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Abstract 
 

Within the Solvency II framework the insurance industry requires a realistic modelling of the 

risk processes relevant for its business. Every insurance company should be capable of 

running a holistic risk management process to meet this challenge. For property and casualty 

(P&C) insurance companies the risk adequate modelling of the claim reserves is a very 

important topic as this liabilities determine up to 70% percent of the balance sum. 
 

We propose a three dimensional (3D) stochastic model for claim reserving. It meets the 

necessary number of degrees of freedom to model a realistic claim process that consists of 

occurrence, reporting and run-off. The model delivers consistently the reserve’s distribution 

function as well as the distributions of all parts of it that are needed for accounting and 

controlling. The calibration methods for the model are well known from data analysis and they 

are applicable in an practitioner environment. We evaluate the model numerically by the help 

of Monte Carlo (MC) simulation. 
 

Classical actuarial reserve models are two dimensional (2D). They lead to an estimation 

algorithm that is applied on a 2D matrix, the run off triangle. Those methods (for instance the 

Chain – Ladder or the Bornhuetter – Ferguson method) are widely used in practice nowadays 

and give rise to several problems: They estimate the reserves’ expectation and some of them - 

under very restriction assumptions - the variance. They provide no information about the tail 

of the reserve’s distribution, what would be most important for risk calculation, for assessing 

the insurance company’s financial stability and economic situation. Additionally, due to the 

projection of the claim process into a two dimensional space the results are very often 

distorted and dependent on the kind of projection. 

Therefore we extend the classical 2D models to a 3D space because we find inconsistencies 

generated by inadequate projections into the 2D spaces.  
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1. Introduction 
 

In the framework of Solvency II holistic risk management became very important for 

insurance business. It is going to implement a new, efficient supervisory basis that enables the 

risk - orientated and principle based calculation of the economic capital.  

 

In P&C insurance companies the claim reserves are the most important liability position in the 

balance sheet. They determine up to 70% of the balance sum, of course depending on product 

mix and capitalisation of the company. Claim reserves are necessary to cover the liabilities 

arising from insurance contracts written in the presence and the past. Therefore claim 

reserving is decisive for regulatory and accounting issues as well as for product pricing and 

reporting. 

The claim reserves are calculated for homogeneous portfolios of insurance contracts via 

actuarial methods which are well known form literature. The basis of the classic reserving 

methods is built by two dimensional matrices, the run - off – triangles. They are generated via 

accumulation of claim data. Details are given in section 2 of this paper. An overview on claim 

reserving and its classical methods can be found in Taylor [12, 13] and in Radtke, Schmidt 

[7].  

The main problem of the classical methods is the fact that a complex stochastic process with 

many degrees of freedom is transformed to a two dimensional structure – the run-off matrix. 

This means that “the real world” is projected to a 2D model and it is expected that on this 

basis one gets a convenient forecast of the future. This is only true under very special 

assumptions. Additionally most of the classic methods do only estimate the reserves’ 

expectation value. For very few of them, for instance the Chain Ladder method, the second 

moment of the distribution is know under very restrictive assumptions posed on the 

underlying stochastic model (see [3]). The point however is that the classical methods give no 

estimate of the reserve distribution’s tail which is of great importance for risk calculation. 

 

In reality the claim process consists of claims occurrence (first), reporting (second) and run off 

(third). Therefore a 3D model structure is very natural and adequate for this problem. We 

introduce a 3D stochastic model for claim reserves. The variables of the model are: The 

number of active claims and the claim payments. The expectation value and the variance of 

the reserve are given as an analytical function of the model parameters. The reserve 

distribution can be calculated numerically. To calculate them we perform Monte Carlo (MC) 

simulations on the basis of this model. There exists already experience on MC simulation 

techniques for reserve model evaluation, see [8]. The results of the MC simulation are the 

reserves’ probability distributions. The model can be calibrated to real world data (claim 

portfolio data) via standard methods of data analysis (see [9]). Notice that “reserves” in this 

context severs as a placeholder for the “total reserve”, the “INBR reserve”, the “number of 

IBNR claims” or any other quantity relevant for managing and reporting the reserve process. 

