Statistics of heteroscedastic extremes

John Einmahl1 Laurens de Haan2,3 Chen Zhou4,3

1Tilburg University
2University of Lisbon
3Erasmus University Rotterdam
4De Nederlandsche Bank

May 22, 2013
“We are going through a financial crisis more severe and unpredictable than any in our lifetimes.”

– Henry M. Paulson, Nov 18, 2008

- Is that true?
 - Are financial crises nowadays more severe than those in the past?
- Challenge to statistics
 - Analyze tail events
 - Account for potential distributional changes
- Do extreme value statistics work here?
 - Yes: tools for tails
 - No: usually assuming i.i.d.
Homoscedastic extremes

- Classic extreme value statistics
 - Observations are assumed to be i.i.d.
 - Estimating tail properties: e.g. extreme value index
 - Inference on tail events: e.g. VaR, tail probability

- Beyond i.i.d.
 - Account for serial dependence
 - Nevertheless, assuming stationary distribution

- So far, distributional changes are assumed away

- To justify “we have ‘more severe’ crises in certain period”
 - Must abolish “identical distribution”
 - Given crisis magnitude, more frequent
 - Given crisis frequency, more severe
 - Must keep some common properties for statistical inference
Consider observations X_1, \ldots, X_n

Drawn from different distributions $F_{n,1}, \ldots, F_{n,n}$

Common right endpoint x^*

Tail comparability

$$\lim_{x \to x^*} \frac{1 - F_{n,i}(x)}{1 - F(x)} = c \left(\frac{i}{n} \right)$$

Comparable tail: common distribution function $F \in \mathcal{D}_\gamma$

Heteroscedastic extremes: scaling function $c(s)$ on $[0, 1]$

Uniformly for all n and all $1 \leq i \leq n$.

Identification condition: c continuous and

$$\int_0^1 c(s) ds = 1$$
Advantages

- The model allows non-identical distribution
- The model only assumes heteroscedasticity in extremes
 - Typical extreme value setup
 - Non-parametric setup on the scaling function
 - Flexible for further modeling the trend c
- Consequence: If $F \in \mathcal{D}_\gamma$, then all $F_{n,i}$ has the same tail index
 - Do not allow variation in extreme value index
- Such a feature is not necessarily bad
 - Otherwise, no common parameter to estimate
- We will nevertheless test the model setup
The purpose of the paper

General purpose: provide a set of tools on extreme value statistics with non-identically distributed observations

- Assume the model
 - Estimate the extreme value index of F, γ
 - Estimate the scaling function $c(s)$
 - Testing hypothesis $c(s) = c_0(s)$ for a given c_0
 - Rejecting the null that $c(s) = 1$ confirms the statement that “in some period, extreme events are more severe than other”.

- Testing the model
 - Testing the null hypothesis of constant γ
 - In the presence of scale changes

- Estimation of high quantile at certain time point
 - Quantify how different extreme events are in some period
Estimating the scaling function

- We first estimate $C(s) = \int_0^s c(u)du$

- A Peak-Over-Threshold (POT) idea
 - Threshold: $X_{n,n-k}$ ($(k + 1)$–th highest observation among all)
 - It is not an order statistic (different distributions)
 - It nevertheless works as an order statistics from F
 - Then count the frequency of “exceeding” in the first “s fraction”

- Estimator: $\hat{C}(s) = \frac{1}{k} \sum_{i=1}^{[ns]} 1\{X_i > X_{n,n-k}\}$

- Choice of k
 - As in usual extreme value statistics

$$\lim_{n \to +\infty} k(n) = +\infty, \quad \lim_{n \to +\infty} \frac{k}{n} = 0$$

- Extra conditions for proving asymptotic normality
Theoretical property of estimators

- **Conditions**
 - Quantifying speed of convergence:
 \[\frac{1-F_{n,i}(x)}{1-F(x)} - c\left(\frac{i}{n}\right) = O(1) \]
 - Extra conditions on \(k \):
 \[\sqrt{k}A_1(n/k) \to 0 \text{ and } \sqrt{k}\sup_{|u-v| \leq 1/n} |c(u) - c(v)| \to 0 \]

- **Conclusion (under a Skorokhod construction)**
 \[
 \sup_{0 \leq s \leq 1} \left| \sqrt{k}(\hat{C}(s) - C(s)) - B(C(s)) \right| \to 0 \text{ a.s.}
 \]

- \(B(s) \) is a standard Brownian bridge.

