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AESTRACT 

In this paper we extend the continuous-time dynamic programming approach for 

Asset/Liability Management from Boulier et al. (1995). It is an extension in the sense that we 

consider objective functions for pension fund management that are different from the standard 

quadratic loss functions. In particular, we calculate optimal policies for a loss Rmction with 

Constant Relative Risk Aversion (CRRA) as well as one with Constant Absolute Risk 

Aversion (CARA). Taking these specific loss lunctions is based on the work of Merton (1990), 

as he uses these same functions as utility functions for the consumption/investment framework. 

For each loss function we solve the associated HJB-equation and obtain closed form solutions. 
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1. Introduction 

In the area of Asset/Liability Management (AIM), much attention is paid to the formulation 

and optimization of stochastic programming models. An important area of application is AIM 

for pension funds. See Dert (1995) Carifio et al. (1993) and Boender (1997) for some 

examples of this approach. See also Ziemba and Mulvey (1998) for a recent overview. Much 

effort is put in finding efficient algorithms, creating sets of scenarios that are consistent with 

real world uncertainty, and overcoming computational problems and limitations. It is 

remarkable that comparatively little attention has been paid to the opposite of this 

‘quantitative’ approach, namely the qualitative assessment of the factors that can or should be 

important for pension fund management in determining the optimal policy. A first step in this 

direction is taken by Boulier et al. (1995) where a continuous-time dynamic programming 

model is formulated. It contains all of the basic elements for modeling dynamic pension fund 

behavior, but can be solved by means of analytical methods. See also the article of Sundaresan 

and Zapatero (1997) which is specifically aimed at asset allocation and retirement decisions in 

the case of a pension hmd. In the current paper, we extend the approach taken by Boulier et al. 

(1995,1996), and Cairns (1997) by dropping the assumption of a quadratic loss function. 

The paper is set up as follows. In Section 2, we introduce the model of Boulier et al. (1995), 

without specifying the exact form of the loss function. In section 3 we specify non-quadratic 

loss functions as in Merton (1990) and in particular study the effect of constant relative and 

constant absolute risk aversion (CRRA and CARA) on the resulting optimal decision rules. 

We end the paper in section 4 with some concluding remarks and directions for mrther 

research. 

2. Model setup 

As said in the introduction, we follow the approach as given by Boulier et al. (1995) to model 

pension fund management. It is the framework of stochastic dynamic optimization. The 

essence of the approach is that continuous-time relationships between state variables are 

defined, and then a well-defined objective function. The result is a mathematical formulation of 

the basic characteristics of a pension fund. 
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We start with the definition of the state variables. The two state variables in the model are the 

level of wealth (W) and the amount of pension benefits to be paid (P). To start with the latter, 

the aggregated amount of pension benefits follows a deterministic process with growth rate ~1: 

dp, = c( pr dt. (1) 

As pension benefits are directly subtracted from the wealth of the fund, we will refer to it as 

pension costs in the rest of the paper. 

The evolution of wealth depends on the return on investment, the amount of pension cost and 

the level of contribution(C) that is paid by the participants to the fund The investment 

opportunities are given by one riskless asset, yielding a rate of return of r (continuously 

compounded) and one risky asset, i.e. stocks. The market value of the risky asset is denoted 

by St and follows a stochastic process given by 

dS, / S, = (h + r)dt + odBr, (2) 

where h >O is the risk premium for the risky asset and B, denotes standard Brownian motion. 

The investment decision is modeled by a decision variable u, representing the fraction of assets 

that is invested in the risky asset. Given the evolution of the riskless and the risky asset, the 

evolution of wealth can be described as 

= (rW, + huW, + C, - P,)dt + upW,dB,, 

where the second equality follows directly from the definition of St in equation (2). 

Given the evolution of state variables, and the definition of the decision variables u and C, the 

problem the pension fund management faces is to find optimal feedback decision rules for the 

fraction to invest in the risky asset, u(W,P), and the level of contributions, C(W,P), solving the 

stochastic dynamic optimization problem: 

J = min E0 
U.C 
/ ee-%(C)dt , c>o, I 1 I 

0 

(4) 
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where L(C) is a positive convex function in the amount of contributions and p the 

psychological discount factor. Although many other objective functions could be assumed for 

a pension fund, it captures the essence of pension fund management, under the restriction that 

wealth is always strictly positive, which we add to avoid a trivial solution (GO). 

3. General solution 

Given the objective function in (4) and the evolution of the state variables in equations (1) and 

(3), the appropriate HJB-equation associated with this problem is: 

0 = i$ cp(u, c; w, I), 
= inf c -%(c)+J, +(rW+huW+C-P)Jw +aPJp ++202WzJ,w I 

(9 
UC 

where the derivative of a function f  with respect to variable x is denoted as f,. See Merton 

(1990) for a good introduction to stochastic dynamic programming. He applies it to several 

instances of a general consumption/investment problem. See also 0ksendal (1998) for an 

exposition on stochastic differential equations and the application to Stochastic Control. 

