \),
- \(m_{d_\gamma} = m_{d_\gamma}(+\infty) \) is the ultimate rate of migrants (which does not exceed one-third).

For example, introduce the rate function \(r_{d_\gamma}(s), 0 \leq s \leq t \),

- with exponential outgo of migrants,
 \[
 r_{d_\gamma}(s) = (1 - m_{d_\gamma}) + m_{d_\gamma} \cdot e^{-s} = 1 - m_{d_\gamma} \cdot (1 - e^{-s}),
 \]
 which yields
 \[
 \Lambda_{d_\gamma}(t) = \int_0^t \lambda_{d_\gamma}(s) ds = \lambda \cdot t \cdot (1 - m_{d_\gamma}) + \lambda \cdot m_{d_\gamma} \cdot (1 - e^{-t}).
 \]
In most cases the exponential outgo is unrealistically quick. Of more interest may be:

- the **power rate function**

\[
 r_{d\gamma}(s) = \left(1 - m_{d\gamma}\right) + m_{d\gamma} \cdot (1 + s)^{-k} = 1 - m_{d\gamma} \cdot \frac{\left(1 - (1 + s)^{-k}\right)}{k > 0},
\]

which yields

\[
 \Lambda_{d\gamma}(t) = \int_0^t \lambda_{d\gamma}(s) ds = \begin{cases}
 \lambda t \left(1 - m_{d\gamma}\right) + \lambda m_{d\gamma} \left(1 - (t + 1)^{-k+1}\right)/(k - 1), & k \neq 1, \\
 \lambda t \left(1 - m_{d\gamma}\right) + \lambda m_{d\gamma} \ln(1 + t), & k = 1.
\end{cases}
\]

As \(k < 1 \), the migrating part in the portfolio is slow enough and still influences \(\Lambda_{d\gamma}(t) \) considerably.

- The concept of the set \(\mathcal{L} \) of portfolio size functions has to be further developed. For example, it may be sensible to allow dependence of the portfolio size functions on the initial risk reserve\(^2\).

\[^2\text{It is arguable that the outgo of insureds becomes more intensive from e.g., a smaller company, for not to mention such an abstract term as the initial risk reserve. That may be checked by means of a survey of policyholders.}\]
4. Annual risk reserve process and annual probabilities of ruin

Assume that fixed are the families \mathcal{P} of the price controls and \mathcal{L} of the portfolio size functions.

- For $P_\gamma \in \mathcal{P}$ with deficiency d_γ and for the corresponding portfolio size function $\lambda_{d_\gamma} \in \mathcal{L}$, assume that the claim number process is a non-homogeneous Poisson process $\nu_\gamma(s)$, $0 \leq s \leq t$, with the yield (intensity) function
 \[\Lambda_{d_\gamma}(s) = \int_0^s \lambda_{d_\gamma}(z)dz, \quad 0 \leq s \leq t. \]

- Assume that Y_i, $i = 1, 2, \ldots$, are i.i.d. and independent on the claim number process $\nu_\gamma(s)$, $0 \leq s \leq t$. The claim outcome process associated with the portfolio size function $\lambda_{d_\gamma} \in \mathcal{L}$ is the compound non-homogeneous Poisson process
 \[\sum_{i=1}^{\nu_\gamma(s)} Y_i, \]
 as $\nu_\gamma(s) > 0$, or zero, as $\nu_\gamma(s) = 0$, $0 \leq s \leq t$.
• The premium income process associated with the portfolio size function \(\lambda_{d\gamma} \in \mathcal{L} \) and with the premium factor \(P_\gamma \) is the non-random process
\[
P_\gamma \Lambda_{d\gamma}(s) = P_\gamma \int_0^s \lambda_{d\gamma}(z)dz, \quad 0 \leq s \leq t.
\]

• The risk reserve process generated by the premium income process and claim outcome processes is the random process
\[
R_{u,\gamma}(s) = u + P_\gamma \Lambda_{d\gamma}(s) - \sum_{i=1}^{\nu_\gamma(s)} Y_i,
\]
as \(\nu_\gamma(s) > 0 \), or \(u + P_\gamma \Lambda_{d\gamma}(s) \), as \(\nu_\gamma(s) = 0 \), \(0 \leq s \leq t \). The value \(u > 0 \) is called the initial risk reserve.

