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Abstract 

One of the most interesting topics in financial time series analysis is the forecasting 
of the volatility of asset returns. Market practice has found different ways around 
this problem. One approach derives implied volatilities from actual option prices. 
Another possibility would be to predict the volatility on the basis of historical 
asset returns. In recent years the ARCH type models appear to be promising in 
the mentioned time series context. The optimal choice of an appropriate model 
for predicting volatility out-of-sample is closely related to the question of how 
to measure the prediction performance of a model. In our study below, we use 
four volatility approaches: implied volatility, historical volatility, GARCH( 1 ,l) and 
EGAR.CH(l,l) volatility forecasts and compare their performance with two option 
trading strategies. The back-testing includes a time period from July 1995 to July 
1997. The methodology we have used in our study offers an opportunity to evaluate 
the out-of-sample volatility forecast with a convenient metric: the profitability in 
cumulative profits. ,4s a result it turns out that the performances of the different 
models are dependent of the used trading strategies and are also depending on 
filters adopted for the different trading strategies. 
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1 Introduction 

The interactions between liabilities and assets of life insurance companies are intri- 
cate and the optimal management of life funds for policyholders is one of the most 
challenging topics in life insurance business. Since different assets have very differ- 
ent and complex risk characteristics the careful analysis of the used mathematical 
models is worthwhile. Usually one can not assume, that the values of the model 
parameters themselves are stationary, hence the way of modelling time series with 
time dependent parameters deserves special emphasis. In the actuarial context D. 
Wilkie was one of the first authors which introduced a stochastic asset model for 
actuarial use (see [ll] and the references therein). The Wilkie approach is mainly 
intended as a long-term model. But he also used one comparatively simple method 
to allow for a time varying volatility through what are known as autoregressive 
conditional heteroscedsstic (ARCH) models of Engle [6]. This sort of model as 
well as the extensions of this model, for instance the GARCH-models (Generalized 
ARCH-models) of Bollerslev [4] or the EGARCH-models of Nelson [9] are com- 
paratively easy to investigate and to implement, this is one of the reasons of the 
popularity of these models in the context of time series analysis. 

-4 comprehensive study for an appropriate time-dependent model for all different 
asset classes relevant in the context of the concrete asset liability management for 
life insurances in the German market is still pending. One reason could be that 
the time horizons for the investigations of risk characteristics for different asset 
classes varies enormously: For the purpose of portfolio insurance of volatile asset 
classes the speed of adjustment is more important than for long term investment 
strategies. 

The aim of this paper is more modest. We discuss only a special aspect in this 
context, the volatility forecasting of a certain index on selected German stocks the 
so called DAX (Deutscher Aktien Index) and applications to options on the DAX, 
and this is done only for a short time horizon. 

Without doubt the use of derivatives is an indispensable tool in the insurance 
industry especially in life assurance. Derivatives especially options can be used 
in particular for minimizing the asset-liability mismatch risk, they are important 
for the management of hedging strategies for special guarantees imbedded in the 
liability structure of certain products like the index-linked life insurance contracts 
with an asset value guarantee. Other reasons to use derivatives are for instance: 
achieving regulatory, accounting or tax efficiencies (altering the apportionment of 
income and gains) , and the increase of speed of portfolio adjustment (because of 
the high liquidity in the derivative markets). Hence the mentioned investigations 
on the DAX volatility can be considered as only one part of a more comprehensive 
study for a larger model which is needed for applications in the context of the 
asset liability management in life assurance. In the Black-Scholes world of option 
pricing volatility is the great unknown. In order to value DTB (Deutsche Termin 
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Borse) options on the DAX the investigation and the estimation of the volatility of 
the DAX index returns is therefore an obvious task. We concentrate our study to 
the volatility forecasting. The choice of a particular model for predicting volatility 
out-of-sample is closely related to the question of how to measure the prediction 
performance of a model. Here we follow a suggestion in the related study of Noh, 
Engle and Kane on volatility forecasts on the S&P 500 Index [lo]: In order to test 
the differences between alternative methods we test the volatility forecasting per- 
formance using the potential profitability based on some option trading strategies 
as a metric. From a practical point of view this method seems plausible, when 
we evaluate profits from options trading for rival volatility forecasting models and 
compare them in the same market. So, for the test of the model performance 
we give the “economic significance” the preference in contrast to the “statistical 
significance”. 