The distributions are the basis for further risk calculation and management in P&C insurance 

companies. For instance this makes accessible risk measures as VaR or expected shortfall. 
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2. The connection between the 2D and the 3D models 

 

As was stated in the introduction the classic models project the claim process to a 2D world, 

operate on cumulated 2D data structures and calculate only the expectation of the reserve. The 

typical data structures for payments that build the basis for reserve estimation are shown in 

figure 1. The claim payments are accumulated according to occurrence versus run off years in 

the one case and reporting versus runoff years in the other case. The formal relation between 

these two 2D matrices with the tensors of our 3D model is given at the end of this section: 
( )1

mnS  are the components of the “occurrence versus run off year” – matrix and 
( )2

mnS  are the 

components of the “reporting versus run off year” – matrix. The matrices’ upper left triangles 

are filled with (known) figures. They represent the past. The figures in the lower right triangle 

have to be estimated by the application of mathematical, statistical methods. There exists quite 

a “zoo” of actuarial methods for such calculations. (see for example [1, 2, 3, 6, 7]). Depending 

on the kind of the used data triangle the result of this calculations is either the total reserve 

(the sum of reported claims’ and IBNR reserves; see left side of figure 1) or two separate 

results for both parts of the total reserves (see right side of figure 1). In practice one is often 

faced with the following problem: Appling both methods to the same data set delivers 

inconsistent results. This is well known and up to now this insufficiency was ascribed to 

properties of the estimators, particularly the bias (see for instance [10, 11]). To our knowledge 

up to now nobody asked, if the dimension of the state space underlying the description of the 

problem is appropriate or not.  

The claim process is shown schematically in figure 2. After the occurrence of a claim it is 

reported to the insurance company. The time between occurrence and reporting, the lag, 

depends on the line of business and can vary from one day to several years. As an example: 

For motor car insurance the lag is typically very short, for other lines of third party liability 

insurance it can be much longer – up to several years. After having been reported the claims 

are paid – either at once or with several payments. Several payments are typical in the case of 

injured persons for instance. The time between the reporting of the claim and the final run off 

can differ from several days up to years or even decades (lifelong annuity payments for injured 

persons for instance).  

Having in mind this three step nature of the claim process (occurrence – reporting – payment) 

the extension from the classic 2D model to a 3D model is quite natural in the sense that it 

follows the imperative of reality. We therefore propose as a basis for further analysis to 

aggregate the claim data to a three dimensional structure: The first dimension is the relative 

(to the oldest) occurrence year, the second is the number of years between occurrence and 

reporting and the third dimension is the difference (in years) between claim’s reporting and 

payment. 

 

Claim reserves are modelled stochastically within the above defined 3D framework. It is 

assumed that the parameters of the “microscopic” claim process are known or can be 

measured. This is a quite realistic assumption provided the insurance company is ready to 

collect claim data over a relevant time horizon.  

We model a set of claims stochastically, including their projection into the future. We do this 

by the help of Monte Carlo simulation and get as a result the statistical properties 

(distribution) of the “macroscopic” quantities (reserves). 

We model the following microscopic quantities: 

The number of active claims Nijk occurred in year i, reported j years after occurrence and still 

active k years after reporting. “Still active” means that the claim is not closed and therefore it 

can be the source of further payments. The second quantity to be modelled is Zijk. This is the 
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total amount paid for the Nijk claims of occurrence year i with reporting delay j years in the kth 

year after reporting. 

 

In the following we connect the quantities of the 3D model to those of the 2D model which is 

used by the standard reserving methods. We visualise this circumstances additionally in figure 

3. 

