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Abstract 
 

This paper deals with theoretical and practical pricing of non-life insurance 
contracts within a financial option pricing context. The market based assumption 
approach of the option context fits well into the practical nature of non-life 
insurance pricing and valuation. Basic facts in most insurance markets like the 
existence of quite different insurer price offers on the same claims risk in the same 
market, support the need for this approach. The paper outlines insurance and 
option pricing in a parallel setup. First it takes a complete market approach, 
focusing dynamic hedging, no-arbitrage and risk-neutral martingale valuation 
principles within insurance and options. Secondly it takes an incomplete market 
view by introducing supply and demand effects via purchasing preferences in the 
market. Finally the paper discusses pragmatic insurance price models, parameter 
estimation techniques and international best practice of insurance pricing. The 
overall aim of the paper is to describe and unite the headlines of the more or less 
common insurance and option price theory, and hence increase the pragmatic 
understanding of this theory from a business point of view.  
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1. Introduction 
 
There has been a considerable attention on the relationship between insurance and 
financial pricing theory the last two decades after the breakthrough establishment 
of the financial martingale theory made by Harrison and Kreps (1979) and 
Harrison and Pliska (1981). There also seems to have been an increasingly 
development speed in the 1990-thies after the important works on dynamic pricing 
of arbitrage-free (re)insurance markets made by Delbaen and Haezendonck (1989) 
and Sondermann (1991); see Embrechts (2000) for an exiting overview 
description. In this paper we will try to describe and unite the headlines of this 
common theory to a practical understanding and practise in non-life insurance 
pricing, and thus also try to address some future theoretical challenges. A direct 
comparison of insurance pricing versus option pricing will also give deeper insight 
to the relationship between the two pricing techniques, and hence make the bridge 
between the financial and the actuarial approach to pricing a bit wider, - not only 
for academics on the universities, but also for us practical working actuaries in the 
insurance business industry.     
 
The paper is organized as follows. Section 2 addresses some actual pricing 
questions and problems. Section 3 outlines characteristics of insurance contracts 
within an option pricing context. Section 4 outlines and discusses dynamic 
hedging, no-arbitrage and put-call parities in a parallel option and insurance 
approach. Section 5 puts the pricing challenges into a risk-neutral martingale 
pricing approach. Section 6 discusses effects generated by incomplete markets and 
introduces a purchasing preference element to insurance pricing. Section 7 
introduces some pragmatic insurance price models. Section 8 discusses relevant 
parameter estimation techniques within insurance pricing. Section 9 presents and 
discusses international best insurance pricing practices. Section 10 gives some 
concluding remarks.       
 
 
2. Pricing non-life insurance contracts versus financial options 
 
The common basic idea of both financial options and insurance contracts is to 
transfer an economical risk from one part to another against a specific payment. 
To do so the buyer and the seller of the contract need to agree upon a price before 
the contract begins to run. A common used market methodology approach is to 
split this pricing into one technical valuation part and one part purely influenced 
by supply and demand mechanisms. Hence the point is first to find the technical 
fair values of the contracts, and then adjust these values to real sales prices based 
on purchasing preferences or dispositions in the market . Finn and Lane (1997) 
supports this view by saying: ”There are no right price of insurance; there is 
simply the transacted market price which is high enough to bring forth sellers, 
and low enough to induce buyers”. This statement definitely rules also in the 
financial derivate market. Hence, quite distinct speaking, the price of an option or 
insurance contract is the premium one pays for it, while the value is what it is 
worth.  
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The difference between value and price/premium depends very much on the 
market conditions of the option or insurance contract. We have to behave some 
main market differences:  
 
Insurance market: 
- Most often standard one-year contracts 
- Most often no real efficient market place for buying and selling contracts 
- Not only price, but also product and service quality are important 
- Price per contract depends on and varies between the contract buyers 

 
Financial option market: 
- Many different types of contracts with no standard time condition 
- Most often an efficient market place for buying and selling contracts 
- Only price is important to most customers 
- Price per contract does not depend on the buyers of the contracts 
 
The more or less complete market conditions of financial options generate a 
smaller difference between value and price/premium than the more incomplete 
insurance market. Hence, particularly for insurance contracts the theoretical 
challenge is to include not only the valuation part of pricing, but also the 
supply/demand part into the price models. Some interesting key questions within 
this approach are:  
 
•  Why do different insurance players offer different prices for unique risks? – 

and under what conditions will more unique market prices for unique risks be 
generated? 

 
•  What is the optimal price per risk in a complete insurance market? – and in an 

incomplete market? 
 
In this paper we will stress these questions by first focusing the valuation part of 
pricing in a complete market setup, and then include also incomplete market based 
purchasing preferences. Equivalent questions are well known and handled within 
financial option pricing theory. Hence the market model context of option pricing 
fits well into the practical nature of non-life insurance pricing. To get more hands 
on pricing similarities and differences let us therefore outline insurance and option 
pricing in a parallel approach. 
 
 
3.  Insurance contracts in a financial option context 
 
An option is a contract giving the holder a right to buy or sell an underlying object 
at a predefined price during a predefined period of time. An option condition is 
that the underlying object has an uncertain stochastic future value. Financial 
stocks are the most common option object. However, the claims risk of an 
insurance customer may be interpreted as another option object. Hence we may 
define a non-life insurance contract as an option. We have the following 
correspondingly definitions:    
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Call option on stocks: The holder of a call option gives the right, but not the 
obligation, to buy a stock at a predetermined date (maturity time) and price (strike 
price). 
   
Insurance contract: The holder of an insurance contract gives the right to get 
covered all incurred insurance claims within a predetermined date (maturity time) 
and at a predetermined price (the deductible or excess point).  
 
