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Abstract

One of the most interesting topics in financial time series analysis is the forecasting
of the volatility of asset returns. Market practice has found different ways around
this problem. One approach derives implied volatilities from actual option prices.
Another possibility would be to predict the volatility on the basis of historical
asset returns. In recent years the ARCH type models appear to be promising in
the mentioned time series context. The optimal choice of an appropriate model
for predicting volatility out-of-sample is closely related to the question of how
to measure the prediction performance of a model. In our study below, we use
four volatility approaches: implied volatility, historical volatility, GARCH(1,1) and
EGARCH(1,1) volatility forecasts and compare their performance with two option
trading strategies. The back-testing includes a time period from July 1995 to July
1997. The methodology we have used in our study offers an opportunity to evaluate
the out-of-sample volatility forecast with a convenient metric: the profitability in
cumulative profits. As a result it turns out that the performances of the different
models are dependent of the used trading strategies and are also depending on
filters adopted for the different trading strategies.
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1 Introduction

The interactions between liabilities and assets of life insurance companies are intri-
cate and the optimal management of life funds for policyholders is one of the most
challenging topics in life insurance business. Since different assets have very differ-
ent and complex risk characteristics the careful analysis of the used mathematical
models is worthwhile. Usually one can not assume, that the values of the model
parameters themselves are stationary, hence the way of modelling time series with
time dependent parameters deserves special emphasis. In the actuarial context D.
Wilkie was one of the first authors which introduced a stochastic asset model for
actuarial use (see [11] and the references therein). The Wilkie approach is mainly
intended as a long-term model. But he also used one comparatively simple method
to allow for a time varying volatility through what are known as autoregressive
conditional heteroscedastic (ARCH) models of Engle [6]. This sort of model as
well as the extensions of this model, for instance the GARCH-models (Generalized
ARCH-models) of Bollerslev [4] or the EGARCH-models of Nelson [9] are com-
paratively easy to investigate and to implement, this is one of the reasons of the
popularity of these models in the context of time series analysis.

A comprehensive study for an appropriate time-dependent model for all different
asset classes relevant in the context of the concrete asset liability management for
life insurances in the German market is still pending. One reason could be that
the time horizons for the investigations of risk characteristics for different asset
classes varies enormously: For the purpose of portfolio insurance of volatile asset
classes the speed of adjustment is more important than for long term investment
strategies.

The aim of this paper is more modest. We discuss only a special aspect in this
context, the volatility forecasting of a certain index on selected German stocks the
so called DAX (Deutscher Aktien Index) and applications to options on the DAX,
and this is done only for a short time horizon.

Without doubt the use of derivatives is an indispensable tool in the insurance
industry especially in life assurance. Derivatives especially options can be used
in particular for minimizing the asset-liability mismatch risk, they are important
for the management of hedging strategies for special guarantees imbedded in the
liability structure of certain products like the index-linked life insurance contracts
with an asset value guarantee. Other reasons to use derivatives are for instance:
achieving regulatory, accounting or tax efficiencies (altering the apportionment of
income and gains) , and the increase of speed of portfolio adjustment (because of
the high liquidity in the derivative markets). Hence the mentioned investigations
on the DAX volatility can be considered as only one part of a more comprehensive
study for a larger model which is needed for applications in the context of the
asset liability management in life assurance. In the Black-Scholes world of option
pricing volatility is the great unknown. In order to value DTB (Deutsche Termin
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Boérse) options on the DAX the investigation and the estimation of the volatility of
the DAX index returns is therefore an obvious task. We concentrate our study to
the volatility forecasting. The choice of a particular model for predicting volatility
out-of-sample is closely related to the question of how to measure the prediction
performance of a model. Here we follow a suggestion in the related study of Noh,
Engle and Kane on volatility forecasts on the S&P 500 Index [10}: In order to test
the differences between alternative methods we test the volatility forecasting per-
formance using the potential profitability based on some option trading strategies
as a metric. From a practical point of view this method seems plausible, when
we evaluate profits from options trading for rival volatility forecasting models and
compare them in the same market. So, for the test of the model performance
we give the “economic significance” the preference in contrast to the “statistical
significance”.