Lemma 1. For a homogeneous Poisson process \(N_\lambda(s), 0 \leq s \leq t \), with intensity \(\lambda > 0 \),
\[
R_{u,\gamma}(s) = \hat{R}_{u,\gamma}(\tau(s)), \quad 0 \leq s \leq t,
\]
where \(\tau(s) = \Lambda_{d\gamma}(s)/\lambda, 0 \leq s \leq t \), is the operational time, and where
\[
\hat{R}_{u,\gamma}(s) = u + [P_\gamma \lambda]s - \sum_{i=1}^{N_\lambda(s)} Y_i, \quad 0 \leq s \leq \Lambda_{d\gamma}(t)/\lambda.
\]
The probability
\[
P\{ \inf_{0 \leq s \leq t} R_{u,\gamma}(s) < 0 \}
\]
is called **annual probability of ruin**, or **probability of ruin** within time \(t \).

Theorem 1. *In the year of soft market* (i.e., as \(EY > PM \)) *the probability*
\[
P\{ \inf_{0 \leq s \leq t} R_{u,\gamma}(s) < 0 \}
\]
is monotone increasing, as \(\gamma \) increases.

• Since \(\inf_{0 \leq s \leq t} R_{u,\gamma}(s) = \inf_{0 \leq s \leq \Lambda_{d\gamma}(t)/\lambda} \hat{R}_{u,\gamma}(s) \), one has
\[
P\{ \inf_{0 \leq s \leq t} R_{u,\gamma}(s) < 0 \} = P\{ \inf_{0 \leq s \leq \Lambda_{d\gamma}(t)/\lambda} \hat{R}_{u,\gamma}(s) < 0 \}
= P\{ \inf_{0 \leq s \leq \Lambda_{d\gamma}(t)/\lambda} \left(u + \underbrace{\left[EY - \gamma(\underbrace{EY - PM}_{P_{\gamma}}) \right]}_{>0} \lambda s - \sum_{i=1}^{N_{\lambda}(s)} Y_i \right) < 0 \}.
\]

• In the year of soft market \(P_{\gamma} \) is monotone decreasing, as \(\gamma \) increases, from \(P_0 = EY \) to \(P_1 = PM \), with \(P_0 > P_1 \), and \(\Lambda_{d\gamma}(t) \) is monotone increasing, as \(\gamma \) increases. Both factors contribute to a monotone growth of \(P\{ \inf_{0 \leq s \leq t} R_{u,\gamma}(s) < 0 \} \), as \(\gamma \) increases.
The 39th International ASTIN Colloquium
Helsinki, Finland 1 – 4 June 2009

Theorem 2. Assume that \(Y_i, \ i = 1, 2, \ldots \), are i.i.d. exponential with intensity \(\mu \) (i.e., \(1/\mu = EY \)) and denote by \(I_n(z) \) the modified Bessel function of \(n \)th order, \(z \) real and \(n = 0, 1, 2, \ldots \) In that model

\[
P\{ \inf_{0 \leq s \leq t} R_{u,\gamma}(s) < 0 \} = e^{-u\mu} \sum_{n \geq 0} \frac{(u\mu)^n}{n!} (P_\gamma \mu)^{-(n+1)/2} \times \int_0^{\Lambda_{d}(t)} \frac{n + 1}{x} e^{-(1+P_\gamma \mu)x} I_{n+1}(2x \sqrt{P_\gamma \mu}) \, dx.
\]