Assume two different underlying risk processes )(tS and )(tX , where )(tS  is the 
stock price process up to time t and )(tX is the accumulated insurance claim 

process up to time t. That is, assume ∑ =
= )(

1
)( tN

i iYtX  , where )(tN is the number 

of incurred claims up to time t and the iY -ies are the claims severities.  
 
Let C  be a European call option contract on the stock price process )(tS  and Z  
and *Z  two different insurance contracts on the claims risk process )(tX . 
Assume time t = 0 as the start time of all contracts and time Tt =  as the maturity 
time. Hence let: 
 

)0,)(max()( KTSTC −= , where )(TC  = call option payment value at time T , 
)(TS  = stock price at time T  and K  = strike price. 

 
[ ]∑ =

−= )(

1
0,max)( TN

i i DYTZ , where )(TZ  = sum insurance payment value at time 

T , )(TN  = number of claims up to time T , iY  = incurred claim amount of claim 
number i up to time T  and D  = deductible for each claim occurrence. 
  

[ ]0*,)(max)(* DTXTZ −= , where )(* TZ  is the sum insurance payment value 
at time T , )(TX  = accumulated claim sizes at time T , and *D  = deductible or 
excess point of )(TX . 
 
Hence Z is an excess-of-loss insurance contract and Z* is a stop-loss insurance 
contract. We also observe that Z may be interpreted as a stochastic sum of N 
single European call options and Z* as an ordinary European call option. Hence 
within this context we may name these insurance contracts as insurance call 
contracts, and the pricing of them as insurance option pricing.      
   
The crucial difference between stock option contracts and insurance contracts is 
generated by the underlying stochastic processes of the contracts. The future 
values of a stock may occur up and down from a spot value at time t = 0, while the 
accumulated insurance claim values only will increase from a start value equal 
zero at time t = 0. These differences are reflected in the classical stochastic 
assumptions of the processes where the variation of S(t) assumes to follow a 
geometric Brownian motion process and X(t) most often assumes to be a 
compound homogeneous Poisson process where the claim number process N(t) is 
a homogeneous Poisson process (with claims frequency parameter λ ) and the 
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claims severities iY -ies are independent and identically distributed random 
variables and independent of the counting process )(tN .  
 
The assumption of a geometric Brownian motion process for S(t) – where the 
running time increments of the variation of the process follow a normal 
distribution function – is based on the idea that the spot price of a stock at time t 
already reflects the future expected value of the stock. Hence all relevant 
information influencing the future expected return on the asset is assumed 
continuously build into the running value (the spot price) of the asset, that is, we 
assume a complete stock market where efficient market trading of the assets 
generate these characteristics. 
 
Even if the geometric Brownian motion process itself is not very simple, we may 
say that the effects of the model assumptions of the stock price process generate 
quite simple and nice pricing challenges within the financial option markets. The 
compound homogeneous (or even more realistic, a mixed (heterogeneous)) 
Poisson process assumption of the claims risk makes on the other hand more 
intricate problems to handle within a realistic insurance market. The crucial 
purpose of pricing the option and insurance contracts is in any case to find explicit 
expressions of the current value of the contracts at the contractual start time, that 
is, in this setup at time t = 0. Or even more general we may want to find explicit 
expressions of the current values of the contracts C, Z and Z* at any time t (< T) 
before the maturity time T.  
 
 
4. Dynamic hedging, no-arbitrage and put-call parities 
 
Following the original – and now Nobel famous – development lines made by 
Black and Scholes (1973) and Merton (1973), the explicit expressions of C, Z and 
Z* should be based on dynamic hedging of the underlying stochastic portfolios. 
The key basis of the Black-Scholes formula of financial option values is to create 
risk free synthetic portfolios by continuously (dynamic) purchasing (hedging) a 
certain share of the underlying asset and a certain amount of a risk less bond. The 
hedging strategy has two key properties: 1) It replicates the payoff of the option, 
and 2) It has a fixed and known total cost. Hence the value of the option at any 
time t may be explicitly expressed by the combination of the shares of the asset 
and the bond. 
 
The most important assumption behind this dynamic hedging based pricing theory 
is the no-arbitrage assumption. That is, we assume no opportunities to make risk 
less profits through buying and selling financial security contracts. This 
assumption generates the existence of a put-call parity, that is, a fundamental 
relationship between the values of a call option and a put option (the right to sell a 
security to a strike price). Let C~  be an European put option with the same strike 
K  and maturity T  as the call option C : 
 

[ ]0),(max)(~ TSKTC −=  where )(~ TC = put option value at maturity time T , 
)(TS  = stock price at time T  and K  = strike price. 
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Then we have the basic put-call parity known from every basic option text book:  
 
                                           KetStCtC rT−−=− )()(~)( ,                                      (1) 

 
where r  is the risk free rate of interest. In words: the value of the call minus the 
value of the put is equal to the value of the stock minus the present value of a risk 
less bond K . Any deviation from the put-call parity does constitute an arbitrage 
opportunity because simultaneously selling and buying the put-call portfolio (left 
hand side of (1)) and the stock-bond portfolio (right hand side of (1)) yield a risk 
less profit equal the difference between the values of the portfolios. Hence within 
option price theory the no-arbitrage assumption is equivalent to the existence of 
the put-call parity. In fact, a more far-reaching consequence of the no-arbitrage 
assumption is that two identical financial risks must have the same value (the law 
of one price). 
     
