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The market is composed by a bank account S0 and a risky asset

St, whose dynamics satisfy

S0
t = S0

0e
ηt, S0

0 = 1,

dSt = St(adt + σdBt), S0 = x,

where η ≥ 0, a and σ > 0 are constants.

The risk process is based in the classical Lundberg model, using a

compound Poisson process for the claims. Given the initial surplus

z and the constant premium rate c, the risk process is defined as

Rt = z + ct −
Nt∑

i=1

Yi,

where Yi represents the claim amounts.
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Several authors have been studied this problem in different set-

tings, BETWEEN OTHERS

Paulsen and Gjessing [15], Paulsen[16], Kalashnikov and Norberg

[13], Frovola, Pergamienschhikov, Kabanov [7]. In al these cases

even if the claim size has exponential moments the ruin probability

decrease only with some negative powers of the initial reserve.

Hipp and Plumb [11] minimize the the ruin probability. If the

claims are exponential the ruin probability decreases exponentially.

Gaier, Grandits, Schachermayer [9] in the exponential case claims

investigate whether are constants r̂ and c such that the ruin proba-

bility Ψ(x) satisfies

Ψ(x) ≤ Ce−r̂x

Browne [2] investigate the problem where the risk process is also

Brownian (not a compound Poisson) and obtain a minimal bound

for the ruin by an exponential function.
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(i) Finite horizon problem T > 0 fixed.

(ii) At each time t ∈ [0, T ], the insurer divides his wealth Xt between

the risky and the riskless assets.

(iii) If a claim is received at time t, it is paid immediately.

(iv) Let πt be the amount of wealth invested in the risky asset at

time t.

(v) Xt − πt is invested in the bank account.

5



If at time s < T the surplus of the company is x, the wealth

process satisfies the dynamics

Xs,x,π
t = x + c(t − s) −

Nt∑

j=Ns+1

Yj +

∫ t

s

(a − η)πrdr

+

∫ t

s

ηXs,x,π
r dr +

∫ t

s

σπrdBr, (0.1)

with the convention that
∑0

j=1 = 0. When s = 0 we write for

simplicity Xπ
t .

Definition 0.1. We say that π = {πt} is an admissible strategy

if it is a Ft-progressively measurable process such that

P[|πt| ≤ A, 0 ≤ t ≤ T ] = 1,

where the constant A may depend of the strategy, and the equa-

tion (0.3) has a unique solution. We denote the set of admissible

strategies as A.

A utility function U : IR → IR ∈ C2 strictly increasing and

strictly concave.
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THE OPTIMIZATION PROBLEM:

Maximize the expected utility of terminal wealth at time T, i.e.

we are interested in the following value function

W (s, x) = sup
π∈A

E[U(Xs,x,π
T )]. (0.2)

We say that an admissible strategy π∗ is optimal if

W (s, x) = E[U(Xs,x,π∗

T )]

.

Xs,x,π
t = x + c(t − s) −

Nt∑

j=Ns+1

Yj +

∫ t

s

(a − η)πrdr

+

∫ t

s

ηXs,x,π
r dr +

∫ t

s

σπrdBr, (0.3)
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We prove:

1. A Verification Theorem associated to HJB-equation.

2. If U(x) = −e−γx

(i) We obtain an explicit solution.

(ii) Estimate Ruin Probability (Bounds of exponential type).

(iii) When the claims are exponential we compare the results

with that of Gaier, Grandits, Schachermayer [9].

(iv) Numerical Examples.

Martingale Techniques
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1 Verification Theorem

The Hamilton-Jacobi-Bellman (HJB) equation associated with the

optimal stochastic control problem is given by

0 =
∂V

∂t
(t, x) + max

π∈IR

{
σ2

2
π2∂

2V

∂x2
(t, x)x + (π(a − η) + ηx)

∂V

∂x
(t, x)

}

+c
∂V

∂x
(t, x) + λ

∫

IR

[V (t, x − y) − V (t, x)]ν(dy), (1.4)

with terminal condition V (T, x) = U(x).