The main results of this paper emanate from the Diplomarbeit of the second 
named author at Mannheim University in 1998 [7]. The explicit empirical investiga- 
tions on the DTB DAX option trading were carried out by the second named author 
during a stay at Commerz Financial Products (CFP) in Frankfurt. The program 
package S-Plus was used for the statistical part (see section 4 below). This paper 
is organized as follows. In the next section we present the data description and 
the trading strategies. Section 3 discusses the volatility forecasting models. Sec- 
tion 4 presents the evaluation of the extensive empirical results. Finally, section 5 
concludes the paper. 

2 Data Description and Trading Strategies 

2.1 Data Description 

We use in our trading strategies options on the DAX (ODAX), which have been 
traded at the DTB since August 1991. The DAX option has now the largest 
trading volume of all options at the DTB. ODAX are European style and five 
different expiry month are always available with a maximum time to maturity of 
9 month. There are at least five option series for each expiry date: two are in the 
money, two are out of the money and one is (approximately) at the money. 

The underlying of DTB ODAX is the IBISDAX index. The IBISDAX index 
includes 30 stocks selected with respect to market capitalisation and turnover. The 
great advantage of using the IBISDAX index is the fact that it is a performance 
index which adjusts not only for stock splits and capital changes but also for div- 
idend payments. The shares are weighted by their share capital and the index is 
calculated with two decimals. 

We use the IBISDAX closing price series (5:00 pm), from July 1991 to July 
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1997, for the volatility estimate and forecasting, and the DTB ODAX settlement 
price (5:15 pm), from July 1995 to July 1997, as benchmark in our study. 

One interesting observation in our study is the following: since the put-call 
parity is usually not fullfilled, the ODAX settlement price is not exactly caculated 
with the original IBISDAX closing price. Instead we use an adjusted IBISDAX 
closing price which results from the put-call parity. A possible explanation for this 
phenomenon, i.e. the deviation in the put-call parity, is: if good news about the 
market arrives late in the trading day, then, because of the high liquidity of the 
index option market, it is likely that the information will be quickly incorporated 
in options and futures prices. If the information is not fully reflected in the cash- 
market index by the close of trading because some component stocks do not trade 
before the close, the observed-index level is lower than it should be, and the implied 
volatility of the call is higher than it should be. On the following day, when 
all stocks in the index have traded and reacted to the previous day’s news, the 
observed-index level catches up, and the implied volatility of the call is reduced. In 
this case index puts will have a low implied volatility at the close, and the volatility 
will recover the next day. Similarly, if bad news arrives late in the trading day, the 
price of index puts is quickly bid up. If not all stocks in the index are traded by 
the close of trading, the observed closing-index level is higher than it should be. 
The implied volatility of puts is higher than it should be, and on the following day 
the implied volatility of puts is reduced. 

From the data sets described above, we collect data for (approximately) at the 
money straddle with maturity between 15 and 45 days, i.e., for each day, we select 
the straddle settlements price whose strike price is closest to the index level. 

For the risk-free rate of interest in option pricing we have used the overnight 
FIBOR (Frankfurt Inter Bank Offer Rate), 1 month FIBOR, and 2 month FI- 
BOR. The present value are computed using log-linear interpolation with respect 
to maturity. 

2.2 Trading Strategy 

The aim of this study is to evaluate the profitability of applying different models 
to a pure volatility trading strategy. As we know that the closest at the money 
straddles are approximately delta neutral (see for example [S]) , i.e. the price 
changes of straddle with respect to the market movement can be tolerated, it is 
appropriate to use them to a pure volatility trading strategy. The straddle position 
will also have sensitivities with respect to the interest rate (rho) and the time to 
maturity (theta). These sensitivities are ignored in our study, because the positions 
in our strategy are not longer than two days as described below. 

The basic idea for the delta-neutral trading strategy is: during the sample 
period, on each day, we apply a particular forecasting method to get a volatil- 
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ity estimate and forecasts the closest at-the-money straddle price with maturity 
between 15 and 45 days of tomorrow by using the Black-Scholes formula. If the 
straddle price forecast is greater (less) than the market straddle price, the straddle 
is bought (sold). The day after tomorrow the position will be closed in every case. 

