Premium indexing in lifelong health insurance
2013 Astin Colloquium, The Hague

W. Vercruysse, J. Dhaene, M. Denuit, E. Pitacco, K. Antonio

KU Leuven, Belgium

May 22, 2013

1KU Leuven AG Chair on Health Insurance.
Outline

Introduction

Indexing for medical inflation
 Notations and assumptions
 Indexing at time $t = 1$
 Indexing at time $t = 2, 3, \ldots$

Application of the indexing mechanism
 Relationships between $j_t^{[V]}, j_t^{[P]}$ and $j_t^{[B]}$
 Possible procedures

Numerical illustration
 Technical basis
 Optimal α as a function of the age at entry
 Optimal α for a given portfolio of new entrants

Conclusions
Introduction
Research background

Complementary health insurances:

▶ outside social security system
▶ occupational or non-occupational.

Belgian legislation:

▶ lifelong contract,
▶ fixed technical basis,
▶ premium adaptation only with fixed medical index.

Medical inflation is impossible to predict
→ ongoing monitoring
Indexing for medical inflation

Notations and assumptions

Notation:

- x: age at policy issue;
- t: time since policy issue;
- (t): time at which quantities are valuated.

Assumptions:

- level premiums,
- non-transferrable reserves,
- apart from inflation, all assumptions made in the technical basis are met.
Health insurance contract:

- APV of the benefits:

\[B_x^{(0)} = \sum_{k=0}^{\infty} c_{x+k}^{(0)} v(0, k) k p_x. \]

- Non-exit probability:

\[k p_{x+t} = \exp \left(- \int_0^k (\mu_{x+t+s} + \lambda_{x+t+s}) \, ds \right), \]

\[= \left(1 - k q_{x+t}^{[d]} \right) \left(1 - k q_{x+t}^{[w]} \right). \]
Level premium:

\[
\pi_x^{(0)} = \frac{B_x^{(0)}}{\bar{a}_x}, \text{ where } \bar{a}_x = \sum_{k=0}^{\infty} v(0, k) \ k p_x.
\]

Initial reserve:

\[
V_0^{(0)} = B_x^{(0)} - \pi_x^{(0)} \bar{a}_x = 0.
\]
Indexing for medical inflation

time $t=1$

- Reserves:
 - Assets (retrospective reserve):
 \[V^{(0)}_1 = \left[\pi^{(0)}_x - c^{(0)}_x \right] \left[v(0, 1) \right] p_x^{-1}. \]
 - Liabilities (prospective reserve):
 \[V^{(0)}_1 = B^{(0)}_{x+1} - \pi^{(0)}_x \ddot{a}_{x+1}, \]
 \[B^{(0)}_{x+1} = \sum_{k=0}^{\infty} c^{(0)}_{x+1+k} v(1, 1+k) p_{x+1}, \]
 \[\ddot{a}_{x+1} = \sum_{k=0}^{\infty} v(1, 1+k) p_{x+1}. \]
Medical inflation during $[0, 1]$:

$$B_{x+1}^{(1)} = (1 + j_1^{[B]})B_{x+1}^{(0)}.$$

Inequality:

Assets \neq Liabilities

$$V_1^{(0)} \neq (1 + j_1^{[B]})B_{x+1}^{(0)} - \pi_x^{(0)}\ddot{a}_{x+1}.$$
Restore actuarial equivalence:

- premium increase, \(j_1^{[P]} \);
- reserve increase, \(j_1^{[V]} \);

Following Pitacco (1990):

\[
(1 + j_1^{[V]}) V_1^{(0)} = (1 + j_1^{[B]}) B_{x+1}^{(0)} - (1 + j_1^{[P]}) \pi_x^{(0)} \ddot{a}_{x+1},
\]

or, equivalently,

\[
V_1^{(1)} = B_{x+1}^{(1)} - \pi_x^{(1)} \ddot{a}_{x+1}.
\]
Indexing for medical inflation
time $t=2,3,\ldots$

- Reserves:
 - Assets (retrospective reserve):
 $$V_{t}^{(t-1)} = \left[V_{t-1}^{(t-1)} + \pi_{x}^{(t-1)} - c_{x}^{(t-1)} \right] \left[v(t-1, t) \rho_{x+t-1} \right]^{-1}.$$
 - Liabilities (prospective reserve):
 $$V_{t}^{(t-1)} = B_{x+t}^{(t-1)} - \pi_{x}^{(t-1)} \ddot{a}_{x+t},$$
 $$B_{x+t}^{(t-1)} = \sum_{k=0}^{\infty} c_{x+t+k}^{(t-1)} v(t, t+k) \rho_{x+t},$$
 $$c_{x+t+k}^{(t-1)} = c_{x+t+k}^{(0)} \prod_{h=1}^{t-1} \left(1 + j_{h}^{[B]} \right),$$
 $$\pi_{x}^{(t-1)} = \pi_{x}^{(0)} \prod_{h=1}^{t-1} \left(1 + j_{h}^{[P]} \right).$$
• Medical inflation during $[t - 1, t]$:

$$B_{x+t}^{(t)} = (1 + j_t^{[B]}) B_{x+t}^{(t-1)}.$$

• Inequality:

$$V_{t}^{(t-1)} \neq (1 + j_t^{[B]}) B_{x+t}^{(t-1)} - \pi_{x}^{(t-1)} \dot{a}_{x+t}.$$
Restore actuarial equivalence:

\[(1 + j_t^{[V]}) V_t^{(t-1)} = (1 + j_t^{[B]}) B_{x+t}^{(t-1)} - (1 + j_t^{[P]}) \pi_x^{(t-1)} \ddot{a}_{x+1},\]

or, equivalently,

\[V_t^{(t)} = B_{x+t}^{(t)} - \pi_x^{(t)} \ddot{a}_{x+t}.\]
Application of the indexing mechanism

