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Abstract 
 
Fitting loss distributions in insurance is sometimes a dilemma: either you get a good fit for the 
small / medium losses or for the very large losses. To be able to get both at the same time, this 
paper studies generalizations and extensions of the Pareto distribution. This leads not only to 
a classification of potentially suitable functions, but also to new insights into tail behavior and 
exposure rating. 
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1 Introduction 
 
 
Loss severity distributions and aggregate loss distributions in insurance often have a shape 
being not so easy to model with the common distributions implemented in software packages. 
In the range of smaller losses and around the mean the observed densities often look 
somewhat like asymmetric bell curves, being positively skewed with one positive mode. This 
is not a problem in itself as well-known models like the Gamma or the Lognormal distribution 
have exactly this kind of geometry. Alternatively distributions like Exponential are available 
for cases where a strictly decreasing density seems more adequate. However, it often occurs 
that the traditional models, albeit incorporating the desired kind of skewness towards the 
right, have a less heavy tail than what the data indicates – if we restrict the fit on the very 
large losses the Pareto distribution or variants thereof frequently seem the best choice. But 
those typical heavy-tailed distributions rarely have the right shape to fit nicely below the tail 
area. 
 
In practice bad fits in certain areas can sometimes be ignored. If we are mainly focused on the 
large majority of small and medium losses we can often accept a bad tail fit and work with 
e.g. the Lognormal distribution. It might have a too light tail, thus we will underestimate the 
expected value, however, often the large losses are such rare that their numerical impact is 
extremely low. Conversely, in case we are focused on extreme quantiles like the 200 year 
event, or want to rate a policy with a high deductible or a reinsurance layer, we only need an 
exact model for the large losses. In such situations we could work with a distribution that 
models smaller losses wrongly (or completely ignores them). There is a wide range of 
situations where the choice of the model can be made focusing just on the specific task to be 
accomplished, while inaccuracy in unimportant areas is wittingly accepted. 
However, exactness over the whole range of loss sizes, from the many smaller to the very few 
large ones, is increasingly required. E.g. according to a modern holistic risk management / 
solvency perspective we do not only regard the average loss (often depending mainly on the 
smaller losses) but also want to derive the probability of a very bad scenario (depending 
heavily on the tail) – namely out of the same model. Further, it becomes more and more 
popular to study various levels of retentions for a policy, or for a portfolio to be reinsured. (A 
traditional variant of this methodology is what reinsurers call exposure rating.) For such 
analyses one needs a distribution model being very accurate both in the low loss area, which 
is where the retention applies, and in the tail area, whose impact on the expected loss becomes 
higher the higher the retention is chosen. 
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Such situations require actuaries to leave the distribution models they know best and proceed 
to somewhat more complex ones. There is no lack of such models, neither in the literature nor 
in software packages. E.g. Klugman et al. provide generalizations of the Gamma and the Beta 
distribution having up to 4 parameters. However, despite the availability of such models, 
actuaries tend to stick to their traditional distributions. This is not (just) due to nostalgia – it 
has to do with a common experience of actuarial work: lack of data. In an ever changing 
environment it is not easy to gather a sufficient number of reliable and representative data 
points to fit distributions with several parameters. A way to detect and possibly avoid big 
estimation errors is to check the estimated parameters with what is called market experience: 
analogous results calculated from other data sets covering similar business. 
To be able to do this it would be ideal to work with distributions looking initially like one of 
the traditional distributions but having a tail shape similar to well-known tail models like 
Pareto. Such models exist indeed and are not too difficult to deal with, however, they are a bit 
scattered over various literature. The main scope of this paper is to assemble and generalize a 
number of them, which results a general framework of variants and extensions of the Pareto 
distribution family. 
 
Section 2 explains why reinsurers love the Single-parameter Pareto distribution so much, 
collecting some results helping gather intuition about distribution tails in general. Section 3 
presents a less common but extremely useful parametrisation of the Generalized Pareto 
Distribution, which will make reinsurers love this model as well. Section 4 explains how more 
Pareto variants can be created, catering in particular for a more flexible modeling of smaller 
losses. Section 5 provides an inventory of spliced Lognormal-Pareto models, embracing two 
such models introduced by different authors and explaining how they are related to each 
other. Section 6 provides an overview of analogous models employing various distributions, 
referring to real world applications. The last section revisits two old exposure rating methods 
in the light of the methodology developed so far. 
 
A few technical remarks: 
 
In most of the following we will not distinguish between loss severity and aggregate loss 
distributions. Technically the fitting task is the same, and the shapes being observed for the 
two types of distributions overlap. For aggregate losses, at least in case of large portfolios and 
not too many dependencies among the single risks, it is felt that distributions should mostly 
have a unique positive mode (maximum density) like the Normal distribution, however, 
considerable skewness and heavy tails cannot be ruled out at all. Single losses are felt to be 
more heavy-tailed; here a priori both a strictly decreasing density and a positive mode are 
plausible scenarios, let alone multimodal distributions requiring very complex modeling. 
 
For any single loss or aggregate loss distribution let 

€ 

F (x) =1− F(x) = P(X > x) be the 
survival function, f(x) the probability density function (if existent), i.e. the derivative of the 
cumulative distribution function F(x). As this is often more intuitive (and possibly a bit more 
general) we will formulate as many results as possible in terms of cdf (cumulative distribution 
function) instead of pdf (probability density function), mainly working with the survival 
function as this often yields simpler formulae than the cdf. 
 
Unless otherwise specified, the parameters in this paper are positive real numbers. 
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2 Pareto – Reinsurer’s old love 
 
 
One could call it the standard model of reinsurance actuaries:  

Pareto  = Pareto Type I = European Pareto = Single-parameter Pareto:   

€ 

F (x) =
θ
x
 

 
 
 

 
 
α

, θ<x 

Remark: In this paper (sticking to old Continental European style) we reserve the name 
“Pareto” for this specific model, bearing in mind that is occurs to be used for other variants of 
the large Pareto family as well. 
 
Does the Pareto model have one or two parameters? It depends – namely on what the 
condition θ<x means. It may mean that no losses between 0 and θ exist, or alternatively that 
nothing shall be specified about potential losses between 0 and θ. Unfortunately this is not 
always clearly mentioned when the model is used. In precise wording we have: 
 
Situation 1: There are no losses below the threshold θ:  

€ 

F (x) =1   for 0<x<θ,   for θ≤x   

€ 

F (x) =
θ
x
 

 
 
 

 
 
α

. 

This model has two parameters α und θ. Here θ is not just a parameter, it is indeed a scale 
parameter (as defined e.g. in Klugman et al.) of the model. We call it Pareto-only, referring 
to the fact that there is no area of small losses having a distribution shape other than Pareto. 
This model is quite popular despite its hardly realistic shape in the area of low losses, 
whatever θ be. (If θ is large there is an unrealistically large gap in the distribution. If θ is 
small, say θ = 1 Euro, the gap is negligible but a Pareto-like shape for losses in the range from 
1 to some 10000 Euro is felt rather implausible.) 
 
Situation 2: Only the tail is modeled, thus to be precise we are dealing with a conditional 

distribution:   

€ 

F (x X > θ) =
θ
x
 

 
 
 

 
 
α

 

This model has the only parameter α. θ is the known lower threshold of the model. 
  
Situation 1 implies Situation 2, but not vice versa. We will later see distributions combining a 
Pareto tail with a totally different distribution of small losses. 
 
