Background

• Risk based capital proposals, e.g. EU Solvency II and USA SMI rely on stochastic models.
 • VaR@99.5% and TVaR@99%
• There are many stochastic loss reserve models that claim to predict the distribution of ultimate losses.

How good are these models?

• This presentation describes tests of the predictions of currently popular stochastic loss reserve models on real data from 50 insurers in each of four lines of insurances.
• It proposes two new models that improve the predictions.
The CAS Loss Reserve Database
Created by Meyers and Shi
With Permission of American NAIC

• Schedule P (Data from Parts 1-4) for several US Insurers
 • Private Passenger Auto
 • Commercial Auto
 • Workers’ Compensation
 • General Liability
 • Product Liability
 • Medical Malpractice (Claims Made)

• Available on CAS Website
 http://www.casact.org/research/index.cfm?fa=loss_reserves_data
Notation

- $w =$ Accident Year $w = 1, ..., 10$
- $d =$ Development Year $d = 1, ..., 10$
- $C_{w,d} =$ Cumulative (either incurred or paid) loss
- $I_{w,d} =$ Incremental paid loss $= C_{w,d} - C_{w-1,d}$
Illustrative Insurer – Incurred Losses

<table>
<thead>
<tr>
<th>Premium</th>
<th>AY/Lag</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>5812</td>
<td>1988</td>
<td>1722</td>
<td>3830</td>
<td>3603</td>
<td>3835</td>
<td>3873</td>
<td>3895</td>
<td>3918</td>
<td>3918</td>
<td>3917</td>
<td>3917</td>
<td>1997</td>
</tr>
<tr>
<td>4908</td>
<td>1989</td>
<td>1581</td>
<td>2192</td>
<td>2528</td>
<td>2533</td>
<td>2528</td>
<td>2530</td>
<td>2534</td>
<td>2541</td>
<td>2538</td>
<td>2532</td>
<td>1998</td>
</tr>
<tr>
<td>5454</td>
<td>1990</td>
<td>1834</td>
<td>3009</td>
<td>3488</td>
<td>4000</td>
<td>4105</td>
<td>4087</td>
<td>4112</td>
<td>4170</td>
<td>4271</td>
<td>4279</td>
<td>1999</td>
</tr>
<tr>
<td>5165</td>
<td>1991</td>
<td>2305</td>
<td>3473</td>
<td>3713</td>
<td>4018</td>
<td>4295</td>
<td>4334</td>
<td>4343</td>
<td>4340</td>
<td>4342</td>
<td>4341</td>
<td>2000</td>
</tr>
<tr>
<td>5214</td>
<td>1992</td>
<td>1832</td>
<td>2625</td>
<td>3086</td>
<td>3493</td>
<td>3521</td>
<td>3563</td>
<td>3542</td>
<td>3541</td>
<td>3541</td>
<td>3587</td>
<td>2001</td>
</tr>
<tr>
<td>5230</td>
<td>1993</td>
<td>2289</td>
<td>3160</td>
<td>3154</td>
<td>3204</td>
<td>3190</td>
<td>3206</td>
<td>3351</td>
<td>3289</td>
<td>3267</td>
<td>3268</td>
<td>2002</td>
</tr>
<tr>
<td>4992</td>
<td>1994</td>
<td>2881</td>
<td>4254</td>
<td>4841</td>
<td>5176</td>
<td>5551</td>
<td>5689</td>
<td>5683</td>
<td>5688</td>
<td>5684</td>
<td>5684</td>
<td>2003</td>
</tr>
<tr>
<td>5466</td>
<td>1995</td>
<td>2489</td>
<td>2956</td>
<td>3382</td>
<td>3755</td>
<td>4148</td>
<td>4123</td>
<td>4126</td>
<td>4127</td>
<td>4128</td>
<td>4128</td>
<td>2004</td>
</tr>
<tr>
<td>5226</td>
<td>1996</td>
<td>2541</td>
<td>3307</td>
<td>3789</td>
<td>3973</td>
<td>4031</td>
<td>4157</td>
<td>4143</td>
<td>4142</td>
<td>4144</td>
<td>4144</td>
<td>2005</td>
</tr>
<tr>
<td>4962</td>
<td>1997</td>
<td>2203</td>
<td>2934</td>
<td>3608</td>
<td>3977</td>
<td>4040</td>
<td>4121</td>
<td>4147</td>
<td>4155</td>
<td>4183</td>
<td>4181</td>
<td>2006</td>
</tr>
</tbody>
</table>
Illustrative Insurer – Paid Losses