The main results of this paper emanate fram the Diplomarbeit of the second
named author at Mannheim University in 1998 {7]. The explicit empirical investiga-
tions on the DTB DAX option trading were carried out by the second named author
during a stay at Commerz Financial Products (CFP) in Frankfurt. The program
package S-Plus was used for the statistical part (see section 4 below). This paper
is organized as follows. In the next section we present the data description and
the trading strategies. Section 3 discusses the volatility forecasting models. Sec-
tion 4 presents the evaluation of the extensive empirical results. Finally, section 5
concludes the paper.

2 Data Description and Trading Strategies

2.1 Data Description

We use in our trading strategies options on the DAX (ODAX), which have been
traded at the DTB since August 1991. The DAX option has now the largest
trading volume of all options at the DTB. ODAX are European style and five
different expiry month are always available with a maximum time to maturity of
9 month. There are at least five option series for each expiry date: two are in the
money, two are out of the money and one is (approximately) at the money.

The underlying of DTB ODAX is the IBISDAX index. The IBISDAX index
includes 30 stocks selected with respect to market capitalisation and turnover. The
great advantage of using the IBISDAX index is the fact that it is a performance
index which adjusts not only for stock splits and capital changes but also for div-
idend payments. The shares are weighted by their share capital and the index is
calculated with two decimals.

We use the IBISDAX closing price series (5:00 pm), from July 1991 to July
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1997, for the volatility estimate and forecasting, and the DTB ODAX settlement
price (5:15 pm), from July 1995 to July 1997, as benchmark in our study.

One interesting observation in our study is the following: since the put-call
parity is usually not fullfilled, the ODAX settlement price is not exactly caculated
with the original IBISDAX closing price. Instead we use an adjusted IBISDAX
closing price which results from the put-call parity. A possible explanation for this
phenomenon, i.e. the deviation in the put-call parity, is: if good news about the
market arrives late in the trading day, then, because of the high liquidity of the
index option market, it is likely that the information will be quickly incorporated
in options and futures prices. If the information is not fully reflected in the cash-
market index by the close of trading because some component stocks do not trade
before the close, the observed-index level is lower than it should be, and the implied
volatility of the call is higher than it should be. On the following day, when
all stocks in the index have traded and reacted to the previous day’s news, the
observed-index level catches up, and the implied volatility of the call is reduced. In
this case index puts will have a low implied volatility at the close, and the volatility
will recover the next day. Similarly, if bad news arrives late in the trading day, the
price of index puts is quickly bid up. If not all stocks in the index are traded by
the close of trading, the observed closing-index level is higher than it should be.
The implied volatility of puts is higher than it should be, and on the following day
the implied volatility of puts is reduced.

From the data sets described above, we collect data for (approximately) at the
money straddle with maturity between 15 and 45 days, i.e., for each day, we select
the straddle settlements price whose strike price is closest to the index level.

For the risk-free rate of interest in option pricing we have used the overnight
FIBOR (Frankfurt Inter Bank Offer Rate), 1 month FIBOR, and 2 month FI-
BOR. The present value are computed using log-linear interpolation with respect
to maturity.

2.2 Trading Strategy

The aim of this study is to evaluate the profitability of applying different models
to a pure volatility trading strategy. As we know that the closest at the money
straddles are approximately delta neutral (see for example [8]) , i.e. the price
changes of straddle with respect to the market movement can be tolerated, it is
appropriate to use them to a pure volatility trading strategy. The straddle position
will also have sensitivities with respect to the interest rate (rho) and the time to
maturity (theta). These sensitivities are ignored in our study, because the positions
in our strategy are not longer than two days as described below.