 
A memoryless property 
 
Why is the Pareto model so popular among reinsurers, then? The most useful property of the 
Pareto tail model is without doubt the parameter invariance when modeling upper tails: 

If we have 

€ 

F (x X > θ) =
θ
x
 

 
 
 

 
 
α

 and derive the model for a higher threshold d≥θ we get:  

€ 

F (x X > d) =
θ
x
 

 
 
 

 
 
α

θ
d
 

 
 
 

 
 
α

=
d
x
 

 
 
 

 
 
α

 

 
We could say, when going “upwards” to model larger losses the model “forgets” the original 
threshold θ, which is not needed any further – instead the new threshold comes in. That 
implies: 
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• If a function has a Pareto tail and we only need to work with quite large losses, we do 
not need to know exactly where that tail starts. As long as we are in the tail (let’s call 
it Pareto area) we always have the same parameter α, whatever the threshold be. 

• It is possible to compare data sets with different (reporting) thresholds. Say for a 
MTPL portfolio we know all losses greater than 2 million Euro, for another one we 
only have the losses exceeding 3 million available. Despite these tail models having 
different thresholds we can judge whether the underlying portfolios have similar tail 
behavior or not, according to whether they have similar Pareto alphas. Such 
comparisons of tails starting at different thresholds are extremely useful in the 
reinsurance practice, where typically to get an overview per line of business one 
assembles data from several reinsured portfolios, all possibly having different 
reporting thresholds. 

• This comparability can lead to market values for Pareto alphas, being applicable as 
benchmarks. Say we observe that a certain type of Fire portfolio in a certain country 
frequently has Pareto tails starting somewhere between 2 and 3 million Euro, having 
an alpha typically in the range of 1.8. 

 
 
We recall some useful basic facts about losses in the Pareto tail. These are well known, 
however, we will get to some less-known generalizations later. 
 
Pareto extrapolation: To relate frequencies at different thresholds d1, d2>θ the Pareto model 

yields a famous very simple formula:   

€ 

frequency − at − d2

frequency − at − d1

=
d1

d2

 

 
 

 

 
 

α

 

 
Structure of layer premiums:  
 
Regard a layer C xs D in the Pareto area, i.e. D>θ. Infinite C is admissible for α>1. The 
average layer loss equals  

€ 

E(min(X −D,C) X > D) =
D

α −1
1− 1+

C
D

 

 
 

 

 
 

1−α 

 
  

 

 
  ,   for α=1 we have  

€ 

Dln 1+
C
D

 

 
 

 

 
 .  

If η is the loss frequency at θ, the frequency at D equals 

€ 

η
θ
D
 

 
 

 

 
 
α

. Thus the risk premiums of 

layers have a particular structure, equaling up to a constant a function  

€ 

D1−αψ(D C) . From this 
we quickly obtain the 
 
Pareto extrapolation formula for layers: 

€ 

risk − premium − of −C2xsD2

risk − premium − of −C1xsD1

=
C2 + D2( )1−α

−D2
1−α

C1 + D1( )1−α
−D1

1−α ,  in case α=1 we have  

€ 

ln 1+
C2

D2

 

 
 

 

 
 

ln 1+
C1

D1

 

 
 

 

 
 

.  

 
Distributions with nice properties only help if they provide good fits in practice. From 
(re)insurance data it is clear that not all tails in the world of finance are Pareto distributed, in 
particular the model often seems to be somewhat too heavy-tailed at the very large end. 
However, nevertheless Pareto can be a good model for a wide range of loss sizes. E.g., if it 
fits well between 1 und 20 Mio., one can use it for layers in that area independently of 
whether beyond 20 million one needs a different model or not. 
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To quickly check whether an empirical distribution is well fit by the Pareto model, at least for 
a certain range of loss sizes, there is a well-known graphical method available: 
 

€ 

F (x)  is Pareto    is equivalent to 
 

€ 

F (x)  is a straight line on double-logarithmic paper (having slope –α) 
 
Hence, if the log-log-graph of an empirical distribution is about a straight line for a certain 
range of loss sizes, in that area a Pareto fit is reasonable. 
 
Thinking of quite small intervals of loss sizes being apt for Pareto fitting, we come to a 
generalization being applicable to any smooth distribution (see Riegel, 2008): the local 
Pareto alpha. Mathematically it is the linear approximation of 

€ 

F (x)  in the log-log world, to 
be exact the negative derivative. 

Local Pareto alpha at d:   

€ 

αd = −
d
dt t= ln(d )

ln(F (et ))= d ⋅ f (d)
F (d)

 

 
If αd is constant on an interval, this interval is a Pareto distributed piece of the distribution. In 
practice one often, but not always, observes that for very large d (say in the million Euro 
range) αd is an increasing function of d – in a way the tail gradually becomes less heavy. 
 
The above Pareto extrapolation formula for frequencies finally yields an intuitive 
interpretation of the (possibly local) Pareto alpha: it is the speed of the decrease of the loss 
frequency as a function of the threshold. One sees quickly that if we increase a threshold d by 
p% with a very small p, the loss frequency decreases by approximately αdp%. 
 
 
 
 
 
3 Generalized Pareto – Reinsurer’s new love? 
 
 
Now we study a well-known generalization of the Pareto model (see Embrechts et al.). 
Arguably less known is that it shares some of the properties making the Pareto model so 
popular: 

GPD (Generalized Pareto Distribution):   

€ 

F (x X > θ) = 1+ ξ
x −θ
τ

 

 
 

 

 
 
−1ξ

 

 
The parameter ξ can take any real value. However, for negative ξ x is bounded from above, a 
case less interesting for application in insurance. ξ=0 is the well-known Exponential 
distribution. We only treat the case ξ>0 here. 
 
The above parametrisation comes from Extreme Value Theory, which suggests that GPD is an 
adequate model for many situations of data exceeding large thresholds. This is a good reason 
to work with this model. A further good reason turns out from a parameter change proposed 
by Scollnik. 

Set 

€ 

α :=1 ξ > 0 , 

€ 

λ :=ατ −θ > −θ .   Now we have   

€ 

F (x X > θ) =
θ + λ
x + λ

 

 
 

 

 
 
α
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This is a tail model in two parameters α und λ; θ is the known model threshold. However, θ is 
the third parameter in the corresponding GPD-only model, having no losses between 0 and θ 
analogously to the Pareto case. 
The parameter space is a bit intricate as λ may take on (not too large) negative values. Maybe 
for parameter estimation one better makes a detour to a different parametrisation. However, 
apart from this complication the chosen representation will turn out to be extremely handy, 
revealing in particular a lot of analogies to the Pareto model. 
 
At a glance we notice two well-known special cases:  
 
λ=0:   This is the Pareto tail model from above. 
 
λ>0, θ=0:  This is not a tail model but a ground-up model for losses of any range. In the 

literature it is often called Pareto as well. However, some more specific names  
have been introduced:  
Pareto Type II = American Pareto = Two-parameter Pareto = Lomax 

 
Let us look briefly at a third kind of model. Any tail model 

€ 

X X > θ  has a corresponding 
excess model 

€ 

X −θ X > θ . If the former is GPD as above, the latter has the survival function 

€ 

θ + λ
x + θ + λ

 

 
 

 

 
 
α

, which is Lomax with parameters α and θ+λ>0. In the Pareto case we have 

€ 

θ
x + θ

 

 
 

 

 
 
α

, which appears to be Two-parameter Pareto as well but strictly speaking is not: Here 

θ is the known threshold – this model has the only parameter α. 
 
The names Single vs. Two-parameter Pareto (apart from anyway not being always 
consistently used) are somewhat misleading – as we have seen, both models have variants 
with 1 or 2 parameters. Whatever the preferred name, when using a Pareto variant it is 
essential to make always clear whether one treats it as a ground-up, a tail, or an excess model. 
 