Turning to the insurance contracts, we may also construct put-call parities for the 
excess-of-loss and stop-loss contract. This depends however on the existence of 
so-called insurance put contracts. Hence let )(~ TZ  and )(*~ TZ  respectively be the 
values at maturity time T  of an excess-of-loss put contract and a stop-loss put 
contract. We then have: 
 

                                               [ ]∑
=

−=
)(

1

0,max)(~ TN

i
iYDTZ ,                                      (2) 

 
                                             [ ]0),(*max)(*~ TXDTZ −= .                                   (3) 
 
The practical interpretation of the insurance put contract is that the holder of the 
contract gives the right to a payment of D  or *D  against a self-financing of the 
claims )(TX  during the period ),0( T . This is obviously a right the holder of the 
contract only will use if the incurred claims are less than D  or *D . Hence the 
owner of a claims risk could by buying an insurance call contract and at the same 
time sell an insurance put contract on the same underlying risk gain a risk-free 
cash flow equal to the deductible D  or *D . The claims occurrence during the 
contract period will not influence this cash flow.  
 
By use of simple algebra we find straightforward the general put-call parity 
expressions of the insurance contracts:  
 
                    )()()(~)( TDTXTZTZ −=− ,   where DTNTD )()( =                     (4) 
 
                    )(*)()(~)( ** TDTXTZTZ −=− ,   where  *)(* DTD =                 (5) 
 
That is, the value of the call minus the value of the put is equal to the value of the 
accumulated claim amounts minus the (present) value of )(TD  of each contract. 
Hence the structure of the parities are identical to the financial option parity.  
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Following the same arguments as for option contracts, any deviation from the put-
call parity does constitute an arbitrage opportunity in the insurance market because 
simultaneously buying and selling the insurance put-call portfolio (left hand side 
of (4) and (5)) and the claims-bond portfolio (right hand side of (4) and (5)) yield 
a risk less profit equal the difference between the values of the portfolios. It is 
however important that these relationships depend on the existence of an 
insurance put contract Z~  or *~Z  and the existence of an efficient market place of 
buying and selling insurance calls and puts.  
 
But what about dynamic hedging of insurance contracts? The existence of 
insurance put-call parities and no-arbitrage in an insurance market are important 
elements, but not sufficient to replicate a risk free payoff of an insurance risk by a 
hedging strategy. It is well known that the ordinary insurance claims risk 
process )(tX is difficult to directly hedge away by dynamic trading, and by this 
follow the classical financial pricing theory. Delbaen and Haezendonck (1989), 
however, assumed that an insurer at any time t can sell the remaining claim 
payments )()( tXTX −  over the period ),( Tt  for some premium )( tTp − . Hence 
the value of the portfolio of claims risks at time t is )()()( tTptXtI −+= , where 

)()0( TpI =  and )()( TXTI = . This assumption of dynamic buying and selling 
insurance risks during the insurance period makes the crucial possibility for 
dynamic hedging also in insurance markets.  
 
By following the Black-Scholes approach, a straightforward description of this 
risk less insurance hedge at time t is: The value of the insurance contract at any 
time t may be expressed by a combination of a share )(1 t∆  of the underlying 
claims risk portfolio )(tI  and an amount of a risk less zero-coupon bond )(1 tB  
maturing at time  T . Hence the value of the insurance hedge portfolio at time t is 
 
                                              )()()( 1

)(
1 tBetIt tTr −−−∆ .                                         (6) 

 
Hereby the dynamic hedging of )(tI  aim at continuously rebalance (as for options 
we assume that rebalancing costs do not include transaction costs) the hedge by 
holding )(1 t∆  shares of )(tI  long and a bond maturing at time T  to )(1 tB  short.  
 
Correspondingly, the value of the option hedge portfolio at time t is 
 
                                             )()()( 2

)(
2 tBetSt tTr −−−∆ ,                                         (7) 

 
where the share )(2 t∆ - the delta of the option – is the rate of change of the value 
of the option with respect to the underlying value of the stock, that is, the relative 
amount the option value )(tC  will change when )(tS  change. Hence, )(2 t∆  is 
close to 1 when the option is ”deep in the money” and near expiration (high 
probability to expire in the money), and close to 0 if the option is ”deep out of 
money” and near expiration (high probability to expire out of the money).  
 



 

 8

We may correspondingly interpret )(1 t∆  of )(tI  as the relative amount the 
insurance contract value Z(t) will change when I(t) change. What this 
interpretation really means is not obvious. The future values of a stock may 
increase and decrease with no limits (but not below zero) from a running spot 
value at time t. These increase and decrease are also true for I(t), but there is a 
lower limit of I(t) equal X(t). That is, at time t the future value of I(t) can not be 
lower than X(t) because )()()( tTptXtI −+=  and )(tX  can not decrease. Hence, 
in that moment )(tX  exceeds the deductible D  or *D  the insurance contract will 
be – and stay – ”in the money”, that is, 0)( >TZ  or 0)(* >TZ . Because )(tI  
consists of both )(tX  and )( tTp −  there is – in contrast to the option and )(tS  - 
no one-to-one relationship between the values of )(tI  and )(tZ  even if )(tZ  will 
certainly stay ”in the money” the rest of the period ),( Tt . 
 
Correspondingly to Black-Scholes, the value of the insurance hedge portfolio is in 
fact equal to the value of the insurance contract.  Particularly we have  
 

=)0(Z  Value of insurance contract at time t = 0  
= Value of insurance hedge portfolio at time t = 0 

)0()0()0( 11 BeI rT−−∆= )0()()0( 11 BeTp rT−−∆= .                                (8) 
 
That is, the value of the insurance contract at time t = 0 is equal to a linear 
functional 1∆  of the premium )(Tp  of the risk period ),0( T  minus the present 
value of the bond 1B  (which should be interpreted as the amount needed to pay 
deductibles in ),0( T ). The most efficient mathematical machinery to find more 
explicit expressions of 1∆  and 1B , and hence value expressions of Z  and *Z , is 
to use the now classical martingale approach under the risk-neutral valuation 
principle.   
 