The up to now reported claims are found in the run off triangle: 

 

0ijN  with maxIji ≤+  

 

This triangle (occurrence versus. reporting year) is used in practice to estimate the ultimate 

number of claims per occurrence year. The boundary Imax is given by the claim portfolio’s 

total run-off time (number of years). The estimation of the ultimate claim number consists of 

the sum of already reported claims and the incurred but not reported (IBNR) claims (see figure 

3a). The table of active claims in the presence is given by the set (see figure 3b): 

 

{ }
maxIkjiN ijk =++  

 

Below and on this plain lie all known numbers: Number of claims (left side of figure 3) as 

well as payments for claims(see right hand side of figure 3). The numbers above the plain 

have to be estimated and give an economic evaluation of the future claim numbers and 

payments respectively. 

The IBNR reserve can be written as: 

 

{ }
∑

<+∨>++

=
maxmax,,

ˆˆ

IjiIkjikji

ijkIBNR ZR . 

 

 

The number of IBNR claims is given by: 

 

{ }
∑

>+

=
max,

0
ˆˆ

Ijiji

ijIBNR NN  

 

The total reserve evaluates as (sum of reserves for known and unknown claims): 

 

{ }
∑

>+

+=
max,,

ˆˆˆ

Ijikji

ijkIBNRtotal ZRR . 

 

The visualisation of these reserves can be seen in figure 3 on the right hand side: For the 

IBNR reserve see figure 3d), for the total reserve figure 3c) and d). In both cubes the plain 

separating the known from the unknown numbers is drawn with sketched lines. 

By aggregating the components of the Zijk tensor (payments) in the following way the run off 

triangles used by standard 2D reserving methods can be generated: 

 

The run off triangle “payments: occurrence versus run off year”, well known in the 2D world, 

can be generated from the 3D according to: 
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( )

{ }
∑

≤++∨=+

=
max,

1

Ikjmnkjkj

mjkmn ZS
 

 

This triangle is used in the context of standard reserving methods for estimating the total 

reserve. 

 

The 2D run off triangle “payment: reporting versus run off year” is generated via: 

 

( )

{ }
∑

≤++∨=+

=
max,

2

Injimjiji

ijnmn ZS
 

 

This triangle is used in the context of standard reserving methods for business lines with very 

long reporting times to estimate the total reserve. It should deliver reasonable results in the 

case of constant portfolio volumes and a stationary claim process.  

 

Insurance companies think currently about setting automatic single claim reserves for some 

lines of business as for instance motor car insurance. For this purpose they need values for the 

mean future claim size contingent on the claim history. This automatic procedure does only 

make sense for claims with small or medium sized expectations. Our model has the advantage 

to deliver such estimators for the mean claim size depending on the reporting lag j and on the 

number of years k for which the claim has been active: 

 

∑

∑
≥=

i

ijk

kli

ijl

jk
N

Z

MCS
,

. 

 

The dependence on k and j is so important because it is expected that the mean claim size 

grows with both, k and j. 
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3. The 3D Model and its Application 

 
In this section we define the stochastic 3D model. We introduce the necessary distributions 

determining the single claim process on a “microscopic” level and its parameters. We 

introduce one example for a realistic claim process and set the parameter values according to 

this example. This enables us to demonstrate our model in a real world scenario. We 

implement our model in a Monte Carlo simulation program and calculate the empirical 

distributions of IBNR claim numbers, IBNR reserve and total reserve. 

 

3.1. The 3D Model 

 
As described in section 2 we model the number of active claims Nijk occurred in year i, 

reported j years after occurrence and still active k years after reporting as well as Zijk, the total 

amount paid for the Nijk claims of occurrence year i with reporting delay j years in the kth year 

after reporting. 

 

The ultimate number of claims in occurrence year i is: 

 

∑=
j

iji NN 0  

 

It is modelled as Poisson distributed with (given) parameter iN .  

 

( )
ii NPoissonN ∝  

 

The claim numbers obey a multinomial distribution along the years of reporting delays 

according to the parameters 

 

{ }maxj ,..,2,1j    I∈λ  with ∑ =
j

j 1   λ . 

Where the parameter Imax is the claim portfolio’s total run-off time (number of years). For 

convenience we have chosen Imax = Jmax . This is a suitable assumption if the claim history of 

the company is known for a long time, minimum as long as the run – off time. Other 

conventions are possible. 