Theorem 1.1. Assume that there exists a classical solution V (t, x) ∈
C1,2([0, T ]× IR) to the HJB equation (1.4) with boundary condi-

tions V (T, x) = U(x). Assume also that for each π ∈ A

∫ T

0

∫

IR

E|V (s, Xπ
s− − y) − V (s, Xπ

s−)|ν(dy)ds < ∞, (1.5)

∫ T

0

E[πs−
∂V

∂x
(s, Xπ

s−)]2ds < ∞. (1.6)

Then, for each

s ∈ [0, T ], x ∈ IR,

V (s, x) ≥ W (s, x).
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If, in addition, there exists a measurable function π∗ : [0, T ]×
IR → IR such that

π∗(t, x) ∈ argmaxπ∈IR

{
σ2

2
π2∂

2V

∂x2
(t, x) + (π(a − η) + ηx)

∂V

∂x
(t, x)

}
,

then π∗ defines an optimal investment strategy in feedback

form if (0.3) admits a unique solution Xπ∗
t and

V (s, x) = W (s, x) = EU [Xs,x,π∗

T ].
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2 Explicit solutions for exponential utility function

The utility function is of exponential type, i.e.

U(x) = −e−γx.

Theorem 2.1. Assume that∫

IR

exp{2γyeηT}ν(dy) < ∞.

Then, the value function defined in (0.2) has the form

W (t, x) = − exp

{
− 1

2

(a − η)2

σ2
(T − t) +

cγ

η
[1 − eη(T−t)]

+ λ

∫ T

t

βsds

}
· exp {−γxeη(T−t)}, (2.7)

and

π∗(t, x) =
a − η

γσ2
e−η(T−t)

is an optimal strategy.

In particular, when η = 0 we have that

W (t, x) = − exp

{
−

1

2

a

σ2
(T − t) + cγ(T − t) + λβ(T − t)

}
e−γx

(2.8)

and

π∗(t, x) =
a

γσ2
.
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3 Ruin Probability

The wealth process associated with the optimal investment strategy

π∗ is given by

X∗
t = z + ct −

Nt∑

i=1

Yj +

∫ t

0

(a − η)2

γσ2
e−η(T−r)dr

+

∫ t

0

ηX∗
r dr +

∫ t

0

(a − η)

γσ
e−η(T−r)dBr, for η > 0(3.9)

and

X∗
t = z +ct−

Nt∑

i=1

Yi +

∫ t

0

a2

γσ2
dr+

∫ t

0

a

γσ
dBr, for η = 0. (3.10)
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Theorem 3.1. Let us denote θ = E[Y1] and assume that

(a) The law of the random variables Yi, i ≥ 1 admits a (finite)

Laplace transform L(r) for 0 < r < K ≤ ∞,

(b) If K < ∞, then limr→K L(r) = ∞.

(c) The following safety loading conditions are satisfied

[e−ηT(c +
(a − η)2

γσ2
)] − λθ > 0, if η > 0,

and

c +
a2

γσ2
− λθ > 0, if η > 0.

Then, the ruin probability satisfies

P[ sup
0≤s≤T

−X∗
s ≥ 0] ≤ e−δ∗z,
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Then, the ruin probability satisfies

P[ sup
0≤s≤T

−X∗
s ≥ 0] ≤ e−δ∗z,

where (i) If η > 0, then, for each γ > 0, δ∗ is the positive root

of the equation:

h(δ, γ) = −δ{e−ηT(c+
(a − η)2

γσ2
)}+

δ2

2

(a − η)2

γ2σ2
e−2ηT+λ(L(δ)−1) = 0.