<table>
<thead>
<tr>
<th>Premium</th>
<th>AY/Lag</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>5812</td>
<td>1988</td>
<td>952</td>
<td>1529</td>
<td>2813</td>
<td>3647</td>
<td>3724</td>
<td>3832</td>
<td>3899</td>
<td>3907</td>
<td>3911</td>
<td>3912</td>
<td>1997</td>
</tr>
<tr>
<td>4908</td>
<td>1989</td>
<td>849</td>
<td>1564</td>
<td>2202</td>
<td>2432</td>
<td>2468</td>
<td>2487</td>
<td>2513</td>
<td>2526</td>
<td>2531</td>
<td>2527</td>
<td>1998</td>
</tr>
<tr>
<td>5454</td>
<td>1990</td>
<td>983</td>
<td>2211</td>
<td>2830</td>
<td>3832</td>
<td>4039</td>
<td>4065</td>
<td>4102</td>
<td>4155</td>
<td>4268</td>
<td>4274</td>
<td>1999</td>
</tr>
<tr>
<td>5165</td>
<td>1991</td>
<td>1657</td>
<td>2685</td>
<td>3169</td>
<td>3600</td>
<td>3900</td>
<td>4320</td>
<td>4332</td>
<td>4338</td>
<td>4341</td>
<td>4341</td>
<td>2000</td>
</tr>
<tr>
<td>5214</td>
<td>1992</td>
<td>932</td>
<td>1940</td>
<td>2626</td>
<td>3332</td>
<td>3368</td>
<td>3491</td>
<td>3531</td>
<td>3540</td>
<td>3540</td>
<td>3538</td>
<td>2001</td>
</tr>
<tr>
<td>5230</td>
<td>1993</td>
<td>1162</td>
<td>2402</td>
<td>2799</td>
<td>2996</td>
<td>3034</td>
<td>3042</td>
<td>3230</td>
<td>3238</td>
<td>3241</td>
<td>3268</td>
<td>2002</td>
</tr>
<tr>
<td>4992</td>
<td>1994</td>
<td>1478</td>
<td>2980</td>
<td>3945</td>
<td>4714</td>
<td>5462</td>
<td>5680</td>
<td>5682</td>
<td>5683</td>
<td>5684</td>
<td>5684</td>
<td>2003</td>
</tr>
<tr>
<td>5466</td>
<td>1995</td>
<td>1240</td>
<td>2080</td>
<td>2607</td>
<td>3080</td>
<td>3678</td>
<td>4116</td>
<td>4117</td>
<td>4125</td>
<td>4128</td>
<td>4128</td>
<td>2004</td>
</tr>
<tr>
<td>5226</td>
<td>1996</td>
<td>1326</td>
<td>2412</td>
<td>3367</td>
<td>3843</td>
<td>3965</td>
<td>4127</td>
<td>4133</td>
<td>4141</td>
<td>4142</td>
<td>4144</td>
<td>2005</td>
</tr>
<tr>
<td>4962</td>
<td>1997</td>
<td>1413</td>
<td>2683</td>
<td>3173</td>
<td>3674</td>
<td>3805</td>
<td>4005</td>
<td>4020</td>
<td>4095</td>
<td>4132</td>
<td>4139</td>
<td>2006</td>
</tr>
</tbody>
</table>
Criteria for a “Good” Stochastic Loss Reserve Model

• Using the upper triangle “training” data, predict the distribution of the outcomes in the lower triangle
 • Can be observations from individual (AY, Lag) cells or sums of observations in different (AY, Lag) cells.

• Using the predictive distributions, find the percentiles of the outcome data.