Therefore the claim numbers for k = 0 are distributed according to: 

 

[ ]
axjiij NMultNomN Im210 ,..,,..,,, λλλλ∝  

 

The closing of active claims along the years after reporting is described by the parameters 

 

{ }maxk ,..,2,1k   K∈η  with 10 =η and kk ηη <+1 . 

 

Where the boundary Kmax is the maximum number of years a reported claim needs for the run 

– off to be completed. 
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The fact that an open claim is not closed in year k can be modelled as a survival process 

resulting in a binomial distribution with survival probability kη : 

 

[ ]
kijkijk NBiNomN η,1−∝  

 

Therefore the expectation of the active number of claims can be written as: 

 

[ ] kjiijk NNE ηλ ⋅⋅= . 

 

The claim payments are modelled according the collective model of risk theory: 

 

( )
∑

=

=
ijk

l

ijk

lijk XZ

ν

1

 

 

where the number of single claim payments ijkν  is binomially distributed 

 

[ ]ikijkijk pNBiNom ,∝ν  

 

with parameters Nijk , the active number of claims, and pik , the probability that an active claim 

produces a payment. The Xijk are the payments for single claims. Applying the model to 

Monte Carlo simulations (section 3.1) we assume them to be Gamma distributed with 

parameters depending on i, j, and k: 

 

[ ]ijkijkijk VarEWX ,Γ∝  

 

This completes the setting of our model. The choice of the distributions for claim numbers 

and payments is of course a matter of best fit to the data. We made here the assumptions 

characterised above, being not too far from real world claim data, in order to apply the model 

to a concrete simulation example. We deal with some aspects concerning the problem of 

model selection in section 4. 

 

 

 

3.2. The Monte Carlos (MC) Simulation and Results 

 
We apply the model described in section 3.1 by the help of MC simulation. We simulate a set 

of claims in its “microscopic” environment. Every element of the set (i.e. claim) obeys the 

stochastic process (3D model) of section 3.1. The parameters of the process are known from 

data analysis of claim databases containing single claim information. The formulas in section 

2 give the connection between the microscopic and the macroscopic world, i.e. the reserves 

for the total claim portfolio. Due to the ansatz of our model we are able to gain knowledge of 

the macroscopic world’s statistical properties, particularly the empirical distributions of the 

reserves (total and IBNR) and the number of IBNR claims.  

We have chosen the model’s parameter values in a way that they contain some typical features 

of real life claim portfolios. They are, of course, no “one to one” values from an existing 

portfolio.  
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Now the description of the model parameter values follows: They are displayed in figures 4 

and 5. All parameters show typical features as they can be found in third party liability 

portfolios with person injuries. 

The lag distribution parameters λλλλj can be seen in figure 4 on the left side. They are 

monotonically falling in j, the delay time in years. This is similar in all lines of business, 

whereas the width of the distribution varies substantially from line to line. In our example 

some 40% of the claims are reported in the occurrence year and less than 30% one year later. 

In figure 4 on the right the closing down of active claims is plotted, normalised to 1000 

claims at the beginning. From this follow the parameter values for ηk . Due to the definition it 

is a monotonically falling function in k, the number of years after reporting. The rate of 

decrease depends very much of the kind of insurance portfolio. For portfolios with person 

injuries it is quite typical that even after a very long time – 30 years as in our example or even 

longer – there are still open claims. This is for instance due to accident – caused, disabled 

persons that have to be cared for until they die. 

For our example we assume that the probability of payment for an active claim pik depends 

only on k not on i. Active claims, although not fully regulated, do not generate a payment 

every year. The probability for payment is plotted in figure 5 on the left side. This parameters 

depends very much on the line of business. In our case there is a rise in probability from a few 

percent in the early years after reporting up to 80% some 40 years after reporting. In other 

lines probabilities that decrease with the number of years after reporting can be observed.  

