BSDE with enlarged filtration

Option hedging of an insider trader

Anne EYRAUD-LOISEL

Laboratoire de Sciences Actuarielle et Financière
Université Lyon 1, France

anne.eyraud@univ-lyon1.fr
BSDE with enlarged filtration

Option hedging of an insider trader

Problem Setting

Market Model

BSDE and enlarged filtration

Results

Influent investor and FBSDE
Insider Trading = Additional Information on the market

Most often treated point of view: wealth optimization with asymmetrical information
(ex: Grorud, Pontier, Amendinger, Becherer, Schweizer, Imkeller, Föllmer among others)

Different point of view: hedging problem

In the present model, prices are driven by both a Brownian motion, and Jump processes
(Poisson point processes)

Two different cases studied: small investors (→BSDE), and also large investors (influent insider trader) (→FBSDE)
Basic Example:

- \(L = S_T \) the insider knows final stock price \(S_T \).
- He wants to hedge a digital option \(1_{S_T \leq K} \).
- He has 2 possible investments: invest on risky asset if \(S_T \leq K \) and do nothing otherwise.
- He has an obvious different strategy from the non insider trader, and even an arbitrage opportunity.

Natural questions arise:

- Is the hedging strategy identical to the non informed trader?
- Is it unique? Are there more hedging strategies?
- Market completeness/incompleteness? Arbitrage opportunities?
Financial Problem

- Option Hedging, represented by a payoff ξ to reach at maturity T

- Transcription: portfolio duplication, look for initial wealth X_0 and the portfolio π such that final wealth $X_T = \xi$.

- One agent has an information L at time 0 concerning time $T' > T$.

- Will he have different investment from the uninformed agent?

- How does the market differ from a market with symmetrical information?
Main Tools of the Model

- Introducing an insider in a well-known market model
- Comparing insider and non informed strategies
- To model financial strategies of the agents: BSDE
- To model the additional information of the insider: Enlargement of Filtration
Market model

• Prices driven by both W Brownian motion and μ Poisson measure,

\[(\mathcal{F}_t)_{t \in [0,T]} \text{ natural filtration of } (W, \tilde{N}),\]

• k risky assets, 1 riskless asset,

• no Arbitrage opportunities (AOA)

An insider in the Market

• **Strong initial information**: insider trader has at time 0 the information L, unknown from the common agent.

• $L \in \mathcal{F}_{T'}$, with $T' > T$: it will be public at time T'.

• There are 2 different spaces: the non insider space, and the insider space, with L added.

• New **enlarged filtration**: the smallest right-continuous filtration that contains initial filtration and information L:

\[\mathcal{Y}_t = \bigcap_{s > t} (\mathcal{F}_t \vee \sigma(L))\]
Initially enlarged filtration: Usual hypotheses

- Adding L to the initial filtration:
 \[\mathcal{Y}_t = \bigcap_{s > t} (\mathcal{F}_t \vee \sigma(L)) \]

 - **Hypothesis** (H_3): There exists a probability Q equivalent to P under which \mathcal{F}_t and $\sigma(L)$ are independent, $\forall t < T'$.

- Fundamental Properties:
 - Under new probability Q, W_t is a (\mathcal{Y}, Q)-Brownian motion, and \tilde{N}_t a (\mathcal{Y}, Q)-compensated Poisson process.
 - Martingale Representation Theorem under (\mathcal{Y}, Q).

Anne Eyraud-Loisel, September 7-9, 2005
Translating the problem to a BSDE (1)

- Hedging problem, payoff \(\xi \) to be reached at maturity \(T < T' \).