• The percentiles should be uniformly distributed.
 • Histograms
 • Test with PP Plots/KS tests
 • Plot Expected vs Predicted Percentiles
 • KS 95% critical values = 19.2 for \(n = 50 \) and 9.6 for \(n = 200 \)
Illustrative Tests of Uniformity
Data Used in Study

- Insurers listed in Meyers – Summer 2012 e-Forum
- 50 Insurers from four lines of business
 - Commercial Auto
 - Personal Auto
 - Workers’ Compensation
 - Other Liability
- Both paid and incurred losses
Test of Mack Model on Incurred Data

Conclusion – The Mack model predicts tails that are too light.
Conclusion – The Mack model is biased upward.
Test of Bootstrap ODP on Paid Data

Conclusion – The Bootstrap ODP model is biased upward.
Possible Responses to the model failures

• The “Black Swans” got us again!
 • We do the best we can in building our models, but the real world keeps throwing curve balls at us.
 • Every few years, the world gives us a unique “black swan” event.

• Build a better model.
 • Use a model, or data, that sees the “black swans.”
Bayesian MCMC Models

• Use R and JAGS (Just Another Gibbs Sampler) packages
• Get a sample of 10,000 parameter sets from the posterior distribution of the model
• Use the parameter sets to get 10,000 simulated outcomes
• Calculate summary statistics of the simulated outcomes
 • Mean
 • Standard deviation
 • Percentile of the actual outcome
The Correlated Chain Ladder (CCL) Model

- \(\mu_{1,d} = \alpha_1 + \beta_d \)
- \(C_{1,d} \sim \text{lognormal}(\mu_{1,d}, \sigma_d) \)
- \(\mu_{w,d} = \alpha_w + \beta_d + \rho \cdot (\log(C_{w-1,d}) - \mu_{w-1,d}) \) for \(w = 2, \ldots, 10 \)
- \(C_{w,d} \sim \text{lognormal}(\mu_{w,d}, \sigma_d) \)
- \(\rho \sim U(-1,1) \)
- \(\alpha_w \) and \(\beta_d \) are widely distributed. \(\beta_1 = 0 \).

- \(\sigma_d = \sum_{i=d}^{10} a_i \) \(a_i \sim U(0,1) \) Forces \(\sigma_d \) to decrease as \(d \) increases

- Estimate distribution of \(\sum_{w=1}^{10} C_{w,10} \)
The Correlated Chain Ladder Model Predicts Distributions with Thicker Tails

• Chain ladder applies factors to last *fixed* observation
• CCL uses *uncertain* “level” parameters for each accident year.
 \[\text{Var} \left[C_{w,d} \right] = E_{\alpha_w} \left[\text{Var} \left[C_{w,d} \mid \alpha_w \right] \right] + \text{Var}_{\alpha_w} \left[E \left[C_{w,d} \mid \alpha_w \right] \right] \]
• Mack uses point estimations of parameters
• CCL uses Bayesian estimation to get a posterior distribution of parameters
• Mack assumes independence between accident years
• CCL allows for correlation between accident years
 \[\text{Corr}[\log(C_{w-1,d}), \log(C_{w,d})] = \rho \]
Posterior Distribution of ρ for Illustrative Insurer
Generally Positive Posterior Means of ρ
Predicting the Distribution of Outcomes

• Use JAGS (Just Another Gibbs Sampler) software to produce a sample of 10,000 \{\alpha_w\}, \{\beta_d\}, \{\sigma_d\} and \{\rho\} from the posterior distribution.

• For each member of the sample
 • \mu_1 = \alpha_1 + \beta_{10}
 • For \(w = 2 \) to \(10 \)
 • \(C_{w,10} = \) random lognormal \((\alpha_w + \beta_{10} + \rho(\log(C_{w-1,10}) - \mu_{w-1})), \sigma_d)\)

• Calculate \(\sum_{w=1}^{10} C_{w,10} \)

• Calculate summary statistics, e.g. \(E \left[\sum_{w=1}^{10} C_{w,10} \right] \) and \(Var \left[\sum_{w=1}^{10} C_{w,10} \right] \)
Results for the Illustrative Incurred Data