The net daily rate of return on buying straddles is computed as follows: 

RTB 
t 

= ct + 6 - (Ct-1 + 6-l) _ tr 
ct-1 + pt-l 

where “tr” is the transaction cost, C, and Pt are market call-option price and put- 
option price, respectively. The transaction costs for a DTB market maker is very 
low. As proposed by CFP, a l%, mark should be appropriate. In other words, the 
transaction cost of a straddle is DEM 0.80 with the average straddle value about 
DEM 800. The net daily rate of return on selling straddles is computed by: 

RTS t = -ct + 8 - (G-1 + C-1) 
G-1 + 8-l - tr 

The detailed strategies we have used are described below: 

(i) Trading Strategy 1 (TSl): we forecast our straddle price using today’s volatil- 
ity estimation and today’s adjusted IBISDAX closing price after 5:15 pm. The po- 
sition is assumed to be opened today with today’s DTB ODAX settlement price: 
If the straddle price forecast is greater (less) than the today’s ODAX settlement 
price, the straddle is bought (sold). The position is then closed tomorrow with the 
ODAX settlement price of tomorrow. 

(ii) Trading Strategy 2 (TS2): we forecast our straddle price using today’s volatil- 
ity estimation and today’s adjusted IBISDAX closing price after 5:15 pm. The po- 
sition is assumed to be opened tomorrow with tomorrow’s DTB ODAX settlement 
price: If the straddle price forecast is greater (less) than the tomorrow’s ODAX 
settlement price, the straddle is bought (sold). The position is then closed the day 
after tomorrow with the ODAX settlement price of day after tomorrow. 

The only difference between these two strategies is the time validity of volatility 
forecast. It is important to see the sensitivity of volatility forecast with respect to 
time validity. 

3 ARCH Models and Volatility Forecasting 

3.1 GARCH and EGARCH volatility forecasting 

The two most popular econometric volatility models are the GARCH(l,l) and the 
EGARCH(1,l). Since these two models offer a parsimonious and robust (i.e. con- 
sistent with outlying data) parameter estimation, and can be used to describe many 

55 



financial time series, they established themselves as a kind of “industry standar” 
over the years. 

In the GARCH(l,l) model it is assumed that the variance at time t, conditional 
on information available at time t - 1, is a linear function of lagged conditional 

2 variance gt-i and of squared (residual) returns &: 

UP = w + a& + p&f-, 

where w, LY and ,0 are parameters to be estimated by historical time series of data 
with likelihood function. 

The EGARCH(l,l) model has a different function form and can be written as 

uf = exp{G + aIn&, + b(/qt-iI +-m--1)} 

where 6; a, b, y are parameters to be estimated and Q = st/gt. 

The functional form of the EGARCH model has several advantages compared 
to that of the simple GARCH model. First, the fact that an exponential form is 
used for the conditional variance u2 t guarantees that CT~ is always positive. -4s a 
consequence, EGARCH models permit a wide range of variance effect that are not 
restricted by non-negativity constrains on the parameters. Second, the parameter 
n/ < 0 captures the so called “leverage effect”, i.e, stock returns are negatively 
correlated with changes in returns volatility. More detailed: volatility tends to 
rise in response to “bad news” (excess returns lower than expected) and to fall in 
response to “good news” (excess returns higher than expected). 

We applied the GARCH model and the EGARCH model to the series of daily 
data of the adjusted IBISDAX closing price. The data set has a size of 1000 and 
covers the period from July 1991 to July 1995. Let {X,} be the data series of 
IBISDAX, we first take the log-return data series {yl}, i.e., yt = ln(Xt/Xt-i). The 
model for the condition mean we have used for {yt} is 

l/t = Pt + Et 

where pLt is very good fitted with a constant 0 following our analysis for IBISDA,X. 

