Robust Hedging in Incomplete Markets

Sally Shen Antoon Pelsser Peter Schotman

Maastricht University

21-24 May 2013
ASTIN Colloquium in The Hague
Motivation

- **Incomplete markets** Not all risks are traded in the financial market.

- **Model Misspecification** The expected asset/liability return is difficult to estimate based on the historical data. Expose to estimation error.

 Expected stock return: \[
 \frac{\ln(S_T) - \ln(S_0)}{T} + \frac{1}{2} \sigma^2,
 \]
 only price at time 0 and \(T \) matters.

 If market volatility is 16\%, then the standard error of the equity premium is \(\left(\frac{16\%}{\sqrt{T}} \right) \), shrinking with square root of time. Hard to keep the same DGP during entire period.

- **Application** Pension fund investment with inflation risk and longevity risk.
Contribution and Conclusion

Contribution We provide a robust optimal hedging strategy in an incomplete market that protects the investor from the parameter uncertainty.

Conclusion

1. The agent can benefit from a robust policy in two aspects. 1: Expected loss from estimation error is less sensitive to the estimated parameters. 2: Cost of hedging is reduced if the expected stock return is over estimated.
2. The robust policy is more conservative than the naive policy when the financial institution is facing solvency risk.
3. Robustness effect depends heavily on the correlation between the asset risk and the liability risk.
Model: Market Incompleteness

- **Two uncorrelated risk factors** One hedgeable risk W_1 and one non-hedgeable risk W_2. Both are univariate standard Brownian motions.

- **ALM model** The investor puts wA_t amount in the stock market at time t. The remaining part of the assets $(1 - w)A_t$ is put into the money-market account.

 $$dA_t = \left(r + w(\mu - r) \right) A_t \, dt + w\sigma A_t \, dW_1,$$

- The liability market is incomplete, exposing to both hedgeable risk W_1 and non-hedgeable risk W_2,

 $$dL_t = aL_t \, dt + bL_t \left(\rho \, dW_1 + \sqrt{1 - \rho^2} \, dW_2 \right),$$

with $\rho \in [-1, 1]$, the correlation between asset risk and liability risk.
Model Misspecification

- Employ Hansen and Sargent (2007) framework. Perturbed evolution:

\[dA_t = \left(r + w(\mu - r) \right) A_t \, dt + w\sigma A_t \left(dW_1 + \lambda_1 \, dt \right), \]
\[dL_t = a L_t \, dt + b L_t \left(\rho \left(dW_1 + \lambda_1 \, dt \right) \right. \]
\[\left. + \sqrt{1 - \rho^2} \left(dW_2 + \lambda_2 \, dt \right) \right), \]

The two drift terms \(\lambda_1 \) and \(\lambda_2 \) are defined as two perturbation time series process.
Uncertainty Set

The values of λ_1 and λ_2 are constrained by an uncertainty set which is derived via distribution theory.

Estimated drift terms: $\delta = \begin{pmatrix} \mu \\ a \end{pmatrix}$

Estimation error: $\delta_1 = \begin{pmatrix} \sigma \lambda_1 \\ b \rho \lambda_1 + b \sqrt{1 - \rho^2} \lambda_2 \end{pmatrix}$

Variance covariance matrix: $\Gamma = \begin{pmatrix} \sigma & 0 \\ b \rho & b \sqrt{1 - \rho^2} \end{pmatrix}$

Assume $\delta_1 \sim N(0, \Gamma)$

$$\delta_1' \Sigma^{-1} \delta_1 \leq \kappa^2$$

Uncertainty Set

$$\$ = \{ \lambda_1, \lambda_2 | \lambda_1^2 + \lambda_2^2 \leq \kappa^2 \}$$
Optimization Problem

- **Naive Optimization** Optimal hedging strategy that minimizes the expected shortfall at time T

$$\min_w \mathbb{E}[(L_T - A_T)^+ \mid \mathcal{F}_t]$$

with $w \in [0, 1]$. We call the hedging strategy which does not consider model misspecification a naive policy denoting w_{na}.
Robust Optimization Problem

Robust Optimization If the agent is afraid of the model misspecification, he seeks a robust policy defined as:

$$\min_{w} \max_{\lambda_1, \lambda_2} \mathbb{E}[(L_T - A_T)^+ | \mathcal{F}_t]$$

Two player’s game: Player 1, the robust agent makes an instantaneous investment decision w_{rob} to maximize the expected shortfall. Player 2, the (imaginary) Mother Nature. Given the decision from player one, she attempts to minimize the expected shortfall by controlling λ_1 and λ_2.
Figure: Static optimal portfolio choice. The results are based on the benchmark estimation parameters $\mu = 0.04$, $\sigma = 0.16$, $r = 0$, $a = 0$, $b = 0.1$, $\rho = 0.5$, $\kappa = 0.25$, and $T = 5$.
Mother Nature’s Choice

- $\lambda_1 < 0$ representing the agent’s fear for an overestimated asset return.
- Low C_0, more risk exposure, more negative λ_1.
Estimation Error of Drift Terms

(a) Robust vs. Naive μ_S

- Perturbed expected stock return is reduced by $|\sigma \lambda_1|$ amount.

(b) Robust vs. Naive μ_L

- Liability drift is pushed up by $|b \rho \lambda_1 + b \sqrt{1 - \rho^2} \lambda_2|$ amount.
Policy Evaluation

- Minimum hedging cost: \(q(\delta) = \min_w Q(w, \delta) \) for given \(\delta \), estimated expected return.
- Minimum cost is \(q_0 \) by following optimal hedge \(w_0 \) if the true return \(\delta_0 \) is known.
- Any other alternative hedging policies \(w_a \neq w_0 \) requires more hedging expense than \(q_0 \).
- Loss function \(K(w_a|\delta_0) \) as the difference between the cost of hedging following a suboptimal policy \(Q(w_a, \delta_0) \) and the true minimum cost:
 \[
 K(w_a|\delta_0) = Q(w_a, \delta_0) - q_0
 \]
- When does robust policy beats the naive policy?
Policy Evaluation

Figure: Region beneath the curve, the robust policy outperforms the naive one and in the region above is another way around.
If $C_t < 1$, increase the risk exposure on stock market over time.

If $C_t > 1$, decrease his risk exposure over time.
Policy Evaluation

Figure: Dynamic loss function equivalent curve.

- The beneficial region of robust policy decreases over time.