<table>
<thead>
<tr>
<th>w</th>
<th>C_{w,10}</th>
<th>SD</th>
<th>CV</th>
<th>C_{w,10}</th>
<th>SD</th>
<th>CV</th>
<th>C_{w,10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,917</td>
<td>0</td>
<td>0.0000</td>
<td>3,917</td>
<td>0</td>
<td>0.0000</td>
<td>3,917</td>
</tr>
<tr>
<td>2</td>
<td>2,546</td>
<td>62</td>
<td>0.0244</td>
<td>2,538</td>
<td>0</td>
<td>0.0000</td>
<td>2,532</td>
</tr>
<tr>
<td>3</td>
<td>4,111</td>
<td>119</td>
<td>0.0289</td>
<td>4,167</td>
<td>3</td>
<td>0.0007</td>
<td>4,279</td>
</tr>
<tr>
<td>4</td>
<td>4,316</td>
<td>136</td>
<td>0.0315</td>
<td>4,367</td>
<td>37</td>
<td>0.0085</td>
<td>4,341</td>
</tr>
<tr>
<td>5</td>
<td>3,552</td>
<td>126</td>
<td>0.0355</td>
<td>3,597</td>
<td>34</td>
<td>0.0095</td>
<td>3,587</td>
</tr>
<tr>
<td>6</td>
<td>3,321</td>
<td>150</td>
<td>0.0452</td>
<td>3,236</td>
<td>40</td>
<td>0.0124</td>
<td>3,268</td>
</tr>
<tr>
<td>7</td>
<td>5,285</td>
<td>295</td>
<td>0.0558</td>
<td>5,358</td>
<td>146</td>
<td>0.0272</td>
<td>5,684</td>
</tr>
<tr>
<td>8</td>
<td>3,805</td>
<td>335</td>
<td>0.0800</td>
<td>3,765</td>
<td>225</td>
<td>0.0598</td>
<td>4,128</td>
</tr>
<tr>
<td>9</td>
<td>4,180</td>
<td>615</td>
<td>0.1471</td>
<td>4,013</td>
<td>412</td>
<td>0.1027</td>
<td>4,144</td>
</tr>
<tr>
<td>10</td>
<td>4,141</td>
<td>1,371</td>
<td>0.3311</td>
<td>3,955</td>
<td>878</td>
<td>0.2220</td>
<td>4,181</td>
</tr>
<tr>
<td>Total</td>
<td>39,174</td>
<td>1,869</td>
<td>0.0477</td>
<td>38,914</td>
<td>1,057</td>
<td>0.0272</td>
<td>40,061</td>
</tr>
<tr>
<td>Percentile</td>
<td>73.40</td>
<td>86.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note the increase in the standard error of CCL over Mack.
Compare SDs for All 200 Triangles
Test of Mack Model on Incurred Data

Conclusion – The Mack model predicts tails that are too light.
Conclusion – CCL model percentiles lie within KS statistical bounds.
Improvement with Incurred Data

• Accomplished by “pumping up” the variance of Mack model.

What About Paid Data?

• Start by looking at CCL model on cumulative paid data.
Conclusion – The Bootstrap ODP model is biased upward.
Test of CCL on Paid Data

Conclusion – Roughly the same performance a bootstrapping and Mack
How Do We Correct the Bias?

• Look at models with payment year trend.
 • Ben Zehnwirth has been championing these for years.
• Payment year trend does not make sense with cumulative data!
 • Settled claims are unaffected by trend.
• Recurring problem with incremental data – Negatives!
 • We need a skewed distribution that has support over the entire real line.
The Lognormal-Normal (ln-n) Mixture

\[X \sim \text{Normal}(Z, \delta), \quad Z \sim \text{Lognormal}(\mu, \sigma) \]
The Correlated Incremental Trend (CIT) Model

- $\mu_{w,d} = \alpha_w + \beta_d + \tau \cdot (w + d - 1)$
- $Z_{w,d} \sim \text{lognormal}(\mu_{w,d}, \sigma_d)$ subject to $\sigma_1 < \sigma_2 < \ldots < \sigma_{10}$
- $I_{1,d} \sim \text{normal}(Z_{1,d}, \delta)$
- $I_{w,d} \sim \text{normal}(Z_{w,d} + \rho \cdot (I_{w-1,d} - Z_{w-1,d}) \cdot e^\tau, \delta)$

- Estimate the distribution of $\sum_{w=1}^{10} C_{w,10}$

- “Sensible” priors on α_w, σ_d, and τ. $\beta_1 = 0$
 - Needed to control σ_d
 - Interaction between τ, α_w and β_d.
CIT Model for Illustrative Insurer