For the expectation value of a single payment ijkEW  we assume homogeneity over 

occurrence time. Therefore it does not depend on i but on j and k. The expectation value of a 

single payment is depicted in figure 5 on the right side. The parameter values underlie stylized 

assumptions as one can see in figure 5. However several typical features are included in this 

parameter values: The overall size, the fact that there is a maximum in payments some years 

after the claim was reported and the fact, that this maximum is the higher the longer the time 

lag between occurrence and reporting was. This can be understood as follows: Claims that are 

discovered not earlier than a few years after occurrence carry a higher risk than claims having 

been discovered immediately after occurrence. This is only true for the first few years (in our 

example 3 years). If the claim is discovered / reported later, the claim size decreases very 

rapidly. This is of course, one example – in any case the right expectation profile has to be 

found out via data analysis of the claim portfolio. Further we assumed: ijkijk EWVar 4= . The 

variance is proportional to the expectation with a constant that is very typical to that kind of 

claim portfolio. Overdispersed payment distributions are found very often in third party 

liability insurance. 

For our MC simulation we set the initial mean number of claims to 150=iN  and assume an 

annual growth of 3%. This is for example a realistic assumption in the case of an insurance 

portfolio with 3% growing volume (contracts) and a stationary claim frequency. We 

considered 15 occurrence years. 

For the MC simulation we used the MATHEMATICA package. The results of MC simulation 

can be seen in figure 6: The distributions for a) the number of claims, b) the IBNR reserve and 

c) the total reserve. We used 1000 MC samples in this case. In each part of the plot the mean 

value, depending analytically on the model parameters, is given as a numeric value and is 

plotted into the graph. From these distributions risk measures as the standard deviation VaR, 

TailVar or expected shortfall can be calculated. The new regulatory and accounting standards 

do ask for them. 
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4. Overview and Outlook 

 
This paper proposes a 3D model for claim reserving. It shows the connection to the classical 

actuarial 2 D models and clarifies that the 3D model can be understood as an extension of the 

2D ones. In this way wrong reserve estimations due to inadequate projections on 2D space can 

be avoided. The 3D model can be calibrated to claim portfolio data via standard methods of 

data analysis. The expectation and variance of the reserve are an analytical function of the 

model parameters. The reserve distribution can be calculated by Monte Carlos Simulation 

techniques. This makes all measures of risk accessible for calculation. 

There are many interesting questions that can be investigated as the 3D model implies a new 

way of analysing claim data: 

 

First of all: What is the performance of 3D models compared with classical actuarial 2D 

methods. In which situations are 2D methods appropriate? Can quantitative rules be 

formulated to define regimes in the parameter space where 3D modelling is necessary? Our 

framework of the 3D models enables us to answer this questions on a quantitative basis.  

This questions can be investigated via analytical and / or numerical methods. For numerics we 

are about to set up a MC simulation experiment to compare the 2D and the 3D results for a 

given “microscopic” claim process according to the model of section 3.1. 

 

Another aim is to put up robust estimation methods for the model parameters from a given 

claim portfolio. We have already given a first answers to this topic (see [9]): We detected the 

structure of the claim data set necessary to proceed with the estimation. The estimation has to 

be consistent in the sense that the estimates of the different parameters do not influence one 

another. As we have some knowledge of the parameters’ properties (see section 3.2) we used a 

Bayes inference method for parameter estimation. Further practical application would be quite 

interesting to be done, especially in connection with the points to be investigated as noted 

above. 

 

After all a further extension of our model to a single claim reserve process would be possible. 

In an insurance company there are not only claim number and claim payment data available on 

a single claim level, but also reserve data. The single claim reserves are expert estimations on 

the final claim size after run off. This estimation is adjusted over the lifetime of the claim to 

its present state. This could be modelled as a (stochastic) reserve process analogously to the 

payment process in the present model. The reserve process could also be calibrated on single 

claim data. The applicability of the extended model in practice has to be analysed carefully 

due to the following reason: An improved prediction in “macroscopic” portfolio reserve will 

only be achieved, if the insurance company’s real world reserving process can be modelled 

consistently over the past. All practitioners know that this assumption is not trivial at all! So 

the success of the model extension depends very much on the peculiarities of the insurance 

company. Extensions of that kind have been worked out for the 2D methods during the last 

years (see [5]). 
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