Coming back to the GPD tail model, if we as above derive the model for a higher tail starting 
at d>θ, we get 

  

€ 

F (x X > d) =
θ + λ
x + λ

 

 
 

 

 
 
α

θ + λ
d + λ

 

 
 

 

 
 
α

=
d + λ
x + λ

 

 
 

 

 
 
α

 

 
As in the Pareto case the model “forgets” the original threshold θ, replacing it by the new one. 
Again the parameter α remains unchanged, but also the second parameter λ. Both are thus 
invariants when modeling higher tails. Other common parametrisations of the GPD have only 
the invariant parameter α (or the inverse ξ, respectively), the second parameter changes in a 
complicate way when shifting from a tail threshold to another one. 
 
The invariance of the GPD parameters α and λ yields the same advantages for tail analyses as 
the Pareto model: There is no need to know exactly where the tail begins, one can compare 
tails starting at different thresholds, and finally it might be possible to derive market values 
for the two parameters in certain business areas. Thus the potential range of application of the 
GPD should be the same as that of the Pareto model. The additional parameter adds flexibility 
– while on the other hand requiring more data for the parameter estimation. 
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Here too it is possible to interpret the two parameters in an intuitive way: 
 
λ is a “shift” from the Pareto model with the same alpha, having the same dimension as the 
losses and layer parameters. We could think of starting with a Pareto distribution having 
threshold θ+λ, then all losses are shifted by λ to the left (by subtracting λ) and we obtain the 
GPD. Thus in graphs (with linear axes) GPD tails have exactly the same shape as Pareto tails, 
only their location on the x-axis is different. 
 
The parameter α, apart from belonging to the corresponding Pareto model, is the local Pareto 

alpha at infinite: 

€ 

α∞ =α . More generally, one sees quickly that   

€ 

αd =
d

d + λ
α .    

 
The behavior of αd as a function of d is as follows: 
 
λ>0:  αd rises (often observed) 
λ=0:  Pareto 
λ<0:  αd decreases 
 

For any d≥θ we easily get 

€ 

F (x X > d) = 1+
αd

α
x
d
−1

 

 
 

 

 
 

 

 
 

 

 
 

−α

,   which is an alternative GPD 

parametrisation focusing on the local alphas, see Riegel (2008). 
 
 
Bearing in mind that GPD is essentially Pareto with the x-axis shifted by λ, we get without 
any further calculation very easy formulae being very similar to the Pareto case: 
 

€ 

frequency − at − d2

frequency − at − d1

=
d1 + λ
d2 + λ

 

 
 

 

 
 

α

 

€ 

E(min(X −D,C) X > D) =
D + λ
α −1

1− 1+
C

D + λ

 

 
 

 

 
 

1−α 

 
  

 

 
  ,   case α=1:   

€ 

D + λ( )ln 1+
C

D + λ

 

 
 

 

 
    

€ 

risk − premium − of −C2xsD2

risk − premium − of −C1xsD1

=
C2 + D2 + λ( )1−α

− D2 + λ( )1−α

C1 + D1 + λ( )1−α
− D1 + λ( )1−α ,   case α=1:   

€ 

ln 1+
C2

D2 + λ

 

 
 

 

 
 

ln 1+
C1

D1 + λ

 

 
 

 

 
 

  

 
Summing up, GPD is nearly as easy to handle as Pareto, having two advantages: greater 
flexibility and the backing of Extreme Value Theory making it the preferred candidate for the 
modeling of high tails. 
 
As for the estimation of the GPD parameters, see Brazauskas & Kleefeld (2009) studying 
various fitting methods, from the traditional to newly developed ones. (Note that their 
parametrisation uses the exponent 

€ 

γ := −ξ = −1 α .) 
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4 With or without a knife – construction of distribution variants 
 
 
We strive after further flexibility in our distribution portfolio. Before focusing on the most 
critical area, namely the small losses, we have a brief look at the opposite side, the very large 
losses: 
Sometimes losses greater than a certain maximum are impossible (or not interesting at all):  
X ≤ Max. There are two easy ways to adapt distributions with infinite support to this: 
Censoring and Truncation. We follow the terminology of Klugman et al., noting that in the 
literature we occasionally found the two names interchanged. 
 
Right censoring:  

€ 

F cs(x) = F (x)    for x<Max, for Max≤x   

€ 

F cs(x) = 0  
 
Properties of the survival function: 

• mass point (jump) at Max with probability 

€ 

F (Max)  
• below Max same shape as original model 

 
A mass point at the maximum loss is indeed plausible in some practical cases. Say there is a 
positive probability for a total loss (100% of the sum insured) in a fire homeowners policy, 
which occurs if the insured building completely burns down. 
 

Right truncation:   

€ 

F tr (x) =
F (x) − F (Max)

1− F (Max)
   for x<Max, for Max≤x   

€ 

F tr (x) = 0  

Properties of the survival function: 
• equals the conditional distribution of 

€ 

X X ≤ Max  
• continuous at Max, no mass point 
• shape below Max is a bit different from original model, tail is thinner, however, the 

numerical impact of this deviation is low for small/medium losses 
 
Of course both variants yield finite expectation even if the expected value of the original 
model is infinite, so working with such models, e.g. GPD tails with α<1, will not cause any 
problems. 
Left censoring and left truncation are analogous. We have already applied the latter above – 
an upper tail is formally a left truncation of the model it is derived from. Both ways to 
disregard the left or right end of the distribution can be combined and applied to any 
distribution, including the Pareto family. Right truncation is in particular a way to get tails 
being somewhat thinner than Pareto in the area up to Max.  
 
It shall be noted that the right-censored/truncated versions of models with GPD/Pareto tail 
preserve the memoryless property stated above. For censoring this is trivial – the only change 
is that the tail ends in a jump at Max. As for truncating, let 

€ 

F  be a survival function with such 

a tail, i.e.   

€ 

F (x) = F (θ) θ + λ
x + λ

 

 
 

 

 
 
α

 for x≥θ.   As each higher tail is again GPD with the same 

parameters, for any x≥d≥θ we have   

€ 

F (x) = F (d) d + λ
x + λ

 

 
 

 

 
 
α

,   leading to 

€ 

F tr (x X > d) =
F tr (x)
F tr (d)

=
F (x) − F (Max)
F (d) − F (Max)

=

d + λ
x + λ

 

 
 

 

 
 
α

−
d + λ

Max + λ

 

 
 

 

 
 
α

1− d + λ
Max + λ

 

 
 

 

 
 
α . 



Michael Fackler: Reinventing Pareto 
 

 10 

The original threshold θ disappears again; each truncated GPD/Pareto tail model has the same 
parameters α, λ, and Max. 
 
 
Now we start investigating ground-up models having a more promising shape for smaller 
losses than Pareto-only with its gap between 0 and θ. In the following we always display the 
survival function 

€ 

F (x) . 
 
 
One example we have already seen – as a special case of the GPD: 

Lomax:   

€ 

λ
x + λ

 

 
 

 

 
 
α

=
1

1+ x λ

 

 
 

 

 
 

α

     

This is a ground-up distribution with two parameters, the exponent and a scale parameter.  
It can be generalized via transforming, see Klugman et al. The resulting three-parameter 
distribution is called 

 Burr:   

€ 

1
1+ x λ( )τ
 

 
  

 

 
  

α

 

For large x this model asymptotically tends to Pareto-only with exponent ατ, however, in the 
area of the small losses there is much more flexibility. While Burr with τ<1 and Lomax (τ=1) 
always have strictly decreasing density, thus mode (maximum density) at zero, for the Burr 
variants with τ>1 the (only) mode is positive. This is our first example of a unimodal 
distribution having a density looking roughly like an asymmetric bell curve, as well as a tail 
being very similar to Pareto.  
 
 
More examples can be created via combining distributions. There are two handy options for 
this, see Klugman et al. 
 