The basic idea for the delta-neutral trading strategy is: during the sample
period, on each day, we apply a particular forecasting method to get a volatil-
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ity estimate and forecasts the closest at-the-money straddle price with maturity
between 15 and 45 days of tomorrow by using the Black-Scholes formula. If the
straddle price forecast is greater (less) than the market straddle price, the straddle
is bought (sold). The day after tomorrow the position will be closed in every case.

The net daily rate of return on buying straddles is computed as follows:

Ci+ P = (Ce1 + Pi)
Cioy+ P,y
where "tr” is the transaction cost, C; and F; are market call-option price and put-
option price, respectively. The transaction costs for a DTB market maker is very
low. As proposed by CFP, a 1% mark should be appropriate. In other words, the
transaction cost of a straddle is DEM 0.80 with the average straddle value about

DEM 800. The net daily rate of return on selling straddles is computed by:

_Ct + P, — (Ceer + Piot)
Ciy+ P

RTB, = —ir

RTS[ = —tr

The detailed strategies we have used are described below:

(i) Trading Strategy 1 (TS1): we forecast our straddle price using today’s volatil-
ity estimation and today’s adjusted IBISDAX closing price after 5:15 pm. The po-
sition is assumed to be opened today with today’s DTB ODAX settlement price:
If the straddle price forecast is greater (less) than the today’s ODAX settlement
price, the straddle is bought (sold). The position is then closed tomorrow with the
ODAX settlement price of tomorrow.

(i) Trading Strategy 2 (T'S2): we forecast our straddle price using today’s volatil-
ity estimation and today’s adjusted IBISDAX closing price after 5:15 pm. The po-
sition is assumed to be opened tomorrow with tomorrow’s DTB ODAX settlement
price: If the straddle price forecast is greater (less) than the tomorrow’s ODAX
settlement price, the straddle is bought {sold). The position is then closed the day
after tomorrow with the ODAX settlement price of day after tomorrow.

The only difference between these two strategies is the time validity of volatility
forecast. It is important to see the sensitivity of volatility forecast with respect to
time validity.

3 ARCH Models and Volatility Forecasting

3.1 GARCH and EGARCH volatility forecasting
The two most popular econometric volatility models are the GARCH(1,1) and the

EGARCH(1,1). Since these two models offer a parsimonious and robust (i.e. con-
sistent with outlying data) parameter estimation, and can be used to describe many
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financial time series, they established themselves as a kind of “industry standar”
over the years.

In the GARCH(1,1) model it is assumed that the variance at time ¢, conditional
on information available at time ¢ — 1, is a linear function of lagged conditional
variance o7_, and of squared (residual) returns &7_:

2 __ 2 2
o; =w+ao,_, + B,

where w, o and [ are parameters to be estimated by historical time series of data
with likelihood function.

The EGARCH(1,1) model has a different function form and can be written as
of = exp{® +alnof | +b(17m-] +v-1)}

where @, a, b, v are parameters to be estimated and 7, = /0.

The functional form of the EGARCH model has several advantages compared
to that of the simple GARCH model. First, the fact that an exponential form is
used for the conditional variance o? guarantees that o, is always positive. As a
consequence, EGARCH models permit a wide range of variance effect that are not
restricted by non-negativity constrains on the parameters. Second, the parameter
7 < 0 captures the so called “leverage effect”, i.e, stock returns are negatively
correlated with changes in returns volatility. More detailed: volatility tends to
rise in response to “bad news” (excess returns lower than expected) and to fall in
response to “good news” (excess returns higher than expected).

We applied the GARCH model and the EGARCH model to the series of daily
data of the adjusted IBISDAX closing price. The data set has a size of 1000 and
covers the period from July 1991 to July 1995. Let {X.} be the data series of
IBISDAX, we first take the log-return data series {y,}, i.e., y: = In{X;/X;_1). The
model for the condition mean we have used for {y,} is

Yo = e+ &

where p, is very good fitted with a constant 0 following our analysis for IBISDAX.