- **A consistent estimator of the \(c(s) \) function**
 - A uniform kernel approach
 - A bandwidth \(h > 0 \) such that \(h \to 0 \) and \(kh \to \infty \) as \(n \to \infty \)
 - Estimator:
 \[\hat{c}(s) = \frac{\hat{C}(\min(s+h,1)) - \hat{C}(\max(s-h,0))}{\min(s+h,1) - \max(s-h,0)} \]
Detecting heteroscedasticity in extremes

- Testing the null \(c(s) = c_0(s) \) or \(C(s) = C_0(s) \)
 - Example: \(c_0(s) = 1 \) or \(C_0(s) = s \): no trend
 - Economic interpretation

- A Kolmogorov-Smirnov type test
 - Test statistic: \(T := \sup_{0 \leq s \leq 1} |\hat{C}(s) - C_0(s)| \)
 - Limit behavior:
 \[
 \sqrt{kT} \overset{d}{\rightarrow} \sup_{0 \leq s \leq 1} |B(C_0(s))|
 \]

- Other potential test
 - The null \(C(s_0) = s_0 \)
 - The crisis frequency before \(s_0 \) is the same as that after \(s_0 \)
 - Break point (A Chow-type test)
So far, we did not use the domain of attraction condition
 - The estimation of trend does not depend on F
Next, we assume that $F \in D_\gamma$ for $\gamma > 0$.
 - γ is the common EVI shared by all $F_{n,i}$
Estimation of γ: the Hill estimator
Under the same Skorokhod construction as in estimating $C(s)$,

$$\sqrt{k}(\hat{\gamma}_H - \gamma) \rightarrow \gamma N_0 \text{ a.s.},$$

where N_0 follows standard normal distribution
- N_0 and $B(C(s))$ are independent
 - The estimation of the tail property and the scaling function are independent
Testing the model

- The null hypothesis: our model
 - γ is constant across the distributions
 - Scales may vary across observations
- The alternative: γ variation
- Comparing with other tests in literature
 - Quintos et al. (2001) tested constant γ, by taking the null hypothesis that observations are i.i.d.
 - They require constant scale under the null hypothesis
 - Data violate that null, but following our model would be rejected there
 - We test constant γ in the presence of scale variation
Constructing the test

A recursive idea

- Estimate γ based on the first $[ns]$ observations: $\hat{\gamma}_s, s \in [\delta, 1]$
- The choice of k matches the scaling effect $k_s = kC(s)$
- Use the estimated $C(s)$: $k_s = k\hat{C}(s)$
- Compare that with $\hat{\gamma}_1$ when using all observations

Formally,

$$\sqrt{k}(\hat{\gamma}_s - \gamma) \to \gamma \frac{\tilde{W}(C(s))}{C(s)},$$

where \tilde{W} is a standard Brownian motion.