Mixed distributions 
 
A mixed distribution (we only regard finite mixtures) is a weighted average of two (or more) 
distributions, being in particular an elegant way to create a bimodal distribution out of two 
unimodal ones, etc. Generally speaking the intuitive idea behind mixing is as follows: We 
have two kinds of losses, e.g. material damage and bodily injury in MTPL, having different 
distributions. Then it is most natural to model them separately and combine the results, setting 
the weights according to the frequency of the two loss types. The calculation of cdf, pdf, 
(limited) expected value, and many other figures is extremely easy – just take the weighted 
average of the figures describing the original models.  
 
A classical example is a mixture of two Lomax distributions, the so-called  

5-parameter-Pareto:   

€ 

r λ1

x + λ1

 

 
 

 

 
 

α1

+ (1− r) λ2

x + λ2

 

 
 

 

 
 

α2

 

Even more popular seems to be 4-parameter-Pareto, essentially the same model with the 
number of parameters reduced via the formula 

€ 

α1 =α2 + 2. 
 
Sometimes mixing is used even in case there is no natural separation into various loss types. 
The idea is: There is a model describing the smaller losses very well but underestimating the 
tail. If this model is combined with a quite heavy-tailed model, giving the latter only a tiny 
weight, the resulting mixture will for small losses be very close to the first model, whose 
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impact will though quickly fade out for larger losses, giving the second model the chance to 
take over and yield a good tail fit. 
Pursuing this idea more strictly one naturally gets to spliced, i.e. piecewise defined 
distributions. Basic idea: Why not just stick pieces of two (or more) different models 
together? 
 
Spliced distributions 
 
Splicing is frequently defined in terms of densities, however, in order to make it a bit more 
general and intuitive we formulate it via the survival function. 
 
The straightforward approach is to replace the tail of a model with another one: Define  
 

€ 

F (x) = F 1(x)  for 0<x<θ,  for θ≤x  

€ 

F (x) = F 1(θ)F 2(x)

  
with survival functions 

€ 

F 1(x)  and 

€ 

F 2(x) . Note that to enable continuous functions the latter 
must be a tail model starting at θ while the former is a model for the whole range of loss sizes, 
whose tail is ignored. 

 
We could let the survival function have a jump (mass point) at the threshold θ, however, 
jumps in the middle of an elsewhere continuous function are felt implausible in practice – 
typically one glues continuous pieces to obtain a continuous function (apart from maybe an 
mass point at a maximum, see the censoring procedure above). More than continuous the 
pieces often are (more or less) smooth, so it seems even natural to demand some smoothness 
at θ too. We will see a range of examples soon. 
 
Splicing can be a bit more general than the above tail replacement. One starts with two 
distributions which do not intersect: The body distribution 

€ 

F b (x)  has all loss probability ≤θ, 
i.e. 

€ 

F b (x) = 0 for θ≤x. The tail distribution has all probability above θ, i.e. 

€ 

F t (x) =1 for x≤θ. 
The spliced distribution is simply the weighted average of the two, which means that splicing 
is a special case of mixing, yielding the same easy calculations. See the overview: 
 
Weight  Range  Name  Description 
  r  0≤x<θ  Body   small/medium loss distribution 
1–r    θ≤x  Tail   large loss distribution 
 
Note that here the weights can be chosen arbitrarily in order to let a lower or higher 
percentage of the losses be large: r is the probability of a loss being not greater than the 
threshold θ.  
Our first approach (tail replacement) is the special case 

€ 

r = F1(θ) =1− F 1(θ) : Formally it is a 

weighted average of the right truncation of 

€ 

F 1(x) , equaling 

€ 

F 1(x)
1− F 1(θ)

 for x<θ and 0 for θ≤x, 

and the F2-only analogue of Pareto-only, equaling 1 for x<θ and 

€ 

F 2(x)  for θ≤x. 
 
Although looking a bit technical, splicing has a number of advantages. Firstly the 
interpretation (smaller vs. large losses) is very intuitive. Further, by combining suitable types 
of distributions we can get the desired geometries in the body and the tail area, respectively, 
without having an area where the two models interfere. In particular we can combine 
traditional tail models with distributions known to be apt for smaller losses. Finally, if we 
have a clear idea about θ, i.e. where the tail starts, we have the option to split the empirical 
data and do the parameter estimation of body and tail completely separately. 
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5 The Lognormal-Pareto world 
 
 
Let us now apply the splicing procedure to the Lognormal and the GPD distribution. Starting 
from the most general case and successively adding constraints we get a hierarchy (more 
precisely a partially ordered set) of distributions. As before we always display the survival 
function 

€ 

F (x) . Here’s the starting point: 

LN-GPD-0:   

€ 

1− r

Φ
ln(θ) −µ

σ

 

 
 

 

 
 
Φ

ln(x) −µ
σ

 

 
 

 

 
    for 0≤x<θ,   for θ≤x   

€ 

1− r( ) θ + λ
x + λ

 

 
 

 

 
 
α

 

 
This is a function in six parameters, inheriting µ and σ from Lognormal, α and λ from GPD, 
plus the splicing point θ and the mixing weight r. As for the parameter space, µ can take any 
real value; σ, θ, α>0; λ>–θ; 0<r<1. Limiting cases are Lognormal (r=1, θ=∞) and for r=0 
GPD-only. 
 
To simplify the notation about the Normal distribution we will sometimes write shortly 

€ 

Φx =Φ
ln(x) −µ

σ

 

 
 

 

 
 , 

€ 

φx = φ
ln(x) −µ

σ

 

 
 

 

 
 . The body part of LN-GPD-0 then reads 

€ 

1− r
Φθ

Φx. 

 
From this basic function can be can derive special cases, having less parameters, in three 
straightforward ways: 
 
Tail: We can choose a Pareto tail, i.e. set λ=0. This is always possible whatever values the 
other parameters take. We call the resulting model LN-Par-0. 
 
Distortion: As mentioned the distribution in the body area is generally not exactly 
Lognormal, instead it is “distorted” via the weight r. If we want it to be exactly Lognormal we 

have to choose   

€ 

r =Φθ =Φ
ln(θ) −µ

σ

 

 
 

 

 
 .  

This choice is always possible whatever values the other parameters take. We call this model 
pLN-GPD-0 with “pLN” meaning proper Lognormal. 
 
Smoothness: If we want the distribution to be smooth we can demand that the pdf be 
continuous, or more strongly the derivative of the pdf too, and so on. Analogously to the 
classes C0, C1, C2, … of more or less smooth functions we would call the resulting 
distributions LN-GPD-1, LN-GPD-2, …, according to how many derivatives of the cdf are 
continuous.  
How many smoothness conditions can be fulfilled must be analyzed step by step. For C1 we 
must have that the pdf at θ– and θ+ be equal. Some algebra yields  

€ 

rφθ
Φθσθ

=
1− r( )α
θ + λ

, or equivalently 

€ 

αθ
θ + λ

=
r

1− r
φθ
σΦθ

, or equivalently 

€ 

α =
θ + λ
θ

φθ
σΦθ

r
1− r

.  

The second equation describes the local Pareto alpha at θ– and θ+; the third one makes clear 
that one can always find an α fulfilling the C1-condition whatever values the other parameters 
take. 
Note that all LN-GPD variants with continuous pdf must be unimodal: The GPD density is 
strictly decreasing, thus the pdf of any smooth spliced model must have negative slope at θ. 
Hence, the mode of the Lognormal body must be smaller than θ and is thus also the mode of 
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the spliced model. This gives the pdf the (often desired) shape of an asymmetric bell curve  
with a heavy tail.  
If the pdf is instead discontinuous at θ the model could be bimodal: Say the Lognormal mode 
is smaller than θ and the pdf of the GPD takes a very high value at θ. Then both points are 
local maximums of the density. 
 