 
5. Risk-neutral martingale pricing 
 
The dynamic hedging strategy and the no-arbitrage assumption are closely related 
to the risk-neutral valuation principle. This principle states that in a risk-neutral 
world all assets have an expected rate of return equal to the risk-free rate of return. 
In the real world we have to consider the relationship between risk (volatility) and 
reward (expected return) to price an asset. In a risk-neutral world, reward has been 
normalized through the no-arbitrage mechanisms, that is, all relevant market 
information are assumed known and build into the pricing models so that no 
investors will expect a higher reward than the risk-free rate of return. This 
information transaction is technically given by tuning the classical real world 
probability measure P  on the probability space ),,( PFΩ  into a filtered uniquely 
equivalent probability measure Q (by use of the so-called Girsanov 
transformation) on the probability space ),)(,,( 0 QFF tt ≥Ω  where tF  can be viewed 
as the market information available at time t. Hence we make expected value 
calculations based on Q instead of P. This information transaction is assumed 
valid at every time t, and hence the underlying risk process (with respect to 
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measure Q) turns out to be a martingale process where at each time t the expected 
next value direction of the process is zero (corrected for the risk-free rate of 
return). In practice this implies that it is impossible to earn (risk less) money by 
studying the history of a stock, that is, all relevant and available information about 
the stock and the market are assumed fully integrated into the running spot price 
of the stock. The technical link – called the Fundamental Theorem of Asset 
Pricing - between the no-arbitrage assumption and the martingale process was the 
key discovery made by Harrison and Kreps (1979) and further developed by 
Harrison and Pliska (1981) and generalized by Delbaen and Schachermayer 
(1994). See Delbaen and Schachermayer (1997) for a rigorous mathematical 
summary of relevant main results. 
 
The setup by Delbaen and Haezendonck (1989) of the insurance claim risk 
portfolio )()()( tTptXtI −+=  with efficient dynamic hedging possibilities, 
generates an arbitrage-free insurance market. Hence this specific market setup 
turns into be risk information transformed, that is, from only assuming the original 
probability distribution of the insurance risk process X(t) (the classical static 
actuarial approach) to instead assume a filtered distribution of X(t), in this case, 
give more weight to unfavourable events of X(t). Again this approach is 
technically given by tuning the classical real world probability measure P into a 
equivalent filtered risk neutral probability measure Q. Hence we make expected 
value calculations on the portfolio value process I(t) by using the measure Q 
instead of directly on the risk process X(t) by using the measure P. The portfolio 
value process I(t) is hence called a Q-martingale, i.e. at each time t the expected 
next value direction of the process I(t) is zero (corrected for the risk-free rate of 
return). Within this model a practical interpretation is that it is impossible to earn 
money by studying the claims history of (0, t) of the insurance portfolio I(t) 
because all relevant information about the insurance risks are assumed fully 
reflected into the running risk premium )( tTp −  at time t.  
 
To sum up: While the geometrical Brownian motion assumption of the variation 
of the stock value S(t) directly generates the martingale process of S(t), we have to 
transform the accumulated Poisson claims risk process X(t) into a claims risk 
portfolio I(t) consisting of both historical claims and premium for future claims to 
generate a martingale process indirectly.  Embrechts et al (1999) gives a thorough 
introduction to this link between stochastic processes in insurance and finance.  
 
Still following the approach of Delbaen and Haezendonck (1989) and given our 
claims risk process assumptions in chapter 3, the fair values at time t of the 
excess-of-loss contract Z  and the stop-loss contract *Z  become 
 

[ ])()( )( TZeEtZ tTr
Q

−−= , where Q  = adjusted risk-free probability measure, 
 

[ ])()( *)(*
* TZeEtZ tTr

Q
−−= , where *Q  = adjusted risk-free probability measure, 

 
while the correspondingly fair value at time t of the call contract becomes 
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[ ])()( )(
** TCeEtC tTr

Q
−−= , where **Q  = adjusted risk-free probability measure. 

 
Hence the fair values of the contracts at time t = 0 are  
 
                            [ ])()0( TZeEZ rT

Q
−=                                                                (9) 

 
                            [ ] [ ]DETXEeTZeEZ QQ

rTrT
Q *** )()()0( ** −== −−    

                                       =  [ ]DEYETNEe QQQ
rT

*** )( −−                                    (10) 

 
                            [ ])()0( ** TCeEC rT

Q
−=  = [ ]KETSEe QQ

rT
**** )( −−                 (11) 

 
Correspondingly, the straightforward derived Black-Scholes formula of )(tC  turns 
out to be 
 
                                  ))(()())(()( 2

)(
1 tdKNetStdNtC tTr −−−= ,                         (12) 

 
where )(⋅N  = cumulative normal distribution function and )(1 td  and )(2 td  are 
given in most basic text books of option theory and of course in Black and Scholes 
(1973). Hence ))(()( 12 tdNt =∆  and ))(()( 22 tdKNtB = . We also observe that the 
martingale filtered measure Q** of (11) reflects the values of )(2 t∆  and )(2 tB  in 
(12), that is,  
 

)()()())(()( 21** tSttStdNTSEQ ∆== , 

 
and  )())(( 22** tBKtdNKEQ == . 

 
Hence ))(( 1 tdN is the rate of change at time t of the value of the call with respect 
to changes in stock price )(tS , while ))(( 2 tdN  should be interpreted as the 
probability that )(tC  at the maturity time T  will be ”in the money”.    
 