(3.11)

(ii) If η = 0 then, for each γ > 0, δ∗ is the positive root of the

equation:

h0(δ, γ) = −δ{c +
a2

γσ2
} +

δ2

2

a2

γ2σ2
+ λ(L(δ) − 1) = 0. (3.12)

In addition, let δ1 be the root of the classic Cramér–Lundberg

equation

h1(δ) = −δc + +λ(L(δ) − 1) = 0.

If η = 0 and δ1

2 < γ, then

δ1 < δ∗.
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In the proof we shall use a simplified version of Lemma 3.1 in [3],

which we state now:

Lemma 3.1. Let

Lt = z +

∫ t

0

bsds +

∫ t

0

dsdBs −
Nt∑

i=1

Yi,

where everything is as stated in this paper, (bs)s≥0 is an adapted

integrable process and (ds)s≥0 is predictable with E[
∫ t

0 d2
sds] < ∞.

Assume

(i) The law of the random variables (Yi)i≥1 has finite Laplace

transform L(r) for 0 < r < K ≤ ∞.

(ii) There exist δ ∈ (0, K) and a constant hT (δ) ≥ 0 such that

for all s ∈ [0, T ],

δ

∫ s

0

budu +
δ2

2

∫ s

0

d2
udu + λs(L(δ) − 1) ≤ hT (δ).

Then, for m ≥ z

P[ sup
0<s≤T

Ls > m] ≤ exp{δ(z − m) + hT (δ)}.

The proof of this Lemma is based on maximal inequalities for mar-

tingales.
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For estimate

P[ sup
0≤s≤t

−X∗
s ≥ 0]

We can not apply directly Lemma 3.1 to −X∗, observe that

P[ sup
0≤s≤t

−X∗
s ≥ 0] = P[ sup

0≤s≤t
−Zs ≥ 0].

where Zt = X∗
t e

−ηt

Zt = z +

∫ t

0

e−ηrcdr −
Nt∑

j=1

e−ητjYj +

∫ t

0

(a − η)2

γσ2
e−ηTdr

+

∫ t

0

a − η

γσ
e−ηTdBr.

Let −Z1 be as follows

−Z1
t = −z− cte−ηT +

Nt∑

i=1

Yj − t
(a − η)2

γσ2
e−ηT −

∫ t

0

a − η

γσ
e−ηTdBr,

Then it is clear that

−Z1
s ≥ −Zs = −X∗

s e
−ηs.

and

P[ sup
0≤s≤t

−Zs ≥ 0] = P[ sup
0≤s≤t

−Z1
s ≥ 0]

We apply the Lemma to −Z1
s with hT (δ) = Th(δ). The existence

of the positive root is guaranteed by the safety loading condition.
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Proposition 3.1. We assume that the random variables Yi, i ≥
1 are exponential with mean θ and

0 < γ <
e−ηT

θ
. (3.13)

Then

W (t, x) = − exp

{
− 1

2

a − η

σ2
(T − t) +

cγ

η
[1 − eη(T−t)]

−
λ

η
log

(
1 − γθ

1 − γθeη(T−t)

) }

· exp {−γxeη(T−t)}.

In particular, if η = 0,

0 < γ <
1

θ
,

and

W (t, x) = − exp

{
−1

2

a

σ2
(T − t) + cγ(T − t) − λ

γθ

1 − γθ
(T − t)

}
e−γx.
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Compare with Gaier, Grandits, Schahermayer [9]:

For each γ we obtain a positive root δγ of h, using the implicit

theorem, it can be shown that δγ is maximum when δγ = γ. Gaier,

Grandits and Schachermayer, see [9], obtain the strategy πt that

guarantees that the ruin probability is optimal: πt = a
r̂σ, where r̂ is

the solution of the following equation

λ(L[r] − 1) =
a2

2σ2
+ cr. (3.14)