We have not just found three new distributions – the underlying conditions for λ, r, and α can 
be combined with each other, which yields intersections of the three defined function 
subspaces. All in all we get eight distributions, forming a three-dimensional grid. We label 
them according to the logic used so far. Here’s an overview, showing also the parameter 
reduction in the tree dimensions: 
 
 
LN-GPD-0   LN-Par-0 
µ, σ, θ, r, α, λ    λ µ, σ, θ, r, α 
 

  α     
 
LN-GPD-1   LN-Par-1 
µ, σ, θ, r, λ  µ, σ, θ, r 
 
        r 
 

pLN-GPD-0   pLN-Par-0 
µ, σ, θ, α, λ  µ, σ, θ, α 

 
          

 
pLN-GPD-1   pLN-Par-1 
µ, σ, θ, λ  µ, σ, θ 

 
 
 
The three highlighted distributions have been published, in two papers apparently not 
referring to each other: 
 
pLN-Par-1 was introduced 2003 by Knecht & Küttel naming it Czeledin distribution.  
(Czeledin is the Czech translation of the German word Knecht, meaning servant. Precisely, 
having all accents available, it would be spelt Čeledín.)  
Recall this is a Lognormal distribution with a Pareto tail attached, having continuous pdf. The 
original motivation for this model was apparently the fitting of aggregate loss distributions (or 
equivalently loss ratios). However, that does not mean that it could not be suitable as a model 
for single losses. 
 
As the Czeledin model is quite popular in reinsurance we rewrite its survival function: 
 

€ 

1−Φx    for 0≤x<θ,   for θ≤x   

€ 

1−Φθ( ) θ
x
 

 
 
 

 
 
α

   with   

€ 

α =
φθ

σ 1−Φθ( )
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LN-GPD-1 and LN-Par-1 were introduced 2007 by Scollnik as third and second composite 
Lognormal-Pareto model. (An initial first model turned out to be too inflexible in practice.) 

He also derived the condition for LN-GPD-2: f’(θ–)=f’(θ+) leads to  

€ 

ln(θ) −µ =σ 2 αθ − λ
θ + λ

,   

with the right hand side simplifying to σ2α in the LN-Par-2 case. Note that this formula is not 
independent of the parameter r, which comes in via the C1-condition on α above. This system 
of equations yields solutions, thus LN-GPD-2 and LN-Par-2 exist. 
 
Testing whether a C3-function is possible Scollink derived the equation 

€ 

ln(θ) −µ −1=σ 2 α +1( ) θ
θ + λ

 

 
 

 

 
 

2

−1
 

 
 

 

 
 . In the Pareto case the right hand side again simplifies to 

σ2α, which is inconsistent with the preceding equation. Thus the model LN-Par-3 does not 
exist; for LN-GPD-3 only non-Pareto constellations are possible. 
 
 
To conclude with the Lognormal-GPD world let us compare two of the models already 
present in the literature: Czeledin (pLN-Par-1) and the C2 variant of Scollnik’s second model 
(LN-Par-2). Both have three parameters (thus as for complexity are similar to the Burr 
distribution), being special cases of the model LN-Par-1 having parameters µ, σ, θ, r. See the 
relevant part of the grid: 
 
LN-Par-1 
µ, σ, θ, r 
 

    
 
LN-Par-2  pLN-Par-1 
σ, θ, r   µ, σ, θ 
 
Are these functions the same, at least for some parameter constellation? Or are they 
fundamentally different? If yes, how?  
In other words: Can we attach a Pareto tail to a (proper) Lognormal distribution in a C2 (twice 
continuously differentiable) manner? 
 

Lemma: For any real number z we have  

€ 

z <
φ(z)

1−Φ(z)
. 

Proof: Only the case z>0 is not trivial. Recall that the Normal density fulfils the differential 
equation 

€ 

φ'(x) = −xφ(x). From this we get 

€ 

z 1−Φ(z)( ) = z φ(x)dx
z

∞

∫ = zφ(x)dx
z

∞

∫ < xφ(x)dx
z

∞

∫ = − φ '(x)dx
z

∞

∫ = φ(z)    q e d. 

 

Now recall that the C1 condition for α in the Pareto case reads 

€ 

α =
φθ
σΦθ

r
1− r

. This is fulfilled 

in both models we are comparing. LN-Par-2 in addition meets the C2 condition 

€ 

ln(θ) −µ =σ 2α . Plugging in α and rearranging we get 

€ 

ln(θ) −µ
σ

Φθ

φθ
=

r
1− r

.  
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If we apply the lemma on 

€ 

z =
ln(θ) −µ

σ
 we see that the left hand side of this equation is 

smaller than 

€ 

Φθ

1−Φθ

. Thus we have 

€ 

r
1− r

<
Φθ

1−Φθ

, being equivalent to 

€ 

r <Φθ . That means: 

The weight r of the body of LN-Par-2 is always smaller than 

€ 

Φθ , which is the body weight in 
all proper Lognormal cases, including the Czeledin function. 
 
We can conclude: The two functions LN-Par-2 and pLN-Par-1 are fundamentally different. If 
we want to attach a Pareto tail to a Lognormal, the best we can have is a C1 function 
(continuous pdf). If we want to attach it in a smoother way, the Lognormal must be distorted, 
more exactly: distorted in such a way that the part of small/medium losses gets less 
probability weight while the large losses get more weight than in the proper Lognormal case. 
 
 
 
 
 
6 Variants and applications 
 
 
This section collects variants of the models discussed so far, referring in particular to fits on 
real data. Apart from the Czeledin function above, applications apparently focus on loss 
severity distributions. This is not surprising as here, if lucky, one can work with thousands of 
losses per year, enabling more complex modeling, while fits on aggregate losses typically 
have only one data point per year available, which is a bit scarce for any kind of fit.  
 
The potentially richest data sources for parametric modeling purposes are arguably 
institutions routinely pooling loss data on behalf of whole markets. E.g. in the USA for most 
non-life lines of business this is ISO (Insurance Services Office), in Germany it is the 
insurers’ association GdV. Such institutions would typically, due to confidentiality reasons, 
neither disclose their data nor the details of their analyses (like parameters of fits) to the 
general public, however, in many cases their general methodology is disclosed and may even 
be part of the actuarial education. So for certain classes/lines of business it is widely known to 
the industry which type of model the market data collectors found useful. Although from a 
scientific viewpoint one would prefer to have the data and the details of the analyses 
available, such reduced information can nevertheless help get an idea of which distributions 
might be apt for what kind of business. 
As for ISO, it is known that they have successfully applied the above 4-parameter Pareto 
model to classes of general liability business, see Klugman et al. In other businesses a much 
less heavy-tailed but otherwise very flexible model comes into play: a mixture of several 
Exponential distributions. 
GdV supports insurers with a model providing the risk premium discount for deductibles, 
being applicable to certain segments of property fire policies. The parametric fit is only partial 
here: the body is Lognormal up to about 5% of the sum insured. The empirical tail is heavier 
than what Lognormal would yield, resulting in an average loss exceeding that of the 
Lognormal model by a certain percentage. This model, albeit not a complete fit, is sufficient 
to yield the desired output for the deductibles offered in practice. However, if one wanted to 
rate deductibles higher than 5% SI or layer policies one would need to extend the Lognormal 
fit. The LN-GPD family described in the past section would be a suitable candidate for this. 
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Coming back to spliced models in general, it is straightforward to test alternative distributions 
for the body. In the literature (at least) three models analogous to the LN-GPD family can be 
found, replacing Lognormal by another common distribution with cdf 

€ 

F1(x) . The resulting 

survival function is     

€ 

1− r
F1(θ)

F1(x)    for 0≤x<θ,   for θ≤x   

€ 

1− r( ) θ + λ
x + λ

 

 
 

 

 
 
α

. 