When studying (9), (10) and (11) we observe the structural similarities between 
the fair value expression of the insurances Z and Z* and the option C. In fact the 
values are linear functions defined on a set of marketable assets. Quite general we 
have: 
 

Financial call option Insurance contract 
The value at time t increases… The value at time t increases… 
- the longer time to maturity, - the longer time to maturity, 
- the lower the strike price is, - the lower the deductible is, 
- the higher the spot price is*, - the higher the claims have been*, 
- the higher the risk free rate is, - the higher the risk free rate is, 
- the higher the stock volatility is. - the higher the claims risk is. 
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Four out of five parameters are easy to understand. However, one *-comment on 
the spot price versus the claims value at time t is needed: At any time t the spot 
value of a stock is a positive value, while the insurance claims have a zero start 
value at time t = 0 and possibly a positive value at any time 0>t . Hence the 
expression ”the higher the claims have been” is related to the claims occurred up 
to time t.        
 
The great practical usefulness of the Black-Scholes option formula is due to that 
only the stock volatility is unknown as valuation parameter at the valuation time. 
Option dealers are hence often just called volatility dealers, where implied 
volatility or tight market knowledge is often used as the parameter estimation 
technique of the volatility. The fact that the value of an option depends on the 
volatility of the underlying but not on its expected return (which is in accordance 
to ”risk-neutrality”), numbers as one of the great insights from the Black-Scholes 
formula. Criss (1997) is hereby a pedagogical reference as a wide and basic 
introduction to financial options and option pricing.  
 
As for options the claims risk is – so far and within the above setup – the most 
stochastic based parameter to estimate for insurance contracts. However to 
generate more specific expressions of (9) and (10) we have to deal with the 
filtered probability measure Q. Delbaen and Haezendonck (1989) – see also 
Embrechts (2000) – outlines that certain assumptions and conditions of the filtered 
Q-measure lead to well-known premium principles identical to the expected value 
principle, the variance principle and the Esscher principle, all generating different 
safety loading factors in addition to the pure expected claims risk up to time T 
based on the classical probability measure P. Hence the choice of the technical 
properties of Q turns out to be the essential part of the valuation of Z and Z*, or in 
other words, it all depends on what relevant extra information we put into the 
measure Q at time t. The three premium principles are for instance based on the a 
priori choice of safety loading as the (only) critical information bias. The safety 
loading is basically important, and corresponds to the need for ruin safety for the 
insurer and to the expected utility willingness of the customers to pay higher 
premium than the pure risk premium. However, other highly relevant information 
to include a priori in the price models and hence affecting the Q-measure are e.g. 
information about the administration and reassurance expensive and the demand 
for investment return on the insurance portfolio. Technically this expanded 
information input will be handled by an expanded price model combined with an 
augment at time t of the information filtration tF  on Q . 
 
In a complete market setup, with perfectly efficient buying and selling of 
insurance contracts, we conclude that pure risk and cost based premiums are the 
sufficient pricing tasks to handle for an insurance company. In such a market, 
where the market and price equilibrium rules, the winners of the market will be 
those companies which are able to deliver the best unbiased and anti selected risk 
prices, the lowest administration expensive and the most efficient reassurance and 
investment return demands. However, as we will discuss further on in chapter 6 
and 7, true market information like purchasing preferences and the insurers’ price 
position in the market will be crucial information to take into account in an 
incomplete market setup.  
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6. Incomplete market effects and purchasing preferences 
 
The triangle assumptions of dynamic hedging, no-arbitrage and market 
completeness are mathematically very pleasant to assume when developing asset 
pricing models and formulas. Even if there are many offence on these idealistic 
assumptions, the relative realism and robustness of them in the financial markets 
seems nevertheless to be one of the main reasons for the revolution of financial 
mathematics the last decades. The market place of financial derivatives and 
insurance contracts are, however, normally quite different. The insurance markets 
are most often characterized by higher transaction costs, higher and differentiated 
risk aversion, less price rationality and sensitivity, less or no dynamic hedging, 
less decision speed and fewer players than financial markets. In addition the 
insurance market may be divided into a direct insurance market and a reinsurance 
market, where the above incomplete characteristics usually are more common in 
the direct market than in the reinsurance market.  
 
However, the insurance internet market place, with effective and price sensitive 
shopping of insurance offers, may more and more generate less incomplete effects 
on the direct markets. In a future setting with an insurance market as efficient and 
complete as the financial derivate market, we may keep the complete market 
assumption approach of insurance pricing. Until so, if we take an average 
pragmatic approach on today’s insurance pricing, we definitely have to leave the 
idealistic assumption of market completeness. However, the pricing mechanisms 
and result outcomes of complete market models give deep pricing insight, and are 
important to have in mind when dealing with expanded incomplete models. 
 
Mathematical assumptions of incomplete markets generate much heavier 
theoretical models. A precise definition – given in Harrison and Pliska (1983) – 
states that a market is complete if and only if there is only one equivalent 
martingale measure of the underlying stochastic process S(t) (the stock market), or 
in our case, I(t) (the insurance market). The practical interpretation of this 
definition should be that in complete markets there exists a unique price for each 
unique contractual risk - independent of the insurance players - and that each 
contract can be perfectly hedged or replicated in the market. Market assumptions 
which do not satisfy the price uniqueness per risk contract generate incomplete 
markets. Typically assumptions – see Embrechts and Meister (1997) - which 
generate incomplete markets are: 
 
•  Jumps in the underlying stochastic process with random size occur: For 

instance large jumps in stock markets because of bubble economy crash or in 
insurance markets because of heavy large-claim nature/weather catastrophes, or 
even simpler, an unexpected strong increase in the underlying market claims 
inflation.  

 
•  Stochastic volatility models, that is, assumptions of underlying stochastic 

processes with variable volatility along the time axis. For instance the 
variability of stocks or insurance claims which we assume to increase over the 
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period of time; this may be realistic in e.g. some property insurance markets 
which have experienced increased whether variability the last years. 