It can be easily shown that δr̂ = r̂. So if we chose as γ = r̂ we get

the strategy that is optimal for the exponential utility function and

also that has the less ruin probability.
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In the exponential case, for η = 0, h(δ, γ) becomes

h(δ, γ) =
a2θ

2γ2σ2
δ2−((c+

a2

γσ2
)θ+

a2

2γ2σ2
)δ+(c+

a2

γ2σ2
−θλ). (3.15)

For each γ ∈ (0, 1/θ) we obtain a positive root δγ of h of the form

δγ = (
1

2θ
+

c + Ka

K2σ2
) +

√
(
c + Ka

K2σ2
)2 +

1

4θ2
− c + Ka − λθ

θK2σ2
,

In the exponential case equation(3.13) becomes

f (r) = cθr2 + (
a2θ

2σ2
+ λθ − c)r − a2

2σ2
(3.16)

whose solution satisfies δr̂ = r̂.
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In order to illustrate the behavior of the ruin probability for infinite

horizon when the optimal strategy of investment πt = a
γσ is applied,

we present some numerical results for the exponential case, with data

used by Hipp and Plum, see [11], for different values of γ ∈ (0, 1).

The parameters have the following values: a = σ = θ = λ = 1,

c = 2, and η = 0.

Amount of money invested:ð(ã)

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

ã
ð(ã)

Graph 1

Graph 1 shows how the root δ(γ) of h(δ) varies for different values

of γ. For our data the root of (3.16) is r̂ = 0.640388 and the Lund-

berg parameter for the classical case is 0.5. As it was expected the

maximum value of δ is obtained at 0.640388 and for γ ∈ [.25, .9] the

root is larger that 0.5.

Graph 2 shows how K decreases as γ increases. This has the

advantage that the ruin probability is almost the same as in the

optimal case without needing a large sum of money to invest in the

risk asset.

Let

St =

Nt∑

i=1

Yi − ct −
∫ t

0

a2

γσ2
dr −

∫ t

0

a

γσ
dBr, (3.17)

denote the surplus; observe that St = z−Xt. Let τ (z) = inf0≤t<∞{t >
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Modified Lundberg parameter:ä(ã)
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Graph 2

0|Sτ > z}, we are interested on estimating

P [τ (z) < ∞] = E(1τ (z)<∞).

Survival Probability

0.5
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z
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no investment
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Graph 3

We use a Monte-Carlo method with importance sampling to esti-

mate the ruin probability. Importance sampling is applied to over-

come several difficulties:

1. Given that the horizon is infinite, a stopping time T must be

defined for the simulation which introduce an error difficult to

estimate.
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2. When the probability is small, less than 10−3, which is the case

for our data when z > 7, we are simulating a rare event. In

order to do it well we have to generate an impractical number of

paths.

3. When a crude Monte-Carlo method is used the relative error

increases as z becomes large.

These problems can be handle if we change the probability measure

to one that increases the probability of occurrence of {τ (z) < ∞}.
Asmussen [1] propose to use an exponential change of measure. Let

P ∗ be the equivalent probability of P given by the Radon-Nykodin

derivative
dP ∗

dP
= eδSτ (z)−τ (z)h(δ),

where h(δ) is given by 3.15. If we chose as δ the root δ∗ of h we have

that the calculation of the ruin probability reduces to

E(11[τ (z)<∞]) = E∗(e−δ∗Sτ (z)11[τ (z)<∞]).

As P ∗(τ (z) < ∞) = 1, we don’t have to worry about the stopping

time. We also obtain a considerable reduction of the variance which

implies a lesser number of paths for Monte-Carlo. When δ = δ∗ the

estimation is optimal, in an asymptotic sense, for variance reduction;

the variance is bounded by e−2δ∗z which tends to zero when z goes

to infinity.

Graph 3 compares the probability of survival, equal to 1 minus the

ruin probability, for values of z ∈ [0, 6] for γ = .9, γ = 0.640388 and

when there is no investment. As it can be seen the ruin probability is

almost the same for the first two cases even when we need to invest

for γ = .9 a smaller amount of money.
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