The alternative expression is

\[
P\{ \inf_{0 \leq s \leq t} R_{u,\gamma}(s) < 0 \} = -\frac{1}{\pi} \int_0^\pi f_t(x, u) \, dx + \begin{cases} (1/P_\gamma \mu) \exp\{-u\mu(1 - 1/P_\gamma \mu)\}, & P_\gamma \mu > 1, \\ 1, & P_\gamma \mu \leq 1, \end{cases}
\]

where

\[
f_t(x, u) = (P_\gamma \mu)^{-1} \left(1 + (P_\gamma \mu)^{-1} - 2(P_\gamma \mu)^{-1/2} \cos x \right)^{-1} \times \exp \left\{ u\mu \left((P_\gamma \mu)^{-1/2} \cos x - 1 \right) - \Lambda_{d}(t) P_\gamma \mu \left(1 + (P_\gamma \mu)^{-1} - 2(P_\gamma \mu)^{-1/2} \cos x \right) \right\} \times \left[\cos \left(u\mu(P_\gamma \mu)^{-1/2} \sin x \right) - \cos \left(u\mu(P_\gamma \mu)^{-1/2} \sin x + 2x \right) \right].
\]
5. Admissible risk reserve and premium controls

- In the year of soft market, admissible are those controls which do not compel (A) the annual probability of ruin be larger than a prescribed value $\alpha \in (0, 1)$, and (B) the year-end portfolio size be less than a prescribed lower limit L.

$$\mathbf{w}_0 \xrightarrow{\gamma_0} \mathbf{u}_0 \xrightarrow{\pi_1} \mathbf{w}_1 \cdots \xrightarrow{\pi_{k-1}} \mathbf{w}_{k-1} \xrightarrow{\gamma_{k-1}} \mathbf{u}_{k-1} \xrightarrow{\pi_k} \mathbf{w}_k \cdots$$

1st year, P^M_1, α_1

kth year, P^M_k, α_k

- Admissible risk reserve (annual) controls

- Admissible premium (annual) controls, the solvency point of view (A)

Theorem 3. For sufficiently small $\alpha \in (0, 1)$, for the initial risk reserve u and for the family L, in the year of soft market allowed are the price controls $P_\gamma \in \mathcal{P}$, $\gamma \in [0, \gamma_{t,u|L}(\alpha)]$, where $\gamma_{t,u|L}(\alpha)$ is the unique solution of the equation

$$P\{\inf_{0 \leq s \leq t} R_{u,\gamma}(s) < 0\} = \alpha,$$

as $P\{\inf_{0 \leq s \leq t} R_{u,1}(s) < 0\} \geq \alpha$, and $\gamma_{t,u|L}(\alpha) = 1$, as $P\{\inf_{0 \leq s \leq t} R_{u,1}(s) < 0\} < \alpha.$
• Put $\gamma_{t,\alpha}$ for $\gamma_{t,u}|L(\alpha)$, set $P\{\inf_{0 \leq s \leq t} R_{u,\gamma}(s) < 0\} = \psi_t(\gamma)$ and note that in the year of soft market $\psi_+^{\infty}(\gamma) = 1$.

Theorem 4. For $\tau_\gamma = -\gamma(EY - P^M)/EY, \gamma \in (0, 1]$, assume that $\tau_\gamma < 0$. Then

$$\sup_{t \in \mathbb{R}^+} \left| \psi_t(\gamma) - \Phi_{\{0,1\}}((\Lambda_{d,\gamma}(t) - M_{\tau,\gamma}u\mu)/(S_{\tau,\gamma}(u\mu)^{1/2})) \right| = \mathcal{O}(u^{-1/2}), \quad \text{as} \quad u \to \infty,$$

where $M_{\tau,\gamma} = -1/\tau_\gamma, S_{\tau,\gamma}^2 = -2/\tau_\gamma^3$.

• Introduce $\phi_t(\gamma) = \psi_+^{\infty}(\gamma) - \psi_t(\gamma) = 1 - \psi_t(\gamma)$ the probability of ultimate ruin after time t, and rewrite $\phi_t(\gamma_{t,\alpha}) = 1 - \psi_t(\gamma_{t,\alpha}) = 1 - \alpha$, which yields

$$\gamma_{t,\alpha} = \phi_t^{-1}(1 - \alpha).$$

Theorem 5. For $\tau_\gamma = -\gamma(EY - P^M)/EY, \gamma \in (0, 1]$, set $a_\gamma = (1 - \sqrt{1 + \tau_\gamma})^2$ and $b_\gamma = 1/\sqrt{1 + \tau_\gamma}$. In the framework of Theorem 2, one has $\tau_\gamma < 0$ and