 
•  Markets with transaction costs and/or investment constraints (so-called 

friction): For instance customers who loose some benefit build ups or have a 
higher product, service and/or brand preferences than pure price preferences, - 
or different investment constraints between market players. 

 
Some technical mathematical techniques have so far been developed to handle 
some problems of pricing derivatives in incomplete markets. Super replication 
(find the cheapest self-financing hedging strategy) and mean-variance hedging 
(find a trading strategy that reduces the actual risk of the derivative position) - 
which is one of the so-called quadratic methods – are two examples; see e.g. 
Møller (2000) for more rigorous and detailed information and overviews on this 
subject. 
 
The intuitive mathematical reason for the incompleteness of the above market 
assumptions is that in each case there are typically many different combinations of 
model parameters which influence the expanded model setup of the martingale 
process. Hence this property generates many different probability measures that 
turn the underlying process into many different so-called local martingales. A 
pragmatic consequence is that each financial or insurance contract (where each 
one of them is based on one unique financial or insurance risk) turns out to be 
valuable unique for each combination of buyers and sellers of the contract. We 
may hence conclude that the more incomplete an insurance market is, the more the 
prices of equivalent risks tend to vary in the market (the law of one price turned 
upside down). Remark that this connected statement assumes a deregulated 
insurance market with no price-cooperation between the insurer players in the 
market.   
 
Another assumption which generates incomplete markets, at least within direct 
insurance, is to assume positive product, service and/or brand preferences of the 
buyers in addition to the price preference. That is, the buyers of the contracts have 
other ”soft” purchasing preferences in addition to price when they act in the 
market. This assumption is highly realistic in most (or all) direct insurance 
markets, and probably one of the main drivers for the incompleteness of these 
markets. This market condition generates the introduction of purchasing rate as an 
important parameter within the price models. A definition of purchasing rate may 
be the likeability in the market to buy (or re-buy) a predefined insurance contract. 
This parameter varies typically individually between the insurance customers (just 
like their claims risks) and should normally be a function of the price sensitivity, 
the price position of the insurer and the more ”soft” preferences like product-, 
service- and brand preferences. Hence, we say that buyers with less price 
sensitivity are more ”soft” preferenced than other buyers, and vice versa. We 
conclude that this approach of individually purchasing rates – or probabilities - 
matches the above local martingale interpretation of price uniqueness for each 
combination of insurance buyer and seller. Moreover by introducing the insurance 
purchasing preference the bridge to more sophisticated economical equilibrium 
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price models is quite close; see e.g. Aase (1993) for an equilibrium analysis of 
dynamic reinsurance markets.      
 
To sum up the main answers to the questions we stressed in chapter 2: Different 
insurance players offer different prices for unique risks mainly because each 
combination of buyers and sellers in incomplete markets generates individual 
unique contractual values. More unique market prices for unique risks will be 
generated in more complete markets with higher price sensitivity. Optimal price 
per risk in a complete insurance market is pure risk and cost price based, while the 
price in addition should be market adjusted in incomplete markets.  
 
 
7. Pragmatic insurance price models  
 
Corresponding to the individual martingale theory in chapter 6, we may put 
forward the following pragmatic price model approach of net insurance sales 
prices in the incomplete case: 
 
Net sales price  
= pure risk price + internal cost price adjustments + external market price 
adjustments  
 
Mathematically we may express the model as: 
 
Net sales price = 
 
                                           ( )( )( )mcriii IIITZCMTp =)(                                  (13) 
 
where   )(tpi  = net premium of risk contract i  for period ),0( T  
   )(⋅Z  = pure risk price pr risk contract i    
   )(⋅C  = the cost price adjustment of the pure risk price Z  
   )(⋅M  = the market price adjustment of the cost price C  
   rF  = given claims risk information of ),0( T  
   cF   = given cost information of ),0( T  
   mF  = given market information of ),0( T .  
 
The internal cost price adjustment )(⋅C  in (13) is typically generated by specified 
goals of risk ratio (incurred claims in percent of earned premiums) and combined 
ratio (risk ratio + expense ratio (expenses in percent of earned premium)) for each 
relevant line of business. The risk ratio and combined ratio goals are usually part 
of the financial plan of the insurance company and based on opinions of necessary 
levels of risk loading, expenses, financial income, reassurance and demand for 
investment return of the company, all elements specifically broken down to each 
line of business.   
 
The external market price adjustment )(⋅M  in (13) is to some extent more difficult 
and more sophisticated to deal with than the pure risk and cost price elements. A 
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possible definition of this price adjustments could be: All kinds of price deviation 
from the theoretical best known risk and cost based price. This definition supports 
the statement by Finn and Lane (1997) that there is no right price of insurance, but 
simply the transacted market price which is high enough to bring forth sellers, and 
low enough to induce buyers, ref chapter 2. Ref also our discussion in chapter 6 
we may model the market price adjustment by including and modelling the 
purchasing rate of the customers/market in an competitive open-market setup. A 
well-known setup is hereby to structure )(⋅ip  in (13) by using the net present 
valuation approach of the insurance contracts. That is, to tune the premium )(⋅ip  
in a way so the net present values of the contracts and the portfolio are optimized 
under some financial conditions (typically predefined financial plan goals). This 
approach takes care of what insurance business steering is all about, that is to find 
the optimal operational balance between running profitability and market share.  
 
In addition to the claims risk process )(tZ , we assume the stochastic process of 
the purchasing rate )(tR  at time t. Let )(tZi  and )(tRi  denote the claims risk and 
the purchasing rate for contract number i , and let )(TVi  be the net present value 
of contract i  over the time period ),0( T .  Hence we have:     

 

                                    
[ ]∫ −−= −

T

iiii
rt

i dttRtctZtpeTV
0

)()()()()( ,                    (14) 

where  
 

=)0(iR the hit sales rate of contract i  at time t = 0, and 

00 )(~1)( >> −= titi tRtR , where 0)( >ti tR = the renewal rate of contract i  at time t and 

0)(~
>ti tR = the cancellation rate of contract i  at time t . The practical interpretation 

of these definitions is that insurance customers are continuously purchasers 
through their continuously decisions of contractual cancellation or not. 
 