To estimate the parameters of GARCH(1,1) and EGARCH(1,1), we employ
the maximum likeklihood estimation using the BHHH algorithm 3] integrated in
the software programm S-Plus. The estimation results are reported in Table 1.
Both models achieve very satisfactory fits and all parameter estimates are highly
significant for the at-the-sample statistics. In GARCH(1,1) case, « and 3 estimates
are positive as expected. a+73 is very close to 1, this corresponds to the stylized fact
that the volatility of IBISDAX is highly clustered. Moreover since o + 3 is smaller
than 1, the weak stationary condition of {02} is satisfied. In EGARCH(1,1)
case, we recall that parameter -y captures the asymmetric volatility effect discussed
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Table 1: Estimates of the GARCH and EGARCH model for the IBISDAX.

GARCH EGARCH
Coefficient Estimate t-statistic | Coefficient Estimate t-statistic
@ 1.08E-05 363 o -0.8744 -5.14
a 0.9071 49.06 a 08177 53.99
B 0.0629 4.44 b 0.1280 372
y -0.6242 -3.00
LBQ{24) 2549 LBQ({24) 27.31
AIC -6591 08 AIC -6592.92
BIC -6576.35 BIC -6573.29

above. Therefore the negativity of v estimate is consistent with the hypothesis
that negative return shocks cause higher volatility than positive return shocks. a
is smaller than 1, the weak stationary condition is therefore satisfied.

In diagonostic checks for both models, the Ljung-Box-Q statistics for 24 order
autocorrelations in the squared normalized residuals, i.e. £2/0?, are not significant.
This implies that the time-varing volatilities of IBISDAX are well fitted with both
models.

In order to compare the fit of both models we use the Akaike Information
Criterion (AIC) [1] and the Bayesian Information Criterion (BIC) [2]. Table 1
shows that the AIC of the EGARCH model is lower than the AIC of the GARCH
model. But the BIC of the EGARCH is greater than the BIC of the GARCH
model. Although for at-the-sample statistic both models appear to be adequate.

For the application in our trading strategies, only the one-step-ahead forecasts
of the GARCH(1.1) model

~2 2 2
Opp1 = W+ aoy, + B¢}

and of the EGARCH(1,1) model
E?H = exp{@+alno? + b(|n] + vne)}

will be used. We forecast each day our GARCH and EGARCH volatility for the
next day in our back-testing period at 5:00 pm using today’s adjusted IBISDAX
closing price and the closing prices of the past 1000 days.

3.2 Market implied volatility and historical volatility forecasting

The market implied volatility (IV) of the straddle is computed at 5:15 pm using
the DTB ODAX settlement price of the closest to the money straddle price and
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Figure 1: ACF, Partial ACF and AIC of {log(/V;) — u} with a sample window of
200 days.

~8— ACF 180

-—— Partial ACF
—a— AIC 160

adjusted IBISDAX closing price. An autoregressive model of order 1 (AR(1)) is
proved to be suited for the {In(/V;)} following our analysis. The formula for an
AR(1) is given by:

In(IV;) = p+ ¢ - In(IV,y) + 2,

where u and ¢ are parameters to be estimated, and z; ~ WN(0,0?) is a white
noise process with o2 to be estimated. The AR(1) process is stationary, or mean
reverting, if |¢| < 1. It is a well-established empirical regularity that stock-market
volatilities follow a mean-reverting process. The parameters of the AR(1) model
are estimated on a rolling basis with a data window of 200 trading days. Figure 1
shows the autocorrelationfunction (ACF) and partial ACF of {log(IV;) — u}, the
AIC supports also the fitting of the data with an AR(1). The estimates of ¢ were
always in the range from 0.85 to 0.95, confirming the property of mean reversion
but showing a large degree of persistence which is typical for volatility clustering.
The forecast of IV we take is the least mean square one-step-ahead prediction

(Vi) = p+ ¢ In(IV;) .