- Wealth equation, standard self-financing hypothesis:

\[
dX_t = X_tr_t dt + (\pi_t, b_t - r_t 1) dt + (\pi_t, \sigma_t dW_t) + \int_E (\pi_t -, \phi(t, e)) \mu(dt, de)
\]

- And integrating from \(t \) to \(T \), it follows:

\[
X_t = X_T - \int_t^T \left[(X_s r_s - c_s) + (\pi_s, b_s - r_s 1) \right] ds - \int_t^T (\sigma^*_s \pi_s, dW_s) - f(s, X_s, Z_s, U_s) ds - \int_t^T \int_E (\pi_s - , \phi(s, e)) \tilde{\mu}(ds, de)
\]

- Solving the hedging problem means finding \((X, Z, U) \) solution of the BSDE:

\[
X_t = \xi + \int_t^T f(s, X_s, Z_s, U_s) ds - \int_t^T (Z_s, dW_s) - \int_t^T \int_E U_s(e) \tilde{\mu}(ds, de)
\]
Results under H_3

\[X_t = \xi + \int_t^T f(s, X_s, Z_s, U_s) \, ds - \int_t^T (Z_s, dW_s) - \int_t^T \int_E U_s(e) \tilde{\mu}(ds, de) \]

- From Barles, Buckdahn and Pardoux (1997) and Tang and Li (1994), if f is globally Lipschitz in x, z and u, then there exists a unique triplet (X, Z, U) solution of the BSDE.

- The existence and uniqueness theorem can be adapted in the enlarged space.

Existence and Uniqueness Theorem Our BSDE in the enlarged space has a unique solution (X', Z', U').

- Thanks to Jacod and Shiryaev, we prove a martingale representation theorem under the enlarged filtration (Using independence of \mathcal{F} and $\sigma(L)$ under Q to state a martingale representation property for (W, N) IIP on (\mathcal{Y}, Q)).
- Constructing a strict contraction to obtain a unique solution.
Viability and completeness of the insider market: Brownian case

- If σ invertible, direct consequence of the existence and uniqueness result: the insider trader has a unique admissible strategy.

- Comparison of the strategies: the hedging strategy is the same for both agents.

- Complete non insider market
 - Insider market is viable: information L does not create any arbitrage opportunities.
 - Insider market may have several risk-neutral probabilities (as in Grorud 1998), but all prices computed under different risk-neutral probabilities are the same.
FBSDE for a large investor

Limit: In the previous model, the insider is a small investor, whose investment strategy does not influence asset prices.

Not always realistic. → Large/Influent investor hypothesis.

→ **FBSDE** to solve in the enlarged space.

\[
\begin{aligned}
P_t &= P_0 + \int_0^t b(s, P_s, X_s, Z_s) ds + \int_0^t < \sigma(s, P_s, X_s, Z_s), dW_s > \\
X_t &= X_T - \int_t^T f(s, P_s, X_s, Z_s) ds - \int_t^T < Z_s, dW_s >
\end{aligned}
\]

(1)

Influence hypothesis: the informed investor may influence asset prices.

- It is a **large** investor: his wealth X may influence prices
- and he is **influent**: his portfolio π influences prices
Existence and Uniqueness of solution

- Under Lipschitz, linear growth and integrability conditions on b, σ, f

- 3 cases where Pardoux and Tang obtained results:
 - *Weak influence*: b and σ weakly depend on X and Z
 - The agent wants to hedge a finite value a.s. : g constant
 - The portfolio does not influence volatility of prices : σ indépendent of Z.

- Our Result under (H_3), in complete market
 - Using our theorem on BSDE under enlarged filtration, we state that the enlarged FBSDE has a unique solution, under the same hypotheses as Pardoux and Tang.
 - The influent agent, in one of the 3 influence cases, has a unique admissible strategy.
 - Complete insider market, as previously.
Incomplete market for the non informed agent

Consider a non informed agent investing on this market. For a given contingent claim, his wealth and portfolio will satisfy a BSDE on $(\Omega, \mathcal{F}^P, P)$.

There is no necessarily exact hedging solution. And if there is a solution, it will be a priori different from the insider one.

The non informed agent will invest on a market with an incomplete information: his information is represented by the filtration generated by asset prices. New filtration to deal with.

Hedging under Incomplete information (Föllmer and Schweizer 91)
Conclusion

- Incomplete market from a non insider point of view. Less information. Incomplete information. Different strategy F^P-adapted.
 - Study of the strategy of the non informed agent.
 - Quantifying the "loss" of the non informed agent, due to the lack of information.
- Model with jumps (incomplete markets).
References

[8] Grorud 2000, Asymmetric information in a financial market with jumps

[9] Grorud, Pontier, 2001 Asymmetrical information and incomplete markets