<table>
<thead>
<tr>
<th>W</th>
<th>CIT</th>
<th></th>
<th></th>
<th></th>
<th>CCL</th>
<th></th>
<th></th>
<th></th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(C_{w,10})</td>
<td>SD</td>
<td>CV</td>
<td></td>
<td>(C_{w,10})</td>
<td>SD</td>
<td>CV</td>
<td></td>
<td>(C_{w,10})</td>
</tr>
<tr>
<td>1</td>
<td>3912</td>
<td>0</td>
<td>0</td>
<td></td>
<td>3912</td>
<td>0</td>
<td>0.0000</td>
<td></td>
<td>3912</td>
</tr>
<tr>
<td>2</td>
<td>2536</td>
<td>5</td>
<td>0.002</td>
<td></td>
<td>2563</td>
<td>110</td>
<td>0.0429</td>
<td></td>
<td>2527</td>
</tr>
<tr>
<td>3</td>
<td>4175</td>
<td>11</td>
<td>0.0026</td>
<td></td>
<td>4153</td>
<td>189</td>
<td>0.0455</td>
<td></td>
<td>4274</td>
</tr>
<tr>
<td>4</td>
<td>4378</td>
<td>29</td>
<td>0.0066</td>
<td></td>
<td>4320</td>
<td>224</td>
<td>0.0519</td>
<td></td>
<td>4341</td>
</tr>
<tr>
<td>5</td>
<td>3539</td>
<td>35</td>
<td>0.0099</td>
<td></td>
<td>3570</td>
<td>207</td>
<td>0.0580</td>
<td></td>
<td>3583</td>
</tr>
<tr>
<td>6</td>
<td>3043</td>
<td>105</td>
<td>0.0345</td>
<td></td>
<td>3403</td>
<td>255</td>
<td>0.0749</td>
<td></td>
<td>3268</td>
</tr>
<tr>
<td>7</td>
<td>5037</td>
<td>114</td>
<td>0.0226</td>
<td></td>
<td>5207</td>
<td>465</td>
<td>0.0893</td>
<td></td>
<td>5684</td>
</tr>
<tr>
<td>8</td>
<td>3501</td>
<td>556</td>
<td>0.1588</td>
<td></td>
<td>3649</td>
<td>467</td>
<td>0.1280</td>
<td></td>
<td>4128</td>
</tr>
<tr>
<td>9</td>
<td>3980</td>
<td>710</td>
<td>0.1784</td>
<td></td>
<td>4409</td>
<td>895</td>
<td>0.2030</td>
<td></td>
<td>4144</td>
</tr>
<tr>
<td>10</td>
<td>4661</td>
<td>1484</td>
<td>0.3184</td>
<td></td>
<td>5014</td>
<td>2435</td>
<td>0.4856</td>
<td></td>
<td>4139</td>
</tr>
<tr>
<td>Total</td>
<td>38763</td>
<td>1803</td>
<td>0.0465</td>
<td></td>
<td>40200</td>
<td>3070</td>
<td>0.0764</td>
<td></td>
<td>40000</td>
</tr>
<tr>
<td>Percentile</td>
<td>81.87</td>
<td></td>
<td></td>
<td></td>
<td>51.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Posterior Distribution of μ and τ for Illustrative Insurer

Should we allow ρ in the model?

Predominantly negative trends
Posterior Mean ρ for All Insurers On Paid Data
Posterior Mean ρ for All Insurers On Incurred Data
Posterior Mean τ for All Insurers
Test of Bootstrap ODP on Paid Data

Conclusion – The Bootstrap ODP model is biased upward.
Test of CIT with $\rho = 0$ on Paid Data

Conclusion – Overall improvement but look at Personal Auto
Test of CIT on Paid Data

Conclusion – CIT model percentiles are an improvement but do not lie within the KS bounds.
• Mack underpredicts the variability of outcomes with incurred data.
• Both Mack and Bootstrap ODP are biased high with paid data.
• Bayesian MCMC models
 • Easily modified to produce new models.
 • Easily implemented to produce predictive distributions of outcomes.
• CCL model improves significantly on predictions with incurred data.
 • Important feature – Correlation between accident years
• CIT models improves somewhat on predictions with paid data.
 • Important features – Payment year trend and correlation between accident years
• Shortcoming – Study needs to be repeated on different time periods.

Summary
Purpose of CAS Loss Reserve Database

- Large scale testing of model predictions.