To estimate the parameters of GARCH(l,l) and EGAR.CH(l,l), we employ 
the maximum likeklihood estimation using the BHHH algorithm [3] integrated in 
the software programm S-Plus. The estimation results are reported in Table 1. 
Both models achieve very satisfactory fits and all parameter estimates are highly 
significant for the at-the-sample statistics. In GARCH(l,l) case, QI and p estimates 
are positive as expected. cu+/3 is very close to 1, this corresponds to the stylized fact 
that the volatility of IBISDAX is highly clustered. Moreover since LY + @ is smaller 
than 1, the weak stationary condition of {st,crz} is satisfied. In EGARCH(1,l) 
case, we recall that parameter y captures the asymmetric volatility effect discussed 
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Table 1: Estimates of the GARCH and EGARCH model for the IBISDAX 

GARCH EGARCH 
Coefficient Estimate t-statistic Coefficient Estimate t-statistic 

al l.O9E-05 3 63 w -0.8744 -5 14 

I 0.9071 0.0629 49.06 4 44 a b 0 0.1280 9177 53.99 3 72 
Y -0 6242 -3.00 

LBQ(2d) 25.49 LBP(24) 27.31 
AK -6591 08 AK -6592 92 
BIC -6576.35 BIC -6573.29 

above. Therefore the negativity of y estimate is consistent with the hypothesis 
that negative return shocks cause higher volatility than positive return shocks. a 
is smaller than 1, the weak stationary condition is therefore satisfied. 

In diagonostic checks for both models, the Ljung-Box-Q statistics for 24 order 
autocorrelations in the squared normalized residuals, i.e. &f/of, are not significant. 
This implies that the time-varing volatilities of IBISDAX are well fitted with both 
models. 

In order to compare the fit of both models we use the Akaike Information 
Criterion (AIC) [I] and the Bayesian Information Criterion (BIC) [2]. Table 1 
shows that the AIC of the EG.4RCH model is lower than the .4IC of the GXRCH 
model. But the BIC of the EGARCH is greater than the BIC of the GARCH 
model. Although for at-the-sample statistic both models appear to be adequate. 

For the application in our trading strategies, only the one-step-ahead forecasts 
of the GARCH(1.1) model 

-2 
Ot+1 = w + cm,” + ,s?E; 

and of the EGARCH(l,l) model 

2 t+l = exp{G + alno: + b(lvtl + wt)} 

will be used. We forecast each day our GARCH and EGARCH volatility for the 
next day in our back-testing period at 5:00 pm using today’s adjusted IBISDAX 
closing price and the closing prices of the past 1000 days. 

3.2 Market implied volatility and historical volatility forecasting 

The market implied volatility (IV) of the straddle is computed at 5:15 pm using 
the DTB ODAX settlement price of the closest to the money straddle price and 
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Figure 1: ACF, Partial ACF and AIC of {log(lVt) - ,u} with a sample window of 

200 days. 
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adjusted IBISDAX closing price. i\n autoregressive model of order 1 (AR(l)) is 
proved to be suited for the {ln(lVt)} following our analysis. The formula for an 
AR(l) is given by: 

In(W) = p + 4. ln(lGit-i) + zt . 

where p and 4 are parameters to be estimated, and .zt N WN(O,a’) is a white 
noise process with cr2 to be estimated. The AR(l) process is stationary, or mean 
reverting, if 141 < 1. It is a well-established empirical regularity that stock-market 
volatilities follow a mean-reverting process. The parameters of the AR(l) model 
are estimated on a rolling basis with a data window of 200 trading days. Figure 1 
shows the autocorrelationfunction (ACF) and partial ACF of {log(l&) - p}, the 
r-\IC supports also the fitting of the data with an AR(l). The estimates of (b were 
always in the range from 0.85 to 0.95, confirming the property of mean reversion 
but showing a large degree of persistence which is typical for volatility clustering. 
The forecast of IV we take is the least mean square one-step-ahead prediction 

ln(lG,+i) = p + +$.ln(1&) 

The historical volatility (HV) is simply the standard deviation depending on 
selected sample window. It is common market practice to use the HV estimator 
with a rather small data window, especially for the pricing of options with short 
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Table 2: Statistics of the volatility forecasts. 