In (14) remark also the assumed known constant parameters of r = discount rate, 
and =)(tci the total internal cost rate of contract i  at time t . 
 
Hence the net present value )(TV of the portfolio of all insurance contracts over 
the time period ),0( T  is 
 

[ ]∫ ∫∑ −−≈= −

=

I T
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0 01
)()()()()()( .        (15) 

 
Algebraic - or more realistic, numerical - optimum solutions of (14) and (15) with 
respect to the net premium )(⋅ip  and preferable under some financial constraints, 
will implicitly generate the structure of the price model (13). The external market 
adjustments M in (13) is hereby materialized through the stochastic purchasing 
variable R in (14) and (15) which further on should be modelled by using the 
customer explanation parameters of for instance price sensitivity, price position in 
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the market and soft preferences of product, service and/or branding, ref earlier 
discussions. Maybe also the distribution power of the insurer, which really has 
purchasing effect in most markets, should be included as an explanation variable. 
Hence, dependent of the purchasing preferences in the market, too high prices or 
too low prices both will generate lower net present values )(TVi  and )(TV  than 
middle path price values. We should anyhow demand 0)( >TEV  and 0)( >TEVi  
for all Ii ,...,1= , that is, we should have net sales prices which generate positive 
expected net present values of all insurance customers. 
 
A challenge within this model is, however, to link this incomplete market setup 
with a local martingale approach based on market equilibrium, and hereby find 
explicit closed form expressions of the net premium )(⋅ip  in (13) as a function of 
the expected values of )(TEZi  and )(TERi , either under a real world probability 
measure P or under an information filtered measure Q. We leave this challenging 
problem for future theoretical research. 
 
One last comment before we finally end the insurance pricing approach by dealing 
with the parameter estimation: Sometimes the NEQ  and YEQ in (10) in the 
complete market case in chapter 5 are interpreted as the market price of claims 
frequency and market price of claims severity. This interpretation may be correct 
in a specific theoretical sense of view, but not necessarily in a general practical 
one. Within practical insurance pricing it is most often operational suitable to treat 
the classical pure risk premium on the physical risk measure P apart from the 
other effects or elements of the pricing structure generated by some (individual) 
filtered measure Q. Hence in an operational setup we should split out, estimate 
and follow-up the real claims frequency and the real claims severity, instead of 
envelope them in some kind of imprecise and misleading market interpretation. 
Hence, all or most of the other effects of the insurance premium will turn out to be 
either the cost adjustment or the market adjustment of the risk price in (13), and 
hence easier to focus and follow-up explicitly. 
 
 
8. Parameter estimation = real insurance pricing methodology 
 
The parameter estimation of the pricing models represents the real heart of 
insurance pricing. Compared to financial derivatives, the parameter estimation 
within non-life insurance is more complex. The main difference between the 
derivatives and the insurance contracts are hereby that derivatives are rather 
technical in their contractual consideration but quite simple in their parameter 
valuation, while the insurance contracts have the opposite characteristics. Hence 
while the volatility parameter of an option is most often estimated by practical 
market knowledge or implied real market volatility, the pure risk price pr risk in 
(13) is usually split into expected claim frequency and expected claim severity and 
hence estimated separately by using the data application machinery of classical 
statistical models like Generalized Linear (or Additive) regression (Mixed) 
Models (GLM, GAM or GLMM) or empirical Bayes credibility models on large 
data sets of risk exposure and reported claims.  
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In chapter 3 we assumed the underlying claims number process )(tN  to follow a 
homogeneous Poisson process with constant frequency parameter λ , and hereby 
the claims risk process X(t) to be a compound Poisson process. A far more 
common and realistic model is however to allow stochastic variation of the claims 
frequency from its expected value λ . Hence if λ  follows a Gamma distribution, 
then N(t) becomes a Negative Binomial process. This setup matches very well our 
desire to make a risk differentiated premium tariff which reflects risk variances 
(both claims frequency and claims severities) between customers/objects in the 
insurance portfolio and market. Hence, this matches also the standardized GLM 
setup with Poisson/Gamma-assumptions. Important practical elements to handle 
within risk pricing are choice of explanation risk variables (tariff factors), 
estimation levels (product, coverage or claims type level), categorization of 
variables, correlations between variables, use of subjective experience/knowledge, 
follow up and maintenance. There is a wide number of references to pure risk 
pricing estimation techniques; an ”old” classic is e.g. Brockman and Wright 
(1992), while a newer reference of applied  GLM is Fahrmeir and Tutz (2000). 
 
The purchasing rate R(t) in (15) may also be modelled by using GLM. A well 
known and well used model is to assume the purchasing rate as a binary variable 
(the customer either purchase/renewal the contract at a discrete time, or he/she 
does not), and hence assume a Logistic Regression model with explanation 
variables based on the individual purchasing preferences of the customers, i. e. 
like pure customer characteristics, premium increase(s) last year(s) and the 
insurers price and distribution position in the market. Understanding the 
purchasing rates (both sales hit rates and renewal rates) for different customer 
segments – preferable by use of some stochastic models – should be a basic part of 
the model applications within pragmatic insurance pricing in incomplete markets. 
 