 
Weibull-GPD 
 
This model is analyzed by Scollnik & Sun, proceeding analogously to Scollnik. They derive 
formulae for Wei-GPD-1/2/3 and Wei-Par-1/2 (no. 3 here doesn’t exist either) and apply 
these and their Lognormal counterparts to a data set being very popular in the actuarial 
literature, the Danish fire data, adding comments on how parameter inference can be realized. 
 
Note that, like Burr, the Weibull model, according to the value of one of the parameters, 
either has a strictly falling density or a unique positive mode (skewed bell shape), see 
Klugman et al. Thus for Weibull-GPD both geometries are possible. 
 
Exponential-GPD 
 
Teodorescu & Vernic also follow the path of Scollnik and derive formulae for the functions 
Exp-GPD-2 and Exp-Par-2, showing that further smoothness is not possible in either case. 
These models are less complex, having one parameter less, than their Lognormal and Weibull 
counterparts. The Exponential pdf is strictly decreasing, thus Exp-GPD cannot provide bell-
shaped densities. 
Riegel (2010) uses pExp-Par-1 as an option to fit various Property market data. This model 
has the nice property that in the body area the local Pareto alpha increases linearly from 0 to 
the alpha of the tail.  
Practitioners remember that pExp-Par-0, the continuous-only variant, some time ago was an 
option for some ISO data. 
 
Power function-GPD 
 

The power function 

€ 

x
θ

 

 
 
 

 
 
β

, β>0 can be seen as a cdf concentrated between 0 and θ, which 

makes it a perfect body candidate for the body in a spliced model. Thus we can define the 
survival function 

Pow-GPD-0:   

€ 

1− r x
θ

 

 
 
 

 
 
β

   for 0≤x<θ,   for θ≤x   

€ 

1− r( ) θ + λ
x + λ

 

 
 

 

 
 
α

 

It has as many parameters as Exp-GPD, however, the shape of the density below θ is very 
flexible: For β>1 rising, for β<1 decreasing, for β=1 we have the uniform distribution.  
The special case Pow-Par-1 is well known (far beyond the actuarial world), appearing in the 
literature as (asymmetric) Log-Laplace or double Pareto distribution, see Kozubowski & 
Podgórski for a comprehensive overview.  

Generally wee have 

€ 

f (θ−) =
rβ
θ

 and 

€ 

f (θ+) =
1− r( )α
θ + λ

, thus the C1 condition for the Pareto 

case reads 

€ 

r
1− r

=
α
β

 or equivalently 

€ 

r =
α

α + β
. More generally for Pow-GPD this condition 

reads 

€ 

r
1− r

=
αθ

β
 with the local Pareto alpha at θ taking the place of α.  
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The C2 condition turns out to be 

€ 

β =1− α +1( ) θ
θ + λ

, which can be fulfilled by a positive β iff 

€ 

λ >αθ . Thus the parameter space of Pow-GPD-2 is restricted and in particular Pow-Par-2 
does not exist. 
 
The distinction of proper and distorted bodies, as set out for LN-GPD, is meaningless in the 

power case – here each function is proper: For x<θ we have 

€ 

r x
θ

 

 
 
 

 
 
β

=
x
ζ

 

 
 
 

 
 

β

 with 

€ 

ζ = θr
−

1
β > θ , 

thus we can interpret Pow-GPD as being derived from a power function having parameters β 
and ζ, being cut at θ<ζ, and equipped with a GPD tail. 
 
 
???-GPD 
 
Analogous functions with other body distributions can be easily constructed, and most 
probably some of them have already been used. For each combination of a body with a GPD 
tail there is a grid of models, analogously to the LN-GPD case discussed in detail, linking the 
most general continuous function …-GPD-0 with its subclasses Pareto / proper / C1, 2, … 
and intersections thereof. It is yet to be discovered how many of these functions exist – and 
how many are useful in practice.  
Notice that however rich (and maybe confusing) the class of spliced functions with GPD tail 
will get – all of them are comparable i.r.o. tail behavior via the parameters α and λ. 
 
 
 
A word about the question how many parameters are adequate, which in spliced models is 
tied to the degree of smoothness. There is a trade-off. Smoothness reduces parameters, which 
is good for the frequent cases of scarce data. On the other hand it links the geometries of body 
and tail, reducing the flexibility the spliced models are constructed for. Bearing in mind that 
all those readily available 2-parameter-distributions are only occasionally flexible enough for 
good fits over the whole range of loss sizes, it is plausible that a minimum of 3-4 parameters 
is necessary. However, the risk of overparametrisation goes always on the actuary’s side…  
 
The great advantage of spliced models with GPD or Pareto tail over other models with similar 
complexity (same number of parameters) is what was highlighted in sections 3 and 4: From 
other analyses we might have an idea of what range of values α (and λ, if applicable) in 
practice take on. Although being possibly vague, this kind of knowledge can be (formally or 
at least informally via subsequent cross checking) incorporated into the parameter estimation, 
which should enable actuaries to work with more parameters than they would feel 
comfortable with had they to rely on the data to be fitted only. 
 
A quite moderate way to increase flexibility, being applicable in case of limited loss size, is 
right truncation as explained above. It can be applied to all models discussed so far, making 
them somewhat less heavy tailed. Truncation does add the additional parameter Max, 
however, being a linear transformation of the original curve it does not affect the overall 
geometry of the distribution too much. Thus truncating should generally be less sensitive than 
other extensions of the parameter space. Moreover in practice there are many situations where 
the parameter inference is greatly eased by the fact that the value of Max is (approximately) 
known, resulting from insurance policy conditions or other knowledge. 
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7 A new look at old exposure rating methods 
 
 
Focusing on the mathematical core, is exposure rating essentially the calculation of the 

limited expected value 

€ 

LEV (C) = E(min(X,C)) = F (x)dx
0

C

∫  of a loss severity distribution, for 

varying C, see Mack & Fackler.  
As the various distributions presented in this paper are promising candidates to model the 
severity of insurance risks, they could all make their way into the world of exposure rating 
models. Some have been there long-since.  
We present two of them, being possibly the oldest parametric models in their respective area. 
 
 
 
An industrial fire exposure curve 
 
Mack (1980) presents an exposure rating model derived from loss data of large industrial fire 
risks. As is common in the property lines (and various hull business too), the losses are not 
modeled in Dollar amounts but as loss degrees, i.e. in percent of a figure describing the 
insured value, here being the sum insured. The applied model in our terminology is 

right truncated Pareto-only:     

€ 

F (x) =
θ x( )α − θ Max( )α

1− θ Max( )α
 for θ≤x<Max, 

with a very small θ =0.01% and Max = 100% (of the SI).  
 
For α values of 0.65 und even lower are proposed. Interestingly for this Pareto variant the 
parameter space of α can be extended to arbitrary real values. α= –1 is the uniform 
distribution between θ and Max, for lower α higher losses are more probable than lower ones 
(which makes this area implausible for practical use). 
 
Left truncated distributions like this can emerge if the underlying business has high 
deductibles cutting off the whole body of smaller losses. If in such a case one wanted to 
model the same risks with possibly lower or no deductibles, one could extend it to a spliced 
model having the original model as its tail. 
 
 
 
The Riebesell model for liability policies 
 
This liability exposure model, also called power curve model, dates back as far as 1936, 
however, initially it was an intuitive pricing scheme. Much later it turned out to have an 
underlying stochastic distribution model, namely a spliced model with Pareto tail, see Mack 
& Fackler (2003). We rewrite a part of their findings in the terminology introduced here, 
enhancing them and commenting on various practical issues. 
 