The historical volatility (HV) is simply the standard deviation depending on
selected sample window. It is common market practice to use the HV estimator
with a rather small data window, especially for the pricing of options with short
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Table 2: Statistics of the volatility forecasts.

GARCH | EGARCH HY I\ Market IV
Observations 485 495 495 375 495
Mean 13.77% 1343%. 1273% 13.20% 13 45%
SD 2.36% 2.28% 4.36% 2.97% 3.05%
l-statistic 5.83% 5 83% 2.92% 4.44% 4.41%

maturities. We find an estimation of HV from a sample window for 15 days is
convenient for our trading strategy. The HV is computed from the adjusted closing
prices of the IBISDAX.

4 Empirical Results

4.1 Trading strategies without filters

The forecasting of GARCH, EGARCH and HV begins at 03 July 1995 and ends at
15 July 1997, with a total of 495 trading days. By IV, however, just 375 trading
days from December 1995 to July 1997 are available. Table 2 shows the average and
standard deviation (SD) of the volatility forecasts compared with the market IV.
We see that the average of the GARCH is greater than the market IV and the other
three forecasts are lower. The HV has the biggest SD, while the EGARCH takes
the lowest SD. Here, it raises again the question, how we can compare the fore-
casts objectively instead of just intuitively. The empirical results of both trading
strategies try to give an answer.

Figure 2 and Figure 3 plot the cumulative profits and losses of the four compet-
ing volatility forecasts of TS1 and TS2, respectively. It is apparent from the figures
that GARCH and EGARCH outperform HV and IV. In Figure 2, TS1 shows that
GARCH is the absolute winner at the end of the back-testing period with a cumu-
lative profit about 450%, although in the most part of the period the cumulative
return of GARCH and EGARCH are quite similar. The GARCH model tends to
suffer net profits in the second part of 1995, and then stays for almost whole time of
1996. At the end of 1996, it takes a big jump and then tends to raise continuously
with some breaks. The EGARCH model takes also the jump at the end of 1996
but then it stays again. The overall pattern of HV and IV looks quite different.
The cumulative return stays in most part of the period under 100%. The HV
model suffer even losses from Jan. 1996 to May 1996. Figure 3 shows us another
picture of TS2. The EGARCH model is the winner this time with a cumulative
profit of 230%. The IV model is shown to be the worst. From both figures we see
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Figure 2: Cumulative profits of trading strategy 1 without filter.
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Figure 3. Cumulative profits of trading strategy 2 without filter.
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that ARCH models and the HV and IV models generate different trading signals
at some “big points” which is reflected in the different developments of cumulative
returns.

Moreover we find the EGARCH and HV models are quite stable for both trading
strategies, while GARCH and IV models are very sensitive to different strategies. A
possible explanation for this phenomenon is: volatility forecasts of different models
have a different time validity. The time difference between volatility forecasting
and position closing by TS1 is about one day, while it takes two days by TS2.
Although GARCH model has the best performance by TS1, it seems that the time
validity of the GARCH forecast is shorter. In comparison, the volatility forecast
of EGARCH tends to have a longer time validity and performs similarly in both
strategies.

4.2 Trading strategies with different filters

To avoid occasional influence by forecasting errors, we employ in the following a
filter rule. A filter of 2.0%, for example, implies that the straddle position is opened,
only if the rate of return is greater than 2%. As shown in Table 3, this filter method
reduces the number of transactions. As Figure 4 and Figure 5 indicated, the overall
profits are also affected with a 2% filter. The cumulative profits are substantially
reduced for almost all models (except IV by T51) when a 2.0% filter is introduced.
By TS1 the cumulative profits of GARCH, EGARCH and HV fall about 75%
counter (IV: plus 75% counter). while all models fall about 50% counter by TS2.
But in comparison, the pattern of whole sample period keep similar as in Figure 2
and Figure 3.