Relationships

$$j_t^{[B]} = \left(\frac{V_t^{(t-1)}}{B_x^{(t-1)}} \right) j_t^{[V]} + \left(\frac{\pi_x^{(t-1)} \dot{a}_{x+1}}{B_x^{(t-1)}} \right) j_t^{[P]}.$$

Question:

How to share the additional cost arising from unanticipated benefit inflation between the policy holder ($j_t^{[P]}$) and the insurer ($j_t^{[V]}$)?
Application of the indexing mechanism

Possible procedures

1. \(j_t^{[V]} = 0 \):
 - advantages:
 - simple and transparent;
 - intuitive;
 - disadvantage:
 - \(j_t^{[P]} \) may fluctuate heavily from year to year.

2. \(j_t^{[P]} = (1 + \alpha)j_t^{[B]} \):
 - \(\alpha = 0 \Rightarrow j_t^{[P]} = j_t^{[B]} = j_t^{[V]} \),
 - \(\alpha > 0 \Rightarrow j_t^{[P]} > j_t^{[B]} > j_t^{[V]} \),
 - \(\alpha < 0 \Rightarrow j_t^{[P]} < j_t^{[B]} < j_t^{[V]} \).
How to determine α such that the contract remains fair?

1. Optimal α for a given age at policy issue:

$$APV_x(\alpha_x^*) = 0, \text{ with } APV_x(\alpha) = \sum_{t=1}^{\infty} j_t [V] V_t^{(t-1)} p_x \nu(0, t).$$

2. Optimal α for a given portfolio of new entrants:

$$APV(\alpha^*) = 0, \text{ with } APV(\alpha) = \sum_{x=x_0}^{\omega-1} n_x \cdot APV_x(\alpha).$$

where $\sum_{x=x_0}^{\omega-1} n_x \cdot \left[\sum_{t=1}^{\infty} j_t [V] V_t^{(t-1)} p_x \nu(0, t) \right] = 0$ to find the optimal α, can be written as an initial equation of equilibrium similar to the one that determines the premiums.
Numerical illustration

Technical basis

- Non-exit probability:

\[p_y = \left(1 - q_y^{[d]}\right) \left(1 - q_y^{[w]}\right) \]

- Independent survival rates based on the mortality function of the first Heligman-Pollard Law:

\[\frac{q_y^{[d]}}{1 - q_y^{[d]}} = A(y+B)^C + D e^{-E(\ln y - \ln F)^2} + G H^y, \]

with market parameters:

\[A = 0.00054, \quad B = 0.017, \quad C = 0.101, \quad D = 0.00013, \]
\[E = 10.72, \quad F = 18367, \quad G = 1.464 \times 10^{-5} \text{ and } H = 1.11. \]

- Independent lapse rates:

\[q_y^{[w]} = \begin{cases} 0.1 - 0.002(y - 20), & y = 20, 21, \ldots, 70 \\ 0, & \text{else} \end{cases} \]
Figure: One-year non-exit, survival and lapse probabilities.
interest rate: $i = 2\%$

annual claim amount:

$$c_y^{(0)} = 0.204476472 \times \exp(0.038637y), \quad y \geq 20.$$
Figure: Level premiums $\pi_x^{(0)}$ for different ages.
Figure: Reserves $V_t^{(0)}$ for a person aged 25 at policy issue when $j_t^{[B]} = 0$.
Numerical illustration
Optimal alpha as a function of the age at entry

1. Calculate $APV_x(\alpha)$ for different values of α.
 E.g. take $x = 25$:

 ![Graph showing $APV_{25}(\alpha)$ for different inflation rates]

 Figure: $APV_{25}(\alpha)$ when $j_t^{[P]} = (1 + \alpha)j_t^{[B]}$.

2. Select α_x^* for which $APV_x(\alpha_x^*) = 0$.
Figure: The optimal factor α^*_x as a function of the age at policy issue.
Numerical illustration
Optimal alpha for a given portfolio of new entrants

Figure: Distribution of the age of new entrants.
Figure: $APV(\alpha)$ as a function of α in case $j_t^{[P]} = (1 + \alpha)j_t^{[B]}$.
Conclusion

- premium indexing mechanisms to restore the actuarial equivalence:

\[j_t^{[B]} = \left(\frac{V_t^{(t-1)}}{B_x^{(t-1)}} \right) j_t^{[V]} + \left(\frac{\pi_x^{(t-1)} \dot{a}_{x+1}}{B_x^{(t-1)}} \right) j_t^{[P]} \]

1. on policy-per-policy and year-to-year basis with \(j_t^{[V]} \) constant or \(j_t^{[V]} = 0 \).

2. with \(j_t^{[P]} = (1 + \alpha) j_t^{[B]} \) such that the actuarial present value of the future reserve increases equal 0. \(\alpha \) can be chosen:

 2.1 for a given age at policy issue;

 2.2 for a given portfolio of new entrants.
References

Contact

Ward Vercruysse: Ward.Vercruysse@kuleuven.be
Jan Dhaene: Jan.Dhaene@kuleuven.be
Michel Denuit: michel.denuit@uclouvain.be
Katrien Antonio: Katrien.Antonio@kuleuven.be

Website: www.econ.kuleuven.be/insurance/AGchair.htm