Differentiating cp(u,C;W,t) with respect to C and u gives the first order conditions: 

e -“?Jc + Jw = 0, 

hWJw +uo2W2Jww, 

which yield the following expression for the optimal decision rules for C and u : 

C* =U,j’(-eP’Jw), (6) 

(7) 
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Clearly, these decision rules minimize J if and only if 

which is satisfied for L,, > 0 and JWW > 0 Because the optimal decision rules can be expressed 

as functions of W and P , when substituting (6) and (7) into the HJB-equation (5) we obtain a 

differential equation in the two state variables W and P The theory from stochastic dynamic 

programming now tells us that a solution to the differential equation (5) is also the optimal 

solution to the original problem. To this extent, the next two subsections are dedicated to 

finding a solution to the HJB-equation, given a specific hmctional form for L(C). 

For the solution method to be valid, it follows that we have to assume r > a , i.e. the riskfree 

return exceeds the growth of pension cost. Given this assumption and writing W, = P / (r-o) , 

it is clear that in the domain W,,, I W the optimal policy is zero contribution and no risky asset 

in the portfolio. This means that the optimal policies we derive in the next section hold for 

W, > W only. 

3.1 Constant Relative Risk Aversion 

In this subsection, we solve the HJB-equation associated with the optimization problem 

formulated in section 1 for a loss function that exhibits Constant Relative Risk 

Aversion(CRRA). Formally, this means that the Pratt-Arrow relative risk-averson function - 

kc / LC is a constant. See Pratt (1964) for an exposition on the notion of risk aversion. 

Ingersoll (1987) gives a thorough treatment on the use of utility functions with respect to 

financial decisions. 

We choose the loss function L(C)=C / y  as CRRA loss function, y  > 1 It is easy to see that it 

is convex and indeed has constant relative risk aversion In the appendix, we solve the HJB- 

equation associated with the optimization problem by guessing the functional form of the 

optimal value function and solving for the unknown parameters. Given the expression for the 

optimal value function, the resulting decision rules follow from substitution in equations (6) 

and (7), which yields: 
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1 c*(w,p)=- r-r- 

( 

x2 

Y-l Y 2&y-l) 1 
(W”, - w), 

h 1 w,-w 
u*w,P)=2yl-- 

W 

(8) 

(9) 

3.1.1 Economic interpretation 

First of all, we observe that the amount invested in the risky asset is linear in wealth and goes 

to zero as W reaches the equilibrium wealth W,. Following Merton (1990), one could call the 

fraction h I (o*(y-1)) the optimal-growth fraction invested in the risky asset. It is observed that 

the optimal fraction in our model is equal to this optimal-growth fraction, multiplied by the 

relative distance to the equilibrium wealth W, For W=WJ2 it is exactly equal to the 

optimal-growth fraction. 

Secondly, looking at the condition that holds for C’ , namely that it must be nonnegative, we 

have that 

4- 2o2::-1)). (10) 

According to Ingersoll (1987) we have here a ‘transversality condition’. Formally, optimal 

contribution is negative should p violate this condition, but this obviously cannot be true. Even 

if negative contribution (retribution) is meaningful, its loss (utility) is not defined for power 

utility functions. 

With respect to the influence of uncertainty in the decision rules. we observer the following: If  

the excess return on stocks as represented by h is higher, contributions are lower and 

investment in stocks is higher. On the other hand, if the variability in stock returns increases, 

this leads to higher contributions and a lower fraction invested in stocks 

Finally, note that one could also obtain optimal decision rules in terms of the time parameter, 

but we prefer to have the solution in so called jkdback form, as we are interested in the 

relations between the state variables and the optimal controls, not in the time path of the 

controls an sich. 
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3.2 Constant Absolute Risk Aversion 

We can solve the same optimization problem for another type of loss function, one that has 

constant absolute risk aversion (CARA). Let L(C) = erlc, q>O , where -Lcc&=r~ is Pratt’s 

measure of absolute risk aversion. 

Again, we have derived for this specific loss mnction the optimal decision rules that solve the 

optimization problem. See the appendix for derivation. The results are: 

h2 
C* =r(Wm -W)+L r-p-- 

v  ( 1 202 

*  h 
u =- 

02qrW 

(11) 

(12) 

3.2.1 Economic interpretation 

The first observation we make is that except for some differences in sign, the optimal policies 

bear a close resemblance to those derived by Merton. Given the context of pension fund 

management, it is remarkable that the optimal fraction invested in the risky asset is not 

dependent on the equilibrium level of wealth, W,,, , but only on the current wealth W Note 

that the amount invested in the risky asset is constant, whereas for the CRRA case the amount 

invested was linear in wealth. 