The Riebesell rule states that if the limit of a liability policy is doubled, the risk premium 
increases by a fixed percentage z, whatever the policy limit. Let us call z the doubled limits 
surcharge (DLS), following Riegel (2008). A typical DLS in practice is 20%, however, 
values vary greatly according to the kind of liability coverage, almost exhausting the interval 
of reasonable values ranging from 0 to 100%.  
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As the risk premium is the product of frequency and (limited) expected value, this rule can be 
formulated equivalently in terms of LEV: 

€ 

LEV (2C) = LEV (C) 1+ z( ) . The consistent 
extension of this rule to arbitrary multiples of C is 

€ 

LEV (aC) LEV (C) = 1+ z( )ld (a )
= ald (1+z) 

with ld being the logarithm to the base 2.

  Hence, the function LEV(x) up to a constant equals 

€ 

x ld (1+z ) . Taking the derivative we get the 
survival function, which up to a factor equals 

€ 

x−α  with 

€ 

α =1− ld(1+ z) > 0 .  
 
Thus the loss severity is Pareto distributed with α<1. (This part of the story was widely known 
to the reinsurance industry decades before the Mack & Fackler paper emerged.) Now two 
problems seem to arise.  
Firstly, Pareto starts at a threshold θ>0, which means that the Riebesell rule cannot hold 
below. However, if the threshold were very low, say 10 Euro or US$, this would be no 
material restriction as such low deductibles in practice hardly exist. 
Secondly, the distribution has infinite expectation. However, as almost all liability policies 
have a limit (rare exceptions being Personal Lines TPL and MTPL in some European 
countries) one could in principle insure a risk with infinite expected value. (Perhaps this is 
unwittingly done in some real world cases.) Moreover it could be that a severity distribution is 
perfectly fit by a Pareto with α<1 up to a rather high value Max being larger than the limits 
needed in practice, while beyond it has a much lighter tail or even a maximum loss. In this 
case the well-fitting Pareto distribution is an adequate model for practical purposes, always 
bearing in mind its limited range of application. 
 
Summing up, it is possible to slightly generalize the deduction of the Pareto formula: 
 
Assume the Riebesell rule with a DLS 0<z<1 holds for all policy limits contained in an open 
interval (θ, Max), θ<Max≤∞. Then we have the following necessary condition: 
 

(NC1)  

€ 

F (x X > θ) =
θ
x
 

 
 
 

 
 
α

,   θ<x<Max,   with 

€ 

α =1− ld(1+ z). 

 
The proof is the same as above, noting that only local properties were used. Notice that as 
LEV(x) is continuous the Riebesell rule will hold on the closed interval from θ to Max. 
 
In order to find a sufficient condition recall that the unconditioned survival function can be 
written as a spliced model with a survival function 

€ 

F 1(x)  being cut at θ: 

€ 

F 1(x)    for 0<x<θ,   for θ≤x   

€ 

1− r( ) θ
x
 

 
 
 

 
 
α

   with   

€ 

r =1− F 1(θ)  

Whether or not 

€ 

F (x)  can be (made) continuous is yet to be found out. For θ≤x<Max we have 
 

€ 

LEV (x) = LEV (θ) + F (θ)E(min(X −θ,x −θ) X > θ) = LEV (θ) + 1− r( ) θ
α −1

1− x
θ

 

 
 
 

 
 

1−α 

 
  

 

 
  =

= LEV (θ) −θ 1− r
1−α

+ θ
1− r
1−α

x
θ

 

 
 
 

 
 

1−α

 

 
Thus for the Riebesell rule to hold we have the sufficient condition 

 
 

(SC)  

€ 

LEV (θ) = θ
1− r
1−α

. 
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To see whether, and how this can be fulfilled note that 

€ 

0 ≤ LEV (θ) ≤θ . The right hand side of 
(SC) is non-negative, to let it be not greater than θ we must fulfill a further – and somewhat 
hidden – necessary condition: 
 
(NC2)  

€ 

α ≤ r 
 
Altogether we have the parameter constellation 

€ 

0 <α ≤ r <1. Note that in practice α is often 
rather close to 1, being the closer the smaller the DLS is. E.g. for z=20% we have α=0.737. In 
other words, 

€ 

1− r = F (x) , the probability of a loss being in the tail starting at θ, must be rather 
small, namely not greater than 

€ 

1−α = ld(1+ z). Thus in terms of probabilities the Pareto tail is 
only a small part of the overall distribution: This model is very different from the Pareto-only 
model, here we must have plenty of losses ≤θ, namely 100α% or more.  
This makes clear that in realistic situations θ, the lowest figure allowing the application of the 
Riebesell model, cannot be as low as 10 Euro, it must be a good deal larger. While this does 
not need to narrow the application of the rule to the typically large sums insured (e.g. 
comparison of the risk premiums for the limits 2 and 3 million Euro), we cannot hope that the 
Riebesell rule be adequate for the calculation of the rebate to be given for a deductible of say 
200 Euro, although this mathematically being the same calculation as that involving million 
Euro figures. 
 
In a way the Riebesell rule is a trap. The formula seems so simple, having one parameter only 
with no obvious limitation of the range of policy limits the rule can be applied to. The attempt 
to construct in a general way severity distributions fulfilling the rule has revealed (more or 
less hidden) constraints. That does not mean that it is impossible to find a Riebesell model 
having realistic parameters. It simply means that this model is much more complex than a 
one-parameter model and that the properties of the model automatically confine the 
applicability of the Riebesell rule. 
 
How many parameters does the general Riebesell model have, then? Let us first look at the 
case r=α. Now (SC) yields 

€ 

LEV (θ) = θ , thus all losses ≤θ must equal θ, there are no losses 
below θ. This is a model in two parameters θ and α. The survival function is discontinous at θ 
having there a mass point with probability α, whereupon the Pareto tail starts: 

1   for 0≤x<θ,   for θ≤x   

€ 

1−α( ) θ
x
 

 
 
 

 
 
α

 

 
This model can be found in Riegel (2008) who, apart from providing a comprehensive theory 
of LEV functions, generalizes the Riebesell model in various ways, focusing on the higher tail 
of the severity distribution.  
Here instead we take a closer look at the body area, namely at the conditional body 

€ 

X X ≤θ . 
For any r≥α we want to rewrite (SC) in terms of an intuitive quantity: the average smaller 
loss 

€ 

γ = E(X X ≤θ) = LEV (θ X ≤θ) . As X is the mixture of 

€ 

X X ≤θ  and 

€ 

X X > θ  we have 

€ 

LEV (θ) = rLEV (θ X ≤θ) + 1− r( )LEV (θ X > θ) = rγ + 1− r( )θ . Plugging this into (SC) we get 
 

(SC*)  

€ 

γ = θ
α

1−α
1− r

r
. 

 
(NC2) ensures that γ is always in the admissible range of values between 0 and θ, including 
the maximum in case r=α. Thus no further necessary conditions arise and we can give an 
intuitive classification of the severity distributions leading to the Riebesell model for risk 
premiums: 
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Theorem (Riebesell distribution): Assume that for a risk X the Riebesell rule with a DLS 
0<z<1 holds for all policy limits contained in the open interval (θ, Max), θ<Max≤∞.  
 
(NC1) Then with 

€ 

α =1− ld(1+ z) the survival function is a spliced model equaling 

€ 

F (x) = 1− r( ) θ
x
 

 
 
 

 
 
α

   for   θ<x<Max. 

(NC2) For r, being the percentage of smaller losses not exceeding θ, we have  

€ 

α ≤ r <1. 
(SC*) The distribution of these smaller losses 

€ 

X X ≤θ  is such that for their average we have 

€ 

γ = E(X X ≤θ) = θ
α

1−α
1− r

r
. 

 
The Riebesell distribution has the parameters α (or equivalently z), r, θ, Max (unless infinite), 
plus additional degrees of freedom for the distribution beyond Max, plus additional degrees of 
freedom for the distribution up to θ (unless r=α, which lets it be concentrated at θ). 
 