GARCH EGARCH HV IV Market IV 
Observations 495 495 495 375 495 

Mean 13.77% 13 43% 12.73% 13 20% 13 45% 
SD 2.36% 2.29% 4.36% 2 97% 3.05% 

t-statistic 5.83% 5 83% 2.92% 444% 441% 

maturities. We find an estimation of HV from a sample window for 15 days is 
convenient for our trading strategy. The HV is computed from the adjusted closing 
prices of the IBISDAX. 

4 Empirical Results 

4.1 Trading strategies without filters 

The forecasting of GXRCH, EGARCH and HV begins at 03 July 1995 and ends at 
15 July 1997, with a total of 495 trading days. By IV, however, just 375 trading 
days from December 1995 to July 1997 are available. Table 2 shows the average and 
standard deviation (SD) of the volatility forecasts compared with the market IV. 
We see that the average of the GARCH is greater than the market IV and the other 
three forecasts are lower. The HV has the biggest SD, while the EGARCH takes 
the lowest SD. Here, it raises again the question, how we can compare the fore- 
casts objectively instead of just intuitively. The empirical results of both trading 
strategies try to give an answer. 

Figure 2 and Figure 3 plot the cumulative profits and losses of the four compet- 
ing volatility forecasts of TSl and TS2, respectively. It is apparent from the figures 
that GARCH and EGARCH outperform HV and IV. In Figure 2, TSl shows that 
GARCH is the absolute winner at the end of the back-testing period with a cumu- 
lative profit about 450%. although in the most part of the period the cumulative 
return of GARCH and EGARCH are quite similar. The GARCH model tends to 
suffer net profits in the second part of 1995, and then stays for almost whole time of 
1996. At the end of 1996, it takes a big jump and then tends to raise continuously 
with some breaks. The EGARCH model takes also the jump at the end of 1996 
but then it stays again. The overall pattern of HV and IV looks quite different. 
The cumulative return stays in most part of the period under 100%. The HV 
model suffer even losses from Jan. 1996 to May 1996. Figure 3 shows us another 
picture of TS2. The EGARCH model is the winner this time with a cumulative 
profit of 230%. The IV model is shown to be the worst. From both figures we see 
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Figure 2: Cumulative profits of trading strategy 1 without filter 
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that ARCH models and the HV and IV models generate different trading signals 
at some “big points” which is reflected in the different developments of cumulative 
returns. 

Moreover we find the EGARCH and HV models are quite stable for both trading 
strategies, while GARCH and IV models are very sensitive to different strategies. A 
possible explanation for this phenomenon is: volatility forecasts of different models 
have a different time validity. The time difference between volatility forecasting 
and position closing by TSl is about one day, while it takes two days by TS2. 
Although GARCH model has the best performance by TSl, it seems that the time 
validity of the GARCH forecast is shorter. In comparison, the volatility forecast 
of EGARCH tends to have a longer time validity and performs similarly in both 
strategies. 

4.2 Trading strategies with different filters 

To avoid occasional influence by forecasting errors, we employ in the following a 
filter rule. A filter of 2.0%, for example, implies that the straddle position is opened, 
only if the rate of return is greater than 2%. As shown in Table 3, this filter method 
reduces the number of transactions. As Figure 4 and Figure 5 indicated, the overall 
profits are also affected with a 2% filter. The cumulative profits are substantially 
reduced for almost all models (except IV by TSl) when a 2.0% filter is introduced. 
By TSl the cumulative profits of GARCH, EGARCH and HV fall about 75% 
counter (IV: plus 75% counter). while all models fall about 50% counter by TS2. 
But in comparison, the pattern of whole sample period keep similar as in Figure 2 
and Figure 3. 

Table 4 reports the profitabilities with filter effect of both strategies. Here 
we see again that GARCH and EGARCH models outperform HV and IV models. 
The fact that profits correspond to filter size raises the question of what the best 
filter would be. By TSl, a 0.5% filter is convenient for all four models. By TS2, 
the situation is quite different. GARCH, HV and IV have their best performance 
without any filter, while EGARCH prefers a 1% filter. 

To show the statistical significance of the daily returns, we use here the t-ratio 
test for the mean of daily returns, against the zero hypothesis. Since rates of return 
from straddle trading for each day are assumed to be independent, the t-ratio is 
computed as a ratio of mean to standard deviation divided by the square root of 
the number of trading signals. As we can see in Table 5, the GARCH with a filter 
of 0,5Y0 by TSl and the EGARCH with a filter of 1% by TS2 are proved to be 
most significant. This argument supports again the previous analysis. 
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Figure 2: Cumulative profits of trading strategy 1 without filter. 