Uncertainty in state variables is displayed through the term h2/(202), and the same connections 

between excess return, volatility and the optimal policies hold as for the CRRA loss function 

4 Conclusion 

We have formulated the same model as Boulier et al. (1995) for dynamic pension timd 

management, but solved it for a much broader class of loss function, namely the CRRA and 

the CARA class. We observe that the results show a great deal of similarity with the result 

derived by Merton (1990) for a consumption/investment model. 

Besides the similarity, we observe that the expression for the optimal value function in both 

cases is of the same functional form as the loss function. It was proven by Merton (1990) that 

this property holds for the consumption/investment framework, but it seems to hold in the 

asset/liability setting as well. 
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4.1 Suggestions for further research 

Since the seminal paper of Kahneman and Tversky (1979) a lot of research has been done on 

the subject of how a realistic utility or value function should look like. In the field of prospect 

theory for example, it is now generally agreed upon that “...the marginal value of both gains 

and losses generally decreases with their magnitude...“. In the context of the present pension 

fund modeling, this implies that a loss timction in the contributions should be concave in the 

contributions: the loss of asking one extra unit of contribution decreases with the level of 

contributions. Although this might seem easy to implement, it is obvious that a concave loss 

function leads to comer solutions with the rest of the model unaltered, i.e. it becomes optimal 

to ask contributions necessary to reach equilibrium all at once. More research and perhaps a 

totally different setup is necessary to overcome these difficulties. 

Besides the loss function, the evolution of the state variables could need some adjustment. In 

particular, consider the (deterministic) growth of pension cost: In the present setup, the 

pension cost is completely hedged. There is no risk associated with the development of the 

amount of benefits to be paid and the riskfree rate exceeds the pension cost growth rate. 

Introducing correlation with returns on investment or other exogenous uncertainty would 

change the outcome of the optimal policies drastically, if the problem can be solved 

analytically at all. 

Finally, for scenario-based optimization models, and in practice it is often observed that the 

fraction of wealth invested in stocks tends to rise when the pension mnd becomes wealthier. 

See for example Sundaresan and Zapatero (1997) where it is mentioned that investing an 

increasing amount in the riskfree security “...seems to contradict empirical evidence, which 

suggests that an increasing proportion of the overfunding is actually placed in equity.” In our 

opinion, more research could be done to find simple models that display this behavior. 
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Appendix 

A General power loss function 

With U(C)=C& , we substitute (6) and (7) in (5) and obtain 

O=l-r(-Jw)$xp 
h= J; 

+J, +(rW-P)Jw +al’Jp --- 
Y 2cG Jww 

(13) 

To solve (13), we take as trial solution: 

i-r-q-aW+bP)Y, 
P 

(14) 

where a and b are constants that have to be determined. Substituting (14) in (13) leads to 

O=I-Y(-,W+bP)-J+W+bP)-(rW-P)+bnP_’ 
Y P a 2ci2 

‘-(-aW+bP) 
4Y - 1) 

Given that the above equality must hold for any W and P , we obtain: 

b=-!f- 
r--0L’ 

provided that a>0 and b>O If otherwise, then the solution method we have used is not valid. 

With a>0 it is clear that JWW >O As explained in section 3 this means that we have indeed a 

minimum for these parameter values. With b>O we see that we have to demand r>cc , as we 

already mentioned at the end of section 3. By substitution in the expressions for the optimal 

decision rules, we obtain: 

C* =C*(w,P)=~(r-~-20~-l))(ly,-W), 
h 1 w,-w 

u* =u’(W,Py--- 
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B Negative exponential loss function 

With loss function L(C)=e?“/q the expressions for the optimal decision rules become 

c* =~log(-ef’Jw) 

* u JJW =- 

JWWW02 

and substitution in the HJB-equation (5) yields 

Jw OZ-~+J, +(rW-P)Jw +;log-e Jw ( f1 )I 
x2 J; 

w +aPJp -__- 
20~ Jww 

Taking as a trial solution for the value function. 

JMd =e -pf exp{- bW + cP + d} 

leads to 

x2 
O=-b-p+(rW-P)b-blog(b)-~(-~~+~~+~)+~~~--. 

rl rl q 202 

Because the above equality must hold for all W and P we can solve for b, c and d, giving: 

b=qr, 

c=rlr 
r-a’ 

h2 &l-&-,gb-- 
r 2r02 

Substituting the parameter values in the trial value function leads to the following expression 

for the optimal value function: 

J=eepf exp 
h2 

-qr(W-W,,I)+l-~-log(qr)-- 
2r02 

Substitution in equations (6) and (7) gives: 

C* =r(W,n -W)+$ r-p-2 
l 1 

, 

* h * =- 
qrcr2W 
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