Finally we stress the importance of forecasting the claims risk inflation or trend 
level. A sufficient prediction of the future trend level of the claims risk process 
X(t) is extremely important within financial goal steering. The most pragmatic 
setup is to let the forecasting models be stand alone models apart from the GLM 
risk differentiation models, and hence influencing only the premium levels of the 
premium tariffs. However, using GLM-based leading indicators integrated with 
autoregressive integrated or moving average (ARIMA) models gives often an 
efficient modelling of the claims risk inflation. 
  
 
9. International best practice of insurance pricing   
 
A standard term of the pricing quality of the best insurance players in a market is 
best market practice or – when the pricing quality is among the best in the world – 
world class practice. The international trend is a move from an internal cost based 
price focus to a market-oriented view on pricing, just like the wide approach in 
this paper. An increased number of consultants offer their knowledge and service 
to help the companies to reach a best practice level of pricing. Key elements of a 
best practice market-oriented view on pricing are: 
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•  Outstanding quality of the insurance claims risk and underwriting processes 
and their time dependent risk cycles. This quality is fundamental for profitable 
market based pricing. 

 
•  Outstanding knowledge of customer behaviour in terms of customer segments, 

products/service standards and price preferences, including own price and 
product/service positions relative to competitors in the market. 

 
Hence not only the traditional actuarial pricing approach of risk and cost pricing, 
but also the business elements of CRM (Customer Relationship Management) 
including product and service standards should be important parts of the final 
premium tariff prices of insurance products and contracts. An example of a mix of 
these elements is e.g. treated in Holtan (2001), with focus on customer purchasing 
rationality of individual insurance bonus-malus contracts. This wide business 
approach demands definitely a dynamic pricing approach, that is, a process which 
continuously or regularly… 
 
- adjust the price levels to reach risk ratio and combined ratio goals, 
- innovate, update and re-estimate risk price models and parameters,  
- track competitors’ price rates and product/service value propositions, 
- test market price adjustments to learn optimal price adjustments, 
- implement champion-challenger price adjustments,  
- communicate with distribution departments to optimize the sales forces. 
     
This generates and assumes an active role of the analysts (actuaries) in the product 
and price departments of the insurance companies, with focus on dynamic 
processes as an overall operational key factor to succeed.  
 
The methodology of risk and cost pricing – ref chapter 8 – is quite familiar to most 
insurance companies and markets. The methodology of market pricing is, 
however, far less familiar. It is important to recognize that there are no fixed rules 
or final answers to market price challenges and questions. A dynamic data driven 
(and less static theoretical model driven) working approach with flexible and short 
time-to-market IT price calculation systems seems, however, to be some kind of a 
common element of the best market price practicing insurance companies. 
Modelling the expected purchasing rate and the expected customer profitability in 
a net present value context, are hereby some key issues to handle.  
 
References to best practice insurance pricing are in its nature quite few and 
difficult to put forward. The practice of Direct Line Insurance Ltd in UK – and 
their explosive way to reach 15-20% market share in the UK motor insurance 
market in the 1990-thies with satisfactory profitability – is often mentioned as an 
example. Other best players - that is, players with extremely good profitability in 
combination with stabile or growing markets shares over a significant period of 
time – are of course also good references. A readable journey – in spite of its age - 
to best business focused risk/cost price and underwriting practice is however 
McKinsey (1995).  
 
 



 

 19

 
10. Summary and concluding remarks 
 
A fundamental difference between financial option valuation techniques and the 
classical actuarial valuation principles is that the option valuation is formulated 
within a market framework which includes the possibility of trading and hedging. 
This a priori model approach – which very much is consistent with the derivate 
market realities – generates in most cases complete market conditions without 
arbitrage possibilities. This proactive market model approach has traditionally 
been absent within classical actuarial pricing principles, whereas most of the 
principles have only been based on more or less ad hoc statistical considerations 
involving the law of large numbers. There seems however to be a theoretical trend 
to involve the financial market model approach into insurance pricing problems. 
Within such a framework there seems to be easier to expand the insurance price 
models by including components like purchasing preferences in incomplete 
market setups, and by this include not only the valuation part of pricing, but also 
the supply/demand part into the price models. A short overview of the pricing 
elements of insurance versus finance versus theory versus practice may be 
presented as follows: 
          

 
Risk and cost differentiated prices 
Data driven GLM parameter estimation 
Incomplete and non-efficient markets 
Purchasing/price sensitive preferences 
Data driven market adjusted net prices 

Still complete and efficient markets 
Extreme contractual complexity 
Different contractual objects  
Computer formula based valuation 
Implied volatility and market knowledge 

Insurance claims as underlying risk 
Implicit complete markets 
No hedging or arbitrage focus 
Homo/heterogeneous Poisson processes 
Risk valuation with safety loadings 

Stocks/securities as underlying risk 
Explicit complete and efficient markets 
Dynamic hedging with no arbitrage 
Geometric Brownian motion processes 
Volatility valuation and pricing  

 
 

 
The whole area of bringing together elements from financial and actuarial 
valuation and pricing techniques is still very much under construction. We should 
still expect a considerable progress with effects for insurance pricing in the years 
to come. Some future insurance challenges in the 21st century with opposite 
directions are a) optimal pricing in incomplete friction markets with less price 
sensitivity (which is still the case for many or most traditional markets/customer 
segments) and b) optimal pricing in efficient and complete insurance markets with 
continuously insurance trading and hedging possibilities (future efficient internet 
and broker based markets; see Finnegan and Moffat (2000) for a pragmatic and 
problematic view on this subject). In the latter case the bridge to option pricing is 
very short. In both cases the pricing optimality should have a balanced focus on 
profitability versus market share of the (direct) insurance portfolio. In such an 
innovative framework actuaries in all countries should know how to act and take 
leading positions in their insurance companies to unite the future theoretical and 
practical parts of insurance pricing.         
 
 

Insurance 

Theory 

Finance 

Practise 
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