Figure 3: Cumulative profits of trading strategy 2 without filter 
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Table 3: Trading signals and sell/buy ratios with different filters 

Trading stratcgg 1 
Filter GARCH ratio EGARCH ratio HV ratio IV ratio 

0.0% 495 54.69% 495 74.30% 495 164.71% 375 111.86% 
0.5% 482 53.39% 481 74.282 489 164.32% 372 113.73% 
1.0% 462 50.38% 463 73.41% 485 167.36% 357 113.772 
1.5% 446 50.68% 445 71.81% 473 172.16x 349 H5.432 

2.0% 434 48.63% 431 72.40% 474 170.86% 331 113.55x 
2.5% 415 45.10% 414 71.782 465 170.35% 320 116.22% 
3.0% 123 44.24% 391 72.252 454 171,86% 309 116.08% 
3.5% 387 46.04% 380 70.40% 442 174.532 303 116.43% 
4.0% 373 45.14% 365 70.56% 429 190.33% 299 116.67% 

Tradinq stl 
Filter GARCH ratio EGARCH ratio 

0.0% 495 45.16% 495 71.28x 
0.5% 480 45.30% 478 70.71% 
1.0% 469 44.75% 456 68.83% 
1.5% 455 43.53% 442 69.35% 

2.0% 439 44.41% 434 70.20% 
2.5% 422 44.52% 414 63.67% 
3.0% 407 44.33% 331 70.74% 
3.5% 387 44.40% 380 iO.40% 
4.0% 387 44.94% 368 71.16:: 

Table 4: Cumulative profits with different filters. 

eg,2 
HV ratio 
495 159.162 
491 161.17% 
485 165.03% 
476 165.92% 
468 167.43% 
463 167,632 
454 168.64% 
440 173.23% 
430 173.222 

Tradin 
EGARCH 

0.52 224% 443% 
1.0% 210% 420% ” : 1.5% 208% 333% 

2.0% 185x 359% c 2.5% 189% 346% 
3.0% 192% 362% 
3,5% 213% 395% 
4.0% 2lzz 403" LX. 

Mean Total 
163% 2492 
167% 254% 
140% 183% 
135% 182% 
130% 1572 
120% 133% 
128% 152% 
131% 158% 
118% 114% 

Tradinq 
EGARCH 

Mean Total 
130% 207% 
135% 221% 
14w 229% 
120% 200% 
77% 165% 
41% 53'/ 
57% 72z 
22% 21% 
13% 14% 

50% 71% 
46% 83% 
51% 85% 
40% 19% 
59% 86% 
622 38% 
70% 107% 
66% 115% 

rate 1 

Mean Total 
54% 47% 
54% 56% 
49% 54% 

7 

13% -Hz 
20% -4% 
15% -10% 
3% -30% 
8% -32% 

-10% -70% I St1 
I 

rategy 2 
HY 

Mean Total 
50% 8% 
49% 4% 
48% 3% 
35% -46% 
25% -47% 
20% -58% 
19% -59% 
23% -57% 
16% -70% I 

IV ratio 
375 132.92% 
365 133.37% 
355 136.67% 
336 138.30% 
325 144,362 
312 149.60% 
300 152.10% 
289 153.512 
283 150.44% 

IV 
Mean Total 
63% 70% 
72% 82% 
64% 76% 
63% 73% 
77% 88% 
51% 23% 
59% 35% 
SW 28% 
61% 26% 

IV 
Mean -~ Total 

14% -1lZ 
13% -142 

-44% -81% 
-42% -54% 
-47% -55% 
-32% -37% 
-31% -38% 
-27% -25% 
-25% -14% 

1 
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Table 5: Statistical significance of daily rate of returns with different filters. 