$$\phi_t(\gamma) = \frac{b_{\gamma}^{3/2}(b_{\tau}u\mu + 1)}{2\sqrt{\pi}a_\gamma(\Lambda_{d,\gamma}(t))^{3/2}} e^{-u^2(1-b_\gamma)} e^{-a_\gamma\Lambda_{d,\gamma}(t)} \exp \left\{ - \frac{b_{\gamma}^3(u\mu)^2}{4\Lambda_{d,\gamma}(t)} \right\} \left\{ 1 + \mathcal{O}(\Lambda_{d,\gamma}^{-1/2}(t)) \right\}$$

for $u \leq \mathcal{O}(\Lambda_{d,\gamma}^{1/2}(t))$, as $t \to \infty$.

3 Under rather general regularity conditions. The result is suitable to apply for $u \geq \mathcal{O}(\Lambda_{d,\gamma}^{1/2}(t))$, as $t \to \infty$.
• Admissible premium (annual) controls, the portfolio size point of view (B)

Theorem 6. For sufficiently small $\alpha \in (0, 1)$, for the initial risk reserve u and for the family \mathcal{L}, in the year of soft market allowed are the price controls $P_\gamma \in \mathcal{P}$, $\gamma \in [\gamma_L, 1]$, where

$$\gamma_L = \inf\{\gamma \in [0, 1] : \lambda_{d\gamma}(t) = L\} > 0,$$

as $\lambda_{d0}(t) < L$, and $\gamma_L = 0$, as $\lambda_{d0}(t) \geq L$.

• Theorems 3–6 yield the set of the annual price controls allowed both from (A) solvency and (B) portfolio size points of view. This set is

$$P_\gamma \in \mathcal{P}, \quad \gamma \in [0, \gamma_{t,u|\mathcal{L}}(\alpha)] \cap [\gamma_L, 1] = [\gamma_L, \gamma_{t,u|\mathcal{L}}(\alpha)].$$
6. Conclusion: a strategy beating the downswing phase of the cycle

For the family \mathcal{L} and for a sequence u, w_1, \ldots, w_{k-1} of the initial risk reserve values, as the $(i - 1)$st year-end risk reserve is assumed equal to the initial risk reserve in ith year $(i = 2, \ldots, k)$, the adaptive control strategy beating the downswing phase of the insurance cycle with the period k, generated by the market prices $P_1^M > \cdots > P_k^M > 0$, all below the average risk E_Y, is

\[
P_1(u) = P_\gamma, \quad \gamma \in [\gamma_L, \gamma_t, u|\mathcal{L}(\alpha_1)], \quad \text{if} \quad [\gamma_L, \gamma_t, u|\mathcal{L}(\alpha_1)] \neq \emptyset,
\]

\[
P_2(w_1) = P_\gamma, \quad \gamma \in [\gamma_L, \gamma_t, w_1|\mathcal{L}(\alpha_2)], \quad \text{if} \quad [\gamma_L, \gamma_t, w_1|\mathcal{L}(\alpha_2)] \neq \emptyset,
\]

\[
\cdots
\]

\[
P_k(w_{k-1}) = P_\gamma, \quad \gamma \in [\gamma_L, \gamma_t, w_{k-1}|\mathcal{L}(\alpha_k)], \quad \text{if} \quad [\gamma_L, \gamma_t, w_{k-1}|\mathcal{L}(\alpha_k)] \neq \emptyset.
\]

Recall that $\alpha_1, \ldots, \alpha_k$ in

\[
\begin{align*}
 w_0 & \xrightarrow{\gamma_0} u_0 \xrightarrow{\pi_1} w_1 \cdots \xrightarrow{\pi_{k-1}} w_{k-1} \xrightarrow{\gamma_{k-1}} u_{k-1} \xrightarrow{\pi_k} w_k \cdots,
\end{align*}
\]

are the allowed levels or ruin within the downswing phase of the underwriting cycle.