Table 4 reports the profitabilities with filter effect of both strategies. Here
we see again that GARCH and EGARCH models outperform HV and IV models.
The fact that profits correspond to filter size raises the question of what the best
filter would be. By TS1, a 0.5% filter is convenient for all four models. By TS2,
the situation is quite different. GARCH, HV and IV have their best performance
without any filter, while EGARCH prefers a 1% filter.

To show the statistical significance of the daily returns, we use here the t-ratio
test for the mean of daily returns, against the zero hypothesis. Since rates of return
from straddle trading for each day are assumed to be independent, the t-ratio is
computed as a ratio of mean to standard deviation divided by the square root of
the number of trading signals. As we can see in Table 5, the GARCH with a filter
of 0,5% by TS1 and the EGARCH with a filter of 1% by TS2 are proved to be
most significant. This argument supports again the previous analysis.
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Figure 2: Cumulative profits of trading strategy 1 without filter.
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Figure 3: Cumulative profits of trading strategy 2 without filter.
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Table 3: Trading signals and sell/buy ratios with different filters.

Trading strategy 1
Filter | GARCH ratio EGARCH ratio HY ratio ¥ ratio
0,03 195 54,69% 495 74,300 495 164,71 375 11,862
05 482 53,99% 431 74,28 489 164,324 372 113,79
10% 462 50,982 463 73.41% 485 167,963 357 13.77%
15% 446 50,68¢ 445 181 473 172,167 349 15,43
2,0% 434 48,63 431 7240 474 170,882 33 13,55
2,5% 415 45,104 414 N78% 465 170,355 320 16,224
3.0 123 14242 39 72257 454 171,86 309 116,082
35 387 45,04 330 70,402 442 174532 303 16,432¢
4,03 373 45,144 365 70,5622 423 180,395¢ 299 16,67
Trading strategy 2
Filter | GARCH ratio EGARCH ratio HY ratio ¥ ratio
0,03 435 45,16 435 71.28% 435 159,167 375 132,92%
05% 480 45,902 478 70,714 49 161.17% 365 13397%
107 463 44,76 456 88,89% 485 165,034 355 136,67
15% 455 43,53% 442 69,354 476 165,923 338 138,304
2.0v 429 4441 434 70,202 468 167,43 325 144364
25% 422 44,523 414 8967 463 187,63 312 149,60
3.0 407 44.33% 391 70,74 454 168,64 300 152,102
35%| 387 44.40% 330 7040% | 440 17329 | 289 1635
$07) 387 ea94x | 368 TG | 430 W22 | 283 w5044
Table 4: Cumulative profits with different filters.
Trading strategy 1
Filter GARCH EGARCH HY¥ v
[Mean Total PMean Total fWlean Total Mean Total
0,05 222 423% 16924 2433 543 47 B3% 0%
05 224% 4434 167 254 543 56% 2% az2v
1,0 210 420 14024 183 437 542 64 6%
157 208% 299% 1362 18234 13% -1 69 T3
207 1894 359% 130 157% 20% -4% 7 88
25% 189 462 120% 133 153 B1724 51% 28%
2.0%| 1924 362% 1282 15224 K4 =30 59 35%
3hw 213 3955 131 1583 8% -32% 1174 28%
407 2124 402 118 144 -10%; -70%; 61 26%
Trading strategy 2
Filter GARCH EGARCH HY¥ v
[/lean Total Mean Total Mean Total Mean Total
ool 824 12624 130 207% 50 -2 147 -1
05 S0% < 13534 221 492 4 12% 143
104 467 83% 141 229% 457 jtr e -44%; 81
15%| 514 95 120%¢ 200 354 -46% -42% 54
20v)  40% 4397 Fres 165 26% 477 47 65
257 59% 96% 1% 53% 207 58 -32% Bty
3.0% B2% 385 574 724 197 -5934 31 =384
A5up 0% 1072 22 21 23% 57 27 -25%
40%] 6B% 155 13 4% 187 =70 -25% 14
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Table 5: Statistical significance of daily rate of returns with different filters.