If I is the closed interval between θ and Max, i.e. [θ, Max] or [θ, ∞), for all policy limits C 
contained in I we have: 

€ 

LEV (x) = θ
1− r
1−α

x
θ

 

 
 
 

 
 

1−α

= γ
r
α

x
θ

 

 
 
 

 
 

1−α

 

 
If we interpret policies having limit C and no deductible as special layers Cxs0 and further for 
any layer CxsD call D the attachment point and C+D the detachment point, the Pareto 
extrapolation formula for layers 

€ 

risk − premium − of −C2xsD2

risk − premium − of −C1xsD1

=
C2 + D2( )1−α

−D2
1−α

C1 + D1( )1−α
−D1

1−α  

holds for all layers detaching in I and attaching either also in I or at 0.         ☐ 
 
 
It is remarkable that despite the Riebesell formula itself does not apply to the area (0, θ) of 
smaller losses, the risk premium extrapolation formula holds for policies insuring these 
losses, provided they cover them completely. Like the Riebesell rule this extrapolation 
formula depends on α (or z) only, with θ and Max coming in only indirectly via the 
admissible range of policy parameters.  
 
Notice that in the theorem it is not assumed that θ be optimal, i.e. be the minimum threshold 
for application of the Riebesell rule with DLS z to the risk X. In fact it is obvious that if the 
rule holds for a θ, it holds all thresholds between θ and Max, each leading to a different 
spliced representation of the Riebesell function with different parameters θ, r, γ – only α is 
invariant. 
This point is of practical interest. When working with real data it might be impossible to find 
the exact threshold where the Pareto area starts: Frequently one can only say that an empirical 
distribution looks very much like Pareto from a certain threshold θ onwards, while somewhat 
below it could be the same, however, this cannot be verified as here the single loss records are 
unavailable or arguably incomplete. 
Nevertheless in such a data situation it could be possible to verify whether for a liability 
segment the Riebesell rule holds (albeit it might be impossible to find the lowest possible 
threshold for this risk type). A practical procedure could be as follows: In a first step tail data 
is analyzed, which is the kind of data reinsurers routinely collect. If such data yields values 
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α<1 and θ fulfilling (NC1), r can be estimated by relating large loss (losses >θ) counts with 
overall loss counts – such data could come from primary insurers or market statistics. If the 
derived r fulfils (NC2), the condition (SC*) for γ can be formulated, which can be checked 
with smaller loss data, available in the databases of primary insurers or alternatively in market 
statistics – even grouped data should be sufficient for this. 
 
Summing up, the conditions of the theorem are such that it can be verified involving quite 
diverse data sources: (NC1) affects the tail distribution only. (NC2) relates the overall loss 
frequency with that at the threshold, involving nothing more about the shape of the 
distribution. (SC*) connects the tail parameters with the body distribution, however, from the 
latter only the average loss is needed, not the exact shape.  
 
 
In order to gather more intuition about the smaller losses, let now be r>α, the only case 
leaving room for speculation about how these are distributed and which parametric models 

could be applied. The average smaller loss

 

€ 

γ = θ
α

1−α
1− r

r
 can take on any value between 0 

and θ. Looking at the extremes one gets: 
 
Border case 1: If r is close to α, γ is close to θ, yielding a function having most small losses 
concentrated just to the left of the threshold and leaving much less probability over for 
smaller losses. Although it is in principle possible to find very smooth functions fulfilling this 
condition, the distribution will be anyway similar to the case r=α with its mass point at the 
threshold. Such a distribution may be difficult to model with well-established distributions, 
though. 
Border case 2: If r is closer to 1, γ is smaller, leaving more options for nice and well-known 
functions to be applied. However, very large r means that almost all losses are below the 
threshold θ, which in practice will not work with low thresholds. On the other hand, low 
values θ are more appealing as this extends the range of application of the Riebesell rule. 
 
There is a trade-off in this. Riebesell functions having a wide interval of validity of the 
Riebesell rule will have to pay with a somewhat uneven shape of the body distribution. 
 
 
 
To conclude we give two examples of how the body distribution of a Riebesell function could 
look like, writing down as usual the survival function.  
 
 
 
Example 1: If we interpret the constant random variable as a distribution having a scale 
parameter, being the mass point of probability one, we get the following spliced model, being 
a straightforward generalization of the case r=α: 

Const-Par  1   for 0≤x<γ,   1–r   for γ≤x<θ,   and for θ≤x   

€ 

1− r( ) θ
x
 

 
 
 

 
 
α

 

(This model is indeed continuous at the splicing point θ, however, not so at γ<θ.) 
 
The LEV is a continuous function, being piecewise linear in the body area. We have  
 

€ 

LEV (x) = x    for 0≤x≤γ   and   

€ 

LEV (x) = rγ + 1− r( )x    for γ≤x≤θ. 
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Example 2: To get an at least continuous survival function we try a power curve body as 
introduced above. 

Pow-Par-0:     

€ 

1− r x
θ

 

 
 
 

 
 
β

   for 0≤x<θ,   for θ≤x   

€ 

1− r( ) θ
x
 

 
 
 

 
 
α

 

The conditioned body function has the survival function 

€ 

1− x
θ

 

 
 
 

 
 
β

 with expected value 

€ 

θ
β

β +1
. 

Then (SC*) reads    

€ 

β
β +1

=
α

1−α
1− r

r
,   yielding    

€ 

β =α
1− r
r −α

.    

This value is always positive, thus for any parameter constellation 0<α<r<1 there is a (unique) 
power curve creating a continuous Riebesell distribution. This is a model in three parameters 
α, r, θ. Notice that the exponent β has an intuitive interpretation: The ratio of β and α equals 
the ratio of the distances of r from 1 and α, respectively. If r tends to α, β becomes very large, 
having as limiting case the discontinuous function of the r=α case. 

The Riebesell Pow-Par function is C0 but not C1: One quickly gets 

€ 

f (θ−) = r β
θ

= rα
θ

1− r
r −α

. 

Recall 

€ 

f (θ+) = 1− r( )α
θ

. The former divided by the latter yields 

€ 

r
r −α

, which is greater (in 

practice often much greater) than 1. With the pdf being larger just before the discontinuity at θ 
than just thereafter it is clear that the area where the losses are overall most concentrated is the 
left neighborhood of θ. 

The LEV is a C1 function, in the area 0≤x≤θ equaling  

€ 

x −θ r
β +1

x
θ

 

 
 
 

 
 
β +1

= x −θ r −α
1−α

x
θ

 

 
 
 

 
 

r1−α
r−α

. 

 
 
 
 
8 Conclusion – reinventing Pareto 
 
 
In this paper we looked at the Pareto and the GPD distribution in a particular way, interpreting 
them essentially as tails of comprehensive distributions modeling losses of any size. This 
makes the Pareto family much larger, yielding tail models, excess models, and notably 
ground-up models. Among the latter we drew the attention to the rich group of continuous 
spliced models with GPD tail, offering a great deal of flexibility while at the same time all 
being comparable among each other in terms of tail-behavior via the threshold-invariant GPD 
parameters α and λ. 
We developed a framework ordering all spliced distributions being constructed out of the 
same model for the body of small/medium losses, according to three criteria: tail shape 
(Pareto or not), body shape (original or distorted), and smoothness. This yields a hierarchy 
(more precisely a three-dimensional grid) of distributions having a decreasing number of 
parameters, with a C0 model on the top. 
Among a number of practical applications we in particular revisited the traditional Riebesell 
(or power curve) model for the exposure rating of liability business. We specified and 
illustrated the necessary and sufficient conditions leading to this model, constructing finally 
as a special case a spliced C0 PowerFunction-Pareto model. 
 
We hope to have inspired the reader to share the view on the Pareto world outlined here, and 
to apply some of the presented models (data permitting). 
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