Test statistics: $T_\delta := \sup_{\delta \leq s \leq 1} |\hat{\gamma}_s - \hat{\gamma}_1|.$

$$\sqrt{k} T_\delta \xrightarrow{d} \gamma \sup_{\delta \leq s \leq 1} \left| \frac{\tilde{W}(C(s))}{C(s)} - \tilde{W}(1) \right|.$$

Limit process: use estimated $\hat{C}(s)$ and simulation
The recursive test can identify γ change
- Any increase in γ after $[n\delta]$-th observation

It cannot identify
- Changes in the first δ fraction
- Decreasing γ

Two solutions:
- Combining with a reverse recursive test
- A circle idea

Choice of δ
- We choose $\delta = 1/2$ to guarantee the number of observations
- It is not a problem after adopting the circle idea
Simulations

- Simulated observations
 - Model 1: i.i.d. standard Fréchet
 - Model 2: multiplied with $c(s) = 0.2 + 1.6s$
 - Model 3: adjusted to the power $d(s) = 0.7 + 0.6s$

- Sample size $n = 5,000$ (similar to that in application)

- Number of samples $m = 100$

- Report: the number rejections under 5% (10%) confidence level

<table>
<thead>
<tr>
<th></th>
<th>Testing constant γ</th>
<th>Testing constant scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>4 (8)</td>
<td>4 (10)</td>
</tr>
<tr>
<td>Model 2</td>
<td>3 (12)</td>
<td>100 (100)</td>
</tr>
<tr>
<td>Model 3</td>
<td>50 (62)</td>
<td>–</td>
</tr>
</tbody>
</table>
Application

- Sub-samples
 - Sample 1: 1968-1987 (5,025 obs)
 - Sample 2: 1988-2007 (5,043 obs)
 - Sample 3: 1993-2012 (5,037 obs)

<table>
<thead>
<tr>
<th></th>
<th>k</th>
<th>Testing constant γ</th>
<th>Testing constant scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Sample</td>
<td>320</td>
<td>0.11</td>
<td>0</td>
</tr>
<tr>
<td>Sample 1</td>
<td>130</td>
<td>0.09</td>
<td>0</td>
</tr>
<tr>
<td>Sample 2</td>
<td>130</td>
<td>0.16</td>
<td>0</td>
</tr>
<tr>
<td>Sample 1&2</td>
<td>300</td>
<td>0.91</td>
<td>0</td>
</tr>
<tr>
<td>Sample 3</td>
<td>130</td>
<td>0.002</td>
<td>–</td>
</tr>
</tbody>
</table>

- Next, we plot
 - The estimated $\hat{\gamma}_s$ in Sample 3
 - The estimated $c(s)$ in Sample 1 & 2
The scale function over time

Estimated recursive γ (starting from 1993)

Estimated scaling function

Einmahl et al. Heteroscedastic Extremes
A by-product: VaR at each time point

- Different distributions lead to different high quantiles
- We estimate high quantiles at each time point
 - Economic significance of the different scaling
 - Given crisis frequency, the difference in crisis magnitude
 - Forecasting high quantile in the next time period
 - Exploiting the continuity of the c function
- A two-step approach
 - Estimate the quantile of the common distribution F
 \[\hat{\text{VaR}}(p) = X_{n,n-k} \cdot \left(\frac{k}{np} \right)^{\hat{\gamma}_H} \]
 - Use the relation that
 \[\text{VaR}_i(p) = \text{VaR} \left(\frac{p}{c \left(\frac{i}{n} \right)} \right) \sim \text{VaR}(p) c \left(\frac{i}{n} \right)^{\gamma} \]
 - The consistent estimator
 \[\hat{\text{VaR}}_i(p) = X_{n,n-k} \cdot \left(\frac{k \hat{c} \left(\frac{i}{n} \right)}{np} \right)^{\hat{\gamma}_H} \]
Conclusion

- We can handle extreme value statistics when observations are drawn from different distributions.
- We identify whether heteroscedastic extremes are due to the variation of γ or scale.
- If the changes are in the scale, we can quantify that variation:
 - in terms of frequency, given magnitude
 - in terms of magnitude, given frequency
- Omitted in the presentation:
 - The proofs: based on the Sequential Tail Empirical Process (STEP).
 - A useful tool to that can be applied to other problems in extreme value statistics when having heteroscedastic extremes.

It is just a first STEP towards non-stationarity!