5 

Trading Rralcg, 1 
Filtrr GARCH EGARCH HV IV 

Mean SD r-rxia Mean SD t-ratio hlean SD t,xio Mean SD t-ratio 
0.0% 0.83% 7.71% 2.40 0.4%! 7.71% 1.40 0.09% 7.76% 0.26 0.18% 7.17% 0.49 
0.5% 0.87% 7.68'/. 2.49 0.50% 7.72% 1.42 0.W 7.74% 0.31 021% 7.15% 0.57 
LO% 0.82% 7.8W 2.32 0.36X 7.33-L 1.08 0.w 7.732 0.30 0.20x 7.10% 0.52 
1.5% 0.78% 7.60% 218 0.36% 7.27X 1.04 -0.02% 7.48% .0.07 020X 7.02% 0.54 
2.0% 0.71% 7.55% 1.95 0.31% 7.22: 0.89 -0.01% 7.48% -0.02 0.23x 6.85% 0.60 
2.5% 0.68% 7.49x 185 026X 7.15% 0.75 -0.02% 7.47% -0.05 0.07% 6.57% 0.20 
3.0% 0.71% 7.42% L92 0.30% 7.w 0.83 -0.05% 7.43% -0.17 0.09% 6.48% 0.25 
3.5% 0.78% 7.39% 2.07 0.31% 7.ow 0.86 -0.06X 7.38% -0.18 0.07% 6.46% 0.20 
4.w 0.79% 7.36% 2.07 02% 6.80% 0.53 -0.14% 7.33% -0.39 0.07x 6.46% 0.18 

Conclusions 

Trading 
EGARCH 

Medn SO t-ratio 
OAl% 7.75% 1.17 
0.43% 7.69% 1.23 
0.45% 7.621 1.26 
0.39% 7.54x 1.09 
0.32X 7.11% 0.95 im 6.68% 6.31 
0.11% 6.59% 0.42 
0.04X 6.33% 0.l3 
0.02 6.264 0.08 

rateg,Z 
HV 

Mean SD t-ratio 
0,02% 7.X% 0.05 
0.01% 7.X% 0.02 
0.01% 7.74x 0.02 

-0.09% 7.56% -026 
-0.03% 7.51% -0.27 
-0.W 7.51% -0.33 
-0.12% 7.49% -0.33 
-0.w 7.46% -0.31 
-0.14% 7.38% -0.38 

.- 
Mean SD I-ratio 
-0.03% 7.11% -0.08 
.0.04% 7.07% -0.09 
-0.21% 6.73% -0.58 
-0.14X 6.61% 0.39 
-0.W 6.58% -0.39 
-0.0% 6.47% Q.26 
-0.10% 6;42% -0127 
-0.06% 6.40'1 -0.17 
-0.03% 8.35% -0.09 

In this study, the GARCH(l,l) and EGARCH(l,l) models are first used to describe 
the time-varying volatility of IBISDAX index. The models are shown to be well 
fitted, and the parameter estimates are statistically significant. Some charatereza- 
tions of these models discussed in Chapter 2, such like nonnegative constraints, 
stationarity, and asymmetric volatility effect, are well represented with the esti- 
mated parameters in at-the-sample case. 

Further, we have used two straddle trading strategies to evaluate the out-of- 
sample volatility forecasts of four competing models, i.e. GARCH( l,l), EGARCH 
(l,l), the conventional methods of historical volatility, and AR( 1) of implied volatil- 
ity. The trading strategies were tested with DTB D-44X options over a sample period 
of 495 days. By trading strategy 1, the volatility forecasts of GARCH(l,l) is shown 
to have the best performance, while by trading strategy 2, the EGARCH(1,l) is the 
winner. Since volatility are subject to error, we have further used a filter method. 
Although the performances of all models were influenced by the filter, the compar- 
ison results keep hold. These results are compatible with the empirical evidence 
that ARCH type volatility outperforms other volatility approaches. Moreover, the 
metric we used, namely cumulative profits of option trading strategy, offers a more 
objective and natural way to assess volatility forecasts. 

Extensions and applications of these investigations are the subject of further 
studies: The influence of an aggregation of the daily forecast to weekly or monthly 
time horizons should be investigated. The large volatility trading profits obtain- 
able with ARCH models even including transaction costs suggest the hypothesis, 
that the option market is not efficient. Therefore the explicit applicability to the 
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question of efficient portfolio insurance of volatile funds using options should be 
considered. This is left for future research. 
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