Trading strateqgy 1
Filter GARCH EGARCH HY ¥
Mean SD t-ratio Mean SO t-ratio Mean SD tratio | Mean S0 t-ratio

00%| 083% 2% 240 049 774 1.40 008x  7.76% 026 018 L 049
05%| 087z 7684 249 050 7724 142 ['A)- 1.04% 03t 021 7.5% 057
10%] 082%  7.64% 232 036 733 1,06 1R} -4 7.03% 030 026 7.10% 052
15 078%  760% 2,18 036x  727% 1,04 002 T48% 007 020%  7.02% 05¢
20%| 07ts  756% 195 83tz 722 0,83 -001% 748 -0,02 023%  685% 080
257 068%  749% 185 026%  1.86x% 075 -002% 7474 <005 007%  657x 020
30 O71% 742% 192 0,30 (a4 0383 2 7437 07 0092  648% 025
35%f 078x% 733 2,07 031x 7084 038 1.38% -0.18 007%  B4B% 0.20
40%] 079%  7.36% 207 0.22%  530% 063 7.33% -0,39 007  B46% 018

Trading strateqy 2
Fiiter GARCH EGARCH HY ¥

Mean SD tratio | Mean SD tratio | Mean S0 tratio | Mean sD t-ratio
00| 0,25 1.76% 0.71 0417 7,75 117 0,027 7,764 0,05 -0,03% FATS -0,08
057 0%4x 7.83% 040 0,43% 789 123 0,01 17.75% 0,02 004 707 -0.08
10%] 0.96% 7614 047 0,45 7.62% 126 0,012 7.74% 0,02 <0214 6.73% -058
15%| 017 758x% 047 023% 7544 109 -009% 756%  -026 | -0Mx  BBIx -0.33
20% 010  7B2% 027 032x hx 0385 | -009% 751 627 § -0Mx  B58% 0,39
25%) 017% 749% 048 0104 6,682 0,31 0,114 7514 -033 -009% 847« <026
30%] 0.18%  747% 952 0Mx 659 042 012 743% 033 | 0004 6424 027
35% 021%  743% 0.56 0.04x 6334 0.13 R K14 -031 | -008%  640% -017
407 0237 7.38% 0,60 0,03% 6,267 0,08 -0,14% 7.38% -0.38 -0.03¢x 6354 -0,09

5 Conclusions

In this study, the GARCH(1,1) and EGARCH(1,1) models are first used to describe
the time-varying volatility of IBISDAX index. The models are shown to be well
fitted, and the parameter estimates are statistically significant. Some charatereza-
tions of these models discussed in Chapter 2, such like nonnegative constraints,
stationarity, and asymmetric volatility effect, are well represented with the esti-
mated parameters in at-the-sample case.

Further, we have used two straddle trading strategies to evaluate the out-of-
sample volatility forecasts of four competing models, i.e. GARCH(1,1), EGARCH
(1,1), the conventional methods of historical volatility, and AR(1) of implied volatil-
ity. The trading strategies were tested with DTB DAX options over a sample period
of 495 days. By trading strategy 1, the volatility forecasts of GARCH(1,1) is shown
to have the best performance, while by trading strategy 2, the EGARCH(1,1) is the
winner. Since volatility are subject to error, we have further used a filter method.
Although the performances of all models were influenced by the filter, the compar-
ison results keep hold. These results are compatible with the empirical evidence
that ARCH type volatility outperforms other volatility approaches. Moreover, the
metric we used, namely cumulative profits of option trading strategy, offers a more
objective and natural way to assess volatility forecasts.

Extensions and applications of these investigations are the subject of further
studies: The influence of an aggregation of the daily forecast to weekly or monthly
time horizons should be investigated. The large volatility trading profits obtain-
able with ARCH models even including transaction costs suggest the hypothesis,
that the option market is not efficient. Therefore the explicit applicability to the



question of efficient portfolio insurance of volatile funds using options should be
considered. This is left for future research.
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